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Whereas the vast majority of gastropods possess dextral shell and body organization, members of the Clausiliidae
family are almost exclusively sinistral. Within this group a unique feature of the alpine genus Alopia is the
comparable representation of sinistral and dextral taxa, and the existence of enantiomorph taxon pairs that appear
to differ only in their chirality. We carried out a molecular phylogenetic study, using mitochondrial cytochrome c
oxidase subunit I (COI) gene sequences, in order to find out whether chiral inversions are more frequent in this
genus than in other genera of land snails. Our results revealed multiple independent inversions in the evolutionary
history of Alopia and a close genetic relationship between members of the enantiomorph pairs. The inferred COI
phylogeny also provided valuable clues for the taxonomic division and zoogeographical evaluation of Alopia species.
The high number of inverse forms indicates unstable fixation of the coiling direction. This deficiency and the
availability of enantiomorph pairs may make Alopia species attractive experimental models for genetic studies
aimed at elucidating the molecular basis of chiral stability.
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INTRODUCTION

In contrast to the predominantly bilateral symmetry
of most animals, snails develop in an asymmetric
fashion, which is easily recognizable by the helical
organization of their body. The vast majority of taxa
display dextral chirality, characterized by the clock-
wise growth of the shell when viewed from its apex.
Rare mutant populations of opposite, sinistral coiling

have proven instrumental for investigating the
molecular genetic background of chiral determina-
tion. These studies revealed that coil direction
depends on the polar orientation of cells at the early
embryonic stage, which is established by the correct
performance of polarity-setting cytoskeletal elements
(Crampton, 1894; Shibazaki, Shimizu & Kuroda,
2004; Kuroda et al., 2009). Although the key function
determining chirality has not yet been identified,
genetic studies in species of four gastropod super-
families indicated that it is a maternally inherited
dominant cytoplasmic factor encoded by a single gene*Corresponding author. E-mail: szekeres@brc.hu
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(Sturtevant, 1923; Degner, 1952; Asami, Gittenberger
& Falkner, 2008). Mutations in this gene can have
considerable evolutionary consequences. For instance,
altered body structure can make inverse individuals
less likely targets for predation (Hoso, Asami & Hori,
2007), and severely reduced mating success with non-
inverted members of the population can lead to repro-
ductive isolation (Gittenberger, 1988). These effects
can enhance diversification and lead to the appear-
ance of new subspecies and species.

Despite the ancestral dominance of dextrality in
gastropods, sinistral coiling can be found at various
taxonomic levels. In dextral species there are several
reports of rare inverted individuals, as well as of
small populations with frequent or uniform sinistral-
ity. Also, there are entire species, genera, and even
families of gastropods with dominant sinistrality
(for examples, see Davison et al., 2005). One of the
sinistral families is that of the clausiliids (Clausili-

idae, door snails), characterized by a spindle-shaped
shell that is equipped with intricate closing (clausil-
iar) apparatus. Situated inside the last whorl, this
structure efficiently seals the entrance when the snail
retreats, and consists of multiple lamellae and plicae
that are useful morphological markers for taxono-
mists. Sinistrality is very stringently determined in
most clausiliid subfamilies, but not in the relatively
young and species-rich Alopiinae that dominate the
eastern Mediterranean basin. In this subfamily a
number of genera also include dextral species (Git-
tenberger & Uit de Weerd, 2006; Nordsieck, 2007).

Among the Alopiinae genera that include dextral
species, Alopia H. & A. Adams, 1855, a south-east
European genus endemic to the Carpathian Moun-
tains (Fig. 1), is of particular interest. In contrast to
the other genera composed of predominantly sinistral
species, in this genus sinistral and dextral forms
are represented comparably, with 50 and 23 taxa,

Figure 1. Sampling sites of the Alopia material studied from the Romanian and Slovakian Carpathians. The taxa and
localities corresponding to the numbered dots are identified in Table 1. The insets show the position of the Carpathians
(black shaded) in Europe and an enlarged map of the south-eastern Carpathian ranges (upper right and lower left corners,
respectively).
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respectively. Furthermore, Alopia includes enantio-
morph (oppositely coiled, but otherwise seemingly
identical) taxon pairs that always occur in contiguous
ranges (Wagner, 1914; Soós, 1943). Considering that
in other clausiliid genera chiral inversions are very
rare, the null hypothesis of our current study was
that Alopia is not an exception from this rule. In this
case the unusually high number of dextral forms
might be explained by a reversion that happened
early during Alopia diversification, and then served
as a basis for a monophyletic lineage of dextral
species. The alternative hypothesis was that the
dextral taxa of Alopia could have resulted from mul-
tiple independent reversion events. Clarifying which
of these hypotheses was correct promised intriguing
information in broader contexts. If dextral and sinis-
tral lineages evolved in parallel, enantiomorph pairs
would exemplify extreme morphological convergence.
If, however, the phylogenetic history of the genus
included multiple inversions, then the genetic deter-
mination of chirality is less stable than in other
genera, offering Alopia species as uniquely suitable
objects for studying the genetic background of chiral
stability. Either way, ascertaining the phylogenies of
sinistral and dextral forms could also provide impor-
tant phylogenetic background for Alopia taxonomy.

