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Magmatic arcs above subduction zones produce most of the 
world’s explosive volcanism and host giant ore deposits 
of copper, molybdenum, gold and other valuable met-

als. Arc magmas are considerably more oxidized than mid-ocean 
ridge basalts1–5 and generate volcanic eruptions that can inject sulfur 
gases (mainly SO2) into the stratosphere, producing sulfate aerosols 
that trigger transient tropospheric cooling and stratospheric heat-
ing6. The origins of the oxidized signature in arcs, as well as in the 
underlying lithospheric mantle1–5,7, are vigorously debated4,8–23. One 
family of hypotheses holds that the fluids released by subducting 
slabs are inherently oxidized relative to the pristine igneous rocks 
generated at mid-ocean ridges. The oxidation may take place during 
seafloor hydrothermal alteration of mafic crust and/or serpentini-
zation of ultramafic rocks at mid-ocean ridges before subduction. 
During subduction zone devolatilization, these rocks release fluids 
with a high oxidation potential to the mantle wedge and give rise to 
oxidized arc magmas via flux melting4,8–15. In contrast, another set 
of hypotheses posits that the oxidized signature is acquired in the 
mantle or crust overlying the subduction zone16,17. Some proposed 
oxidative pathways include the loss of reducing components (for 
example, H2) from ascending melts (or fluids) to the surrounding 
mantle16,18 or fractional crystallization of Fe2+-rich phases such as 
garnet in deep lithospheric magma chambers19.

A corner-stone of this debate is determining whether subduct-
ing slabs can release oxidizing fluids. This has proved to be chal-
lenging, however, in part because many subducted lithologies 
lack mineral assemblages suitable for estimating oxygen fugacity 
( fO2). Moreover, field-based studies and theoretical modelling have  
produced strongly conflicting results for the oxidation state of mafic 

crust, underlying serpentinite and their respective fluids9–14,20–23. For 
example, some exhumed slab rocks preserve evidence for relatively 
reducing geochemical fingerprints20,21,23, whereas oxidizing finger-
prints are preserved in others9,11,12,23.

The veneer (~400 m thick24) of sediments that covers subducted 
slabs worldwide provides another potential oxidative pathway but 
has received much less attention than other slab lithologies. Oxidized 
Fe3+-bearing sedimentary detritus containing goethite (FeO(OH)) 
and haematite (Fe2O3) from weathered continental sources can be 
transported to marine depositional settings thousands of kilome-
tres from the shore (for example, the Bengal Fan25). Aeolian fluxes 
of oxidized minerals to deep ocean basins can occur on similar 
scales (for example, Indian and Pacific Oceans26). Furthermore, 
highly oxidized oceanic (meta)sediments (such as Fe- and Mn-rich 
cherts) are widely known from exhumed subduction complexes 
including those of California27, Japan27 and New Zealand28 in the 
Circum-Pacific region, the Alps29 and other localities globally30. 
Moreover, the substantial oxidation potential of sediment entering 
subduction zones, such as the Mariana subduction zone, has been 
clearly documented in extensive ocean floor drill cores8,31. What 
is urgently needed now is a field-based evaluation of the redox 
states of subducted metasedimentary rocks and the extent to which 
they can regulate the fO2 of devolatilization fluids released from  
downgoing slabs.

To address this important gap in knowledge, we investigated 
metasedimentary rocks from two forearc subduction complexes 
in the Aegean region, Greece (Methods and Extended Data Fig. 1). 
The samples are from three islands (Andros, Naxos and Tinos) that 
form part of the Cycladic Blueschist Unit (CBU) and from Crete. 
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Both complexes reflect Tertiary subduction of the African plate 
beneath Eurasia, which continues today in the Hellenic subduction 
zone. The subduction complexes of the Aegean are among the most 
extensively studied and best-exposed on Earth.

oxidized rock types and textures
The oxidized rock types we investigated are likely to be less famil-
iar than the classic blueschists and eclogites of subduction com-
plexes. Because of the high Fe3+ contents of the rocks, Fe2+-rich 
minerals including almandine-rich garnet porphyroblasts are 
uncommon or absent. Consequently, many of the rocks have an 
unremarkable appearance in outcrop. For this reason, we posit 
that oxidized metasediments have largely escaped attention in 
petrological studies and, thus, are probably much more common 
than is recognized at present. Moreover, they are not restricted 
to the islands we study; for example, oxidized metasedimen-

tary (and metaigneous) rocks are known from the CBU on Evia32  
and Sifnos11,33,34.

A wide variety of oxidized rock types are exposed, including 
metabauxite, which is well known from Crete and Naxos (>90 
localities on Naxos alone35). The metabauxite protoliths were deep 
lateritic weathering horizons developed on carbonate sequences. 
Haematite and rutile are widespread, and relic soil pisolites were 
preserved in places (Fig. 1a).

On Andros, Mn- and Fe-rich quartzites and schists are found 
within a volcano-sedimentary sequence that hosts synsedimentary 
Mn mineralization. Garnets are rich in the spessartine component 
(Mn3Al2Si3O12) and epidote can contain considerable piemonite  
(Ca2Mn3+Al2Si3O12(OH)) (Fig. 1b). Similar rocks are found on 
neighbouring islands; over a dozen localities are known from 
Andros, Evia and Tinos32. Seafloor metasediments that are less 
manganiferous and contain abundant haematite ± magnetite are not 
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Fig. 1 | Examples of highly oxidized metasedimentary rocks. a, A hand sample of metabauxite from Crete (jagcr10A). Note the deformed elliptical relic 
soil pisolites (an example is marked by the white arrow). b–f, Photomicrographs taken under plane-polarized light unless otherwise noted. b, Aggregate 
of piemontite (Pmt) and haematite (Haem) in manganiferous quartzitic schist from Andros (jagan01A). Note the strong orange–pinkish red pleochroism 
in the piemontite. Qz, quartz. c, Sodium amphibole-bearing quartzite from Tinos. Note the abundant small Mn-rich garnets (jagti90B). Amp, amphibole. 
d, Glaucophane–ferro-glaucophane–riebeckite Na amphibole (blue) in marble with magnetite (Mag) and haematite from Tinos (jagti68B). Amphibole 
Fe3+/(Fe2+ + Fe3+) ≈ 0.53. Cal, calcite; Ep, epidote. e, Epidote- and phengite-rich schist from Tinos (jagti108D; crossed polarizers). Ph, phengite. f, Coarse 
haematite and rutile (Rt) in vein from Tinos (jagti123A). Note the haematite inclusions in the rutile (an example is marked by the white arrow).
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uncommon; two quartzites from Tinos are studied herein (Figs. 1c  
and 2a,d). Their protoliths were probably cherts or sandstones.

