

S3 Leitlinie Lagerungstherapie und Mobilisation von kritisch Erkrankten auf Intensivstationen

# Evidenztabellen

| Reference,<br>Study Type                                                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                                        | Control                                      | Optimal Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #001<br>Klem<br>2021<br>PMID:<br>34047169<br>DOI:<br>10.4045/tidss<br>kr.20.0351<br>Specification<br>of study:<br>systematic<br>review with<br>meta-analysis | 17 RCTs (1805 pts) from 2006 to<br>2020 <sup>1-17</sup><br>Inclusion criteria:<br>- ICU patients > 18 years with<br>MV in an ICU<br>- oral intubation or<br>tracheostomy<br>Exclusion criteria:<br>- injury or disease-specific<br>muscle wasting<br>-passive or almost exclusively<br>passive intervention<br>-non relevant outcome<br>measures<br>-other publication years<br>-non-English or Scandinavian<br>language<br>-high risk of bias |                      | - respiratory muscle<br>training<br>-active or active-<br>assisted exercises for<br>the extremities<br>- mobilization to the<br>edge of the bed or<br>sitting in a chair<br>-mobilization to a<br>standing or<br>ambulatory position<br>- in-bed cycle<br>ergometry | different<br>treatment<br>or no<br>treatment | Primary endpoints:<br>-duration of MV<br>-weaning time from<br>ventilator<br>-mortality in the hospital, at<br>1–3 months, 1–6 months<br>and after 1 year<br>Secondary Outcomes:<br>-ICU LOS<br>-hospital LOS<br>-patient safety<br>-adverse events | Significant differences between groups in:<br>-duration of MV (EM-intervention, n=4,<br>335 pts): -1.43 days; 95 % CI -2.68 to -0.18,<br>p = 0.02<br>- ICU LOS (EM-intervention, n=7, 143 pts): -<br>1.08 days; 95 % CI -1.95 to -0.21, p = 0.02<br>- hospital mortality (EM-intervention): OR<br>0.90 (0.61 to 1.33)<br>- 1–3-month mortality (n=1, 200 pts.): OR<br>0.51 (0.14 to 1.80)<br>- 1-6-month mortality (n=3, 723 pts.): OR<br>0.95 (0.54 to 1.65)<br>No significant differences between groups<br>in:<br>- duration of MV (IMT-intervention, n=2,<br>146 pts): -0.11 days; 95 % CI -1.76 to 1.53,<br>p = 0.89<br>- 79 adverse events over the course of 5<br>675 training sessions (incidence rate of 1.4<br>%) | 1                 |

EM = early mobilization, ICU = Intensive Care Unit, IMT = inspiratory muscle training, LOS = length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

#### Early mobilization led to a reduced duration of mechanical ventilation and length of stay in the ICU.

1. Burtin C, Clerckx B, Robbeets C et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009; 37: 2499–505.

2. Dong Z, Yu B, Zhang Q et al. Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int Heart J 2016; 57: 241–6.

3. Dantas CM, Silva PF, Siqueira FH et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva 2012; 24: 173–8.

4. Hodgson CL, Bailey M, Bellomo R et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 2016; 44: 1145–52.

5. Moss M, Nordon-Craft A, Malone D et al. A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. Am J Respir Crit Care Med 2016; 193: 1101– 10.

6. Morris PE, Berry MJ, Files DC et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: A randomized clinical trial. JAMA 2016; 315: 2694–702.

7. Martin AD, Smith BK, Davenport PD et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011; 15: R84.

8. Condessa RL, Brauner JS, Saul AL et al. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother 2013; 59: 101–7.

9. Dos Santos FV, Cipriano G, Vieira L et al. Neuromuscular electrical stimulation combined with exercise decreases duration of mechanical ventilation in ICU patients: A randomized controlled trial. Physiother Theory Pract 2020; 36: 580–8.

10. Tonella RM, Ratti LDSR, Delazari LEB et al. Inspiratory muscle training in the intensive care unit: A new perspective. J Clin Med Res 2017; 9: 929–34.

11. Schaller SJ, Anstey M, Blobner M et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 2016; 388: 1377–88.

12. Schweickert WD, Pohlman MC, Pohlman AS et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009; 373: 1874–82.

13. Dong ZH, Yu BX, Sun YB et al. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med 2014; 5: 48–52.

14. Wright SE, Thomas K, Watson G et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised controlled trial. Thorax 2018; 73: 213–21.

15. Eggmann S, Verra ML, Luder G et al. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS One 2018; 13: e0207428.

16. Kho ME, Molloy AJ, Clarke FJ et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respir Res 2019; 6: e000383.

17. Amundadottir OR, Jonasdottir RJ, Sigvaldason K et al. Effects of intensive upright mobilisation on outcomes of mechanically ventilated patients in the intensive care unit: a randomised controlled trial with 12-months follow-up. Eur J Physiother 2019; 21: 68–78.

| Reference,<br>Study Type                                                                                                                                     | (Partici<br>Charact                                                          | d Controls<br>ipant #,<br>eristics)<br>tal | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control                | Optimal Population                               | Primary Results                                                                                                                                                                               | Evidence Grade           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| #002<br>Das<br>2021<br>PMID: 34045809<br>DOI: 10.5005/jp-<br>journals-10071-<br>23789<br>Specification of<br>study:<br>Non<br>randomized<br>controlled study | 50 pts<br>Inclusion/e<br>criteria: not<br>Purposive s<br>method was<br>Per B | t provided.<br>ampling                     |                      | Graded early mobilization protocol:<br>- for 10 sessions (multiple within a day)<br>Phase 1: critically ill; goal: sitting at the<br>edge of bed and initiate standing<br>Phase 2: acute/ subacute phase; initiate<br>re-education of gait with the walker<br>Phase 3: acute/ subacute phase; able to<br>actively participate; independent transfer<br>training with a walker and provide<br>progressive walking re-education<br>Phase 4: subacute phase; promote<br>progressive transfers and walking<br>independence | not further<br>defined | Primary endpoints:<br>-FIM<br>-GAD-7<br>-ICU LOS | Primary endpoints:<br>- FIM score:<br>65.7 ± 12.2 vs. 17.4<br>± 4.9; p > 0.001<br>- GAD-7 score: 7.5<br>± 2.6 vs. 19.50 ± 2.7;<br>p > 0.001<br>- ICU-LOS: 3.1 ± 0.6 vs.<br>5.6 ± 1.1; p>0.001 | 4 (downgraded<br>from 3) |

FIM = functional independence measure scale, GAD-7 = 7 point generalized anxiety depression scale, ICU = intensive care unit; LOS = length of stay, Pts = patients

Early mobilization seems to have a benefit in relation to FIM, GAD-7 and ICU length of stay.

| Reference,<br>Study Type                                                                                                                                                   | (Partio<br>Charac | nd Controls<br>cipant #,<br>cteristics)<br>otal | Drop-<br>out Rate | Intervention                       | Control             | Optimal<br>Population                                                                     | Primary Results                                                                                                                                                                                                                                             | Evidence Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------------------------------|-------------------|------------------------------------|---------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| #005<br>Jouffroy<br>2021<br>PMID: 33990007<br>DOI:<br>10.1016/j.jcrc.2021<br>.04.014<br>Specification of<br>study: monocentric<br>retrospective<br>observational<br>study. | 20 and A<br>2020  | 19<br>d to ICU<br>I February                    |                   | <b>SBPP</b> at least 3 h<br>2x/day | Standard<br>of care | Primary<br>endpoints:<br>-mortality<br>(ICU/Hospital)<br>-intubation<br>-28 days survival | Primary endpoints:<br>- ICU mortality 4 (13.3%) vs 94 (32.4%), p= 0.05<br>- In-hospital mortality: 5 (16.7%) vs 98 (41.4%),<br>p= 0.02<br>- risk of invasive ventilation: sHR 0.96; 95% Cl<br>0.49; 1.88<br>- survival at day 28: HR 0.51, 95% Cl 0.16-1.16 | 3              |

COVID-19 = Corona Virus Disease 2019, ICU = Intensive Care Unit, SBPP = spontaneously breathing prone position

#### SBPP in COVID-19 patients reduced ICU and hospital mortality. It had no effect on intubation risk and mortality at day 28.

| Reference,<br>Study Type                                                                                                                                                                  | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drop-out<br>Rate                                                                    | Intervention                                                                                                                                                                                | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #006<br>Paton<br>2021<br>PMID: 33967203<br>DOI:<br>10.1097/CCM.00<br>0000000005058<br>Specification of<br>study:<br>Post hoc<br>Secondary<br>Analysis of a<br>Prospective<br>Cohort Study | <ul> <li>194 ICU pts from 2 tertiary ICUs</li> <li>Inclusion criteria: <ul> <li>pts of "The impact of disability in survivors of critical illness" trial</li> <li>all pts admitted to the 2 main tertiary hospitals</li> <li>MV &gt; 24 hours</li> <li>survivor of critical illness</li> </ul> </li> <li>Exclusion criteria: <ul> <li>age &lt; 18 years</li> <li>English language barrier</li> <li>proven or suspected acute primary brain process likely to result in global impairment of consciousness or cognition</li> <li>second or subsequent ICU admission for the hospital stay</li> </ul> </li> </ul> | 9 pts<br>(n = 8:<br>records not<br>obtainable<br>n = 1:<br>incomplete<br>outcomes ) | Measurement of<br>dosage of<br>mobilization in<br>during the ICU<br>stay (using IMS)<br>Measurement of<br>number of active<br>mobilization<br>sessions<br>performed during<br>the ICU stay. | No      | <ul> <li>Primary endpoints: <ul> <li>change in health</li> <li>status from</li> <li>preadmission to 6-</li> <li>months following ICU</li> <li>admission (the EQ-5D-</li> <li>5L utility score)</li> </ul> </li> <li>Secondary outcome: <ul> <li>change in the EQ-5D-</li> <li>5L mobility domain</li> <li>from preadmission to</li> <li>6-months following</li> <li>ICU admission</li> </ul> </li> </ul> | <ul> <li>Significant differences between groups in:</li> <li>EQ-5D-5L utility scores, with every increase in IMS level increasing the EQ-5D-5L utility score by 0.045 (p &lt; 0.0001)</li> <li>effect higher in those with a lower health status pre-admission than those with higher health status pre admission (β = 0.046 [CI, 0.012–0.08] vs. 0.026 [CI, 0.007–0.045], respectively)</li> <li>health status 6 months following ICU admission (Multivariate analysis; β = 0.022 [CI, 0.002–0.042]; p = 0.033)</li> <li>EQ-5D-5L mobility domain score 6 months from ICU admission (β = 0.127 [CI, 0.049–0.205]; p = 0.001)</li> </ul> | 4                 |

EQ-5D-5L= euro-quality of life-5D-5 Level, ICU = intensive care unit, IMS= intensive care mobility scale, MV = mechanical ventilation, pts = patients

#### A higher IMS level increased quality of live 6 months after ICU admission.

| Reference,<br>Study Type                                                                                                 | (Participant                                                                                                                                                                                                                                                                                               | and Controls<br>#, Characteristics)<br>Total                                                                                                                                                                    | Drop-<br>out Rate | Intervention                                                                    | Control       | Optimal Population                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #008<br>Nydahl<br>2021<br>PMID:<br>33946128<br>DOI:<br>10.1111/nicc.1<br>2638<br>Specification<br>of study:<br>pilot RCT | <ul> <li>expected to spen</li> <li>ICU</li> <li>Exclusion criteria:</li> <li>expectation of de</li> <li>no informed cons</li> <li>pre-existing immode</li> <li>contraindication a</li> <li>delirium before r</li> <li>positive pregnance</li> <li>participation in a</li> <li>the outcome of de</li> </ul> | ponsive<br>d for delirium<br>nobilized out of bed<br>nd at least 1 night in the<br>eath < 72 hours<br>sent for the study<br>obility<br>against mobilization<br>recruitment<br>cy test<br>competitive study with |                   | <b>Mobilization</b><br>- to the edge of the<br>bed<br>- between 9pm and<br>11pm | Usual<br>care | Primary endpoint:<br>-safety<br>Secondary<br>Outcomes:<br>-duration and<br>incidence of delirium<br>-mortality<br>-duration of MV<br>-hospital LOS for 28<br>days follow-up | Primary endpoint:<br>-adverse events: 16.7% (n = 9) without<br>serious consequences - most common<br>event - deviation of systolic blood<br>pressure > 20%<br>(n = 4, 7.4%)<br>-no pts. required re-/insertions of lines<br>or tubes, or cardiopulmonary<br>resuscitation.<br>Secondary Outcomes:<br>- duration of delirium, median (IQR) of<br>intervention group: 1.5 (1-2.7) vs.<br>control group: 2 (1-2) days, p = 0.860<br>- incidence of delirium OR 0.37 (95%CI<br>0.11-1.26), p = 0.133)<br>- no other significant differences | 2                 |

ICU = Intensive Care Unit, LOS = length of stay, MV = mechanical ventilation, OR = odds ratio, pts = patients, RASS = Richmond Agitation Sedation Score, RCT = randomized controlled trial

Mobilization in the evening is feasible and safe.

| Reference,<br>Study Type                                    | Cases and<br>(Particiț<br>Characte<br>Tot               | pant #,<br>eristics) | Drop-out<br>Rate | Intervention                                                          | Control | Optimal Population                                                          | Primary Results                                                                                                                                                                                     | Evidence<br>Grade |
|-------------------------------------------------------------|---------------------------------------------------------|----------------------|------------------|-----------------------------------------------------------------------|---------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #009                                                        |                                                         |                      |                  |                                                                       |         |                                                                             |                                                                                                                                                                                                     |                   |
| Moran                                                       |                                                         |                      |                  |                                                                       |         |                                                                             |                                                                                                                                                                                                     |                   |
| 2021                                                        |                                                         |                      |                  |                                                                       |         |                                                                             | Mortality at 28-30 days: PP 1057 vs SP                                                                                                                                                              |                   |
| PMID:<br>33942659<br>DOI:<br>10.1177/08850                  | 8 RCTs (2001-2013) with<br>2607 ARDS pts <sup>1-8</sup> |                      |                  | Prone position in<br>moderate-severe<br>ARDS:<br>-PP>12 h<br>-PP<12 h | SP      | <b>Endpoints:</b><br>Mortality at 28-30<br>days, 2-3 months<br>and 6-months | 1004 RR: 0.84 (0.65-1.09), I <sup>2</sup> = 69%, p<0.01<br>Mortality 2-3 months: PP 1088 vs. SP 1031<br>RR: 0.85 (0.70-1.03), I <sup>2</sup> = 64%, p<0.01<br>Mortality 6 months: PP 320 vs. SP 326 | 1                 |
| 666211014479                                                | Per Br                                                  | anch                 |                  |                                                                       |         |                                                                             | RR: 0.99 (0.84-1.17), I <sup>2</sup> = 30%, p=0.23                                                                                                                                                  |                   |
| Specification<br>of study:<br>Multivariate<br>meta-analysis | PP 1357                                                 | SP 1250              |                  |                                                                       |         |                                                                             | Mortality: ≥12 hours vs <12 hours PP (RR:<br>0.75, 95%Cl: 0.65, 0.86, P < 0.001)                                                                                                                    |                   |

ARDS = Acute Respiratory Distress Syndrome, pts = patients, PP = prone positioning, SP = supine positioning

#### Prone positioning does not reduce mortality when compared to supine positioning.

#### References

- 1. Guerin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Eng J Med. 2013;368(23):2159–2168.
- 2. Chan M-C, Hsu J-Y, Liu H-H, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc. 2007;106(9):708–716.
- 3. Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Int Care Med. 2008;34(8):1487–1491.
- 4. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Eng J Med. 2001;345(8):568–573.
- 5. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292(19):2379–2387.
- 6. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–1239.
- 7. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome a randomized controlled trial. JAMA. 2009;302(18):1977–1984.
- 8. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma. 2005;59(2):333–341.