As are most genera of the Alopiinae, Alopia is an
obligate rock-dwelling genus with numerous, mostly
polytypic, species (Nordsieck, 2007). Because of the
restricted vagility of the animals and the scattered
distribution of their preferred habitat type (bare
limestone outcrops), Alopia populations occur in well-
defined, isolated patches. Populations of shared mor-
phological characters and geographical ranges have
traditionally been considered as subspecies, and cur-
rently there is wide consensus regarding their delimi-
tations (Szekeres, 1976; Grossu, 1981; Nordsieck,
2008). However, the evaluation of taxonomic relation-
ships between these subspecies, and particularly
the enantiomorph pairs, has long been controversial
because of a disagreement over the homologous
or homoplastic origin of the dextral subspecies. One
attempt at classification was based on the notion that
the far-reaching similarity of enantiomorphs, regard-
less of chirality, indicated close evolutionary relation-
ships, and that classification should rely primarily
on other morphological characters of the shells (e.g.
sculpture or closing apparatus) and soft organs (e.g.
genitalia), rather than chiral differences (Bielz, 1861;
Wagner, 1914). Accordingly, these authors regarded
enantiomorph pairs as subspecies of the same
species. The other, contrasting approach assumed the
parallel evolution of sinistral and dextral lineages
from the onset of Alopia diversification, concluding
that taxa of opposite chirality cannot be classified
within the same species (Kimakowicz, 1894). Later

systematic studies merely followed up these two clas-
sification concepts, favouring either the former (Soós,
1943; Szekeres, 2007) or latter (Soós, 1928; Grossu,
1981; Nordsieck, 2008) approach. Therefore, finding
out which of the two concurring approaches faith-
fully reflects the evolutionary relationships within
the genus necessitated ascertaining the phylogenetic
origin of dextrality.

The aim of this study was to test our hypotheses on
the incidence of chiral inversions by elucidating the
evolutionary relationships within Alopia, especially
those of the enantiomorph taxon pairs, based on a
molecular phylogenetic analysis. The gene sequence
best suited for this purpose is mitochondrial cyto-
chrome c oxidase subunit I (COI), because its high
divergence rate (Pons et al., 2010) offers good resolu-
tion, even at the infraspecific level, it has been
successfully used for inferring close phylogenetic rela-
tionships in other genera of the Alopiinae (Uit de
Weerd, Schneider & Gittenberger, 2005 and Uit de
Weerd, Schneider & Gittenberger, 2009), and has
been proposed to serve as the central barcoding
marker for the identification of animal taxa (Hebert
et al., 2003). Considering COI data as indicators of
genetic divergence, we propose a taxonomic division
of the genus that is compatible with both the molecu-
lar and morphological characters. Relying on our
phylogenetic results we discuss the zoogeographical
background of Alopia diversification, and make an
attempt at estimating the start date of this process.

MATERIAL AND METHODS
SNAIL SAMPLES

The Alopia samples used in this study were collected
from the entire geographical range of the genus (Fig. 1;
Table 1). Sampling was designed to include most (64)
of the 73 recognized taxa, and all those of disputed
species affiliations. In order to avoid ambiguous iden-
tification, each taxon was sampled at its type locality
or one of its localities well known in the literature.
Further clausiliid samples of the subfamilies Alopiinae
[Herilla ziegleri dacica (Pfeiffer, 1852)] and Clausili-
inae [Vestia elata (Rossmässler, 1836)] were used as
out-groups. The list of samples, with full names and
locality information, are given in Table 1. All material,
preserved in 99% ethanol, has been deposited at the
Mollusca Collection of the Hungarian Natural History
Museum, Budapest (for collection numbers see the
GenBank records listed in Table 1).

