Kinematic (stick or skeleton) Diagrams

A striped-down (simplified) drawing showing the essentials needed for kinematics analysis. All links are numbered while the joints are lettered.

Mechanism to open and close a window

Kinematic diagram

Kinematic (stick or skeleton) Diagrams

Kinematic (stick or skeleton) Diagrams

Type of Joints - Kinematic Pairs

Lower Pairs - motion is transmitted through an area contact, pin and slider joints.

Higher Pairs - motion is transmitted through a line or a point contact; gears, rollers, and spherical joints.

Joints

The Revolute joint (pin or hinge joint) - one degree of freedom

It allows pure rotation between the two links that it connects (R joints)

Joints

The Sliding joint (prism or piston joint) - one degree of freedom

It allows linear sliding between the two links that it connects (P joint)

Joints

The Helical joint (helix or screw joint) - one degree of freedom

The sliding and rotational motions are related by the helix angle of the thread (H joint)

Joints

The Cylindrical (cylindric) joint - two degrees of freedom
It permits both angular rotation and an independent sliding motion (C joint)

Joints

The Spherical (spheric) - Three degree of freedom

It permits rotational motion about all three axes, a ball-and-socket joint (S joint)

Spherical (S) joint-3 DOF

Joints

The Planar (flat) - Three degree of freedom

It permits rotational motion about the Z axes axis and sliding motion in x and y axes (F joint), used seldom in design

Joints

A cam joint allows both rotation and sliding between two links.

A gear connection also allows both rotation and sliding as the gear teeth mesh

Degrees of Freedom (DOF) - Type of Joints, Higher Pairs

Roll-slide contact, 2 DOF

Rolling contact (no sliding), 1 DOF

Gears - sliding and rotation motion between two teeth, 2 DOF

Degrees of Freedom (DOF) - Type of Joints, Higher Pairs

Belt and pulley (no sliding) or chain and sprocket - 1 DOF

Spring - no effect on mechanism DOF

Degrees of Freedom (DOF) - Type of Joints, Lower Pairs

Name of Pair	$\underbrace{\substack{\text { Cemome } \\ \text { form }}}_{\text {ceomeric }}$	${ }_{\text {Seperemanatic }}^{\text {Sen }}$	¢ Depres
1. Reotule		Clloler	1
2. Cyinder $\begin{gathered}\text { (c) } \\ \text { der }\end{gathered}$	OE	$0 \sqrt{5}$	2
3. Prism ${ }_{(P)}$	R	0 +	1
4. Sophere	54		3
5. ${ }_{\text {chelix }}^{\text {(fi) }}$			1
6. ${ }_{\text {come }}^{\text {Pape }}$ (p)		σ	3

Each pin connection removes two degrees of freedom of relative motion between two successive links.

Two degrees of freedom joints are sometimes called a half a joint (Norton).

A slider is constrained against moving in the vertical direction as well as being constrained from rotating in the plane.

A spheric pair is a ball and socket joint, 3 DOF.

The helical pair has the sliding and rotational motion related by the helix angle of the screw.

Planar pair is seldom used

Degrees of Freedom

An object in space has six degrees of freedom.

- Translation - movement along X, Y, and Z axis (three degrees of freedom)
- Rotation - rotate about X, Y, and Z axis (three degrees of freedom)

Degrees of Freedom (DOF)

Planar (2D) mechanisms

Degrees of Freedom - number of independent coordinates required to completely specify the position of the link

Three independent coordinates needed to specify the location of the link $A B, x_{A}, y_{A}$, and angle θ

An unconstrained link in a plane has three degrees of freedom, a mechanism with L links has $3 L$ degrees of freedom

Degrees of Freedom (DOF)

Kutzbach's (modified Groubler) equation

$$
\begin{aligned}
\text { DOF } & =3(L-1)-2 J_{1}-J_{2} \\
\text { DOF } & =\text { degree of freedom or mobility } \\
L & =\text { number of links, including ground link } \\
J_{1} & =\text { number of } 1 \text { DOF joints (full joints) } \\
J_{2} & =\text { number of } 2 \text { DOF joints (half joints) }
\end{aligned}
$$

$$
\begin{array}{lll}
\mathrm{DOF} \leq 0 & \longrightarrow & \text { structure } \\
\mathrm{DOF}>0 & \longrightarrow \text { mechanism }
\end{array}
$$

Degree of Freedom (DOF) - example

Four Bar mechanism

$L=4, J_{1}=4$ pin connections, $J_{2}=0$
DOF $=3(L-1)-2 J_{1}-J_{2}$
DOF $=3(4-1)-2(4)-(0)=1$

Slider crank mechanism

$L=4, J_{1}=3$ pin connections +1 slider $=4$
$J_{2}=0$
DOF $=3(4-1)-2(4)-(0)=1$

1 DOF means only one input (power source) is needed to control the mechanism

Degrees of Freedom (DOF) - trench hoe

Number of links, $L=12$, Number of one DOF joints, $J_{1}=12$ (pins) +3 (slider) $=15$,

$$
\text { DOF }=3(L-1)-2 J_{1}-J_{2}=3(12-1)-2(15)=3
$$

3 hydraulics are used to control the position of the bucket.

Degree of Freedom (DOF) - example

Number of links, $L=7$,
Number of one DOF joints, $J_{1}=6$ (pins) +1 (slider) $=7$,
Number of two DOF joints, $J_{2}=1$ (fork joint)
DOF $=3(L-1)-2 J_{1}-J_{2}=3(7-1)-2(7)-1=3$

Three input sources are needed to control the mechanism

Fork Joint

1.

Paradoxes

Two rollers in contact, no slipping

Two gears in contact

$$
\begin{array}{ll}
L=3, J_{1}=3, J_{2}=0 & L=3, J_{1}=2, J_{2}=1 \\
\text { DOF }=3(3-1)-2(3)=0 & \text { DOF }=3(3-1)-2(2)-1=1
\end{array}
$$

Redundant support

$$
\begin{aligned}
& L=5, J_{1}=6, J_{2}=0 \\
& \text { DOF }=3(5-1)-2(6)=0
\end{aligned}
$$

Eliminate the redundancy before determining DOF

