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Abstract
Changes in land use and agricultural intensification threaten biodiversity and ecosys-
tem functioning of small water bodies. We studied 67 kettle holes (KH) in an agricul-
tural landscape in northeastern Germany using landscape- scale metatranscriptomics 
to understand the responses of active bacterial, archaeal and eukaryotic communities 
to land- use type. These KH are proxies of the millions of small standing water bod-
ies of glacial origin spread across the northern hemisphere. Like other landscapes in 
Europe, the study area has been used for intensive agriculture since the 1950s. In 
contrast to a parallel environmental DNA study that suggests the homogenization 
of biodiversity across KH, conceivably resulting from long- lasting intensive agricul-
ture, land- use type affected the structure of the active KH communities during spring 
crop fertilization, but not a month later. This effect was more pronounced for eukary-
otes than for bacteria. In contrast, gene expression patterns did not differ between 
months or across land- use types, suggesting a high degree of functional redundancy 
across the KH communities. Variability in gene expression was best explained by ac-
tive bacterial and eukaryotic community structures, suggesting that these changes 
in functioning are primarily driven by interactions between organisms. Our results 
indicate that influences of the surrounding landscape result in temporary changes in 
the activity of different community members. Thus, even in KH where biodiversity 
has been homogenized, communities continue to respond to land management. This 
potential needs to be considered when developing sustainable management options 
for restoration purposes and for successful mitigation of further biodiversity loss in 
agricultural landscapes.
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1  |  INTRODUC TION

During the first half of the 20th century, Germany, as much as the 
rest of Central Europe, was characterized by low- input agricul-
ture. Starting in the 1950s, intensive industrialized agriculture 
with increasing use of fertilizers and pesticides became standard 
(Bauerkämper, 2004; Sommer et al., 2008). This type of agricultural 
practice has negative consequences on biodiversity, notably for 
plants (Altenfelder et al., 2014; Meyer et al., 2013a), birds (Donald 
et al., 2006; Endenburg et al., 2019; Puente- Sánchez et al., 2018), in-
vertebrates (Wilson et al., 1999) and amphibians (Berger et al., 2011; 
Berger et al., 2018). In addition, plant, insect and mammal communi-
ties have been homogenized in arable areas (Baessler & Klotz, 2006; 
Macdonald & Johnson, 2000; Olden et al., 2016; Spear & Chown, 
2008; Vargas et al., 2015), as is typically reported after land- use in-
tensification (Smart et al., 2006).

Kettle holes (KH) (known as potholes in North America) are 
small depressions in the landscape formed by the melting of trapped 
ice after the retraction of glaciers at the end of the last glaciation 
~12,000 years ago. This has left, to this day, numerous KH sprinkled 
across northern Europe, northern North America and northern Asia, 
reaching up to 40 per km2 in northeast Germany (Kalettka & Rudat, 
2006). Accordingly, KH are the dominant aquatic landscape element 
in the region (Kalettka & Rudat, 2006) and are hotspots of biological 
activity (Nitzsche et al., 2017), serving as mineralization grounds for 
both aquatic and land- derived organic matter (Nitzsche et al., 2017; 
Onandia et al., 2018). Geographically close KH can differ in terms of 
biogeochemistry (Attermeyer et al., 2017), hydrology and biodiver-
sity (Altenfelder et al., 2014; Lischeid & Kalettka, 2012; Platen et al., 
2016), suggesting that they play a critical role in determining overall 
regional biodiversity (Joniak et al., 2007; Lischeid & Kalettka, 2012; 
Novikmec et al., 2016; Pätzig et al., 2012; Platen et al., 2016). KH 
serve as habitats for invertebrates with and without aquatic stages, 
refuges and breeding grounds for many amphibians as well as feed-
ing areas for terrestrial organisms (Berger et al., 2013; Heim et al., 
2018). Thus, alongside hosting a dynamic and diverse internal food 
web, KH are key components in aquatic– terrestrial interlinked food 
webs and important steppingstones for many terrestrial species.

D. Ionescu et al. (2022) used an environmental DNA (eDNA) 
approach for biodiversity assessment of KH in the northeastern 
German lowlands dominated by three different land- use types: ara-
ble fields, grasslands and forests. In contrast to the hypothesis that 
the community structure in KH of arable fields has been shaped by 
decades of intensive industrialized farming, no differences in spe-
cies richness or community composition were found between KH 
in forest, grassland and arable patches in the same region. Instead, 
KH biodiversity appeared to be homogenized across the region, a 
common effect of intensive land use (Buhk et al., 2017; Meyer et al., 
2013b; Onandia et al., 2021; Smart et al., 2006), indicating that in-
tensive agriculture has also affected the KH not directly located in 
arable fields. Chemical analyses of sediment cores (Kleeberg et al., 
2016; Nitzsche et al., 2017) indicated that intensive agriculture 
has led to high phosphorus and nitrogen inputs into KH, probably 

resulting in the observed eutrophication (Lischeid et al., 2018). Since 
most KH in the study area are connected via groundwater (Lischeid 
et al., 2018), the chemical effects of agriculture could thereby also 
extend to KH in the surrounding grasslands and forests and forest 
patches.

eDNA analyses have been increasingly applied as a noninva-
sive, highly sensitive monitoring tool (Andújar et al., 2018; Beng & 
Corlett, 2020; Bylemans et al., 2019; Deiner et al., 2017). However, 
one of the limitations of the approach is that eDNA analyses cap-
ture not only the active community but also organisms that are 
inactive or have long abandoned the investigated habitat, with an 
expected eDNA lifetime in water of lentic systems such as the KH 
of the order of a few days to weeks (J. B. Harrison et al., 2019) and 
much longer (months, years, decades) for sediments (Corinaldesi 
et al., 2008; Sakata et al., 2020). Therefore, eDNA can reveal long- 
term environmental changes but probably falls short of revealing 
short- term effects of land- use change, especially in highly dynamic 
ecosystems such as KH, unless those effects are very strong. 
Metatranscriptomics is a remedy to this limitation. The approach re-
fers to analyses of the full set of expressed genes in a community as 
obtained by sequencing the total RNA. Environmental RNA (eRNA) 
provides information specifically on the active organisms, both on 
community composition, derived from known taxonomic markers 
such as the small and large rRNA subunits, and on functionality, de-
rived from the expression patterns of functional genes (Yates et al., 
2021). It was additionally proposed that in addition to providing in-
formation on the response of organisms to environmental signals, 
such as stressors (Yates et al., 2021), eRNA can provide information 
on trophic interactions between organisms (Cristescu, 2019). RNA- 
based expression patterns typically represent recent activities at 
timescales ranging from minutes to hours— given the short half- life 
of RNA. As a result, the likelihood of observing large and transient 
organisms in metatranscriptomics analysis is low. Thus, this type of 
analysis targets organisms currently or recently active in the sam-
pled volume of water. Importantly, since more active organisms pro-
duce more ribosomes, the relative abundance of rRNA transcripts 
represents the distribution of activities within the community, 
which may be unrelated to the abundance of individual organisms. 
Therefore, we will refer to metatranscriptomics- derived rRNA data 
as the “active community structure” (Blazewicz et al., 2013).