DNA ISOLATION AND SEQUENCING

DNA was prepared from foot tissue of ethanol-
preserved specimens using QIAamp DNA Mini Kit
(Qiagen, Valencia, CA, USA). A 655-bp segment of the
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ăl
ăe
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COI gene, between nucleotides 39 and 693 relative to
the translational start codon (Hatzoglou, Rodakis &
Lecanidou, 1995), was amplified by polymerase chain
reaction (PCR) as described in Fehér et al. (2009).
Primers PF372 5′-TCAACGAATCATAAAGATATTGG-
3′ and PR373 5′-TATACTTCAGGATGACCAAAGAA
TCA-3′ were designed by modifying the Albinaria
primers L1490-Alb and H2198-Alb (Gittenberger, Piel
& Groenenberg, 2004), respectively. Isolated and puri-
fied PCR products were sequenced on both DNA
strands using an ABI Prism 3100 Genetic Analyzer
(Applied Biosystems, Carlsbad, CA, USA).

PHYLOGENETIC ANALYSIS

DNA sequences were of equal length (655 bp) and
showed proper open reading frames (ORFs), allowing
unambiguous alignment. Identical sequences were
collapsed into haplotypes. All sequence data have
been deposited in GenBank (accession numbers
JQ911783–JQ911855; Table 1).

The appropriate model for nucleotide substitu-
tion (HKY + I + G) was selected by jModelTest 0.1.1
(Guindon & Gascuel, 2003; Posada, 2008) using the
Bayesian Information Criterion (BIC). The inverte-
brate mitochondrial code table, as implemented in
MEGA 5.0 (Tamura et al., 2011), was used to deduce
encoded amino acid sequences.

The molecular clock hypothesis was tested by
likelihood ratio test in MEGA 5.0, using the topology
shown in Figure 2, and the null hypothesis of
equal evolutionary rate throughout the tree
was rejected (log L0 = -4582.32, log L1 = 4665.43,
D = 166.22, d.f. = 67, P < 0.000).

Haplotypes were analysed by various methods
and settings in order to test the method dependence
of phylogenetic tree topology and root position.
An unconstrained Bayesian tree was inferred by
MrBayes 3.2.1 (Ronquist et al., 2012) using the
following parameters: HKY + I + G model of sequence
evolution; a four-chain (one cold, three heated;
T = 0.2) Metropolis-coupled Markov chain Monte

Figure 2. Unrooted phylogenetic tree inferred from Alopia COI sequences by unconstrained Bayesian analysis.
Sequences are identified with the subspecific names of the sinistral (normal print) or dextral (inverted print) taxa of their
origin (see Table 1). Major clades are marked with upper case letters and numbering. The sequences labelled proclivis and
wagneri (clade C1), as well as intercedens (clade B) and deceptans (clade D3), belong to identical haplotypes. Scale bar:
0.1 substitutions per site.
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Carlo (MCMC) analysis run for 106 generations; trees
sampled every 100 generations, starting after a
burn-in of 105 generations. Neighbor-joining (NJ),
maximum likelihood (ML) and maximum parsimony
(MP) analyses were performed with MEGA 5.0. For
ML analysis we used the HKY + I + G model of
sequence evolution with five gamma rate categories
and the nearest-neighbor interchange heuristic
search strategy. The MP tree analysis was performed
using the close-neighbor interchange heuristic
search strategy with random additions to ten initial
sequences. The NJ analysis was performed under the
Kimura two-parameter (K2P) model of substitution.
Bootstrap values of the ML, MP, and NJ analyses
were calculated with 1000 bootstrap replicates.

To define the most likely rooting site, we
also carried out likelihood mapping (Strimmer &
von Haeseler, 1997) as implemented in TREE-
PUZZLE 5.2 (Schmidt et al., 2002). This method can
manage a maximum of four clusters, and therefore
the unconstrained Bayesian tree (Fig. 2) was divided
into three trifurcation-separated subgroups in six
combinations, and these were analysed against the
cluster of the out-groups (Herilla and Vestia). The
following combinations were tested: (1) clades C/B/
A + D + E + F/out-groups; (2) clades C + B/A/D + E +
F/out-groups; (3) clades A + B + C/F/E + D/out-groups;
(4) clades E/D/A + B + C + F/outgroups; (5) clades
C1/C2/A + B + D + E + F/out-groups; and (6) A1/A2/
B + C + D + E + F/out-groups.

To estimate divergence times, we used a data set
that included representatives of all Alopia clades and
20 additional sequences of Carinigera Möllendorff,
1873 downloaded from the GenBank database. Baye-
sian analyses were performed using BEAST 1.4.6
(Drummond & Rambaut, 2007), with the following
settings: HKY + I + G model of sequence evolution
with five gamma rate categories, Yule tree prior, and
a relaxed (uncorrelated lognormal) clock assumption.
Two analyses were carried out using clock rates of 1
or 8.6% (‘ucld.mean’ parameters). Following a burn-in
of 106 cycles, every 1000th tree was sampled from 107

MCMC steps. Convergence of the chains to the sta-
tionary distribution was checked by visual inspection
of plotted posterior estimates using the TRACER 1.3
(Rambaut & Drummond, 2007). The effective sample
size for each parameter sampled from the MCMC
analysis was always found to exceed 100. Sampled
trees were annotated to a maximum clade credibility
tree.

