Computably Categorical Fields via Fermat's Last Theorem

Russell Miller,
Queens College \&
Graduate Center, CUNY
Hans Schoutens,
NYC College of Technology \& Graduate Center, CUNY

May 22, 2009

Computable Categoricity

Defn.: A computable structure \mathcal{A} is computably categorical if for each computable $\mathcal{B} \cong \mathcal{A}$ there is a computable isomorphism from \mathcal{A} to \mathcal{B}.

Examples: (Dzgoev, Goncharov; Remmel; Lempp, McCoy, M., Solomon)

- A linear order is computably categorical iff it has only finitely many adjacencies.
- A Boolean algebra is computably categorical iff it has only finitely many atoms.
- An ordered Abelian group is computably categorical iff it has finite rank (\equiv basis as \mathbb{Z}-module).
- For trees, the known criterion is recursive in the height and not easily stated!

Computably Categorical Fields

Thm. (Frohlich-Shepherdson): All normal algebraic extensions of \mathbb{Q} and of $\mathbb{Z} /(p)$ are computably categorical. However, there does exist a computable field which is not c.c.

Thm. (Ershov, 1977): An algebraically closed field is computably categorical iff it has finite transcendence degree over its prime subfield.

Natural conjecture: this holds for fields in general. But:
Thm. (Ershov, 1977): There exists a computable field, algebraic over \mathbb{Q}, which is not c.c.
Thm. (Miller-Schoutens, 2009): There exists a computable field of infinite transcendence degree over \mathbb{Q} which is c.c.

Infinite Transcendence

Basic distinction for computable fields: finite vs. infinite transcendence degree.

- For finite tr.deg. n, use $Q\left(x_{1}, \ldots, x_{n}\right)$ in place of the prime subfield Q, and constructions for algebraic fields go through.
- For infinite tr.deg., very hard just to identify a basis!

Prop.: If a computable field F contains the algebraic closure of its prime subfield Q, and has infinite tr.deg. over Q, then F is not c.c.

Proof: Use Δ_{2} guessing to identify a basis B in F. Build $\tilde{F} \cong F$, with a corresponding basis \tilde{B}_{s}. But when φ_{e} maps $b \in B$ to a transcendental $\varphi_{e}(b)$ in \tilde{F}, we reconfigure \tilde{F} and make $\varphi_{e}(b)$ algebraic instead. The algebraic closure allows this to work: there must be an embedding of \tilde{F}_{s} into $\tilde{F}_{s} \cup \bar{Q}$ with $\varphi_{e}(b)$ mapping into \bar{Q}.

Tagging a Basis Element

Idea: make basis elements recognizable, by making them part of solutions to certain polynomials. Start with $\mathbb{Q}\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ purely transcendental, and then adjoin (e.g.) y_{0} satisfying

$$
x_{0}^{5}+y_{0}^{5}=1
$$

The hope is that, in other computable copies of this field, we can recognize the pair $\left\{x_{0}, y_{0}\right\}$ as the unique solution to $X^{5}+Y^{5}=1$.

- By Fermat's Theorem, the only solutions in \mathbb{Q} are $(0,1)$ and $(1,0)$.
- Need to show that there are no other solutions in our field.
- Then we need to tag other x_{i}, adding other y_{i}, without adjoining any more solutions of $X^{5}+Y^{5}=1$.

Drastic Measures

This calls for algebraic geometry!
Prop.: Let k be a field of char. 0 and let C be a curve over k of genus $g \geq 2$. Then the function field $K=k(C)$ of C is generated by the coordinates of any K-rational point P of C which is not k-rational. So for any $P \in C(K) \backslash C(k)$, the natural inclusion $k(P) \subseteq K$ is an equality.

Take $k=\mathbb{Q}, C$ a Fermat curve, so
$K=\mathbb{Q}(x)[y] /\left(x^{p}+y^{p}-1\right)$. The Proposition shows that every nontrivial solution of C within K generates K. So such solutions correspond to automorphisms of K.

Fermat Curves and Solutions

Thm. (Leopoldt; Tzermias): Over an algebraically closed field K of characteristic 0 , the automorphism group of the projective curve $X^{p}+Y^{p}=Z^{p}$ is the semidirect product of the symmetric group S_{3} and the group $(\mu(p))^{2}$, where $\mu(p)$ is the multiplicative group of p-th roots of unity in K.

