% % @ 'ﬁ) “@’ National Cheng Kung University

Computer Organization

Virtual Memory

Computer Architecture and IC Design Lab

g
Virtual Memory (1/3) Y|
VM uses main memory as a “cache” for secondary (disk) 5
storage =
— Managed jointly by CPU hardware and the operating system (OS) 5
e

* Programs share main memory

— Each gets a private virtual address space holding its frequently
used code and data

— CPU and OS translate virtual address to physical space
* VM can

— allow many programs to run at once

— protected from other programs Process
Control

| Main || Disk)
Datago a ___pllemo
E DRAM) [~~~

ayoe

Computer Architecture and IC Design Lab

Virtual Memory (2/3)

Virtual Page
addresges '

OOOOQ\’O/.O..

Mapping of pages from a

Programmer’s view
Each program has its own memory space physical memory in system

Address Translation
* AVM “block” is called a page, page size are normally
fixed (e.g., 4K)
* Virtual address can be larger than physical address

— Need to translate from virtual to physical address

 AVM translation “miss” is called a page fault
* On page fault, the page must be fetched from disk

Virtual address

— Takes millions of clock cycles

31 30292827 --vveererrannanenannn 15141312111098 -----vv---- 3210

—_ H an d | ed by OS COd e Virtual page number Page offset

* Methods to minimize page fault rate

— Fully associative placement (“wanstation)
— Smart replacement algorithms

292827 -rreeenn- RRTIRRTIAE 151418312111098 ----f------ 3210

Physical page number Page offset

Computer Architecture and IC Design Lab

o

Page Tables Mo p%

* Page Table stores placement information (see next slide)

— Array of page table entries(PTE), indexed by virtual page
number

— Page table register in CPU points to a page table in physical
memory

* |f page is present in memory

— PTE stores the physical page number and other status bits
(valid, referenced, dirty, ...)

» Referenced bit is used to indicate the page has been used before

* |f page is not present
— PTE can refer to location in swap space on disk

Computer Architecture and IC Design Lab

o

Mapping Pages to Storage o2

* Page table maps each page in virtual memory to either a
page in main memory or a page stored on disk

Page Table

Register Pz:_ge table
Physical page or Physical memory
Valid bit =1 Valid disk address
L. L> 1
¥nd1cate. the page : —
1s Physical Mem : —
Virtual [—
Page — : "ﬁ“\\h/
. . . Number —"4
Ref bit =1 indicate : el Disk storage
. /,.--"""_-___-_'—“"'--.\'
the page is used 5 - ““\\E_‘____ﬁf_/
1 g \‘ .

befi | |
etore Px \h" |
|

Valid Ref Dirty

Computer Architecture and IC Design Lab

Translation Using a Page Table

Page table register
Virtual address
31 30 29 28 27 s+ s e e o s o000 15 14 13 12 11 10 9 8 « « « 0+« 3 210
Virtual page number Page offset
20 12
>Valid Physical page number

Page table
(located in . . . Assume,
physical 4KB Page,
memory, each 1 GB main
program has
its table) memory)

v - 18

If 0 then page is not
presentin memory

20 28 27 ccccecceencctoaane oo 15 14 13 12 11 10 9 8 -+ +-- 3 2 1 0

Physical page number Page offset

Computer Architecture and IC Design Lab

Page table register

Virtual address
E | 1 31 30 29 28 27 -rrrererrrinniininnes 1514 13 12 11 10 9 8 «+eeevee 3210
Xa I I l p e Virtual page number Page offset
420 12
Valid Physical page number

Assume 32-bit virtual address,
each page is 4KB, and each
page table entry has 4 bytes,
what is the total page table

[]
Page table 4-hvte Page table entries

418
o If 0 then page is not
S I Ze ? present in memory
L}
P2 s T - T R ..v15 14 13 12 11 10 9 8-f----- 3210
Physical page number Page offset

Physical address

Each page has 4KB (4KB = 212) => Page offset has 12 bits
Virtual page number has 20 bits (=32-12) => No. of page table entries = 232/212=220

