Chapter-3 : Regular Languages and Regular Grammars
3.1 Regular Expressions.
3.2 Applications of Regular Expression:
3.3 Connection between Regular Expressions and Regular Languages.
3.4 Regular Grammars .
3.4.1 Right Linear Grammar
3.4.2 Left Linear Grammar
3.4.3 Regular Grammar and Finite Automata
3.1 Regular Expressions:
The language accepted by finite automata are easily described by simple expressions called
regular expressions.
The regular expression is the most effective way to represent any language.
Problems:
1) Write the regular expression for the language accepting all combinations of a’s over the set > ={a}

Solution : AJ) i U ¢ T MMEE MLLEpLUILY e
bt - All combingt;
There m; ations of g's

| nav s z o
That is 'y be the case that g js ipmedm - xay: be single, doub]

a4t 1S wWe expect the « > appearin .. i ’ 1Dle, tripple : 50 ON.
as Pect the set of (e 8 for zerg times, w : ppie and &

a, q o h i T .

w0) Sovua S hich means a null string.
- C ive repular ey :

R = g« 8 egular expression for this

Phiok 35 1
hat is kleen closyre of n
- I

2) Write the regular expression for the language accepting all combinations of a’s except the null string over
the set) ={a}

golution The regular expression has to be built for the language

L = {a, aa, aaa, ...

This set indicates that there is no null string. So we can denote re. as
R = at

As we know, positive closure indicates the set of strings without a null string.

3) Design the regular expression for the language accepting all the strings containing any number of a’s
and b’s over the set Y={a,b}

solution : The regular expression will be

re. = (a+ b)*

This will give the set as L = (e, a, aa, ab, b, ba, bab, abab, any combination of a

and b} .

The (a + b)* means any combination with a and b even a null string.

3.2 Applications of Regular Expression:
1. Text editors : Text editors are some programs which are used for processing the text. For example UNIX text
editor uses the regular expression for substituting the strings, such as
$/bbb*/b/
substitutes a single blank for the first string of two or more blanks found in a given line.

2. Lexical Analyzers: Compiler uses a lexical analyzer to scan the input program and separate out the tokens.

For example, Identifier is a category of token in the source language and it can be identified by a regular
expression as shown below.
(letter)(letter+digit)* where letter={A,B,...,Z,a,b,...z} and digit ={0,1,...,9}

If anything in the source language matches with this regular expression then it is recognized as an identifier.

3.3 Connection between Regular Expressions and Regular Languages:
Regular Language:

The language accepted by some regular expression is known as a regular language-

For every regular language there is a regular expression, and for every regular expression there is a regular

language

If r and s are two regular expressions denoting the Languages L1 and L2 respectively ,then
r+s is equivalent to L1 U L2 i.e union.
r.sisequivalentto L1.L2 i.e concatenation.
r* is equivalent to L1* i.e closure.
Thoerm:
Let r be a regular expression,then there exists a NFA accepts the L(r),consequently L(r) is a regular Language.

Case 1 : Union case
Let r=r1; +1 where 1 and 1, be the regular expressions.
There exists two NFA's M, =(Q|,El,6. Ah})
and MZ =(Q2122/62/{f2}) . - .
L (M) = L(r) means the language states by regular expression 1 is same WhiC
) = € ; A
is represented by M;. Similarly L (Mz) =L (12)

Li.A N

Case 2 : Concatenation case
Let, r =

rnr; where and 1, are two r
egular ex
denotes the two machines such that L (M;

TI"M‘} Pl et o Yo I S

pressions. The M; and M,
) = L(I‘1) and L (Mg) =L (1‘2).

Start
\@ 2
"

case 3 : Closure case

Let r = 11 where 1 be a regular expression

The machine M is such that L(M|) —'-.]_,(r]_)_

.

Start

Problems:

1), Construct NFA for the Regular Expression b+ba*.