| Reference,<br>Study Type                                                                                                                | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Characteristics)                                                                                                                                                                                                                                                                     | Drop-out<br>Rate                                                                                                                                                                                                                        | Intervention                                                                                                                                                                                                                                                        | Control                                                                                                           | Optimal<br>Population                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #011<br>Waldauf<br>2021<br>PMID: 339315<br>70<br>DOI: <u>10.1136/t</u><br>horaxjnl-2020-<br>215755<br>Specification<br>of study:<br>RCT | 150 pts<br>Inclusion criteria:<br>≥18 years<br>-MV<br>-predicted ICU lengt<br>Exclusion criteria:<br>-primary systemic neud<br>disease/spinal cord lest<br>-severe lower limb inju-<br>-bedridden premorbic<br>-imminent death or we<br>treatment < 24 h<br>-pregnancy<br>-external fixator or me<br>lower limb<br>-open wounds/skin ab<br>application points<br>-presence of pacemak<br>defibrillator or another<br>electronic medical dev<br>- unable to receive first<br>session < 72 hours of a<br>- transferred from another<br>hours of MV<br>- other conditions prevent<br>FESCE or considered us<br>study<br>Per Ba<br>randomised: n = 75<br>analysed: n = 42 | aromuscular<br>sion at admission<br>ury/amputation<br>d state<br>ithdrawal of medical<br>etallic implants in<br>orasions at electrode<br>er, implanted<br>er implanted<br>vice<br>st rehabilitation<br>admission<br>other ICU after > 24<br>venting the use of<br>unsuitable for the | Intervention:<br>n = 33 / 44%<br>Reasons:<br>- death<br>(n=18 until<br>discharge;<br>n=15 after<br>ICU<br>discharge)<br>Control:<br>n = 29 / 39%<br>Reasons:<br>- death<br>(n=16 until<br>discharge;<br>n=13 after<br>ICU<br>discharge) | Progressive<br>mobility program<br>-start the day<br>after<br>randomization<br>- until ICU<br>discharge or day<br>28<br>-aiming for 90<br>minutes of active<br>exercise per day<br>- incorporating<br>functional<br>electrical<br>stimulation and<br>in-bed cycling | Standard<br>physiotherapy<br>-2x/day<br>- 6 days a<br>week<br>- when<br>requested by<br>the treating<br>physician | Primary<br>endpoint:<br>-SF-36 Physical<br>Component<br>Score 6 month<br>after discharge<br>Secondary<br>outcomes:<br>-PFIT<br>-CSD<br>-MRC<br>-NB<br>-VFD at day 28<br>-NDI<br>-ICP elevations<br>per day of ICP<br>measurement<br>Not prespecified<br>outcome:<br>-SF-36 MCS 6<br>month after<br>discharge<br>-6-Month<br>survival | Primary endpoint:<br>-SF-36 score, Median [IQR]: intervention<br>50 [21 – 69] vs control 49 [26 – 77], p =<br>0.261<br>Secondary outcomes:<br>P-FIT, median[IQR]: intervention 9.4 [8.0 –<br>10.8] vs control 9.6 [8.3 – 10.9], p = 0.77<br>-CSD as difference from baseline (cm),<br>Median [IQR]: intervention -11 [-17 – -6] vs<br>control: -13 [-19 – -7], p = 0.64<br>-MRC, median [IQR]: intervention 42.4 [39.2<br>– 45.6] vs control: 39.4 [36.5 – 42.4], p = 0.13<br>-NB (gN/m2/day), median [IQR]:<br>intervention: Median [IQR] -2.7 [-3.1 – -2.4]<br>vs control -3.4 [-3.7 – -3.0], p = 0.004<br>-VFD, median [IQR]: intervention 9.3 [6.5 –<br>12.0] vs control 11.0 [8.2 – 13.8], p = 0.33<br>-NDI: none<br>-ICP, median [IQR]: intervention: 1.5 [0.2 –<br>2.9] vs control 0, p = 0.018<br>Not prespecified outcome:<br>-MCS, median [IQR]: intervention 54.8 [37.1<br>– 69.6] vs control 70.2 [51.5 – 81.3] p = 0.00<br>-6-month survival, intervention n = 42 (56%)<br>vs control n=46 (61%), p = 0.46 | 2                 |

CSD = muscle cross sectional diameter, ICU = Intensive Care Unit, ICP = intracranial pressure, MCS = mental component score, MRC = medical research council score, MV = mechanical ventilation, NB = nitrogen balance, NDI = number of dialysis interruptions, PFIT = physical fitness in intensive care test, RCT = randomized controlled trial, SF-36 = 36 item short form survey, VFD = ventilator free days

#### Functional electrical stimulation and cycle ergometry do not improve physical function 6 months after discharge.

| Reference,<br>Study Type                                                                                                                                           | (Participant #,                                                                                                                                                                                                                                                                 | d Controls<br>Characteristics)<br>ttal                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                       | Control                              | Optimal Population                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #012<br>Barker<br>2021<br>PMID:<br>33931557<br>DOI: <u>10.1136/p</u><br>ostgradmedj-<br>2020-139631<br>Specification<br>of study:<br>Retrospective<br>cohort study | <ul> <li>(type 1) req</li> <li>severe acut<br/>syndrome-c</li> <li>(SARS-CoV-<br/>PCR on nase<br/>swab</li> <li>findings of r<br/>ground-glas<br/>and/or cons<br/>imaging</li> <li>Exclusion criterit</li> <li>not Covid-1</li> <li>previous AP</li> <li>intubated b</li> </ul> | a:<br>piratory failure<br>piratory failure<br>puiring oxygen<br>e respiratory<br>coronavirus 2<br>2) detected by<br>opharyngeal<br>multifocal<br>as opacities<br>solidation on<br>a:<br>9 | none                 | <b>Prone position</b><br>- with spontaneous<br>breathing between 30<br>min and 2 h | Supine<br>position<br>or as<br>usual | <b>Primary endpoints:</b><br>- 28-day mortality<br>- ISARIC 4C mortality scores<br>- non- invasive ventilation<br>and IMV<br>No sample size calculation<br>(retrospective) | Significant differences<br>between groups in:<br>-ICU-LOS, APP group median<br>number of days: 22, IQR 16–<br>41; control: 7, IQR 4–14,<br>p=0.02<br>-for APP: SpO2/FiO2 most<br>likely to PO2 increase after<br>first episode (before median:<br>152, IQR 135–185; after:<br>median 192, IQR 156–234,<br>p=0.04)<br>No significant differences<br>between groups in:<br>-number of pts requiring non-<br>invasive ventilation and IMV<br>-28-day mortality, APP<br>group: 1; control: 4, p=0.12 | 4                 |

APP = awake prone position, IMV = invasive medical ventilation, LOS = length of stay, pts = patients

Prone positioning reduces ICU-LOS and respiratory parameters.

| Reference,<br>Study Type                                                                                                                            | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention                                              | Control | Optimal Population                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence Grade                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| #013<br>Ponnapa<br>2021<br>PMID: 33927120<br>DOI: <u>10.1097/CCM.</u><br>000000000005086<br>Specification of<br>study:<br>Systematic review<br>(SR) | 25 observational studies <sup>1-25</sup><br>Inclusion criteria:<br>- hypoxemic laboratory-<br>confirmed COVID-19<br>- adult patients (≥ 18 years)<br>requiring supplemental oxygen<br>- received PP and reported on<br>oxygenation variables<br>(Pao2/Fio2, Pao2, or Spo2)<br>Exclusion criteria:<br>- narrative reviews<br>- not reported oxygenation<br>variables<br>- case reports or case series with<br>fewer than five patients<br>Per Branch |                      | <b>Prone position</b><br>with<br>spontaneous<br>breathing |         | Primary endpoint:<br>- Improvement in<br>oxygenation variables<br>Secondary endpoints:<br>- Serious adverse events<br>- Intubation rate<br>- mortality | Significant outcomes:<br>- improvement in P/F ratio (39), in<br>the ratio of Pao2 to Fio2 (mean<br>difference, 39; 95% CI, 25-54)<br>- PaO <sub>2</sub> (mean difference, 20<br>mmHg; 95% CI, 14-25), and<br>peripheral oxygen saturation<br>(mean difference, 20 mmHg; 95%<br>CI, 14-25).<br>- respiratory rate decreased after<br>prone position (mean difference, -<br>3.2 breaths/min; 95% CI, -4.6 to -<br>1.9)<br>- intubation and mortality rates<br>were 24% (95% CI, 17-32%) and<br>13% (95% CI, 6-19%)<br>- no serious adverse events were<br>recorded in the small subgroup of<br>studies that reported them. | 1 → 2<br>(not only RCTs<br>included) |

Prone positioning was associated with improvement in oxygenation variables without any reported serious adverse events.

#### References

1.Caputo ND, Strayer RJ, Levitan R: Early self-proning in awake, non-intubated patients in the emergency department: A single ED's experience during the COVID-19 pandemic. Acad Emerg Med. 2020; 27:375–378

2. Zang X, Wang Q, Zhou H, et al.: Efficacy of early prone position for COVID-19 patients with severe hypoxia: A single-center prospective cohort study. *Intensive Care Med*. 2020; 46:1927–1929

3. Despres C, Brunin Y, Berthier F, et al.: Prone positioning combined with high-flow nasal or conventional oxygen therapy in severe Covid-19 patients. Crit Care. 2020; 24:256.

4. Coppo A, Bellani G, Winterton D, et al.: Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): A prospective cohort study. *Lancet Respir Med.* 2020; 8:765–774

5. Damarla M, Zaeh S, Niedermeyer S, et al.: Prone positioning of nonintubated patients with COVID-19. Am J Respir Crit Care Med. 2020; 202:604–606

6. Lawton T, Wilkinson KM, Corp A, et al.: Reduced ICU demand with early CPAP and proning in COVID-19 at Bradford: A single centre cohort. medRxiv. 2020. doi: 2020.2006.2005.20123307

7. Xu Q, Wang T, Qin X, et al.: Early awake prone position combined with high-flow nasal oxygen therapy in severe COVID-19: A case series. Crit Care. 2020; 24:250.

8. Tu GW, Liao YX, Li QY, et al.: Prone positioning in high-flow nasal cannula for COVID-19 patients with severe hypoxemia: A pilot study. Ann Transl Med. 2020; 8:598.

9. Thompson AE, Ranard BL, Wei Y, et al.: Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. JAMA Intern Med. 2020; 180:1537–1539

10. Sartini C, Tresoldi M, Scarpellini P, et al.: Respiratory parameters in patients with COVID-19 after using noninvasive ventilation in the prone position outside the intensive care unit. *JAMA*. 2020; 323:2338–2340

11. Retucci M, Aliberti S, Ceruti C, et al.: Prone and lateral positioning in spontaneously breathing patients with COVID-19 pneumonia undergoing noninvasive helmet CPAP treatment. *Chest*. 2020; 158:2431–2435

12. Moghadam VD, Shafiee H, Ghorbani M, et al.: Prone positioning in management of COVID-19 hospitalized patients. Braz J Anesthesiol. 2020; 70:188–190

13. Golestani-Eraghi M, Mahmoodpoor A: Early application of prone position for management of Covid-19 patients. J Clin Anesth. 2020; 66:109917.

14. Elharrar X, Trigui Y, Dols AM, et al.: Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA. 2020; 323:2336–2338

15. Dong W, Gong Y, Feng J, et al.: Early awake prone and lateral position in non-intubated severe and critical patients with COVID-19 in Wuhan: A respective cohort study. *medRxiv*. 2020. doi: 2020.2005.2009.20091454

16. Winearls S, Swingwood EL, Hardaker CL, et al.: Early conscious prone positioning in patients with COVID-19 receiving continuous positive airway pressure: A retrospective analysis. *BMJ Open Respir Res.* 2020; 7:e000711

17. Taboada M, Rama P, Pita-Romero R, et al.: Pacientes críticos COVID-19 atendidos por anestesiólogos en el Noroeste de España: Estudio multicéntrico, prospectivo, observacional. Revista Española de Anestesiología y Reanimación. 2020; 68:10–20

18. Solverson K, Weatherald J, Parhar KKS: Tolerability and safety of awake prone positioning COVID-19 patients with severe hypoxemic respiratory failure. Can J Anaesth. 2021; 68:64–70

19. Ripoll-Gallardo A, Grillenzoni L, Bollon J, et al.: Prone positioning in non-intubated patients with COVID-19 outside of the intensive care unit: More evidence needed. *Disaster Med Public Health Prep*. 2020; 14:1–3

20. Ramirez GA BE, Castelli E, Marinosci A, et al.; for the Covid-19 BioB Study Group. Continuous positive airway pressure and pronation outside the intensive care unit in COVID 19 ARDS. *Minerva Med*. 2020

21. Paternoster G, Sartini C, Pennacchio E, et al.: Awake pronation with helmet continuous positive airway pressure for COVID-19 acute respiratory distress syndrome patients outside the ICU: A case series. *Med Intensiva*. 2020 Sep 6. [online ahead of print]

22. Padrão EMH, Valente FS, Besen BAMP, et al.; COVIDTEAM: Awake prone positioning in COVID-19 hypoxemic respiratory failure: Exploratory findings in a single-center retrospective cohort study. *Acad Emerg Med*. 2020; 27:1249–1259

23. Kelly NL, Curtis A, Douthwaite S, et al.: Effect of awake prone positioning in hypoxaemic adult patients with COVID-19. J Intensive Care Soc. 2020 Sept 24. [online ahead of print]

24. Ferrando C, Mellado-Artigas R, Gea A, et al.; COVID-19 Spanish ICU Network: Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: A multicenter, adjusted cohort study. *Crit Care*. 2020; 24:597.

25. Burton-Papp HC, Jackson AIR, Beecham R, et al.; University Hospital Southampton Critical Care Team; REACT COVID Investigators: Conscious prone positioning during non-invasive ventilation in COVID-19 patients: Experience from a single centre. *F1000Res.* 2020; 9:859.

| Reference,<br>Study Type                                                                                                                                        | (Participant #                                                                                                        | nd Controls<br>, Characteristics)<br>otal                                                                                                                    | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                                 | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 015<br>Scaramuzzo<br>2021<br>PMID: 33900484<br>DOI: 10.1186/s1361<br>3-021-00853-1<br><b>Specification of</b><br><b>study:</b><br>Retrospective<br>cohort study | who participat<br>prospective stu<br>15 intensive ca<br>hospitals betw<br>and 4 May 202<br>Exclusion criteri<br>- NIV | ria:<br>RS-CoV-2<br>eiving invasive<br>ntilation<br>ysis of patients<br>ed in a previous<br>udy conducted in<br>re units of Italian<br>een 22 February<br>0. |                      | <b>PP</b> in COVID-<br>ARDS:<br><u>1. Responders:</u><br>P/F increase<br>when returning<br>to SP > the<br>median<br>response of the<br>population<br><u>2. non-<br/>Responders:</u><br>P/F increase less<br>than the median<br>response of the<br>population |         | <ul> <li>Primary endpoint: <ul> <li>ICU VFD</li> <li>ICU mortality</li> <li>likelihood of liberation from MV at D28 after ICU admission</li> </ul> </li> <li>Secondary endpoints <ul> <li>tracheostomy</li> <li>attempted extubation</li> <li>plateau pressure during the first 5 days</li> <li>higher static compliance</li> <li>duration of PP</li> <li>duration of MV</li> <li>reintubation following weaning failure</li> <li>VAP</li> <li>steroid use</li> <li>non pulmonary infections</li> <li>cardiovascular complications</li> <li>neurologic complications</li> <li>renal replacement therapy</li> <li>veno-venous ECMO</li> </ul> </li> </ul> | <ul> <li>Significant differences between groups in: <ul> <li>tracheostomy 46 (47.9%) vs. 67 (70.5%), p = 0.008</li> <li>attempted extubation 33 (34.4%) vs. 6 (6.3%), p &lt; 0.001</li> </ul> </li> <li>VFD at D28 (Mean ± SD) 6.3 ± 8.1 vs. 2.7 ± 5.6, p &lt; 0.001</li> <li>ICU mortality 32 (33.3%) vs 51 (53.7%), p = 0.006</li> <li>plateau pressure 25 cmH2O vs 26 cmH2O (p=0.04)<br/>during the first 5 days</li> <li>higher static compliance 37 vs 33 ml/cmH2O (p=0.005)<br/>during the first 5 days</li> </ul> <li>No significant differences between groups in: <ul> <li>duration of prone positioning (Median [IQR]) 16 [16-<br/>16.7] vs. 16 [16-17], p = 0.757</li> <li>duration of MV (Median [IQR]) 18 [10-27] vs. 18 [12-29], p = 0.432</li> <li>reintubation following weaning failure: 17 (17.7%) vs 5 (5.3%), p = 0.093</li> <li>VAP: 53 (55.2%) vs. 52 (54.7%), p = 0.885</li> <li>steroid use 72 (75%) vs. 61 (64%), p = 0.083</li> <li>non pulmonary infections: 37 (38.5%) vs. 35 (36.8%), p = 0.333</li> <li>digestive complications 5 (5.2%) vs. 3 (3.2%), 0.721</li> <li>neurologic complications 9 (9.4%) vs. 8 (8.4%), p = 1.0</li> <li>renal Replacement Therapy: 22 (22.9%) vs. 21 (22.1%), p = 1.0</li> <li>veno-venous ECMO 0 (0%) vs 3 (3.2%), p = 0.121</li> <li>ICU length of stay (Median [IQR]) 22 [15-35] vs. 21 [14-</li> </ul></li> | 4                 |

ARDS = acute respiratory distress syndrome, ECMO = extra-corporal membrane oxygenation, ICU = intensive care unit, NIV = non-invasive ventilation, P/F = PaO<sub>2</sub>/FiO<sub>2</sub>ratio, PP = prone positioning, pts = patients, SD = standard deviation, VAP = ventilator associated pneumonia, VFD = ventilator-free days; SP=supine position; MV= mechanical ventilation; LOS= length of stay

## Sustained oxygenation improvement after first PP session is independently associated to improved survival and reduced duration of mechanical ventilation in critically ill COVID-19 patients.

| Reference,<br>Study Type                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interventio<br>n     | Control               | Optimal<br>Population                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade                        |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| #017<br>Tan<br>2021<br>PMID: 33888007<br>DOI:<br>10.1177/1753466<br>6211009407<br>Specification of<br>study:<br>meta analysis | 16 studies (6 cohort studies, 10 case<br>series) with 243 pts <sup>1-16</sup><br>Inclusion criteria:<br>- cohort studies or case series<br>- 18 years or older with AHRF or ARDS in<br>waking state<br>- PP combined with non-invasive<br>respiratory support (non-invasive<br>mechanical ventilation<br>-high flow nasal canula, venturi mask,<br>conventional<br>oxygen therapy<br>- outcomes including at least one of<br>following measures: aggregated mortality<br>rate, intubation rate, tolerability, prior to<br>and following difference of PaO2/FiO2<br>ratios, peripheral oxygen saturation<br>(SpO2) and respiratory rate<br>Exclusion criteria:<br>- not in English or commentaries,<br>reviews, duplicate publications<br>- data could not be extracted by the<br>statistical methods or non-targeted<br>outcomes | Prone<br>positioning | Supine<br>positioning | Primary<br>endpoints:<br>- intubation rate<br>- mortality rate<br>- improvement<br>of PaO2/FiO2<br>ratio<br>- improvement<br>in SpO2<br>- changes in<br>respiratory rate<br>- intolerance<br>rate | Significant differences between groups:<br>- aggregated intubation rate and mortality rate<br>were 33% [95% CI: 0.26–0.42, I2 = 25%] and 4%<br>(95% CI: 0.01–0.07, I2 = 0%), resprectively<br>- the intolerance rate was 7% (95% CI: 0.01–0.12, /2<br>= 5%)<br>- prone positioning increased PaO2/FiO2 [mean<br>difference (MD) = 47.89, 95% CI: 28.12–67.66; p <<br>0.00001, I2 = 67%] and SpO2 (MD = 4.58, 95% CI:<br>1.35–7.80, p = 0.005, I2 = 97%)<br>- prone positioning reduced respiratory rate (MD =<br>-5.01, 95% CI: $-8.49$ to $-1.52$ , p = 0.005, I2 = 85%)<br>- subgroup analyses: rate of shorter duration prone<br>( $\leq$ 5 h/day) and longer duration prone (>5 h/day)<br>were 34% and 21%, and mortality rate of shorter<br>duration prone ( $\leq$ 5 h/day) and longer duration<br>prone (>5 h/day) were 6% and 0% | $1 \rightarrow 2$<br>(non RCTs included) |

AHRF = Acute Hypoxemic Respiratory Failure, ARDS = Acute Respiratory Distress Syndrome, CI = confidence interval, PP = prone position, pts = patients

Prone positioning may improve oxygenation and respiratory rate in patients with AHRF or ARDS.

