

Digital Edition Magazines.

This issue magazine after the initial original scanning, has been digitally processing for better results and lower capacity Pdf file from me.

The plans and the articles that exist within, you can find published at full dimensions to build a model at the following websites.

All Plans and Articles can be found here:

Hlsat Blog Free Plans and Articles.
http://www.rcgroups.com/forums/member.php?u=107085
AeroFred Gallery Free Plans.
http://aerofred.com/index.php
Hip Pocket Aeronautics Gallery Free Plans.
http://www.hippocketaeronautics.com/hpa plans/index.php

Diligence Work by Hlsat.

RADIO CONTROL TRAINER MAMBO, designed and engineered for radio control.

FREE FLIGHT . . . Get up there fast with a RAMROD 600.
by Berkeley

Brand new RC Trainer the EXPLORER-Rudder only, intermediate or multi-channel. by

Gullows

SCALE FANS . . . Try this new super Combat-stunt HAWKER TYPHOON. be flown as Control Line Model, as well as Radio Control.

COMBAT FLYERS, the FLITE STREAK, JR. is supermaneuverable.
by TORFLITE

The $1 / 2$ A SUPER STUNTMASTER is a real tiger with Fox 15 power. by SCIENTIFIC
the RIGHT SIZE the RIGHT the RIGHT BRAND the RIGHT PRICE
SMART CHAMPIONS CHOOSE
\square

by ENTERPRISE

COMBAT Control liner.
For the Combat Keen flyer, the LANCER is the answer.

R C FANS ROTO VALVE
Provides
Speed Control

Kits shown are recommended by their manufacturers for use with the Fox 15. Both kits and Fox Motors are available from your Favorite Hobby Shop.

FOX MANUFACTURING CO., Inc.

You're always "on frequency" with a
 CG transmitter-receiver combo

(New CG Venus Transmitter meets new FCC specs)

Here's an entirely new, single channel, extremely stable tone transmitter that'll stay right "on frequency" through every fight you make.
Known as the Venus, this new high powered version, modeled after the famous CG T-12 transmitter, is lightweight and a dream to operate. A high precision CG crystal keeps the Venus within 0.01% of specified operating frequency - well within new FCC specs.
And it's economical to run, too! "Balanced Power" design saves battery power - gets up to a year's use from "B" batteries.

Best of all, the Venus is economy priced at only $\$ 29.95$. Get your order in early. Contact your local dealer or write direct to CG Electronics.

Jay p. Cleveland, President and Publisher

Vol. LXI, No.

CONTENTS CONSTRUCTION

The Tri-Travelar	9
Houdini	15
Dizy Bee	21
Delto Dart	25

ARIICLES

```
A Place to Fly
Souped-Up Pre Fabs ..... 18
Wing Looding Is Three Dimensianal ..... 23
FEATURES
Foreign Nates ..... 2
MAN at Work ..... 4
Early Birds ..... 16
Engine Raview ..... 24
Varicomp Switcher ..... 29
adio Conirol New ..... 28

WILIIAM WINTER, Edifor
WIJTICH HOLLOWAY, Art Director

\section*{Contributing fdilors: Peter Chinn (England)} Don Group, Ed Larenz, Tud Maplin

Bruce Wennerstrom, Mary Williamson

Execulive and Editorial Office SSI fifth Avenue, New York 17, N. Y Adverlising Manager, N E. Slane, 551 5th Ave. New Yark 17; West Coast Adv. Mgr., Justin Hannon. 4708 Cienshaw Blvd
```

 Los Angeles 43. Calif
    ```

Publishad Monthly by Air Age, Ine Editorial and Business Offices: 551 Fifin Ave., New york 17, N Y ay P. Cleveland, President; Y. P. Johnson. Vice Pres Louis \(Y\) DeFrancesco. Treas.: G. E Defeancesco, Sec Second Class Postage pard at Columbia, Missouri ad ditional Second Class Entry at New York. N Y

Copyright 1959 by Air Age, Inc. prinfed in U. S. A

- Pan Americans new film "Wings for Tomorrow," a \(1: 3 / 2\) minute, 1 firm mo tion pieture in sound and color, eontains superb fortage on models (and 707's) in action. It is deftly put to gether. To make a proor joke, the story gets in everything but motherhood and Christmas. It explains PAA-Load flying, modeling in gencral, ties all this in with carcers and enobling influences (ahem), plugs Pan American, follows Ken Scrib ner, a Pan Am pilat from a knee breeches boy to adult Clipper Captain Any good film seems too short. This one gets organized out yonder, then pours across the course at Mach 2. We suspect many a club will run it more than once in the same evening. Man, how a little Jetex joh soars and banks majestically. like a 707 waiting its shot at the approach, when followed in slow motion.

Only trouble with the preview, at tended by the model eds, Dallas Sherman (the payload pappy), and George Gardner, was the fascinating twin pusher "young Scribner" Hew. In a moment of madness, mutual probably, yours truly had coneocted the design for Al Lewis. That the story teller had this mock musenm picce reconstructed from a ten-ycar old magazine plan sumgestod that Pan Am wanted, and got, the most in realism. The footage left on the cutting room floor would make wonderful entertainment for modelers who would take their models straight. Tou bad. Pan-Am couldn't package what was left over. storv or no story.

Wings for Tomorrow can be booked through the Academy of Model Aeronantics. 1025 Connecticut Ave. Wash
ington. D.C.: Fducational Director Pan Americarn World Airways, and will be available in offices of Itcal Pictures, and at many District Sales Offices of Pimn American World Airwavs. MAN at Work suggests that you inwite the town fathers, or recalcitrant offecials, to a showing. You may end up with the rotunda in eity hall for the next stunt contest!
The story incidentally was more perfeet than even lan Am knew. Talking of the Wright Brothers, who should be on sereen, hut C.(). "Pop" Wright, who lats been flying these things since 1917. And a markel lip: buy Jetex!
- Most recent "altempt" (0) fly all clav with that ugly IRC model was gromended by the stork, of all things. When our CD, Bill Poythress. couldn't make it, the various (Continued on page 62)


NEXY MONTH'S COVER Miniplane

\section*{SUBSCRIPTION PRICES}

\section*{SEE PAGE 57 for anniversary SUbSCRIPYION OfFER}

Payment from all countries except Canada must be in U.S. Funds. CHANGE OF ADDRESS-Send so MODEL AIRPLANE NEWS, SUBSCRIPTION DEPY., S51 FIFTH \(A V E N U E\), NEW YORK 17, N.Y. at least one month before the date of the issue with which if is to take effect. Send old address with the new, enclosing if pos. sible your or'dress label or copy. The Post Office will not forward copies unless you provide extra postage. Duplicote issues cannot be sent.

\section*{plane on the cover}

When Paul Mantz, famous stunt flier, used Thimble-Drome Flying Tiger model to plan air action scenes for his IV series "Rogue for Hire," to be raleated this fall, young admirars Tammy Sparks and Mike James ware Jucky to be an sel for a demonitration by Moniz. Yes, the P. 40 in backgraund is the real thing Photogropher even gat a vapor trail!


FOR ALL GLOW ENGINES . . .

"OK" DIESEL FUEL . . 80c PT.
Minimum takeoff and maximum climb with plenty left for flashing acceleration in maneuvers. Plus purring smoothness when you throttle back to cruising.

That's what you get from "OK" Glow or Diesel Fuels. More flash, fun and action. Finer control with fewer adjustments and coaxing.
"OK" Fuels leave your engines clean, free from varnish or residue. Ready to go, even after long usage. Whether you're, in big time competition or flying for fun, insist on "OK" Engine Fuels . . . the kind that give you the 3 big features you want.

\section*{BUY OK GLOW FUEL IN THE NEW ECONOMY SIZE GALLONS AND SAVE!}
it's the economical way to buy OK Fuel particularly for use in meets, contest flying, clubs, or just for your own use.nly \(\$ 4.50\)

COMPLETE AS SHOWN


FOR SUPERB ENGINE OPERATION GET AN "OK" ACCESSORY KIT

CONTENTS: \(1 / 2\) pint OK Glow fuel.
1 filler spous with plastic lubing.
1 sel batfery leads fully assembled and soldered with battery connection and glow plug clip.
I combination plug wrench and screw driver.

For Use with All Model Engines


\begin{tabular}{|c|c|}
\hline  &  \\
\hline
\end{tabular}

DECAL
BARGAIN

 Nin sin tink
\(\$ 2.95\) "BEL-AIR" itno

\section*{USE THIS HANDY ORDER BLANK \\ SAVE TIME: ALL ORDERS \\ PROCESSED IN 24 HOURS}

\section*{BRAND NEW! 80 PAGE CATALOG}

All New 1959 Edition!

 GGGER AND BETTER THAN
 America's Hobby Cenfer, 146 W, 22nd St., IU. Y, If, I. Y.


\title{
The TriTraveler
}

\section*{by}

DAN LUTZ

You can't ride in it, but this "trike"
Champion, is as close to big plane realism as you can get. Fine performer on those .049's.

Over 200 successful fights in all kinds of weather made the author happy with the results of time well spent on datail and paint jab.


Scale tail surfaces and naar-scale dihedral make Lutz's Champian exceptionally accurate free-flight seale. Yep, the door warksl
- Descended from the famous Aeronca Champion, the new Champion Traveler is manufactured by the Champion Aircraft Corp., Osceola, Wis. The new Champions have increased horsepower, new uleo-type shock-absorbing landing gear, completely upholstered interiors and a flashy new paint and trim combination. This outstanding airplane makes a rewarding model.

At the 1958 Nationals, the model was relatively new and not well tested, but later in the season took second in the Ninth Annual Flightmasters Scale Contest, Inglewood (Calif.) being beaten out hy a ship with two-speed motor permitting full-nower take-off and throttled-back descent to power-on landing. At the time of writing the Tri-Traveler has logged over 200 flights in all kinds of weather. Scale tail area and near-scale dihedral don't seem to affect performance adverselv.

The box-type fuselage is constructed from 習" sq. balsa with the nose portion planked with \(1 / 16^{\prime \prime}\) sheet halsa. Cut out the two upper cabin side frames from 1/16" plywood. Drill the wing dowel holes in the right and left frames at the sarne time. This assures both wings have the same angle of incidence which is very important. Add the bulkheads, \(1 / 16^{\prime \prime}\) balsal rudder keel and stringers. Don't forget the \(1 / 16^{\prime \prime} \times 1 / 32^{\prime \prime}\) balsa cap strip on the bottom longerons which will serve as a covering ledge to keep the covering from sticking to the fuselage upright braces when doped.

The main landing gear mount is cut from \(1 / 16^{\prime \prime}\) plywood. Sew the \(1 / 16^{\prime \prime}\) piano (Continued on next page)



Wing lights，gas caps，anienna，typify details that make a stand－ aut craft．Cabin side slope automatically provides the dihedral．

\section*{The Tri－Traveler ．．．Continued}
wire gear to this mount and glue several times．The nose gear is hent from \(3 / 32^{\prime \prime}\) piano wire and held to the fire－ wall by J－bolts．The firewall and engine mount box are also cut from \(1 / 16^{\prime \prime}\) plywood．When building up the engine mount box，which may be altered to fit any \(1 / 2\) A engine， make certain that at least four degrees of downthrust are built in．
lnstall the operating cabin door on the right side of the fuselage if you intend in add the interior details to your model．The seats are built from \(1 / 16^{\prime \prime}\) dowel with soft bulsa cushions．The cabin floor is \(1 / 18^{\prime \prime}\) sheet balsa with
the sides and top being \(1 / 32^{\prime \prime}\) sheet balsa．To simulate the upholstered panels and seat cushions，colored fock is used．This flocking compound can be purchased［rom any arts and crafts store．It is very lisht and easy to apply．

A trip to your local airport will give you unlimited ideats for the numerous small details．The cowl is buile up from balsa blocks．then hollowed out．Use four large dress snaps to hold the cowl to the firewall．A small piece of wire screen and a length of \(3 / 16^{\prime \prime}\) dia．aluminum tubing will make the details for the cowl．

The wing tips and tail outlines of the original model were formed over a template cut from \(3^{\prime \prime \prime}\) sheet，with the inside contours as a guide when cutting out the templates； the strips of wood were boiled for ten minutes hefore bending them around the templates．The plans show sheed balsa edges for simplicity：The 28 wing ribs are cut out， pinned together and sanded to the correct airfoil shape． While the wing ribs are still pimed together，drill a ben \(^{\prime \prime}\) hole through them where the rear spar is located．Cut ont
 \(1 / 16^{\prime \prime}\) depth for the \(1 / 16^{\prime \prime}\) balsa leading edge sheeting． Install the \(1 / 16^{\prime \prime}\) wire hooks and add the \(1 / 16^{\prime \prime}\) plywood end ribs which extend the full chord of the wing．Drill the two 葆＂holes in the end ribs to match the two \(\mathrm{m}^{\prime \prime}\) dowels on the fuselage．Make certain that both wings are mounted at the same angle．

All control surfaces are attached with soft iron wire als hinging material．The wing struts are constructed from \(5 / 16 \times\) 月月＂\(^{\prime \prime}\) basswood or hard balsa．Use thin brass or aluminum to make the fittings．Use \(1 / 16^{\prime \prime}\) dowel pegs to help hold the fittings in place．The length of the wing struts controls the amount of dihedral，which should be \(1-y^{\prime \prime}\) at each tip．Follow the plans closely when assembling the wing strots，making
（Continued on page 36 ）



Font Wayne, Ind., Mad Madeları, had circlaı in Mctillon Park as long ago as 1947. Shawn are
a 50 and 70 ff . eircle-club than hoped for now additional UC circles of 70,60 , and 42 f .


Many cities have had Modelports for 10 to 15 years, athers in procass of canafruction. Dayton takee theiry seriously.


Twa-level "cantrol towar," are fealure of the Charles A. Dennelly Modelport, in Now Orleans.

Professional analysis of 30 "success stories," offers proof-usefultips-that you can do something about flying-site problem.

\section*{by WILLIS C. BROWN, AMA \# 1}

Specialisy for Aviation Education
U.S. Office of Education
- Do you want to see that impressive level-green expanse of the ideal flying site in your town? Others have done it. You really can have that flying site you have always wanted, if you don't "goof" on your planned strategy.

Don't give me that old story about getting kicked out of your local park, or the town Fathers passing an ordinance forbidding your flights as a noisy nuisance. Perhaps these real quotes sound familiar? They are from groups that had nothing but bad luck until they saw the light.
"At various playgrounds and open areas in the city our \(h\) A models are flown regularly without interference.


Before

Wildernest of woeds and brush morked site of the fufure imprestive flying arac in Daylon outukirts.


After
City forthers-bayton by no means unique-vansiait cost of flying area impravament worthy investmant.
\begin{tabular}{|c|c|c|c|}
\hline & & TABULATION OF DATA FROM STUDY OF FLYING SITESIN 30 COMMUNITIES (I959) & mulus c. PRown \\
\hline \multirow[t]{8}{*}{} & OME CIRCLE & & \\
\hline & TWO CIRCLES & & \\
\hline & THMEE OR MORE & & \\
\hline & clay top & 3 & \\
\hline & black top & & \\
\hline & ORASSED & & \\
\hline & FENCED & 1 & \\
\hline & & & \\
\hline \multirow[b]{6}{*}{\[
\begin{aligned}
& \text { U } \\
& 2 \\
& 2 \\
& \frac{2}{2} \\
& \hline \mathbf{L}
\end{aligned}
\]} & CLUE OWNED & & \\
\hline & MUNICIPAL OWNED & & \\
\hline & PRIVATELY OWNED & & \\
\hline & MUNICIPAL MAINTAINED & & \\
\hline & CLUE MAINTAINED & , & \\
\hline & LIAEILITY INSURANCE & I & \\
\hline \multirow[t]{7}{*}{} & SPONSORED EY CLUE & & \\
\hline & SPONSORED EY AECREATION DEPT. & & \\
\hline & GPONSORED GY OTHER & & \\
\hline & 1) CITY OFFICIAL & 1 & \\
\hline & STATE OR FEDEAAL OFFICIAL & 3 & \\
\hline & & & \\
\hline & & & \\
\hline \multirow{5}{*}{U} & NOISE ISAREAL PROQLEM & & \\
\hline & NOISE IS NOT A PRODLEM & & \\
\hline & ELECTRIC LIOHTS BPA. SYSTEM & & \\
\hline & FREE FLIOHT OR AADIO COMTROL & 1 & \\
\hline & & & \\
\hline
\end{tabular}

However, the larger motors made too much noise and we were squeezed out by complaints." -"ilways had trouble in securing a site for flying our models. It seems that we no sooner obtain a permanent site than we were asked to leave. Complaints of neighbors over noise, we surmised was the usual rea-son"-"our Police enforced a ban on the flying of model planes in our parks We turned to various fields-school yards-complaints would be lodged, and out we went. We reached the end of our patience when a cemetery caretaker invited us to use an unused portion of the cemetery-imagine how long this lasted."
But perhaps these five actual stories
from those who have found different successful methods may give you the idea you need.
1. From the Folsom, Pa . Colden Eagles R. C. Club comes a letter quoted in part. "We have been having a considerable amount of trouble finding and maintaining a flying site for our club members in this area. On the 28 th of November (1958) the club officers went to the----Oil Laboratory, to see if we could obtain written permission to use their fields as our future sites.

We found the management more than willing to cooperate and give their permission. A meeting of club members was called, and a basic set of rules written. These rules were also submitted
to the ----Oil Co. management. The rules were voted on and approved."

The letter adds the thought that the management were evidently impressed by the rule making and self governing features of the Academy of Model Aeronautics. They probably gave approval because of this and the liability insurance features inherent in AMA membership.

Notice that this club had a plan which included self governing rulessomething tangible on which the management could vote, a very businesslike way of going about getting a flying site. Have you carefully planned and tried this businesslike approach?
2. Another (Continued on page 48)

During dedication (1954) of Model Fying Circle, Boulder, Colo., sponsorad by Civil Air Patrol, City of Boulder, Boulder Exchange Club.



Straight winga and flat ides, yat looks fati. Gubble, fow stringars, and graceful fail out-
lines give that going-places loak. Engine it accassible, Rota-Valve and linkage easily put in.


Frost to back: Battery-bax tray, Gyro 22X r'cve Bannar motor-contral SN, Bonner Varicomp ase'p

\section*{HOUDINI}

Once upon a time they said it couldn't be done but low wings have it over most cabin jobs in RC. Try this . 15 pronto.


Top lifts off. and racaiver and baltery trays both slide out easy like. One thing aboul low winga-you'll mever pap wing in loopl
- Editor's Note-Having flown the first Houdini in the spring of 1958 , found that it will break out of a turn within 90 degrees if not throun in steeply. With normal entry it will complete a 360 on its oun, perhaps losing little altitude. Heacy-on-rudder entries (no hold) start it down but recovers. Responsive. Flown tame, no worse than many cabins, better than some. If stunted, flat-trim gave long, screeching pull-outs. Pays off a bit on approach turns in wind but well worth it!

Low wings once were thought unstable and difficult to fly. Houdini will do such maneuvers as rolls, split S, wingover, etc., without difficulty. It has been flown for more than a year with mishaps due only to radio failure. Houdini performs as well, if not better, than most high wing models.

Houdini, like any single-channel low wing, has excessive dihedral with ennugh angular difference between the wing and stab to insure a more rapid pull-out from a vertical position. The landing gear is placed well back, slightly ahead of the center of gravity, for straight tracking without tendency to ground loop. The rudder was built so that when the top of the fuselage was covered, the silk would cover the rudder at the same time, fairing it into the fuselage. This enchances the appearance and adds strength. Construction is simple but sturdy. Weight is 3 . pounds.

Fuselage and rudder: The two fuselage sides are cut out of hard straight-grained \(3 / 32^{\prime \prime}\) thick shect balsa, as are the two doublers. The doublers and the mating area of the fuselage sides are given a coat of cement and set aside to dry separately. When dry another coat of cement is applied to surfaces, the parts clamped together.


