

Computer Organization

Virtual Memory

Virtual Memory (1/3)

- VM uses main memory as a "cache" for secondary (disk) storage
 - Managed jointly by CPU hardware and the operating system (OS)
- Programs share main memory
 - Each gets a private virtual address space holding its frequently used code and data
 - CPU and OS translate virtual address to physical space
- VM can
 - allow many programs to run at once
 - protected from other programs

Virtual Memory (2/3)

Each program has its own memory space physical memory in system

Address Translation

- A VM "block" is called a page, page size are normally fixed (e.g., 4K)
- Virtual address can be larger than physical address
 - Need to translate from virtual to physical address
- A VM translation "miss" is called a page fault
- On page fault, the page must be fetched from disk
 - Takes millions of clock cycles
 - Handled by OS code
- Methods to minimize page fault rate
 - Fully associative placement
 - Smart replacement algorithms

Virtual address

Page Tables

- Page Table stores placement information (see next slide)
 - Array of page table entries(PTE), indexed by virtual page number
 - Page table register in CPU points to a page table in physical memory
- If page is present in memory
 - PTE stores the physical page number and other status bits (valid, referenced, dirty, ...)
 - Referenced bit is used to indicate the page has been used before
- If page is not present
 - PTE can refer to location in swap space on disk

 Page table maps each page in virtual memory to either a page in main memory or a page stored on disk

Valid bit =1 indicate the page is Physical Mem

Ref bit =1 indicate the page is used before

Translation Using a Page Table

Example 1

Assume 32-bit virtual address, each page is 4KB, and each page table entry has 4 bytes, what is the total page table size?

Physical address

Each page has $4KB (4KB = 2^{12})$ => Page offset has 12 bits

Virtual page number has 20 bits (=32-12) => No. of page table entries = $2^{32}/2^{12}=2^{20}$

Size of page table = No. of entries \times entry size = $2^{20} \times 4$ bytes = 4 MB

Example 2

frame 0 address: 0 ~ 4095

frame 1 address: 4096 ~ 8191

.....

Follow the above question, now the page table maps

page 0 to frame 10,

page 1 to frame 8,

page 2 to frame 100,

page 3 to frame 1...

Q2: What is the virtual page number of the virtual address 8196?

8196 / 4096=2....4, therefore, address 8196 is at the 3rd page, virtual page number is 2

Q3: What is the physical address of the virtual address 8196?

Virtual Page 2 mapped to physical address 100, Therefore, physical address is 100*4096+4

What happens during a page fault?

Page fault means that page is not resident in memory, hardware must trap to the OS to obtain the required data

- "May" need to pick a page to discard if no free space in memory
 - i.e., page replacement policy
 - Note: if a page in "main memory" is updated, then it is "dirty"
- Load the requested page in from disk
 - i.e., placement policy
- Update the page table
- Resume to program so HW will retry and succeed!

Replacement and Writes

- To reduce page fault rate, prefer least-recently used (LRU) replacement
 - Reference bit (aka use bit) in page table set to 1 on access to page
 - Periodically cleared to 0 by OS
 - A page with reference bit = 0 has not been used recently
- Disk writes take millions of cycles
 - Write a block at once, not individual locations
 - Write through is impractical, Use write-back
 - Dirty bit in PTE is set when page is written

Summary: Considerations for Virtual Memory

Size of a page

Page: a basic unit of memory blocks transferring between main memory and secondary storage (e.g., disk)

Placement policy

where to place a page in *main memory* (normally fully associative)

Replacement policy

replace pages if *cannot* find any free space in main memory (normally LRU)

When to fetch a page from disk?
 fetch when page fault occurs

Translation Lookaside Buffer

Problem of current technique

- Page table is also in the main memory
- Problem: every memory access by a program take at least two memory access
 - ⇒One to obtain physical address
 - ⇒One to get the data
 - ⇒Time consuming
- Use Translation Lookaside
 Buffer (also called
 translation cache) to reduce
 memory accesses

TLB to speedup the address translation

- TLB is "cache" of Page table: page table entries that are accessed frequently are put into TLB
- Typically, it's hardware inside a processor
- Either fully associative, set associative, or direct mapped
- TLBs are typically small in size, typically < 128~256 entries

TLB hit and miss (1/2)

- TLB hit on read
 - Physical address is obtained
- TLB hit on write:
 - Toggle dirty bit (write back to page table on replacement)

- TLB miss and Page table hit
 - load "page table entry" into TLB,
 - Then restart the instruction

TLB Miss & Page Table Hit

TLB hit and miss (2/2)

- TLB miss and page table miss (page fault)
 - OS handles fetching the page and updating the page table,
 - Then restart the faulting instruction

Example: the Intrinsity FastMATH TLB and cache.