USE OF TAXONOMIC NAMES

Recent concepts of Alopia classification (Grossu, 1981;
Szekeres, 2007; Nordsieck, 2008) have been based
on conflicting principles, and none of them is in full

agreement with our results. A comprehensive system-
atic revision of the genus is beyond the scope of the
present study, and will be provided in a follow-up
taxonomic publication. Nevertheless, based on our
results we make taxonomic statements when this
is essential for the consistency of the classification
that we use. For easy comparison, our names and an
assessment of earlier taxonomic nomenclature are
provided in Appendix S1.

RESULTS
COI PHYLOGENY IN THE GENUS ALOPIA

The COI gene sequences were determined from 71
Alopia samples (Table 1) belonging to 69 haplotypes.
Within the amplified 655-bp region we identified
206 variable positions, corresponding to 31.4% of the
nucleotides. The highest observed intrageneric value
of pairwise sequence divergence was 13.0%. Most of
the detected variability had no effect on the deduced
amino acid sequence, except those at nucleotide posi-
tion 470, causing the replacement of proline by
alanine or serine in 11 haplotypes, and unique muta-
tions at positions 167, 315, 358, 360, 470, 480, and
525, leading to amino acid substitutions in seven
distinct haplotypes.

An unconstrained Bayesian tree generated from the
COI sequences (Fig. 2) featured six basic evolutionary
lineages (clades A–F). Supporting posterior probabil-
ity values of the node positions are given in Appen-
dix S2. All inference methods used (also including
ML, MP, and NJ) yielded congruent topologies within
the basic clades (data not shown) and nearly identical
relative positions for the major clades (Appendix S2).
By contrast, these methods failed to identify a con-
sistent root position relative to the out-groups. Fur-
thermore, likelihood mapping determined two, almost
equally likely root positions that did not match any
of those assigned by the above inference analyses
(Appendix S3).

A recent analysis of the molecular evolution of
mitochondrial genes in beetles (Pons et al., 2010)
revealed an overall 8.6% per million years (Myr)
divergence rate for the COI sequences. Based on this
clock rate, which is similar to that determined for
salamander species (Mueller, 2006), our Bayesian
analysis using an uncorrelated lognormal relaxed
clock model estimated the divergence of the major
Alopia clades at 1.2 Mya, with a 95% highest poste-
rior density (HPD) interval of 1.6–0.8 Myr (for details,
see Appendix S4).

SPECIATION IN ALOPIA INVOLVED MULTIPLE

INVERSIONS OF CHIRALITY

The COI-based phylogram shows differential repre-
sentation of the sinistral and dextral taxa in the

MULTIPLE CHIRAL INVERSIONS IN ALOPIA 7
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major evolutionary lineages (Fig. 2). Clades C and F
comprise only sinistral taxa, whereas clade E includes
only the dextral taxon Alopia meschendorferi (Bielz,
1858). By contrast, clades B and D contain multiple
closely related taxa with both coil directions, includ-
ing all enantiomorph taxon pairs. In clade A the two
subgroups A1 and A2 correspond to the invariably
dextral Alopia bielzii (Pfeiffer, 1848) and sinistral
Alopia bogatensis (Bielz, 1856) forms, respectively.

An intriguing result of the molecular phylogenetic
analysis was that it revealed very high levels of
sequence identity between the enantiomorph taxa
Alopia glorifica deceptans Deli & Szekeres, 2011 and
Alopia glorifica intercedens (Schmidt, 1857) (100%),

Alopia lischkeana boettgeri, Alopia lischkeana cybaea
(von Kimakowicz, 1894), Alopia nefasta helenae
Kimakowicz, 1928, Alopia nefasta zagani, Alopia nixa
fussi (von Kimakowicz, 1894), and Alopia nixa nixa
(von Kimakowicz, 1894) (99.8%), Alopia grossuana
grossuana and Alopia grossuana nemethi Deli &
Szekeres, 2011 (99.6%), as well as Alopia mariae
hildegardae and Alopia mariae mariae (98.6%). These
data indicate close evolutionary relationships within
these taxon pairs of opposite chirality but otherwise
identical morphology (Fig. 3).