\section*{by JERRY STOLOFF}

Mark off on the inside of the fuselage sides the position of all the stringers and uprights and cement them in place. Firewall \(\mathrm{F}-5\) is cut out of \(3 / 16^{n}\) plywood as per template. Bulkhead F-4 is cut out of \(3 / 16^{n}\) sheet balsit as are F-1-2-3. Cement formers F-4-5 in place. Sand inside of fuselage at the rear section so that when it is cemented together, there is a proper joint. The cross braces are added and the formers F-1-2-3 cemented in place. The motor bearers alre pushed through former F-5 and cemented securcly to the inside of the doublers. The MxX" stringers are cemented in their respective slots of the top formers, making sure to taper them so that they flair into the rear of the fuselage.

The bottom nose blocks are cut out and cemented securely. The gussets, where the wing and tail dowels go through the fuselage, are cemented in place. The bottom half of the fuselage then is covered with \(1 / 16^{\prime \prime}\) sheet balsa with the grain running crosswise. The tail gear is bent to shape from \(1 / 16^{\prime \prime}\) diameter music wire and fastened to the \({ }^{4+}\) plywood mount. It is then cemented on the inside of the fuselage at its proper location with the gear protruding through the bottom of the fuselage. The top, front cowl block is cut out slightly oversize and just tacked in place with small dabs of cement. The removable hatch block also is cut slightly oversize and two \({ }^{5}\) sq. pieces of balsa are cemented on the underside. running lengthwise as guides to keep the cowl block in its proper location. The blocks then may be sanded to conform to the fuselage width and contour.

The rudder is constructed flat with the exception of the \(1 / 16^{\prime \prime} \times x^{\prime \prime \prime}\) caps which are assembled after the rudder is cemented in place. The fuselage, including the rudder, is


Cranking the .15, Jerry readies Moudini for an MOG takeoff. Get easy-so-work microswitch-this rudder job lives up to its name.
thoroughly sanded and the bottom nose blocks rounded off. The removable hatch is separated from the rest of the fuselage. Youn now are ready for the radio installation. keeping in mind that the model must balance at the position shown on the plan. The \({ }^{\frac{1}{2}}\) " square grooved uprights which hold the battery tray and the receiver are cemented to the inside sides of the fuselage. The escapement is mounted on \(3^{n}\) plywood and cemented in position. making sure that the torque (Continued on page 31)

\title{
Early Birits
}

\author{
by DOUCLAS ROLFE
}

\section*{Number 7}

\section*{DEVELOPMENT OF THE PUSHER BIPLANE}

The pusher biplane was introduced by the Wright Brothers, Voisin, Curtiss and the Farman Brothers. There were others, of course, but not of such historical importance. The Wright was in effect a dead-end but all the others were developed until the pusher boxkite became obsolete.

The Grahame-White boxkite shown was a modified Henri Farman in use 1909-1911. The Maurice Farman "Longhom" (after the lengthy front skids) belongs to this period. Both Henri and Maurice Farman dropped the front elevator in later types, introduced the nacelle, but retained the four-wheel landing gear.

The clumsy-looking Maurice Farman with front elevator and biplane tail was slow but very easy to fly. The Wrights also abandoned the front elevator and one of their last designs, the "Tin Cow" (by mistake included in the last instalment covering tractor biplanes) had a bonafide fuselage.

Vickers F.B. 5 was prototype model of famed W.W. 1 "Gun Bus". The Voisin Type \(Q\) was a brilliant example of fine engineering in these far-off days and largely of metal construction. Note the oleo strut wingtip skids!




Kurt Raich, aight, has understanding halper in hit dad, Gaorge, 37, US Wakefield finalisp for

\title{
Soupert:Up Pre-Fahs
}

\author{
by CHARLES TRACY
}

\section*{Who'll be first to crack three minutes with simple kit? Some promising tips.}


STANDARD PROPELLER....

- Champion modelers of the midwest are enthusiastic about indoor "prefab" flying. Interest in it has been growing in the last eight years because it appears as a regular event on the program of the Great Lakes Indonr Air Meet held in Cleveland every winter under direction of The Cleveland Press.

A "prefab" is a sheet-wood model made from a kit. Several manufacturers make them, commonly used examples being the Carl Goldberg Ranger 21 and the Top Flite Stinson, Luscombe, etc. series.
"Souped-up" by established Cleveland standards, one of these little jobs will cruise around a medium-sized school gym for two minutes. They're ideal for indoor flying contests because a giant-size hall isn't required.

Prefabs fit nicely under a \(30-40\) - or 50 -foot ceiling. They offer plenty of challenge. In fact, it is downright tough to complete with Detroit's Dick Kowalski, who set the new record of two minutes, 41.6 seconds last winter in the open age division using a Goldberg Ranger 21. Or Mike Karlak, Cleveland's champ, who flies a Ranger two minutes, 38 seconds on an official flight. He's in the open class too.

TOP-AIRFOIL SHAPE...


WRAP WET SILKSPAN
PAPER FIBGONS OVER WING AND FORM TO HOLD BALSA SHEET WING TO SHAPE BAKE IN OVEN FIVE MINUTES AT SSO DEGREES



If Shirlay McQuillan seams to question husband Dawsan's winding, she's worried aboup prop in his mouth. Ranger deadsticks, above

The whole idea behind prefab contest Hying was to put an event on the indoor program that would appeal to kids because they might easily make kit-models for it. So what are the kids doing with prefabs today?

A little nine-year-old girl, Susan Getzlaff, Cleveland. won the prefab Dodo event with a flight of one minute, 10 seconds, using a Top Flite Luscombe! Then Ron Roharik, 11, flew his Ranger one minute, 39.4 seconds; Dan O'Malley, 12 , rolled up one minute, 52.8 seconds as champion Fledgling; Ronald Roskilly, 15, scored one minute, 35.8 seconds, as Junior winner; Don Eble, 20, made a hop of two minutes, 28.2 seconds as senior ace.

But it's true-almost anybody can put together a prefab. And for the Great Lakes Indoor, everybody does. They are entered by the hundreds. In last winter's meet, every winner used a Goldberg Ranger except Miss Getzlalf. Some second and third place fliers used Goldherg Cessna's and Spirit of St. Louis. But in the meet were every kind made.

The fascination seems to be in the variety of ways to meet the prefah challenge. Rules keep it from being an all-out redesigning job in favor of the experts, as every other AMA event has now become.

\section*{PREFAB NOSE....}



Rubber winder made by Wilson's of Clovaland, allows five to ten times as many furns. As rubber wound, winder moved toward nase.

Prefab rules give you the same box of parts and materials as the next guy. No special light indoor wood or tricky tungsten wire bracing is allowed. Some things you can change. Look at this official description of a prefab in the Great Lakes indoor rules:

PRE-FABS: Made from Top Flite or Goldberg kits; all sheet-wood construction. Changes in general design layout or surface areas not allowed. No paper covering. Changes in following are okay: dihedral, polyhedral or cathedral in wing or tail; propeller; rubber motor; airfoil; prop bearing; nose fitting. Ballast and decals may be omitted. Except for these changes and omissions, all other parts and materials in kit must be used. Added external bracing not permitted. Ribs to hold airfoil are allowed. No substitute materials. Sanding for lightness okay, but leave trace of decoration scheme to prove kit wood was used for all parts. Timed for duration. Best flight of six scored as entrant's record. No delayed flights. So with the rules in hand, what can you do to win?

There are three key factors: light weight, correct propelller and rubber motor of proper size.

Kowalski's plane weighed .31 ounces, Karlak's .30 ounces. Kowalski used 12 ribs on the wing, six on the stabilizer. These not only formed the airfoil but, by holding the camber, gave the wing necessary rigidity to keep it from flapping, a common fault with "strutless" Rangers. (We begged Carl Goldberg to remove the struts five years ago. He did.)

Kowalski used a hand-carved balsa propeller 8 -inch diameter, 16 -inch pitch. It was turned by a 25 -inch loop of为-inch Pirelli rubber. His dihedral was 18 -inches under each tip.

Carefully sandpapering all parts of the plane before assembly brings the weight down. A razor-blade plane can make the joh easier and faster.

Dan O'Malley used a model heavy by usual standards. He smoothed and lightened a regular 8 -inch balsa machinesawed propeller, then added \(x_{1}\)-inch tips to it, increasing the diameter to \(9 \%\)-inches. His motor was \(1 / 8\) flat, brown rubber, in one loop, twice the fuselage length.

Ribs in the wing should be kept shallow. Deep or thick airfoils are unstable longitudinally. The plastic nose blocks are replaced with wood to make easier winding and storing the rubber back into the fuselage.


Fow of the trophier (ahoml) af Graat Lakes Indoor Meet, Junior winners Jlm Skinner, Dan O'Mallay, Ron Raharik, Elmer Schroder.

Wheels are cut in two, sanded and drilled full of holes to cut weight. Even windshields of plastic are sanded thin. The big trick, however, is backing the wing to the proper airfoil. Carve wooden form to the airfoil shape. Lay sanded wing panels on it. Wet one-inch wide ribbons of Silkspan tissue and bind the wing panels to the form. Put into an oven at 350 degrees for five minutes. Remove, cool and unwind the paper. Your wing will be stiffly formed to the airfoil you want. Apply the ribs to hold it.

Carve the wooden form carefully. Use a razor-blade plane. Sandpaper it smoothly. Don't taper the form. Leave it rectangular, same width as chord of wing at root. Then you may use the same form for both wing panels. Wing, of course, is cat in two for this operation. Dihedral is added when panels are cemented in fuselage. Clay on plane's nose is used for balance rather than movable wing.

One panel of wing is done at a time. If oven is large enough, wooden form may be long enough to accommodate entire wing. Otherwise, with short wooden form, put one wing on from one end, the other wing later from the other end. Don't make two wings for the same side.

PREFAB NOSE is improved by enlarging the hole in the fuselage bulkhead so knotted rubber goes in easily. Plastic nose piece of Ranger can cut rubber and is too small for enlarged motors. A simple removable nose with a piece of \(1 / 16\)-inch sheet wood fitted to key into the fuselage former works
(Continued on page 40 )


Two minutas, 41.6 secs. Open profab set by Dick Kawalski, Detroit, in Clovaland's Public Auditorium. But the ceiling was 90 ft . high.


Senior Class winner, Don Elbe, 20, American Airlines emplayee. Plenty of keen competition in all threa AMA age-class divisions.


WING RIB..
 \(1 / 4^{\prime \prime}\)

PRE - FAE NOSE...



\section*{Dizzy Bee}

\author{
by BOB LAUDERDALE
}

A master flier presents a . 29 Mono-Line speed model. Thoroughly contest tested.


The \(7 \times 10\) Tornedo prop gives accurate impression af the size of the plane. Stable and easy to fly-for the speed hands, that is.

Left-Fox \(29 x\) or Dooling 29 used, mounfed on \(L\) \& 4 peed pan.
- The Dizzy Bee was built for the 1957 Nats in Philadelphia. No official flights were recorded because the new Fox 29X wasn't thoroughly broken in. For the 1958 Nats in Chicago, the Dizzy Bee was refinished and the engine was given more running time. The best flight turned was 149.92 mph , good enough for 6 th place behind Harris and Shelton who hit 155 for a new record. Since then Dizzy Bee has won three firsts at speeds of 150 mph and is very capable of going faster under the right weather conditions.

To begin construction you
(Continued on page 36)

\section*{Scale a hot airplane to different size and the result often is a 'doy." This article solves long-standing free-flight mystery.}
- For years now we have wondered why, back in the days of the minimum wing loading rule, the small models glided so poorly in comparison to larger free-flight gas models. It was explained to us that the smaller model flew at a much lower effective Reynold's Number than the larger one, and "everybody knew that you need a high R.N. for best performance!" We discovered that R.N. is merely the product of velocity, chord, and some rather illusive "air density factor." So to make a more efficient model by obtaining a higher R.N. we necded to increase the chord of the model (hence, a larger one) and increase its velocity. (We figured that finding denser air would be quite difficult.) An experiment was made in very low wing-aspect ratio, but it was a dismal failure; we then had too much "tip loss." Building a heavy model to increase velocity also didn't work. Some success was obtained, however, by building a very low drag model, and thereby increasing velocity.

With this background, we were somewhat surprised to find, in recent years, that our \({ }^{12}\) A's could and did glide as well as our C jobs. "How come," we wondered. "What happened to Reynold's Number, was it repealed?. Had small engines become much hotter for their size than larger engines? Or did the fact that the old wing loading rule had been abolished have something to do with this?"


To chock out the latter possibility, we computed the wing loadings of our Ramrod flect, coming up'with information in Fig. 1.
As can be seen from the tables, there is a very definite progression evident. the small models having a much lower wing loading than the large ones. And yet the glides (sinking speeds) on all these different sized Ramrods were pretty much the same.
We felt we had found the answer but certainly didn't understand it, until oule day it hit us like a bolt: For years, we have been thinking of wing loading in terms of so much per syuare something or other but the wing is not a two dimensional thing, it is three dimensional, and loading should be figured on a volume, not area basis; it has not only chord and span, but thickness as well. Tn test this hypothesis, we quickly checked this out, calculating the wing loading as so much per cubic inch, rather than square inch.
To make the measure of wing volume, we first determined the actual rib area of a typical Ramrod wing section, then divided the chord into this areal value, in order to arrive at a measure of average thickness. Multiplying the average thickness of a particular wing by its area, then, would produce the volume in cubic inches. As shown in the table, dividing the weight in ounces by this figure gives us our three-dimensional, or cubic wing loading in ounces per cubic inch for the various sized Ramrods. (Fig. 2.)
As can be scen from the table, our cubic wing loading is almost identical through the various sizes. And since all these models have, in addition, equivalent gliding ability, a statement of principle seems in order: In scaling a design to a different size, so as to retain the same glide, the wing volume should be made directly proportional to the weight. Or, since we are dealing only with the same design, we can make the weight proportional to the cube of the span, or the \(3 / 2\) power of the area (square root of area cubed). The results are the same, the important thing being to put the measure of the wing in three-dimensional terms.
It is now apparent to us that figuring wing loading as so many ounces per square foot or square inch is useful as a measure of comparison between models only when those of almost the same sizes are considered.
The real fallacy of making wing loading omparisons on an area hasis is that we are co-mingling oranges and apples, so to speak. That is, weight is three dimensional and area only two dimensional. For any direct comparison, we need to express one in terms of the other so that each will be in the same dimension, whether it be one, two or three.
(Continued on page 41)

FIG. 1
\begin{tabular}{|c|c|c|c|}
\hline MODEL & \begin{tabular}{c} 
ENGINE DISP. \\
(CU. IN.)
\end{tabular} & \begin{tabular}{c} 
WEIGHT \\
(OUNCES)
\end{tabular} & \begin{tabular}{l} 
WING LOADING \\
(OZ./SQ.FT.)
\end{tabular} \\
\hline RAMROD 150 & .020 & 3 & 2.88 \\
\hline RAMROD 250 & .049 & 6.5 & 3.74 \\
\hline RAMROD 400 & .099 & 13 & 4.68 \\
\hline RAMROD 432 & .148 & 15 & 5.00 \\
\hline RAMROD 600 & .225 & 24 & 5.76 \\
\hline RAMROD 750 & .320 & 34 & 6.53 \\
\hline
\end{tabular}

\section*{FIG. 2}
\begin{tabular}{|c|c|c|c|c|}
\hline MODEL & \begin{tabular}{c} 
AVERAGE \\
THICKNESS \\
OF WING (IN.)
\end{tabular} & \begin{tabular}{c} 
VOLUME \\
OF WING \\
(CU.IN.)
\end{tabular} & \begin{tabular}{c} 
WEIGHT \\
(OUNCES)
\end{tabular} & \begin{tabular}{c} 
WING LOADING \\
(OZ./CU. IN.)
\end{tabular} \\
\hline RAMROD 150 & .341 & 51 & 3 & .0588 \\
\hline RAMROD 250 & .443 & 111 & 6.5 & .0586 \\
\hline RAMROD 400 & .562 & 225 & 13 & .0578 \\
\hline RAMROD 432 & .579 & 250 & 15 & .0600 \\
\hline RAMROD 600 & .681 & 409 & 24 & .0587 \\
\hline RAMROD 750 & .766 & 575 & 34 & .0591 \\
\hline
\end{tabular}

\section*{FIG. 3}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
ENGINE \\
DISP \\
(CU. IN.)
\end{tabular} & \begin{tabular}{c} 
WEIGHT \\
(OZ.)
\end{tabular} & \begin{tabular}{c} 
WEIGHT \\
RATIO \\
(O49 \\
\(1.00)\)
\end{tabular} & \begin{tabular}{c} 
SPAN \\
(IN FEET) \\
CUBED
\end{tabular} & \begin{tabular}{c} 
SPAN \\
(IN FEET)
\end{tabular} & \begin{tabular}{c} 
LINEAR \\
RATIO
\end{tabular} & \begin{tabular}{c} 
THEORE- \\
TICAL \\
AREA \\
(SQ.IN.)
\end{tabular} & \begin{tabular}{c} 
ACTUAL \\
AREA \\
(SQ. IN.)
\end{tabular} \\
\hline .049 & 6.5 & 1.00 & 38.6 & 3.38 & 1.000 & - & 250 \\
\hline .020 & 3 & .462 & 17.8 & 2.61 & .772 & 149 & 150 \\
\hline .099 & 13 & 2.00 & 77.2 & 4.26 & 1.260 & 397 & 400 \\
\hline .148 & 15 & 2.31 & 89.2 & 4.47 & 1.323 & 437 & 432 \\
\hline .199 & 24 & 3.69 & 142.3 & 5.22 & 1.545 & 597 & 600 \\
\hline .320 & 34 & 5.23 & 202.0 & 5.87 & 1.737 & 753 & 750 \\
\hline
\end{tabular}



Starter on this ball-bearing .15 not essential, but nice to use.

\section*{ENGINE REVIEW}

\section*{Cox Oympic}
- Maybe the new AMA rules are not everybody's meat: rule changes never are, anywhere, but, in reducing the class A displacement limit to .1525 cu. in., the AMA has gone a long way towards raising the world status of American contest modeling.

The reason for this is easy to see. The .1525 cubic inch ( 2.5 cubic centimeters) displacement is the limit that is internationally recognized for world championship model flying. For several years now, the two FAI world championship events for gas-engined models, free-flight and speed, have been restricted to 2.5 c.c., and, in Europe, individual nations have adopted FAI rules for most, if not all, of their own internal contests. As a result, engine designers have been encouraged to concentrate their ef-


Parts are typically Cox-and no castings utilized in its design.
forts on the development of high performance motors of this size, whereas American designers and manufacturers have, hitherto, devoted most of their resources to an entirely different set of requirements. Small wonder that no American modeler, or American enginc, has won an FAl international contest for five years.

The U.S. can produce engines capable of winning such events and there is no doubt about this in the minds of contest men all over Europe. Ever since it was first known, two or three years ago, that the Cox company had a . 15 on the way, engine enthusiasts in Britain and continental Europe have awaited its appearance with bated breath. They are not going to be disappointed. There is no shadow of doubt that the new Cox Olympic .15 can better the performance of any stock 2.5 c.c. engine made in Europe at the present time. There is little doubt, either, that Western Europe will use this engine wherever its potential can be exploited: the challenge of East European state-sponsored contest engines makes this inevitable.

The Olympic follows the usual Cox layout, of reedvalve induction and reverse-flow scavenged twin-opposed port cylinder. Such notable Thermal Hopper features as the multijet carburetor and clean, hemispherical cylinder head with built-in glow filament, are retained. The main visible changes are the beam (Continued on page 56)

Full-size drawinga here an aid to inatallation. New feature is lug mounting which should age convartion problems for those who would intall the .15 in bigger, ald-rulas ships. Reed valve used as on other Cox engines but is simplified.


Conical camber shows in pic, drawinge. If because she is an Aaranautical Engineering Miss Donna Hubbard saems to approve it's student at University of Minnesola. Jafex 50.

by DON MONSON

Conical camber works on a model, too! Hand-launched glider and Jetex versions fly better. What is next?
- When Convair engineers tested the prototype of their delta-wing F-102, they were surprised to leam that it wouldn't go supersonic even with afterburner, especially since wind-tunnel tests showed that the delta wing had less drag than the swept wing while it was passing through the sound barrier. The main cause of this effect was the excessive interference drag between the wing and fuselage.