Size of page table = No. of entries x entry size =229x 4 bytes =4 MB

Computer Architecture and IC Design Lab

frame 0 address: 0 ~ 4095

Exam ple 2 frame 1 address: 4096 ~ 8191
Follow the above question, now f
0

the page table maps bage 0 frame 1

nage 0 to frame 10, bage 1 ’

nage 1 to frame 8, | frame 8

nage 2 to frame 100,

nage 3 to frame 1.. oo

Q2: What is the virtual page number of the virtual address 81967

8196 / 4096=2....4, therefore, address 8196 is at the 3" page, virtual page number
is 2

Q3: What is the physical address of the virtual address 81967

Virtual Page 2 mapped to physical address 100, Therefore, physical address is 100*4096+4

Computer Architecture and IC Design Lab

o

What happens during a page fault? o2

Page fault means that page is not resident in memory, hardware must
trap to the OS to obtain the required data

— “May” need to pick a page to discard if no free
space in memory

Virtual page

* j.e., page replacement policy) pugetae

Physical page or Physical memory
disk address

* Note: if a page in “main memory” is updated,
then it is “dirty”

— Load the requested page in from disk

I
5

* i.e., placement policy TR
Valid Ref "Dirty

— Update the page table
— Resume to program so HW will retry and succeed!

Computer Architecture and IC Design Lab

o

Replacement and Writes Mo p

* To reduce page fault rate, prefer
least-recently used (LRU)

Virtual page
replacement U pagetabe |
— Reference bit (aka use bit) in page Fhysical page or Physical memory
table set to 1 on access to page —
— Periodically cleared to 0 by OS L—
— A page with reference bit = 0 has =
not been used recently N4 .
* Disk writes take millions of cycles :f'j‘;;,?; Disk storage
— Write a block at once, not individual L \H

locations R \." |

— Write through is impractical, Use valid Ref irty ™ |
write-back ~—_
— Dirty bit in PTE is set when page is
written

Computer Architecture and IC Design Lab

e

Summary: Considerations for Virtual Memory ,, > &

e Size of a page

Page: a basic unit of memory blocks transferring between
main memory and secondary storage (e.g., disk)

* Placement policy

where to place a page in main memory (normally fully
associative)

* Replacement policy

replace pages if cannot find any free space in main memory
(normally LRU)

* When to fetch a page from disk?

fetch when page fault occurs

Computer Architecture and IC Design Lab

. oo =]
Problem of current technique 53 B
-~ O N
. . . “ L
* Page table is also in the main =
)
memory
Virtual page
* Problem: every memory number
] Page table |
access by a program take at Physical page or Physical memory
least two memory access —
— —
—>0ne to obtain physical e
address E -
—0One to get the data 5
- - 7= ——
—Time consuming 7 3
. . < =~ A |
 Use Translation Lookaside - ™ |
Both are in - |
Buffer (also called R

. maln memor
translation cache) to reduce Y

Mmemory aCcesses

Computer Architecture and IC Design Lab

TLB to speedup the address translation

 TLB is “cache” of Page table : page table entries that are accessed
frequently are put into TLB

* Typically, it’s hardware inside a processor

e Either fully associative, set associative, or direct mapped

* TLBs are typically small in size, typically < 128~256 entries

Without TLB

TLB
Virtual page Physical page
number Valid Dirty Ref Tag address
: I |
Virtual page 11011 'Y
number ' EERE - .
] Page table 111 ——— Physical memory
Physical page or Physical memory — - '
disk address 1]0]1
0/0]0
C— 1101
—
— Page table
.-—-_._________‘_’ v
[N Physical page
N Valid Dirty Ref or disk address
— < —
(e 1(0(1 —
« 7 Disk storage 110(0 P .
o Disk storage
o7 1/0(0 L
g 1101 — 7
0(0f0 —
1[0]1 o«
1(0(1 e
0(0j0 C oy
111 ¢/
1111 «
0(0[0
1111

Computer Architecture and IC Design Lab

TLB hit and miss (1/2)

 TLB hit on read
— Physical address is obtained
 TLB hit on write:
— Toggle dirty bit (write back to
page table on replacement)

e TLB miss and Page table hit
— load “page table entry” into TLB,
— Then restart the instruction

