Chapter-3 : Regular Languages and Regular Grammars

- 3.1 Regular Expressions.
- 3.2 Applications of Regular Expression:
- 3.3 Connection between Regular Expressions and Regular Languages.
- 3.4 Regular Grammars .
 - 3.4.1 Right Linear Grammar
 - 3.4.2 Left Linear Grammar
 - 3.4.3 Regular Grammar and Finite Automata

3.1 Regular Expressions:

The language accepted by finite automata are easily described by simple expressions called

regular expressions.

The regular expression is the most effective way to represent any language.

Problems:

1) Write the regular expression for the language accepting all combinations of a's over the set $\sum \{a\}$

Solution: All combinations of *a*'s means *a* may be single, double, tripple and so on. There may be the case that *a* is appearing for zero times, which means a null string. That is we expect the set of { ε , *a*, *aa*, *aaa*, ...}. So we can give regular expression for this R = *a** That is kleen closure of *a*

2) Write the regular expression for the language accepting all combinations of a's except the null string over the set $\sum = \{a\}$

solution : The regular expression has to be built for the language

$$L = \{a, aa, aaa, ...\}$$

This set indicates that there is no null string. So we can denote r.e. as

 $R = a^+$

As we know, positive closure indicates the set of strings without a null string.

Design the regular expression for the language accepting all the strings containing any number of a's and b's over the set ∑={a,b}

3.2 Applications of Regular Expression:

1. <u>Text editors</u> : Text editors are some programs which are used for processing the text. For example UNIX text editor uses the regular expression for substituting the strings, such as

\$/bbb*/b/

substitutes a single blank for the first string of two or more blanks found in a given line.

 Lexical Analyzers: Compiler uses a lexical analyzer to scan the input program and separate out the tokens. For example, Identifier is a category of token in the source language and it can be identified by a regular expression as shown below.

```
(letter)(letter+digit)* where letter=\{A, B, \dots, Z, a, b, \dots z\} and digit =\{0, 1, \dots, 9\}
```

If anything in the source language matches with this regular expression then it is recognized as an identifier.

3.3 Connection between Regular Expressions and Regular Languages:

Regular Language:

The language accepted by some regular expression is known as a regular language-

For every regular language there is a regular expression, and for every regular expression there is a regular language

If r and s are two regular expressions denoting the Languages L1 and L2 respectively, then

r+s is equivalent to L1 U L2 i.e union.

r.s is equivalent to L1 .L2 i.e concatenation.

r* is equivalent to L1* i.e closure.

Thoerm:

Let r be a regular expression, then there exists a NFA accepts the L(r), consequently L(r) is a regular Language.

Case 1 : Union case

Let $\mathbf{r} = \mathbf{r}_1 + \mathbf{r}_2$ where \mathbf{r}_1 and \mathbf{r}_2 be the regular expressions.

There exists two NFA's $M_1 = (Q_1, \Sigma_1, \delta_1, \{f_1\})$

and $M_2 = (Q_2, \Sigma_2, \delta_2, \{f_2\})$

 $L(M_1) = L(r_1)$ means the language states by regular expression r_1 is same which is represented by M_1 . Similarly $L(M_2) = L(r_2)$.

Case 2 : Concatenation case

Let, $r = r_1 r_2$ where r_1 and r_2 are two regular expressions. The M_1 and M_2 denotes the two machines such that $L(M_1) = L(r_1)$ and $L(M_2) = L(r_2)$.

Case 3 : Closure case

Let $r = r_1^*$ where r_1 be a regular expression.

The machine M_1 is such that $L(M_1) = L(r_1)$.

Problems:

1), Construct NFA for the Regular Expression b+ba*.

Solution : The regular expression

$$r = b + ba^*$$
 can be broken into r_1 and r_2 as
 $r_1 = b$
 $r_2 = ba^*$
Let us draw the NFA for r_1 , which is very simple.
Start $a = b$

Now, we will go for $r_2 = ba^*$, this can be broken into r_3 and r_4 where $r_3 = b$ and $r_4 = a^*$. Now the case for concatenation will be applied. The NFA will look like this r_3 will be shown in Fig. 3.7.

and r₄ will be shown as

The r_2 will be r_2 = $r_3 \cdot r_4$

Now, we will draw NFA for $r = r_1 + r_2$ i.e. $b + ba^*$ b ε ε Start q₀ ε 99 ε q_3 ε a **q**₅ q₆ 97 **q**₈ 3

2) Construct NFA with \in moves for the regular expression $(0+1)^*$.