#### References

1. Bellone A and Basile A. Prone positioning in severe acute hypoxemic respiratory failure in the emergency ward. Emerg Care J 2018; 14:7524

2. Caputo ND, Strayer RJ and Levitan R. Early self proning in awake, non-intubated patients in the emergency department: a single ED's experience during the COVID-19 pandemic. *Acad Emerg Med* 2020; 27: 375–378.

3. Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRONCOVID): a prospective cohort study. Lancet Respir Med 2020; 8: 765–774

4. Damarla M, Zaeh S, Niedermeyer S, et al. Prone positioning of nonintubated patients with COVID-19. Am J Respir Crit Care Med 2020; 202: 604-606.

5. Ding L, Wang L, Ma W, et al. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care 2020; 24: 28

6. Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. JAMA 2020; 323: 2336–2338.

Huang CF, Tay CK, Zhuang YF, et al. Rationale and significance of patient selection in awake prone positioning for COVID-19 pneumonia. Eur Respir J 2020; 56: 2002173.
 Ng Z, Tay WC and Ho CHB. Awake prone positioning for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J 2020; 56: 2002173.
 2020: 56: 2001198.

9. Pérez-Nieto OR, Guerrero-Gutiérrez MA, Deloya-Tomas E, et al. Prone positioning combined with high-flow nasal cannula in severe noninfectious ARDS. Crit Care 2020; 24: 114

10. Sartini C, Tresoldi M, Scarpellini P, et al. Respiratory parameters in patients with COVID-19 after using noninvasive respiratory support in the prone positioning outside the intensive care unit. JAMA 2020; 323: 2338–2340.

11. Sztajnbok J, Maselli-Schoueri JH, de Resende Brasil LMC, et al. Prone positioning to improve oxygenation and relieve respiratory symptoms in awake, spontaneously breathing non-intubated patients with COVID-19 pneumonia. *Respir Med Case Rep* 2020; 30: 101096.

12. Thompson AE, Ranard BL, Wei Y, *et al.* Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. *JAMA Intern Med* 2020; 180: 1537–1539.

13. Tu GW, Liao YX, Li QY, *et al.* Prone positioning in high-flow nasal cannula for COVID-19 patients with severe hypoxemia: a pilot study. *Ann Transl Med* 2020; 8: 598 14. Valter C, Christensen AM, Tollund C, *et al.* Response to the prone positioning in spontaneously breathing patients with hypoxemic respiratory failure. *Acta Anaesthesiol Scand* 2003; 47: 416–418.

15. Scaravilli V, Grasselli G, Castagna L, et al. Prone positioning improves oxygenation in spontaneously breathing nonintubated patients with hypoxemic acute respiratory failure: a retrospective study. J Crit Care 2015; 30: 1390–1394.

16. Xu Q, Wang T, Qin X, et al. Early awake prone positioning combined with high-flow nasal oxygen therapy in severe COVID-19: a caseseries. Crit Care 2020; 24: 250.

| Reference,<br>Study Type                                                                                       | Cases and Con<br>(Participant #, Chara<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                              | Drop-out<br>Rate                                                                                                                                                                                                                   | Intervention                    | Control               | Optimal<br>Population                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #018<br>Güner<br>2021<br>PMID: 33884691<br>DOI:<br>10.1111/nicc.12<br>633<br>Specification of<br>study:<br>RCT | 60 pts. analyzed (87 randomized)<br>Inclusion criteria:<br>- ≥18 years of age<br>- admitted to the ICU following orotr<br>in the clinics or the ICU of the study  <br>Exclusion criteria:<br>- history of endotracheal intubation i<br>- intubation in different hospital beforestudy site<br>- hemodynamic instability (mean artifor 30 min, resistant to colloid therages<br>support)<br>- obligatory supine position (following<br>surgery)<br>- post- abdominal surgery<br>- presence of surgical drains (might of<br>positioning)<br>- diagnosis of VAP before admission for<br>- obesity (body mass index [BMI] >30<br>- pregnancy<br>Per Branct<br><30° group (n=20)<br>30° group (n=20) | hospital<br>in previous 30 days<br>ore being admitted to<br>cerial pressure < 60 mm Hg<br>py or with inotropic<br>ng trauma or spinal<br>cause difficulty in<br>to ICU<br>D) | < 30°: lost to<br>follow-up<br>(exitus) (n= 5)<br>30°: lost to<br>follow-up<br>(exitus) (n=4),<br>discontinued<br>intervention<br>(extubation)<br>(n=5),<br>(reintubation)<br>(n=2)<br>45°: lost to<br>follow-up<br>(exitus) (n=5) | 30° and 45°<br>HOB<br>elevation | <30° HOB<br>elevation | Primary<br>outcomes:<br>- occurrence<br>of VAP<br>- timing of<br>VAP | Primary outcomes:<br>- frequency of VAP<br>was significantly lower<br>in the 45° compared<br>with the <30° group<br>(p= 0.022)<br>- no significant<br>differences between<br>the <30° and<br>30°(p=0.053) as well<br>as the 45° and 30°<br>(p=0.705) groups<br>- the timing of the<br>VAP (early or late) was<br>not dependent on the<br>degree of HOB<br>elevation (p=0.703) | 2                 |

HOB = head of bed, ICU = intensive care unit, pts = patients, RCT= randomized controlled trial, VAP = ventilator associated pneumonia

Placing and keeping the mechanically ventilated patients in semi recumbent position as close to 45° as possible can help prevent VAP.

| Reference,<br>Study Type                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                       | Control                | Optimal<br>Population                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #020<br>Samimian<br>2021<br>PMID: 33870210<br>DOI:<br>10.22037/aaem.v9i1.106)<br>Specification of study:<br>Cohort study | Total         76 pts admitted to ICU         Inclusion criteria:         age > 18 years         RASS score equal to -4 or -5         MV for at least 24h         no spinal cord damage         normal intracranial pressure         without recent bladder surgery         without nasogastric tube and         Foley catheter         Exclusion criteria:         - intolerance to HOB elevation |                      | IAP<br>measurement<br>was performed<br>every 8 hours<br>for 24 hours<br>using the<br>KORN method<br>in three<br>different<br>degrees of the<br>head of bed<br>(HOB)<br>elevation (0°,<br>15°, 30°) | No<br>control<br>group | Primary<br>endpoints:<br>- IAP measuring in<br>relation to HOB | <ul> <li>Primary outcome:</li> <li>prevalence of intra-abdominal<br/>hypertension = 18.42%</li> <li>mean ± standard deviation (SD) of IAP</li> <li>8.44 ± 4.02 mmHg for HOB angle 0°,</li> <li>9.58 ± 4.52 for HOB<br/>angle 15°, 11.10 ± 4.73 for HOB angle<br/>30°(p = 0.0001)</li> <li>mean IAP = 8.44 ± 4.02 mmHg in 0°,</li> <li>9.58 ± 4.52 mmHg in 15°, and 11.10 ±<br/>4.73mmHg in 30° of HOB (p &lt; 0.001)</li> <li>normal IAP prevalence = reduced from<br/>0° (81.6%) to 15° (65.8%) and<br/>30°(57.9%), grade III IAH prevalence was<br/>increased from 0° to 30° (3.9%)</li> </ul> |                   |

HOB = head-of-bed, IAH = intra-abdominal hypertension, IAP = intra abdominal pressure, ICU = intensive care unit, MV = mechanical ventilation, pts = patients, RASS = Richmond Agitation Sedation Scale

Elevation of HOB angle from 0° to 30° significantly increases IAP.

| Reference,<br>Study Type                                                                                                                                                | Cases and C<br>(Participant #, Ch<br>Total                                                                                                                                                                                                                                                                                                            | aracteristics)                                        | Drop<br>-out<br>Rate | Intervention                                                                   | Control          | Optimal Population                                                                                                                                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #026<br>Tonelli<br>2022<br>PMID:<br>33824084<br>DOI:<br>10.1016/j.pul<br>moe.2021.03.<br>002<br>Specification<br>of study:<br>Retrospective<br>2-centre<br>cohort study | 114 COVID patients wi<br>between March 1 <sup>st</sup> and<br>Inclusion criteria:<br>- 18 - 80 years<br>- RR > 30<br>- SaO <sub>2</sub> <93%<br>- PaO <sub>2</sub> /FiO <sub>2</sub> < 300mmH<br>- Lung infiltrates > 50%<br>Exclusion criteria:<br>- intubation within 24H<br>- no maximal therapy<br>- DNI<br>- missing core data<br>Per Bran<br>38 | d June 1 <sup>st</sup> ,2020.<br>Hg<br>6 of lung<br>n |                      | Self-pronation<br>with assistance for<br>3h for 1-4x/day<br>+<br>standard care | Standard<br>care | Primary outcome:         - ETI rate         Secondary outcomes:         - in-hospital mortality         - time to ETI         - tracheostomy rate         - length of RICU and hospital stay         Power analysis:         Estimated ETI rate of 70% and presumed reduction by 40% in those receiving pronation α = 0.05, power 80% and an enrollment ratio of 1:2 = 93 pts. | Significant differences between groups:<br>- ETI rate: HR = 0.59 95% CI [0.3–0.94], p<br>= 0.03<br>- VFD: PP 15 (2–22) vs. SP 20 (2–24), p=<br>0.03<br>- LOS in RICU: PP 15 (3–26) vs. SP 10<br>(3–21), p= 0.02<br>- hospital LOS: PP 24 (3–45) vs. SP 20<br>(3–41), p= 0.03<br>No significant differences between<br>groups:<br>- in-hospital mortality<br>- rate of tracheostomy | 4                 |

ARDS = acute respiratory distress syndrome; DNI = do not intubate; ETI = endotracheal intubation; ICU = intensive care unit; LOS = length of stay; pts = patients; RICU = respiratory intensive care unit, RR= respiratory rate; VFD = ventilator-free days

## Awake prone positioning reduces the rate of intubation, length of stay in ICU and hospital and increases the ventilator free days.

| Reference,<br>Study Type                                                                                                                                | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                     | Characteristics)                                                             | Drop-<br>out<br>Rate | Intervention                                  | Control | Optimal Population                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #027<br>Langer<br>2021<br>PMID:<br>33823862<br>DOI:<br>10.1186/s130<br>54-021-<br>03552-2<br>Specification<br>of study:<br>Retrospective<br>multicenter | 1057 ventilated CC<br>between February<br>2020.<br>Inclusion criteria:<br>- laboratory confirminfection<br>- ICU admission for<br>Exclusion criteria:<br>- < 18 years<br>- pts. treated for n<br>disease<br>- missing data on F<br>Per Br | OVID-19 pts<br>22 and June 14,<br>med SARS-CoV-2<br>r ARDS<br>on-respiratory |                      | <b>PP</b> at least<br>once during<br>ICU stay | SP      | Primary outcomes:<br>- ICU mortality<br>- hospital mortality<br>- ICU-LOS<br>- hospital LOS<br>- duration of invasive<br>MV | <ul> <li>Significant differences between the groups:</li> <li>ICU mortality: PP 262 (41%) vs SP 112 (28%), p&lt; 0.001</li> <li>Hospital mortality: PP 278 (45%) vs SP 127 (33%), p&lt; 0.001</li> <li>ICU-LOS: PP 16 (11–28) vs. SP 12 (7–21), p &lt; 0.001</li> <li>Hospital LOS: PP 30 (17–49) vs. SP 26 (16–40), p=0.008</li> <li>duration of invasive MV: PP 16 (10–30) vs. SP 10 (6–19), p &lt; 0.001</li> </ul> | 4                 |
| cohort study                                                                                                                                            | 648                                                                                                                                                                                                                                       | 409                                                                          |                      |                                               |         |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

ARDS = Acute Respiratory Distress Syndrome, ICU = Intensive Care Unit; LOS = length of stay, MV = mechanical ventilation, PP = prone positioning, pts= patients, SP = supine positioning

Patients receiving at least one PP session during their ICU stay have a higher ICU and hospital mortality and longer ICU and hospital stay as well as a longer duration of mechanical ventilation.

| #028       B0 pts         #028       Inclusion criteria:<br>- prolonged MV (>72 h)<br>- stable orgens starution, fraction of inspired oxgens55%,<br>and positive end expiratory pressure 36 mH2O<br>- ods et dopammen: Dug/Kg/min and dose of epinephrine<br>- dod healing pressure 35 mig and unine outputs 1 mL/kg/h<br>- good healing of the indicis and there surgery<br>- normal cognitive function<br>- no history of chronic mental illness or chronic obstructive<br>pulmonary disease       Rehabilitation therapy from<br>day 2 until day 4 included six<br>levels of rehabilitation<br>exercises.<br>- Level 0, turning over once<br>every 2 h, for unconscious pts<br>with unstable viral signs<br>- Level 1, maintaining joint<br>range of motion<br>- strendopulmonary disease       Primary endpoint:<br>- DE<br>- DTF         PMID: 33781<br>259<br>DOI: 10.1186<br>(s12890-021<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161-2<br>0161- | Reference,<br>Study Type                                                                                           | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nd Controls<br>, characteristics)<br>otal                                                                                                                                                                                                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Control | Optimal<br>Population                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Dong<br>2021<br>PMID: 33781<br>259<br>DOI: <u>10.1186</u><br>/s12890-021-<br>01461-2<br>Specification<br>of study: | Inclusion criteria:<br>- prolonged MV (>72 h)<br>- stable oxygen saturation, frac<br>and positive end expiratory pro-<br>- dose of dopamine<10 μg/kg/<br>< 0.4 μg/kg/min<br>- mean arterial pressure>75 m<br>- good healing of the incision a<br>- normal cognitive function<br>- no history of chronic mental in<br>pulmonary disease<br>Exclusion criteria:<br>- inability to perform physical a<br>- long-term MV prior to admiss<br>- neurological comorbidities in<br>- irreversible disorders with a 6<br>according to APACHEII)<br>- unsound limbs<br>- administration of glucocortical<br>corticosteroid dose equivalent<br>prior to admission<br>- cardiopulmonary resuscitatio<br>- radiotherapy or chemotherap<br>- presence of comorbidities, in<br>venous thrombosis/embolism,<br>- unstable fractures | essure ≤8 cmH2O<br>(min and dose of epinephrine<br>Hg and urine output>1 mL/kg/h<br>after surgery<br>illness or chronic obstructive<br>activities<br>sion<br>ivolving muscles<br>6-month mortality rate of>50%<br>oids (prednisone or other<br>ts>20 mg/day) for at least 20 days<br>on before admission to the ICU<br>py within the previous 6 months<br>iccluding acute myocarditis, deep<br>, and cerebrovascular accident |                      | day 2 until day 4 included six<br>levels of rehabilitation<br>exercises.<br>- Level 0, turning over once<br>every 2 h, for unconscious pts<br>with unstable vital signs<br>- Level 1, maintaining joint<br>range of motion<br>- Level 2, sitting in bed for 20<br>min 3 times a day<br>- Level 3, additionally sitting<br>on the edge of the bed<br>- Level 4, additional standing<br>up or sitting in a chair for at<br>least 20 min a day<br>- Level 5, pts actively moved<br>from the bed and walked to |         | endpoint:<br>- DE<br>- DTF<br>Secondary<br>outcomes:<br>- time on MV<br>- intubation | <ul> <li>DE at day 1: 1.43 ± 0.47 vs.</li> <li>1.41 ± 0.59, p= 0.851</li> <li>DE at day 4: 1.33 ± 0.39 vs.</li> <li>1.27 ± 0.48, p= 0.541</li> <li>DTF in rehabilitation vs.</li> <li>control group, 0.15 vs 0.12</li> <li>p=0.008</li> <li>decrease of DTF:</li> <li>rehabilitation 0.017 vs control</li> <li>0.034 p = 0.026</li> </ul> Secondary Outcomes: <ul> <li>time on MV: 7.49±2.59 days</li> <li>vs. 9.41±5.32 days, p-value=0.045</li> <li>duration of intubation:</li> <li>8.31±2.80 days vs. 10.37±5.32</li> </ul> | 2                 |

APACHE II = Acute Physiology and Chronic Health Evaluation II, DE = diaphragmatic excursion, DTF = diaphragmatic thickening fraction, LOS = length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