Regionally widespread metapelitic phyllites and schists, as well as 
metacarbonate rocks, contain rhombohedral oxide ± rutile ± mag-
netite; we present examples from Tinos and Crete (Figs. 1d–f  
and 2c,e).

We also examined two rocks from Tinos that are intercalated 
with oxidized metasedimentary layers. One is an epidote- and Na 
amphibole-rich metabasaltic blueschist. The other is an Na-rich 
‘albitite’ schist with complex mineralogy that includes Na amphi-
bole, jadeite–aegirine (Na–Fe3+–Al) clinopyroxene, magnetite and 

haematite (Fig. 2b). This highly sodic rock is reminiscent of jadeitite 
and may have similar origins36.

Multiple samples preserve textural evidence for reduction dur-
ing metamorphism. For example, garnets whose cores contain only 
haematite inclusions can be found surrounded by matrix magnetite, 
indicating the reduction of haematite to magnetite some time after 
core growth (Fig. 2a). Garnet molar Fe3+ decreases ~70% from cores 
to rims (see Data availability). In another example, haematite-rich 
domains are cut by a network of Na amphibole-bearing veinlets 
in which haematite has been converted to coarse magnetite; these 
veinlets are inferred to be fluid infiltration pathways (Fig. 2b).  
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Fig. 2 | Evidence for synmetamorphic reduction. a–c, Plane-polarized light photomicrographs. a, Quartzite (jagti134N). Magnified inset shows haematite 
inclusions in a garnet (Grt) that is enclosed by magnetite. The rock initially contained only haematite, which was incorporated into growing garnets, 
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cloudy domains, which may also contain fine-grained albite, quartz, phengite, epidote, sodic clinopyroxene, and Na and Na–Ca amphiboles (Amp)). These 
anastomosing features are interpreted as infiltration channels for reducing fluids. c, Garnet containing inclusions of Na–Ca amphibole (green, right) that 
have ~25% greater Fe3+/(Fe3+ + Fe2+) values than matrix Na amphibole (blue, left) (jagti154F-1). The garnet core also contains small (tens of micrometres) 
inclusions of jadeite–aegerine clinopyroxene with ~0.4–0.6 Fe3+/(Fe3+ + Al) (not visible). d, Reflected light photomicrograph showing haematite and rutile 
inclusions in garnet (main image and inset) and matrix ilmenite (Ilm) (jagti90B). Note that matrix ilmenite surrounds and postdates the haematite-bearing 
garnets. e, Cut rock slab containing the alteration selvage (tan ‘bleached’ appearance) adjacent to a quartz vein cutting purple-red haematite-bearing 
phyllite. The haematite has been destroyed in the selvage by reducing fluids that infiltrated along the vein (jagcr00A). Siderite–magnesite in veins is the 
inferred sink for the reduced iron.
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Figure 2c shows a garnet core that contains Fe3+-rich Na–Ca amphi-
bole and clinopyroxene, whereas the matrix contains glaucophane 
with Fe2+ > Fe3+. In Fig. 2d, haematite is found in garnet interiors, 
but the matrix hosts Fe3+-poor ilmenite. A redox profile is shown 
in phyllite from Crete, in which the rock distal to a cross-cutting 
quartz vein is rich in haematite, whereas the altered selvage rock 
proximal to the vein lacks haematite and is strongly depleted in  
iron (Fig. 2e).

fO2 estimates
We used various combinations of eight independent oxybarometers 
to estimate metamorphic fO2 (Methods), including the simple hae-
matite–magnetite and haematite–ilmenite–rutile equilibria that are 
independent of the activity of H2O. When possible, equilibria were 
applied to assemblages within garnet (preserved as inclusions) and 
in the rock matrix to evaluate fO2 changes during metamorphism.

Figure 3 shows that metasedimentary lithologies can preserve 
a highly oxidized signature during subduction. The estimates of 
fO2 relative to the fayalite–magnetite–quartz buffer (in log10 units; 
ΔFMQ) cover an extraordinary range exceeding seven orders 
of magnitude; all are at or above the typical ΔFMQ values of arc 
magmas. Rocks that lack magnetite can have fO2 values that extend 
far above the haematite–magnetite buffer, up to ΔFMQ ~9. These 
include Fe- and Mn-rich haematite-bearing schist, as well as haema-
tite + rutile-bearing metabauxite, quartzite and metapelitic phyllite, 
and epidote-rich schist (samples 1–5). The extreme fO2 of the man-
ganiferous metasediments is consistent with comparable localities 
elsewhere29. Another substantial fraction of the rock suite, which 

includes marble, quartzite, metabasalt intercalated with oxidizing 
metasediments and metapelitic schist, clusters between ΔFMQ ≈ 2 
and the haematite–magnetite buffer (samples 6–12).

Inclusion assemblages within garnet may record fO2 values 
that are ~1–4 log10 units higher than matrix assemblages. This is 
consistent with textural evidence and indicates synmetamorphic 
reduction following initial garnet growth (Fig. 2a,c,d), as has also 
been documented in metabasalts11. Furthermore, reduction need 
not cause a drop in fO2. For example, in Fig. 2b, the magnetite-rich 
veinlets formed at the expense of the intervening haematite-rich 
domains, but magnetite and haematite coexist. Thus, although 
the conversion of haematite to magnetite was proceeding, both 
phases were present so the fO2 was constrained to be near the hae-
matite–magnetite buffer as the bulk-rock Fe2+/Fe3+ increased. We 
infer that reactive fluids ascending from deeper in the slab caused 
the reduction documented in Figs. 2 and 3 and were oxidized  
as a result.

Fluid fluxes and metasedimentary rock oxidizing capacity
The time-integrated fluid flux (qTI; m3

fluidm−2
rock) must be used to 

evaluate changes in redox state due to the infiltration of exter-
nally derived reactive fluids (Methods). Consider a rock column 
with 1 m2 cross-sectional area extending vertically through a slab. 
Devolatilization fluids are progressively released and flow up and 
out of this column into the mantle wedge as the slab (and col-
umn) descends. Thus, qTI, as measured at the top of the column, 
increases with depth. For the subarc depth interval 80–150 km, we 
took qTI = 220m3

fluid m−2
rock (refs. 21,24). The fluid flux generated by 
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local devolatilization of metasediment is over 1,500 times smaller 
and will therefore be dominated by the external flux ascending from 
deeper in the slab (Supplementary Information). Some reduction 
begins in the forearc (Figs. 2 and 3), but most is expected in the sub-
arc where >80% of the fluid release in the 0–150 km depth interval 
occurs21,24. In addition, ~40% of the forearc fraction is derived from 
metasediments21,24; if they were inherently oxidized, they would 
release oxidized fluids during dehydration.