The COI-based phylogram implies that the dextral
taxa did not evolve as a monophyletic lineage that
stemmed from an inversion early in Alopia phylogeny.

Figure 3. Shell morphology and COI-based phylogenetic relationships of the enantiomorph taxon pairs. The schematic
tree follows the topology of the phylogram shown in Figure 2.
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Instead, they appeared polyphyletically as the results
of several independent inversions, rendering dextral
coiling a homoplastic trait in this genus. The dextral
lineages of A. bielzii (clade A1) and A. meschendorferi
(clade E) show deep divergence (Fig. 2), whereas some
others reveal only minor or no changes of the COI
sequence relative to the closest related sinistral taxa.

COI PHYLOGENY ELUCIDATES EVOLUTIONARY

RELATIONSHIPS

We found that clusters of the COI phylogram show
good correspondence with some of the morphological
traits shared by subspecies that have been classified
within the same species or species assigned to species
groups, especially when these characters have been
considered unique for those taxa. Such features
are, for instance, the rugose shell wall of A. bielzii
(clade A1), the characteristic lump behind the peris-
tome of A. bogatensis (clade A2), or the elongated
male genital structures of Alopia glauca (Bielz, 1853),
Alopia maciana Bădărău & Szekeres, 2001, and
Alopia pomatias (Pfeiffer, 1865), which constitute
the subgenus Alopia (Kimakowiczia) Szekeres, 1969
(clade F). The correlation between the molecular
clade positions of the subspecies and species with
their shared morphological characters and geographi-
cal ranges is shown in Appendix S5.

The molecular data also revealed hitherto unrecog-
nized phylogenetic relationships between Alopia
forms separated by large geographical distances.
The results indicated that the subspecies vranceana
belongs to clade D2, corresponding to the species
A. glorifica, despite the 110 km that separates it from
the Piatra Craiului Mountains where all other glori-
fica subspecies are limited (Fig. 1, localities 21 versus
15–20). Likewise, in clade C1 the subspecies micros-
toma, nordsiecki, and petrensis cluster together with
the morphologically very similar subspecies regalis
(clade C1), although the aforementioned three
taxa were traditionally classified with other species
(Appendix S1) because of their occurrence 120–
190 km west of the Postăvaru and Piatra Mare Moun-
tains, the diversity centre of Alopia regalis (Fig. 1,
localities 59, 61, and 62 versus 58, 60, 63, 64, and 65).
Furthermore, the COI phylogram justifies the classi-
fication of the subspecies julii of central Transylvania
within the species Alopia livida (Menke, 1828) (Soós,
1943; Grossu, 1981; Nordsieck, 2008), as opposed to
that of Wagner (1914) and Szekeres (1976), assuming
that the striking shell similarity of julii and livida
(clade D1), occurring 170 km apart (Fig. 1, localities
32 versus 31, 33, and 34), resulted from the conver-
gent reduction of distinctive shell structures.

Sequence data also necessitate synonymizing the
forms Alopia peregrina Kimakowicz, 1943 of the

Lotru Mountains (Fig. 1, locality 44) and Alopia soo-
siana Agócsy & Pócs, 1961 (Fig. 1, locality 55) of the
Făgăraş Mountains (Table 1), which used to be con-
sidered valid taxa (Szekeres, 1976; Grossu, 1981; Nor-
dsieck, 2008). The extensive COI homology and the
apparent morphological correspondence reveal that
these Alopia forms are merely disjunct populations of
Alopia monacha (Kimakowicz, 1894) (99.6% identical
with peregrina) and A. pomatias (99.8% identical with
soosiana) that are native to the Bucegi Mountains.

Although COI data elucidated phylogenetic rela-
tionships, they also revealed distinct origins of certain
taxa with similar shell morphology and overlapp-
ing distribution. Although originally the Alopia
forms from the Postăvaru and Piatra Mare mountains
were divided as subspecies of Alopia plumbea (Ross-
mässler, 1839) or A. regalis (Kimakowicz, 1894; Soós,
1943), respectively, later the morphological similarity
lead to merging all of these within A. plumbea
(Szekeres, 1976; Grossu, 1981; Nordsieck, 2008). Our
molecular phylogram, however, indicates that the
subspecies formerly belonging to A. plumbea (belli-
cosa and plumbea in clade B2) and those of A. regalis
(deubeli, glabriuscula, mutabilis, proclivis, regalis,
and wagneri in clade C1) represent two distinct evo-
lutionary lineages. In another case, morphologically
similar Alopia taxa of the Piatra Craiului Mountains
were found to harbour two distinct types of COI
sequences. This implies that the subspecies belong-
ing to clades B3 (A. lischkeana) and D2 (A. glorifica)
evolved independently.