In this study, we aimed to determine the taxonomic and func-
tional diversity of the active communities in 67 KH located in ar-
able fields, grasslands and forests, distributed within an area of 
~150 km2. We expected the active community structure and their 
spatiotemporal gene expression patterns to depend on land- use 
practices and related environmental conditions at the time of sam-
pling, such as the use of fertilizers in agriculture or the quality of 
carbon in KH within forests, grasslands and arable fields, which is 
expected to differ because of differences in vegetation cover in 
the riparian zone and the extent of aquatic– terrestrial coupling. 
Accordingly, we hypothesized that in a region characterized by 
industrialized agriculture and biodiversity homogenized across 
KH, land use is reflected by organismic activity, resulting in some 
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KH organisms being more active than others at certain times. 
Specifically, we addressed three main questions: (i) Does land use 
shape the structure of the active community as reflected in deep 
sequencing of total RNA, in contrast to lack of patterns in eDNA? 
(ii) Does land use drive the gene expression patterns of metacom-
munities? (iii) Is there metabolic functional redundancy within the 
KH meta- ecosystem in agricultural landscapes?

2  |  METHODS

2.1  |  Study site

The sampling focused on 67 KH in northeastern Germany 
(Uckermark district, State of Brandenburg; Figure S1), 52 of which 
were sampled in May and 43 were sampled 5 weeks later in June. 
No samples were taken in dried- up KH, resulting in a total of 
41 KH sampled on both occasions. Of the sampled KH, 36, 7 and 
9, and 28, 6 and 9 were in arable fields, grasslands and forest in 
May and June, respectively. The area is among the least populated 
regions in Germany. The study area has long been used for ex-
tensive agriculture, with >90% of the land used as arable fields 
(Kalettka & Rudat, 2006). This includes areas where land use was 
changed from arable fields to grasslands nearly two decades ago 
(Serrano et al., 2017). Since the 1950s, agriculture in the area has 
become industrialized, which included increased fertilizer and 
pesticide use.

KH were categorized according to the predominant land- use 
type within a perimeter of ~50 m. Accordingly, all KH in crop fields 
(rapeseed, corn, wheat, barley, rye, triticale) are referred to as “ar-
able field KH,” both those directly adjacent to the fields and those 
surrounded by natural vegetation. KH in grasslands are referred to 
as “grassland KH.” “Forest KH,” located in the Kiecker nature reserve 
(Nordwestuckermark, Brandenburg), comprised KH in vast mixed 
forests (beech and oak) as well as in forest patches (>100 m in di-
ameter) surrounded by arable fields (Figure S1). However, the last 
category was treated as “arable fields” in analyses where we applied 
a stricter definition of forests.

2.2  |  Sampling

Water samples for RNA analysis were collected during two sampling 
campaigns (each 2– 3 days) in late spring and early summer 2017, to-
gether with samples collected for eDNA analysis (D. Ionescu et al., 
2022). Water samples were taken whenever water was available. 
To obtain a representative sample from each water body, total vol-
umes of ~20 L were collected from 5– 15 different locations in each 
KH, with the number of individual samples varying with KH size. 
The water was combined in prewashed buckets and mixed, before 
1.7 L was resampled for RNA analysis into plastic canisters contain-
ing 800 ml RNA- stabilizing solution (15 mM EDTA, 18.5 mM sodium 
citrate, 4 M ammonium sulphate). Samples were placed in iceboxes 

containing a mixture of ice and table salt to lower the freezing point. 
Upon arrival in the laboratory, the samples were frozen at −80°C 
until further analyses.

2.3  |  RNA extraction and processing

Before RNA extraction, standard volumes of water (2.3 L: sample 
+fixative) were sequentially filtered on a Nalgene filtration tower 
(ThermoFisher Scientific). Polycarbonate filters with pore sizes of 10 
and 5 µm (Millipore TCTP04700, TMTP04700; Merck) were used, as 
well as combusted GF/F and polycarbonate filters with pore size of 
0.2 µm (Whatman WHA1825047, Millipore GTTP04700; Merck). All 
filter diameters were 47 mm. The entire water volume was passed 
through all filters. The filters were rinsed twice with 50 ml auto-
claved MQ water to remove salts and subsequently flash frozen.

To avoid introducing batch effects (Bálint et al., 2018), Eppendorf 
tubes containing the filters representing sample fractions were 
shuffled and randomly allocated to separate batches. RNA was ex-
tracted following a phenol/chloroform procedure modified from 
Nercessian et al. (2005). In brief, a CTAB extraction buffer contain-
ing SDS (sodium dodecyl sulphate) and N- lauryl sarcosine was added 
to the samples together with an equal volume of phenol/chloro-
form/isoamylalcohol (25:24:1) solution. The samples underwent a 
bead- beating treatment, followed by centrifugation, cleaning with 
chloroform and precipitation with PEG- 6000 (Sigma- Aldrich). The 
precipitated DNA/RNA mix was rinsed with 1 ml 70% ethanol, dried 
and dissolved in water. Finally, all extractions belonging to a given 
sample were pooled.

DNA was removed by two sequential treatments with the 
TurboDNAfree Kit (Invitrogen ThermoFisher Scientific), after which 
the samples were transferred to an RNAstable 96- well plate (Sigma- 
Aldrich) for shipment. A total of 98 samples were sequenced at 
MrDNA (Molecular Research) according to the following procedure. 
The RNA samples were resuspended in 30 µl of nuclease- free water 
and cleaned using the RNeasy PowerClean Pro Cleanup Kit (Qiagen). 
The concentration of total RNA was determined using the Qubit 
RNA Assay Kit (Life Technologies, Thermofisher). Next, 750 ng of 
total RNA was used to remove the remaining DNA contamination 
using Baseline- ZERO DNase (Epicentre, Lucigen) according to the 
manufacturer's instructions, followed by a purification step with 
RNA Clean & Concentrator- 5 columns (Zymo Research). DNA- free 
RNA samples were used for library preparation using the TruSeq 
RNA LT Sample Preparation Kit (Illumina) according to the manufac-
turer's instructions. Following library preparation, the final concen-
tration of all the libraries was measured using the Qubit dsDNA HS 
Assay Kit (Life Technologies, Thermofisher), and the average library 
size was determined using the Agilent 2100 Bioanalyzer (Agilent 
Technologies). The libraries were then pooled in equimolar ratios of 
2 nM, and 6 pmol of the library pools was clustered using the cBot 
(Illumina) and sequenced 2 × 125 paired- end reads on 20 lanes for 
250 cycles using the HiSeq 2500 system (Illumina). The sequenced 
data were submitted to the NCBI short read archive under project 
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no. PRJNA640812 (https://www.ncbi.nlm.nih.gov/sra/PRJNA 
640812).