About the same time, two new aerodynamic discoveries were divulged by NACA scientists: (1) a reduction in interference and wave drag by application of the "area rule," popularly referred to as the coke bottle design, and (2) a reduction of the induced drag, i.e., the drag due to lift, by use of "conical camber."
"Conical camber" means that the leading edge of at delta wing has a progressive downward camber increasing in radius of curvature as it passes from root chord to tip

For quickie, make flat-wing varsion-two iop models. Others use conical camber; leading adge curls down progressively toward fip.
chord (Ref. 2). Theory and experiment show that both area rule and conical camber have maximum effectiveness in the transonic range, i.e., the transition between subsonic and supersonic flight, with conical camber being effective also at high lift co-efficients; and when Convair applied these modifications to their F-102, the result was the highly successful supersonic F-102A that you see flying today.

The model version of this plane originated when we began to wonder what the effect of conical camber would be on a paper glider. A few hours and several gliders later, living room tests showed a noticeable decrease in the glide angle of the glider with conical camber over the one without camber. Further glide tests in a gymnasium where more conclusive tests could be (Continued on page 46)

\section*{FULL SIZE PLANS NEXT TWO PAGES}

The whate is equal to the sum of its parie-and the parts cinch to slice from nice, white balsa. The jofax 50 angine clips on eanily.


TO OBTAIN "CONICAL CAMBER", CARVE L.E. FROM \(5 / 16^{\prime \prime} \times 3 / 8^{\prime \prime}\) STRIP AS PER CROSS SECTIONS AT TOP OF FACING PAGE. (NOTE THAT L.E. DEPTH TAPERS FROM I/16"AT ROOT TO 5/16"AT WING TIPS).

\section*{CONVAIR F-IO2}

\section*{"DELTA DART"}
-FULL SIZE PLANS -
"SCOTCH TAPE" ALONG L.E. (FOR REINFORCEMENT) IS




Franch Boy Scauls hear about RC fram Sgl. ing, right lip, Smag Hag, \(\mathbf{T / S g q}\). Wing, AmeriJamat Duchworth, at Phalabaurgh AFB. Stand- can Scout Master; his L, M. Litzenbarger, Director.


Pawerad glider, A. Friberg, Sweden, 100 inch span, transistor r'cyr convartor, Talematic actuator

past, for protecting your planc. Otherwise cover the critical areas with aluminum foil. This is especially true when parked on the flying line in the direct sun for an hour or two.

Fig. 1 shows the method by the EBRC'ers in their Carrier, for bomb dropping. Since the run call be made at high speed, a shift to low speed just prior to the release presents no problem. The brass tubing is secured to the side of the fuselage with the notch face down. The hairpin hook is held within the notch arcal by the wire through the tubing. Be sure it operates freely and won't bind the motor colltrol; Mount bomb behind gear where it won't get caught and make bumb from weights just heavy enough to fall. Add a silk streamer.

A reminder for working with transistors: don't apply too much heat when soldering them in place. Some transistors will take it, others won't. Heat may be shunted away from the header on the case by using pliers to grip the leads when soldering; maintaining about \(y^{\prime \prime}\) of lead length and doing the soldering quickly and by stuffing cotton around the leads, then soaking the cotton with alcohol or even water. Be sure the leads to be soldered are clean and then get the job done as quickly as possible. If possible, use transistor sockets and then you'll be safe.

From the Convairiety, we learn that R. A. "Dick" Everett set a new world distance record for RC planes on April 12th. Spanning 6\% feet, the \(5 \mathrm{I}^{\prime \prime}\) long model weighed 5 h pounds empty, was powered by a Torpedo 19 and used a 5-channel receiver. Fairly conventional and boxy in design, the outstanding feature was the gear. It came straight out from the fuselage and then straight down, the tread being about 14 inches. The new distance record is now 37.1 miles and the ground speed was 47 mph.

In an early issue of MAN we will present a series of articles on superhet receivers. The first one will be of the 'front end' type, adaptable to the WAG TTPW and other tone receivers. The second section will deal with other basic circuits. This particular circuitry has been well engincered, and at first glance might be said to over done. However, we have noticed that consideration has not always been given to the fact that we have many other frequencies other than the six allotted to RC work, all in the same band. There are a total of 28 spot frequencies to consider, in addition to the usual amount of random interference. Superhets will (Continued on next page)

\section*{Varicomp Switcher by RALPH DeCECCO}

\section*{For reliable "five-channel" operation two Varicomps, just add simple contacts, servo.}
- Since the advent of the intermediate class in R/C a more reliable elevator action has been needed, instead of the torque rod system. Because the elevator action is so unstable, many Hliers have gone to the more expensive dual tones, the crank arm and more expensive pulse systems. The average modeler cannot afford these systems.

In my opinion this switcher does the trick. Most fliers have Varicomps so by cascading them, with the switcher compled to a servo, a more reliable action is established. The cost is low, the unit easily made.

You get five channel results with one channel equipment. The unit works as usual, but a more (Continued on page 52)

Finishad awitcher, left, and Citizen-Ship multi the iwo contacts came from a pinball machine. serva: fight, switchep parts as listed in text. Twa Varicomps ara coscaded as any installation.


\section*{Radio Control News}
(Continued from page 29) not become popular until articles are published which enable the modeler to build his own equipment, eventhough he may pay just as much for the parts as he does for a finished set. This may be one of the reasons that 465 mc has not been exploited as much as it should be. It's the ideal frequency as far as intereference is concerned, but the builder has not been able to build his own equuipment.

Fig. 2 comes from the Peoria HC Tattler and the circuit was designed by Hank Chesko for checking tone transmitters. No antenna is needed and the battery should last a whole season. No tuning is needed since the National choke and the capacitor provide broad tuning. No switch is needed because the battery is never connected until the headphones are placed iinto the normally open circuit jack.

Another item for Simpl/Sinul comes from Joe Ballasch, 5309 Big Creek Parkway, Parma O. Fig. 2 shows how two auxiliary controls may be used with S/S. The relays used came from a weather balloon transmitter which you can pick up for about \(\$ 1.00\) from a number of surplus stores or from ESSCO. Otherwise you can use a GEM 500 ohm relay. The 400 mf capacitors (transistor electrolytics) can be obtained from Lafayettc Radio.

Want to make your RC gear more rugged? Try a little fibreglass resin over and around the components, especially when mounted to a printed wiring chassis. This method is particularly effective when components are mounted in an upright position. Use about \(50 \%\) more catalyst in the resin and apply with a brush or small stick. Be careful not to get into flea clips or sockets. We have found this method of conformal coating to work very well.

The Central Jersey Radio Control Club made tests on the new Eveready N40, size AA pencell Nickle-Cad cells. Figure 4A shows the results of this test, performed sn as to simulate actual use in a pulse system. 'The batteries, two sets, were three of the cells connected in series and the load was a Mighty Midget plus a 10 ohm resistor. Pulsing was through regular relay points as set up for \(\mathbf{S / S}\), pulse rate five per second with \(50 / 50\) duty cycle. Measurements were taken across one set of batteries and the chart also shows the voltage per cell. As can be seen, these cells will supply power for such a system for two hours. They are rechargeable.

Now let's see how these cells, which are of the non-sintered plate construction, compare with VO cells which contain sintered plates. The N46's are rated at 450 mah , at a 10 hour rate, or 45 ma suggested maximum drain. Fig. 4B shows the discharge curve for one Eveready N 4 A cell having a 100 ma load applied. Fig. 4C shows the curve for one VO-500 cell, also having a 100 m a load applied. The N 46 is rated at 450 mah at a 10 hour rate and the VO-500 is rated at 500 mah at practically no rate limit. As can be seen, the N48 was good for approximately 180 minutes (Chart B) and the VO- 500 for about 320 minutes (Chart C), or about twice the life for the VO-500. These tests were run with three cells of each and the average given in the charts. As stated in previous columns, the sintered plate construction is capable of much higher current drains. The non-sintered plate construction is perfectly satisfactory if used within the limits given. For example, (Continued on page 58 )



Fig. 4


Built for an altifude attempt, 80-in. jab, Hacald Kurth, Germany, 8 lbs., 60 engine, ane channal.
Arvo Arrow, G. Kitiner, Garmany, 70 -in. dello, with K 88.35 power. Waigha \(7 / 1 / 2 \mathrm{lbs}\)., single channel.


\section*{Houdini}
( Continued from page 15) rod does not bind at the rear eyelet. The top front cowl block is removed and the gas tank is fastened between the motor bearers with metal straps or blocks of balsa. The cowl block is drilled out for the filler tubes to protrude and then cemented back in place.
Give the fuselage two coats of clear dope, sanding lightly between coats, and then cover with silk. Two pieces of silk are cut out slightly larger than the profile, including the rudder, one for the left side of the fuselage and the other for the right. Start fastening the silk to the fuselage at the nose and, working back toward the rudder, the silk is pulled over one half of the turlle back and cemented to the center stringer. (Wetting the silk with a sprayer filled with water will simplify the stretching and eliminate wrinkles.) At the rudder, the silk is fastened only to the leading edge and the fuselage side running up the trailing edge of the rudder.

The bottom of the fuselage is covered in one piece from the nose to the tuil, making sure that all exposed wood is covered with silk. The wing and tail dowels are cut to length and fastencd to the fuselage: The fuselage then is given five coats of clear dope, making certain that the pores of the silk are sealed thoroughly. Make the holes and cutouts for the switches and jack. The radio equipment should be small in order that it may be fastened to the sliding tray. My model used a Gyro 22 X receiver. The movable part of the rudder is hinged with either cloth or metal hinges and the yoke attached.

Stabilizer and wing: The stabilizer construction is strong and warpfree. The stabilizer is built on a flat board, making sure the leading and trailing edge are raised so that they are centered on the Kx \(x^{\prime \prime}\) " ribs. When dry, it is sanded with a large, Hat sandpaper block, to a svmmetrical airfoil, then covered with silk.
The wing also is made on a flat board and joined together at the center section with the wing gussets of the prescribed wood. The landing gear is bent to shape, one left and one right, and fastened to the wing through the holes in the plywood gusset with metal straps (tin can stock). A gusset is cemented between the rib and the spar where the landing gear protrudes through the bottom of the wing. After sanding, erover wing and stabilizer with silk and give five coats of clear dope Paint with colored dope if desired.

A plastic canopy is cemented to the tov of the removable cowl block, the block held on to the fuselage with rubberbands. The antennat is attached to the top of the rudder and held taut with a rublerband
Test flying: After field checking the radio exjuipment and making sure everything is in working order, do your test gliding. In the original model (which was free from warps) \(1 / 16^{\prime \prime}\) right thrust was needed; down thrust is alrcady built in. The model is glided from shoulder height holding it directly in front of the wing with the nose pointing slightly down. Use a running start. When the model glides flat, you are ready for power flight.
With about two minutes of fuel, attempt a take-off. The model tends to stay in a turn so opposite rudder is required to bring it out of the turn. Do not hold signals long as Houdini responds instantly. Get plenty of altitude before attempting to turn sin you can familiarize yourself with its characteristics.

The first fight is always the most dan-
(Continued on page 36)


\section*{FOR BETTER MODEL BUILDIN}

\section*{BETTER FLYING = THE ONLY NAM}

\section*{YOU NEED TO KNOW IS}

\section*{}

PREFERRED BY MODELERS...EVERYWHERE!

THE TESTOR CORPORATION•ROCKFORD, ILLINOIS



\section*{TOPFLITE}

THESE 1/2-A MODELS SWITCH FROM CONTROL LINE TO FREE FLGHT 2 BACK AGAIN IN A JIFFY!
Each kit contains: formed landing gear, push rod, elevator horn, wheels, bell crank, firewall, decals, and all necessary hardware. All parts are completely finished. Only select Grade-A balsa is used. Full size detailed plans with many step-by-step constriction features making it easy to build and fly.
- Idaral for beglnnars . . . and exparts, toal
- All feature Famous JIGTIME

CONSTRUCTION for oasy, no-mispake
assemblyl

\section*{PIPER CUB}
(2) inch wingspan, This \(1 / 2 A\) scale fiying model is so

Kit No. G-8
\(-2.050\) makes it a model Instead of the real thing! Includes formed plastic cowl, die cut clear plastic windshield.


Kit No. G-5 -

RASCAL 27
27 inch wingspan. An outstanding favorite with all


Kit No. G-7 \((24)=\)

\title{
GAS KITS TOP THEM ALL
}

Three terrific planes designed by George Aldrich, America's greatest stunt champion!


\section*{the NOBLER championship control line}


\section*{these CONTROL LINE COMBAT}

Engine sizes . 15 to .35

Wing Span 42'
Wing Area 390 sq. in.
America's greatest . . . two of the most successful planes ever designed!
and STUNT TRAINERS are among


\(1 / 2 A\) model builders for clear plastic windthield

ARROWJET 24
24 inch wingspan. Has the dash and class of modern for prop-jet design. Idea,

\section*{BOTH OF THESE KITS CONTAIN:}
- Full length shaped and notched leading and trailing edges and spars.
- Shaped fuselage.
- Select grade A balsa.
- Printed and precision die-cut balsa and plywood parts.
- Formed landing gear and push rod.
- High grade silkspan.
- Hardwood engine mounts.

Complete detailed plans with many step-by-step construction features making it easy to build and fly. cludes formed clear plastic d clear plastic canopy.

TOP FLITE MODELS

The CHAMPS WIN with TOP FLITE \& POWER PROPS for the Ilth STRAIGHT YEAR!


GLENVIEW, ILLINOIS

Choose these famous TOP FLITES and POWER PROPS and YOU'LL be right up there with these Nationals winners!

ALL THOEE LISTED ARE FIRST PLACE WINNERS


1/2A SPEED SEMIOR Edw. Piningtan Hialeah, Fis.
99.3 mph

Engine: X \& B 049 Fuel: This is it
PROP: 14/2. 1 POWER PROP Plane: Original
fiying scale cl open
Tom Das
Corpus Christi, Tas. 330 points
PROP: S.E TOP FSITE
\(1 / 2\) a gas ff Jumion Bill Hualar
Sun Valley, Calif. Time 823.0
Engine: Kolland Hornat
Fuel: Thimble Drone Racing PMOP:
51/4-4 PLASTIC TOP FUTE Plane: Satellite


PAA CLIPPER CARGO OPEN
Lampone Conana
Cedar Rapids. la.
WI. Lifted: 137.25 oz.
Engine: Thermal Hopper
Fuel: Nitro X
PROP:
A.3 PLASTIC TOP FLITE

Plane: Palican


1R MATIONALS HIOH POIMT WIMMER
peanls Allerd Dasals Altert
PMOPS: YOP FLITES EAGA Th all a as arels.

\section*{ \\ T}

A CAS FF OPEN
Charles E. Dillet Riverside. Calif Time: 19062 Engina: Toro 19 Fual: K\& 8100 PMOP: s. 4 TOP FLITE Plane: Ramrod 600
hadIO COMTROL (MULTH)
Pol Durlam
Noswalk, Calif.
213.0 points

PAOP: ITS TOP FLITE
mayy carrien jumion Mlted Genzalal
Woodside. N. Y.
Time: 308.02
PROP: 10-8 TOP FLITE

hotart hantall
Indianapolis, Ind
348.5 points

Engine: Fox 35
Fual: Fox Supar Fual
PROP:
10.8 MYLOM TOP FLITE

Plana: Original
Mayy cander semioz
hevert Hamiavay
Audubon Pask, N. 1
Time: 190.99
PROP: \(11-1\) TOP FLITE
flying scale cl jumion
lim Yesiay
Evansville, Ind.
244 points
PROP: 11.4 TOP FLITE
RADIO CONTROL
flyimg scale
Willian f. Mattana
Allen Park, Mich.
\(882 / 3\) points
PROP: 12.4 POWER PROP


Man \(1 / 2\) hacerid
M.0.w. QAS JUMIOR

Einfalianima
Time: \(\{1.31\), Cali
Engine: Holland Hornet
fual: Thimble Drone Racine
PROP:
B. 1 WYLON YOP ELITE

Plane: Satelite 320

\section*{Dealers - Write For Info On These Hot Items}

os anomes

 out end uil itur it our chin out and hare inar ma then eny athe 099 alo low oprimint OS .009 is equppec with a \(2.3 \times\) plug lor exineme



S-rimer is mall martion sia.en The onfy production 35 aval dble with ball bearings The
combers warsion thown hes ore
Urge tise bell beesing. the iat
 trom ber bascing thow anonot see mat-pped with a pros
whe firing on the fromt hoving \({ }^{2} 5 \mathrm{~g}\) give you limed prosswute bat
 Dresure theed : Whan kide up voom with 135 hai haory Alto
 and alwo Dhang

\begin{tabular}{|c|}
\hline \multirow[t]{12}{*}{\begin{tabular}{l}
OS 2SN Exponeme \(\quad 32.95\) \\
 mert - apen al a sursuranal low price Exaperment has thall hase ing spinslo mounting. The claw is of brest and the owapmement \\
 the OS Del 099 we the OS: boyl Nens we will well thers liswed a hd. col. dirset then mails
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{
 Bo mele thene terrike 27 x me
CW rucher cray prica much longur. This realver has men loxpensives hard nob (IACM) in the detection and a good trensivor in the woind atage the rocemere lidiun iow -
but when you ronamis the boived fiem and mavis from}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{ESCAPEMENTS} \\
\hline OS 2 climan malí naturaicr & 299 \\
\hline OS Axtem moter enticol & \\
\hline 'be ithroatios & 2.95 \\
\hline 0 Compound & 495 \\
\hline OS shator Convol, vaty & 3.95 \\
\hline \multicolumn{2}{|l|}{RHAMS} \\
\hline OS 4500 OHM & 395 \\
\hline Of 100 OHM & 395 \\
\hline \(\bigcirc 500 \mathrm{Hm}\) & 9 9 \\
\hline CS 4000 OHM Polverised & 199 \\
\hline \multicolumn{2}{|l|}{sma} \\
\hline \multicolumn{2}{|l|}{WCRID ENCANES SIK DOR YAO (asta dine, butra then)} \\
\hline White 80| 1 Reas & : 00 \\
\hline Veliow 10011 Cranpe & 100 \\
\hline Grame 1.00 | | De blue & 100 \\
\hline H1 Blue & \\
\hline
\end{tabular}

\section*{REO RANXS} \(\begin{array}{lll}\text { OS } 40 \text { OHM } 5 \text { Chmonal } & 1095 \\ \text { of } 40 \text { OttM } 8 \text { Chennad } & 1295 \\ \text { Of } 40 \text { OHM } 10 \text { Chminal } & 1695\end{array}\) seminar som 3138 WE Dienal fual

Acaderny Hobby Supplies Lid 2624 Ealragion A minut W.
TOIONTO ONT., CANABA

\section*{WORLD ENGINES}

8206 BLUE ASH ROAD
CINCINNATI 36, OHIO
gerous one and the model should he Hown with caution. Study the Hight with the power on to see if the model is Hying straight with no signal; if not, the thrust should be adjusted to the left or right opposite the turn the model takes. If the model has a tendency to go left or right in the glide the rudder is adjusted for a straight glide. (Note glide turn in order to know which adjustment is first-Editor.) If the model has a tendency to stall under power and not in the glide, additional down thrust may have to be added by shimming up the motor mount at the rear. In case the model stalls in the glide it is either tail heavy (Not if the CG is where specified-Editor), otherwise positive incidence is put in the stabilizer. This is done by inserting thin balsa shim between the top trailing edge of the stabilizer and the fuselage. All thrust adjustments and incidence changes should be done gradually.

With a little patience and a lot of practice you will find that Houdini lives up to its name.

\section*{The Tri-Traveler}
(Continued from page 10)
a right and left set. The wing struts are held to the bottom of the wings by means of \(3-48\) bolts and blind nuts. The wing struts are held to the fuselage tabs by a small cottor pin which will enable the struts to pivot at this point. Before cover. ing your model, we suggest that you scallop bulkheads B and C between the stringers so that the covering will not stick to them when doped.

The original model was covered with light weight Silkspan, which smooths out with four coats of thin, clear dope. All the surfaces can be covered in a normal manner except for the vertical fin and the top of the fuselage. To cover this portion of your model, we suggest that you cover one side of the vertical fin und half of the top of the fuselage with one piece of wet Silkspan. This should form a graceful fillet which is a distinguishing feature of the Champion Travelers. The cowl and wing struts are also covered; this will enable you to fill the wood grain much faster when doping. The tank is made from a lipstick holder.