#### Early rehabilitation has a positive effect on the diaphragmatic thickening fraction but not on the diaphragmatic excursion.

| Reference,<br>Study Type                                                                                                                         | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                   | Drop-<br>out<br>Rate | Intervention                                  | Control | Optimal Population                                                                                                                                                                                                                          | Primary<br>Results | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| #030<br>Rodriguez-Huerta<br>2022<br>PMID: 33725746<br>DOI: 10.1111/nicc.<br>12606<br>Specification of<br>study:<br>Retrospective<br>cohort study | 44 consecutive pts.<br>Inclusion criteria:<br>- COVID-19 ARDS<br>- undergoing MV<br>- ≥1 PP session during ICU stay<br>Per Branch |                      | <b>PP</b> without<br>standardized<br>protocol |         | Primary endpoints:<br>- total number of PP maneuvers<br>- total number of PP maneuvers per patient<br>- duration of each PP session (hours)<br>- total cumulative number of hours spent in PP<br>per patient<br>Secondary outcome:<br>- AEs |                    | 4                 |

AEs = adverse events, ARDS = Acute Respiratory Distress Syndrome, COVID-19 = Corona Virus Disease 2019, ICU = intensive care unit, MV = mechanical ventilation, PP = prone positioning; pts = patients

Despite the large number of maneuvers and the long time spent in the PP, no serious AEs occurred. Time spent in PP and number of PP sessions was associated with a higher risk for skin lesion.

| Reference,<br>Study Type                                                                                                                               | Cases and C<br>(Participant #, Ch<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                  | naracteristics)                                                                                                                    | Drop-<br>out<br>Rate | Intervention      | Control                | Optimal Population                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| #032<br>Sryma<br>2021<br>PMID:<br>33686973<br>DOI:<br>10.4103/lungi<br>ndia.lungindi<br>a_794_20<br>Specification<br>of study:<br>Prospective<br>study | 45 pts with COVID-<br>hypoxemic respirat<br>receiving non-invas<br>therapy<br>Inclusion criteria:<br>- nasopharyngeal sy<br>RT-PCR-confirmed<br>- room air pulse oxy<br>(SpO2) <94%<br>Exclusion criteria:<br>- hypercapnic respi<br>hemodynamic insta<br>- altered sensorium<br>- immediate trache<br>of hypoxia<br>- hospitalization for<br>- BMI >30 kg/m2<br>- PaO2/FiO2 <100<br>- on NIV/HFNC<br>- intolerance to PP<br>Per Bra<br>30 | tory failure<br>sive oxygen<br>wab<br>COVID-19<br>ygen saturation<br>ratory failure,<br>ability<br>n<br>tal intubation<br>r > 12 h |                      | Prone<br>position | Supine<br>positio<br>n | Primary outcome:<br>- rate of intubation<br>Secondary<br>outcomes:<br>- ROX index 30min<br>after start of PP<br>- ROX index at 12h<br>- days to recovery of<br>hypoxia (SpO <sub>2</sub> > 93%<br>at room air)<br>- mortality | Primary outcome:<br>- rate of intubation: PP 2 (6.7 %) vs. SP 5 (33.3%),<br>p=0.02 Secondary outcomes:<br>- ROX index 30 min before PP: PP 10.7 ± 3.8 vs. SP<br>6.7 ± 2.6, p<0.001 - ROX index after 12h: RR 12.4 (4.5) vs. SP 6.4 (3.0),<br>p< 0.001 - days to recovery: n.s mortality: PP 2 (6.7%) vs. SP 4 (26.7%), p=0.06 | 3 → 4<br>Bias in group<br>allocation<br>(definitions<br>missing) |

HFNC = high flow nasal cannula, NIV = non-invasive ventilation, PP = prone position, ROX = respiratory rate - oxygenation, SP = supine position

Prone positioning seems to reduce the rate of intubation and mortality but has no effect on the time to recovery.

| Reference,<br>Study Type                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population                                 | Primary Results                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #033<br>Patterson<br>2021<br>PMID: 33675753<br>DOI:<br>10.1016/j.ajo.2021.<br>02.019<br>Specification of<br>study: | 11 RCTs with 2247 patients <sup>1-11</sup><br>Inclusion criteria:<br>- >18 years<br>- hospital inpatients in critical care<br>(Level 2 in National Health Service<br>Critical Care Service Framework)<br>- English language<br>- published between January 1, 1990<br>and July1, 2020<br>Exclusion criteria:<br>- conference abstracts |                      | РР           | SP      | Primary outcome:<br>- incidence of<br>ocular injuries | Primary outcome:         - incidence of ocular injuries (across all studies) <sup>1-11</sup> : OR: 1.02 (95% CI: 0.82–1.26), I <sup>2</sup> = 0%         - incidence of ocular injuries (only studies with low risk of bias) <sup>2,3,5</sup> : OR: 0.79 (95% CI: 0.11–44) | 1                 |
| Systematic review with meta-analysis                                                                               | Per Branch                                                                                                                                                                                                                                                                                                                             | -                    |              |         |                                                       |                                                                                                                                                                                                                                                                            |                   |

PP = prone positioning, RCT = randomized controlled trial, SP = supine positioning

#### Prone positioning does not seem to increase the incidence of ocular injury.

- 1. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med .2001;345(8):568-573
- 2. Geurin C, Gaillard S, Lemasson S. Effects of systematic prone positioning in hypoxaemic acute respiratory failure .JAMA. 2004;292(19):2379–2387.
- 3. Mancebo J, Fernández R, Blanch L, et al. A Multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome .Am J Respir Crit Care Med .2006;173(11):1233– 1239
- 4. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–1984
- 5. Guérin C, Reignier J, Richard JC, et al. For the PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–2168.
- 6. Watanabe I, Fujihara H, Sato K, et al. Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med. 2002;30(8):1799–1802.
- 7. Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC. Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med. 2002;28 (5): 564–569.
- 8. Papazian L, Gainnier M, Marin V, et al. Comparison of prone positioning and high frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med. 2005; 33 (10): 2162–2171.
- 9. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma 2005;59(2):333–343
- 10. Chan MC, Hsu JY, Liu HH, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc. 2007;106(9):708–716
- 11. Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med. 2008;34(8):1487–1491.

| Reference,<br>Study Type                                                                                                                                         |                                                                                                                                                                                                                                               | Cases and Controls<br>ipant #, Characteristics)<br>Total                                                                                                                    | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                             | Primary Results                                                                                                                                                                                                                                   | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #036<br>Nauka<br>2021<br>PMID:<br>33615236<br>DOI:<br>10.1097/CCE.0<br>0000000000<br>348<br>Specification<br>of study:<br>Retrospective<br>case-control<br>study | respiratory insufficient<br>Inclusion criteria:<br>-> 18 years<br>- laboratory-confirm<br>Exclusion criteria:<br>- DNI<br>Cases= pts that met<br>mortality<br>Controls = pts that wet<br>time (death or intuk<br>gender, admission of<br>LOS. | the endpoint IMV or in-hospital<br>vere alive and not intubated at index<br>pation of case), matched 2:1 by age,<br>late (within 2 weeks) and hospital<br><b>Per Branch</b> |                      | nPP          | No nPP  | Primary outcomes:<br>- risk of invasive MV<br>- inhospital mortality<br>adjusted for Charlson<br>comorbidity index,<br>BMI, worst S/F ratio<br>and SOFA score. | <b>Primary outcome:</b><br>- risk of invasive MV:<br>nPP: unadjusted HR<br>2.57; 95% Cl 1.17–5.64;<br>p = 0.02<br>adjusted HR 0.92; 95%<br>Cl 0.34–2.45; p = 0.86<br>- in-hospital mortality:<br>adjusted HR 0.92; 95%<br>Cl 0.90–0.94; p < 0.001 | 4                 |
|                                                                                                                                                                  | Cases: n=200                                                                                                                                                                                                                                  | Controls: n=400                                                                                                                                                             |                      |              |         |                                                                                                                                                                |                                                                                                                                                                                                                                                   |                   |

BMI = Body Mass Index, COVID-19 = Corona Virus Disease 2019, DNI = do not intubate, IMV = invasive mechanical ventilation, MV = mechanical ventilation, nPP = non-intubated PP, PCR = Polymerase Chain Reaction, PP = prone positioning, pts = patients S/F= SpO<sub>2</sub> / FiO<sub>2</sub>, SOFA = Sequential Organ Failure Assessment

COVID-19 patients receiving non-intubated prone positioning did not have a significantly higher risk of mechanical ventilation and had a significantly lower in-hospital mortality when adjusting for BMI, oxygenation and disease severity.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                       | Drop-<br>out<br>Rate | Intervention                | Control                       | Optimal Population | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|-------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #037<br>Wiart<br>2021<br>PMID:<br>33653912<br>DOI:<br>10.4187/respc<br>are.08461<br>Specification<br>of study:<br>Retrospective<br>2-center<br>cohort study | 39 consecutive pts with a total<br>of 113 PP sessions<br>Inclusion criteria:<br>- >18 years<br>- moderate and severe ARDS<br>- PP > 12h during first 72h of<br>admission<br>No exclusion |                      | ARDS related to<br>COVID-19 | ARDS unrelated<br>to COVID-19 | Not defined        | Significant differences between the<br>groups:<br>- duration of MV: COVID-19: 26 days (13–<br>43) vs. non-COVID-19: 13 days (6–23),<br>p=0.01<br>- ICU-LOS: COVID-19: 27.5 days (15–70) vs.<br>non-COVID-19: 18 days (9–28), p=0.02<br>- number of PP sessions in PSV: COVID-19:<br>45 (66) vs. non-COVID-19: 39 (87), p=0.01<br>- number of PP sessions/ subject: COVID-<br>19: 4 (2–4) vs. non-COVID-19: 2 (1–4),<br>p=0.02<br>No significant differences between the<br>groups:<br>- 28d-mortality<br>- ICU mortality<br>- VFD on day 28 | 4                 |

ARDS = Acute Respiratory Distress Syndrome, COVID-19 = Corona Virus Disease 2019, ICU = Intensive Care Unit, LOS = length of stay, MV = mechanical ventilation, PP = prone position, PSV = pressure support ventilation, pts = patients, VFD = ventilator-free days

## COVID-19 patients receiving at least one prone session have a longer duration of mechanical ventilation and longer stay in the ICU and received fewer prone sessions on PSV and per patient.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-out<br>Rate                   | Intervention                                                                | Control       | Optimal Population                                                                                       | Primary Results                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #038<br>Simioli<br>2021<br>PMID:<br>33646105<br>DOI:<br>10.5152/TurkT<br>horacJ.2021.20<br>158<br>Specification<br>of study:<br>single-center<br>case-control<br>study |                                                                 | 11 pts (no<br>complaints<br>to PP) | Prone<br>position with<br>spontaneous<br>breathing for<br>approx. 10<br>h/d | Usual<br>care | Primary Endpoints:<br>- consolidation/atelectasis<br>- P/F-ratio<br>- duration of respiratory<br>failure | Significant differences between groups<br>in:<br>- P/F during PP increased compared with<br>noncompliant controls (288 vs. 202;<br>p=0.0002)<br>- Total duration of respiratory failure was<br>shorter in pts with PP (14 vs. 21 days;<br>p=0.002) | 4                 |

COVID-19 = Corona Virus Disease 2019, NIV = noninvasive ventilation, P/F = pO2/FiO2 ratio, PP = prone position, pts = patients

#### PP has a documented substantial effect on pO2/FiO2 ratio when started early and for at least 10 h/d.

| Reference,<br>Study Type                                                                                                                                                 | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Characteristics)                                                                                                                                                                                 | Drop-<br>out<br>Rate | Intervention                                                            | Control       | Optimal<br>Population                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| #043<br>Mathews<br>2021<br>PMID: 33595960<br>DOI:<br>10.1097/CCM.000<br>000000004938<br>Specification of<br>study:<br>Large<br>retrospective<br>COVID-19 cohort<br>study | 2338 of critically ill adults w<br>2019 admitted to 68 U.S. h<br>Inclusion criteria:<br>- admitted to an ICU betwe<br>15 2020<br>- proning used for least one<br>- adult pts(≥ 18 years old)<br>- moderate-to-severe hypo<br>Pao2/Fio2 ratio ≤ 200 mm I<br>- within the first 2 days of IC<br>- receiving invasive MV<br>Exclusion criteria:<br>- Pao2/Fio2 ratio less than of<br>the first 2 days of ICU admi<br>- pts who received ECMO o<br>- experienced cardiac arres<br>ICU day 1<br>- pregnancy<br>Per Br<br>n = 702 prone<br>positioning<br>< 48 h | ospitals<br>een March 4 2020 and May<br>e STOP-COVID patient<br>xemia (Berlin criteria:<br>Hg)<br>CU admission<br>or equal to 200 mm Hg in<br>ssion<br>in ICU day 1<br>t or severe arrhythmia on |                      | <b>Prone</b><br><b>position</b><br>Within the<br>first 2 days<br>of ICU | Usual<br>Care | Primary<br>outcome:<br>- mortality<br>- time to in-<br>hospital death<br>- censored at<br>hospital<br>discharge<br>- last follow-up | <ul> <li>Primary outcome : <ul> <li>mortality HR : 0.84 (95% Cl, 0.73–</li> <li>0.97)</li> </ul> </li> <li>proned patients had a higher occurrence of shock on ICU day 1 vs. non-proned patients (114 [26.2%] vs. 208 [12.7%])</li> <li>total of 1.017 patients (43.5%) were discharged alive; 1.101 (47.1%) died (327 of pp pts., 46,6%; 774 of usual care pts., 47.3), 220 (9.4%) remained hospitalized at last follow-up (unadjusted HR, 0.89 [95% Cl, 0.79–1.02])</li> <li>median follow-up patients was 34 days (IQR, 25–46 d) and 30 days (IQR, 22–43 d) overall</li> </ul> | 4 → 3<br>(large<br>cohort) |

ECMO= extracorporeal membrane oxygenation, HR= hazard ratio, ICU = Intensive Care Unit, pp= prone positioning, pts = patients, STOP-COVID= Study of the Treatment and Outcomes in Critically III Patients with Coronavirus Disease

## In-hospital mortality was lower in mechanically ventilated hypoxemic patients with coronavirus disease 2019 treated with early proning compared with patients whose treatment did not include early proning.

| Reference,<br>Study Type                                                                                                                           | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                   | Drop<br>-out<br>Rate | Intervention | Control | Optimal<br>Population                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #044<br>Lai<br>2021<br>PMID: 33590997<br>DOI:<br>10.1097/CCM.0000<br>00000004849<br>Specification of<br>study:<br>Prospective<br>monocentric study | 22 ventilated pts with<br>ARDS<br>Inclusion criteria:<br>-presence of ARDS<br>- decision taken by the<br>attending physicians to<br>perform PP and<br>monitoring of<br>CI with calibrated pulse<br>contour analysis<br>Exclusion criteria:<br>- ≤ 18 years old<br>- extracorporeal<br>membrane oxygenation<br>- impossibility to perform<br>EEXPO test<br>Per Branch |                      | РР           | SP      | <b>Primary</b><br><b>outcome</b><br>hemodynamic<br>effects of PP<br>(measurements<br>taken before<br>and 15 min after<br>PP maneuver) | Significant differences between measurements in SP and PP in<br>preload responsive patients:<br>- cardiac index L/min/m <sup>2</sup> : PP 3.5 (3.3–4.5) vs. SP 2.9 (2.7–3.5),<br>p<0.05<br>- global end-diastolic volume index mL/m <sup>2</sup> : PP 780 (648–840) vs.<br>SP 649 (556–754), p<0.05<br>- Pms mmHg: PP 34 (28–39) vs. SP 16 (15–21), p<0.05<br>- CVP mmHg: PP 14 (10–18) vs. SP 8 (8–12)<br>- Pms – CVP mmHg: PP 19 (17–23) vs. SP 8 (6–12)<br>- Rvr mm Hg/min/L: PP 3.0 (2.6–3.7) vs. SP 1.7 (1.5–1.9)<br>- IAP mmHg: 15 (14–17) vs. 10 (9–15)<br>No significant differences:<br>- PaO <sub>2</sub> /FiO <sub>2</sub><br>- respiratory system compliance<br>- total positive end-expiratory pressure<br>- plateau pressure<br>- heart rate<br>- arterial pressure | 4                 |

CO = cardiac output, CVP = central venous pressure, EEXPO = end-expiratory occlusion, IAP = intra-abdominal pressure, Pms = mean systemic pressure, PP = prone positioning, Rvr = resistance to venous return, SP = semirecumbent positioning

Prone positioning induces an increase in cardiac index, global end-diastolic volume index, mean systematic pressure, central venous pressure, and intra-abdominal pressure.

| Reference,<br>Study Type                                                                                                          | (Participant #,                                                                                                                                                                                                           | l Controls<br>Characteristics)<br>tal                                                      | Drop<br>-out<br>Rate | Intervention                                                         | Control    | Optimal Population                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                     | Evidence<br>Grade                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| #045<br>Ohbe<br>2021<br>PMID: 33561986<br>DOI:<br>10.3390/jcm100<br>40618<br>Specification of<br>study:<br>observational<br>study | 30568 eligible pt<br>Inclusion criteria<br>- underwent CAE<br>- admitted to the<br>consecutive days<br>of CABG<br>Exclusion criteria<br>- aged <18 years<br>- received cardio<br>resuscitation wit<br>their CABG<br>Per B | s<br>a:<br>a:<br>b ICU > 3<br>s from the date<br>a:<br>pulmonary<br>hin 3 days of<br>ranch |                      | <b>any rehabilitation</b><br><b>program</b> within 3 days<br>of CABG | usual care | Primary Endpoint:<br>- Barthel Index score at<br>discharge<br>Secondary Outcomes:<br>- in-hospital mortality<br>- ICU LOS<br>- hospital LOS<br>- total hospitalization<br>costs | Significant differences between<br>groups in:         - Barthel Index scores at discharge in<br>the early rehabilitation group were<br>significantly higher than usual care<br>group (difference: 3.2; 95%<br>confidence interval: 1.5–4.8); <0.001 | 4 → 3<br>(upgrade,<br>large<br>cohort<br>and<br>consistent<br>results) |
|                                                                                                                                   | 17418                                                                                                                                                                                                                     | 13150                                                                                      |                      |                                                                      |            |                                                                                                                                                                                 | - hospital LOS (difference: -3.7 (Cl<br>95% : -5.2 to -2.2); p<0.001)                                                                                                                                                                               |                                                                        |