We used reaction-transport theory to assess whether oxidiz-
ing metasediments have the capacity to oxidize these fluids37–39 
(Methods). For one-dimensional reactive transport dominated by 
advection (flow), the reacted and unreacted rocks are separated 
by a reaction (redox) ‘front’ that propagates in the flow direction  
(Fig. 4a). The amount of bulk-rock Fe2O3 reduced, the fluid com-
position and a redox reaction are required for the calculations  
(Fe is the most abundant redox-sensitive element). We investigated 
reductions of 2.5, 5, 10 and 20 wt% bulk-rock Fe2O3, the likely range 
for the studied lithologies (Methods), by O–H, C–O–H and S–O–H 
fluids at representative subarc conditions of 700 °C and 3 GPa. We 
note that for a given fluid flux, reaction fronts for different chemi-
cal or isotopic tracers will travel different distances as a function of 
their partitioning behaviour37.

The reduction of one mole of Fe2O3 by molecular H2 in aqueous 
(O–H) fluids can be described by

H2 + Fe2O3 = 2 FeO+H2O (1)

FeO and Fe2O3 are considered to be generically present in oxides 
or silicates. The fluid composition can be determined if fO2 is 
known. Dehydration fluids released from relatively reducing sub-
arc mafic crust and serpentinite are probably in the ΔFMQ range 
1 to −2 (refs. 20,21,23); we took −1 as representative. The ΔFMQ of 
the haematite–magnetite buffer is representative of the oxidized 
metasediments and thus the fluids released from the top of the slab. 
With these bounding ΔFMQ values, we could quantify the capac-
ity of the metasediments to oxidize the dehydration fluids passing 
through the slab cover into the mantle wedge at subarc conditions. 
The calculations were not particularly sensitive to the metasedi-
mentary fO2 value as long as it was around or above that of haema-
tite–magnetite. We note that some slabs may release more oxidized 
fluids9,13,23; these would be little modified by flow through the oxi-
dized metasediments.

Figure 4b shows how thick metasedimentary layers would need 
to be to oxidize the slab dehydration flux. For O–H fluids, they are 
remarkably thin, ranging between ~20 cm (20 wt% Fe2O3 reduced) 
and ~2 m (2.5 wt% Fe2O3 reduced). This is because the amount of 
H2 in the ascending dehydration fluids is small, and the redox buffer 
capacity of the metasediments is large39,40.

In C–O–H fluids, one mole of methane (CH4) will reduce four 
moles of Fe2O3

CH4 + 4 Fe2O3 = 8 FeO+ CO2 + 2H2O (2)

We calculated the input CH4 mole fraction (XCH4) assuming 
graphite saturation, which yielded the maximum possible XCH4 and 
is thus the most conservative value. Thicker sequences of metasedi-
ment are required to oxidize this flux relative to the O–H case  
(Fig. 4b). This is because the CH4 concentrations are higher than 
those of H2, and the CH4:Fe2O3 ratio is 1:4. Nonetheless, the thick-
nesses are still only ~10–30 m. As XCH4 in the input fluid is still 
relatively small, the evolved CO2 is also small and will, in general, 
not precipitate carbonate phases unless they were already stable  
in the rock.

S2− species will be dominant in S–O–H fluids at low fO2  
(refs. 21,23). The oxidation of H2S to produce SOx can be represented 
using SO2 (ref. 23), the most abundant S species in volcanic gases6

H2S+ 3 Fe2O3 = 6 FeO+ SO2 +H2O (3)

Fluid and/or minerals can host the product Fe and S. For such 
reactions to go strongly to the right, fO2 must be above that for 
fH2S = fSO2 (isofugacity; Methods). As shown in Fig. 3, this would 
be the case for the highest fO2 rocks at forearc conditions; the fO2 for 
isofugacity drops sharply with increasing pressure (P) and tempera-
ture (T) and would be below haematite–magnetite at T > ~650 °C 
for typical subduction geotherms. Thus, SOx will be important in 
fluids equilibrated with oxidized subarc metasediments.

For O–H and C–O–H fluids we used molecular H2, CH4 and CO2 
as their thermodynamic and mixing properties are reasonably well 
established (Methods). For S–O–H fluids, calculations based on 
aqueous species21 including H2Saq (the DEW model41) tend to give 
higher total S concentrations than those based on molecular H2S. 
We calculated the input mole fraction XH2S at ΔFMQ −1 using the 
molecular approach for typical mid-ocean ridge basalt42 at pyrite 
saturation to represent fluids exiting the top of the metaigneous 
portion of the slabs. The H2S:Fe2O3 ratio will vary depending on the 
valence of S in SOx; the maximum ratio is 1:4 (for sulfate). Taking 
H2S:Fe2O3 = 0.25, the metasediment thickness needed to oxidize the 
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slab flux is greater than that for the O–H or C–O–H cases but is 
<60 m (Fig. 4b). Using S concentrations from aqueous species cal-
culations21 yielded greater thicknesses (<200 m).

Thicknesses for a C–S–O–H input devolatilization fluid at 
graphite and pyrite saturation are approximately the sum of the 
C–O–H and S–O–H results of Fig. 4b; this yielded a maximum of 
~200 m. If O–H, C–O–H or S–O–H ± C input fluids had fO2 val-
ues higher than ΔFMQ −1, all of the thicknesses in Fig. 4b would 
be decreased, as such fluids have less reducing power. For example, 
for a graphite-saturated C–O–H fluid at FMQ, the layer thicknesses 
decrease to <3 m.

Graphitic carbon is not common, occurring in isolated metased-
imentary horizons intercalated with more oxidized rocks. The fluids 
in graphitic rocks need not be very reducing. Assuming the mean 
regional fluid XCO2 for the CBU to be 0.007 ± 0.001 (2σ)43 together 
with the reaction C + O2 = CO2 yielded ΔFMQ ~0.3 ± 0.1 at graph-
ite saturation. As most CBU rocks lack graphitic carbon, this is a 
minimum estimate. Regardless, as noted above, fluids near FMQ 
equilibrated with graphitic carbon would have little ability to reduce 
oxidized metasediments.