Raw files of paired- end reads were quality- trimmed using trimom-
matic (version 0.39) (Bolger et al., 2014). rRNA reads were removed 
by stringent mapping to a database of short subunit (SSU), long sub-
unit (LSU) and 5S rRNA assembled manually from the SSU and LSU 
SILVA databases (version 132) (Quast et al., 2013). Subsequently the 
SSU rRNA was annotated using phyloflash (Gruber- Vodicka et al., 
2020) and kraken2 (Wood et al., 2019). The non- rRNA sequences 
were further checked using barnap (version 0.9). The clean non- rRNA 
reads of each sample were individually processed according to the 
Trinotate (https://github.com/Trino tate/Trino tate.github.io/wiki) 
pipeline, including assembly with trinity version 2.6.5 (Grabherr 
et al., 2011), protein prediction using transdecoder (https://github.
com/Trans Decod er/Trans Decoder), and annotation with diamond 
blastp and blastx (Buchfink et al., 2015) against the Uniprot database. 
Sequences were also annotated with hmmsearch (Gough et al., 2001) 
and the pFam (Finn et al., 2014) database. kallisto (version 0.44) (Bray 
et al., 2016) was used to map the reads from each sample against the 
samples’ assembled transcripts resulting in TPM (transcripts per mil-
lion) - normalized counts. The data were merged to generate abun-
dance matrices for statistical analysis. blastp, blastx, EC- number and 
Subsystems’ matrices were obtained and separately analysed. The 
presented results stem from the Subsystem annotation of the data. 
More information on SEED subsystems is available at: https://www.
these ed.org/wiki/SEED_Viewer_Manual.

2.4  |  Analysis of physicochemical characteristics

Temperature (Temp), conductivity (Cond), pH and oxygen saturation 
(O2 Sat) were measured in situ during sampling using a portable mul-
tiprobe (HI98194; Hanna Instruments). An additional 1 L of water 
was collected for analyses of nutrients and other major ions as de-
tailed below. The collected water was immediately frozen by placing 
it in a container with ice mixed with table salt (NaCl).

Water analysis followed standard methods as defined by the 
German Institute for Standardization (DIN). Ca2+, Mg2+, K+, Na+ and 
total Fe were analysed using inductively coupled plasma optical emis-
sion spectrometry (ICP- iCAP 6300 DUO; ThermoFisher Scientific). 
Br−, Cl−, NO3

−, NO2
− and SO4

2− were analysed using ion chroma-
tography (882 Compact IC plus; Deutsche Metrohm). Ammonium 
(NH4

+) and ortho- phosphate (o- PO4
3−) were measured spectropho-

tometrically (SPECORD 210 plus; Analytik Jena). Total phosphorus 
(TP) was measured as ortho- phosphate after microwave digestion 
(Gallery Plus; Microgenics). Dissolved organic carbon (DOC), total 
organic carbon (TOC) and total nitrogen (TN) were determined using 
an elemental analyser (TOC- VCPH; Shimadzu Deutschland) with 
chemiluminescence detection. The specific absorption coefficient at 
254 nm (SAC) was measured using a spectrophotometer (SPECORD 
210 plus) as an approximation of the dissolved aromatic carbon con-
tent (Weishaar et al., 2003). The ratio of SAC to DOC concentration 
was used as a rough indicator of DOC composition. The specific UV 

absorbance at 254 nm (SUVA254) correlates with the hydrophobic or-
ganic acid fraction of dissolved organic matter (DOM) (Spencer et al., 
2012) and is a useful proxy for DOM aromatic content (Weishaar 
et al., 2003) with a higher SUVA254 value indicating a higher content 
of aromatic molecules.

2.5  |  Statistical analysis

Statistical analyses were conducted on abundance matrices obtained 
from the community and functional annotation pipelines. These data 
are provided as Data S1– S4 (see Results) and were additionally de-
posited at Dryad under https://doi.org/10.5061/dryad.0k6dj hb1m. 
Multivariate (nonmetric multidimensional scaling, NMDS) (Kruskal, 
1964), principal components analysis (PCA) (Pearson, 1901), canoni-
cal analysis of principal coordinates (CAP) (Anderson & Willis, 2003), 
permutational analysis of variance (PERMANOVA) (Anderson, 2017), 
distance based linear models and redundancy analysis (DistLM- 
dbRDA) (Legendre & Anderson, 1999; McArdle & Anderson, 2001), 
and diversity (richness and evenness) analyses were conducted 
using the primer6 (version 6.1.1) + Permanova Package (version 1.0.1, 
Primer- E, Quest Research). Resemblance matrices of the community 
and functional data were calculated using Bray– Curtis dissimilarity 
following a square- root transformation of the original data. NMDS 
was conducted retaining the ordination with the lowest calculated 
stress of 1,000 iterations. PERMANOVA was used to test for the 
effects of land- use type, seasonality (i.e., campaign number) or both. 
PERMANOVA was conducted with 999 iterations and unrestricted 
permutation of the full data. CAP was used to plot the data accord-
ing to factors found by PERMANOVA to have a significant effect.

DistLM- dbRDAs were used to test for the explanatory power of 
physicochemical variables on community structure, the explanatory 
power of the bacterial community on the eukaryotic community and 
vice versa and the explanatory power of the bacterial and eukary-
otic community on gene expression patterns. To test the explanatory 
power of the bacterial community the eukaryotic community as well as 
that of the different communities on the gene expression patterns, the 
top 90 taxa were used from each community. This number is derived 
by a requirement of the method to have fewer explanatory variables 
(taxa) than samples (n = 98). The results of the DistLM- dbRDA output 
consists of marginal and conditional tests. In the case of marginal tests, 
each variable is tested individually for its correlation with the data (uni-
variate analysis). This provides insight into how strongly each variable 
drives the statistical differences between samples. As some environ-
mental variables might be correlated with one another, there is a need 
to complete the univariate analysis by testing how much of the varia-
tion between samples is explained by a variable while considering the 
other variables used in the analysis. Part of the variation might be ex-
plained by two or more variables. To deal with this potential covariance 
and overlap in the explained variation, we used sequential (conditional) 
tests designed to deal with such a data structure. Here the DistLM- 
dbRDA approach treats the residuals of the data fitted with a variable 
as the new response matrix and tests how much of the variability is 

https://www.ncbi.nlm.nih.gov/sra/PRJNA640812
https://www.ncbi.nlm.nih.gov/sra/PRJNA640812
https://github.com/Trinotate/Trinotate.github.io/wiki
https://github.com/TransDecoder/TransDecoder
https://github.com/TransDecoder/TransDecoder
https://www.theseed.org/wiki/SEED_Viewer_Manual
https://www.theseed.org/wiki/SEED_Viewer_Manual
https://doi.org/10.5061/dryad.0k6djhb1m
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explained by a second variable. The results of both marginal and se-
quential tests are reported, yet we consider in our discussion those of 
the conditional tests.

ANOVA coupled with pairwise tests to identify difference be-
tween sample groups (Mann– Whitney test, Dunn's test) were per-
formed using the past4 software (Hammer et al., 2009). Ternary plots 
were generated using the ggtern package (Hamilton & Ferry, 2018) in 
R version 3.5 (The R Core Team, 2018). An indicator species analysis 
was done using the indicspecies R package (version 1.7.8; Cáceres & 
Legendre, 2009) testing for the IndVal index, as well as Pearson's phi 
coefficient of association (Chytrý et al., 2002). The latter was calcu-
lated based on both presence/absence and sequence frequency data 
and included the appropriate functions and corrections according to 
the indicspecies package manual (version 1.7.8). Indicator species anal-
ysis was conducted using the most elaborate annotation matrix (con-
taining 50,000 taxa across the three domains Archaea, Bacteria and 
eukaryotes). Additionally, the outcome of the analysis was corrected 
for the fact that there were more sites in arable fields than in grass-
lands and forests. Data for ternary plots were generated as the average 
relative sequence frequency per taxon/function within each land- use 
type or as average transcript TPM abundance per land- use type.