CABG = coronary artery bypass grafting, CI= confidence interval, ICU = Intensive Care Unit, LOS = length of stay, pts = patients

An early rehabilitation program seems to have a benefit in relation to the Barthel score, in-hospital mortality, ICU LOS and hospital LOS in CABG patients.

| Reference,                                                                                            | Cases and Controls<br>(Participant #, Characteristics)                                                               |                              | Drop<br>-out | Intervention                                                                                                                                  | Control              | Optimal Population                                                                                                                           | Primary Results                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------|
| Study Type                                                                                            | То                                                                                                                   | tal                          | Rate         |                                                                                                                                               |                      |                                                                                                                                              |                                                                       | Grade             |
| #050<br>Ozyemisci<br>Taskiran<br>2021<br>PMID: 33448757<br>DOI:<br>10.23736/S1973-<br>9087.21.06551-5 | 35 pts<br>Inclusion criter<br>- admission to I<br>diagnosis of AR<br>Berlin definitior<br>COVID-19<br>->18 years old | CU with a<br>DS according to |              | Rehabilitation program<br>- began ≥5 days of the ICU<br>stay and ≥10 days after<br>the onset of COVID<br>symptoms<br>- passive and active ROM | Standard ICU<br>care | Primary endpoints:<br>- duration of MV<br>- ICU LOS<br>- mortality rates<br>- handgrip strength<br>- MRC score<br>- range of joint<br>motion | Primary endpoints:<br>- no significant differences in<br>all outcomes | 3                 |
| Specification of<br>study:<br>observational<br>study                                                  | <b>Per B</b>                                                                                                         | ranch<br>17                  | -            | NMES (Compex Rehab<br>400, Compex, Ecublens,<br>Switzerland)                                                                                  |                      | - health-related<br>quality of life was<br>assessed with 36-<br>item Short Form<br>Survey                                                    |                                                                       |                   |

ARDS = Acute Respiratory Distress Syndrome, ICU = Intensive Care Unit, LOS = length of stay, MRC = Medical Research Council Scale, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, pts = patients, ROM = range of motion

#### A late rehabilitation program including NMES showed no difference in relation to the predefined outcomes.

| Reference,<br>Study Type                                                                                                                                    | (Participant #,                                                                                                                   | d Controls<br>Characteristics)<br>otal                                                                          | Drop-<br>out Rate | Intervention                                                                                                                                                                                                                                | Control                                                                                                                                          | Optimal<br>Population                                                                                                                                                       | Primary Results | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|
| #051<br>Ibarra<br>2020<br>PMID:<br>33446462<br>DOI:<br>10.1016/j.bjps.<br>2020.12.057<br>Specification<br>of study:<br>Monocentric<br>case-control<br>study | polymerase chain<br>- invasive mecha<br>- treated with PP<br><b>Exclusion criteria</b><br>- noninvasive ver<br>- patients not tre | herapy<br><b>:</b><br>base confirmed by<br>n reaction<br>nical ventilation<br>therapy<br><b>a:</b><br>ntilation |                   | Recording the<br>pressure damage<br>cases<br>were defined as<br>those who<br>presented prone-<br>positioning<br>pressure sores<br>(PPPS) such as ulcers<br>on the forehead,<br>cheek,<br>ala nasi, lip, chin,<br>chest, knee, leg or<br>toe | controls<br>were classified as<br>those who met<br>inclusion criteria<br>but <b>did not</b><br><b>present any PP</b><br><b>pressure injuries</b> | <b>Primary endpoints:</b><br>presence, location,<br>and severity of<br>PPPS over bony<br>prominences, as<br>well as the injuries<br>related to a medical<br>or other device | (69%)           | 4                 |

PP = prone positioning, PPPS = prone-positioning pressure sores, pts = patients

PPPS are related to the characteristics of the maneuver and the previous nutritional state. The implementation of improved positioning protocols may enhance results in critical patient caring.

| Reference,<br>Study Type                                                                                                                                       | (Participant #,                                                                                                                                                                                                | d Controls<br>Characteristics)                      | Drop-out<br>Rate                                                                            | Intervention     | Control                              | Optimal Population                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #053<br>Clarke<br>2021<br>PMID: 33422143<br>DOI:<br>10.1186/s13104-<br>020-05426-2<br>Specification of<br>study:<br>prospective<br>monocentric<br>cohort study | 20 COVID-ARDS pt<br>ventilation<br>Inclusion criteria:<br>- > 18 years of<br>age<br>- confirmed SARS-(<br>- invasively ventila<br>- met the Berlin cri<br>diagnosis of ARDS<br>- underwent PP as<br>management | CoV-2 infection<br>ted in the ICU<br>iteria for the | 1 patient<br>(treated in<br>an area<br>without an<br>electronic<br>health record<br>system) | <b>PP</b> (16 h) | Supine<br>position<br>(before<br>PP) | Primary endpoints:<br>- ICU free days and<br>ventilator free days<br>(VFDs)<br>- PaO2/FiO2 ratio<br>before and after PP<br>Secondary endpoints:<br>- 28-day-mortality<br>- compliance | <ul> <li>- median improvement in the<br/>PaO2/FiO2 ratio of 132 in the prone<br/>position compared to the supine<br/>position (IQR 67–228)</li> <li>- no significant difference in<br/>respiratory system static compliance</li> <li>- 28-day mortality rate of 15%</li> <li>- median number of ventilator free<br/>days at 28 days: 16 (IQR, 0–21)</li> <li>- median number of ICU free days at<br/>28 days: 14.5 (IQR, 0–20)</li> </ul> | 3                 |

ARDS = Acute Respiratory Distress Syndrome, COVID = Corona Virus Disease, ICU = intensive care unit, PP = prone positioning, pts = patients

Prone positioning should be considered in patients with SARS-CoV-2 ARDS.

| Reference,<br>Study Type                                                                                                                                                                         | (Participant #,                                                                                                                                                                                                                                                         | d Controls<br>Characteristics)<br>ttal                                                                                                                      | Drop-out<br>Rate                                                                                    | Intervention | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #054<br>Scheffenbichler<br>2021<br>PMID: 33416257<br>DOI:<br>10.1097/CCM.0<br>000000000048<br>08)<br>Specification of<br>study:<br>International,<br>multicenter,<br>prospective<br>cohort study | <ul> <li>&gt; 48 h</li> <li>- lower extremity a</li> <li>- comfort care</li> <li>- high risk of persis</li> <li>(motor componen<br/>and traumatic brainers)</li> <li>- pregnancy</li> <li>- neurodegenerational</li> <li>- paraplegia</li> <li>- tetraplegia</li> </ul> | 0<br>< 48 h prior to<br>her hospitals, long<br>n facilities or<br>th a preceding stay<br>amputation<br>stent brain injury<br>t of the GCS < 5<br>in injury) | - n = 2 ICU<br>follow up<br>incomplete<br>- n = 2<br>tissue<br>edema<br>rectus<br>femoris<br>muscle | none         |         | <ul> <li>Primary outcome: <ul> <li>adverse discharge</li> <li>dispositions (loss of the ability to live independently)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>association between dose of mobilization and ICU length of stay, hospital length of stay, and 30-day mortality.</li> <li>association between dose of mobilization and mmFIM</li> <li>effect of dose of mobilization on DASI 3 months after hospital discharge.</li> </ul> </li> <li>Sample size calculation: <ul> <li>Estimated correlation between dose of mobilization and discharge disposition of 0.25, thus a sample size of 150 patients provides a power of 0.88 to identify a significant effect (alpha error of 0.05) for the primary outcome.</li> </ul></li></ul> | pts divided in low dose (LD) of<br>mobilization (MQS ≤ 6.5) and high<br>dose (HD) of mobilization (MQS ><br>6.5) Primary outcome:<br>- adverse discharge: LD 55 (74%) vs.<br>HD 37 (51%), p< 0.001 Secondary outcomes:<br>- ICU-LOS: aIRR 0.72; 95% CI 0.57-<br>0.92; p=0.009 - hospital LOS: aIRR 0.79; 95%CI<br>0.64-0.98; p=0.035 - 30-day mortality: aOR 0.14; 95%CI<br>0.05-0.40; p<0.001 - mmFIM at ICU discharge: aIRR 2.45;<br>95%CI 1.94-3.08; p<0.001 - mmFIM at hospital discharge: aIRR<br>1.92; 95%CI 1.52-2.43; p<0.001 - DASI at 3-month FU: coefficient<br>9.82; 95%CI 3.88-15.75; p=0.001 | 3                 |

CI = confidence interval, DASI = Duke Activity Status Index, GCS = Glasgow Coma Scale, ICU= Intensive Care Unit, IRR = incidence rate ratio, mmFIM = minimal modified functional independence measure, MQS = Mobilization Quantification Score, OR = odds ratio

High dose mobilization protects patient's ability to live independently after discharge.

| Reference,<br>Study Type                                                                                                                                                  | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                       | Control                                                                                                                                                                                                                                                     | Optimal<br>Population                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #056<br>Menges<br>2021<br>PMID:<br>33407707<br>DOI:<br>10.1186/s13<br>054-020-<br>03446-9<br>Spezification<br>of study:<br>systematic<br>review with<br>meta-<br>analysis | <ul> <li>- 12 RCTs <sup>1-12</sup></li> <li>Inclusion criteria: <ul> <li>studies conducted in</li> <li>adult ICU pts</li> <li>-aged ≥ 18 years</li> <li>requiring invasive or</li> <li>non-invasive MV at</li> <li>enrollment or during the</li> <li>ICU stay</li> </ul> </li> <li>Exclusion criteria: <ul> <li>studies that enrolled</li> <li>relevant proportions (≥</li> <li>10%) of pts with burn</li> <li>injuries, neurological</li> <li>conditions or transplant</li> <li>pts,</li> <li>postoperative pts</li> <li>requiring MV for &lt; 24 h on</li> <li>average</li> </ul> </li> </ul> |                      | Systematic<br>early mobilization<br>- any physical or<br>occupational therapy<br>targeting muscle<br>activation<br>- initiated within 7<br>days after ICU<br>admission<br>- with a clearly<br>defined protocol or<br>specific clinical<br>criteria | Late mobilization<br>- initiated 7 days or<br>more after ICU<br>admission<br>Standard early<br>mobilization<br>- initiated within 7<br>days but less<br>systematically<br>No mobilization<br>- sham intervention<br>or no<br>rehabilitative<br>intervention | Primary<br>endpoints:<br>1) MRC-SS<br>2) ICUAW<br>3) Function<br>Secondary<br>outcomes:<br>- quality of life<br>- mortality<br>- LOS<br>- safety | <ul> <li>Significant differences between groups in:</li> <li>SF-36 PFS at 6 months after hospital discharge<br/>(MD 12.3; 95% CI 3.9–20.8; p = 0.004; one study; very low certainty)</li> <li>improvement in SF-36 PCS when comparing systematic early to late mobilization (MD 3.4; 95% CI 0.01-6.8; p=0.050)</li> <li>No significant differences between groups in:</li> <li>SF-36 PCS compared to standard early mobilization (MD -2.4; 95% CI -6.1 to 1.3; p=0.20)</li> <li>MRC-SS at ICU discharge (MD 5.8; 95% CI -1.4 to 13.0; p=0.12)</li> <li>incidence of ICUAW (RR 0.62; 95% CI 0.38-1.02; p=0.06)</li> <li>no conclusive evidence for quality of life, cognitive and mental health outcomes, length of ICU or hospital stay, duration of MV or in-hospital or post-discharge mortality</li> <li>Adverse effects n.s.</li> </ul> | 1                 |

ICU-AW = ICU-acquired weakness, ICU = intensive care unit, LOS= length of stay, MRC-SS = Medical Research Council Sum Score, n.s. = not significant, , pts = patients, SF-36 PCS = SF-36 physical health component score, SF-36 PFS = SF-36 physical function domain score

## Systematic early mobilization seems to have a benefit for the functional outcome compared to late mobilization (>7 d) but not standard early mobilization.

#### References

1. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874–82. https://doi.org/10.1016/S0140 -6736(09)60658 -9.

2. Dantas CM, dos Silva PFS, de Siqueira FHT, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012;24:173–8. https://doi.org/10.1590/ S0103 -507X2 01200 02000 13.

3. Denehy L, Skinner EH, Edbrooke L, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care. 2013;17:R156. https://doi.org/10.1186/cc128 35.

4. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40:370–9. https://doi.org/10.1007/s0013 4-013-3136-0.

5. Dong Z, Yu B, Sun Y, et al. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med. 2014;5:48–52. https://doi.org/10.5847/wjem.j.issn.1920-8642.2014.01.008.

6. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015;41:865–74. https://doi.org/10.1007/s0013 4-015-3763-8.

7. Dong Z, Yu B, Zhang Q, et al. Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int Heart J. 2016;57:241–6. https://doi.org/10.1536/ihj.15-316.

8. Fischer A, Spiegl M, Altmann K, et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care. 2016;20:30. https://doi.org/10.1186/s1305 4-016-1199-3.

9. Hodgson CL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med. 2016;44:1145. https://doi.org/10.1097/CCM.00000 00000 00164 3.

10. Morris PE, Berry MJ, Files DC, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA. 2016;315:2694–702. https://doi.org/10.1001/jama.2016.7201.

11. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388:1377–88. https://doi.org/10.1016/S0140 -6736(16)31637 -3.

12. Eggmann S, Verra ML, Luder G, et al. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: a randomised controlled trial. PLoS ONE. 2018;13:e0207428. https://doi.org/10.1371/journ al.pone.02074 28.

| Reference,<br>Study Type                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #057<br>Douglas<br>2021<br>PMID: 33405409<br>DOI:<br>10.1097/CCM.000<br>000000004818<br>Specification of<br>study:<br>Retrospective<br>single-center<br>study | 61 pts with COVID-19 between<br>March 1, 2020 and May 30, 2020<br>Inclusion criteria:<br>- COVID-19 pneumonia/ARDS<br>- requiring intubation<br>- MV<br>- PP<br>Exclusion criteria:<br>- No ICU admission<br>- Not intubated<br>Per Branch<br>PP = 61 |                      | РР           |         | Primary endpoint:<br>- pressure wounds by grade (1-4)<br>Secondary outcomes:<br>- rate of facial and limb edema<br>- hospital-acquired infection<br>- device displacement<br>- LOS | Primary endpoint- Pressure ulcers grade 1-3: 38 (71.7%)- Pressure ulcers grade 4:2 pts.Secondary outcomes- rate of facial and limbedema: "common" nocalculations- hospital-acquiredinfections: 3 (4.9%)- device displacement:not stated- ICU-LOS in survivors:16.5 d (10–25.8 d)- hospital-LOS insurvivors: 28 days(18–42 d) |                   |

ARDS = Acute Respiratory Distress Syndrome, ICU = Intensive Care Unit, LOS = length of stay, MV = mechanical ventilation, PP = prone positioning, SP = supine positioning

Patients in prone position were likely to develop pressure ulcers.

| Reference,<br>Study Type                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention                                                    | Control                                         | Optimal<br>Population                                                                                            | Primary Results                                                                                                                                                           | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #058<br>Gutiérrez-Arias<br>2021<br>PMID: 33402382<br>DOI:<br>10.4187/respcare.<br>08363<br>Specification of<br>study:<br>Systematic<br>Review | <ul> <li>12 RCTs with 530 pts<br/>Meta analysis for 10 RCTs<sup>1-10</sup></li> <li>Inclusion criteria: <ul> <li>RCTs</li> <li>adult subjects</li> <li>invasive MV</li> <li>no restrictions regarding admission diagnosis ICU type or language</li> <li>neuromuscular or functional electrical stimulation compared to no intervention (i.e., usual care or physical therapy) or placebo of neuromuscular or functional electrical stimulation</li> </ul> </li> <li>Exclusion criteria: <ul> <li>published only in conference proceedings</li> <li>applied another intervention to only 1 of the 2 groups</li> </ul> </li> </ul> |                      | Neuromuscul<br>ar or<br>functional<br>electrical<br>stimulation | No intervention<br>or<br>Placebo<br>stimulation | Primary<br>endpoint:<br>- duration of<br>invasive MV in<br>days<br>Secondary<br>outcomes:<br>- adverse<br>events | Significant differences<br>between groups in:<br>- duration of MV,<br>mean difference<br>(95%CI): -2.68 (-4.35<br>1.02), p = 0.002<br>adverse events: no<br>meta-analysis | 1                 |

CI = confidence interval, ICU = intensive care unit, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

## Neuromuscular electrical stimulation reduces duration of mechanical ventilation in a meta-analysis including 2 out of 12 studies in this systematic review.

