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Abstract

We analyzed the structure of foliicolous lichen communities in the northern-

most lowland forest of the Neotropics, Los Tuxtlas Tropical Biology Station

in Veracruz, Mexico, and its dependence on phorophyte and microclimate.

Along a 420-m long transect with 15 equidistant sampling points, within a

10 m radius of each point, we sampled a total 137 phorophytes and 411 leaves.

The phorophytes represented 13 species, with diverse leaf traits regarding

size, texture, presence of hairs and/or glands, and longevity, including:

Astrocaryum mexicanum (Arecaceae), Chamaedorea ernesti-augustii

(Arecaceae), Costus scaber (Costaceae), Guarea glabra (Meliaceae), Heliconia

latispatha (Heliconiaceae), Monstera acuminata (Araceae), Myriocarpa

longipes (Urticaceae), Piper hispidum (Piperaceae), Poulsenia armata

(Moraceae), Pseudolmedia oxyphyllaria (Moraceae), Salacia megistophylla

(Celastraceae), Siparuna thecaphora (Siparunaceae) and Syngonium podo-

phyllum (Araceae). NDMS ordination and cluster analysis grouped the pho-

rophytes into hierarchically structured clusters variously correlated with

microsite, phorophyte species and foliicolous lichen species richness. Indica-

tor species analysis revealed statistically significant foliicolous lichen species

characteristic for terminal clusters and for phorophyte species. We conclude

that the principle of “diversity begets diversity” may apply, in that

phorophyte diversity influences the diversity of foliicolous lichen communi-

ties through the manifestation of subtle phorophyte preferences, best seen in

well-developed communities on leaves with higher longevity. Thus, well-

preserved forest ecosystems, with a higher diversity of suitable phorophytes,

will support a higher diversity of foliicolous lichens, a phenomenon that

extents to epiphytes in general.
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1 | INTRODUCTION

Leaf-dwelling or foliicolous lichens inhabit tropical and
subtropical humid to wet forests (Herrera-Campos
et al., 2004; Lücking, 2001a, 2008; Pinokiyo, Singh, &
Singh, 2006; Santesson, 1952). Currently more than
800 species are known worldwide, more than 600 of
which are found in the Neotropics (Lücking, 2008).
Foliicolous lichens exhibit striking patterns of small-scale
diversity, with up to 50 species found on a single leaf,
equivalent to 5% of known species, and up to 300 species
at a single site (Lücking, 1999a, 2001b, 2008; Lücking &
Matzer, 2001).

The maintenance of such high levels of diversity is
ascribed to the dynamics of leaf shedding and replace-
ment in tropical forests, which requires foliicolous
lichens to continuously establish de novo micro-
communities on individual leaves, thus preventing com-
petitive exclusion (Cáceres & Lücking, 2006;
Lücking, 2001a, 2008; Mežaka, Bader, Salazar-Allen, &
Mendieta-Leiva, 2020; Rogers, 1989; Rogers &
Barnes, 1986). This mechanism can be compared to the
concept of intermediate disturbances fostering tree diver-
sity in tropical forests (Connell, 1978; Molino &
Sabatier, 2001), the intermediate disturbances provided
by stochastically distributed tree fall gaps resulting in a
mosaic of successional stages. The intermediate distur-
bance hypothesis has been challenged (Fox, 2013),
although it is based on straightforward assumptions.
While an undisturbed community would go through vari-
ous successional stages in its entirety, one of the stages
exhibiting the highest level of diversity, intermediate dis-
turbances within a community result in the simultaneous
maintenance of different successional stages in a stochas-
tic spatial arrangement, thus exhibiting a higher diversity
than any of its individual successional stages. The reason
is because undisturbed community development leads to
local extinction of species characteristic of early and
intermediate successional stages, whereas a successional
mosaic maintains these species in a patchy pattern.

The successional dynamics of foliage in tropical rain
forests, with leaf longevity mostly not exceeding 3 years
(Bentley, 1979; Hegarty, 1990; Kikuzawa, 1996; Rogers &
Clifford, 1993; Shiodera, Rahajoe, & Kohyama, 2008; Wil-
liams, Field, & Mooney, 1989; Xu et al., 2017), precisely
exhibits this dynamic pattern: while the leaf substrate is
permanently available, it undergoes substantial, continu-
ous, individual turnover. As a result, foliicolous lichens
and other organisms, including bryophytes (mostly liver-
worts), fungi, algae, cyanobacteria and invertebrates,
have evolved complex and highly diverse micro-
communities, in what has been dubbed the
“phyllosphere” (Coley & Kursar, 1996; Freiberg, 1998;

Lücking, 2001a; Lücking & Bernecker-Lücking, 2000;
Ruinen, 1961; Sonnleitner, Dullinger, Wanek, &
Zechmeister, 2009).