DISCUSSION

The 655-bp segment of the COI sequence, which has
been widely used for inferring phylogenetic informa-
tion in various animal groups, represents one of the
best-studied molecular markers in the subfamily
Alopiinae. In Alopia the COI phylogenies deduced by
various methods gave consistent topologies within
each of the major clades, indicating that the analysed
sequence information was sufficient for reliable recon-
struction of the evolutionary relationships (Nguyen,
Gesell & Haeseler, 2012). Tree topologies in taxonomi-
cally unambiguous groups (e.g. clades A and F) were
in full agreement with the morphology-based classi-
fication; therefore, we assumed similar good agree-
ment between the COI phylogeny and speciation in
groups with less distinctive morphological features.
Accordingly, the taxonomic division we propose is
based on the evaluation of both molecular data and
morphological characters, relying on the same princi-
ple as applied for defining the systematic status of
Carinigera species (Gittenberger & Uit de Weerd,
2006).
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When correlating COI clade positions with shared
morphological traits and common patterns of geo-
graphical distribution (Appendix S5), the taxonomic
positions in two cases proposed here seem to require
further clarification. One is the subgenus Alopia
(Kimakowiczia), which includes three species (clade F)
showing shell and genital structures that markedly
differ from those of other Alopia groups (Bădărău &
Szekeres, 2001). But, despite the unique morphology,
the subgeneric separation of this group is not sup-
ported by the COI phylogeny, which shows the same
depth of divergence for the Alopia (Kimakowiczia)
group as for the other major clades of the genus
(Fig. 2). In the second case, the relationship between
A. glorifica and A. lischkeana, both native to the Piatra
Craiului Mountains, requires better insight. Although
COI sequences suggest only a distant relationship
between these species, their morphological similarity
raises the question whether indeed they are of distinct
origin, with nuclear genes showing similar descent as
that of COI. Addressing these questions will require
further molecular phylogenetic studies, involving both
nuclear and mitochondrial DNA sequences.

Unlike close evolutionary relationships, the topol-
ogy of the major clades had relatively weak support in
the COI phylogram (Appendix S2). A similar result
was obtained by Uit de Weerd, Piel & Gittenberger
(2004), who found that in four Alopiinae genera
nuclear DNA segments showed greater support for
deeper nodes than COI and other mitochondrial
sequences. Uit de Weerd et al. (2004) proposed that
for genes with a high divergence rate (Pons et al.,
2010), this might result from a saturation effect. But
in Alopia, COI sequences show only modest (up to
13.0%) maximum intrageneric pairwise divergence, so
saturation alone cannot explain the weaker resolution
of deep branching points and the ambiguous root
position. We therefore interpret these as likely con-
sequences of radiation: a lineage-splitting burst
within a relatively short period of time (Wilke et al.,
2010) that might have happened early during the
diversification of the genus.

The only available fossil finds of Alopia were recov-
ered from non-layered cave deposits of the Holocene
period (Ložek, 1964; Szekeres, 2007). In the absence
of dated fossils we calculated the divergence time
of the main Alopia clades on the basis of the 8.6%
per Myr COI clock rate determined in beetles (Pons
et al., 2010), considering that an appropriate choice of
this parameter can lead to realistic estimates even
when geological calibration is not possible (Wilke,
Schultheiss & Albrecht, 2009). With the application
of this rate the divergence time was placed at about
1.2 Mya, much more recently than the roughly
10.4 Mya calculated with the canonical ~1% rate
used previously for mitochondrial DNA sequences

(Wilke et al., 2009; Appendix S4). As a group of south-
east Mediterranean origin, the ancestors of Alopia
could have colonized the Carpathians via the land
contact formed between the Southern Carpathians
and the Balkan Mountains, disrupting the continuity
of the receding Paratethys. This geological transfor-
mation took place around the Pliocene–Pleistocene
boundary, dated to 2.6 Mya (Olteanu & Jipa, 2006;
Andreescu et al., 2011), suggesting that the appear-
ance and expansion of Alopia must be more recent
events. This assumption is in line with the lack of
Alopia in the Early Pleistocene cave deposits of the
Şprenghi Hill at Braşov (Soós, 1916), and also with
the Late Pleistocene dating of fossil Mastus venera-
bilis (Pfeiffer, 1855), a species of the Enidae arriving
at the Carpathians from the same direction, and
preferring the same habitats as Alopia, found in
loess samples of south-eastern Hungary (Soós,
1943). The modest (13.0%) intrageneric pairwise
divergence of COI sequences in Alopia, as compared
with those of the Balkan genera Albinaria Vest, 1867
(18.2%), Carinigera (19.9%) and Inchoatia Gitten-
berger & Uit de Weerd, 2006 (17.8%), also implies
that this is a relatively young genus in the Alopiinae.
Accordingly, the 8.6% clock rate-based 1.2 Mya
dating of early Alopia divergence, placing this event
at the middle of the Pleistocene, appears to be a
realistic estimate.

