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Computable Categoricity

Defn.: A computable structure A is computably
categorical if for each computable B ∼= A there is
a computable isomorphism from A to B.

Examples: (Dzgoev, Goncharov; Remmel;
Lempp, McCoy, M., Solomon)

• A linear order is computably categorical iff it
has only finitely many adjacencies.

• A Boolean algebra is computably categorical
iff it has only finitely many atoms.

• An ordered Abelian group is computably
categorical iff it has finite rank (≡ basis as
Z-module).

• For trees, the known criterion is recursive in
the height and not easily stated!
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Computably Categorical Fields

Thm. (Frohlich-Shepherdson): All normal
algebraic extensions of Q and of Z/(p) are
computably categorical. However, there does exist
a computable field which is not c.c.

Thm. (Ershov, 1977): An algebraically closed
field is computably categorical iff it has finite
transcendence degree over its prime subfield.

Natural conjecture: this holds for fields in
general. But:
Thm. (Ershov, 1977): There exists a computable
field, algebraic over Q, which is not c.c.
Thm. (Miller-Schoutens, 2009): There exists a
computable field of infinite transcendence degree
over Q which is c.c.
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Infinite Transcendence

Basic distinction for computable fields: finite vs.
infinite transcendence degree.

• For finite tr.deg. n, use Q(x1, . . . , xn) in place
of the prime subfield Q, and constructions for
algebraic fields go through.

• For infinite tr.deg., very hard just to identify
a basis!

Prop.: If a computable field F contains the
algebraic closure of its prime subfield Q, and has
infinite tr.deg. over Q, then F is not c.c.

Proof: Use ∆2 guessing to identify a basis B in
F . Build F̃ ∼= F , with a corresponding basis B̃s.
But when ϕe maps b ∈ B to a transcendental
ϕe(b) in F̃ , we reconfigure F̃ and make ϕe(b)
algebraic instead. The algebraic closure allows
this to work: there must be an embedding of F̃s

into F̃s ∪ Q with ϕe(b) mapping into Q.
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Tagging a Basis Element

Idea: make basis elements recognizable, by
making them part of solutions to certain
polynomials. Start with Q(x0, x1, x2, . . .) purely
transcendental, and then adjoin (e.g.) y0

satisfying
x5

0 + y5
0 = 1.

The hope is that, in other computable copies of
this field, we can recognize the pair {x0, y0} as
the unique solution to X5 + Y 5 = 1.

• By Fermat’s Theorem, the only solutions in Q
are (0, 1) and (1, 0).

• Need to show that there are no other
solutions in our field.

• Then we need to tag other xi, adding other
yi, without adjoining any more solutions of
X5 + Y 5 = 1.
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Drastic Measures

This calls for algebraic geometry!

Prop.: Let k be a field of char. 0 and let C be a
curve over k of genus g ≥ 2. Then the function
field K = k(C) of C is generated by the
coordinates of any K-rational point P of C which
is not k-rational. So for any P ∈ C(K) \C(k), the
natural inclusion k(P ) ⊆ K is an equality.

Take k = Q, C a Fermat curve, so
K = Q(x)[y]/(xp + yp − 1). The Proposition
shows that every nontrivial solution of C within
K generates K. So such solutions correspond to
automorphisms of K.
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Fermat Curves and Solutions

Thm. (Leopoldt; Tzermias): Over an
algebraically closed field K of characteristic 0, the
automorphism group of the projective curve
Xp + Y p = Zp is the semidirect product of the
symmetric group S3 and the group (µ(p))2, where
µ(p) is the multiplicative group of p-th roots of
unity in K.

This limits the solutions of a Fermat curve C, and
shows that the only solutions in our function field
are (x, y) and (y, x).

(Thanks to Gunther Cornelissen!)
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Different Fermat Curves

But could one Fermat curve have a solution in the
function field of another Fermat curve?

Prop.: Let C be a general collection of curves
over k and let k(C) be its function field. Suppose
all curves in C have genus at most g and let D be
an arbitrary curve of genus at least g. Then the
function field k(D) embeds in k(C) if and only if
D ∈ C.

Genus of the Fermat curve (Xp + Y p − 1) is
(p−1)(p−2)

2 . So no larger-degree Fermat curve has
any solution in the function field of the
smaller-degree curves.
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No Cover Relation

Lemma: Let C be a curve of genus g ≥ 2 and let
Fp be the Fermat curve of degree p. If p > 64g2,
then there is no cover relation between C and Fp.

(This follows from work of Baker, González,
González-Jiménez, & Poonen.)

“No cover relation” implies no solutions to either
curve in the function field of the other curve. And
by choosing each pi+1 sufficiently large, we may
ensure no cover relation between any Fermat
curves Fpi and Fpj .

Moreover, then there is no cover relation between
finite collections of such curves.
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Computable Categoricity

Thm. (Miller-Schoutens): The function field F of
the collection of Fermat curves Fp0 , Fp1 , . . . is a
computable, computably categorical field of
infinite transcendence degree over Q.

Specifically, F is generated over Q by a basis
{x0, x1, . . .} and additional elements yi s.t.
xpi

i + ypi
i = 1. The only solutions to

Xpi + Y pi = 1 in F are (xi, yi), (yi, xi), (0, 1), &
(1, 0). So in any F̃ ∼= F , we may find any nonzero
solution (x̃i, ỹi) and map xi (→ x̃i and yi (→ ỹi.
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Similar Fields

This same result would apply to any function field
for an infinite c.e. set C = 〈Ci〉i∈ω of curves of
genus ≥ 2 with:

• no cover relations among the curves in C;

• effective Mordell-Weil: the function
i (→ |Ci(Q)| must be computable (and
|Ci(Q)| < ∞).

What other collections C might satisfy this?

• To avoid cover relations, we could take all
curves to have the same genus.

• Could we just take all Fermat curves of prime
degree ≥ 5?
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Restricting Automorphisms

For the above F , each xi can map to either xi or
yi, independently of other xj . So we have 2ω

automorphisms of F , of arbitrary Turing degree.

Build the computable extension field E ⊇ F by
adjoining square roots:

E = F [
√

xi : i ∈ ω].

Lemma: No yi has a square root in E.
Proof: Embed E ↪→ R with xi > 1 for all i. Then
all yi = pi

√
1 − xpi

i < 0.
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Intrinsically Computable Basis

Defn: A relation R on a computable M is
intrinsically computable if, for all isomorphisms
f : M → A with A computable, f(R) is
computable.

In E, the basis B = {x0, x1, . . .} is defined by a
computable infinitary Σ0

1 formula, hence is
intrinsically c.e.
Lemma: In a computable field, every c.e. basis is
computable.
So B is intrinsically computable.
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