Microhabitat preferences of foliicolous lichens largely
depend on microclimate, but also on phorophyte features
(Lücking, 1998a, 1998b, 1999b, 1999c, 2001a, 2008;
Pinokiyo et al., 2006). Three macrocommunities can be
distinguished in the shady understory, in smaller light
gaps, and in the exposed canopy, with distinct species
composition (Lücking, 1995a, 1999a, 1999c;
Sipman, 1997). In disturbed habitats, foliicolous lichen
communities generally become depauperate or disappear
(Cáceres, Maia, & Lücking, 2000; Lücking, 1995b;
Pinokiyo et al., 2006), although rich communities can
develop on non-native phorophytes when environmental
conditions remain highly favorable (Sanders &
Llop, 2020). Due to their sensitivity to environmental
parameters, foliicolous lichens are thus excellent indica-
tors of ecosystem health (Coley & Kursar, 1996; Hawk-
sworth, Iturriaga, & Crespo, 2005; Lücking, 1997;
Pinokiyo et al., 2006; Seaward, 1996). Unfortunately,
tropical forests are increasingly replaced by other forms
of land use, and Mexico is no exception: deforestation
has caused the loss of approximately 90% of the tropical
forest, including in the Los Tuxtlas Biosphere Reserve,
which represents the northern limit of tropical wet forest
in the Neotropics (Arroyo-Rodríguez, Dunn, Benitez-
Malvido, & Mandujano, 2009; Dirzo & Garcia, 1992;
Durand & Lazos, 2008). Clear-cutting, selective logging
and managed regrowth lead to a decrease in phorophytes
suitable to support rich epiphyte communities, including
foliicolous lichens, thus decreasing the functional diver-
sity of forest ecosystems and their potential for ecosystem
services.

In the present study, we assessed the role of pho-
rophytes as microniches driving the diversity of
foliicolous lichen communities. This approach was
based on the hypothesis that “diversity begets diversity”
(Palmer & Maurer, 1997; Whittaker, 1975), a concept
that can be applied to different situations, including
host–parasite interactions (Janz, Nylin, & Wahlberg,
2006), environmental heterogeneity (Stevens &
Tello, 2011) and functional diversity (Maynard
et al., 2017). In the case of epiphyte-phorophyte relation-
ships, one could interpret phorophyte composition and
diversity as environmental heterogeneity, as pho-
rophytes provide a micro-environment for epiphytes;
therefore, phorophyte diversity should “beget” epiphyte
diversity (Benavides, Vasco, Duque, & Duivenvoorden,
2011; Köster, Nieder, & Barthlott, 2011; Nieder,
Engwald, & Barthlott, 1999; Sáyago et al., 2013). Limited
studies suggest the diversity of bark-dwelling lichens
does depend on phorophyte diversity (Cáceres,
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Lücking, & Rambold, 2007; Cornelissen & Ter
Steege, 1989; Rosabal, Burgaz, & Reyes, 2013; Soto-
Medina, Lücking, & Bolaños-Rojas, 2012). As a conse-
quence, one would postulate that anthropogenic alter-
ations that reduce phorophyte diversity also reduce
epiphyte diversity, a hypothesis supported by studies on
vascular epiphytes and lichens (Ardila-Ríos, Moncada, &
Lücking, 2015; Merwin, Rentmeester, &
Nadkarni, 2003). For foliicolous lichens in a Costa Rican
rain forest, Lücking (1998b) found subtle phorophyte
preferences, and lichen community patterns were corre-
lated with phorophyte species when microclimatic
parameters were comparable. However, an assessment
of phorophyte composition as driver of foliicolous lichen
community structure within a microclimatic gradient
has not yet been made. To that end, we sampled
foliicolous lichen communities on 13 phorophyte species
in a lowland rain forest in Los Tuxtlas Biosphere
Reserve, representing a broad range of leaf characteris-
tics, testing the null hypothesis that phorophyte species
have no influence on foliicolous lichen community
structure and diversity.

2 | MATERIAL AND METHODS

2.1 | Study site

The study was carried out in the state of Veracruz, Mex-
ico, at the Estación de Biología Tropical “Los Tuxtlas”
(Los Tuxtlas Tropical Biology Station), administrated by
the Instituto de Biología of the Universidad National
Autónoma de México (UNAM; Dirzo, González-Sor-
iano, & Vogt, 1997; Estrada, Coates-Estrada, & Martínez-
Ramos, 1985). The station forms part of the Los Tuxtlas
Biosphere Reserve and is located on the eastern slope of
San Martín Tuxtlas Volcano, along the coastal plain of
the Gulf of Mexico, between 18�340 and 18�360 N and
95�040 and 95�090 W (Figure 1). The area covers an altitu-
dinal range between 150 and 700 m (Campos, Kelly, &
Delgado, 2004; Cedillo & Durand, 2004; Estrada
et al., 1985). The climate is warm-humid, with an annual
average temperature of 27�C, although at higher eleva-
tions the mean temperature drops to 18�C. Annual rain-
fall amounts to almost 5,000 mm, with a drier season
from March to May. From September to February, the

FIGURE 1 Map of the study area

and its location in Mexico. EBTLT,

Estación Biológica Tropical “Los
Tuxtlas”; P71, Parcela 71 (study site).

Coordinates indicate (clockwise) N, E, S,

W [Color figure can be viewed at

wileyonlinelibrary.com]
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area is affected by the displacement of cold and humid
air masses from the north (Lot-Helgueras, 1976; Soto &
Gama, 1997).