Mountains of the Southern and southernmost
Eastern Carpathians were colonized by Alopia from
different directions, leading to the presence of more
than one abundant species in the Piatra Craiului
(A. glorifica and A. lischkeana), Bucegi (A. livida and
A. monacha), and Ciucaş [Alopia canescens (Charpen-
tier, 1852) and A. nefasta] ranges. These examples
show that although infraspecific differentiation
was usually confined to a particular mountain,
co-occurrence in the same mountain does not neces-
sarily mean close phylogenetic relationship. Though
the current distribution of Alopia species seems to
have been formed mostly by waves of gradual range
expansion, disjunct occurrences (e.g. those shown in
Fig. 4) also indicate a role for passive long-range
dispersal, possibly mediated by birds (Uit de Weerd
et al., 2005; Maciorowski, Urbańska & Gierszal,
2012).

Because of their rock-dwelling character, Alopia
species tend to be highly endemic, often divided
within the same mountain complex into locally iso-
lated subspecies (Soós, 1928). But the present distri-
bution of certain groups reveals multiple waves
of range expansion, which were probably facilitated
by major climatic changes in the Late Pleistocene.
For instance, the massive westwards expansion of
alpine A. livida could have been possible during a cold
period, whereas its displacement by thermophilic
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A. bielzii over much of its range in the Bihor-
Vlădeasa, Metaliferi, and Trascău mountains (Fig. 4)
must have taken place at stages of warmer climate.
Likewise, cooler periods could have been favourable
for the wide distribution of the cold-hardy species of
clade F, whereas during subsequent warming their
habitats became fragmented and, in the cases of
A. maciana and A. pomatias, increasingly overtaken
by more thermotolerant A. bielzii and A. livida,
respectively. Disjunct occurrences of four A. regalis
subspecies, far away from the main range of the
species in the Piatra Mare Mountains, also attests to
an earlier westwards expansion (Fig. 4).

In the exposed limestone habitats, climatic cycles
could have had a substantial influence on diversifica-
tion (Scheel & Hausdorf, 2012). Range expansions
at favourable periods were followed by the breaking-up
of the ranges during epochs of harsher climate. This
led to the severe reduction of population sizes, as
seen today in the case of alpine A. pomatias and of
some species or subspecies occurring at low (below
1000 m a.s.l.) altitudes (Bădărău & Szekeres, 2001;
Szekeres, 2007). Colonization by passive dispersal, a
common method of radiation among rock-dwelling
snails, also generated very small populations. In such
cases unbalanced gene pools result in increased phe-
notypic variability, which can lead to multiple local
forms within relatively short periods of time (Gitten-

berger, 1991; Rundell & Price, 2009). Such genetic drift
effects may be behind the apparent discrepancy
between the more diverse morphological traits in
Alopia and the less diverse indispensable COI genes,
compared with other genera of the Alopiinae.

Speciation in Alopia is further enhanced by an
increased tendency for chiral reversal. The anatomical
difference between the individuals of opposite coiling
considerably restricts interchiral mating, thereby
leading to reproductive isolation and, in most cases,
selection-based disappearance of reversed snails in
the population (Gittenberger, 1988; Asami, Cowie &
Ohbayashi, 1998). But because of the relatively high
frequency of inversions in this genus, occasionally
such individuals of the same offspring succeed in
establishing stable subpopulations, a process facili-
tated by the low dispersal rate of rock-dwelling snails
(Schilthuizen & Lombaerts, 1994). As the reproductive
success of each chiral morph is ensured by the avail-
ability of surrounding mating partners of the same
chirality, this gradually leads to territorial separation
and, in time, the formation of isolated sinistral and
dextral populations (Ueshima & Asami, 2003). At this
level of speciation, exemplified by the enantiomoph
pairs of Alopia, further gene flow between neighbour-
ing populations of the opposite chiral forms is severely
restricted (Schilthuizen & Lombaerts, 1994). With
their clearly different morphology and reproductive

Figure 4. Alopia species of disjunct distribution. Main ranges (encircled by broken lines) and isolated occurrences of
Alopia glorifica, Alopia livida, and Alopia regalis forms. Symbols correspond to A. glorifica subspecies of the Piatra
Craiului Mountains (gl), A. g. vranceana (vr), A. livida subspecies of the Bucegi Mountains (li), A. l. deaniana (de), A. l.
julii (ju), A. regalis subspecies of the Piatra Mare and Postăvaru Mountains (re), A. r. doftanae (do), A. r. microstoma (mi),
A. r. nordsiecki (no), and A. r. petrensis (pe). Arrows show the assumed directions of range expansion. Major mountains
are identified.
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isolation they represent divergent evolutionary line-
ages, and can be regarded as distinct subspecies.