- •32-bit V.A. (4GB)
- •32-bit P.A. (4GB)
- •TLB entries = 16 (only 6 entries are shown)
- •Page size : 4KiB
- •Virtual page number has 20 bit (=32-12)
- •16 words per block (64 bytes)
- 256 Blocks (index has 8 bits)
- Tag has 32-8-6 = 18 bits

Overall operation of Memory Hierarchy

Possible

Possible

Overall operation of Memory Hierarchy

TLB	Page Table	Cache	Possible? If so, under what circumstance?	
Hit	Hit	Hit	Possible. Best case	
Hit	Hit	Miss	Possible, but when TLB hits, the page table is not checked	
Hit	Miss	Hit	Impossible: cannot have a translation in TLB if page is not present in	
Hit	Miss	Miss	memory (TLB is subset of page table)	
Miss	Hit	Hit	TLB misses, but entry found in the page table; after retry, data is found in cache	
Miss	Hit	Miss	TLB misses, but entry found in the page table; after retry, data misses in cache	
Miss	Miss	Hit	Impossible: data cannot be allowed in cache if page is not in memory	
Miss	Miss	Miss	TLB misses and is followed by a page fault; after retry data must miss in cache	

The Memory Hierarchy

- Common principles apply at all levels of the memory hierarchy
- At each level in the hierarchy, we need to consider
 - Block placement
 - Finding a block
 - Replacement on a miss
 - Write policy

Block Placement

- Determined by associativity
 - Direct mapped (1-way associative)
 - One choice for placement
 - n-way set associative
 - n choices within a set
 - Fully associative
 - Any location
- Higher associativity reduces miss rate
 - Also Increases complexity, cost, and access time

Miss Rate vs. Associativity for different cache sizes

Finding a Block

Associativity	Location method	Tag comparisons
Direct mapped	Index	1
n-way set associative	Set index, then search entries within the set	n
Fully associative	Search all entries	#entries
	Full lookup table	0

- Caches (using hardware)
 - Reduce comparisons to reduce cost
 - Cache is normally set-associative or direct mapped
- Virtual memory
 - Reducing miss rate is first priority
 - Full table lookup (page table) makes full associativity feasible
 - Therefore, VM is almost fully associative

Replacement

- Choice of entry to replace on a miss
 - Least recently used (LRU)
 - Complex and costly hardware for high associativity
 - Random
 - easier to implement
- Virtual memory
 - LRU approximation with hardware support

Write Policy

Write-through

 Update both upper and lower levels. It simplifies replacement, but may require write buffer

Write-back

- Update upper level only
- Update lower level when block is replaced
- Need to keep more state

- Between cache and main memory
 - Either write-through and writeback are possible
- Virtual memory
 - Only write-back is feasible, given disk write latency

Sources of Misses

- Compulsory misses (aka cold start misses)
 - First access to a block
- Capacity misses
 - Due to finite cache size
 - A replaced block is later accessed again
- Conflict misses (aka collision misses)
 - In a non-fully associative cache
 - Due to competition for entries in a set
 - Would not occur in a fully associative cache of the same total size

Miss rate

- Compulsory miss rate 0.006%, which is not shown
- Capacity miss is normally larger than conflict miss
- Capacity miss rate normally decrease when cache size increase

Cache Design Trade-offs

Design change	Effect on miss rate	Negative performance effect			
Increase cache size	Decrease capacity misses	May increase access time			
Increase associativity	Decrease conflict misses	May increase access time			
Increase block size	Decrease compulsory misses	Increases miss penalty. For very large block size, may increase miss rate due to larger block sizes and smaller number of blocks (a.k.a. pollution)			

Concluding Remarks

- Fast memories are small, large memories are slow
 - We really want fast, large memories ☺
 - Caching gives this illusion ©
- Principle of locality
 - Programs use a small part of their memory space frequently
- Memory hierarchy
 - L1 cache \leftrightarrow L2 cache \leftrightarrow ... \leftrightarrow DRAM memory \leftrightarrow disk
- Memory system design is critical for multiprocessors

Backup