Los Tuxtlas represents the northernmost extension of
neotropical lowland rain forest and includes a diversity of
vegetation types, such as (semi-) evergreen lowland rain
forest (selva alta perennifolia, selva mediana sub-
perennifolia), mountain and pine mesophilic forest (selva
mesófila), deciduous lowland forest (selva mediana
caducifolia), as well as mangroves, coastal oak, and
induced and cultivated pasture, resulting in a diversity of
habitats, such as lakes, streams, waterfalls, wetlands,
lagoons and rivers (Bongers, Popma, Del Castillo, &
Carabias, 1988; Ibarra-Manríquez, Martínez-Ramos,
Dirzo, & Núñez-Farfán, 1997; Vázquez, Campos,
Armenta, Carvajal, & I, 2010). Like many other regions
in Mexico and the Neotropics, Los Tuxtlas faces pressure
through urbanization, expansion of agricultural and live-
stock areas, introduction of exotic and invasive species
and exploitation such as mining, hunting and selective
logging (Dirzo & Mendoza, 2004; Guevara, Laborde, &
Sánchez, 2000; Guevara, Meave, & Castillo, 1994;
Siemens, 2009; Vázquez et al., 2010). Several new species
of foliicolous lichens were discovered in this reserve
(Herrera-Campos & Lücking, 2002; Herrera-Campos,
Martínez-Colín, Bárcenas-Peña, & Lücking, 2004).

2.2 | Sampling

The study was performed in a portion of largely
undisturbed evergreen rain forest (“selva alta
perennifolia”), located at 18�3508600 N and 95�0601400 W,
in the so-called “parcela 7100, passing the Rubén Sánchez
ranch. We marked a 420-m long transect with 15 sam-
pling points, set apart in equal distance of 30 m each. At
each point, a circle with a radius of 10 m was drawn and
all phorophytes belonging to 13 pre-selected species
(Table 1) were sampled, randomly selecting three mature
leaves from different branches of each phorophyte. For
palm leaves (Astrocaryum, Chamaedorea), we randomly
selected three leaflets, and for Heliconia leaves, we col-
lected a single blade and subsequently randomly cut out
three 10 cm × 10 cm sections for study. Pre-selection of
phorophytes was necessary to allow for meaningful statis-
tical analysis of phorophyte type, since an entirely ran-
dom approach would result in most samples representing
unique phorophytes sampled only once.

The phorophyte species were pre-selected based on
the following criteria: (a) sufficient abundance to allow
for repeated sampling at the 15 transect points;
(b) sufficient coverage of foliicolous lichens on mature
leaves and (c) between-species variation of phorophyte
features such as leaf size, surface texture, presence of

TABLE 1 Pre-selected phorophyte species sampled along a transect of 420 m, indicating growth form and frequency of sampled

individuals

Phorophyte species (family) Growth type Individuals sampled Leaves sampleda

Astrocaryum mexicanum Liebm. ex Mart.
(Arecaceae)

Palm 11 33

Chamaedorea ernesti-augusti H. Wendl.
(Arecaceae)

Palm 15 45

Costus scaber Ruiz & Pav. (Costaceae) Herb 11 33

Guarea glabra Vahl (Meliaceae) Tree 5 15

Heliconia latispatha Benth. (Heliconiaceae) Herb 4 12

Monstera acuminata K. Koch (Araceae) Climber 14 42

Myriocarpa longipes Liebm. (Urticaceae) Treelet 13 39

Piper hispidum Sw. (Piperaceae) Tree 14 42

Poulsenia armata (Miq.) Standl. (Moraceae) Tree 9 27

Pseudolmedia oxyphyllaria J.D. Smith
(Moraceae)

Tree 12 36

Salacia megistophylla Standl. (Celastraceae) Treelet 11 33

Siparuna thecaphora (Poepp. & Endl.) A. DC.
(Siparunaceae)

Tree 7 21

Syngonium podophyllum Schott (Araceae) Climber 11 33

Total 137 411

aLeaves sampled also refers to leaflets in case of palms and 10 cm × 10 cm portions in case of Heliconia leaves.
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hairs and/or glands, leaf longevity (Conran, 1997;
Lücking, 1998a, 1998b). Phorophytes with sufficient cov-
erage of foliicolous lichens were preferred as only these
allowed to discern subtle differences in phorophyte pref-
erences, given that low-diversity phorophytes typically
support only early successional stages of foliicolous
lichen communities, encompassing the same set of spe-
cies (Lücking, 1998b). Given the individual distribution
and abundance of each phorophyte species along the
transect points, this resulted in a total of 137 sampled
phorophytes, representing 411 leaves or leaf portions,
with between four and 15 sampled phorophytes (between
12 and 45 leaves or leaf samples) per phorophyte species
(Table 1).

Following Lücking (1998a, 1999c), we used relative
light intensity as proxy to characterize microsite. Each of
the 15 transect points was considered a separate measur-
ing point. Relative light intensity was determined using
an EXTECH INSTRUMENTS 4010 luxmeter. Measure-
ments were made under conditions of diffuse light
(homogeneous cloud cover), by measuring each of the
sampling points three times at different times in relation
to the light intensity under free sky. In addition to deter-
mining relative light intensity as percentage values, the
resulting mean values were also transformed into five
categories of relative light intensity, in order to allow
comparison with the microsite indices proposed by
Lücking (1997) (Table 2). This approach is largely analo-
gous to the analysis of hemisphere photographs and
results in a level of resolution appropriate for microsite
characterization at community level.