This limits the solutions of a Fermat curve C, and shows that the only solutions in our function field are (x, y) and (y, x).
(Thanks to Gunther Cornelissen!)

Different Fermat Curves

But could one Fermat curve have a solution in the function field of another Fermat curve?

Prop.: Let \mathcal{C} be a general collection of curves over k and let $k(\mathcal{C})$ be its function field. Suppose all curves in \mathcal{C} have genus at most g and let D be an arbitrary curve of genus at least g. Then the function field $k(D)$ embeds in $k(\mathcal{C})$ if and only if $D \in \mathcal{C}$.

Genus of the Fermat curve $\left(X^{p}+Y^{p}-1\right)$ is $\frac{(p-1)(p-2)}{2}$. So no larger-degree Fermat curve has any solution in the function field of the smaller-degree curves.

No Cover Relation

Lemma: Let C be a curve of genus $g \geq 2$ and let F_{p} be the Fermat curve of degree p. If $p>64 g^{2}$, then there is no cover relation between C and F_{p}.
(This follows from work of Baker, González, González-Jiménez, \& Poonen.)
"No cover relation" implies no solutions to either curve in the function field of the other curve. And by choosing each p_{i+1} sufficiently large, we may ensure no cover relation between any Fermat curves $F_{p_{i}}$ and $F_{p_{j}}$.

Moreover, then there is no cover relation between finite collections of such curves.

Computable Categoricity

Thm. (Miller-Schoutens): The function field F of the collection of Fermat curves $F_{p_{0}}, F_{p_{1}}, \ldots$ is a computable, computably categorical field of infinite transcendence degree over \mathbb{Q}.

Specifically, F is generated over \mathbb{Q} by a basis $\left\{x_{0}, x_{1}, \ldots\right\}$ and additional elements y_{i} s.t. $x_{i}^{p_{i}}+y_{i}^{p_{i}}=1$. The only solutions to $X^{p_{i}}+Y^{p_{i}}=1$ in F are $\left(x_{i}, y_{i}\right),\left(y_{i}, x_{i}\right),(0,1), \&$ $(1,0)$. So in any $\tilde{F} \cong F$, we may find any nonzero solution ($\tilde{x}_{i}, \tilde{y}_{i}$) and map $x_{i} \mapsto \tilde{x}_{i}$ and $y_{i} \mapsto \tilde{y}_{i}$.

Similar Fields

This same result would apply to any function field for an infinite c.e. set $\mathcal{C}=\left\langle C_{i}\right\rangle_{i \in \omega}$ of curves of genus ≥ 2 with:

- no cover relations among the curves in \mathcal{C};
- effective Mordell-Weil: the function

$$
\begin{aligned}
& i \mapsto\left|C_{i}(\mathbb{Q})\right| \text { must be computable (and } \\
& \left.\left|C_{i}(\mathbb{Q})\right|<\infty\right) .
\end{aligned}
$$

What other collections \mathcal{C} might satisfy this?

- To avoid cover relations, we could take all curves to have the same genus.
- Could we just take all Fermat curves of prime degree ≥ 5 ?

Restricting Automorphisms

For the above F, each x_{i} can map to either x_{i} or y_{i}, independently of other x_{j}. So we have 2^{ω} automorphisms of F, of arbitrary Turing degree.

Build the computable extension field $E \supseteq F$ by adjoining square roots:

$$
E=F\left[\sqrt{x_{i}}: \quad i \in \omega\right] .
$$

Lemma: No y_{i} has a square root in E.
Proof: Embed $E \hookrightarrow \mathbb{R}$ with $x_{i}>1$ for all i. Then all $y_{i}=\sqrt[p_{i}]{1-x_{i}^{p_{i}}}<0$.

Intrinsically Computable Basis

Defn: A relation R on a computable \mathcal{M} is intrinsically computable if, for all isomorphisms $f: \mathcal{M} \rightarrow \mathcal{A}$ with \mathcal{A} computable, $f(R)$ is computable.

In E, the basis $B=\left\{x_{0}, x_{1}, \ldots\right\}$ is defined by a computable infinitary Σ_{1}^{0} formula, hence is intrinsically c.e.
Lemma: In a computable field, every c.e. basis is computable.
So B is intrinsically computable.