Our molecular phylogenetic study revealed that
dextral taxa of Alopia did not evolve monophy-
letically, but via multiple independent inversions.
Although the establishment and stabilization of
reversed populations happened rarely, this was much
more common than in any other genera of clausiliids
(Gittenberger, Hamann & Asami, 2012). Based on
the COI tree (Fig. 2) we calculate that, considering
a parsimonious scenario of only sinistral to dextral
inversions, chirality changes gave rise to new phylo-
genetic lineages on at least 13 occasions during the
evolution of the genus. This clearly indicates the
decreased stability of chiral fixation in the species of
clades B and D. Because of this unique feature and
the availability of enantiomorph pairs, these Alopia
taxa can become valuable subjects of genetic studies
aimed at clarifying the molecular background of
chiral determination and its fixation.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article:

Appendix S1. COI-based topology and nomenclatural status of the Alopia taxa studied.
Appendix S2. Branch support values of the COI clades in Alopia.
Appendix S3. Putative root positions in the COI phylogram of Alopia.
Appendix S4. Comparison of divergence times in the genera Carinigera and Alopia, based on their COI
sequences.
Appendix S5. Correlations between COI topology, morphology, and geographical distribution of Alopia species.
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box where replacement text can be entered. 

How to use it 

 Highlight a word or sentence. 

 Click on the Replace (Ins) icon in the Annotations 

section. 

 Type the replacement text into the blue box that 

appears. 

This will open up a panel down the right side of the document. The majority of 

tools you will use for annotating your proof will be in the Annotations section, 

pictured opposite. We’ve picked out some of these tools below: 

 

2. Strikethrough (Del) Tool – for deleting text. 

 

Strikes a red line through text that is to be 

deleted. 

How to use it 

 Highlight a word or sentence. 

 Click on the Strikethrough (Del) icon in the 

Annotations section. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Add note to text Tool – for highlighting a section 

to be changed to bold or italic. 

 

Highlights text in yellow and opens up a text 

box where comments can be entered. 

How to use it 

 Highlight the relevant section of text. 

 Click on the Add note to text icon in the 

Annotations section. 

 Type instruction on what should be changed 

regarding the text into the yellow box that 

appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Add sticky note Tool – for making notes at 

specific points in the text. 

 

Marks a point in the proof where a comment 

needs to be highlighted. 

How to use it 

 Click on the Add sticky note icon in the 

Annotations section. 

 Click at the point in the proof where the comment 

should be inserted. 

 Type the comment into the yellow box that 

appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://get.adobe.com/reader/


 

USING e-ANNOTATION TOOLS FOR ELECTRONIC PROOF CORRECTION  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For further information on how to annotate proofs, click on the Help menu to reveal a list of further options: 

5. Attach File Tool – for inserting large amounts of 

text or replacement figures. 

 

Inserts an icon linking to the attached file in the 

appropriate pace in the text. 

How to use it 

 Click on the Attach File icon in the Annotations 

section. 

 Click on the proof to where you’d like the attached 

file to be linked. 

 Select the file to be attached from your computer 

or network. 

 Select the colour and type of icon that will appear 

in the proof. Click OK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Add stamp Tool – for approving a proof if no 

corrections are required. 

 

Inserts a selected stamp onto an appropriate 

place in the proof. 

How to use it 

 Click on the Add stamp icon in the Annotations 

section. 

 Select the stamp you want to use. (The Approved 

stamp is usually available directly in the menu that 

appears). 

 Click on the proof where you’d like the stamp to 

appear. (Where a proof is to be approved as it is, 

this would normally be on the first page). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Drawing Markups Tools – for drawing shapes, lines and freeform 

annotations on proofs and commenting on these marks. 

Allows shapes, lines and freeform annotations to be drawn on proofs and for 

comment to be made on these marks.. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How to use it 

 Click on one of the shapes in the Drawing 

Markups section. 

 Click on the proof at the relevant point and 

draw the selected shape with the cursor. 

 To add a comment to the drawn shape, 

move the cursor over the shape until an 

arrowhead appears. 

 Double click on the shape and type any 

text in the red box that appears. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