2.3 | Processing and identification of
foliicolous lichen material

The collected leaves were pressed and air-dried at room
temperature until completely dry. Subsequently, the
lichens present on each leaf were identified using the
monograph of Lücking (2008) and the world-wide rapid
color guides of foliicolous lichens (Lücking & Martinez-
Colín, 2004). In order to observe morphological features,

we employed an OLYMPUS SZ-STU1 stereomicroscope,
and for anatomical characters based on thin sections, we
used an OLYMPUS BH-2 compound microscope. When
applicable, for spot tests, we applied 10% KOH and
Lugol's solutions. Only thalli with structures allowing
their identification were studied; however, since single
leaves usually support hundreds of individuals
(Lücking & Matzer, 2001), in most cases unidentifiable
thalli represented taxa present on the same leaves with
identifiable individuals. As a result, a total of 4,431 occur-
rences of species on individual leaves were recorded. All
determination work was performed in the lichen labora-
tory at the Instituto de Biología, UNAM.

2.4 | Data analysis

Based on the results of the taxonomic identifications, we
established a primary matrix of foliicolous lichen species
versus 137 phorophyte samples, using the number of
leaves per phorophyte on which a species was found
(between 0 and 3) as proxy for abundance (Table S1). In
a secondary matrix of parameters versus 137 phorophyte
samples (Table S2), we recorded the following three
parameters: (a) phorophyte species, (b) mean relative
light intensity and (b) microsite index (according to
Table 2).

To visualize foliicolous lichen community structure
based on species abundance data, we performed non-
metric multidimensional scaling (NMDS) ordination and
cluster analysis, using the Sørensen distance measure in
both approaches and flexible beta (set to −0.25) as clus-
tering algorithm (McCune, Grace, & Urban, 2002;
McCune & Mefford, 1999). For comparisons of microsite
parameters and foliicolous lichen species richness
between groups formed in the NMDS and cluster dendro-
gram and between phorophyte species, we employed
Kruskal-Wallis nonparametric ANOVA (H test), as well
as a Chi Square test for phorophyte species composition
and a randomized Monte Carlo indicator species analysis
for foliicolous lichen species composition. In order to
compare the microsite categories derived from our study

TABLE 2 Transformation of mean relative light intensities measured at the sampling points into microsite categories proposed by

Lücking (1997)

Range of measured mean values Microsite index Microsite classification Corresponding site classification

0–2% 1 Shady understory Closed forest

2–5% 2 Transition toward light gaps

5–10% 3 Light gaps Transition toward open vegetation

10–30% 4 Transition toward canopy

30–100% 5 Canopy Open vegetation
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data with those previously established for the same
foliicolous lichen species by Lücking (1997), we per-
formed non-parametric Spearman rank correlation.

Multivariate and statistical analyzes were performed
in PC-Ord 6.0 (McCune & Mefford, 1999) and Statistica™
6.0 (StatSoft, Tulsa; TIBCO Software).

3 | RESULTS

3.1 | Biotic inventory

We identified a total of 191 species of foliicolous lichens
on the 137 studied phorophytes (Table S3), corresponding
to those reported earlier from the study area (Herrera-
Campos, Lücking, et al., 2004). The 191 species represen-
ted 40 genera, 15 families and eight orders according to
current classification schemes (Lücking, 2008; Lücking,
Hodkinson, & Leavitt, 2017). The highest number of gen-
era and species was found in the families Gomphillaceae,
Pilocarpaceae and Strigulaceae, respectively. The most
diverse genera were Porina (27 species), Strigula (18),
Fellhanera (10) and Tricharia (7).

Based on the number of leaves on which each species
was found, the frequency histogram showed a log-normal
shape, except for the lowest category (one leaf), which could
not be further subdivided (Figure 2). Themost abundant spe-
cies was Porina karnatakensis, the only taxon found onmore
than half of the studied leaves. Nine further species were

found on at least 25% of all leaves, including the common
and widespreadGyalectidium filicinum, Porina alba, Strigula
smaragdula and Porina epiphylla (Table 3). A total of 71 spe-
cies were found on four or fewer leaves (i.e., less than 1% of
all leaves), including 38 on a single leaf only (Table S1). In
terms of the number of phorophytes with a given species pre-
sent,Gyalectidium filicinumwas the most frequent (95 out of
137 phorophytes), followed by P. alba (94), P. karnatakensis
(91), P. epiphylla (76) and Strigula smaragdula (69). This sug-
gests differentiated population structures between species,
with some frequent species more dispersed and others more
clustered on individual phorophytes.