The original model is white with blue trim. Use wood filler on cowl, struts, and planked portions. If white or other light color, keep colored dope fairly thick. A very light sanding between coats with \# 400 wet-or-dry paper removes most of the brush marks left by thick dope. Thin the last colored coat for added smoothness.

To form the windshield, carve a mold from a block of sugar pine and sand it very smooth. Take a piece of .030 thick celluloid and heat it until it becomes pli-ant-be careful not to overheat it. Pull the heated celluloid over the sugar pine mold until it forms a graceful canopy. Trim off the excess material from around the edges and fit it to your model.

Add the windshield and side windows after the second coat of colored dope. Mask off the portion of the windows which do not get doped and then proceed with the finish. To add the trim culor, start by masking a border stripe \(1 / 16^{\prime \prime}\) wide. Apply two coats of the trim color. When this has dried thoroughly. remove the masking tape. Add the solid fill-in trim, by masking off another border \(1 / 16^{\prime \prime}\) in from the original stripe. Apply two coats of the trim color and carefully remove the masking tape, leaving the base color for the pin stripe.

Your finished model should balance where shown on the plan. It should also be free of any warps. The original model was stable in both right and left power turns. However, we recommend a left-
hand power flight pattern. A slight amoun of right thrust may be rexuired along with the downthrust. Do not attempt to control the power pattern of your model by turning the rudder. The little Champion TriTraveler should HOG and climb at a very slight angle to the left at half-power with a 6 -2 or 6-3 propeller.

\section*{Dizzy Bee}
(Continued from page 21)
will need two pieces of basswood as specified. One for the wing, the other for the crutch; two balsa wood blocks for the en gine cowling; plywood for the tail; and a cast aluminum speed pan. Dizzy Bee uses the \(L\) \& \(H\) speed pan from the \(L\) \& \(H\) Hobby Shop, Mesquite, Tex. Finally you will need a Class B Speedmaster Monoline control unit. Although a Fox 29X is used the new Dooling 29 can be installed if desired with minor changes.

Fuselage: Start with the pan by filing the outside with a course file to remove any pits or rough edges, then use a smooth file to finish. Using \(\# 270\) wet or dry, sandpaper the surface until smooth, then rub to a high finish with DuPont \(\$ 7\) rubbing compound.
The pan is drilled and tapped for the hold-down screws. Use a \(\$ 43\) drill, then tap the holes using a \(\$ 4-40\) tap. Be sure in locating the four engine mount screw locations that you allow for a slight left-thrust adjustment.

For the fuselage crutch select a piece of straight grain basswood or pine and, using the pan as a pattern, draw the outline and cut out with a bandsaw or coping saw Refer to the drawing for the inside lines of the crutch. Pencil these lines onto the fuselage block and cut out this inside portion

Carve the underside of the crutch to clear the engine shaft housing and carburetor, allowing the crutch to set against the pan.

Wing: Select a straight fine-grain blank of basswood or pine, remove the leading edge portion, then spot glue it back in place and allow to dry overnight. The wing planform is drawn on the wing blank or the pattern used, also the outline of the wing cutout.
Taper the underside of the wing from the root section at the fuselage joint to each wingtip. Leave the wingtips as thin as possible. Carve and sand the airfoil into the wing. Separate the leading edge portion of the wing from the larger portion by parting the cement-tacked center-line joint Carefully cut and sand the groove in both sides.

Slip the control unit into place and adjust so the tubular stem of the control unit extends exactly centered in the grooved passageway. Drill holes through wing and fasten control unit mounting bracket with suitable machine screws and nuts. When tightening screws, make sure the control unit remains set with the tubular stem in perfect alignment with the grooved passageway. Replace the the leading odge section of wing. When cementing, there is the possibility that cement may be pressed into the passageway, around the tubular stem, for instance, which, when dry, can cause drag or binding. Use only enough cement to do the job and then rotate the cam a few times to make sure the tubular stem has not become cemented in the groove.

Now drill a \(1 / 16^{\prime \prime}\) dia. hole through the wing to receive the bellcrank pivot pin Adjust the pin in the hole so the bellcrank will move freely and fix pin into place by soldering on the opposite sidc. The bottom
(Continued on page 38 )


Dear Modeler: Our new Spaceman Trainer is really the plane to learn with. A beautiful, smooth flyer - yet designed RUGGED for beginner's needs. For instance, the landing gear is tough \(1 / 8^{\prime \prime}\) diameter genuine music wire, held in place by an entirely new, simple shock absorbing method. And notice how the streamlined plywood doublers come back to the middle of the wing for extra strength. The controls have two positions "gentle" to get you over those first flights, and "active" for wingovers and zooming up and down. It's designed particularly for the new Cox Thimble Drome 15 and Fox 15 engines, and has been flight-tested with the powerful K\&B 23 as well. Simple to build because the structural parts are all die-cut balsa and plywood - no paper covering. In addition, the kit has all the hardware, screws, nuts, washers, wheel retainers, etc., a hard aluminum bellcrank and bushing, formed landing gear and tailgear, wheels, large attractive decal with all numbers, Spaceman figure, rudder decoration, pilot head, etc., engine bearers, nylon for hinges and reinforcing, and a fully illustrated clear step-by-step Plan, including instructions on Learning How to Fly. See your dealer now for this fine kit - a really big value at only \(\$ 2.95\).


RANGER 30 - Die-cut balsa. \(30^{*}\) span for . 020-.049 engine. . \$1.95.


STUNT MAN 23 - Die-cut balsa. 23-1/2', for .049-.09 engine. \(\$ 1.95\)


SPACE JET 21 - Die-cutbalsa. \(21^{\prime \prime}\) span, for .020-.049 engine . . \(\$ 1.69\)


SWORDSMAN 18 - Die-cutbalsa. \(18^{\prime \prime}\) span, for .020-. 049 engine \(\$ 1.49\)


RANGER 28 - My "pre-fab plus paper," rubberpowered, \(28^{\prime \prime}\) span, 2 colors. .......... \(\$ 1.00\)


RANGER 21 - All die-cut balsa parts, rubberpowered. 21" span beauty .......... . \(\$ 1.00\)


SHOESTRING RACER - All die-cut balsa, rub-ber-powered, \(18^{\prime \prime}\) span. Complete. ...... \(\$ 1.00\)


CESSNA 180 -Rubber-powered favorite, all balsa, \(21^{\prime \prime}\) span. The champion of business liners \(\$ 1.00\)

\title{
THERE'S \\ \\ Something for Everybody
} \\ \\ Something for Everybody
} FLIGHT TRAINER
Nit S-16, Wing Span 24". For .09- . 15 Enginas Designed especially for beginners in control-line fiylngl As complataly profabbed as a kit can get . . a a beginner can put it logether in less sthan two hoursal All wood, ruggod onough to take plenty of punishment, extremely stable.

Complofely carved wings and body, die-ent fail
surfaces, finished landing gear including
wheels, plywood parts for cantrol system, elc.

\author{
Kit FS-6, Wing Span 54". For .09-. 35 Engines
}

Especially designed for radio control, also furna in remarteable performance as free flight or control line modal! Partı are beautifulty die-cut and shapad, infernatchad for fast, occurale conitruction. Easy to fly . . . complete flight Instructions includedl

Fully profabbed of balsa and plywood, with carved lower nose cowling, formed aluminum fronf cowling, outhenfic Insignio, ofc.

\section*{GEM Standard}

NEWI SILYER PALLADIUM Confacts
Here's the sensitive and reliable
tiny mite, now with better arc suppression, contacts won't tarnish, corrode, or oxidize. Harder, wears better. More resistant to
welding" or "sticking" of points. Extra tie points for resistors or condensers. still \(\$ / 25\) Woigh Lass
Than \(1 / 202\).
|rin: 1/4 M.
17/32 W.
1-1/18
Maunting:
One serem
Call: 5000 abn

\subsection*{7.500
10,000 10,000 \({ }^{0} \mathrm{~h}\) hms at Sem micre Delure (adjustatie) \(\$ 4.35\)}


JAlCO Products At Your Dealer
RELAYS CHICAGO 22, ILI.
M.E.W. JET ENGINES

\section*{M.E.W. 307 JET ENGINE} \(\$ 14^{95}\)

PREPAID

Powerful, 5 lb . thrust 3 in . dia. \(\times 201 / 2 \mathrm{in}\). long, burns gasoline, complete with spark plug.

\section*{M.E.W. 601 JET ENGINE \\ 6 in . long, easy to \\ assemble, \(\$ 1.95\) prepaid \\ \(5 \frac{1}{4} \frac{1}{4}\) \\ Burni thalline. Complitto, ataolutely nothing elto to buy \\ MINNESOTA ENGINE WORKS \\ 5600 N. Mamline Ave., St. Paul 12, Minn.}
of the cam-follower pin should have a slight clearance between the bottom of the groove in carn so that it will move freely; the bellcrank may be bent up slightly for clearance, if necessary.

The wing-tip control line bearing is formed of a short piece of brass tubing about \({ }^{n \prime \prime}\) I.D. by \(x^{n}\) long. This tubing is flattened to an oval shape and securely fixed and imbedded into the wing tip with cement; then sew several loops of \(\$ .50\) thread around it for additional strength.
The wing now is finished, sanded anid the trailing edge brought to a sharp edge. Locate and then cement the wing to the fuselage crutch. Make sure to rotate the wing as shown. This will locate the wingtip control line guide about \(4^{\prime \prime}\) ahead of the balance point when the model is completed.
After locating, drill and tap the pan for the fuselage tie-down screws. These hole locations are transferred to the fuselage crutch and drilled with a \(\$ 35\) drill.
Attach the wing and crutch to the pan with flat-head \(4-40\) screws, then taper down the crutch to match the profile or side view. Use \(3 / 32^{\prime \prime}\) medium hard balsa to cover the open portion of the crutch. Note that the cover is cemented inside, flush with the crutch walls.
Cowling: Use two pieces of mediumgrade balsa. Cirve the cowling as shown, sand the inside and apply two or three croats of Ditzler metal primer. After the cowling parts lave been finished on the inside, locate and cement them into place. The top of the cowling is carved, finished on the inside, and cemented into place.

Tail: To construct the "V" or "butterfly" tail. draw the outline on a \(1 / 10^{\prime \prime}\) birch plywond and cut out. The leading edge is sanded to a round section and the trailing
edge to a sharp edge. Draw a center line, cut the plywood in half, and remove the elevator portion from the inside half. Cement the stabilizer halves together on the \(1 / 16^{\prime \prime}\) plywood platform and allow to dry overnight.

The elevator horm is made from .040 dia. piano wire. Bend this as shown, then sew it to the elevator with \(\$ 50\) thread. Attach the elevator to the stahilizer with cloth hinges. To insure a stronger joint at the " \(V\) " section of the stabilizer, a \(1 / 16\) " thick plywond plate should be cemented in place. Make the necessary cutouts for the elevator control-horn movement. The tail assembly is held to the pan with \$4-40 flat head screws. Use a 243 tap drill for the holes tapped in the pan and a \(\$ 36\) drill for clearance holes in the tail.

With the tail assembly attached to the pan. the notch is cut out of the fuselage to clear the tail. The rear hold-down screw crossbrace is located and cemented into place. Locate, then drill and tap the pan for the \$4-40 rear hold-down flat head screw.

Finish: For a real fuel-proof finish it is nggested that you use Ditzler primer coat and a colored Ditzler auto enamel. The general practice is to give the model two or three coats of primer thinned out about 50\%. allow to dry from two to three days, finish sanding, ind then spray with the enamel which snould be thinned out about 40\%. Allow the finish to dry for three or four days before rubbing with a rubbing compound.

Engine: The Fox 29X engine has considerable increase in rpm when the load is removed as it becomes airbornc. This means that needle valve settings are critical. However, this can be solved by experimenting with different sizes of inserts


15 other beautiful model boat kits, many of which have been especially designed for radio control. Plus 40 other model plane kits . . . for radio control . . . for free-flight . . for con-trol-line ... all waiting to make your summer modelling the besi everi Send for catalog.
in the carburetor. A 40\% reduction seems to be best.

For other modifications completely disassemble the engine and remove the cylinder liner from the crankcase. File the exhaust stack flush with the case and curve the front and back of the exhaust stack. Remove any burrs or loose pieces of metal from the inside of the case. The four-screw scaling area on the crankcase should be very lightly filed with a smooth file and then polished on a piece of ground glass or a surface plate. This will seal better the backplate.

The crankshaft requires no reworking other than advaincing the timing. This can be done by grinding away the leading edge of the port opening in the crankshaft. As the grinding is being done, insert the shaft into the crankcase and check the degrees of opening. The chankshaft port should start to close the carburetor it \(45^{\circ}\) after top-dead-center and open at \(10^{\circ}\) after bot-tom-dead-center.

The crank-nin should have ahout 1/32 in. yround off the end and then polished. The bottom of the connecting rod should be uled to match the length of the crankpin. These two things are done to prevent rubbing and grinding away of the rear cover when a starter is used. The connecting rokl can be lightened considerably by filing away all the square corners, then sanding and polishing.
To retime the opening of the exhaust port, use two cylinder-liner gaskets under the Hange of the cylinder liner. This will raise the bottom edge of the exhaust port above the piston when it is bottom-deadcenter, so file this edge down until it is flush with the top of the piston. The intake port is left "stock," other than adding a very slight radius around the port edge
on the inside of the liner
The underside of the head was scalloped out to add more combustion area and sham edges were removed around the glow-plug area. The connccting rod wrist pin should have each end filed or sanded to a radius as much as possible and polished.
Before assembling the engine, be sure all the parts are clean and free from any metal filings. Use one head gasket between the cylinder head and the flange of the cylinder liner. Assemble the engine and thoroughly tighten all screws. Do not disasemble the engine again unless it becomes necessary to clean it. Be sure when mounting the engine to the pan, that the engine sets flush against the mounts, otherwise a bind will result on the shaft when the mounting screws are tightened down.

Allow for several runs before expecting peak performance. Hot or lean runs on this engine do not seem to effect its performance and it appears that at least 20 to 25 good flights are needed to bring the engine up to peak operation.
Before test flying check the contrals for binding or rubbing. The controls should operate freely for good take-offs and landings.

Check out the control system to see that you have at least \(10^{\circ}\) up movement and \(10^{\circ}\) down movement of the elevator. Be sure there is no rubbing of the elevator push rod or that the control unit bellerank doesn't rub against the tank.

Use a 7" dia. 10" pitch Tornado propeller cut down to 6 qu \(^{\prime \prime}\) dia. with a little more pitch sanded into each blade. For maximum performance in record attempts, use "This is it" or Franny's Hi Nitro contest fuels. Dizzy Bee is very stable and easy to fly. Don't be surprised if you find yourself breaking the class " \(B\) " record.

\section*{Available now!}

\section*{The first complete}

\section*{Illustrated} Guide to I.S.


\section*{by Stanley Ulanoff}

This invaluable guide for all missile-model enthusiasts features action photos, scale silhouettes. specification and data tables (manufacturers, types, dimensions, guidance system and power plant diagrams, performance, armament, etc.) and full descriptive text on 65 basic missiles, rockets, manned research aircraft and space vehicles. Written by a professional missile model designer, this expert, uuthoritative book is the only volume of its kind - a magnificently illustrated album that no model huilder can afford to be without.
\(\$ 3.95\) at all booksellers dounleday
\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { CORPORAL MIssILE } \\
& \text { No. Soe ..... } 98 \mathrm{C}
\end{aligned}
\] &  &  &  \\
\hline  &  &  & ATLAS SPACE STATION No. 513 . \(\qquad\) \\
\hline  &  &  &  \\
\hline
\end{tabular}


\section*{ANOTHER FAMOUS R/C UNIT BY}

"MARK IJ" SUPER-COMPOUND ESCAPEMENT SERVO
World's largest selling escapement for full rudder and elevator control plus motor control switch. Tops in reliability. Easy 10 install and operate. Handles any size plane. Complete with actuating arms and linkage. Rust and corrosion proof. Rubber-powered. Low current drain; 8 ohm coil, 2 to 3 volis.

Ne. ase COMPLETE ... \(\$ 7.95\)
By the makers of the world-famous BABCOCK M/C SYSTEMS Transmitters - Receivers Escapements - Models
Sea Your Babrock Dealer . . . or write for complete Catalos.


\section*{Souped-Up Pre-Fabs}
(Continued from page 20)
fine. Make it from tough \(1 / 16^{\prime \prime}\) sheet or plywood since the plane needs weight in the nose anyway.

The plastic nose-button or prop bearing should be used. Drill the nose block to take it snuggly. Have several buttons all the same size if you want to try different props. Put them on the prop shafts, bend the shafts to hold the rubber. Then to switch props, all you do is pull out nose button from nose bulkhead after rubber is unhooked. No shaft-bending at the contest.
For winding, pull entire nose block out front, unhook rubber and place on winder hood. When wound, hold rubber one inch from end, let winder unwind, and put resulting loop of rubber back on prop shaft. But don't have lubricant on your ingers.

PROPELLERS of all types have been tried. One theory is that fast turning props of smaller area give less torque reaction. Norman Getzlaff uses this theory with some novel ideas of his own. He puts "scallops" in the trailing edge. They let the prop turn faster, he says.

Getzlaffs block is illustrated here. He found that old props worked better. Floor landings had knocked off the leading edge tip comer. Then he cut of the leadingedge tip corner of new ones and obtained the same results. So the design is followed.

He prefers to plane off both rear and front faces of the prop blank and keep the blade angle in the center. He cuts the block by exacting methods using arcs.

Standard hand-carved props give good results. But Mike Karlak simply cuts two blades from sheet wood, foins them at right angles or at 45 degrees to the shaft, and gets nearly three minutes.

RUBBER POWER for prefabs ranges from two loops of \(\%\)-inch flat to two loops
of \(1 / 16\)-inch square Pirelli. Some braid their strands. Everybody uses plenty of slack-about twice the fuselage length. Remember that you can get more power from a shorter motor, only it won't last as long. Or you can reduce the power of a given motor by making the loop longer.

The main objective is to have the model land with some winds left in the motor. If it runs out at high altitude, the motor is too strong. If too much power remains after landing, rubber not strong enough.

Maximum turns- \(y^{\prime \prime}\) flat brown rubber; 2 strands, various lengths; 115 turns per inch (21-1 winder)
\begin{tabular}{|c|c|}
\hline Rubber Loop & Total Winds \\
\hline Length & 1150 \\
\hline 15* & 1725 \\
\hline \(16^{\prime \prime}\) & 1840 \\
\hline 17" & 1955 \\
\hline 18" & 2070 \\
\hline \(19^{\prime \prime}\) & 2185 \\
\hline \(20^{\prime \prime}\) & 2300 \\
\hline 21" & 2415 \\
\hline \(25^{\prime \prime}\) & 2875 \\
\hline
\end{tabular}

These figures are for well-lubricated, fresh rubber of the best grade in peak condition. If your rubber is less than that, don't expect to get maximum turns. Reduce to 100 turns per inch for safety.

Four strands of \(\mathrm{X"}\)-flat hrown
15" loop
1200
\(20^{\prime \prime}\) loop
1600
Maximum turns-3/32-inch flat, two strands (one loop), 130 turns per inch; Four strands (two loops), 94 turns per inch. (Reduce to 90 to allow for poor grade of rubber.)
\begin{tabular}{llcc}
\(14^{\prime \prime}\) & loop & -1280 & turns \\
\(15^{\prime \prime}\) & & -1350 & \(\prime \prime\) \\
\(16^{\prime \prime}\) & \(\circ\) & -1440 & \(\prime\) \\
\(17^{\prime \prime}\) & \(\prime\) & -1530 & \(\prime\) \\
\(18^{\prime \prime}\) & \(\prime\) & -1620 & \(\prime\)
\end{tabular}

\section*{Wing Loading is Three Dimensional}

\section*{(Continued from page 23)}

To clarify this, let's taken an example which may be more familiar to us all: The relationship between the side of a cube, the area of any one side, the cube's yolume, and weight. Consider a cube two inches on a side which has a weight of eight ounces. If a side is two inches, the area of a side will be the square of two, or four square inches; the volume will be the cube of two, or eight cubic inches. In describing this cube, we might say that it has a "loading" of two ounces per square inch ( 8 ozs. \(/ 4\) sq. in.). But if we used this relationship to predict what the area need be to have a cube of the same material to weigh 64 ounces, our answer is obviously incorrect
Our erroneous reasoning might go something like this: The large cube is to weigh eight times as much as the small one ( 64 ozs./8 ozs. is 8). The large cube will have the same "loading" as the small one, two ounces per square inch (here's where we get into trouble). To find the area needed to "support" 84 ounces at two inches per square inch, we merely divide the 64 by two to arrive at our new area of 32 square inches. Taking the square root of 32 , produces the value for one side. or 5.66 inches, the volume being about 181 cubic inches.