3  |  RESULTS

3.1  |  Physicochemical characteristics

Water physicochemical characteristics (Figure 1; Table S1) var-
ied greatly among KH within land- use types (i.e., forest, grassland 
or arable fields). Only a few variables were significantly different 
among land- use types or sampling campaigns (Table S2). Most evi-
dent was an increase in water temperature between May and June. 
Furthermore, oxygen saturation was significantly lower in forest KH 
than in arable fields, with grassland KH having intermediate satura-
tion levels. Potassium (K+) concentrations in forest KH remained low 
in June and significantly differed from those surrounded by arable 
fields. Magnesium (Mg2+) and chloride (Cl−) concentrations in arable 
fields were significantly higher than in forest KH in May but did not 
differ from those in grassland KH. Conductivity in arable field KH 
was higher than in forest KH in both campaigns. Total N and P con-
centrations were high in almost all KH but did not differ significantly 
between land- use types nor between sampling times. NH4

− concen-
trations were significantly higher in forest KH in both campaigns. 
Other than higher SUVA254 values in forests than in arable fields in 
May, no significant difference in SUVA254 values was observed be-
tween the different land- use types, nor between the two sampling 
periods (Table S2).

3.2  |  Determinants of active community structures

Metatranscriptomics analysis of the total of 98 samples resulted in 
47 ± 7 and 5 ± 1 million rRNA and non- rRNA paired- end reads per 

sample, respectively, after quality trimming. These sequences were 
separated and analysed individually (see Methods). The community 
analysis was clustered according to the assigned taxonomic name. 
While different taxonomic annotation methods (see Methods) re-
sulted in different numbers of taxa, the results of the subsequent 
analyses did not differ qualitatively (Figure S2). Similarly, functions 
assigned to assembled transcripts from each sample using different 
methods (see Methods) resulted in similar qualitative results (Figure 
S2). The eukaryotic component of the rRNA was seven times larger 
than the bacterial (Bacteria and Archaea) component on average 
(three times larger by median), and therefore, when possible, the 
two communities were also analysed separately. The results of the 
taxonomic annotation are provided in Data S1. The results of the 
functional annotations are provided in Data S2 and S3 as the origi-
nal blastp and blastx annotation, and converted to SEED Subsystems 
(Aziz et al., 2008), respectively.

Parameters that by distance- based linear models significantly 
contribute individually to the structure of the active community are 
shown in Figure 2a– c. However, only a few of these (in bold) were 
significant contributors when the same parameters were tested in 
an additive, sequential manner (Table S3), that is conditional tests 
in which parameters are tested whether they significantly explain 
the remainder of the data that was not fitted to a previously tested 
parameter. Temperature (Temp), pH, conductivity (Cond) and O2 
saturation (O2 Sat) were significant drivers for the overall and eu-
karyotic community structure. However, only pH and temperature 
significantly affected the active bacterial (Bacteria and Archaea) 
community. The three redundancy analysis plots generated, using 
distance- based linear models, show a clear temporal separation 
between the active communities of midspring and early summer 
(Figure 2a– c).

The structures (abundance matrix) of the active bacterial and 
eukaryotic communities from both sampling campaigns were 
correlated with each other (Mantel test, Spearman's rho =0.46, 
p = .01). Therefore, we further investigated how much of the 
variability in the active bacterial community can be explained by 
that of the eukaryotic community. Based on the top 90 eukaryotic 
taxa (of all 97 samples), the first two axes of the distance- based 
redundancy analysis explain 37% of the total bacterial variability 
(Figure 2d). Distance- based linear models show that 19 eukaryotic 
taxa significantly (p ≤ .05) explain 47% of the bacterial variability 
with the amoeba Arcella sp. alone accounting for >7% (Table S4). 
Eleven of the remaining taxa are plants or algae producing poten-
tial bacterial substrates or inhibitors. Conducting the reverse anal-
ysis using the top 90 bacterial taxa results in the first two axes 
explaining 25% of the Eukaryotic variability (Figure S3). Overall, 
24 bacterial taxa explain 55% of the variability of the active eu-
karyotic community, with the family Holofagaceae explaining 10% 
(Table S5).

The same set of tests was applied to the functional data (i.e., pro-
files of expressed genes) from the same samples. No environmental 
variable, whether individually or sequentially, was significantly re-
lated to the observed pattern of functionality (Table S3), contrasting 
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with the active community structure. Furthermore, PCA shows 
no clear sample separation either between sampling campaigns or 
among land- use types (Figure 2e,f).

We tested to what extent the structure of the bacterial 
(Figure 2e) or eukaryotic (Figure 2f) active community could ex-
plain the observed functional variability. Our analysis shows that 

F I G U R E  1  Physical and chemical variables characterizing kettle holes (KH) sampled in May and June 2017 for RNA analysis. The solid 
line shows the median in each box while the cross marks the mean. Whiskers mark the 25th and 75th percentile. Table S1 provides detailed 
information for each variable and for all KH, and Table S2 shows the significance by which each land- use type and sampling point differ from 
each other

F I G U R E  2  RNA- based community composition (a– c) in a redundancy analysis generated by distance- based linear models (DistLM- 
dbRDA) accounting for all physical and chemical variables detailed in Figure 1 and Table S1. All single variables contributing significantly to 
the variation (Marginal tests) are shown. Only those marked in red were significant in a sequential additive model (Conditional tests; see 
main text and Table S3). Panel (d) shows that 37% of the variability in the community structure of active bacteria can be explained by the 
first two axes of a DistLM- dbRDA based on the 90 most expressed eukaryotic species. A similar analysis for the bacterial community with 
the eukaryotic community composition as explanatory factor is presented in Figure S3. Redundancy analyses of functional diversity with the 
bacterial (e) and eukaryotic (f) communities as explanatory factors. In both cases, the first two axes explain ~50% of the observed functional 
variability. Details on the specific taxa contributing to the patterns of (d) and (e,f) are given in Tables S4 and S5, respectively
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the main active taxa from both domains independently explain a 
large portion of the functional variability. The first two axes of 
the redundancy analyses, relating the structure of the bacterial 
(Figure 2e) and eukaryotic (Figure 2f) active communities to the 

observed functional variability, explain over 50% of the total vari-
ation (Table S6), indicating that the main taxa from both domains 
explain a large portion of the overall variability in functionality. 
However, despite explaining a similar proportion of the variability, 
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the opposite directionality of the correlation vectors for the dif-
ferent taxa (lines in Figure 2e,f) suggests different associations 
of the bacterial and eukaryotic communities with functionality. A 
distance- based redundancy analysis using a combined matrix con-
sisting of the top 45 bacterial and 45 eukaryotic taxa explains a 
total of ~50% of the variability across the first two axes. The bac-
terial and eukaryotic components individually explain 44 and 41%, 
respectively, of the functional variability. We further explored the 
nature of the correlations of the top 90 bacterial and eukaryotic 
taxa to the overall functionality (Figure S4) and observed great 
dissimilarities. Generally, bacteria had more functions significantly 
correlated to the same taxa then eukaryotes (Figure S4a), as well as 
more taxa correlated to the same functions (Figure S4b). Overall, 
the eukaryotic correlations were on average negative while the 
bacterial ones were positive (Figure S4c). Among the highly signif-
icant correlations (p ≤ .001), 400 functions were oppositely cor-
related with bacteria and eukaryotes (Figure S4d).