3.2 | Community structure

NMDS ordination showed no clear clustering of the
137 studied phorophytes but distinctive patterns

FIGURE 2 Frequency histogram of foliicolous lichen species

found on the studied phorophytes, based on the number of leaves

on which each species was encountered [Color figure can be

viewed at wileyonlinelibrary.com]

TABLE 3 The 25 most frequent foliicolous lichen species found

in this study

Species Leaves [%]

Porina karnatakensis 214 54

Gyalectidium filicinum 189 47

Porina alba 186 47

Strigula smaragdula 152 38

Porina epiphylla 144 36

Sporopodium leprieurii 123 31

Porina rubentior 120 30

Tricharia vainioi 114 29

Mazosia rotula 108 27

Anisomeridium foliicola 103 26

Phyllobathelium firmum 85 21

Arthonia leptosperma 84 21

Porina atrocoerulea 82 21

Tricharia urceolata 81 20

Trichothelium minus 81 20

Coenogonium subluteum 78 20

Fouragea filicina 78 20

Trichothelium epiphyllum 78 20

Mazosia melanophthalma 77 19

Aulaxina minuta 67 17

Strigula phyllogena 64 16

Gyalectidium imperfectum 61 15

Porina pseudoapplanata 60 15

Porina rufula 60 15

Strigula nematora 57 14

Note: [%] refers to the relative proportion among all 411 leaves.
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regarding the distribution of particular phorophyte spe-
cies (Figure 3). Most phorophytes were concentrated in
one or two of the quadrants, which was particularly obvi-
ous for Salacia. We found significant axis correlations for
relative light intensity and microsite, the left portion of
the diagram representing phorophytes in more illumi-
nated microsites. Both correlations were almost identical,
suggesting that microsite is an appropriate proxy for rela-
tive light intensity. There was also a significant correla-
tion with foliicolous lichen species richness per
phorophyte toward the lower right quadrant, paralleled
by a significant correlation with Salacia phorophytes
concentrated in that quadrant. Relative light intensity
and microsite category were not correlated with
phorophyte species (Kruskal-Wallis ANOVA: H = 11.01,
p = .5279; H = 10.78, p = .5476). However, lichen species
richness was strongly correlated with phorophyte species
(Kruskal-Wallis ANOVA: H = 38.72, p = .0001), with
Astrocaryum, Poulsenia, Pseudolmedia and Salacia dis-
tinctly above and Chamaedorea, Siparuna and Syn-
gonium distinctly below average.

Indicator species analysis using phorophyte species as
grouping variable revealed statistically significant prefer-
ences for 59 out of the 191 foliicolous lichen species,

involving 10 of the 13 phorophyte species (Table 4). Most
of these (50) were concentrated among four phorophyte
species, Astrocaryum (10 species), Heliconia (14),
Poulsenia (7) and Salacia (19). There was a notable con-
centration of certain genera on certain phorophyte spe-
cies, such as Fellhanera on Heliconia and Strigula on
Salacia.

Cluster analysis, in combination with the NMDS ordi-
nation, arranged the 137 phorophytes into six main clus-
ters (A–F), with super- and subdivisions at up to six
hierarchical levels, most of them in Cluster A (Figure 4).
Two of the final subclusters, B01 and C02, consisted
exclusively of a single phorophyte species each,
Astrocaryum and Salacia, respectively. Several other sub-
clusters had a predominant phorophyte species, whereas
others were more diverse.

The cluster dendrogram exhibited significant hierar-
chical structure in terms of phorophyte species and
microsite (relative light intensity), as well as correlation
with species richness per phorophyte (Figure 5;
Table S4). Relative light intensity correlated with super-
divisions and the main cluster divisions, plus one final
subdivision in Cluster A (Figure 5a). A similar pattern
was observed for foliicolous lichen species richness, with

FIGURE 3 NMDS

ordination of the

137 phorophytes based on

foliicolous lichen species

abundance. The 13 different

photophyte species are indicated

by different symbols. The arrows

indicate axis correlations as

follows: L, mean relative light

intensity; M, microsite index; R,

foliicolous lichen species

richness per phorophyte; S,

Salacia [Color figure can be

viewed at

wileyonlinelibrary.com]
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further correlations with final subdivisions in Clusters A,
E and F (Figure 5b). In contrast, the relative frequency of
phorophyte species was more strongly correlated with
divisions throughout all levels, being absent at those
lower levels where the main factors for cluster subdivi-
sions were relative light intensity and/or lichen species
richness (Figure 5c). Ten of the 13 phorophyte species
were correlated at some level with cluster and/or sub-
cluster formation, in final subclusters particularly
Astrocaryum, Chamaedorea, Guarea, Monstera, Piper and
Salacia (Figures 4 and 5c).