- 1. Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weak-ness and facilitating weaning from mechanical ventilation. AlexandriaJ Med 2013;49(4):309-315.
- 2. Dall'Acqua AM, Sachetti A, Santos LJ, Lemos FA, Bianchi T, NaueWS, et al. Use of neuromuscular electrical stimulation to preserve thethickness of abdominal and chest muscles of critically ill patients: arandomized clinical trial. J Rehabil Med 2017;49(1):40-48.
- 3. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki ES, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 2010;14(2): R74.
- 4. dos Santos FV, Cipriano G, Vieira L, Gu'ntzel Chiappa AM, CiprianoGBF, Vieira P, et al. Neuromuscular electrical stimulation combined with exercise decreases duration of mechanical ventilation in ICUpatients: a randomized controlled trial. Physiother Theory Pract2020;36(5):580-588
- 5. Akar O, Gu'nay E, Sarinc Ulasli S, Ulasli AM, Kacar E, Sariaydin M, et al. Efficacy of neuromuscular electrical stimulation in patients withCOPD followed in intensive care unit. Clin Respir J 2017;11(6):743-750.
- 6. Chen H, Ren X, Cheng Q. Effects of early passive motion and neuro-muscular electrical stimulation on ICU acquired weakness in mechani-cally ventilated patients. Chinese J Rehabil Med 2018;33(2):146-150.
- 7. Chen S, Jiang Y, Yu B, Dai Y, Mi Y, Tan Y, et al. Effect of transcuta-neous neuromuscular electrical stimulation on prevention of intensivecare unit-acquired weakness in chronic obstructive pulmonary diseasepatients with mechanical ventilation. Zhonghua Wei Zhong Bing Ji JiuYi Xue 2019;31(6):709-713.
- 8. Chen YH, Hsiao HF, Li LF, Chen NH, Huang CC. Effects of electricalmuscle stimulation in subjects undergoing prolonged mechanical ven-tilation. Respir Care 2019;64(3):262-271.
- 9. Kho ME, Truong AD, Zanni JM, Ciesla ND, Brower RG, Palmer JB, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care 2015;30(1):32-39.
- 10. Kocan Kurtoglu D, Tastekin N, Birtane M, Tabakoglu E, Sut N.Effectiveness of neuromuscular electrical stimulation on auxiliaryrespiratory muscles in patients with chronic obstructive pulmonarydisease treated in the intensive care unit. Turk J Phys Med Rehab2015;61(1):12-17.

| Reference,<br>Study Type                                                       | (Participant #,                                                                                                       | l Controls<br>Characteristics)<br>tal | Drop-<br>out<br>Rate | Intervention | Control               | Optimal Population                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------|--------------|-----------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #059<br>Shearer<br>2021<br>PMID:<br>33389768<br>DOI:<br>10.1002/lary.<br>29374 | 263 patients<br>Inclusion criteria:<br>- age > 18 years<br>- diagnosed with CO <sup>V</sup><br>- requiring intubation |                                       |                      | pp           | Supine<br>positioning | Primary endpoints:<br>- developing facial<br>injuries<br>- average duration of<br>prone positioning | Primary outcome:<br>- pp group: n=68 (47.6%)<br>developed pressure injuries (head<br>and neck)<br>-supine group: n=2 (1.2%) with<br>pressure injury<br>- average duration of prone<br>positioning for patients that<br>developed pressure injuries was<br>significantly longer (6.79 days vs.<br>3.64 days, P < .001) | 4                 |
| Specification<br>of study:                                                     | Per B                                                                                                                 | ranch                                 |                      |              |                       |                                                                                                     | - mean duration of proning : 5.14                                                                                                                                                                                                                                                                                     |                   |
| Retrospective<br>2-centre<br>cohort study                                      | Prone position<br>n=143                                                                                               | Supine position<br>N=120              |                      |              |                       |                                                                                                     | days (4.27%) (range: 1-26), with<br>pressure injury: 6.79 days (4.87%),<br>without pressure injury: 3.64 days<br>(2.96.%)                                                                                                                                                                                             |                   |

ICU = intensive care unit, pp = prone positioning, pts = patients

Longer duration of prone positioning was correlated with the development of pressure injuries, but early supination may not be a feasible option.

| 261 pts       261 pts         061 Shelhamer       Inclusion criteria:         2021       ->17 years of age         ->17 years of age       ->intubated         -not undergone PP       -met criteria for PP (PaO2: FiO2 < 150 mm Hg, PEEP ≥ 10 cm of water and FiO2 ≥ 0.6)         001:       10.11777/088506662         0980399)       -confirmed SARS-CoV-2 infection by real-time reverse transcription-polymerase chain nasal swab         - from March 25 through May 2, 2020         001         002         0030399         Prospective Cohort Study         0980399         Prospective Cohort Study         0980399         Prospective Cohort Study         0980399         Prospective Cohort Study         0980399         0980399         Prospective Cohort Study         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399         0980399 | Reference,<br>Study Type                                                                                | (Participant #, 0                                                                                                                                                                                                                          | d Controls<br>Characteristics)<br>Ital                                                                    | Drop-<br>out<br>Rate | Intervention     | Control | Optimal<br>Population   | Primary Results                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 061 Shelhamer<br>2021<br>(PMID: 33380236<br>DOI:<br>10.1177/088506662<br>0980399)<br>Prospective Cohort | Inclusion criteria:<br>->17 years of age<br>- intubated<br>- not undergone PP<br>- met criteria for PP<br>mm Hg, PEEP ≥ 10 cr<br>FiO2 ≥ 0.6)<br>- confirmed SARS-Cc<br>real-time reverse tra<br>polymerase chain na<br>- from March 25 thr | (PaO2: FiO2 < 150<br>m of water and<br>oV-2 infection by<br>anscription-<br>asal swab<br>ough May 2, 2020 |                      | by a specialized |         | outcome:<br>in-hospital | <ul> <li>- unadjusted SHR (95%CI): 0.51 (0.39 – 0.66), p &lt; 0.005</li> <li>- multivariate adjusted SHR (95%CI): 0.57 (0.42 – 0.76), p&lt; 0.005</li> <li>- stabilized doubly robust IPTW SHR</li> </ul> | 3                 |

IPTW = inverse probability treatment weight, PEEP = positive end expiratory pressure, PP = prone position, pts = patients, SHR = sub-distribution hazard ratio

Prone positioning may reduce in-hospital mortality in COVID-19 patients. Limited significance due to baseline differences and insufficient adjustment.

| Reference,<br>Study Type                                                                                                          | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                               | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade             |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 065<br>Cao et al<br>2020<br>(PMID:<br>33343939<br>DOI:<br>10.1155/2020/<br>4973878)<br>Systematic<br>Review with<br>Meta-Analysis | 12 publications (RCTs) <sup>1-12</sup><br>Inclusion Criteria:<br>- adults with ARDS<br>- intervention: prone<br>position<br>- control: supine position<br>- outcomes: efficacy<br>outcomes including<br>mortality, mechanical<br>ventilation duration, and<br>ICU stays, and the safety<br>outcomes, including any<br>adverse events reported<br>≥2 studies<br>- study design: RCT<br>Per Branch |                      | PP           | SP      | Primary<br>outcomes:<br>- mortality<br>- duration of<br>MV<br>- ICU LOS<br>- adverse<br>events | Significant outcomes:<br>- mortality - subgroup lung protective ventilation, RR (95%CI):<br>0.77 (0.63 – 0.93), p = 0.006<br>- mortality - <70% male pts, RR (95%CI): 0.70 (0.58 – 0.85), p <<br>0.001<br>- pressure sores, RR (95%CI): 1.23 (1.07–1.42), p = 0.003<br>Non-significant outcomes:<br>- morality, RR (95%CI): 0.87 (0.75 – 1.00), p= 0.055<br>- ICU LOS, mean difference (95%CI): -0.39 (-2.70 – 1.91), p =<br>0.738<br>- duration of MV, mean difference (95%CI): -0.22 (-3.14 – 2.70), p<br>= 0.883<br>- displacement of tracheal tube, RR (95%CI): 1.35 (0.47–3.84), p =<br>0.579<br>- displacement of a thoracotomy tube, RR (95%CI): 3.14 (1.02–<br>9.69), p = 0.047<br>- unplanned extubation, RR (95%CI): 1.02 (0.73–1.43), p = 0.906<br>- selective intubation, RR (95%CI): 2.64 (0.26–26.73), p = 0.411<br>- endotracheal tube obstruction, RR (95%CI): 2.45 (1.42–4.24), p =<br>0.001<br>- loss of venous access, RR (95%CI): 1.52 (0.22–10.26), p = 0.669<br>- hemoptysis, RR (95%CI): 0.71 (0.40–1.26), p = 0.245<br>- pneumothorax, RR(95%CI): 0.71 (0.40–1.26), p = 0.471<br>- ventilator-associated pneumonia, RR (95%CI): 1.34 (0.65–2.76), p<br>= 0.427 | 1 → 2<br>high risk of<br>bias |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, PP = prone position, pts = patients, RCT = randomized controlled trial, RR = risk ration, SP = supine position

Overall, prone positioning in comparison to supine position could not show a benefit regarding mortality, duration of mechanical ventilation or length of ICU stay. Beneficial effect in terms of lower mortality in subgroups and the high heterogeneity as well as publication bias in the funnel plots warrant further large-scaled RCTs.

#### References

1.L. Gattinoni, G. Tognoni, A. Pesenti et al., "Effect of prone positioning on the survival of patients with acute respiratory failure," *e New England Journal of Medicine*, vol. 345, no. 8, pp. 568–573, 2001.

2.P. Beuret, M. J. Carton, K. Nourdine, M. Kaaki, G. Tramoni, and J. C. Ducreux, "Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study," *Intensive Care Medicine*, vol. 28, no. 5, pp. 564–569, 2020.

3. I. Watanabe, H. Fujihara, K. Sato et al., "Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy," Critical Care Medicine, vol. 30, no. 8, pp. 1799–1802, 2002.

4. C. Guerin, S. Gaillard, S. Lemasson et al., "Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial," *JAMA*, vol. 292, no. 19, pp. 2379–2387, 2004.

5. L. Papazian, M. Gainnier, V. Marin et al., "Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome," *Critical Care Medicine*, vol. 33, no. 10, pp. 2162–2171, 2005.

6.G. Voggenreiter, M. Aufmkolk, R. J. Stiletto et al., "Prone positioning improves oxygenation in post-traumatic lung injury--a prospective randomized trial," *e Journal of Trauma and Acute Care Surgery*, vol. 59, no. 2, pp. 333–341,2005.

7. J. Mancebo, R. Fernandez, L. Blanch et al., "A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome," American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 11, pp. 1233–1239, 2006.

8. D. Demory, P. Michelet, J. M. Arnal et al., "High-frequency oscillatory ventilation following prone positioning prevents a further impairment in oxygenation," *Critical Care Medicine*, vol. 35, no. 1, pp. 106–111, 2007.

9. M. C. Chan, J. Y. Hsu, H. H. Liu et al., "Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia," *Journal of the Formosan Medical Association*, vol. 106, no. 9, pp. 708–716, 2007.

10. R. Fernandez, X. Trenchs, J. Klamburg et al., "Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial," *Intensive Care Medicine*, vol. 34, no. 8, pp. 1487–1491, 2008.

11. P. Taccone, A. Pesenti, R. Latini et al., "Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial," *JAMA*, vol. 302, no. 18, pp. 1977–1984, 2009.

12. C. Guerin, J. Reignier, J. C. Richard et al., "Prone positioning in severe acute respiratory distress syndrome," *e New England Journal of Medicine*, vol. 368, no. 23, pp. 2159–2168, 2013.

| Reference,<br>Study Type                                                                                                       | Cases and (<br>(Participant #, Ch<br>Tota                                                                                                                                                                                                                                                | haracteristics)                                                               | Drop-<br>out<br>Rate | Intervention            | Control    | Optimal Population                                                  | Primary Results                                                                                                                                                     | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|-------------------------|------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 068 Hernandez-<br>Rubio<br>2020<br>(PMID: 33326484<br>DOI:<br>10.1371/journal.po<br>ne.0243968)<br>Prospective cohort<br>study | 70 pts<br>Inclusion criteria:<br>- adult pts<br>- positive PCR for COV<br>- admission to the ICU<br>of the following: RR ><br>breaths/minute, seve<br>accessory muscles or<br>despite FiO2 >0.5 oxy<br>Exclusion criteria:<br>- pts transferred from<br>undergo weaning<br>Per Bra<br>32 | J with at least one<br>30<br>are dyspnea, use of<br>SpO2 <92%<br>agen therapy |                      | Self-/Awake-<br>proning | Usual care | <b>Primary endpoint:</b><br>incidence of endotracheal<br>intubation | <b>Primary outcome:</b><br>- Cox proportional hazard<br>model for incidence of<br>endotracheal intubation,<br>adjusted OR (95%CI): 0.05<br>(0.005 – 0.54, p = 0.00) | 3                 |

ICU = intensive care unit, OR = odds ratio, PCR = polymerase chain reaction, pts = patients, RR = respiratory rate

Awake prone positioning reduced risk for endotracheal intubation.

| Reference,<br>Study Type                                                                                                                        | (Partic<br>Charac                                                      | d Controls<br>Sipant #,<br>teristics)<br>Dtal                             | Drop-out Rate                                                                                                            | Intervention                                                                   | Control          | Optimal Population                                                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 069 Berney<br>2020<br>(PMID:<br>33323480<br>DOI:<br>10.1136/tho<br>raxjnl-2020-<br>215093)<br>Specificatio<br>n of study:<br>multicentre<br>RCT | criteria<br>- primary neur<br>diagnosis<br>- not expected<br>discharge | ere sepsis<br>require MV ><br>J stay > 4 days<br>eria:<br>not meet safety | 6: Intervention<br>5, Control 1<br>(withdrew<br>consent or<br>developed<br>exclusion<br>criteria after<br>randomisation) | 60 min of FES-<br>cycling<br>>5days/week<br>while in ICU<br>+<br>Standard care | Standard<br>care | Primary outcomes:<br>- quadriceps muscle<br>strength at hospital<br>discharge<br>- cognitive impairment<br>at 6-month follow-up<br>Secondary outcomes:<br>- all-cause mortality<br>- incidence and<br>duration of delirium<br>- hand grip strength<br>- PFIT<br>- FSSI<br>- SPPB<br>- 6-MWT<br>- Katz Index<br>- LIAODL<br>- HADS<br>- SF-36<br>- EQ-5D | Primary outcomes:<br>- quadriceps muscle strength at<br>hospital discharge (Nm): 57.3 (SD:<br>21.6) vs. 53.1 (SD: 24.1) MD: 4.7<br>(95% Cl: -4.7 to 14.1)<br>- cognitive impairment at 6-month<br>follow-up: 9 (41%) vs 6 (40%), OR<br>1.1 95% Cl 0.30 - 3.8) p= 0.929<br>Secondary outcomes:<br>- PFIT: 6.4 (SD: 2.4) vs. 5.1 (SD: 3.0)<br>MD 1.3 (95% Cl 0.4 to 2.3)<br>- FSSI: 20.4 (SD 9.7) vs. 15.9 (SD 10.0)<br>MD 4.5 (95% Cl 1.1 to 8.0)<br>- all-cause mortality: n.s.<br>- incidence of delirium: no calculation<br>- duration of delirium: n.s.<br>- hand grip strength: n.s.<br>- SPPB: n.s.<br>- 6-MWT: n.s.<br>- Katz Index: n.s.<br>- LIAODL: n.s.<br>- HADS: n.s.<br>- SF-36: n.s | 2                 |

EQ-5D = european quality of life 5 dimensions, FES-cycling= functional electrical stimulation-assisted cycling, FSSI = functional status score for ICU, HADS = hospital anxiety and depression scale, ICU= intensive care unit, LIAODL = Lawton's instrumental activities of daily living, PFIT = physical function in ICU-Test, SF-36 = short form health survey 36, SPPB = short physical performance battery, 6-MWT= 6-minute walking test

#### Additional FES-cycling does not improve quadriceps muscle strength or cognitive impairment.

| Reference,<br>Study Type                                                                                                 | (Partici<br>Charact                                                                                                                                                                                                                                      | d Controls<br>ipant #,<br>eristics)<br>tal                                             | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                        | Control            | Optimal<br>Population                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 070<br>Chaplin<br>2021<br>(PMID:<br>33303317<br>DOI:<br>10.1016/j.aucc.<br>2020.10.011)<br>Retrospective<br>cohort study | 72 patients or<br>based on whe<br>received perio<br>positioning du<br>ECMO run<br>Inclusion crite<br>- adults who re<br>vvECMO at CV<br>Auckland,NZ, I<br>1 2014 an July<br>Exclusion crite<br>-lung transplat<br>Per B<br>prone<br>positioning<br>n= 13 | ther they<br>ods of prone<br>iring the<br>eceived<br>/ICU in<br>between July<br>9 2019 |                      | <b>PP</b><br>values were<br>recorded<br>immediately<br>before pronation,<br>immediately<br>before the end of<br>the pronation<br>episode, and 4-6 h<br>after the end of<br>the pronation<br>episode | Supine<br>position | Primary<br>outcomes:<br>- alive at 6<br>months<br>- duration of<br>ECMO (hours)<br>Secondary<br>outcome:<br>- significant<br>differences | Primary outcomes:<br>- ECMO outcome (alive after 6 month): proned<br>n=9 (69.2), nonproned n=41 (69.5)<br>- pts in prone position: longer ECMO treatment<br>than supine group with a median (IQR) time of<br>599 h (522±738) vs 230 h (133±404), respectively<br>(p < 0.0002)<br>Secondary outcome:<br>Significant differences in PaCO2, MABP, VT:<br>- before proning: PaCO2= 43.5 (40.7±46.9), before<br>deproning: paCO2= 43.2 (40.5±46.3), 4-6h after<br>supination: paCO2= 42 (39.8±46.3) (p-value <<br>0.0001)<br>- before proning: MABP (mmHg)= 70 (65±75),<br>before deproning: MABP= 75 (65±83.8), 4-6h<br>after supination: MABP = 70 (65±75) (p-<br>value<0.03)<br>- before proning: VT (ml/kg)= 102 (33±120),<br>before deproning: VT= 97.5 (48.8±138), 4-6h after<br>supination: VT= 86 (32±138) <0.0001 | 4                 |