Similarly to the distance- based redundancy analysis, NMDS 
also shows a clear separation of bacterial and eukaryotic commu-
nities among the two sampling campaigns. In contrast, no clear 
separation is apparent among land- use types (Figure 3a). However, 
PERMANOVA shows that land use has a minimal yet significant ef-
fect on the distribution pattern of the active community, explaining 
~4% of the overall variability. This effect is not significant when 
samples from May or June are analysed separately. The sum of the 
individual and combined effects of sampling time and land use ex-
plain in total 12% of the variability among samples. CAP using a 
factor combining sampling period and land use highlights the sep-
aration between samples based on these two variables (Figure 3b). 
A clear separation between samples taken at different time points 
is evident as well as among land- use types in May, specifically be-
tween forest and the other two land- use types (arable fields and 
grassland). The separation based on land- use type of the June 

samples is less pronounced. To test for effects of classifying tree 
patches embedded in arable fields as forests, arable fields or an 
independent group, the same analysis was conducted by applying 
either a strict or loose (standard) definition to forest KH, allocating 
the tree patches to the arable field (Figure 3c) or forest category 
(Figure 3b), respectively. The strict definition resulted in a more 
apparent separation of the grassland samples taken in May and a 
tighter aggregation of all samples in June (Figure 3c). Nevertheless, 
the strict land- use definition has a marginally significant influence 
on the overall temporal and spatial distribution pattern (p = .08). 
Classifying the tree- patches as a fourth land- use type (Figure 3d) 
results in a separation pattern in between the loose and strict land- 
use definition and, while explaining less of the variability, it is sta-
tistically significant (p = .01).

PERMANOVA conducted separately on the bacterial and eu-
karyotic communities reveals that the combined effect of land use 
and sampling time explains ~18% and 13% of the variability, respec-
tively. The strict land- use definition had no significant effect on the 
distribution patterns of either bacteria or eukaryotes when analysed 
separately.

Differentiating crop types on arable fields (rapeseed, corn, 
wheat, barley, rye, triticale) explained a similarly low proportion of 
variability (~4%), and only when assessed in combination with the 
sampling period. Separate analyses for bacteria and eukaryotes 
show that crop type only significantly affected bacteria, explain-
ing again ~4% of the variability and separating the taxa into several 
groups (Figure S5).

The significances of sampling time, land- use type and crop type 
were also tested as explanatory factors of the distribution of ex-
pressed functional genes. Land use alone or in combination with ei-
ther of the two other factors had no significant influence. However, 
sampling time and crop type explained ~7% (p = .005) and ~4% 
(p = .04) of the variability, respectively.

F I G U R E  3  Nonmetric multidimensional scaling (NMDS) of the active bacterial and eukaryotic communities (a) showing temporal 
separation between the samples (triangles— May vs. squares— June) as highlighted by the orange— peach- colour shading, but no separation 
based on land- use types (3D stress 0.13). Canonical analysis of principal components (b– d) highlighting the distribution pattern of the active 
bacterial and eukaryotic communities by sampling period (CAP1) and land- use type (CAP2), based only on the species contributing to the 
significance of these parameters as tested with PERMANOVA. Panels (b– d) differ in their definition of forests. In (b), KH in large forests and 
tree patches amidst arable field are classified as forest KH. In (c), the latter tree patches are classified as arable fields, while in (d) they are 
assigned to their own group
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Ternary plots displaying the distribution of communities and func-
tions according to land- use type (Figure 4) show that few taxa are 
strongly associated with a specific land- use type. This is evident by 
the concentration of the bright colours in the centre of the plots as 
opposed to the mostly purple colours at the vertex, in line with the 
low percentage of active- community variability explained by land- use 
type (4%). Splitting the overall community into May and June samples 
and into bacteria and eukaryotes reveals that the plume of taxa asso-
ciated with forests is due mostly to bacteria sampled in June, whereas 
active eukaryotes are most strongly associated with arable fields and 
grasslands in May. In June, the eukaryotic community shifts upward to 
the centre of the plot, with a decrease of more than 5000 taxa associ-
ated with grasslands and arable fields between May and June. Overall, 
most active taxa were widely distributed across all land- use types and 
displayed similar activity levels in all land- use types.

Fewer taxa were identified as indicator species of arable fields 
than forests or grasslands based on the analysis of presence– absence 
(P/A) data (Figure 5). However, consideration of community activ-
ity levels increases the number of indicator taxa for arable fields by 
nearly 20 times (11 and 176 taxa for P/A and quantitative analysis 
[Quant], respectively). In both types of analyses, the maximum asso-
ciation factors (ranging between 1 for strong and 0 for none) of taxa 
with arable fields were lower than for taxa associated with forests 
or grasslands (0.6, 0.9, 0.9 P/A; 0.4, 0.6, 0.5 Quant, for arable fields, 
forest and grassland, respectively). Among the eukaryotes, only three 
taxa were statistically significant indicators of arable fields based on 
P/A data: two green algae (Nephroselmis sp. and Carteria sp.) and a 
ciliate of the order Stichotrichia (probably Stylonychia sp.). However, 
accounting for community activity halved the association factor for 
eukaryotes from a maximum of 0.68 (P/A) to 0.32 (Quant), attributed 
to Tribonema sp., a filamentous green alga. The association of bacte-
ria with arable fields was loose with maximum association factors of 
0.6 and 0.4 for P/A and quantitative analyses, respectively. The gas-
tropod Planorbarius corneus was the most important indicator of P/A 
analyses in forest KH, whereas Trachelomonas, a flagellate of the fam-
ily Euglenaceae, dominated in grassland KH. Regarding the communi-
ties in KH of arable fields, a quantitative analysis based on community 
activity reduced the overall association factors and placed microor-
ganisms such as ciliates and fungi at the top of the indicator list.

3.3  |  Community functional performance

The overall and seasonal functional ternary plots show minimal 
land- use- specific associations and similarly small changes between 
the two sampling periods (Figure 4). To further inspect this, we com-
pared the normalized gene expression (see Methods) for different 
metabolic pathways grouped into Subsystems of the Seed database 
(Overbeek et al., 2005) as well as tested for their correlation with 
the measured environmental parameters (Figure 6). Samples were 
grouped according to sampling time, land- use type or both and 
then compared pairwise. Some Subsystems were correlated with 
environmental variables (Figure 6a), yet interestingly, these were 

mostly with physical properties (temperature, pH, conductivity) 
and concentrations of other ions rather than with nutrients (P or N). 
Separating the data into the two sampling months shows a correla-
tion of several N-  and P- related subsystems with N and P concentra-
tions in May but not in June (Data S4). These correlations were not 
evident when the data was further analysed according to the differ-
ent land- use types. Excluding subsystems for which expression was 
detected only in one or two sets of samples, significant differences 
between groups were observed in 22 cases (Figure 7; Figure S1). 
The photosynthesis and CO2 fixation Subsystem showed the low-
est gene expression in forest KH in June, but no significant differ-
ences in expression among land- use types in May. No differences in 
expression were detected between arable fields and grasslands for 
either functional Subsystem and in either May or June.

The expression of genes involved in nitrogen fixation and am-
monia assimilation was higher in June than in May in KH located in 
arable fields and even more so for those in grasslands. Gene expres-
sion related to iron transport was also higher in June (Figure S6) in 
parallel with an increase in siderophore production.