_ TLB Miss & Page Table Hit
TLB Hit

TLB
Virtual page Physical page TLB
number Valid Dirty Ref Tag address Virtual page Physical page
[] number Valid Dirty Ref Tag address
101 [|
1111 Physical memory 1 1o S~
T3 - T - _update TLB pnysical memory
11017 . o -
0|0[0 > 01 !
101 [0]o]0 7 1 T~ SH
KR AN e
Page table Page table g
Physical page Physical pag
Valid Dirty Ref or disk address Valid Dirty Ref or disk a? ss
i 1
K T 701 7
1 g g :f, Disk storage 5’3 8 g -— Disk storage
o1 e BT —
ololo - ? g ? "fﬁ' | |
1 g 1 ::, w (01 — | |
0o|0]0O
0[0]0 ~— 101]1 < | |
101101 . 111 i
111 C 0|0]0 Lo
olo|0 — 1](1]1 o
(HEBE e

Computer Architecture and IC Design Lab

TLB hit and miss (2/2) o2

* TLB miss and page table miss (page fault)
— OS handles fetching the page and updating the page
table,
— Then restart the faulting instruction

TLB
Virtual page Physical page
al S5

number Valid Dirty Ref Tag ddre P A
[| .
o T

1]0]1
1111
1/1(1
1]0(1
0j/0]0
1]0]1

T I_ B IVI i SS 8- i = ;713:@1 page

Valid
Page Tabl M‘ﬁp LMove to mem, and
o1 update page table
| LI >
L ——]
KT — Invo
it~ fault handler

Computer Architecture and IC Design Lab

Example: the Intrinsity FastMATH TLB and cache.

Virtual address

) oS < 8 D= = T 14 13 12 11 10 Deveeenenn 3910
.32'b1t VA (4GB) Wirtual page number FPage offset
*32-bit P.A. (4GB) 2
.TLB entries — 16 (Only 6 Valid Dirty — Tag Physical page number
entries are shown) R Q— .
*Page size : 4KiB ke
*Virtual page number has O—= 130
20 bit (=32-12) |
° 1 6 Words per block (64 F’I.'rysic:ar page nun;mratca. addl‘ess_ Page offset oy
byteS) Physical address tag I Cache index g?ﬁ:—.et offset
J1s s Ja +2
256 Blocks (index has 8
bits) T _ ARE Data
* Tag has 32-8-6 = 18 bits s 129
Cache
Cache hit == CID
432

Computer Architecture and IC Design Lab

E N
] L] m
Overall operation of Memory Hierarchy s E
o B
G <L
Miss Hit =
o
to)
@]
2
=
Page Page g
Table | Miss Table Hit E
Miss L éD
O
<
Miss Hit
TLB Miss Impossible TLB Miss TLB Miss Miss Hit

Impossible Impossible

Possible Possible

Computer Architecture and IC Design Lab

Overall operation of Memory Hierarchy

Page table hit <> data in memory
TLB Cache \ Vi
TLB Page Table Cache Memory
Page Table Memory 7 A
TLB data is subset of Page table, TLB hit imply Data in cache imply
Cache data is subset if memory oage table hit data in memory

Possible? If so, under what circumstance?
Table

Hit Hit Hit Possible. Best case
Hit Hit Miss Possible, but when TLB hits, the page table is not checked

Hit Miss Hit Impossible: cannot have a translation in TLB if page is not present in
Hit Miss Miss memory (TLB is subset of page table)

Miss Hit Hit TLB misses, but entry found in the page table; after retry, data is found in
cache

Miss Hit Miss TLB misses, but entry found in the page table; after retry, data misses in cache

Miss Miss Hit Impossible: data cannot be allowed in cache if page is not in memory

I Miss Miss Miss TLB misses and is followed by a page fault; after retry data must miss in cache

The Memory Hierarchy

x
H

e Common principles apply at all levels of the memory
hierarchy

* At each level in the hierarchy, we need to consider
— Block placement
— Finding a block
— Replacement on a miss
— Write policy