Solution : The regular expression |
b + ba* can be broken into 1 and r, as

r =
N ~= b
I'2 = bﬂ *

ich i imple.
Let us draw the NFA for 11, which is very simp

b
Start a

is can be broken into r3 and rq where ry = | afig

Now, we will go for rp = ba*, th ‘ 4 : 1
ry = a*. Now the cgse for concatenation will be applied. The NFA will look like thig Iy

will be shown in Fig. 3.7.
Start e b

and ry will be shown as

The r, willbery =13 -14

T T gy v oww oy

Now, we will draw NFA for r = +r, i.e. b + ba*

2) Construct NFA with € moves for the regular expression (0+1)*.

Solution:

neyular L
L3 = (I'] +I‘2) ,
r = r3
where n =0, 1rn =1

NFA for r; will be

NFA for r; will be

NFA for r3 will be

And finally

3.4 Regular Grammars :

A regular grammar is definedas G =(V, T, P, S) where
V is set of symbols called non terminals

T is a set of symbols called terminals.

P is a set of production rules.

S is a start symbol

The production rules P are of the form.
jAREIab
A —a

Where A and B are non-terminal symbols and a is terminal symbol.

For example

Consider G
Vv
1 I

S is a start symbol and producti

S —»0S

(v, T, P, §) with
(s, Al
{0, 1)

1)

on rules are as given below -

S - 1B

B —¢&

Right-Linear and Left-Linear Grammar:
3.4.1 Right-Linear Grammar:
If the non terminal symbol appears as a rightmost symbol in each production of regular grammar then it is

called right linear grammar.

The right linear grammar is of following form

A — aB
A

A28

Where A and B are non-terminal symbols and a is a terminal symbol.

3.4.2 Left-Linear Grammar:

If the non terminal symbol appears as a left most symbol in each production of regular grammar then it
is called left linear grammar.

The left- linear grammar is of following form:

AF-}Ba
A —a
A —E

Where A and B are non-terminal symbols and a is a terminal symbol.

A Regular Grammar is one that is either Right-linear or left-linear Grammar.

The grammar G = ({S},{a,b}, S, P1), with P, given as

S — abS|a
is right-linear. The grammar G2 = ({5, 51,52}, {a,b}, S, I%2), with produc-
tions
S — S)ab,
S‘l —_ bT]GbI.Sz,
S*), — O,

is left-linear. Both G; and G2 are regular grammars.
The sequence

S = ab¥ = ababS = ababa

is a derivation with G. From this single instance it is easy to conj;acture
that L (G4) is the langnage denoted by the regular expression r = (ab)” a. *In
o similar way, we can see that L (G2) is the regular langnage L (aab(ab)").

The grammar G = ({5, A, B}, {a,b}, S, FP) with productions

5 — A,
A — aB|A,
B — Ab,

is not regular. Although every production is either in right-linear or left-
linear form, the grammar itself is neither right-linear nor left-linear, and

3.4.3 Regular Grammar and Finite Automata:

Let M = (10,91, - qn} =8, qo, F) be a DFA. The equivalent grammar G cap .
constructed from this DFA such that productions should correspond to transitions, The
derivations can be terminated by a production rule giving terminals. For sy
production rule, the transitions terminating at some final state is encountered.

Let,

G = (Ao, At Anl 5P, Ay) "

-

Wh i
ere P the set of production rules can be defined by following rules

1. Ai 1 1 =

: - a A, 1S a pI'OdllCtlon mle lf 6 (ql ﬂ) (]' Where q & I

. i aA. : t ’ "l) |
A - j and A, - a are pI'Oduc .On rules if 6

: (9i,a) = a; wh e R
ar 1s accepted by DFA M. Ai-8) = aj where g; ¢

Thus the giyen g

1) Construct Regular Grammar for given Finite Automata.

L A B T

Solution:

G = (M, T.P.9S

V = {Ag, Ay}

T {a, b}

Ag > aAy A = aAq|a
Ag -bA; A; - bA4b

Ao —b

2) Construct Regular Grammar for the diagram as given below

Solution : The equivalent regular grammar can be denoted by G = (V, T, P, S) whe
Vo= {Ag, AL Ay, Aj)
The production rules can be

Ag = 0A,
Ay =14,
A =04,
Az =04,
Az =14,
Ay 51

As = 1A,
A3 =04,