In correctly reasoning the above problem, and arriving at a cube size to weigh 64 ounces, our thinking should run like this: Since the volume will be directly proportional to the weight (both are three dimensional), and the 64 ounce cube will be eight times as heavy as the eight-ounce one, it will also have eight times the volume, or 64 cubic inches. Taking the cube root of this will give us the value for a side of four inches ( \(4 \times 4 \times 4\) is 64 ).
In our incorrect solution to this problem, we "mixed apples and oranges" by directly comparing a two-dimensional to a three-dimensional thing. Let's assume, however, that the volume was difficult to measure, whereas measuring the area was relatively simnle. How can we compare area to weight? Merely by expressing the area in three-dimensional terms. We can do this by taking the square root of the area, thus reducing it to one dimensional terms, and then cubing this figure. We can express this two ways: Varea " or area \({ }^{3 / 4}\)
In the problem above, our solution, using this method, would work this way: The weight will be directly proportional to the area \(\sqrt{3}\) values, which, for the two-inch cube will be \(\sqrt{ }{ }^{3}\), or 8 . Since the large cube will have a weight eight times that for the smaller cube, its area \(y\) value will also be eight times that of the amaller cube, or 64 . To then put the 64 back in two-dimensional terms, it is necessary to apply the \(2 / 3\) power to it in order to cancel the exponents: \({ }^{5} \sqrt{ } 64\) is 4 . Four squared is 16 , the area of the 84 ounce cube. This may seem like the long way around, but it did enable us to compare the weight and areas of the two cubes, without resorting to actual computations of volume. Utilizing an \(8^{\prime \prime}\) circular slide rule, this type of comparison is quite fast.
Since a direct scale-up was involved in the cubes, we could have compared a side (one dimensional) to the weight, by first putting the side in three-dimensional terms by cubing, and thus arrived at the same result.

\footnotetext{
"All right," you say, "So what?"
Are you planning on building an FAl
(Continened on pare 44)
}

\section*{SEND ONLY \$2.95 \\ FOR THIS \(\$ 11.95\) BOOK \\ (remainime \(\$ .00\) to be pald 83.00 ner month) \\ }

Only buol that contains not only all the Alrcraft Hown in World War One, but
 plans nhown of planes from USA. Englad, France, Germany, Italy, etc. Full pagu photoy of Syusifon line ups, plum half page and third nage photoy of each plane. in all over 200 photos. Full Dlmensionn. Weight, Armament, Herformance, power Plent, and conntructional detalls are given for rach plane, pius its Operational History. This book is of great Interent io any who have flown theme old plenes. to any who ari laterented in the building of true meale Museum type madels. and to thoge who aimply like to sce top notch yhotos and write ups about thess., now rare. alrefaft. This book is a collector's item. Book weigha almoat 2 pounds It is golal on money back guarantee. aftur you have paid for the bnot in fulla If not Gatinfled with it we will grarif f full money binck refund within 10 degs after you bave recelved it.

SAMPIIK PAGES and Circular bbout the book above .......25r \(\square\)
CHEDK OFF THE FORM BELOW End PRINT your mame and addrean in columa thlm adin your neme and addrpar in Pleave wend me the \(14-18\) boak above, 1 paclose full si1.95 \(\quad\) per book.

 dreda of \(14-18\) Aircraft "HLANSBOOK" comes with \(\$ 1.00\) Credil Voucher whleb can be used on future purchares........................................... "PLANSHOOK" \$1.00 \(\square\) "AEROMONEI,LFR" magazine contalns scale planu. Year aub. \%A.60. Sample ase \(\square\) Gull Model Airplane Co. 10 E. Overlea Ave., Dept. M2 Baltimore 6, Md.

\section*{NEW Rec) TONE R/C EQUIPMENT}


RECEIVER
MC Madel 100
Absolutely reliable
- 6007 detectar plus 2 1ransistors
- Printed circuit - epoxy glass boord Weight only \(11 / 2\) ounces

READY TO OPERATE - FULIY GUARANTEED


TRANSMITTER . . . MC Model 250 T
- Siable, reliable circuif
- Standard 1,000 cps iane
- Frequency chaice 27.255 or 26.995
- \(54^{1 "}\) aluminum antenna - steel case

SPECIAL COMBO OFFER onir \({ }^{5} 39.95\) postralo (las beonciane) ORDER YOUR COMBO 'T' TODAY Write for free literafure on the complete MC line.


CESSNA \(172 \quad \$ 2.95\) Here's the newest Cessna private plane that you can fly yourself . . . by U-Control, of course, using |ust about any \(1 / 2 \mathrm{~A}\) gas engine (up to an .074). Performance-wise you'll find this model ןust about the snoppiest you can fly-regardless of price. And-note the trim, slim, uncluttered lines of this scale boauty. Wingspan is a full 21 inches. The kit is all prefabricated . . . with a pre-carved balsa fuselage and all parts already cut, formed or shaped for you.

CYCLONE
\$2.95 U-Control fans . . . get ready to fly up a storm! You're looking at our brand new "CYCLONE" . . . 7 ounces (with the engine, that is) of sheer flying dynamite. The enormous wing area of this model (21)" span) provides fremendous "ilit" that lets you take off realistically . . . fly every stunt in the books . . . then land as soffly as a feather. You can power your very own Cyclone with any small bore gas engine .035 to .099 . And-assembly of the model is a cinch from the all prefabricated kit (with our pre-carved balso fuselage, too).


\section*{MORE NEW RELEASES}

See your favorite hobby dealer for these popular U.Control flyers . . . by SCIENTIFIC, notch1 We cell 'em our "super 6 " . . . hecause they're super in every detall. Looks! Performantel Ease of Assemblyl Quality Featuresi The Works! And the price is a tiny \(\$ 2.50\) each. Each kit somes super prefobricated with our oxcluslve precarved halsa fuselage and all parts formed or shaped for easy assembly. Most models have \(18^{\prime \prime}\) wingspans. They power with gas engines .020 to . 074.

\section*{at your dealer ... be specific, say SCIENTIFIC}

If no dealer is available, add 25 c (portage \& packing) to cost of model SCIENTIFIC MODEL AIRPLANE COMPANY 113 M8 MONROE ST. - NEWARK 5, N.J.



AIRCOUPE SPAN: \(18^{\prime \prime}\) For .020 to 074 Eng. A real "beaut" of a model. It's authentic scale for U-Control flying. Prefabbed. Carved fuselage.


Messerschmitt \(\quad \$ 1.95\) SPANS 18" E0\% 028 to .074 Eng U. Coatrol seate flyer of the ME. 109 ces. Mreser Fighter". Pre Gab model with carced aselose, ete.


Gee Bee Sportster \(\$ 1.95\) SPAN: \(18^{\prime \prime}\) For .020 to .074 Eng. Brant new U-Control scale model. An excellent performer. Kit is ali prefabricated. Carved fuselage.

Half Pint Racer \(\$ 3.95\)
 rew, improved model spets over 10 aph. Pired whed Give. Pte Tabbed Fanied bolyr tobber whele.


Stuka Dive Bomber \(\$ 2.50\) SPARE38\% For \(02010: 074\) Eng. Sunetring newl This y-Controltarifer oroes boath is yoif fly. Prefabses with saryen fuselage.

Torpedo Speedboot \(\$ 2.95\) For Gas Powered ourboaro eng. length \(20^{\circ} \times 8 \mathrm{cam} 80^{\circ}\) Gefurite jatogany renees mill. 4 real speedster, an pretatricited.


Super Stant Master \(\mathbf{\$ 2 . 9 5}\) SPAN: \(320 \%\) 50r 049 to:099 Eng. 1t's sig? cerrificalty colarful, too. Deioue U-Comtrol stuit model Catived fuselage, etc.


ELZ TRAINER \& \(\$ 1.29\) SPAN \(18^{\circ}\) for . 039 10. 074 Eno. 8ia value tollowe arofile thainer. with ajet finter stibio for U controt. Preat w/hutbie canopy.


\section*{FREE CATALOG}

\section*{It's brand newl Just off the} press. See your dealer or send a postal card for your free copy. Features all our exciting gas powered models . . . airplanes, boats and race cars. A must for every modeler.


\section*{"ELDORADO" \(\$ 1.69\)} \(141 / 2^{\prime \prime}\) Long. For Elec. Outbd. Mits. Fast, sleek speedboat - really modern \(w / w r\) pap-around windshield \({ }_{8}\) swept wing fins. Prefab.
 SPAN: \(18^{\prime \prime}\) For .020 to .074 Eng. One of our hottest looking and gerforming \(U\)-Control planes. styled


ZIG-ZAG \(\$ 1.69\) Fastic For .020 to .074 Eng . U-Control model with real ret the and go! Prefab. Carved fuselage.


LITTLE MUSTANG \(\$ 1.95\) SPAN: \(18^{\prime \prime}\) For . 020 to .074 Eng. Famous escort fighter model. Combalsa fuselage, formed balsa wing.


Buckeye Jr. Cabin \(\$ 3.95\) For M//20 Enc. Flechic Moors Her's's our rlect eflinctulset: Has oremavahre balsa spbio, 144 Carced Dalsa hull - \(100 \%\) semplete.


Piper Cub Cruiser \(\$ 1.95\)
 all Mefabmet carves traisa fuse. lase madel, in's acajod atter the famelas "Cu4" private plane.
8

\title{
more AIR POWER with KTORNADO
} NYLON PROPELLERS

Yes, undisputed King of model air power these days is NYLONI No finer material for max. thrust delivery from engine-plus-propeller! Beats wood in FLEXIBILITY and durable resilience. HOLDS SHAPE and thrust at top RPM's. Practically UNBREAKABLE survives even ground loops and belly landings! TEMPERATURE-PROOF - doesn't "brittle" at sub zero - nor soften in tropic heat. FUEL PROOF no corrosion from today's standard or special fuels. SMART COIORS, TOOI A one-trip dip in any boiling type Nylon dye provides brilliant, beautiful color finish . . . and it's permanent!
Because NYION protects and maintains the superb thrust power of GRISH-Engineered propeller contours at all speeds . . . it's the BEST for longer, carefree flying! Ask for Grish TORNADO Propellers in most sizes of 3 blades, 2 blades, both tractor and pusher.

\section*{2 Blade Tracior}
\(\begin{array}{llll}5-3 & 5.4 & 51 / 2-3\end{array}\)
\(\begin{array}{lllll}5 & 1 / 2 & -4 & 6-3 & 6-4\end{array}\)
7.47 .6
\(\begin{array}{lll}8.4 & 8.6 & 8.8\end{array}\)
\(\begin{array}{llll}9.4 & 9.6 & 9.7 & 9.8\end{array}\)
\(\begin{array}{lll}10.4 & 10.6 & 85\end{array}\)
\(\begin{array}{lll}11.4 & 11.6\end{array}\)
RC 12.4
\(\begin{array}{ll}12.5 & 12.6 \quad \$ 1.30\end{array}\)
2 Blade Pusher
\(51 / 2-3 \quad 51 / 2.4\)
\(6.3 \quad 6.4\)
8.6
\(9.6 \quad 10.6\)
3 Blade Tractor
5-3 \(5.4 \quad 6.3 \quad 6.450\)
3 Blade Pusher
6-3

\section*{MAXIMUM THRUST from}

\section*{ENGINE TORQUE}

Due to popular demand, Ace has mode individual parts for this unit available.

Buy them saparately or in a combo-parts package.

PC Base reworked to hold the CR60 transformer. undrillad.
\(\$ 1.75\)
5 mfl IEI eloctrolytic .75
20 uh RFC
CR6O 1.63

CK722
6007
.99

Wound coil 271/4 me. 1.95 PB \# 1 85 .10
Complete combo parís package
19.95

Write for Cotalog No. 59AD

\section*{ACE RADIO CONTROL}

BOX 301
HIGGINSVILLE, MO
job for that hot new Torp .09? Don't! Building anything other than the maximum allowed \((2.5 \mathrm{cc})\) would put you at a severe disadvantage, since FAl rules call out a minimum surface loading based on square measure; and as you can now see, the smaller model is doomed under such a rule, since its true loading (volumetric) would be much higher than that of the maximum-sized model.

Perhaps next time we vote on FAI rules, we should all push towards the elimina. tion of the surface loading rule, or at least try to get them to measure it on a cubic basis. We feel that the best way of doing this would be to work with the \(3 / 2\) powe'r of the area, as mentioned above.

Should the FAI rulemakers be unsympathetic towards eliminating the minimum surface loading requirement completely, we would specifically recommend a minimum loading of \(3 \mathrm{gm} / \mathrm{sq} . \mathrm{dm} 5\).

In practice, the minimum weight could be figured this way: For a model of 40 sq. dm surface, (019 sq. in.) the area 3
value would be 253 . Multiplying this by 3 gm gives a minimum weight of 759 gm , or 26.7 ozs. (To simplify this calculation, a curve could be prepared for the use of contest directors to read weight against area directly.) Similarly the minimum weight for a model of \(19 \mathrm{sq} . \mathrm{dm}\) surface ( 295 sq . in.) would be 249 gm ( 8.8 ounces.). Under the current rule, the total area corresponding to this weight is 193 sq. in., obviously too small for an .049 powered job to compete against the 15 s.

Because of the curve ball FAI rulemakers have inadvertently thrown, one seldom, if ever, sees other than a .15powered model in FAI competition. Adopt-
ing either a no-wing-loading rule, or basing loading on the \(3 / 2\) power of the area, as above, will see the bringing of .049's and .09's to the FAI fold. This should act as a great stimulus to American interest in FAI Power.
Back in 1953 and 1954, we were satisfied with the Ramrod design and were building literally dozens of models just to find the best size for each engine we wanted to use. For each particular engine size, the process was one of trial and error from beginning to end. Many models were drawn up, built, tested, then discarded, only to repeat the process on one of a different size for the same engine. Most of this could have heen eliminated if we had known then what we know now. By use of the process illustrated below, it is possible to find size by trial and error for just one engine, say an .049 for convenience, and then predict with an uncanny degree of accuracy what the size should be for any other engine and weight.

To set up a procedure for doing this and check its validity, we used the Ramrod \(250(5 \mathrm{~A})\) as a hase to project theoretical areas for all other sizes, using only the desired weights (actually, the average weights for models already built) as a starting point. Our assumption is that the weights will be directly proportional to the cube of the span (a measure of volume, as is weight). The span was figured in feet rather than in inches to avoid large numbers.

As you can see from the table, the theosretical areas are, in each casc, surprisingly close to the actual areas we had found from the trial and error method. (Fig. 3.)

These theoretical areas were found in this way: First, the weights for all were set into the table, followed by the span
and cube of span for the "250." Assuming we want to find out, on this basis, the areal to make an 09 job which we want to weigh 13 ounces, or twice the weight of the 0449 job, we multiply the spian cubed value for the .049 by the weight ration of two ( \(38.6 \times 2\) equals 77.2). Finding the cube root of this value (77.2), gives us a span of 4.26 feet. Dividing the spall of the 049 job into the new span for our . 09 model gives us a factor, 1.260 (4.26/3.38 is 1.260 ), by which we cim multiply all dimensions on the 048 plans to scale up to .09 size. Our 09 job area will be the square of this linear factor times the \(1 / 2 \mathrm{~A}\) area \((1.260 \times 1.260 \times 250)\) is 397).

In like manner, the proper size for any other model of a desired weight can be found by relating it to the KA us in the above example.

It should be pointed out that this entire analysis presupposes several things:
1. We wish to scale one design to a different size, not mix different designs.
2. The same sinking speed is desired.
3. Structures are scaled approximately.
4. The same builder is involved. (Some modelers using the same plans as others build a 35 job as much as 9 ounces heavier than their friends.)

To further aid those of you who would like to use the principle stated above to scale your KA original, or other model, to a larger one, we have prepared a graph. Using the graph will give you the same cubic wing loading on both models, and hence an equivalent glide. Also, should you wish to scale a design down, the graph will aid vou in selecting the proper factor to use. (Fig. 4.)
As an example to illustrate the graph's use, let's assume you wish to scale your new 800 square inch 09 joh up to onc for a 20 . Due to the fact that the 600 came out at 20 ounces, and is somewhat slow at getting upstairs, you'd like the larger version to just hit the required 35 ounces. In going to the graph, first determine the weight ratio: \(35 \mathrm{ozs} . / 20\) ozs. is 1.75. Find 1.75 on the horizontal "Weight Ratio" scale and read up to where your imaginary line intersects the two curves. Reading over to the vertical scale will then show that the linear ratio should be 1.20 (the number by which you must multioly all 600 dimensions in order to produce the larger model) and the area ratio, 1.45. Your 20 job will then have an area of \(1.45 \times 600\), or 870 square inches.
If your particular ruler should happen to be calibrated in centimeters, and your scale in grams, don't fret-the graph will still work, since only ratios are involved on it!
As an example to illustrate how the graph might be used to "dchydrate" a large model, let's assume you have an 800 square inch, 15 powered "floater" which you were able to build to 26 ounces. You now wish to make YA version and will tolerate an all-up weight of 8.5 ounces. Your weight ratio is \(28 / 8.5\), or 3.06. In going to the graph, you will pick off 1.45 and 2.10 as the linear and area ratios respectively. Instead of multiplying by the area ratio, however, we must this time divide, to arrive at your new area of 381 square inches. In scaling down, multiply dimensions by the reciprocal (the number divided into 1) of 1.45 , or . 69 .
Since the principle of cubic wing loading, which we were fortunate enough to stumble across is basic in nature, there are undoubtedly many more applications than we have indicated in this article. We hope that knowledge of it may directly or indirectly help us all achieve greater satisfaction and success from our hobby.

EVERYTHING YOU NEED FOR SMOOTH SAILING MODELS

BATTERY CHARGER


WITH SELECTOR SWITCH
Charges \(2 V\). AV 8 6V Wel Cell Batleries Heary duty translormer and reclifiees. Com pact. it has a ventilated mealal case tealures
- indicator lamp and a selector
switeh for correct chargeng \(\$ 795\) ate 110 yol A C ipox!


DUAL-MOTOR POWER UNIT FOR IOEAL'S WHEEER CRUISER biss inlo toazas popuar Whenler Courant Has rarsal Couminga Mo solderime. mine of cutting necersary To. mun
hakine mowtr pacms
FOR SMALL BOA1S 16
foll langer boais \(1120^{10} 12\) )


ACTUATO FOR R/C
Sell centained electue mosor flom drain) blus apecial intagral switching eive 2 chanael ogura
lion from Iom corl sinale channel fucelvors. for sludas' Elactrical Switching Ahtion Ioreard stop
rovitsa slog Mechanical Disectional Conitalruvitse slog Mechanical Disectional Conital -
Iall neutal igm meutral Oparatea on \(3 \mathbf{f}\) v. compleist wifh ingructions

ARISTO


COMPACT "A" ACTUATOR Lnerineeted to withstand the stimins dam atceis encountered in the radio contion of atictall, thes sarvo is alwo idesty suifed lor boats, cais ore Spall in wis \(1^{2}\). \(216,2 \%\), the Compact "A" is asuit insaliced, requires no shock mound. IM. It has a low battely datin of only 200 M A. alloms mate liatht lime with lass baltery chamest the hugh lorgue motor detivery pomer To more even the lagess coniter surface frough
 contack ate weli adyusting for thooble liee ope tion theve are no adjutiments to male'
The Compact "h" actuator is sasied in a cesar


DOUBIE PER-MAG MOTORS


for that "finishing touch" hobby spray gun



 -helseme elt For that "lini-hin!e sesth Itw
 Nickle plated - No moving parts Alwnys in adjusiment Faster, Easier, with Smoother finish


the key to more fun in every model sport!