The metasedimentary oxidative filter
Our results show that oxidized metasedimentary rocks have the 
capacity to oxidize the dehydration flux of fluids ascending from 
slabs at subarc depths. In general, metasedimentary rocks will be 
at the top of a slab and, thus, will be the last rock type encountered 
by the fluids before they enter the mantle wedge. Consequently, 
oxidized metasediments will act as an ‘oxidative filter’ that imposes 
a high- fO2 fingerprint on the slab fluids that ultimately drive 
flux melting and arc magmatism (Fig. 5). This model can recon-
cile evidence for the release of relatively reducing (for example, 

H2S-bearing) fluids from subducted metabasalts and serpentinites 
in the subarc20,21,44,45 with the presence of an oxidized (for example, 
sulfate-bearing) slab fluid component46 in arc lavas10,14. In addi-
tion, any high- fO2 fluids generated in underlying hydrothermally 
altered metabasalt or serpentinite9,11,13 would pass through the filter 
with their oxidizing character preserved. Moreover, the filter does 
not preclude oxidation processes operating in the overlying man-
tle wedge or lithosphere. Such metasediments could also undergo 
dehydration or partial melting45 themselves, contributing to the  
oxidized flux.

The O–H and C–O–H fluid models require reduction of <10% 
of an average subducted sedimentary sequence (400 m thick24) to 
oxidize the slab flux. The S–O–H models require a higher, but still 
reasonable, proportion of <~15–50%. Consequently, the oxidizing 
potential of the metasedimentary sequence could be realized even 
if the rocks experienced thinning by offscraping in an accretionary 
prism or by compaction, if flow was channelized or if the sequence 
was not composed entirely of oxidized metasediments. On the other 
hand, thrust faulting or folding in the subduction channel would 
lead to greater thicknesses. A further implication is that consider-
able amounts of surface-derived oxic components in slabs could be 
subducted past the subarc deep into the mantle, consistent with geo-
chemical modelling47 and an oxygen mass balance of the Marianas 
subduction zone8.

A rough assessment suggests that fluids ascending from metased-
iments could oxidize the mantle at a rate of ~4 km3 yr−1, comparable 
to the global arc magma generation rate of ~2.5 km3 yr−1 (ref. 48; 
Supplementary Information). The majority of this oxidation would 
be accomplished by sulfur species, highlighting their much greater 
efficacy as redox agents relative to O–H and C–O–H species4,8,23,47. 
Nonetheless, O–H and C–O–H species could still contribute  
to the total.

The fO2 of arc magmas ranges over two to three orders of magni-
tude2–5. At least some of this variability could be related to the oxidative 
capacity of subducted metasedimentary sequences. Some sequences 
of oceanic affinity, such as the Palaeozoic Tianshan high-pressure/
ultrahigh-pressure metamorphic belt49, are relatively poor in oxic 
components21. By contrast, oxidative weathering-derived detritus 
would be expected to be important in depositional basins more 
proximal to continents. The Aegean setting represents a hybrid case 
that contains both oxidized oceanic (for example, Mn-rich) and 
weathering-related sedimentary source components. Whether flow 
is pervasive or channelized to some degree12,21,50–52 will increase the 
variability of the redox signal delivered to arcs. Postulated increases 
in the fO2 of Phanerozoic island arcs relative to Precambrian equiva-
lents53 may be related to the global emergence of oxidative weather-
ing driven by Neoproterozoic–Palaeozoic marine and atmospheric 
oxygenation54–56, and thus reflect the ultimate recycling of weather-
ing products in subduction zones.
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Methods
Mineral abbreviations follow Whitney and Evans57, except Haem is used for 
haematite. Amphibole nomenclature follows Hawthorne et al.58.

Metamorphism. The CBU underwent high-pressure/low-temperature 
metamorphism during the Eocene. Metamorphic P–T conditions reached 
500–550 °C and 1.5–2.0 GPa (refs. 59–61). The samples from Crete are from 
the Phyllite-Quartzite unit and the Plattenkalk nappe, which comprise the 
high-pressure/low-temperature rocks collectively known as the lower nappes62. 
Metamorphism occurred in the late Miocene and reached ~400 °C and  
~1.0 GPa (refs. 63,64).

Thermodynamic data. The thermodynamic calculations were done using the 
database of Holland and Powell65, incorporating the standard-state properties of 
H2O, CO2, H2, CH4, CO, H2S and S2, together with the equations of state of ref. 66 for 
H2O and CO2 and ref. 67 for all others. Nonideal mixing among these was treated 
using the molecular models of refs. 68,69. Thermodynamic data for SO2 were also 
included70; the critical pressure was adjusted slightly from 7.87 MPa to 9.87 MPa 
to better fit available volume relations at elevated P–T conditions71 using the 
equation of state of ref. 67. SO2 was assumed to mix ideally; this assumption had no 
impact on the fH2S − fSO2 isofugacity calculations. Equilibria involving the above 
C–O–H–S species were calculated using Theriak-Domino72 version 11.03.2020 
(Supplementary Table 2). The ‘fluid’ standard state was adopted, which specifies 
unit activity of the pure substance at the P–T conditions of interest. O2 was not 
considered as a fluid constituent because its concentrations are so low that there is 
effectively no free O2 in the fluid39.

We estimated fluid S concentrations in two ways. First, we considered the 
average mid-ocean-ridge basalt composition of ref. 42 at ΔFMQ −1 with enough 
added S to stabilize pyrite at subarc conditions of 700 °C and 3 GPa (1.895 × 10−3 
molar S/Si ratio; Supplementary Information). Such fluids need not be generated 
in the metabasalt; they could also be derived from underlying reduced serpentinite 
that achieved redox equilibrium with metabasalt. Using the fluid standard-state 
model above and pseudosection calculations following ref. 43, this yields a total S 
mole fraction of 5.6 × 10−4 (almost entirely H2S).