Based on indicator species analysis, foliicolous lichen
species discriminated between clusters at almost all hier-
archical levels (Figure 6). The highest number of statisti-
cally significant, discriminant species was found for the
higher-level Clusters B (B01+B02), C (C01+C02+S), and
D+E (D01+E01+E02), and for the terminal Clusters A04,
B01, B02, C01, C02, D01 and F03 (Figure 6). Two of the
three higher-level clusters (B01+B02, C01+C02+S) corre-
late with relative light intensity (medium to high) and
species richness (moderate to high), whereas only one of
the terminal clusters (D01) correlates with relative light

TABLE 4 List of foliicolous lichen species with statistically significant preferences for a given phorophyte species based on indicator

species analysis

Species Phorophyte p-value Species Phorophyte p-value

Arthonia accolens Astrocaryum 0.0010 Lyromma palmae Piper 0.0190

Echinoplaca diffluens Astrocaryum 0.0050 Caprettia confusa Poulsenia 0.0020

Aulaxina quadrangula Astrocaryum 0.0090 Strigula nematora Poulsenia 0.0040

Opegrapha filicina Astrocaryum 0.0110 Byssoloma leucoblepharum Poulsenia 0.0120

Arthonia mira Astrocaryum 0.0160 Strigula antillarum Poulsenia 0.0160

Mazosia melanophthalma Astrocaryum 0.0200 Chroodiscus australiensis Poulsenia 0.0170

Porina pseudoapplanata Astrocaryum 0.0230 Porina alba Poulsenia 0.0320

Porina vezdae Astrocaryum 0.0330 Byssolecania variabilis Poulsenia 0.0410

Trichothelium epiphyllum Astrocaryum 0.0330 Trichothelium minus Pseudolmedia 0.0390

Sporopodium citrinum Astrocaryum 0.0380 Bacidina hypophylla Salacia 0.0010

Porina atriceps Costus 0.0300 Porina leptospermoides Salacia 0.0010

Microtheliopsis uleana Guarea 0.0020 Strigula janeirensis Salacia 0.0010

Porina rubescens Guarea 0.0020 Strigula prasina Salacia 0.0010

Mazosia dispersa Guarea 0.0450 Arthonia leptosperma Salacia 0.0020

Asterothyrium atromarginatum Heliconia 0.0010 Coenogonium hypophyllum Salacia 0.0030

Gyalectidium catenulatum Heliconia 0.0030 Porina imitatrix Salacia 0.0030

Trichothelium alboatrum Heliconia 0.0060 Strigula microspora Salacia 0.0030

Fellhanera bouteillei Heliconia 0.0160 Byssolecania deplanata Salacia 0.0040

Fellhanera rhapidophylli Heliconia 0.0160 Porina leptosperma Salacia 0.0040

Fellhanera subfuscatula Heliconia 0.0180 Bapalmuia palmularis Salacia 0.0060

Porina thaxteri Heliconia 0.0180 Strigula phyllogena Salacia 0.0070

Vezdaea foliicola Heliconia 0.0180 Porina karnatakensis Salacia 0.0100

Gyalectidium caucasicum Heliconia 0.0290 Psoroglaena epiphylla Salacia 0.0110

Bacidina scutellifera Heliconia 0.0350 Byssolecania fumosonigricans Salacia 0.0190

Byssoloma chlorinum Heliconia 0.0350 Strigula macrocarpa Salacia 0.0200

Cryptothecia candida Heliconia 0.0350 Strigula viridis Salacia 0.0290

Asterothyrium monosporum Heliconia 0.0400 Anisomeridium foliicola Salacia 0.0420

Sporopodium leprieurii Heliconia 0.0430 Coenogonium labyrinthicum Salacia 0.0480

Porina octomera Monstera 0.0190 Coenogonium subluteum Siparuna 0.0050

Gyalectidium filicinum Siparuna 0.0110

Note: For full table including IV values, mean and standard deviation, see Table S5.
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FIGURE 4 Cluster dendrogram of the 137 phorophytes based on foliicolous lichen species abundance. The hierarchical levels are

indicated by number/letter combinations (orange), with the main clusters in blue and the terminal clusters in shades of gray [Color figure

can be viewed at wileyonlinelibrary.com]
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intensity (high) and two (D01, F03) with species richness
(moderate to low; Figure 5a,b). On the other hand, two
of the higher-level and four of the terminal clusters
correlate with phorophyte: B01+B02 with Astrocaryum,
C01+C02+S with Salacia, A04 with Piper, B01 with
Astrocaryum, C01 with Guarea and Monstera and C02
with Salacia (Figure 5c). Foliicolous lichen species com-
position therefore appears to be driven primarily by
phorophyte, particularly in terminal clusters, and second-
arily by microclimate, in higher-level clusters.

The discriminant species of higher-level Cluster B
represented a diverse taxonomic array, representing
19 genera in 10 families, whereas in cluster C, nine gen-
era and eight families were present, and in Cluster D+E,
17 genera and six families (Table S5). Three terminal
clusters were largely characterized by different species of
Gomphillaceae: B01 (Aulaxina, Echinoplaca, Tricharia),
F03 (Gyalectidium, Tricharia) and D01 (Asterothyrium,
Echinoplaca, Tricharia). D01 and A04 also including dis-
criminant species of Pilocarpaceae (Fellhanera,
Byssoloma), as did C02 (Bapalmuia, Byssolecania). The
latter, as well as B02 and C01 featured Porinaceae (Por-
ina), and C01 also Roccellaceae (Mazosia) and C02
Strigulaceae (Strigula).