SOIYDJRIdIH AIOWN J0] YIoMawel,] UOWWO?) Y G'G§

Computer Architecture and IC Design Lab

o

Block Placement Mo p%

Set associative

 Determined by associativity Pirect mapped

Block# 01234567 Set# 0 1 2 3

— Direct mapped (1-way
associative) Data

* One choice for placement

Data

1

— n-way set associative Tag 1 Teg) |

Search l I

* n choices within a set Search T

— Fully associative

* Any location
* Higher associativity reduces pata
miss rate Fully
, Associative
— Also Increases complexity, cost, rag 1
and access time 2

s T

Computer Architecture and IC Design Lab

Miss Rate vs. Associativity for different cache sizes

L

12% -

Miss rate
(o]
P
|

2
o~
|

3% A _
32 KiB : - ———t
. 64 KiB M 128 KiB M
0 | I 1 1
One-way Two-way Four-way Eight-way
Associativity

Computer Architecture and IC Design Lab

o

Finding a Block Kook
Associativity Location method Tag comparisons
Direct mapped Index 1
n-way set associative | Set index, then search n
entries within the set
Fully associative Search all entries wentries
Full lookup table 0

e Caches (using hardware)
— Reduce comparisons to reduce cost
— Cache is normally set-associative or direct mapped

* Virtual memory
— Reducing miss rate is first priority
— Full table lookup (page table) makes full associativity feasible
— Therefore, VM is almost fully associative

Computer Architecture and IC Design Lab

Replacement Kook

* Choice of entry to replace on a miss

— Least recently used (LRU)

* Complex and costly hardware for high
associativity

— Random
|:| Ph::‘igzl t;l; Iz or Physical memo
* easier to implement i acress —
. e~
* Virtual memory —
.
R i . LN
— LRU approximation with hardware =
4 Disk storage
support

TR
ValidDirt\y Ref

i

Computer Architecture and IC Design Lab

e

Write Policy AT o

* Write-through « Between cache and main memory
— Update both upper and lower Either write-through and write-

levels. It simplifies replacement, back are possible

Cut . o buff * Virtual memory
ut may require write putter * Only write-back is feasible, given

* Write-back disk write latency
— Update upper level only

— Update lower level when block

is replaced
— Need to keep more state n
Processor /,/""/
Control . —
1 -1 Secondary
-- Main Storage
ps) o 9 Memory (Disk)
Datapath | @ o0 (DRAM)
— -5 =5
» o =
a e
T A I L LrTE—— , 5

Computer Architecture and IC Design Lab

Sources of Misses Mrop

* Compulsory misses (aka cold start misses)
— First access to a block

* Capacity misses
— Due to finite cache size
— A replaced block is later accessed again

* Conflict misses (aka collision misses)
— In a non-fully associative cache
— Due to competition for entries in a set

— Would not occur in a fully associative cache of the same total
Size

Computer Architecture and IC Design Lab

o

Miss rate o2

* Compulsory miss rate 0.006%, which is not shown
e Capacity miss is normally larger than conflict miss

e Capacity miss rate normally decrease when cache size
Increase

10% Conflict miss rates for one-way, 2-way

and 4-way are shown

9%
8%

7%

% Two-way
6% 1 ¥

Miss rate

per type

5% A Four-way

4% -
3% A
2% -

Capacity
1% -

0%

4 8 16 32 64 128 256 512 1024 p
Cache size (KB) A@ :

Computer Architecture and IC Design Lab

Cache Design Trade-offs

Design change

Effect on miss rate

Negative performance effect

Increase cache
size

Decrease capacity
misses

May increase access time

Increase
associativity

Decrease conflict
misses

May increase access time

Increase block
size

Decrease compulsory
misses

Increases miss penalty. For very large
block size, may increase miss rate due to
larger block sizes and smaller number of
blocks (a.k.a. pollution)

Computer Architecture and IC Design Lab

W

Concluding Remarks PN

o

* Fast memories are small, large memories are slow ii
— We really want fast, large memories ® %

— Caching gives this illusion © 0?::;

* Principle of locality s
=

— Programs use a small part of their memory space frequently
 Memory hierarchy

— L1 cache <> L2 cache & ... <> DRAM memory<> disk
* Memory system design is critical for multiprocessors

Computer Architecture and IC Design Lab

% J%@ = 5_ National Cheng Kung University

Backup

Computer Architecture and IC Design Lab