L. M. COX manufacturing Co., inc. box 476, santa.ana, california

World's Largest Manufacturers of Ready-to-Fly Planes, Engines, Fuel, and Accessories

\section*{New! FOUR NEW EDITIONS FOR YOUR AIR AGE TECHNICAL LIBRARY}

Complefaly naw, another sef of four man-wals-covers the " greaf" fighters of World War 2. Ba up to dafa on the very popular warplane designs of the second world war. Plans, picturas. and data a collector's ltam.



AlR AGE INC. 551 Fifh Ave., New York 17, N. Y. Herewith \$....................... for the following booklets in your TECH MANUAL Series at \(50 \$\) each, or anclosed \(\$ 2.00\) for all four \(\square\)
\begin{tabular}{|c|c|}
\hline coplâ P-51 & coples P-47 \\
\hline Mustang & Thunderbolt \\
\hline coples P. 38 & copias F-4U \\
\hline Llghtaing & Corsals \\
\hline
\end{tabular}

Name

Addram

Cify \(\qquad\)

\section*{A Place to Fly \\ (Continued from page 13)}

\section*{good letter from the President of the} Fresno, (Calif.) Control Liners stated, as did 10 other letters, that the Director of Pecreation for the city was interested and helpful. He says "It seems that we no sooner obtain a site than for some reason we were asked to leave complaints . . . noise . . . the usual reasons. The City Director of Recreation was at first reticent. I suggested a possible site, a newly grassed park on the outskirts quite suitable. He agreed to let us use the area, subject to city council approval, if we secured written approval of all people living on the strets bordering the park.
The petition we circulated contained conditions which we imposed upon ourselves with an eye to the future. The conditions were as follows:
(1) All fiers would be covered by insurance provided by the Western Associated Modellers group with which our club is affiliated. The insurance covers bodily injury and property damage through Lloyd's of London.
(2) We would fly only at given times on Saturdays and Sundays.
(3) All flying would be under adult supervision.
(4) No jet models would be flown. (Jet noise is a justifiable cause for complaint.)
(5) Flying circles would be completely "roped off."
The letter stated that these conditions were more severe than they would like, but, note the eye to the future. This agreement gives the club good facilitles and the possibility of later softening of the agreement if their experiences are good.

It is interesting to note that all except three neighbors signed the petition. When they found out that everyone else had cooperated, the last three signed. It is stated, "So far our experience with the field has been good, no complaints . . . we feel that the fact that the residents nearby were consulted . . . is of great influence." Notice here again a definite plan, specific rules, good leadership, and hard work brought success.
3. From Weitfield (Mass.) Aeronauts comes the news that after the usual sad experience of members cutting grass and making a good flying field, complaints terminated its use. However, its Advisor "went to see the former Mayor, who owns acres of land." They put up their case and outlined a plan requesting use of a lot about \(1 \%\) miles from town, in a semi-industrial area. This they were granted rent free. The former Mayor "is very much interested, and hopes to see us build a club house this suminer. At present we are operating 150 ' circles. We have our own electricity and our own PA system." Because some of the boys do not like to fly over blacktop, they plan only two such circles, others will be clay or grass. They plan a two-way strip for radio-control flying.
The Advisor makes the following points: (a) "The club does its own maintenance We have agreed to set up a work night every Thursday . . . so everything is ready for the week-end. Our flying hours are 8 a.m. to 8 p.m. Weekdays. Sundays from noon to 8 p.m. For sanctioned meets we ask the Playground Department to mow our grass. The Auxiliary Police take care of contest traffic, the Air Scouts handle parking of cars, and the Kiwanis Club, which is our sponsor, runs a refreshment stand and gives us a percentage." (b) Noise is not a problem if you get the right location and if you control the flying time." (c) It is important to let the public

SEVENTECH MANUALS
WITH PLANS, PHOTOS,
DATA, FAMED PLANES.


TECH MANUALS SO\& each

\section*{B-25 MITCHELL}

Best madium bomber WW 2, the ship used by Doolittle on Toyko raid from corrier.

\section*{B-24 IIBERATOR}

Companion in arms to the B-17, the Liberator "heary bomber" noted for range.

\section*{B-17 FLYING FORTRESS}

The mast famous of all the World War 2 warplanes, B-17 "heavy" was lough ship.

\section*{CURTISS P-40}
from beginning to end, P-40's prominent in all theatres excepting the Eurapean.

\section*{F-86 SABRE}

What the Mustong was to WW 2, the Sabre was to Korean war. Classy jel fighter.

\section*{F-94 STARFIRE}

All-weather jet with tremendous rockel firepower, seeks out intruder by radar.

\section*{B-47 STRATOJET}

More of these six-jet bombers in Strategic Air Command than any other machine.

\section*{AIR AGE INC.}

551 Fifth Ave., Now York 17, N. Y
Herewith S......................... for the following booklets in your TECH MANUALS of \(50 ¢\) eoch.
\begin{tabular}{ll} 
copies \(\mathbf{8 2 5}\) & copies F86 \\
coples 824 & copies F94 \\
copies 817 & coples B47 \\
copies P40 &
\end{tabular}
\(\square\) Enclosed \(\$ 3.50\) for all seven copies.
Name
Address

Cify ............................................. State


\section*{FIRST IN QUALITY • FIRST IN VALUE • FIRST IN DESIGN}

NEW! 1959 CATALOG-SEND 10 c
FOR POSTAGE AND HANDLING

ENTERPRISE MODELS, INC.
MINEOLA, NEW YORK
know what you are doing. "You gain a good reputation by doing something constructive for the young people of the community, and with this good reputation people will overlook the noise." (d) "Our Club is operated strictly according to AMA reg. ulations." This helps also in gaining a good reputation.
4. Anyone who has driven south from Syracuse, N.Y., can picture the ideal location obtained by the Syracuse Sky Knights in Manlius, N.Y. They used a new method to obtain the use of a beautiful field, which merits a try in other parts of the country. The Elmira Flying Sparks tried the idea with equal success. The key to this situation is the Soil Bank Program of the Department of Agriculture.

This plan can provide an excellent site for control line and radio control flying, possibly even for free flight. It cannot, however, provide for any blacktop circles Hundreds of communities may find this an adequate solution to their flying site problem.
Look for the Agricultural and Stabilization and Conservation County Office. This will be in your County Building. If you cannot locate it, ask any County Agricultural Agent or the teacher of vocational agriculture in your high school. The Agricultural Stabilization and Conservation County Office knows the location of all land in the "Soil Bank" program. Some land is bound to be clear and level, just right for flying.
One of the "spark plugs" of the Sky Knights says "I believe our deal went smoothly because we first talked with the owner of the property and were lucky to find one who was interested in model flying. He sent us to the conservation officials, and then sat down with his own lawyer and went over all the legal aspects
of the deal. We took out a public liability policy to protect the club and also the owner of the field. We are also working on incorporating the club to protect the individual members."
This leader said that the Soil Bank officials were very cooperative, so this idea should work just as well for you. Look in your phone directory under some such title as Soil Conservation, and make your first contact through them. Keep in mind that the land cannot be "improved," only mowed. Still, who would turn down a real nice place to fly. The photo of their site would make any model flier drool. A huge flat field with no trees!
5. One of the most glamorous sites is the Charles A. Donnelly, Jr. Modelport, in New Orleans, La. The President of the New Orleans Aero Club who is also a model plane Contest Director says, "After being pushed around as most modelers are in various cities, I met a man willing to listen to my story." This prominent "oil" man was interested in helping modelers. He had his company architect draw ideal plans. The "Modelport" is located across from an amusement park, and the flying site measures 320 ft . bv 380 ft . The field is enclosed with chain link fence, and has auto parking space outside the fence. There are four flying circles. One for 70 ft . lines and three for 60 ft . lines. Each has a 6 ft . concrete slab for pylon flying.'
Read on and drool some more. He says "Located in the corner of the field is the control tower. The upper floor all glass enclosed, provides an area where all clerical (contest) work, tabulating and recording is carried on. The Contest Director has an electronic timing and lap counting device in the tower, and all trials are directed by inter-comm. to stations in the circles.

onty
50 C REFUNDABLE ON FIRST
\begin{tabular}{|c|c|c|c|c|}
\hline LEE'S FINE & \multicolumn{4}{|l|}{PRODUCTS} \\
\hline & 40. & Pint & a & Gal \\
\hline - Lees giow fuet & & 79 & 1.40 & 9 \\
\hline - lef's ciear dope & 10 & 1.20 & 2.19 & 8. 50 \\
\hline - LEE'S COIORED DOPE & 15 & 1.50 & 289 & 10.95 \\
\hline - Lee's cement & 50 & \(1.70^{\circ}\) & 3.19 & 10.98 \\
\hline - Lee's grain filler & 40 & 1.20 & 2.19 & 8.5 \\
\hline - Lef's balsa putiy & 78 & 2.98 & & \\
\hline - IEE'S KWIK KIEEN & & 59 & & \\
\hline - lee's thinner & 35 & 90 & 1.65 & 5.25 \\
\hline
\end{tabular}

All products are available of a Lee's approved dealer agency or directly from us. Send us your dealer's name and location with your order so that we might confact him.

\footnotetext{
2072 FRONT STREET, EAST MEADOW, L. I. N
}

\title{
"AIR ACES OF THE 1914-1918 WAR"
}

\author{
Edited by Bruce Robertson Produced by D. A. Russell, M.I.Mech.E.
}

\section*{Contents:}

Biographies of 135 Aces, and the military background to their particular Air Service, of the eight main countries engaged in the 1914-1918 War: British, French, American, Belgian, Ifalian, Russian, German and Austro-Hungarian. Lists of each country's Aces by scores, with unit in which served or machine flown; many identification markings; lists of every airman to recaive the British Victoria Cross, the German Ordre pour le Merite or the Congressional Medal of Honor. Altogether, over 1,500 airmen are mentioned in this amazing book. Book contains 212 large pages \(111 / 4^{\prime \prime} \times 81 / 2^{\prime \prime}\). Bound in stiff boards, gilt blocked. Weighs nearly \(21 / 4 \mathrm{lbs}\). Over 100,000 words. Over 320 photographs, many of which have never before been published!

\section*{\$8.50 \\ THE PUBLISHERS FIXED PRICE}


This price includes airmail acknowledgment of your order, espccially strong cardboard carton for safe transit. postage and insurance of your copy. Pay by personal check if more ennvenient than buying an International Money Order. Post direct to Publishers, address below. Your copy despatched same day your order received. Average transit time to United States and Canada only 12 to 16 days.

\section*{HARLEYFORD PUBLICATIONS, LTD. LETCHWORTH, HERTS, ENGLAND.}
"A splendid PA system keeps contestants and spectators constantly informed. Surrounding this upper room is a balcony from which supervision can be exercised."
Work tables with formica tops are part of the furnishings of the 2nd and 1st floors, while a shop, work bench, and lockers are also on the list floor. Two rest rooms., and a drinking fount.in are appreciated, and a flag pole with wind sock and flags trim up this excellent control tower. Outside four flood lights make night flying possibie. Pretty keen Modelportl New Orleans is really fortunate, but you can be too.

Possibly your eventual site may not have all the features of the New Oneans Modelport, yet with proper planning you can lonk forward to less complaints and more permanence. The 30 cities studied showed
increasing permanence. A great many new Modelports are now in process. Cities like Dayton, Ohio; Ft. Wayne, Ind.; Detroit, Mich.; and smaller cities like Union, New Jersey, have operated Modelports successfully for periods varying from 10 to 15 years. Evidently these cities have found a satisfactory solution and noise is not a serious problem.

Many other cities and towns have interesting and very adequate flying sites. Such places are St. Paul Minn.; Boulder, Col.; Los Altos, Burbank, Oakland, Alameda, Livermore, Hayward, Sunnyvale, Santa Ana, San Mateo, Calif.; Plainville, Conn.; Denver, Col.; Wichita, Kan.; Houston. Tex., and many others. Then there is the huge Los Angeles Model Airport in the Sepulveda Basin area as fully described in the March 1959 issue of this magazine.

From the Vancouver (Canada) Gas Model Club bulletin it is evident that the same problems exist to the north. Their approach is unique, broader than usual, but good. The British Columbia Society of Model Engineers decided to build a center for all hobbies. They approached the municipality for a grant of land. The Park Commissioners felt that this would be a worthwhile project. They gave nine acres of land worth \(\$ 70,000\). On this nine acres will be built three U-Control circles, a pond 100 feet by 200 feet, a railroad track around the pond, a three-story hobby center building, complete with hobby museum, machine shop, woodwork shop, ham radio room, and a complete custom carbuilding shop.

At the present moment, a forest appears
(Continued on page 52)


\section*{Sterling SPECIFIES AMBROID!!}

Most of the people in the model plane industry are enthusiasts from way back, as well as being long-time Ambroid cement users. Like genial Ed Manulkin of Sterling models (seen below with his 'Corsair' and 'Space Master Jr.' kit models), who built his first model plane with Ambroid back in '29! Says Ed "Ambroid is the finest and strongest cement ever manufactured - its superiority making itself felt not only in the model plane field, but also in model boat building. We at Sterling recommend Ambroid to all model builders - and that also goes for Ambroid Plastic Cement, which is perfect for our plastic Chris-Craft 'Cobra' and 'Express Cruiser' electric-power boats." Look for the familiar Ambroid blue and orange tubes (Regular, Extra-Fast \& NEW Plastic Cement) at YOUR local model shop.

EExTra-FASTM ambroid


"REGULAR" AMBROIO
- FOR MAXIMUM

STRENCTH CONSIRUCTION


\section*{In Every Field Therés A Leader - In Cement It's}

\section*{H}

HERE IT IS! THE LITILE ADV WITH TNE Hogest VALUES IN IC

AT LAET: Full boume aparatlon is now dosalbia on el ingle geliable will rine the NEW THT/-1H zeoolrar. Tha nuper proportional rudder TBT uscd asmene operated elevitor and moter eontrots. ALL with jour preene CW XITM ving a simple tulae widith two nulier. Slmple. Inexpendre \& fulls
raliable multl rontrol it a price mithin reach of alt. 37.95 ADAPTOH UNITE 10 E price within rempeli of Eligco THT reoalrept to the FI'LL HOUSE BY STKM .

FOA ULTIMATE PERFOAMAMCE AND DEPEMDA.
 the BC induatry .: STD THT With
 ANOTHER NEW DEVELOPMENT in rwofvers, elked

 it on det. A bait draln under 60 ma . Complete redy to
YOU ABKED FOA THI8: Thie ggicc 'se model oll purpone battary charatr. A heary duiy undervirlars compllanem unit chat will peoperly rachargat at mit's rallige all
 Dly seate "will recharge all typea" but aro not desimedt to machere the pogular 8B54A sumplus, otc. Della as the 2
 eharmor in prorlded with a ef tepminal connecior board und 3 control. that allom fine remulation of regular and triekle Charge of the tronular new NICADs, ete. ...........sand



to be occupying this area, but not for long. In May the bulldozers would level the field and the tress will have to be cut down. In July the Engineers' Langley track goes in. In August the grass wili be seeded for the flying field. The last sentence is the key to their ambitious program, it says, "See you out there every Saturday moming 8 a.m. to 1 p.m. Bring an axe!

Here are some points that from the analysis of 30 reports seern to be important in preparing your plan:
I. Leadership, should be adult, strong yet cooperative.
2. Planning, develop a plan in writing that will have appeal to groups, then get the help of local businessmen or organizations.
3. Self discipline, be ready to curtail flight hours, or even install motor muffers in order to show cooperation
4. Support, attend city meetings and get to know people and city problems. Cultvate the friendship of your Superintendent of Recreation, State Director of Aeronautics, County Soil Bank Officer, newspaper staff, airport manager, Kiwanis, Rotary, Exchange Clubs, etc.
5. Public, relations, guard your club reputation, don't let one or two "non-cooperative" members get you in trouble. Take time to write newspaper accounts of the science achievements of members. Newsmen will take the photos. Keep your skills on display. Make friends with neighbors if you can.
6. Reliabllity, keep your word, build your club reputation.
7. Work, roll up your sleeves, you may have to clear land, grade, seed and maintain for a while until you can prove that you have a worthwhile activity.

8. Cost. What will it cost a Recreation Department? Some say about \(\$ 1,000\) replacement cost and \(\$ 100\) per year for maintenance.

Several letters from Directors of Recreation say that until the noise problem is improved, there is no chance of getting a favorable flying site. There are at least three motor mufflers on the market. Have you thought that eventhough it is not desirable, still if everyone who flew at your site used them, competition would be fair?

What is your particular problem? What ideas can you use from the experience of others cited above? Refect, then planl

\section*{Varicomp Switcher}

\section*{(Continued from page 29)}
sturdy action is obtained for the elevator on the third and fourth pulses. ("Ouick blip" for motor is the fifth "channel.") The elevator horn decides the positions of the elevators. If placed on top of elevators, the third position is down and fourth is up. If horn is reversed, the action is reversed. Due to the fast or slow rate at which the Varicomps accept the pulses, the servo action from switcher is reliable and stable. Since \(41 / 2\) volts on each side of servo hook up give better power, working the servos to three volts or lower still will give plenty of service.

The action of the switcher will give such rapid action that, if the fourth position is necessary, you can pass through the third pulse almost without noticing it. There is no breakdown on the switcher if built correctly. The unit has been bench tested for six months and 10,000 operations and still is working.

The bottom Varicomp to which the switcher is attached should use \(1 / 4^{\prime \prime}\) rubber. with at least 75 to 100 turns on it at all times. No spark suppression is necessary, so this is of some value to the receiver. Hook-up should be followed as per manufacture's schematics of each unit (Varicomps and servo). Use any servo that will Hold, Release, Hold (Citizen-Ship or Bonner). The mechanical relays are contacts are obtained from any pinball machine (get from service man or company). The author can advise prices and sources of material.

Photo shows parts
Base, insulated board; contacts (2); old needle valve 5 "a" long (cut from threaded end); 2 mounting bolts \(4-40\) ( \(1^{\prime \prime}\) long with binding nuts); 1 center torque board (obtained with Varicomps); 1 pc. steel wire (Continued on page 54)

\section*{Anחouncing the \\ Custom}

THE FIRST Really NEW R/C Model
Advancement in ouen 5 years!


 hena




\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
Comber rat \\
Cepinle Mreiges asd Dy (ay iestractians: foreried mosion, pride halsi nad fuest hand matyle perta! \\
Premerty mashised and alamply die mot pertal \\
Enedr Zerniod diral mar and nexpeary
\end{tabular} & \begin{tabular}{l}
 \\
 \\
 Myind veratitibtit to 2 los \\
Madil =righ mem R/C equlpmant: itim \\
 \\
 nape
\end{tabular} \\
\hline
\end{tabular}

A tnuly Spectaculan Multi-Channel R/C Model! 2 to 8 ChanNel RADIOS

\section*{FOR USE WITH 25 to 35 ENCINES AND}


\title{
Surprise! Fun! Authenticity!
}

\section*{With these NEW Monogram Models}

Here are two fine new kits in a long line of famous Monogram models. Both are authentic and true-to-scale and packed with plenty of fun and many surprise features. See them at your favorite store today.


\section*{It's a JET!} Only 98\&

\section*{Army's New Jet-Turbine Iroquois Helicopter}

New all-plastic modal of Jet Malicopter MU-1 Iroquais recently adopted by U.S. Atmy for utility use in combat zones. This is the first jet-turbine oowered helicapter and the first model of this unusual aircraft. Main and fall rotors both revolva. Cabin doors can be sat in opan
or closed position. Complately detailed cabin interior and instrument penel. Modal follows hospital transport dasign and is accompanied by five figuras-pilot-two strutcher bearars-two men on stretchers. Authentic decals.


Estab. April 12, 1959
by Dick Everett,
Chino, Calif.
The piane
"El Manstro"
was powered by a
TORPEDO , 19R.C. using Supersanic "100" * Boing hiomologated by the R.A.I.

TORPEDO 19
F.A.t. Endurance Record: Time -5 hrs. 29 mins. \(1 / 5 \mathrm{sec}\). Established April 15 , 1958 by Kenneth Willard, Van Nuys, Cailf. The plane "Avalon Breathless" was pow. ered by a

TORPEDO 19
using Supersanic " \(100^{\prime \prime}\)


YOU'RE ALWAYS IN GOOD HANDS


When You Buy At
The Store Displaying
This Dealer Emblem
(Dealcr inquiries invited)
Write To
CRAFT, MODEL \& HOBBY INDUSTRY 30 Easl 29 th S .