Second, we considered the aqueous species treatment used in the DEW model41 
computed in ref. 21. The standard state is: unit activity for a hypothetical 1 molal 
solution referenced to infinite dilution at the P–T conditions of interest. This 
treatment gives an average S mole fraction of 1.6 × 10−3 for fluids released from 
metaigneous rocks when integrated over subarc depths of 75–150 km (ref. 21). The 
two approaches should give comparable results as the fluids are supercritical23, 
but the DEW result is larger by a factor of ~3. We attribute this to the fact that 
DEW considers a much wider range of aqueous species than the molecular model, 
including Cl complexes, thus facilitating a better and more complete accounting of 
all sulfur species in fluids. We emphasize that a factor of ~3 difference is still quite 
good agreement for calculations of this nature, and that our conclusions regarding 
oxidation by metasediments are unaffected by the choice of model. Figure 4b 
shows the results of both approaches.

For the fO2 estimates, nonideal mixing was considered for garnet73,74, epidote65, 
clinopyroxene75, haematite–ilmenite and amphibole; for the last two of these we 
used the models in the AX 62 program (T.J.B. Holland, University of Cambridge). 
For haematite–ilmenite, we calculated the AX 62 model with Theriak-Domino72 
to properly account for solvus relationships. The piemontite component was 
appreciable only for the Mn-bearing epidote from Andros (sample jagan1A). For 
this sample we used the model from Holland and Powell65 for epidote–clinozoisite 
and added the piemontite endmember via ideal mixing. Quartz, rutile, magnetite, 
sphene and H2O were assumed to have unit activity; typical H2O mole fractions  
of ~0.99 or greater are documented for the Cyclades43.

fO2 calculations. Mineral compositions (Data availability) for fO2 estimation 
were obtained using the JEOL JXA-8530F field-emission gun electron-probe 
microanalyser (EPMA) at Yale University. Analyses used natural and synthetic 
standards, off-peak background corrections, a 15 kV accelerating voltage and a 
10 nA beam current. The beam diameter ranged from focused to 5 μm, depending 
on the grain size and mineral type (5 μm was used for all hydrous phases). 
Rhombohedral oxides in three of the four lowest- fO2 samples (ΔFMQ ∼2–3; 
jagti90A, jagti106B, jagti154F) contain exsolution lamellae that were reintegrated 
with the host grain using multiple (up to 12) EPMA analysis spots per sample76.

We utilized the following equilibria

The last of these was used to compute the fO2 for H2S–SO2 isofugacity 
( fH2S = fSO2) assuming unit activity of H2O (aH2O = 1). Decreasing aH2O decreases 
the fO2 for H2S–SO2 isofugacity, but low aH2O fluids are unlikely43. Donohue 
and Essene77 defined equilibrium Ep1 and used it to estimate fO2 for several 
rocks, including high-pressure calcsilicate from the Bergen Arcs, Norway. They 
obtained high ΔFMQ in the range of 3.5–4 for the calcsilicate. This rock is from a 
continental subduction zone and was subjected to Neoproterozoic granulite facies 
metamorphism and potential metasomatism before the Palaeozoic high-pressure 
event. Thus, it is from a very different setting than that studied herein.

The mineral Fe3+ contents were calculated by stoichiometry from the EPMA 
analyses. Haematite–ilmenite: 2 cations per 3 oxygens. Magnetite: 3 cations 
per 4 oxygens. Epidote: Fe3+ + Mn3+ + Al + Cr + Ti = 3 per 12.5 oxygens. We 
assumed all Mn3+ for manganiferous epidote in sample jagan1A from Andros, 
and Mn2+ for epidote in the other samples. Garnet: two octahedral sites per 12 
oxygens (Fe3+ + Alvi + Cr + Ti = 2). Very low garnet Fe3+/(Fe2+ + Fe3+) estimates 
were deemed unreliable. This is mainly a concern for reaction GH, above, which 
involves an andradite component. Furthermore, the activity–composition relations 
for Fe3+-bearing garnet at low Fe3+/(Fe2+ + Fe3+) are probably subject to large 
uncertainties. Consequently, we only used GH when the estimated garnet Fe3+/
(Fe2+ + Fe3+) was >0.25. Clinopyroxene: 4 cations per 6 oxygens. The studied 
clinopyroxenes are predominantly jadeite–aegerine solid solutions with high Fe3+ 
contents that can be reasonably estimated by stoichiometry. Following the AX 62 
program, we adopted a minimum Fe2+/(Fe2+ + Fe3+) value of 0.05 for clinopyroxene. 
Amphiboles: the average of the least upper bound and greatest lower bound on Fe3+ 
content as determined from a range of normalizations78. For these amphiboles, the 
two normalizations that were averaged were (1) total cations – (Na + K + Ca) = 13 
and (2) total cations – K = 15 (both per 23 oxygens). Other normalizations yielded 
spurious negative Fe3+ contents.

Most fO2 estimates were made for the Cycladic P–T conditions of 500 °C and 
1.5 GPa. Using 550 °C and 2 GPa yielded very similar results. For the low-grade 
sample from Crete, we used 400 °C and 1.0 GPa. Because we report fO2 estimates in 
terms of ΔFMQ, the results are not strongly dependent on the P–T conditions used 
in the calculations (see uncertainty analysis).

The various oxybarometers involve different calculation assumptions but 
yielded comparable results for a given sample (Fig. 3 and Supplementary Table 1).  
Large variations in the activity of H2O would be expected to produce large 
variations in fO2 estimates for H2O-bearing and H2O-absent equilibria in a given 
sample, but this was not observed. Magnetite is nearly pure, so we take aMag = 1; 
the activity would have been less than that if magnetite originally contained 
impurities such as Ti4+ that were lost subsequent to high-pressure/low-temperature 
metamorphism. However, there is no evidence for any such losses and using 
aMag < 1 simply increases the haematite–magnetite fO2 estimates.

Uncertainty analysis. We evaluated the effect of P–T uncertainties on fO2 estimates 
for individual reactions using a Monte Carlo analysis of the haematite–magnetite 
buffer with 2σ uncertainties of ±50 °C and ±0.4 GPa. This yielded a standard 
deviation on ΔFMQ of ±0.22, which is comparable to that of Gerrits et al.11 (±0.2) 
for the P–T effects on similar fO2 calculations. The uncertainty is dependent on 
the reaction to some degree; a Monte Carlo analysis of the HIR buffer yielded a 
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smaller ΔFMQ uncertainty of ±0.12. To evaluate the effects of uncertainties on 
mineral analyses, thermodynamic data and the extent and timing of equilibration, 
we calculated the standard deviation on ΔFMQ with respect to the mean for four 
samples with multiple fO2 estimates made using different reactions (jagti75A, 
jagti90A, jagti106B and jagti154F; 17 total estimates). This yielded a standard 
deviation of ±0.21. Summing this and the haematite–magnetite uncertainty in 
quadrature (

√

0.222 + 0.212) yielded ±0.30, our preferred value for the standard 
deviation of an individual ΔFMQ estimate. This is far smaller than the observed 
range of ~9 log10 units (Fig. 3). The uncertainties for the Mn-rich sample from 
Andros (jagan1A-1) are deemed larger due to uncertainties in the thermodynamic 
properties of clinozoisite–epidote–piemontite solid solutions. Nonetheless, 
the extremely high fO2 of such rocks is clear (ΔFMQ ~9) and is comparable to 
estimates made on similar rocks elsewhere29.