CVICU= cardiothoracic and vascular intensive care unit, ECMO = extra corporeal membrane oxygenation, MABP= mean arterial blood pressure, PaCO2 (in mmHG) = partial carbon dioxide pressure, PP = prone position, pts = patients, VT = tidal volume, vvECMO = venous venous extra corporeal membrane oxygenation

Proning patients on ECMO appears to incur no further complications. Whether it has a clinical benefit needs further investigation.

| DOI:     - prognosticated lethal outcome     3 pts     unilateral       withdrew     neuromuscular       consent     electrical | Reference,<br>Study Type                                                                         | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-out<br>Rate | Intervention                                                                                                                                                                      | Control                    | Optimal<br>Population                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade                |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Per Branch                                                                                                                      | Segers<br>2021<br>(PMID:<br>33285371<br>DOI:<br>10.1016/j.jcrc.<br>2020.11.018)<br>Specification | <ul> <li>Inclusion criteria:</li> <li>18 years or older</li> <li>≥ 48 hours but ≤ 96 hours since ICU<br/>admission</li> <li>predicted ICU LOS ≥7 days</li> <li>Exclusion criteria:</li> <li>transfer from another ICU or other hospital</li> <li>re-admission to the ICU</li> <li>prognosticated lethal outcome</li> <li>presence of a pacemaker</li> <li>pregnancy</li> <li>pre-existing neurological or neuro-<br/>muscular disease</li> <li>intracranial pressure &gt; 20cmH<sub>2</sub>O</li> <li>abnormal musculoskeletal and skin<br/>conditions that could interfere with the<br/>stimulation (e.g., femur fracture, burn injury<br/>on the thigh, skin disease)</li> </ul> | withdrew         | physiotherapy<br>and early<br>mobilization<br>+<br>unilateral<br>neuromuscular<br>electrical<br>stimulation for 60<br>minutes daily for 7<br>days (M. vastus<br>medial; M. vastus | physiotherapy<br>and early | thickness of the M.<br>rectus femoris via<br>ultrasound<br>Secondary<br>outcomes:<br>- MRC<br>- quadriceps | <pre>muscle and unstimulated muscle of the same patient:  Primary outcome: - average decline in intervention vs. control: 0.13 cm (95% CI 0.04 - 0.22), p = 0.007  Secondary outcomes: - MRC Median [IQR], Control: 4 [4–5] vs Intervention: 4 [4–5], p = 0.317 - HHD: Mean ± SD: control 101 ± 62 vs intervention 106 ± 72, p =</pre> | 2 → 3<br>Intraindividual<br>only |

HHD = handheld dynamometry, ICU = intensive care unit, LOS = length of stay, MRC = medical research council score, pts = patients, RCT = randomized controlled trial

Neuromuscular electrical stimulation reduced loss of muscle mass.

| Reference,<br>Study Type                                                                                                              | (Partici<br>Charact                                                                          | d Controls<br>ipant #,<br>:eristics)<br>ital | Drop-<br>out<br>Rate | Intervention                        | Control                                | Optimal Population                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|-------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 075<br>Braune-Olsen<br>2020<br>(PMID:<br>33259044<br>DOI:<br>10.1186/s13613<br>-020-00776-3)<br>prospective<br>observational<br>study | ill patients on<br>Inclusion crite<br>pts treated wit<br>severe circulat<br>respiratory fail | <b>ria:</b><br>th ECLS for<br>cory and/or    | -                    | Active<br>mobilisation<br>(IMS ≥ 3) | No active<br>mobilisation<br>(IMS < 3) | Primary outcome:<br>- ECLS-associated<br>complications during<br>Secondary outcomes:<br>- length of ECLS<br>treatment<br>- ICU-LOS<br>- Hospital-LOS<br>- ICU-mortality | 332 active mobilisation sessions<br><b>Primary outcome:</b><br>- circuit malfunction: blood flow <2l/min:<br>3 (0.9%)<br>- blood flow < 0,5l/min: 1 (0.3%)<br>- SpO <sub>2</sub> < 85%: 63/ 332 (19%)<br>- MAP < 50mmHg: 25/332 (7.5%)<br>- HR > 140/min: 19/332 (5.7%)<br>- bleeding from cannula: 3/43 (6.9%) vs.<br>11/72 (15.3%)<br>- cannula displacement: 1/332 (0.3%) | 3                 |

ECLS = extracorporeal life support, HR = heart rate, IMS = ICU mobility scale, LOS = length of stay, MAP = mean arterial pressure, SpO<sub>2</sub>= peripheral oxygen saturation

Active mobilisation of critically ill patients on ECLS is feasible and safe.

| Reference,<br>Study Type                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention          | Control          | Optimal Population                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade                                            |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 076 Liang 2020<br>(PMID:<br>33250403<br>DOI:<br>10.1016/j.aucc.<br>2020.10.004)<br>Systematic<br>review and<br>meta-analysis | 34 studies with 7159 pts (10 RCTs, 8<br>controlled clinical trials, 16 before-and-<br>after studies)<br>studies on early mobilisation n= 7 <sup>1-7</sup><br>Inclusion criteria:<br>- ICU patients > 18 years<br>Exclusion criteria:<br>- studies including patients with history of<br>a neurologic condition such as dementia,<br>traumatic brain injury, stroke, or hepatic<br>encephalopathy or who had undergone<br>neurosurgery<br>Per Branch |                      | Early<br>mobilisation | Standard<br>care | Outcomes:<br>- incident of delirium<br>- duration of delirium<br>- ICU-LOS<br>- mortality<br>- psychological outcomes<br>(level of anxiety, quality of<br>recovery)<br>- family satisfaction of care<br>provided | Outcomes:<br>- incidence of<br>delirium <sup>1,2,5-7</sup> : OR 0.33<br>95% Cl 0.24 - 0.46,<br>p<0.0001, l <sup>2</sup> =24%<br>- duration of delirium <sup>3-</sup><br><sup>6</sup> : MD: -1.24 95% Cl -<br>1.431.04, p<0.0001,<br>l <sup>2</sup> =0%<br>- ICU-LOS <sup>3,4</sup> : MD: -1.02<br>95% Cl -2.88 - 0.84 p=<br>0.28, l <sup>2</sup> =54% | 1 → 2<br>(downgraded<br>as not only<br>RCTs are<br>included) |

ICU = intensive care unit, LOS = length of stay, RCT = randomized controlled trial

#### Early mobilisation reduces the incidence and duration of delirium and length of stay in the ICU.

- 1. Huang, S. B., Luo, Q. X., Yuan, Q. Y., Chen, Z. M., & Ou, H. H. (2014). The effect of early activity for delirium of mechanical ventilation patients in ICU. Today Nurse, 8, 3.
- 2. Karadas C, Ozdemir L. The effect of range of motion exercises on delirium prevention among patients aged 65 and over in intensive care units. GeriatrNurs 2016;37(3):180e5.
- 3. Fraser D, Spiva L, Forman W, Hallen C. Implementation of an early mobility program in an ICU. AJN Am J Nurs 2015;115(12):49e58
- 4. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373(9678):1874e82.
- Wang YN, Gao XM, Chen B, Liu WT, Jiang JH, Hu QQ. Clinical study of early exercise to prevent delirium in patients with ICU mechanical ventilation. J ClinNursing'sPract2016;1(8):3.https://doi.org/10.3969/j.issn.2096-2479.2016.08.120.
- 6. Huang F, Liao C, Feng H, Zhang M, Hu S, Tong J. The clinical effect of early mobilisation on delirium among ICU mechanical ventilation patients. GenPract Nurs 2017;(21):2565e7.
- 7. Dou YR, Dai XM, Guo XJ, Pan CF, Guo LX. Study on the effect of early pedaling exercises in bed on the delirium patients with mechanical ventilation in ICUor EICU wards. Mod Clin Nurs 2018;17(10):6

| Reference,<br>Study Type                                                                                                                                                                      | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                              | Control                  | Optimal Population                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 077 Goldfarb<br>2021<br>(PMID: 33247593<br>DOI:<br>10.1093/ageing/afa<br>a253)<br>Before/after QI<br>project to<br>implement nurse-<br>driven mobility<br>program on a<br>cardio-surgical ICU | 412 pts<br>Inclusion criteria:<br>- ≥ 80 years<br>Exclusion criteria:<br>- incomplete data and<br>cardiac surgery during<br>hospital admission<br>Per Branch<br>N= 234 N= 178 |                      | nurse-driven <b>EM program</b><br>- twice daily mobilization<br>activities<br>- based on<br>level of function,<br>0=immobile, 5 = able to<br>walk > 20 m) | - usual<br>mobility care | Primary endpoint:<br>- discharge home<br>Secondary outcomes:<br>-LOS<br>- in-hospital mortality<br>- emergency room visits<br>after discharge within 30<br>days<br>- hospital readmission<br>within 30 days of<br>discharge | Primary outcome<br>-return home<br>74.4%(n=234) vs.<br>65.7%(n=178), p = 0.047<br>-lower mortality in hospital<br>6.4%(n=234) vs.<br>14.6%(n=178), p = 0.006<br>Secondary outcome<br>- LOS in days: n=234 3.0 ±<br>2.4, n=178 2.7 ± 3.4, p-value<br>= 0.43<br>- in-hospital-death:<br>Intervention= 15 (6.4%),<br>Control=26 (14.6%), p-value=<br>0.006<br>- ER visits: Intervention = 45<br>(19.2%), Control= 39 (21.9%),<br>p-value= 0.50<br>-readmission: Intervention=<br>21 (9.0%), control= 21<br>(11.8%), p-value=0.35 | 4                 |

EM = early mobilization, ER = emergency room, ICU = intensive care unit, LOS = length of stay, pts = patients, QI = quality improvement

#### A nurse-driven EM program seems to have a benefit in relation to return home and a lower in hospital mortality

| Reference,<br>Study Type                                                                                                                 | Cases and<br>(Particip<br>Characte<br>Tota                                                                                                                | pant #,<br>eristics)                 | Drop-<br>out<br>Rate | Intervention                            | Control          | Optimal<br>Population                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|-----------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 079<br>Scheffenbichler<br>2020<br>(PMID:<br>33239045<br>DOI:<br>10.1186/s1305<br>4-020-03346-y)<br>prospective<br>observational<br>study | 200 pts<br><b>Classified int</b><br><b>groups:</b><br>Low acuity =<br><13<br>Moderate ac<br>APACHE II 14<br>High acuity =<br>>21<br><b>Per Bra</b><br>104 | APACHE II<br>uity =<br>-20<br>APACHE |                      | Early goal-<br>directed<br>mobilization | Standard<br>care | Primary outcome:<br>- functional<br>independence at<br>hospital discharge<br>(defined at mmFIM<br>score of 8)<br>Secondary<br>outcome:<br>- speed of mobility<br>progress (change in<br>SOMS level) | Primary results         High acuity:         - intervention n= 10 (31%)         - control n= 8 (26%)         P=0.632         Moderate acuity:         - intervention n= 14 (41%)         - control n= 3 (11%)         P=0.001         Low acuity:         - intervention n= 20 (53%)         - control n= 14 (39%)         P=0.234         Secondary results:         • not significantly higher in intervention group p=0.18         • Moderate acuity: significantly higher speed in intervention group p=0.018         • Low acuity: not significantly higher in intervention group p=0.30 | 4                 |

mmFIM = minimal modified functional independence measure, pts = patients, SOMS = speed of mobility scale

Early, goal-directed mobilization is a resource-intensive intervention that cannot be applied to all ICU patients. Focusing time and effort on patients benefitting most is probably more cost-effective.

| Reference,<br>Study Type                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                  | Control       | Optimal<br>Population                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                             | Evidence<br>Grade           |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 080<br>Nieto-García<br>2021<br>(PMID:<br>33236855<br>DOI:<br>10.1111/iwj.1<br>3516)<br>A systematic<br>review and<br>meta-analysis | 7 publications , prospective or retrospective two-group<br>comparative and pre-post quasi-experimental research, n= 7520<br>patients<br>Inclusion criteria<br>- edited in English or Spanish<br>- assessment of the effects of an EMP in an ICU<br>- included PI rates<br>- published in a peer-reviewed journal<br>- involving adult pts(≥18 years old)<br>- hospitalised in the ICU<br>- implemented early mobility protocol<br>- EM compared to usual care<br>- prospective or retrospective observational studies or clinical trials<br>Exclusion criteria<br>- pediatric pts<br>- languages other than English or Spanish<br>- data from editorials, letters to editors, reports of expert committees, and<br>opinions of respected authorities<br>Per Branch |                      | Early<br>mobilization<br>protocol/pr<br>ogram | Usual<br>care | Primary<br>endpoint:<br>effect of<br>early<br>mobilization<br>in the<br>prevention<br>of hospital-<br>acquired<br>pressure<br>injuries | Primary outcomes<br>- five quasi-<br>experimental studies<br>were significantly<br>heterogeneous<br>(p = 0.02 for Q test<br>and 66% for I <sup>2</sup> ), odds<br>ratio = 0.97 (95% CI:<br>0.49-1.91) with a non-<br>significant statistical<br>difference between<br>both groups (p = 0.9) | 1 → 2<br>(not only<br>RCTs) |

EM = early mobilization, EMP = early mobility program, HAPI = hospital-acquired pressure injury, ICU = intensive care unit, LOS = length of stay, pts = patients

## The effect of an implementation of an early mobility program on the incidence of pressure injuries in critically ill patients remains inconclusive.

- 1. Azuh O, Gammon H, Burmeister C, et al. Benefits of early active mobility in the medical intensive care unit: a pilot study. Am J Med. 2016;129(8):866-871. https://doi.org/10.1016/j. amjmed.2016.03.032.
- 2. Clark DE, Lowmann JD, Griffin RL, Mattews HM, Reiff DA. Effectiveness of an early mobilization protocol in a trauma and burns intensive care unit: a retrospective cohort study. Phys Ther. 2013;93(2):186-196. https://doi.org/10.2522/ptj. 20110417.
- 3. Dickinson S, Tschannen D, Shever LL. Can the use of an early mobility program reduce the incidence of pressure ulcers in a surgical critical care unit? Crit Care Nurs Q. 2013;36(1):127-140. https://doi.org/10.1097/CNQ.0b013e31827538a1.
- 4. Floyd S, Craig SW, Topley D, Tullmann D. Evaluation of a progressive mobility protocol in postoperative cardiothoracic surgical patients. Dimens Crit Care Nurs. 2016;35(5):277-282. https://doi.org/10.1097/DCC.00000000000197.
- 5. Fraser D, Spiva L, Forman W, Hallen C. Original research: implementation of an early mobility program in an ICU. Am J Nurs. 2015;115(12):49-58. https://doi.org/10.1097/01.NAJ. 0000475292.27985.fc.
- 6. Klein K, Mulkey M, Bena JF, Albert NM. Clinical and psychological effects of early mobilization in patients treated in a neurologic ICU: a comparative study. Crit Care Med. 2015;43(4): 865-873. https://doi.org/10.1097/CCM.00000000000787
- 7. Titsworth WL, Hester J, Correia T, et al. The effect of increased mobility on morbidity in the neurointensive unit. J Neurosong. 2012;116(6):1379-1388. https://doi.org/10.3171/2012.2.JNS111881.

| Reference,<br>Study Type                                                                                                               | (Participant #,                                                                                                                                                         | d Controls<br>Characteristics)<br>tal                                         | Drop-<br>out<br>Rate | Intervention                                 | Control            | Optimal<br>Population                                                                                     | Primary Results                                                                                                                                                                                                                         | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------|----------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 082 Gatty<br>2020<br>(PMID:<br>33228448<br>DOI:<br>10.1080/095<br>93985.2020.<br>1840683)<br>non-<br>randomized<br>controlled<br>trial | for physiotherap<br>Exclusion criteri<br>- unstable fractu<br>injuries<br>- deep vein throu<br>- seizure disorde<br>- myocardial infa<br>- severe LV dysfu<br>admission | or older referred<br>by<br>a:<br>res or any other<br>mbosis<br>ers<br>arction |                      | Structured early<br>mobilization<br>protocol | Usual mobilization | Primary endpoint<br>- Perme ICU<br>mobility score<br>Secondary<br>outcomes:<br>- ICU LOS<br>- MV duration | Primary endpoint<br>- significant increase from the first day of<br>rehabilitation to the last day of<br>rehabilitation between groups (23; 12) (p <<br>.001) Secondary outcomes:<br>- no significant differences for other<br>outcomes | 3                 |

ICU = intensive care unit, LOS = length of stay, LV = left ventricle, MV = mechanical ventilation, pts = patients

A structured early mobilisation protocol in a general population of critically ill patients showed a benefit in relation to the Perme ICU mobility score.