Transcripts categorized as contributing to general phosphorus 
metabolism were more highly expressed in May, with no difference 
among land- use types. In contrast, genes related to bacterial and 
eukaryotic phosphorus scavenging, such as phosphate transporters 
and “DING” binding proteins (Berna et al., 2008), were more often 
expressed in June.

Some differences were also observed for genes involved in car-
bon metabolism. Subsystems involved in metabolism of larger sugars 
were mostly detected in May. Specifically, the metabolism of di-  and 
oligosaccharides in May was significantly higher in samples from for-
est KH, and a similar tendency was also observed in June. In contrast, 
differences were apparent in fermentation processes and organic acid 
metabolism when focusing on specific processes (functional subsys-
tem Level 3; Figure S6), although they were not significantly different 
when grouped at Level 2 in the subsystem hierarchy. For example, the 
fermentation of mixed acids was highest in forest KH in May, whereas 
the synthesis of acetone, ethanol and butanol was higher in grasslands 
at the same time. Differences between land- use types were also ob-
served for organic acid metabolism in May, when arabinose utilization 
was highest in grassland KH and tricarballylate utilization in forest KH.

The overall expression profile of functional genes was not signifi-
cantly affected by land- use type. To evaluate whether land- use type 
affects other properties of the community functionality, we inves-
tigated the functional richness (number of different functions) and 
evenness for the three land- use types and the two sampling periods, 
reasoning that low functional richness and evenness could be indica-
tive of specialist communities. Functional richness (Figure 7a) varied 
across samples but was not significantly different among land- use 
types or between sampling points. Functional evenness (Figure 7b) 
varied across samples as well. Values were as low as 0.2 in some 
samples, suggesting that in June, the evenness in forest and grass-
land KH is higher than in arable field KH (Mann– Whitney and Dunn's 
tests, p = .04). This suggests that arable fields enrich for certain met-
abolic pathways.
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4  |  DISCUSSION

In this study we demonstrate that land- use type has a time- 
dependent, temporary, effect on the structure of active prokaryotic 
and eukaryotic communities in KH, despite the overall biodiversity 
homogenization observed in this agricultural KH meta- ecosystem 
(D. Ionescu et al., 2022). Thus, we confirm our hypothesis that 

the activity of organisms, as reflected by profiles of environmen-
tally short- lived RNA, may reveal patterns not observed in eDNA 
analyses or traditional surveys. Furthermore, our results show that 
while land use partially determines which organisms are active, the 
functional profile, as seen by the type of expressed genes, remains 
largely unaffected, across time and land- use type, pointing to func-
tional redundancy.

F I G U R E  4  Ternary plots depicting associations of taxa and functions to specific land- use types throughout the study or separated 
according to sampling period (May or June 2017). The closer a point is to a vertex of the triangular plot, the stronger is its association with 
the respective land- use type. The community composition is further divided into bacteria (Archaea and Bacteria) and eukaryotes. The 
individual taxa are grouped into hexagons for imaging purposes. Individual hexagons are coloured by the square- root- normalized number of 
taxa in the area they cover, with purple hexagons containing single taxa and red hexagons up to several hundreds
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4.1  |  Physical and chemical parameters of the 
KH water

Lischeid et al. (2018) found the KH in the study area were connected 
via a shallow aquifer. This is consistent with our observation that 
only a few of the numerous physical and chemical variables meas-
ured in this study showed significant differences among land- use 
types or time of sampling. The lower oxygen saturation in forest KH 
during both sampling campaigns is probably a combination of lower 
photosynthesis due to shading by the forest canopy and increased 
respiration resulting from high organic matter inputs derived from 
forest soil, leaf litter and riparian vegetation. This interpretation is 
supported by high ammonia concentrations, suggesting high rates of 
organic matter mineralization in forest KH (Hargreaves, 1998).

The high N and P concentrations measured in (almost) all KH 
highlight long- term effects of intensive agriculture in the area, which 
led to the eutrophication of all KH in the study area (Lischeid et al., 
2018). The elevated conductivity, and K+ and Cl− concentrations in 
arable- field KH are possible evidence of fertilization of the fields 
shortly before or during our study, as already suggested for KH in 
the area (Lischeid & Kalettka, 2012). Elevated concentrations of K+ 
are commonly observed in arable fields due to fertilization (Spiess, 
2011). The higher pH, also considering the higher NO3

− and O2 sat-
uration in arable fields in May, is probably a result of higher photo-
synthesis possibly driven by a recent input of nutrients. However, 
K+ and Cl− did not remain elevated throughout the year, which may 
point to homogenization of water chemistry of the KH among land- 
use types by shallow groundwater flow.

4.2  |  Determinants of active community structure

Respiration and photosynthesis, and thus primary production, can 
shape the overall community structure by driving changes in O2 con-
centration, pH and autochthonous DOC. This notion is supported 
by the significant effects of O2 saturation and pH we observed on 

the structure of the active community. The significant relationship 
we observed between O2 saturation and the structure of the active 
eukaryotic communities is probably due to the high sensitivity of the 
larger, more complex, organisms to low O2 concentrations (Knoll & 
Sperling, 2014). Conductivity, which may change as a result of evap-
oration and intrusion of brackish groundwater (Nitzsche et al., 2017), 
had a significant effect on the entire community and specifically on 
its eukaryotic component. In agreement with this finding, conductiv-
ity negatively affected rotifer abundance and alpha- diversity in KH 
in our study area (Onandia et al., 2021). This suggests that the bacte-
rial communities in these KH are more tolerant than higher organ-
isms to changes in conductivity within the range encountered here.

Interactions between the eukaryotic and bacterial communi-
ties appear to be the strongest driver shaping the structure of the 
active community (i.e., the activity distribution among the differ-
ent organisms). Algae and plants account for 11 of the 19 eukary-
otic taxa which significantly explain the variability in the structure 
of the active bacterial community, indicating either a strong link 
to primary production or nutrient cycling via the decomposition 
of plants and algae. Previous findings in one of the studied ponds 
suggest that an important proportion of the bioavailable nutrient 
concentrations in ponds originates from submerged macrophyte 
decomposition (Onandia et al., 2018). The testate amoeba Arcella, 
which feeds on algae, cyanobacteria, fungi, ciliates and bacte-
ria (Laybourn & Whymant, 1980), accounts for more than 7% of 
the variability in the structure of the active bacterial community. 
Arcella is a generalist amoeba (Tsyganov & Mazei, 2006), common 
in eutrophic waters and an important consumer of both bacteria 
and their grazers and hence may affect the bacterial community in 
opposite ways (Wilkinson & Mitchell, 2010). Similarly, fungi, which 
account for most of the additional eukaryotic taxa that signifi-
cantly explain the bacterial community, can also affect bacterial 
community diversity and activity through both positive or nega-
tive interactions such as resource competition or organic matter 
mineralization (Bahram et al., 2021; Deveau et al., 2018; Wagg 
et al., 2019). Bacterial communities are also likely to reciprocally 

F I G U R E  5  Indicator species analysis 
based on presence/absence (P/A) and 
sequence frequency (Qua.) data, the latter 
serving as a proxy for community activity. 
Note the logarithmic scale of the y- axis
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influence the eukaryotic active community, as shown by 25 bacte-
rial taxa explaining 55% of the variability in active eukaryotic com-
munity. Nevertheless, the taxonomic resolution obtained from the 
rRNA transcripts does not offer deep insight into their functional-
ity and the possible mechanisms by which these bacteria control 
the active eukaryotic communities.