Time-integrated fluid flux calculations and the fluid:rock ratio. The fluid:rock 
ratio (FRR) is a measure of the amount of fluid infiltration needed to drive a given 
reaction in a rock, but in general it will underestimate the fluid flux required to 
propagate a reaction front. Consider a volumetric FRR of 1m3

fluid m
−3
rock. This seems 

like a modest number, but it only considers a rock volume in isolation and does 
not account for the spatial extent of flow. Imagine a 1-km-long vertical column 
of rock with a 1 m2 cross-section through which this fluid flows vertically. To 
react the entire column, 1 m3 of fluid is required for every 1 m3 of rock (the FRR). 
Thus, 1,000 m3 of fluid is required to react 1,000 m3 of rock, far greater than the 
FRR implies. The FRR must be multiplied by the length scale of flow to obtain the 
time-integrated fluid flux37 (qTI), yielding 1, 000m3

fluid m
−2
rock for our example.

The one-dimensional conservation of mass expression describing fluid 
advection (flow) with chemical reaction for a chemical species, s, in the fluid is79

∂(ϕCs)
∂t = −

∂(vxϕCs)
∂x + ϕ

∑

l
Rs,l (4)

in which Cs is the concentration of s (molm−3
fluid), vx is the average flow velocity 

in the x direction (m s−1), ϕ is the porosity, Rs,l is the rate of production or 
consumption of s by reaction l (molm−3

fluid s
−1) and t is time. Assuming local fluid–

rock chemical equilibrium, one simple overall redox reaction (l = 1) and constant 
porosity, this expression can be integrated and recast to give qTI at the fluid inlet39

qTI =
(

MsVf
ΔXs

)
L + Lϕ (5)

Here, L is the length of a unit column of rock that has been reacted. A reaction 
front, which moves in the direction of flow, separates the reacted and unreacted 
regions (Fig. 4a). The Vf term is the molar volume of the fluid, Ms is the moles  
of s produced or consumed per unit volume rock and ΔXs is the difference  
between the mole fraction of s in the fluid upstream and downstream of the front. 
The term in parentheses on the right-hand side of the equation is the volumetric  
FRR (m3

fluid m
−3
rock). The Lϕ term is negligible if the porosity is small37–39; we set 

ϕ = 0.001 (ref. 80). Even the comparatively large value of ϕ = 0.01 contributes only 
1 m3 m−2 to qTI for L = 100 m front propagation. We take Vf =1.495 × 10−5 m3 mol−1, 
the value for H2O at 700 °C and 3.0 GPa (ref. 66).

If the metasedimentary sequence is too thin then the buffer capacity of the 
rocks will be exceeded; some of the incoming fluid will be oxidized, but not all of 
it. Thus, to be conservative and constrain the maximum thicknesses required, we 
modelled the largest likely redox state changes. These involved the most reduced 
reactant valences and the most oxidized product valences: H2–H+, C4−–C4+ and 
S2−–S6+. Although there may be variations in speciation on the product side of 
the overall reactions, our main concern was the nature and concentration of the 
reducing species that enter the rock. For the O–H, C–O–H and S–O–H fluids we 
considered, these species were dominantly H2, CH4 and H2S, respectively21,23,39,40. 
Aqueous Fe2+ and Fe3+ species were not considered as they are likely to be less 
important for long-distance redox transport23.

The molecular fluid compositions were calculated for representative subarc 
conditions of 700 °C and 3.0 GPa (Supplementary Table 2). As discussed in the 
main text, input fluids were speciated at ΔFMQ −1, and output fluids at the 
haematite–magnetite buffer (ΔFMQ 2.5). For example, for the O–H fluid, the input 
has a mole fraction H2 (XH2) of 6.20 × 10−5, whereas the output has 1.06 × 10−6 
(>98% of the H2 is oxidized). This yields a ΔXH2 value of 6.094 × 10−5, which is very 
close to the input value because the output fluid has little H2. For the C–O–H fluid, 
ΔXCH4 is 1.85 × 10−5, and virtually all of the input CH4 is oxidized to produce CO2. 
At 700 °C and 3.0 GPa, haematite–magnetite is at a higher fO2 than fH2S − fSO2 
isofugacity and, thus, SOx will be in greater abundance than H2S in the output fluid 
(Fig. 3). For the fluid standard-state S–O–H fluid, the XH2S in the input fluid is 
~7 times greater than the output, yielding ΔXH2S = 4.78 × 10−4. This means that 
~85% of the input H2S is oxidized (to produce SO2 and S2 in our calculation)  
at the haematite–magnetite buffer. The proportion is >95% at ΔFMQ 3.0.  
Minor H2 is also present in C–O–H and S–O–H fluids; its oxidation is treated  
as described above.

The Ms value is the amount of rock-hosted Fe3+ that can be reduced. Sample 
jagti68B had the lowest iron content in the sample suite (2.9 wt% as Fe2O3, total43). 
On average, the metabauxites of Naxos contain ~20 wt% (ref. 35). Consequently, we 
took the generous range of 2.5–20 wt% to represent the amount of Fe2O3 available 

for reduction. The total iron content could be higher; this range simply represents 
the mass fraction that is reduced. For a representative rock density of 3,200 kg m−3, 
1 wt% Fe2O3 corresponds to 2.004 × 102 moles Fe2O3 m−3

rock. Reaction (1) shows 
that 1 mole of H2 will reduce 1 mole of Fe2O3. As a result, the MH2 required to 
reduce 1 wt% of Fe2O3 is 2.004 × 102moles H2 m−3

rock. The MH2 values for other 
weight per cent values will scale proportionately. As noted in the text, the MCH4 
and MH2S values are 0.25MH2 (for example, a CH4:Fe2O3 ratio of 1:4).