Solution:

$$r_{3} = (r_{1} + r_{2})$$

$$r = r_{3}^{*}$$
where $r_{1} = 0$, $r_{2} = 1$
NFA for r_{1} will be
$$\underbrace{\text{Start}}_{q_{1}} \underbrace{q_{1}}_{q_{2}} \underbrace{q_{2}}_{q_{2}}$$
NFA for r_{2} will be

And finally

3.4 Regular Grammars :

A regular grammar is defined as G = (V, T, P, S) where

V is set of symbols called non terminals

T is a set of symbols called terminals.

P is a set of production rules.

S is a start symbol

The production rules P are of the form.

Where A and B are non-terminal symbols and a is terminal symbol.

For exampl	e T D C) with
Consider	G = (V, T, P, S) with
	$V = \{S, A\}$
	$T = \{0, 1\}$
S is a start	symbol and production rules are as given below -
	$S \rightarrow 0S$
	$S \rightarrow 1B$

 $S \rightarrow ID$ $B \rightarrow \varepsilon$

Right-Linear and Left-Linear Grammar:

3.4.1 Right-Linear Grammar:

If the non terminal symbol appears as a rightmost symbol in each production of regular grammar then it is called right linear grammar.

The right linear grammar is of following form

Where A and B are non-terminal symbols and a is a terminal symbol.

3.4.2 Left-Linear Grammar:

If the non terminal symbol appears as a left most symbol in each production of regular grammar then it is called left linear grammar.

The left- linear grammar is of following form:

 $\begin{array}{c} A \rightarrow Ba \\ A \rightarrow a \\ A \rightarrow \epsilon \end{array}$

Where A and B are non-terminal symbols and a is a terminal symbol.

A Regular Grammar is one that is either Right-linear or left-linear Grammar.	
Example 3.12	The grammar $G_1 = (\{S\}, \{a, b\}, S, P_1)$, with P_1 given as
	S ightarrow abS a
	is right-linear. The grammar $G_2 = (\{S, S_1, S_2\}, \{a, b\}, S, P_2)$, with productions
	$S ightarrow S_1 ab,$
	$S_1 \rightarrow S_1 ab S_2,$
	$S_2 ightarrow a,$
	is left-linear. Both G_1 and G_2 are regular grammars. The sequence
	$S \Rightarrow abS \Rightarrow ababS \Rightarrow ababa$
	is a derivation with G_1 . From this single instance it is easy to conjecture that $L(G_1)$ is the language denoted by the regular expression $r = (ab)^* a$. In a similar way, we can see that $L(G_2)$ is the regular language $L(aab(ab)^*)$.

Example 3.13 The grammar $G = (\{S, A, B\}, \{a, b\}, S, P)$ with productions

$$S \rightarrow A,$$

 $A \rightarrow aB|\lambda,$
 $B \rightarrow Ab,$

is not regular. Although every production is either in right-linear or leftlinear form, the grammar itself is neither right-linear nor left-linear, and

3.4.3 Regular Grammar and Finite Automata:

Let M = $(\{q_0, q_1, ..., q_n\} \Sigma, \delta, q_0, F)$ be a DFA. The equivalent grammar G can be constructed from this DFA such that productions should correspond to transitions. The derivations can be terminated by a production rule giving terminals. For such production rule, the transitions terminating at some final state is encountered.

Let,

$$G = (\{A_0, A_1, ..., A_n\}, \Sigma, P, A_0)$$

Where P the set of production rules can be defined by following rules.

1. $A_i \rightarrow a A_j$ is a production rule if $\delta(q_i, a) = q_j$, where $q_j \notin F$

2. $A_i \rightarrow a A_j$ and $A_i \rightarrow a$ are production rules if $\delta(q_i, a) = a_j$ where $q_j \in F$. Thus the given grammar is accepted by DFA M.

1) Construct Regular Grammar for given Finite Automata.

Solution:

$$G = (V, T, P, S)$$

$$V = \{A_0, A_1\}$$

$$T = \{a, b\}$$

$$A_0 \rightarrow a A_0 \qquad A_1 \rightarrow a A_1 | a$$

$$A_0 \rightarrow b A_1 \qquad A_1 \rightarrow b A_1 | b$$

$$A_0 \rightarrow b$$

2) Construct Regular Grammar for the diagram as given below

The production rules can be

$$\begin{array}{c} A_0 \rightarrow 0 \, A_1 \\ A_1 \rightarrow 1 \, A_1 \\ A_1 \rightarrow 0 \, A_2 \\ A_2 \rightarrow 0 \, A_2 \\ A_2 \rightarrow 1 \, A_3 \\ A_2 \rightarrow 1 \\ A_3 \rightarrow 1 \, A_1 \\ A_3 \rightarrow 0 \, A_2 \end{array}$$