Now York 16. NY

\(1 / 16^{\prime \prime} \times 1^{\prime \prime}\) (with washer to fit); 2 cam followers (1 for rudder) (l for switcher Varicomp); 1 \(3 / 32^{\prime \prime} \times\) 1 \(22^{\prime \prime}\) eyelet; \(242_{2}{ }^{\prime \prime}\) spacers.
Assemble switcher before mounting to bottom Varicomp with aid of \(21 / 2^{\prime \prime}\) spacers. Contacts should be mounted in oversize holes so adiustments can be made. Once set, the relays can be forgotten as they hold indefinitely. The cam follower should be loose enough so that it can rotate in needle valve. Do not solder to wire while in place on nylon gear. The Varicomps should use 41/2" volts for a good reliable action; \(1 / 4^{\prime \prime}\) rubber on both Varicomps. Use color code book hook-up as servo specifies. If instructions are followed, you will have many good hours of tlying fun. You don't need a 5 -channel job to do most of the maneuvers the Multi twy: do!

\section*{Foreign Notes}
(Continued from page 2)
young hobbyist with small glow engines. in this way, would have a serious effect on the strong position that the diesel has held for so long.

\section*{GERMANY}

Surprise item from Went Germany is that the big Metz radio firm-widely known outside Germany for their Mecablitz electronic photoflash units-are in the model radio control business. They have just announced their first outfit, to be known as the Metz Mecatron.

This is an audio-tone outfit for 27.12 mc , and gives a choice of single-channel control, or three channels by means of adapter units on receiver and transmitter. The transmitter uses a single tube and two transistors and features a transistorized D.C. converter to utilize the cheap power supply of four 1.5 -volt batteries. Alternatively, it can be connected to a 6 -volt car buttery supply, or, with the aid of a special connector cable, to a 12 -volt car battery. It is housed in a flat plastic case approximately \(8 \times 6 \times 2\)-in., with carrying ttrap. The Mecatron receiver is fully transistorized and is temperature checked up to 140 deg.F. It operates on 6 volts and is enclosed in a case measuring \(3.6 \times 1.6 \times\) 1.4 -in. A neat battery box with switch and plug connection to receiver is available.

This new Mecatron equipment only started reaching the hobhy trade in late May, but already Metz is warking on new equipment, incliding a proportional outfit.

\section*{INDIA}

The tenth annual All-India Model Aircraft Rally was, this year, held on the newly-built Indian Air Force runway ut Barrackpore. The meet was officially opened by the Indian Minister of Civil Avintion in the presence of a distinguished gathering of officers of the government and ammed forces of India and before about 4000 members of the public.

Official support for model building is now being considered in India. The Directorate of Civil Aviation is investigating the possibility of establishing a modeling center at the proposed new civil airport at Behala, which would include flying sites, workshop facilities and a design and research section. In this way, plus concessions for the inereased import of modeling goods, it is hoped to greatly expand model interest in India.

\section*{AUSTRALIA}

Carrier deck events are getting popular in Victoria. In addition to using the uscepted scale navy currier type models, enthusiasts have restored to converted team-
racers and stunt iobs to try this fascinating branch of the hobby, which is so little known outside the U.S. Practically all the engines used at present are of the O.S. Multi-speed series with coupled exhaust/intake throttles operated through a third line, the J. Roberts Flight Control handle and bellerank being most widely favored.

Model building in Australia follows U.S., rather than British trends and the main center of activity is concentrated on the eastern sea board state of Queensland, New South Wales and Victoria. Over on the western side, Noel Mitchell, secretary of the West Australia Model Aeronautical Association, Perth, tells us that, with 1500 miles separating them from the next capital city, Adelaide, exchange of modeling ideas between east and west travels slowly and that, as a result, West Australians tend to take a lead from trends as reported in M.A.N. Mitchell asks us to mention that if any U.S. modeler would care to write to him, he would welcome such correspondence. His main interests are team-racing, stunt, combat and RC and his address: 379 Mill Point Road, S. Perth, W. Australia. SOUTH AFRICA

Our Capetown correspondent, noted South African modeler, Pete Visser, reports that the recent S.A. Nationals, held this year at Johannesburg, were quite a success. For the energetic Visser they werc, anyway .. Driving 1000 miles up from the Cape, he placed in six events, obtaining three firsts (Open Rubber, FAl Gas ano Nordic A2) and, by a coincidence, three fourth places: fí Gas, Open Glider and A Gas.
Two other Cape Province modelers, Brian Partridge and Robbie Rowe also did well, Partridge winning KA Payload and Jetex, and Rowe taking the B Gas event. plus the F/F Championship Shicld. Grand National Champion (F/F and C/L to qualify) was Cannon of Blocmfontcin and the Champion Club was the well-known Westem Providence M.A.C.
U.S. design trends are evident in Class A and B free-flight gas with Torpedo powered Ramrods and Spacers still much in favor-especially for Class B. T/Hoppers are the accepted engines for KA. Diesels in English model designs are more widely used in FAI gas, and Visser's winning Dream Weaver used an Oliver Tiger, although diesels, in general, were at a disadvantage at the high altitude ( 6000 ft .) of Johannesburg.


\section*{Look for} the name that guarantees products championship performance in...
- MODELS
- ENGINES
- BOATS
- ACCESSORIES
.35C COMBAT ENGINE Built for cambat and rat racing. Crankshaft absorbs strains of wiolent mansivers. Righ speed porting gives top cpers and thrust. Special fitting for une with pressure tank - \(\$ 16.95\)


Made from specially compounded synthetic ubber (not neoprene) to resist glow fuels. Sardenime 3 sizes resists cracting.


Veco WHEELS
\% 2t 41/2"Dismeter
Lurget solection al rumed, lightwoight, dia cmat hub whenis. Inflatible veml. prowmatle, spence of hard rubber tires.


Hand spun aluminum for marimum sirength and lightness, pertectiy halanced. Requlat ot nesila nosed. \& to 21 合 diamote.

Hartear Tug- \(\$ 18.95\). Ocean Tug-
\(\mathrm{H}_{24} \mathrm{O}_{5}\)

\title{
WYLAM PLANS \\ EIGHT \(14 \times 20\) IN. PLATES TO EAGH SET!
}

For the first time in sets-YOU asked for them! Now available!
| SOPWITH CAMEL
flomed ww. 1 Inglun purvin WRIGHT MODEL A \(B r=\)
\(W=1\)
| SPAD 5 XIII Cul | Benowned ww I liench puriuai CURTISS MODEL A

W-2 SPAD S.VII Gigal rench ww I pustul WRIGHT FLIER mant, lify hyable plane

CURTISS P-1 HAWKS Giomarour Amy tiphters
fee: FllC. 2 GOSHAWK W-3 Navy cartier hagher
P. \(6 E\) HAWK
Greaten of ali he Howhy

For over 20 years, William Wylam nas been an acknowledged master of the defoiled drawings of historically fomou, arplanes MAN is happy to comply with the many requests lar Wylam plans by making ovailable this selection
\(\mathrm{sec}^{=}\) Bolle of atroan hero
W-4 MESSERSCHMITT Me MESSERSCHMIT Me
109j ww \(~\) Gorman Inghee CURTISS P.40D
Anencan WW. 2 Wartird

REPUBLIC P.47D
The wonderful Thunderbal SPITFIRE 2

\section*{EACH SET \\ \(\$ 1.00\) \\ ALL SIX \\ \$5.00}

\section*{Enclosed is}
for plan sets numbered in boxes below Please print your number DISIINCTIY in bon for each plan vou desire


NO STAMPS PIEASE

NAME
PLEASE PRINT

ADDRESS

\section*{24-HOUR SERVICE}

\section*{MODEL AIRPIANES CRAFTS TOYS MODEL RAILROADS}
 GIANT new Catalog with over 300 pages. Send for If on your latterhead, we sell to dealers only, \(100 \%\) wholesale, fast estries on all erders.

P. O. Aax 10353-8 2009 Farilngion Dellas, Texae

Dept. KC-
T120E. 13th S.

\author{
P. O. Box 506-8 310 E. Sixih 51. \\ Depl. M-8 \\ 577 Scoll 51 \\ Mamphls, Yenn
}

\title{
LARGE SIZE PLANS FOROD TR1-WOOOR SCALE: \(1 / 4^{\prime \prime}=1^{\prime}-0^{\prime \prime}\) WYLAM
} MASTERPLAN

Drawn by MODEL AIRPLANE NEWS William Wylam, these drawings consist of four 4 inch to the foot plans-each \(14 \times 20\). Two plates show side view and cabin details, two more the dimensional layout and front details. Complete set \$1, post-paid.

AIR AGE INC., 551 FIFTH AVE., NEW YORK 17, N. Y.

\section*{YOU'RE ALWAYS} IN GOOD HANDS


When You Buy At
The Store Displaying
This Dealer Emblem
(Dealer inquiries invited) Write To:
CRAFT, MODEL \& EOBBY INDUSTRY 30 East 29 th 5 .

\section*{Engine Review Cox Olympic}

\section*{(Contriued from page 24)}
mounting lugs (a recent departure and also scen on the new Space-Hopper .049) and the twin ball-bearing mounted crankshaft.

Constructionwise, the new Cox is typical of this manufacturer's products. No castings are used. Crankcases are turned on screw machines from extruded bar stock, afterwards passing, in turn through two other machines which do all the remaining operations-i.e. those non-concentric to the shaft. Pistons are machined from bar steel and ire hardened on the wearing surface only, in order to leave the socket for the conrod ball-joint sufficiently ductile for subsequent working. Connecting-rods, which are of steel, are assembled to the pistons by a special machine, built in the Cox company's tool shop. The operator merely places mods and pistons in two hoppers feeding the machine. which assembles them entirely automatically.

In the finishing of such items as cylinder hores, much emphasis is placed on temperature control, as an aid to accurate working. All grinding, cylinder boring, honing, etc., are therefore done in a tem-perature-controlled room, in which the temperature is maintained constantly within oone degree, after being pre-set at a comfortable working level.
TKe Olympic uses a ball-bcaring mounted crankshaft, because, all other things being equal, a ball-bearing engine must achieve higher mechanical efficiency than a plain bearing motor. Agreed some highly impressive performances have been put up by plain-bearing motors, but these have been in spite of, not because of, having plain bearings. Frictional losses in the Olympic are obviously very low indeed.

The chankshaft joumal itself is of smaller diameter ( \({ }^{\prime}-\mathrm{in}\).) than is usually employed in 15 's. This is practical because it does not have the stress-raising intake port of a shaft-valve, and, being supported in ball-bearings, does not need the added bearing area of a large diameter joumal. The shaft has a chamfered circular web and a machined-in crescent counterbalance. The connecting-rod is rather longer than average and piston side thrust is thereby held to a minimum. The piston is flat crowned and uncovers the large exhaust ports at 70 degrees BBDC, a normal timing. Bypass timing, on the other hand, is very advanced, the tops of the two internal bypass flutes being almost flush with the upper edges of the exhaust ports. The cylinder, as in other Cox motors is machined in one piece, with integral cooling fins, and screws into the crankcase. The combined glow head unit screws into the top of the cylinder and seats on a soft copper gasket.
Cox reed valves have been simplified, compared with the assemblies used on the Space-Bug and Thermal Hopper. On the Olympic, a single copper reed, retained by a wire snap ring is used. Reed valve housing, crankcase backplate and carburetor venturi are combined in a single machined unit. The familiar and highly effective Cox triple-jet carburetor is featured, wherehy fuel is supplied, finely atomised, via three small jets hored equidistantly around the venturi. Actual metering takes place before the fuel reaches the jets, by means of a separate needle-valve. The complete needle-valve unit is secured to the venturi by means of a nut with a large screened intake, and can be rotated through 360 degrees, for the most convenient location for individual installations.


\section*{LATEST \\ OFFICIAL AIRCRAFT \\ PHOTOS \\ NOW, first \\ TIME, GET \\ -xclusive. \\ allicial, sharp phatos of advanead Supersonic} Rockets, Jefs, Historical planes. All maken hundreds from which to choose
SPECIAL INTRODUCTORY OFFER with your name and address. Send only 50c solact one gasket.


\section*{BUILD A SKYHOPPER}

NOW ONE OR TWO-PLACE MODEL


\section*{PLANS \(\$ 50.00\)}

Monay Back Offerl C'lear. Himplifta and easy 10 read dramings. All robs and intings an drawn full size and may be uned

 PHONOS, DATA 32.00
AIRP。

SKYHOPPER AIRPLANES, INC. 3300 ENVILLE PLACE, (Dopt. M).


\section*{DUCTED FAN IMPELLER FOR LAND. SEA, OR AIR CRAFT}

\section*{65 C. EACH AT YOUR DEALER OR ORDER} DIRECT. POSTPAID: OUTSIOE U.8.A. : IOC.

More Thrust Than a 6-3 Prop!
Pusher Type, \(3^{\prime \prime}\) In Diameter For 049
Engines. Die Formed Aluminum Alloy.

\section*{- ASTRODYNE}

Surprise item with the Olympic is the provision of a starter spring. Incongmous on an "expert's" engine? You will doubtless think so-until you have tried it a few times. There may be a few diehards who will insist on finger flipping rather than resort to such a "sissy" item as a spring starter. And they won't have any trouble because the Olympic is an easy-starting motor. But reed-valve motors have a tendency to occeasionally start backwards, especially on small, light props. The starter definitely does a better joh of starting: we were convinced of this after trying it against normal hand flipping. No reverse starts and the thing works like a charm. first time, every time. Starting from cold needs a cylinder prime, plus a couple of turns of the prop with the intake choked to draw fuel to the carburetor. The engine will then start within two or three attempts, provided it has heen adequately primed Restarts with a hot engine are instantaneous. If there is fuel in the delivery line, no priming, no choking and no needle readjustments are necessary: just wind the prop back one turn against the spring, energize the plug, release the prop and she's away.

As on other Cox engines, no lengthy break-in is needed and it is normally quite safe to let the motor have its head after a preliminary riah mixture break-in of only one minute. However, as a courtesy, our test engine was given 30 minutes running before any perfornance crures were taken. Tests were carried out with the aid of our reaction-dynamometer, on which, incidentally, some 40 different types of .15 engines, both diesel and glow, have been evaluated to date.

The first thing that became apparent with the Olympic, was its high torque. This reached a maximum of 23 oz . inches at between 11.000 and \(12,000 \mathrm{rpm}\), which is equivalent to a brake mean effective pressure of \(60 \mathrm{lb} / \mathrm{sq}\). in., is better than any glow .15 previously tested and closely approaches the very high torgue of top diesel 15's like the Oliver Tiger. As rpm are increased, however, the nommal decline of the torque curve is less abrupt than with the diesels and, in consequence, the Olympic reaches a higher hhp peaking speed. Actual bhp figures, obtained with a fuel containing 30 percent nitromethane, were as follows:
\begin{tabular}{|c|c|c|}
\hline At 10,000 & rpm-. 218 & bh \\
\hline 11,000 & - -248 & \\
\hline 12,000 & -. 270 & \(\cdots\) \\
\hline 13,000 & " -. 288 & \(\cdots\) \\
\hline 14,000 & " -. 300 & " \\
\hline 15,000 & "-.310 & \(\cdots\) \\
\hline 18,000 & "-.318 & " \\
\hline 17,000 & "-. 318 & \\
\hline 18,000 & " -. 317 & \\
\hline
\end{tabular}

Running qualities throughout the tests were excellent, the motor running smoxothly and consistently, and the response to the needle-valve was just right. Suggested prop for achieving maximum frec-flighe perfurmance would be around \(8 \times 4\) or 85 \(\times 3 \%\).

\section*{Summary of Data}

Type: Reverse-flow scavenged twocycle with reed-valve intake.

Weight: 4k-oz including starter spring.
Displacement: 0.1495 cu . in. or 2.45 c.e.
Bore: 0.585 in . Stroke: 0.556 in .
Stroke/Bore Ratio: \(0.95: 1\)
Specific Output: \(2.13 \mathrm{bhp} / \mathrm{cu}\). in.
Power/Weight Ratios: 1.24 hhp/1 lh.
Price: \(\$ 12.98\) including starter and special wrench.

Manufacturer: L. M. Cox Manufacturing Company Inc., 730 Poinsettia Street, Santa Ana, Californira.
by P.G.F. Chinn

\section*{MODHL ARRPLANH NHWS}

\section*{Anniversary SPECIAL}


\section*{LIMITED SUMMER OFFER}

\section*{OFFER GOOD UNTIL OCTOBER 1959}

\section*{Celebrating Our Thirtieth Consecutive Year of Service to the Model Airplane Builder}

\section*{Twelve Months Two Full Years}

Yes, it's only about once in 30 years that we can make an offer like this! Why not celebrate with us too by taking advantage of this Big Saving ? Think of it-twelve jam-packed issues covering your favorite hobby for only \(\$ 3\). Act now as offer is limited!

MODEL AIRPLANE NEWS, 551 Fifth Ave., New York 17, N. Y.
I want to take advantage of the Anniversary Offer.
Enclosed is: \(\square \$ 3\) for one year
[C \(\$ 5\) for two years

Name
(Please print)
Address
City Zone State

\section*{X-ACTO KNIFE HELPS MAKE PLASTIC MODELS VALUABLE SHOW PIECES!}


X-ACTO, INC.
48-53 Van Dam Streaf
Long Island City I, N. Y.


ANNOUNCES THE ALL NEW'
duramite MOITI-SERVO \({ }^{5} 12{ }^{25}\)
weont in OL over 4 les numst

FEATURING OUR OWN MOTOR ESPECIALIY DESIGNED FOR SERVO USE-NOT AN IMPORT!

TEST MODELS OPERATED FOR. OVER ONE QUARTER MILLION COMMANDS! AVAILABLE AT YOUR DEALER NOWI



OHLSSON MANUFACTURING CO.
1547 W .16 h ST . IONG IEACH, CALII

\section*{Radio Control News}
(Continued from page 30)
the \(\mathrm{N}-46\), while rated at 450 mah will give this capacity only at a 10 hour rate, or a maximum drain of 45 m a. The quick discharge in no way affects future life.

\section*{CLUB NEWS}

The Lakeland RC Club, c/o Bill Deffner, 165 Bank Street, Waukesha, Wis. is loolding an AMA sanctioned two day contest on July 18th and 19th. This 6th Annual event at the Waukesha County Airport will cover rudder-only, intermediate, multi, pylon and scale, with plenty of trophies and other prizes. If you go early, a welcome party at the Avalon Hotel. Flying from 9 am until \(5: 30 \mathrm{pm}\) on the 18th and from 9 an until noon on the 10th for eliminations and from 12:30 pm until 5 pm on the 19th for the finals.

From the Bison Beep Bux, Flying Bisons, Buffalo, we learn that Stan Keysa is building an ME-109 fitted with a 15 or 19 engine. Rudder-only to start and then elevators and engine control. Bud Marsh has finished a Piper Commanche using an O.S. Max. 25 to power the \(56^{\prime \prime}\) model. Vince Rasp buile a Cessna L-19 and should have no trouble with scale jobs since he built the Boeing f4B-4 last year.

Louks like quite a scale outfit, in addition to the Smog Hogs, Astro. Hogs and Live Wire designs. Cliff' Barber points out that trouble can occur when using sub-miniature sockets if the tube leads are not straight (no kinks) and you are carcless in inserting the tube, ar transistor.

Interesting comments from the Central Jersey RC club tend to back up statements made in this column. Superhets won't be popular until the price is reduced and, at present, little if anything has been published to enable the RC fan to build his own. Super-regen circuits have been proven over many years and are now quite reliable. They can be built by the average builder and except for the interference problem are perfectly satisfactory. Superfiets will be coming onto the scene but in the meantime don't sit around and watch others Hy just because you have an "oldfashioned" super-regen. Ir: the Rolling Breadboard operation (ICC cars) on March 10th, Herm Birnhaum took first with his three-wheeler with a WAG TTPW system and a Mighty Midget for steering. Jan Mock took 2nd with his four-wheeler, one driving, and a two-relay delay network for two channels. Nick Ciampa 3rd with a threc-wheeler having the two front wheels driven scparately by Mighty Midgets. The tail wheel was free to swing and (Continued on page 81)



If not available of your Hobby Dealer sand direct to factory adding 25 p packing and posiage in U.S.A. 40 e outside U.S.A.