Land- use type had different effects on the structure of the ac-
tive KH communities in May and June. A clear separation among 
land- use types is evident in May, whereas in June the land- use effect 
is less pronounced, especially when the KH located in small patches 
of wood surrounded by arable fields are considered as KH in arable 
fields rather than forests. This indicates that despite similar chemical 
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and physical characteristics of the KH water, land use directly ad-
jacent to the KH influences the structure of the active community 
in some periods, despite the overall homogenization of biodiversity 
observed in the studied KH (D. Ionescu et al., 2022). The greater 
effect of land use and sampling time on the active bacterial commu-
nity compared to the eukaryotic community agrees with the finding 
that crop type had a statistically significant effect only on the active 
bacterial community. This suggests that the active bacterial commu-
nities in KH were influenced by the farming activities close to the 
time of sampling. This also demonstrates that the vegetation around 
KH does not completely buffer for the effects of the surrounding 
landscape as proposed by Joniak et al. (2017).

Even though some changes occurred between May and June re-
lated to land- use- type associations of active bacterial and eukary-
otic communities, a large proportion of taxa showed no association 
with a particular land- use type. This does not imply the selection of 
generalists over functionally specialized organisms, but rather that 
specialists were widespread across the different land- use types. This 
is most evident by the diverse functional repertoire observed both 
in May and in June. Therefore, it is likely that many organisms are 
more responsive to within- KH biotic interactions and subsequently 
to environmental parameters, than to land- use type. This is well sup-
ported by the large percentage of variability in the active bacterial 
community that is explained by the structure of the active eukary-
otic community and vice versa. The changes occurring in the active 
bacterial communities between May and June, however, differed 
from those occurring in the eukaryotic communities. Furthermore, 
since only the bacteria responded to crop type, we propose that 
the community responses to land- use type were driven by factors 

other than interorganismic interactions alone. These may include 
measured parameters such as concentrations of different N species, 
P and O2, but also, for example, crop- related parameters that were 
not determined such as toxic water- soluble extracts of crops (Far & 
Bagherzadeh, 2018; Mustarichie et al., 2020).

Our indicator species analysis was conducted to identify organ-
isms whose activity was tightly linked to a specific land- use type. 
The presence– absence data for the active taxa in the communities 
show that only a few bacterial and eukaryotic taxa are indicative 
of arable fields. Nevertheless, a quantitative analysis increased the 
number of taxa specifically associated with arable fields nearly 20- 
fold, suggesting that these additional taxa are present in forests and 
grasslands, but have a much lower activity level there, as derived 
from rRNA sequence coverage. A remarkable finding of the analysis 
is that regardless of the method used for identifying indicator spe-
cies, only microorganisms were recognized as specific indicators of 
arable fields. In contrast, indicator species of grassland and forest 
KH alone or in combination with arable fields also included larger 
organisms (Table S7) such as zooplankton (e.g., Ischnomesus sp.), 
worms (e.g., Trieminentia sp.) and insects (e.g., the pest Sitodiplosis 
mosellana). However, the absolute taxonomic identification of these 
larger organisms should be clarified in targeted studies using long- 
read sequencing approaches of one or more phylogenetic markers. 
Overall, the observations made using the indicator species analysis 
suggest both an overall homogenization in biodiversity in the area 
and an increased activity of certain microorganisms in KH from ar-
able fields.

In addition to bacteria and fungi, the nature of other eukary-
otic indicator species is in general agreement with the overall 

F I G U R E  6  Correlation of gene expression levels with environmental variables as grouped in different Subsystems (a) and normalized 
median expression values (b). In (a), only significant correlations are shown (p < 05). Additional correlation matrices as in (a) are given in 
Figure S7 and the Pearson r values (−.45 < r > .45) are given as a Data S1– S4 for the entire data set or for the different months and land- 
use combinations. In (b), the samples are grouped according to sampling month (May and June) and land- use type (agricultural field— A, 
grassland— G, forest— F). Colours represent median values calculated per group using the TPM- normalized gene expression data (see Figure 
S8). All median values calculated for one Subsystem were normalized as a fraction of the maximal value within that subsystem so that 
values always ranged between 0 (no expression) and 1 (maximal expression for that subsystem). The list of Subsystems is sorted according 
to relative expression level, with the most expressed Subsystem on top and the least expressed at the bottom. Thew filled triangle to the 
left suggests a general significant difference between samples taken in May and June. Filled circles to the right of the May and June colour 
bars indicate significant differences between two or more land- use types within a given month (e.g., arable field vs. forest KH in May). Filled 
circles to the right of the May/June comparison indicate significant differences between May and June for one or more land- use types (e.g., 
arable fields KH in May vs. June). Pairs of sample groups differing from one another are marked in Figure S8. More information on the SEED 
functional subsystems is available at https://rast.nmpdr.org/seedv iewer.cgi?page=Subsy stemS elect

F I G U R E  7  Box plots showing the 
overall functional richness (a) and 
evenness (b) of active communities in KH 
grouped according to land- use type and 
sampling period. Median and mean values 
are depicted by solid and dotted lines, 
respectively. Whiskers mark the 25th and 
75th percentiles. Dots represent the 5th 
and 95th percentiles

https://rast.nmpdr.org/seedviewer.cgi?page=SubsystemSelect
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eutrophic nature of the sampled KH described by Lischeid et al. 
(2018). Ecological information on the three eukaryotic taxa identi-
fied as indicative of KH in arable fields (Nephroselmis sp., Carteria 
sp., Stichotrichia sp.) is scarce. Carteria sp. can be present in various 
aquatic habitats ranging from oligotrophic lakes (Padisák et al., 2010) 
to extreme acid lakes (Nixdorf et al., 1998). However, consistent with 
our results, Carteria sp. has recently been found to form blooms in 
eutrophic lakes (González & Roldán, 2020). Although Stichotrichia is 
mostly dominant in oligotrophic waters (Desvilettes & Bec, 2009), 
some species have also been recorded in hypertrophic environments 
(Šimek et al., 2019). Similarly, the top indicative taxa of forest and 
grassland KH, Planorbarius corneus and Trachelomonas sp., respec-
tively, are also known to occur in eutrophic waters (Costil & Clement, 
1996; Peczuła et al., 2014; Solórzano et al., 2011).

Our quantitative analysis ranked microorganisms such as ciliates, 
fungi and bacteria at the top of the indicator species list across all 
land- use types. However, this is to be expected as the probability of 
retrieving RNA from microorganisms in our samples is higher than 
for higher organisms.

4.3  |  Community functional performance

Functional redundancy emerges as an inherent property of the KH 
communities, when the same tool used to investigate the structure 
of the active communities is applied to analyse patterns of gene ex-
pression. Land- use type could not explain functional variation (i.e., 
gene expression patterns) and a temporal effect of crop type ex-
plained only a small fraction of the overall variation. The latter ef-
fect can probably be attributed to the same portion of the bacterial 
community that responded to crop type. Additionally, no physical or 
chemical variables could be identified to explain the distribution of 
expressed functional genes, indicating that the observed effects of 
water chemistry on the structure of the active community did not 
translate to variations in community functions. Despite sampling 
time explaining ~7% of the variation in functional gene expression, a 
PCA could not separate the functional community profiles accord-
ing to the time of sampling. Thus, the active communities sampled 
in May and June differed from one another, but their functionality 
remained unchanged between the two months. This suggests that 
different organisms perform the same processes at different time 
points. This conclusion is also apparent in the ternary plots indicat-
ing minimal land- use- specific associations of functions and similarly 
small differences between the two sampling periods (Figure 4).