To estimate the qTI due to devolatilization fluids exiting the top of the slab, 
we took 38,500 km as the effective trench length21,24, a convergence rate of 
6.2 cm yr−1 (refs. 21,24), a 45° slab dip angle and a fluid density of 1,150 kg m−3. This 
density represents the range for H2O from 1,090 kg m−3 at 500 °C and 1.5 GPa to 
1,210 kg m−3 at 700 °C and 3.0 GPa (ref. 66). With these values, we calculated qTI 
in the range 210 m3 m−2 (ref. 24) to 230 m3 m−2 (ref. 21) for the 80–150 km depth 
interval; we used 220 m3 m−2 herein. Note that this value included metasedimentary 
devolatilization; however, 94% of the flux is generated by underlying altered 
oceanic crust and serpentinite21,24. Subtracting the metasedimentary contribution 
yielded ~200–220 m3 m−2, which is within the uncertainties of the calculation.

With the values of Ms, ΔXs, Vf and ϕ in hand, we could solve equation (5) for L, 
given the qTI value. So, for the O–H fluid example, assuming reduction of 2.5 wt% 
Fe2O3, we have MH2 = 2.5 × 2.004 × 102 moles H2 m−3

rock; ΔXH2 = 6.094 × 10−5;  
Vf = 1.495 × 10−5 m3 mol−1; ϕ = 0.001; and qTI = 220 m3 m−2. Solving equation (5) for 
L yielded L = 1.8 m. Consequently, a metasedimentary layer ~2 m thick that has 
2.5 wt% Fe2O3 available for reduction will oxidize (remove the H2 from) the entire 
slab dehydration flux of 220 m3 m−2.

The thickness of metasediment required for H2 oxidation is remarkably 
small, but CH4 and H2S oxidation will involve greater thicknesses. Considerable 
amounts of sediment cover slabs worldwide81; we took the average thickness of 
the metasedimentary sequence to be 400 m (ref. 24). This is probably a minimum 
average, because vertical fluid flow up through such a sequence dipping at  
45° along the slab would actually traverse a distance of ~570 m. Steeper dips would 
lead to even greater thicknesses. This would provide appreciably more oxidizing 
power than the 400 m we consider; thus, our conclusions are conservative.

The largest subarc time-integrated fluid flux estimates of which we are aware 
are ~300 m3 m−2 (ref. 82). These would increase the length scales of flow needed 
for metasedimentary fluid oxidation, but all examples in Fig. 4b would remain 
<275 m. For example, for representative 5 wt% Fe2O3 reduction via an S–O–H fluid 
(DEW model), the redox front L is still only ~130 m, much smaller than typical 
metasediment thicknesses.

If diffusion and mechanical dispersion operated in addition to advection  
and/or if there were kinetic departures from local fluid–rock equilibrium,  
redox fronts would be smeared out to some degree but the L is still valid  
for qTI estimation37–39. Diffusive mass transfer will occur adjacent to conduits 
such as veins (Fig. 2e). These features are too small to resolve individually with 
our methods but are incorporated in a general way by the continuum approach 
of equation (4). Fluid channelization at larger scales in subduction complexes is 
well documented50, for example in metaigneous rocks below the metasedimentary 
cover21,51, in veins21,83 and along lithologic contacts52,83,84, but reaction progress and 
oxygen isotope evidence indicate that fluxes within the metasedimentary units of 
the CBU were largely pervasive43.

It is difficult for oxidized fluids to change the redox state of rocks that  
are already highly oxidized39,40 (that is, very large fluid fluxes would be  
needed). Thus, it is not uncommon to find highly oxidized intercalated rock  
layers with differing fO2 values32. However, if such sequences were infiltrated by 
fluids with substantially lower fO2, reduction would occur as described herein  
and in refs. 39,40.

Rock descriptions. White mica refers to undifferentiated K-rich and/or Na-rich 
micas. The samples are listed in the approximate order of decreasing fO2.  
Extended Data Fig. 1 shows the sample locations and general geologic relations  
for Tinos43,85,86.

 1. Sample jagan1A. Mn- and Fe-rich quartzitic schist, Andros (Fig. 1b).  
Composed mainly of quartz, Mn-bearing epidote and garnet, white mica, 
chlorite and haematite. The epidote can contain an appreciable piemontite 
(Ca2Mn3+Al2Si3O12(OH)) component. The most Mn-rich compositions occur 
in the cores of grains that form aggregates several millimetres in diameter 
(Fig. 1b). We speculate that these were originally small seafloor Mn nodules. 
Epidote rims in contact with matrix minerals have considerably less Mn; 
these were used for fO2 estimation. Garnets are rich in the spessartine  
component (Mn3Al2Si3O12). Location: 37° 53.587′ N, 24° 55.172′ E.

 2. Sample jagcr00A. Phyllite cut by 3.5-cm-wide metamorphic quartz vein, 
Crete (Fig. 2e). The outcrop is highly veined; carpholite is common in veins 
cutting rocks of appropriate bulk composition. Rock distal to the vein is a 
purplish-red phyllite that consists predominantly of phengite, paragonite, 
quartz, haematite and rutile. The altered selvage rock adjacent to the  
vein has a bleached appearance due to the nearly complete destruction of 
haematite. The vein contains siderite–magnesite (FeCO3–MgCO3) solid  
solution. This suggests a reaction in which CH4 reacted with Fe2O3 to  
produce FeCO3. We quantify the fO2 for the haematite-bearing phyllite  
using the HIR reaction. Further work is needed to quantify the fO2 in the  
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vein and selvage, but the destruction of haematite and the production of 
carbonate indicate a metamorphic fO2 decrease. Location: Kerames village 
area, 35° 09.805′ N, 24° 30.777′ E

 3. Sample 57-29. Metabauxite from Naxos described by Feenstra35 containing 
diaspore and haematite together with rutile, calcite, white mica and  
margarite. This rock is from the low-grade regional zone I and thus  
was not strongly overprinted by the later Barrovian metamorphism that  
affected other parts of the island. Location: 35° 57.667′ N, 25° 33.083′ E.  
A comparable rock from Crete (sample jagcr10A) is shown in Fig. 1a; its  
location is: 35° 23.153′ N, 24° 53.672′ E.

 4. Sample jagti86F. Micaceous schist, Tinos, which contains white mica,  
Na amphibole, epidote, quartz, calcite (inferred former aragonite),  
dolomite–ankerite solid solution, sphene and haematite. The assemblage 
haematite + sphene + calcite is widespread in the metasediments of  
Tinos. Given constraints on the activity of CO2 in the fluid43, the fO2  
can be estimated for such rocks via equilibrium IHAS. Location: 
37° 35.834′ N, 25° 04.664′ E.