Of the 191 species of foliicolous lichens found in this
study, 141 have published microsite indices
(Lücking, 1997). Comparing the microsite categories
inferred for these species from the data on relative light
intensity in this study (mean per species) resulted in a
statistically highly significant linear correlation

FIGURE 5 (a–c) Correlation of the major and terminal

clusters of the cluster dendrogram (Figure 4) with three

microenvironmental and community parameters as based on

statistical group comparisons (see also Table S4) [Color figure can

be viewed at wileyonlinelibrary.com]

FIGURE 6 Correlation of the major and terminal clusters of

the cluster dendrogram (Figure 4) with the number of statistically

significant indicator species per cluster (see also Table S5) [Color

figure can be viewed at wileyonlinelibrary.com]
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(RSpearman = .54, p < .001). However, we observed a less
pronounced slope in the inferred microsite categories,
with species with a published index of one oscillating
between 1.5 and 2 in the inferred categories and species
with indices between three and five oscillating between
2.5 and 4 in the inferred categories (Figure 7).

4 | DISCUSSION

This work is one of few investigating the community
structure of foliicolous lichens in wet tropical forest. Pre-
vious studies were carried out in Australia
(Conran, 1997; Conran & Rogers, 1983; Rogers &
Barnes, 1986), Guatemala (Barillas, Lücking, &
Winkler, 1993), Costa Rica (Lücking, 1998a, 1998b;
Lücking, 1999a, 1999b, 1999c) and Brazil (Cáceres
et al., 2000). However, this is the first study to simulta-
neously analyze the influence of microsite and
phorophyte species on foliicolous lichen community
structure based on a stochastic sample representing a
microclimatic gradient.

The total of 191 species found in this work is one of
the highest numbers reported at a global level. Higher
numbers are only known from La Selva Biological Station
in Costa Rica (293 species; Lücking, 1999a, 2001b), Jatun
Satcha Biological Station in Ecuador (232;
Lücking, 1999d) and the Botarrama trail in Braulio
Carrillo National Park in Costa Rica (217;
Lücking, 1999b). The somewhat lower richness docu-
mented for Los Tuxtlas Biological Station is likely due to
this region representing the northern limit of the

neotropical lowland rain forest, with certain species not
found at these higher latitudes (Herrera-Campos,
Lücking, et al., 2004).

Composition and community structure of foliicolous
lichens at Las Tuxtlas were overall similar to those found
at the aforementioned sites in Costa Rica and Ecuador
(Lücking, 1998a, 1998b, 1999a, 1999b, 1999d). The most
abundant species were shared between these localities,
including Gyalectidium filicinum, Porina alba,
P. epiphylla, P. karnatakensis and Strigula smaragdula,
suggesting that our findings can be generalized within
broader area in the Neotropics. Santos, Cáceres, and
Lücking (2020) demonstrated that the foliicolous lichen
biota of Mexico is part of a larger biogeographic region
encompassing all of Central America and northwestern
South American (Chocó). The significant correlation
between published microsite indices for foliicolous
lichens (Lücking, 1997) and the microsite categories
derived from mean relative light intensity measurements
in the present work also demonstrates that microsite
preferences of these lichens are consistent across their
distribution range.

Foliicolous lichen communities in tropical rain forests
are largely structured by three factors: (a) microclimatic
parameters such as relative light intensity and humidity,
(b) phorophyte features such as leaf surface structure and
leaf longevity and (c) primary succession
(Lücking, 1998a, 1998b, 1999b, 1999c; Mežaka
et al., 2020). In terms of community parameters, these
factors are reflected in species composition (microcli-
mate, phorophyte) and species richness (phorophyte, suc-
cession). The phorophyte species thereby influences both
species composition, through leaf surface characteristics,
and species richness, through leaf longevity. The latter
primarily determines how far primary succession
develops and how many species accumulate in an indi-
vidual community (Conran & Rogers, 1983;
Lücking, 1998a, 1998b, 1999b; Rogers, 1989; Rogers &
Barnes, 1986).

Our analysis allowed us to discern the influence of
the three main factors on community structure at various
hierarchical levels. Relative light intensity (microsite)
was correlated with the formation of community clusters
at high and intermediate levels, dividing the clusters into
groups corresponding to the shady understory (low light
levels; Groups A, F), to small light gaps (medium light
levels; Groups B, E) and to the transition to canopy (high
light levels; Group D). In contrast, phorophyte species
was largely correlated with the formation of terminal
community clusters, particularly in Groups B and C, but
also A and F, although this effect was discernable at
higher-level clusters as well. The distribution of species
richness among clusters indicated a potential influence of