We propose that interactions between organisms are one of 
the main drivers of the functional variability in the studied KH. 
Interactions between organisms are known to shape biodiversity 
(Bachelot et al., 2015; Gallien et al., 2017) and community function-
ality (Gallien, 2017). Our data suggest that in the studied ponds such 
interactions are a stronger driver of active community structure and 
functionality than land- use type or physicochemical environmental 
parameters. First, this is suggested by the general correlation of the 
bacterial and eukaryotic communities as well by the ability of the 

dominant taxa in each community to explain a significant portion of 
the variability in the other. Since the eRNA data provide quantitative 
information on activity rather than the physical abundance of or-
ganisms, this linkage between the activity of the two communities is 
coupled to the different functions these organisms perform. Second, 
the most active members of the bacterial and eukaryotic communi-
ties explain a significant part of the functional variability. This re-
sult could be alternatively interpreted as driven by environmental 
conditions selecting for specific taxon- related functions. However, 
the physicochemical variables measured could not explain the func-
tional variability. Therefore, we suggest that all types of symbiotic 
interactions (i.e., mutualism, commensalism, predation, amensalism, 
parasitism and competition) between the KH- residing communities 
shape the structure of the active community and subsequently the 
expressed genes and functionality. Our results point to such inter-
actions between the bacterial and eukaryotic communities, but this 
phenomenon takes place between different subgroups and individ-
uals of these communities as well.

Despite obvious differences in light availability between the 
tree- covered forest KH and most KH located in grassland and arable 
fields, it appears that light, and consequently photosynthesis, were 
not the main drivers behind the partial community separation ob-
served in May. Expression of photosynthesis and CO2 fixation genes 
was lowest in forest KH in June, probably due to light limitation by 
the covering tree canopy; however, no separation in the community 
was observed at this time point. In contrast, in May, when the ac-
tive communities could be partially separated according to land use, 
no significant differences in photosynthesis and CO2 fixation gene 
expression levels were detected between the three land- use types. 
Furthermore, no changes were observed between the expression of 
genes between arable fields or grasslands from May to June.

Genes for nitrogen fixation and phosphorus scavenging in ar-
able fields were higher in June than in May. This suggests these 
nutrients were less available in late spring, which might be related 
to fertilizer application at this time. Nitrogen fixation is triggered 
by the absence of combined nitrogen sources such as ammonia, 
nitrate and urea. Similarly, scavenging of phosphorus via alkaline 
phosphatase or DING proteins (Berna et al., 2008) increases as 
phosphorus concentration decreases. Accordingly, the increase 
in expression of these genes in June suggests that N availability 
in KH decreased from May to June, or N demand increased. This 
further supports the notion that the separation of the structure 
of the active communities according to land- use type in May indi-
cates the effect of pulsed fertilization applied to the arable fields 
reaching all KH water. This is reflected in temporal changes of 
the structure of the active community (i.e., not necessarily their 
physical abundance) between May and June. In June, grassland KH 
were characterized by an even higher increase in nitrogen fixation 
genes than those in arable fields, highlighting a delayed but similar 
change in nitrogen availability in grassland KH. The proximity of 
these KH to arable fields may result in indirect fertilization from 
arable fields and vice versa. The strong simultaneous decrease in 
NH4 from May to June in grassland and arable field KH and the 
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overall low NO3
− concentration further explain the strong in-

crease in the expression of N fixation genes in June. According to 
information passed by local landowners to Dr Gernot Verch from 
the Leibniz Centre for Agricultural Landscape Research (ZALF), 
fertilization in 2017 in the study area took place between March 
and May and ceased at least 2 weeks before the June sampling 
campaign.

Although elevated potassium concentrations in KH of arable 
fields could also be due to fertilization, the lack of changes in the ex-
pression of potassium homeostasis genes, which increase in limiting 
conditions (Schramke et al., 2017), suggests that potassium availabil-
ity is sufficient in the studied KH.

In this study, we have examined the structure and function-
ality of active KH communities at the genetic level. Yet, land- use 
type may also affect organismic traits that are not genetically de-
tectable, especially for larger organisms. For example, body size, 
coloration, feeding habits and other behaviour, habitat use, etc. 
(McKie et al., 2018; Potapov et al., 2019), may not be seen in our 
transcriptome. Therefore, to fully elucidate land- use and other 
effects on community structure and functions requires comple-
menting eDNA and eRNA data with information on further organ-
ismic features such as morphological, functional and behavioural 
traits. Additionally, because of the short lifetime of RNA in the 
environment, it is likely that larger organisms which could not 
be directly sampled are absent or incorrectly represented in the 
eRNA data sets.

5  |  CONCLUSIONS

Our eRNA- based study shows that current land- use type has a time- 
dependent effect on the structure of the active members of bac-
terial and eukaryotic communities. Thus, it becomes evident that 
aquatic bacterial (Bacteria and Archaea) and eukaryotic KH commu-
nities react to the input of nutrients and organic matter from the 
surrounding terrestrial landscape by modifying their activity pat-
terns even when community composition remains unchanged due 
to biodiversity homogenization. Community structure of the active 
aquatic bacteria can respond to crop type. Such relationships are 
hidden when analyses are restricted to determining community 
structure using eDNA, highlighting the complementary analyses of 
eRNA- based studies.

In contrast to the activity level of the studied communities, 
the overall functionality assessed by determining expression pat-
terns of functional genes was barely influenced by sampling time 
or land- use type, highlighting a functional redundancy across the 
landscape. Additionally, only a small portion of the overall varia-
tion can be explained by water temperature and chemistry. Given 
the apparent functional redundancy, it is not surprising that nei-
ther land- use type nor environmental parameters can explain the 
functional variability.

Yet, functional- gene expression is quite well (50%) explained by 
the active community structure of bacteria, eukaryotes and both 

combined. Our data suggest that site- specific interactions among 
organisms constitute the main drivers of changes in organismic 
structure of the active KH communities and their specific metabolic 
activities. Gallien (2017) proposed the use of community functional 
studies to reveal competitive interactions in communities. We pro-
pose that eRNA studies may be part of the toolbox necessary to 
reveal complex interactions between organisms in complex commu-
nities across trophic scales.

Biodiversity homogenization due to anthropogenic activity ap-
pears to be a recurring pattern in different types of ecosystems 
(Buhk et al., 2017; Holman et al., 2021; Meyer et al., 2013a; Smart 
et al., 2006). This is further accompanied by a continuous decrease 
in biodiversity (Díaz et al., 2019; Harrison et al., 2020; Urban, 2015). 
Our study demonstrates that the activity of different members of 
these communities, despite being homogeneously distributed across 
the landscape, respond to land- use- related activities, such as fertil-
ization. To mitigate further loss in biodiversity, and as a step towards 
restoration, conservation policies should be applied not only to pris-
tine ecosystems but also to those that were under negative anthro-
pogenic influence for long periods of time as it becomes obvious that 
the local communities are still sensitive to land- use- specific input.
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