 5. Sample jagti108C. Micaceous schist, Tinos (Fig. 1e). This is representative  
of a very common rock type on Tinos, composed predominantly of  
phengite + epidote + quartz + chlorite + haematite + rutile or sphene ±  
albite ± carbonates ± Na-bearing amphibole/clinopyroxene. The 
high-pressure/low-temperature origin of such rocks is clear, as phengite is 
very Si rich and can attain 3.52 Si per formula unit (see Data availability). 
Veins and adjacent selvages in such rocks can contain coarse haematite and 
rutile (Fig. 1f). Location: 37° 32.693′ N, 25° 13.634′ E.

 6. Sample jagti134N. Magnetite + haematite + garnet quartzite, Tinos (Fig. 2a). 
Garnet cores contain only haematite inclusions, whereas the matrix contains 
magnetite and haematite. Matrix magnetite grew around garnet with  
haematite inclusions, demonstrating a decrease in fO2 associated with  
reduction (Fig. 3). Location: 37° 33.221′ N, 25° 12.742′ E.

 7. Sample jagti90B. Quartzite, Tinos, that contains substantial Na amphibole 
and Mn-rich garnet (Fig. 1c). Garnet has inclusions of haematite-rich  
rhombohedral oxide whereas the matrix contains Mn-bearing ilmenite that 
grew around garnet (Fig. 2d). These textures document a metamorphic 
decrease in fO2 (Fig. 3). Location: 37° 37.454′ N, 25° 02.833′ E.

 8. Sample jagti68B. Marble composed mostly of calcite (inferred former  
aragonite), glaucophane–riebeckite Na amphibole, Na–Ca amphibole,  
magnetite and haematite, together with minor chlorite, epidote and quartz. 
Tinos (Fig. 1d). Location: 37° 33.697′ N, 25° 13.405′ E.

 9. Sample jagti75A. Albitite schist, Tinos. A complex rock consisting of albite, 
quartz, phengite, magnetite, haematite, epidote, Na and Na–Ca amphiboles, 
and sphene. Rare Fe3+-bearing sodic clinopyroxene (jadeite–aegerine) can 
be found as inclusions in Na amphibole and in the matrix. The rock is cut by 
anastomosing veinlets in which haematite has been converted to magnetite 
(Fig. 2b). We interpret these anastomosing features to be the fossil flow paths 
of infiltrating reducing fluids that reduced haematite to magnetite. The fO2 
must have been near haematite–magnetite values during this process.  
Location: 37° 35.764′ N, 25° 04.483′ E.

 10. Sample jagti106B. Schist, Tinos. A garnetiferous schist rich in epidote 
which also contains phengite, chlorite, albite and magnetite. The garnets 
include haematite, rutile, magnetite, Na amphibole and probable lawsonite 
pseudomorphs. Cooling-related exsolution lamellae are present in haematite. 
Sodium amphibole in the matrix is largely or completely replaced by  
aggregates of chlorite and albite. The rock contains appreciable dark 
bluish-green tourmaline throughout. Location: 37° 32.821′ N, 25° 13.643′ E.

 11. Sample jagti154F. Micaceous Na amphibole schist, Tinos, characterized by 
Na amphibole, phengite, epidote and porphyroblasts of garnet. Rutile and 
rhombohedral oxides are found as inclusions in garnet, whereas the matrix, 
garnet rims and Na amphibole contain sphene. Garnets have inclusions of 
Fe3+-bearing Na–Ca amphibole in their interiors which have a ~25% greater 
Fe3+/(Fe2+ + Fe3+) ratio than matrix Na amphibole (Fig. 2c). Garnet also 
contains inclusions of clinopyroxene dominated by jadeite–aegerine with 
~0.4–0.6 Fe3+/(Fe3+ + Al), as well as epidote. Magnetite (now martite) is found 
in the matrix and in contact with garnet rims. The rhombohedral oxides 
contain complex exsolution lamellae and replacement textures; we infer that 
two rhombohedral oxides coexisted during high-pressure/low-temperature 
metamorphism. Location: 37° 33.358′ N, 25° 06.430′ E.

 12. Sample jagti90A. Metabasaltic blueschist dominated by Na amphibole,  
epidote and garnet, with lesser amounts of quartz, rhombohedral oxides,  
rutile and magnetite. Titanium-bearing haematite and Fe3+-bearing ilmenite 
are present, both of which contain exsolution lamellae. This indicates  
crystallization on the haematite–ilmenite solvus, followed by exsolution  
during cooling. The sample is intercalated with oxidized metasediments  
(for example, sample jagti90B) raising the possibility that metabasalts  
become oxidized due to redox exchange with metasediments, in  
addition to other processes such as seafloor hydrothermal alteration.  
Location: 37° 37.454′ N, 25° 02.833′ E.

 13. Sample jagti93E. Micaceous phengite, Na amphibole, garnet, quartz,  
chloritoid schist that contains finely disseminated graphitic carbon.  

Rutile and ilmenite coexist in garnet cores, transitioning to sphene in  
garnet rims and the matrix. The fO2 estimate is for the core assemblage  
of rutile + ilmenite. Location: 37° 37.375′ N, 25° 02.850′ E.

Data availability
The electron-probe microanalyses of minerals can be downloaded from https://
doi.org/10.5281/zenodo.5809204. The rock samples and petrographic thin sections 
are in the collections of the Yale Peabody Museum of Natural History, Division of 
Mineralogy and Meteoritics.

Code availability
The THERMOCALC65 (version 3.37) program can be accessed at https:// 
hpxeosandthermocalc.org/ and the AX 62 program can be accessed at https://
filedn.com/lU1GlyFhv3UuXg5E9dbnWFF/TJBHpages/ax.html. The  
Theriak-Domino software72 is available at https://titan.minpet.unibas.ch/ 
minpet/theriak/theruser.html.
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Extended Data Fig. 1 | Location maps. Location maps. a, Aegean region showing Crete and the extent of the Cycladic high-pressure/low-temperature 
(HP/LT) metamorphic belt (Cycladic Blueschist Unit; CBU). Sample locations are shown with red symbols. b, Generalized geologic map of Tinos showing 
sample locations. Map adapted from ref. 43, Springer Nature Limited; field relations from refs. 43,85,86.
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