\section*{Camplet lising mODEL ALRPLANE NEWS FULL SITE PLAN SERMICE}

PIAN OF THE MONTH

> TRI.TRAVELER: Sc, FF, 049 HOUDINI: RC, . 15
> DIZZY BEE: Sp., U/C, 29

Manauvarable but atable, Houdini, a low wing; Dizy Eae, Lauderdala's latest Mona-Line.

SURE FUN: UC Sport, .29..35

ZEPHYR: Rubber, Fuseloge
Control line on floats. Sport Gassle.

AEROCOM'DER: Scale, U/C, 2 . 15. MARS: Bab Palmer stunt, 29-35.
NOBLER: Aldrich's Nats Winnar,
Stunt, .29.35. Palmer and Aldrich, plus a fwin ukie. Imagine!
        .075 .09

T-CRAFT: FF scale, 049.
FENO: Combat, sfunt, .29-35.
PADDY'S WAGON: Contest FF, 049. Paddy's Wagon-one contest job ok for beginner.
( HEATH PARASOL: RC، fF, Scale. GUARDIAN: Nats carrier winner, .29's. SHARPIE: FF Sport, .02-049 I Guardian a dilly.
) STRATOLINER: 2 Half A, U/C.
GUARDIAN: U/C Scale, 29 up.
Greatest Multi RC of all time-a beauty!

GAMBLER. Mirror Stunt Winner, .29:.35. A.66, the ducted fan job that

WHiRLING WINGS: Sikorsky XH.5. 15, 'copter.
BREEZY: Small field RC, 049 .
SPITFIRE: Stunt, remi-scale. .29-. 35.
P. Scheenly. copter master-his Slkorskyl
\(\qquad\)
PLAN SETS 50c p.p. no stamps please
MODE: AIRPLANE NEWS - 551 FIFTH AVENUE, NEW YORK 17, N. Y.
for plan sefs numbered in boxes below

PLAN SEY


RE.8: WWI, U/C. . 29.35 flapping Wings: Rubber, ornithopter.
BOOMER: FF, sport, pusher, 049.
Can planes fiy like blrds? Ornlthopter sure does. MOONEY MITE: 1/2A Scole FF. '55 RAMBLER: 29 Team Racer. WACO CABIN: ! I A FF Scale
The mire, slable, real looking low winger Rambler still beats am. Wasa-Cute!

EQUALIZER: 15 to .19 multi, \(8 C\). QUICKIE TRAINER: Speed, . 29. AMAZOOM: FF, contesf, . 15. deBolt's best, the Equalizer? Amaxaom-Sian Hill's hi-thrust.
CONVAIR'S DELTA: Jetex FF. LIL DYNAMITE: . 15 sfunt, UC. SWAT: \(1 / 2 \mathrm{~A}, \mathrm{FF}\), contesi. A trio of exceptional planes.

「ASTRO-HOG: Multi RC, , 29-. 35 MITCHELL: Profile, .09's, 15's UC Dunn's low wing radio-tops! Nothing matches this multi. The Mitchell a fine flier.
(PROPJET 8-47D: U/C, 15's. RUFFY: SIUnt, .29..35.'
NOR'EAST'ER: Nordic glider. 18-47D, baaut of a project (Ruffy: big winnar-it's nawl FOKKER E.3: 1/2A, FF, Scale. NAVY RACER: Rubber, semi-scale. WOODY: .29-35, UC Combat. Hol! E.3, beauthul model, fine hler.

SPORTCOUPE: .09. U/C, Stunt. WHATIZIT: .35, Combal, Woaten. SWIF-F-FT: Jetex, two sizes! Whatizit, settles fuse-wing debale! CONQUISTADOR: .29-35, U/C Siunt.
(AMERICANO: 15 FF , by Blanchard |BOMARC: Scale, Jetex, missile. CUTLASS: Spori U/C, 049's.
Scorpion power mokes Bomarc lerrific flier. Americano is National ! Champ's very latess.
|GAUCHO: RC Siunf. . 29.35 ITME CHAMP: Besl U.S. Wakefield. LAIRD SOLUTION: U/C Scale., 15 . 23 Gaucho. Argentine Champ, doen paltern
invertad Champ. a singlo Waplield! invertad Champ, a singio Walefield!
SNAP: Sport U C, 19. 23.
PELICAN: PAA Cargo, 049.
WINDMILL: FF, 'giro, .02-.049.
For proso rake-off and landing realistic Snap tope 'em all. Oiher twa, callector's items.
SATELLITE: Hunter's FF, .19.35.
SUPERMARINE S-6B: UIC Scale,
.09-15. Satallite is rop contest free
Alight '58-'59. Schnoider racer, S.
68 seaplane is one of FAST club's best oroiects.
DETROIT STUNTER: U/C .29. 35. HORNET MOTH: FF, Scale, . 02-. 049.
THE BARDON: Wakefield.
D'troit St.: McDonald's Strathmaor, Nats Cavorite. Bardon: Canadian and US Nats winner, tops in rubber.
RYAN PT-22: U/C, . 19-. 25.
SNIPE: Gurnett's Nordic.
Lovely scale job, that PT, with
warkable flaps, throttle.
Tow-line glider long, strang
wing, right sections, efc.
Twin Lizzie: 1/2A FF.
Com-Bat: U:C, 29. 35.
Fireboat: Marine, RC
T.Liz, a cute spart job.

The boat, Musciano, a beaut.
SE.5: FF, \(09 . .15\)

FRENCH OLOTIMER: 1914, 1/2A, FF.
Dumbe, the Calalina, man-sized ukie, takes off, lands on water or ground.

PIED PIPER: Rat Race, UC.
1/ WAVE: RC, 049
SE-5 most beautiful fying scale model ever published.
GASSER: Willard RC, 09 1958 WAKEFIELD WINNER SKY LANCER: Team, Proto، 29 Gasser, hat pylon racer. Both the others beauties, too.
BELLANCA: Scale U:C, . 19-. 29
HALF ALPHA: FF, 049
DUNWOODY GLIDERS
Gliders (4) from Dunwaody saries of articles.

Limited Supply of Plans Listed Below. Order Early! Check Correct Number on Coupon. 24. Aero Bat, Snoopy, Seagull 26. Corsalr, Gyro-Glider. Santanita
29. Cougar, '55 Nordlc Winner. Dizzy Boy 30. Great Lakes Trainer, Triple Threat RC
34. Corben Super Ace. Cessna 310. Pratile bightning

\section*{ADDRESS}
terering was accomplished by alternating power to each drive motor. Ed de Fillipo was 4 th with his three-wheeler and threechannel receiver, only two channcls used. Ed's was the ouly non-pulse entrant.
A. B. Kunz, 2804 Liberty Strect, Allentown, Pa. advises there are about 30 active Hiers in his area, most on single chanmel. The multi channel fliers use Orbit, Bramco, Marcy and WAG TTTPW.

Too late to announce more on the 8th International RC Contest held June 20-21 in Lordon, Canada. Mentioned a new Perilous Pylon Race. For rudder-only, it had to be a dying start and a flying finish. For intermediate an ROG start with onc loop down and one loop back and a flying finish. For multi an ROG; start with two loops down and two back and then an upwind landing.

Photo from A. Friberg, Box 224, Tyringe, Sweden, shows him with his \(2501 \mathrm{~mm}\left(100^{\prime \prime}\right)\) powered glider. The receiver uses a DL651 tube and three transistors, features a transistor converter and operates from six volts. The control actuator is a Telematic, mentioned in previous columns. Other interesting photes showed his transmitter, usable on either tone or CW and also featuring a DC power converter. With 6 v input it gives 180 v output at 20 ma and uses two 2 N 256 transistors. RC gliders are an impurtant phase of model building in the European and Scandanavian countries. Transistorized power converters are also widely used, mainly due to the higher cost of \(B\) batteries.

Speaking of RC gliders, we learn that the Wichita, K"an. boys really go all out with their RC glider work. Fourteen footers using eight channels and a 1200 -foot tow line. Control is maintained on the
tow and, without hitting a thermal, a four-minute flight is aloout normal, the tow being almost overhead to the full 1200 feet of line. Just think, no engine or gear to install, no vibration prohlems, less building cost and the feeling of real accomplishment with even a two or three minute flight. The west coast fliers are the only ones we know of (Stun Ilill in particular) who have done much to date in this field. Goond conditions should produce Hlights of several hours with a five to six focter.

A quick check of the Carricr (EBRC'en of Oakland, Cal.) shows that Bob Heise took lst in the multi five-lap pylon race with a Torp 35 powered racer using the TrYW system. Dale Root was 2nd with the same style racer using the Torp 4.5 and Orbit-8. Dick Jacobsen came in 3rd with a scale PT-19 with Torp .35 and Orbit-8. In rudder only, three-laps, Bob Forbes was ist with Breezy Sr. Torp 19 and Marcy Tone. Rulph Hall with a Super Cub was 2nd and Larry Murphy with a Max 19 Waco bipe and Orbit single was 3rd. Scale is really coming into its own out that way with PT-19's, Waco bipes, Acroncas, a Stearman bipe, Cessna 170, Monocoupe and an exact scale P-38tand back! Dale Root, in addition to holding the speed record at 65.7 mph , now holds the Bay Auca Trophy for duration. His Comet Clipper (do you remember?) kept its wheels off the ground for 1 hour 24 minutes.

The Washington DC./RC Newsletter has it that Walt Good may be taking up RC gliders and Tom McCraw had returned to him his six-foot "Pterodactyl", the only dannage being to the stabilizer which was stepped on by a cow or other large aninal, probably a dinosaur. Symposium papers from the April cronvention will be availhale from the AMA for \(\$ 2.00\). This


Maynard Mill was "srowed" in his allempt to put his "Marie" into the air for demonstration al the RC Symporium, held in Washingfon, D C.,
on Appil 12. More than 125 enthusiasts aftended a secand annual RC Symposium, put on by the DCRC and Academy of Model Aeronautics.

FLASH! And still they come.
Jan. Triple A Southwest Regional Meet. Phoenix, Ariz. FIRST in Class A.
Feb. FIRST and SECOND in \({ }^{3}\) A, Thunderbuss.
FIRST and SECOND in .A, Pacific Coasters.
Mar. FIRST in 'A, AMA. Thunderbuss. NEW RULES.
What are you wditins for? Move up today to
romat Z FRO


The hottest thing in 1/2A! it climbs higher, faster...stays up langer. Designed ouse ALL the power of the best . 0495! For an unsurpassed thrill, hang your engine on a ZERO. See for yourself the super performance that has already won a string of Firsts! At a recent contest the "anyone can get 5 minutes" models were doing 3 to \(31 / 2\) minutes. Tosh dethermal. 2od his 2ERO thren limes straight at over SEVEN MINUTES. Does that tell wa story?
WARNING! Watch the engine-runor you may put your ZERO in orbit!


Only A. 1 Class Nordic Glider on the market! Adapted from latest, hottest German designs. With Auto Rudder and Pop-Up Dothermalizer.

for . 049 Just \(\$ 2.50\)
urious about a Delta, here's dependable performance and true Delta characteris. ics in a job that has been thoroughly oroven before being announced.


A good flying R.C Model doesn't have to be an ugly boxi Miss Tiny is world-famous for her beauty and flying quatities. Uses hot . 049 to .099 engines. depending on weight of R C gear. Wing Span \(46^{\prime \prime}\). Finished cowl and diecut parts.
Ask your dealer, of sand M. O. and wa'll ship grepaid. ©Mr. Dealer: If your jobber won't supply you, send M. O. Tor prepaid shipment, regular discounts.)

ADVERTISING INDEX—AUGUST, 1959



\section*{BESTOOGE}

Bestooge is o modeler's best
friend. It allows one-man opera friend. It allows one-man opera tion of U-control airplanes. includes rubber-padded spring clamp. Thoroughly proved in use

PRICE, ONLY \$1.00
Get Conifolon and Bestooge
now - al your Dealer's. If he cannol supply you, order direct - include 35 \& for postage

\section*{THE CONTROLON CO.}

6913 Sprague Rd., Clevaland 31, Ohio

100 pages plus proceedings will bring you up to date on the technical topies discussed.

Following is the proposed system for selection of FAI RC team members to represent the USA. The country will be divided into three regions with division lines at 80 and 100 degrees longitude. One team member will be selected from each region and will have the highest number of points within his regiom. Points will he earned as follows, 1st through 10 th place: (Multi) 1858 Nats-180, 95, 85, 75, \(65,55,45,35,25\) and 15 points; 1959 Nats \(-200,115,105,95,85,75,65,55,45\) and 35 points. In addition, the candidates can gather nther points in their own regional contests as follows: 1959 RC/DC at Washington, D.C.-1st place 36 pts ; 2nd, 24 pts; and 3rd, 12 pts. Same points given at the 1959 Great Lakes Mect, Detroit, and at the LARKS Meet in Bakersfield, Calif. Candidates must hold valid AMA cards and comply with applicable FCC regulations. This system will also be used to select the 1st, 2nd and 3rd altemates in each region.

\section*{NEW ITEMS}

New to most modelers, Celastic is a "poor man's fibregliass". Thanks to Mr. Ev Schoenberg, 811 Uhittier, Witchita, Kan. we have tried a saraple. Celastic is a fabric-based material impregnated with other fibres and a thermoplastic material. It is about \(3 / 64^{n}\) thick and is ready for use after it has been dippod in a solvent. We found acctonc, thinner, MEK and other solvents to be excellent, with the best mixture for our use being 50/50 acetone and dope thinner. After a quick dip in the solvent, the material becomes very pliable and is easily formed and adhered to practically any surface, wood or metal. flat or with mild compound curves. While not as tough as fibreglass, it is easier to use and can be applied over dope and even oily and greasy surfaces. Once in place, and you can smooth it and feather the edges by applying a few drops of solvent. It dries in ibout 45 minutes.

The only apparent drawhack is that it is not fuelproof, otherwise you can sand, saw, file and dope it. What can you do with it? John Worth repairs broken fuselages in about 30 minutes. Dean Zongker uses it for wing tip skids on "Speed Merchant", Dick West on landing skids for his \(\frac{1}{2}\) A RC job, and Tom Williams repairs fuselage and reinfurces noses. Good for dihedral joint splicing. Two square feet cost about \(\$ 2.00\) from Serco Imports, Wichita, Kan. or, a club can obtain it in quantity from Ben Walters Inc., 1567 th Ave., New York 11, N.Y.
Reports in on the Tomoser MP-H servo are very encouraging. Low drain and high torque, together with smooth action and versatiity of application make this servo a must for pulse (especially WAG TTPW) systems. Tests have gone up to 750,000 operations, which actually reprsents 1,500 ,000 commands on multi use. Dale Springsted has run two of the MP-H units for over an hour on three 500 mah nicklecadmium cells. An up-and-coming servo for the proportional field. Tomoser Electronics and Mfg. Co., 217 Vulcan St., Buffale 7. N.Y.

Gyro Electronics Co., 36 Walker St., New York 13, N.Y. offers the following from 1959 RC Directory! Diagrams for receivers, trinsmitters, pulsers and other items can be had for 19 cents. A reversestop stepping switch for boats or cars is \$3.25, a telephone dial for 1-10 impulses,
33.50. A joystick control box, made for an Automatic Pilot and containing five microswitches is \(\$ 3.95\). Gyro also has a wide range of subminiature disc and electrolytic capacitors.
United Mineral and Chemical Corp., 19 Hudson St., New York 13, N.Y. has a new pressure-sensitive Foam Tape that may be used for shock-mountng, seal against dust, anti-slippage and other applications. Available in \(3 / s^{\prime \prime \prime} 3^{\prime \prime} 4^{\prime \prime}\) and \(1 / 2^{\prime \prime}\) thickness and from \(1 / 4^{\prime \prime}\) to \(18^{1} / 2^{\prime \prime}\) widths with colors being green, gray, brown, black and creamwhite. Prices are reasonable and we trust an enterprising hohby distributor will be able to make this readily available to the RC and other modeling fans.

Ace Control, Box 301 Higgsinsville, Mo., has a spiral plastic, flexible tube that helps eliminate floppy wires in an installation. The tubing is merely wrapped around the bundle of wire, which may be up to about \(1 / 4^{\prime \prime}\) in diameter. This is the idcal thing for multi jobs at 7 cents a foot. Ace also features a more complete line for those desiring to make their own printed wiring patterns. Individuals or clubs can now make a sizable number of patterns with the minimum amount of work.

From F \& M Electronics, 537 Grove St., N.E., Albuctuerque, New Mex., word of forthcoming single-echannel proportional system using frequency modulated subcarrier to carry the information. This will be a 3 v superhet working directly into a Sage actuator or cquivalent. There will be no pulsing and the system will be failsafe in that controls remain in neutral on loss of signal. Relay for throttle operates by climination of modulation.

When CG discontinued their multi-channel sets (new line impending) F \& M purchased entire stock, now offered as follows: RT-8 receiver, \$139.50, RT-5, \(\$ 105.00\); RT-3, \(\$ 70.00\); RT-2, \$55.00. In each case, the transmitter comes free. Limited supply of T-11 \(x\)-mitters at \(\$ 9.95\) each.

\section*{MAN at Work}

\section*{(Continued from page 4)}
judges, watch holders, and well wishers turned the event into an all day jam session. Seems everybody had a trunk full of shiny models accumulated during the winter. The joint was Simpl/Simul crazy. Having an inexhaustible battery supply in the FAI ioh, made 21 flights, experimenting with flight patterns over hot runways and green woods.
Threc-channel Marcy receiver gives left and right on Bonner servo, with third channel for spoilers. This will be replaced with four-channels, giving down trim with last channel for quick neutralizing. All engines present suffered from heat, as usual, so, putting a three-inch diameter piece of tin under the compression adjustment crank of the Diesel, picked up 750 rpm to normal. You cannot turn an "oversize" prop on any modern engine on a hot day-manufacturers don't believe in fins or cooling, we gather. This tin hatreally crazy, but it stays! Marcy multi uscs filters, not reeds, so one less worry on long flights.

What a day! At Moun's Memory Inn, alongside the Dutchess County Airport, some 30 couples (ancient order of Skyscrapers) and their wives-and a raft of kids-were set for a reunion. Wonderful idea that other old clubs should try. On the airport were many gliders assembled for a Northeast Gliding Meet. Things got lively when some power plane guy, so far

\section*{IT'S HERE ....NOW!} the ULTRA of TODAY'S model fuels... FORMULA
This fuel is a scientific blend of these high quality ingredients

\section*{CASTOR OIL}
first pressing, filtered
METHANOL
NITROMETHANE PROPYIENE OXIDE SYNTHETIC LUBRICANTS

You will flind this fuel especially suited to the following motors:

FOX 09, 15 and 19
FOX COMBAT SPECIAL
McCOH 29 and 35
TORPEDO 19, 29 and 35 the NEW

custom blended
for high compression model motors gives you

\section*{MORE POWER - QUICK STARTING}

\section*{COOL BURNING - LESS SENSITIVITY}

\section*{to mixtures and weather conditions GREATER ECONOMY}

MISSILE MIST, the new liquid propellant, contains perfectly matched components. This was achieved by firse testing, in comparative dlight operations, nearly all model airplane fuels on the market as well as the favorite mixes of many well-known modelers. MISSIL.I MIST fills all the needs of the most demanding experts and is designed to give the finest performance with all medium and high compression motors . . . a truly premium fuel at a nonpremium price.
You will find MISSILE MIST superior in the workd of model airplane fuels. Every can of MISSILF MIST is guaranteed to give you complete satisfaction

TRY IT! Ask for it by name - the New Champion MISSILE MIST liquid propellant - at your Hobby Shop.


\section*{for your Individuallzed "show". models!} Special paint jobs are as essential to "customiz: ing", your car kil as tail fins, chrome bumpers and wheel disc's - and Pactra's new Customizing AUTOMOTIVE COLORS are ready for the job! Here is 'Namel-the kit builder's favorite paint-in special "custom" colors to match this season's popular makes. Pick your kit today and paint it with these
```