FIGURE 7 Variation of inferred microsite category based on

relative light intensity for species with previously published

microsite indices (Lücking, 1997). Boxplot indicates mean, 25%

quartile and minimum/maximum [Color figure can be viewed at

wileyonlinelibrary.com]
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leaf longevity. Although precise data on leaf longevity are
not available for most of the phorophytes studied here,
some conclusions can be made from the literature. Thus,
species of Astrocaryum, Monstera and Salacia are usually
associated with high (> 50 months), those of Guarea,
Heliconia, Pseudolmedia and Syngonium with medium
(30–50 months), those of Chamaedorea and Piper with
medium to low (15–30 months) and those of Costus and
Siparuna with low (< 15 months) leaf longevity
(Ataroff & Schwarzkopf, 1992; Bentley, 1979; Bongers
et al., 1988; Dirzo, Gomez-Vázquez, & Castelan-
Sanchez, 1997; Hartshorn, 1991; Lücking, 1998a;
Nicotra, 1999; Nicotra, Chazdon, & Montgomery, 2003;
Piñero, Martínez-Ramos, Mendoza, �Alvarez-Buylla, &
Sarukhan, 1986; Piñero, Martínez-Ramos, &
Sarukhan, 1984; Piñero, Sarukhan, & González, 1977;
Poorter, Van de Plassche, Willems, & Boot, 2004; Reich,
Uhl, Walters, & Ellsworth, 1991; Rogers & Clifford, 1993;
Steingraeber & Fisher, 1986; Williams et al., 1989).
Accordingly, community clusters with (moderate to) high
species richness were statistically associated with
Astrocaryum, Guarea, Monstera, and Salacia (Groups B,
C), with up to 51 species on individual phorophytes of
Astrocaryum and Salacia and up to 46 on Monstera. In
turn, the only cluster with low species richness (group F)
included largely phorophytes representing Chamaedorea,
Costus, Piper and Siparuna (11 out of 21), although this
was not statistically significant. Notably, the terminal
Cluster F03 had the lowest mean foliicolous species rich-
ness, along with a high proportion of Costus and
Siparuna phorophytes (six out of 10). Common species in
this cluster were Coenogonium subluteum, Gyalectidium
filicinum, Porina alba and Strigula smaragdula. While
not statistically significant for the cluster itself, two of
these species, C. subluteum and G. filicinum, were statisti-
cally more frequent on leaves of Siparuna, one of the two
dominant phorophyte species in cluster F03. This sup-
ports earlier findings that leaf longevity drives commu-
nity richness, through the simple mechanism that
communities reaching early successional stages mostly
consist of few pioneer species adapted to rapid coloniza-
tion and establishment, including species such as
Coenogonium subluteum, Porina alba and Gyalectidium
filicinum (Conran & Rogers, 1983; Lücking, 1998a, 1998b,
1999b, 2001a, 2001b, 2008; Lücking & Bernecker-
Lücking, 2002).

Our results indicate that phorophyte preferences
manifest themselves largely on phorophytes with long
leaf longevity, allowing individual lichen communities to
develop phorophyte-dependent patterns of secondary
succession, with the establishment of taxa exhibiting
preferences for certain leaf characteristics. Indeed, statis-
tically significant differences in the composition of

phorophytes between clusters that were not correlated
with foliicolous lichen species richness, and so not
explained by leaf longevity, were concentrated in Groups
B and C, mostly composed of Astrocaryum, Guarea,
Monstera and Salacia, with medium to high leaf longev-
ity. Most notable were terminal clusters consisting of sin-
gle phorophyte species, such as B01 (5× Astrocaryum),
part of B02 (3× Monstera) and particularly C02 (10×
Salacia). These phorophyte-based clusters were not cau-
sed through spatial autocorrelation, given that the indi-
vidual phorophytes in each cluster were not spatially
associated but dispersed along the transect. The forma-
tion of these clusters was thereby not only correlated
with statistically significant indicator species but also by
with rare species limited to certain clusters. The Salacia
cluster (C02) was characterized by species of the genera
Bapalmuia, Malmidea, Psoroglaena, and particularly
Strigula, rare or absent on other phorophytes, whereas
the Astrocaryum cluster (B01) featured species of
Aulaxina, Chroodiscus, Opegrapha and Tricharia. The
preferred association of various species of Strigula with
leaves of Salacia was notable. Most of these lichens grow
below the leaf cuticle and are particularly susceptible to
anatomical leaf characteristics (Chapman, 1976;
Lücking, 2001a, 2008; Sérusiaux, 1989), so Salacia
appears to provide a favorable leaf anatomy for these
Strigula species to establish.

Our findings suggest that phorophyte diversity posi-
tively influences foliicolous lichen species richness in
terms of gamma diversity, not because of absolute
phorophyte specificity, such as found in parasite–host rela-
tionships, but through subtle phorophyte preferences cau-
sed by niche characteristics that are only detectable
through statistically meaningful sampling. Similar patterns
have been found for epiphytes in general, including bark-
dwelling (corticolous) lichens (Ardila-Ríos et al., 2015;
Cáceres et al., 2007; Cornelissen & Ter Steege, 1989;
Rosabal et al., 2013; Soto-Medina et al., 2012), but also
bryophytes and vascular epiphytes (Benavides et al., 2011;
Köster et al., 2011; Merwin et al., 2003; Nieder et al., 1999;
Sáyago et al., 2013). Hence, the notion of “diversity begets
diversity” due to environmental heterogeneity (Palmer &
Maurer, 1997; Stevens & Tello, 2011; Whittaker, 1975)
appears to be supported: phorophyte diversity “begets”
diversity of foliicolous lichen communities through subtle
phorophyte preferences. While this pattern is generally
detectable in epiphyte communities, foliicolous lichens
provide a unique model to study this phenomenon, due to
the short longevity of the substrate and the fast commu-
nity development, allowing not only studies in situ but
also experimental setups with artificial substrata
(Lücking & Bernecker-Lücking, 2002, 2005; Sanders &
Lücking, 2002).
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