| Study Type                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | out<br>Rate | Intervention                                 | Control                                         | Optimal Population                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade        |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 083 Yagi<br>2021<br>(PMID:<br>33213824<br>DOI:<br>10.1016/j.ap<br>mr.2020.09.3<br>89)<br>Retrospective<br>cohort study | <ul> <li>29.982 pts with EM</li> <li>Inclusion criteria:         <ul> <li>aged 20 years and older</li> <li>admitted to an ICU within 2 days of hospital admission</li> <li>started MV within 2 days of admission</li> <li>started rehabilitation within 3 days of starting MV</li> <li>discharged hospital from April 2010 to March 2016</li> <li>continued MV for ≥3 days</li> </ul> </li> <li>Exclusion criteria:         <ul> <li>missing data on rehabilitation, diagnosis, or hospital information</li> <li>patients who discharged from hospital within 5 days of admission</li> <li>pts who were liberated from MV within 5 days of admission</li> </ul> </li> <li>Per Branch         <ul> <li>N= 22237</li> </ul> </li></ul> |             | Intensive<br>rehabilitation -<br>≥1 unit/day | Less intensive<br>rehabilitation<br><1 unit/day | <b>Primary endpoint:</b><br>in-hospital mortality<br><b>Secondary outcomes:</b><br>liberation from MV | Primary outcome<br>- in-hospital mortality after propensity<br>score matching (risk difference: -<br>3.4%;95%Cl, -4.9 to -1.9%; p<0.001)<br>Secondary outcome<br>- median of time to liberation from MV<br>(14.0d [range, 8.0-26.0d] vs 13.0d<br>[range, 8.0-25.0d], p<0.001)<br>- higher proportion of liberation from<br>mechanical ventilation (subdistribution<br>hazard ratio, 1.08; 95% Cl, 1.03-1.13)<br>compared to control group | 4 → 3<br>large<br>cohort |

CI = confidence interval, d = days, EM = early mobilization, ICU = intensive care unit, MV = mechanical ventilation, pts=patients

## Intensive rehabilitation may offer a benefit in relation to in-hospital mortality and liberation from MV in a general population of critically ill patients.

| Reference,<br>Study Type                                                                                                                      |                                                                                                                                                                             | cases and Cor<br>ipant #, Char<br>Total                                                                                                                                                                  |                                                                                                           | Drop-<br>out<br>Rate | Interv                                                           | ention                                                                 | Control       | Optimal<br>Population                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------|------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 085 Matsuki<br>2020<br>(PMID:<br>33163685<br>DOI:<br>10.2490/prm.2<br>0200027)<br>Specification<br>of study:<br>Retrospective<br>Cohort Study | emergency l<br>July 2014 to<br>underwent i<br>Exclusion cr<br>- orthopedic<br>- central ner<br>- acute myo<br>- those who<br>cardiovascul<br>- mental illn<br>- patients re | June 2018 ar<br>rehabilitation<br>iteria:<br>disease<br>vous system<br>cardial infarct<br>had undergo<br>ar surgery<br>ess<br>quiring pallia<br>tation indicat<br>italization<br>g ICU stay<br>Per Branc | than 48 h from<br>nd who<br>in the ICU<br>disease<br>tion<br>ne elective<br>tive care<br>ted, - bedridden |                      | Re-<br>habilitation<br>protocol<br>group with<br>dedicated<br>PT | Re-<br>habilitation<br>protocol<br>group<br>without<br>dedicated<br>PT | Usual<br>Care | <b>Outcomes:</b><br>- ICU and hospital<br>LOS<br>- MRC-score<br>- FSS-ICU<br>- incidence of<br>delirium<br>- duration of MV<br>- discharge to<br>home<br>- FIM score | Significant differences between<br>groups in:<br>PT + Protocol group vs. Usual care:<br>- ICU LOS (d) 4.5±3.9; 9.4±6.3; p<0.05<br>- hospital LOS (d) 38.5; 67.1; p=0.028<br>- MRC score at ICU discharge 49.7;<br>20.9; p=0.001<br>- FSS-ICU at ICU discharge 16.7; 7.7;<br>p=0.001<br>Protocol vs. Usual care:<br>- MRC score at ICU discharge 48.1;<br>20.9; p=0.001<br>- FSS-ICU at ICU discharge 15.4; 7.7;<br>p=0.003<br>No significant differences between<br>groups in:<br>- incidence of delirium<br>- duration of MV | 4                 |
|                                                                                                                                               | Protocol:<br>n=32                                                                                                                                                           | Protocol<br>and PT:<br>n=37                                                                                                                                                                              | Usual care:<br>n=18                                                                                       |                      |                                                                  |                                                                        |               |                                                                                                                                                                      | <ul> <li>discharge to home</li> <li>FIM at hospital discharge</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |

d = days, FIM = functional independence measure, FSS-ICU = functional status score for the intensive care unit, h = hours, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, PT = physical therapist

# A rehabilitation protocol group with and without dedicated therapist (PT) seems to have a benefit in relation to ICU and hospital LOS, MRC and FSS-ICU scores.

| Reference,                                                                                                      |                                                                                                                                                                                                             | d Controls<br>Characteristics)                       | Drop-<br>out | Intervention                                                                                                                                                                                                    | Control                                             | Optimal                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                         | Evidence                                                  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Study Type                                                                                                      | То                                                                                                                                                                                                          | otal                                                 | Rate         |                                                                                                                                                                                                                 |                                                     | Population                                                                                               |                                                                                                                                                                                                                                                                                                                                                                         | Grade                                                     |
| 088<br>Jonkman<br>2020                                                                                          | 40 pts in pooled<br>Inclusion criteria<br>-≤ 72h after intu                                                                                                                                                 | a:                                                   |              | Expiratory muscle<br>functional                                                                                                                                                                                 |                                                     |                                                                                                          | Primary endpoint:<br>- non-serious AEs in control: 3 (2.9% of sessions)<br>vs intervention: 13 (7.7% of sessions)<br>- compliance rate = 91.1%                                                                                                                                                                                                                          |                                                           |
| (PMID:<br>33126902                                                                                              | Exclusion criteria<br>- expected durat                                                                                                                                                                      | <b>a:</b><br>ion of MV < 72h                         |              | electrical<br>stimulation:<br>- 30 minutes 2x                                                                                                                                                                   | Sham                                                | Primary<br>endpoint:<br>feasibility                                                                      | Secondary outcomes:<br>pooled analysis                                                                                                                                                                                                                                                                                                                                  | 3                                                         |
| DOI:<br>10.1186/s130<br>54-020-<br>03352-0)<br>RCT + pooled<br>analysis with<br>another trial<br>with a similar | <ul> <li>congenital myoneuropathies</li> <li>cardiac pacema</li> <li>refractory epile</li> <li>abdominal surgiveeks</li> <li>BMI &gt; 35 kg/m<sup>2</sup></li> <li>inadequate conresponse to NMI</li> </ul> | aker<br>epsy<br>gery in the last 4<br>2<br>htractile |              | <ul> <li>daily 5 days per</li> <li>week</li> <li>the first 5 days</li> <li>consecutively until</li> <li>weaning from MV</li> <li>or week 6</li> <li>and</li> <li>standard weaning</li> <li>protocols</li> </ul> | stimulation<br>+<br>standard<br>weaning<br>protocol | Secondary<br>outcomes:<br>- abdominal<br>expiratory muscle<br>thickness<br>- duration of MV<br>- ICU LOS | <ul> <li>abdominal expiratory muscle thickness (mm),<br/>Mean difference (95%Cl): 2.25 (0.34 – 4.16),<br/>p=0.02</li> <li>duration of MV (days) median, control: 52 vs<br/>intervention: 10, p=0.07</li> <li>duration of MV for those successfully extubated<br/>in the ICU n.s.</li> <li>ICU LOS (days) median, control: 54 vs<br/>intervention: 12, p=0.03</li> </ul> | (down<br>grade<br>from 2<br>due to<br>pooled<br>analysis) |
| intervention<br>protocol                                                                                        | Per B                                                                                                                                                                                                       | Franch                                               |              |                                                                                                                                                                                                                 |                                                     |                                                                                                          | <ul> <li>ICU LOS for those successfully extubated and<br/>discharged alive from the ICU n.s.</li> </ul>                                                                                                                                                                                                                                                                 |                                                           |
| protocol                                                                                                        | Intervention<br>n = 20                                                                                                                                                                                      | Control<br>n = 20                                    |              |                                                                                                                                                                                                                 |                                                     |                                                                                                          | - ICU mortality n.s.                                                                                                                                                                                                                                                                                                                                                    |                                                           |

AE = adverse event, BMI = body mass index, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, pts = patients, RCT = randomized controlled trial, VI = confidence interval

#### Electrical muscle stimulation of the expiratory muscles is safe.

| Reference,<br>Study Type                                                | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Characteristics)                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                           | Control                                                                                           | Optimal<br>Population                                                                            | Primary Results                                                                                                                                                                                                                                                                                          | Evidence<br>Grade               |
|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 091 Ribeiro 2021<br>(PMID: 33103326<br>DOI:<br>10.1002/pri.1882)<br>RCT | 49 pts undergoing CABG<br>Inclusion criteria:<br>- score of 15 on the Glasgow (C<br>- musculoskeletal and cardiop<br>suitable for accomplishment (C<br>- absence of neurological sequ<br>neurodegenerative diseases<br>Exclusion criteria:<br>- previous cardiac surgeries<br>- hemodynamic instability tha<br>performance<br>- breathing discomfort<br>- invasive ventilatory support<br>- oxygen saturation below 90%<br>- coagulation disorders<br>- infections in any of the syste<br>-nonperformance of the who<br>Per Br<br>N=33 | ulmonary conditions<br>of the proposed activities<br>uelae and/or<br>t prevented protocol<br>%<br>ms<br>le protocol |                      | Early<br>mobilisation on POD<br>1-3: (n=16)<br>-usual care + cycle<br>ergometer exercises<br>and ambulation<br>or<br>EM+ virtual reality on<br>POD 1-3: (n=17)<br>- Nintendo Wii games<br>for upper and lower<br>limbs | Usual care:<br>- on POD 1-3<br>- respiratory<br>physiotherapy<br>- foot and<br>ankle<br>exercises | Primary<br>outcomes<br>- heart rate<br>variability<br>- hospital and<br>ICU LOS<br>- MV duration | Primary outcomes<br>- hospital LOS<br>(days): EM<br>(10.2±3.5) vs. VR<br>(8.1±1.6) ; CG<br>(16±7.3), p=0.03<br>- ICU-LOS: EM = 2.5<br>± 1.8 vs VR =4.3<br>±1.4 , control =4.1 ±<br>2.3 , p=0.25<br>- MV duration (in h):<br>EMG= 11.2 ±5.5,<br>VRG = 11.2 ± 5.5,<br>control= 9.3± 3.1, p-<br>value= 0.10 | 2 → 3<br>(high risk<br>of bias) |
|                                                                         | IN=33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IN=TO                                                                                                               |                      |                                                                                                                                                                                                                        |                                                                                                   |                                                                                                  |                                                                                                                                                                                                                                                                                                          |                                 |

CABG = Coronary artery bypass grafting, CG = control group, EM = early mobilization, EMG= early mobilization group, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, POD = postoperative day, pts = patients, VR = virtual reality, VRG= virtual reality group

#### Early mobilization and virtual reality in postoperative CABG patients seem to shorten hospital LOS.

| 10.1016/j.auneurological impairments- in-hospital- in-hospital- ICU-LOS in days : intervention =cc.2020.07.0- any current cancer or chemotherapy- pre-existing mobility impairment- pre-existing cognitive impairment- minimum time<br>of 20 min for<br>passive and 30<br>min for active<br>exercise- in-hospital- ICU-LOS in days : intervention =secondary- language barrier- inminent death- inminent death- ICU and hospital<br>LOS- hospital-LOS: intervention = 41.9d<br>(34.3-56.4) vs control=34.4d (29.3-<br>87.2), p = 0.85<br>- ventilation days: intervention =RCT (#3121)- physiotherapist was unavailable- pre-existing cognitive impairment- informative<br>passive and 30<br>min for active<br>exercise- informative<br>passive and 30<br>min for active<br>exercise- inclusion days<br>- ventilation days<br>- ventilation days<br>- ventilation days: intervention =RCT (#3121)- physiotherapist was unavailable- pre-existing cognitive impairment<br>- passive and 30<br>min for active<br>exercise- informative<br>- ventilation days: intervention =08)- informative<br>- passive and 30<br>min for active<br>exercise- informative<br>- ventilation days:- informative<br>- ventilation days:08)- informative<br>- passive and 30<br>min for active<br>exercise- informative<br>- ventilation days:- informative<br>- ventilation days:08)- pre-existing cognitive impairment<br>- pre-existing cognitive impairment<br>- informative<br>- ventilation days:- informative<br>- ventilation days:- informative<br>- ventilation days:08)- pre-existing cognitive<br>- passive- in | Reference,<br>Study Type                                                                              | (Participant #,                                                                                                                                                                                                                                                                                                                                        | d Controls<br>Characteristics)<br>ttal                                                                                                          | Drop-<br>out<br>Rate | Intervention                                                                                                        | Control | Optimal Population                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| N=7 N=8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2021<br>(PMID:<br>33039302<br>DOI:<br>10.1016/j.au<br>cc.2020.07.0<br>08)<br>secondary<br>analysis of | Inclusion criteria:<br>- pts aged 18 y or olde<br>- anticipated ECMO du<br>Exclusion criteria:<br>- > 72 h on ECMO or 5<br>recruitment<br>- preexisting musculos<br>neurological impairme<br>- any current cancer o<br>- pre-existing mobility<br>- pre-existing cognitive<br>- language barrier<br>- imminent death<br>- physiotherapist was<br>Per B | uration of > 24 h<br>6 d in the ICU before<br>skeletal or<br>ents<br>or chemotherapy<br>r impairment<br>e impairment<br>s unavailable<br>granch |                      | rehabilitation:<br>- up to 1 hour per<br>day<br>- minimum time<br>of 20 min for<br>passive and 30<br>min for active |         | <ul> <li>time for exercising</li> <li>Secondary<br/>outcomes:         <ul> <li>in-hospital<br/>mortality</li> <li>ventilation days</li> <li>ICU and hospital</li> </ul> </li> </ul> | <ul> <li>time for exercising (n = 7 vs.<br/>n = 8): mean = 28.7 vs. 4.2 min,<br/>p &lt; 0.0001)</li> <li>Secondary outcomes <ul> <li>in-hospital mortality:</li> <li>intervention=3(42.9)vs.</li> <li>Control=1(12.5), p = 0.46</li> <li>ICU-LOS in days : intervention =</li> <li>12.9 d (7.2-16.7) vs. Control =</li> <li>21.4d (15.538.5), p = 0.05</li> <li>hospital-LOS: intervention= 41.9d</li> <li>(34.3-56.4) vs control=34.4d (29.3-<br/>87.2), p = 0.85</li> <li>ventilation days: intervention =</li> </ul> </li> </ul> | 4                 |

ECMO = extracorporeal membranous oxygenation, d = days, h = hours, ICU = intensive care unit, IMS = incidental medical services, LOS = length of stay, pts = patients, RCT = randomized controlled trial, y = years

## Early intensive rehabilitation in (veno-venous, veno-arterial) ECMO patients seems to be safe in terms of physiological parameters.

| Reference,<br>Study Type                                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                      | Control | Optimal<br>Population                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 096<br>Ferrando<br>2020<br>(PMID:<br>33023669<br>DOI:<br>10.1186/s130<br>54-020-<br>03314-6)<br>Prospective<br>multicenter<br>cohort study | 199 COVID-19 patients with acute<br>respiratory failure<br>Inclusion criteria:<br>- age ≥ 18 years<br>- confirmed SARS-CoV-2 infection<br>- no previous invasive MV or NIV use before<br>starting HFNO<br>- peripheral oxyhemoglobin saturation<br>(SpO2) < 93% with a non-rebreather face<br>mask at 15 L/min<br>Exclusion criteria:<br>- non-confirmed SARS-CoV-2 infection<br>- no data on ventilation strategies<br>Per Branch<br>N= 55 N= 144 |                      | HNFO + Awake Prone<br>Positioning | HNFO    | Primary<br>outcomes:<br>- ICU LOS<br>- 28-day<br>mortality<br>- risk of<br>intubation | No significant differences<br>between groups in:<br>- ICU LOS (days) median [IQR]:<br>control= 7.5 [4-14] vs.<br>intervention=8 [5-14], $p = 0.276$<br>- 28-day mortality, hazard ratio<br>(95%CI): 2.411 (0.556 – 10.442),<br>p = 0.23<br>- intubation, hazard ratio<br>(95%CI): 1.002 (0.531 – 1.890), $p$<br>= 0.60<br>- trend for delay in intubation:<br>Intervention group vs. Control<br>group: [median 1 (interquartile<br>range, IQR 1.0–2.5) vs 2 IQR 1.0–<br>3.0] days ( $p = 0.055$ ), but awake-<br>PP did not affect 28-day mortality<br>[RR 1.04 (95% CI 0.40–2.72), $p =$<br>0.92] | 3                 |

ARF= acute respiratory failure, CI = confidence interval, HFNO = high-flow nasal oxygen, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MV = mechanical ventilation, NIV = non-invasive ventilation, PP=prone position, pts = patients

Awake proning in COVID-19 patients receiving HFNO did not reduce ICU length of stay, mortality or need for intubation. In patients with COVID-19 ARF treated with HFNO, the use of awake-PP did not reduce the need for intubation or affect mortality.

| Reference,<br>Study Type                                                                                                                                                                 | Cases and Con<br>(Participant<br>Characteristi<br>Total                                                                                                                                                              | #, Drop-                                                           | Intervention          | Control                               | Optimal Population                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 098 Collinsworth<br>2020<br>(PMID: 33003078<br>DOI:<br>10.1097/CCM.00000<br>0000004609)<br><b>Specification of</b><br><b>study:</b><br>prospective<br>observational<br>multicenter study | <ul> <li>awaiting a transfe<br/>a non-ICU bed</li> <li>primary diagnosis<br/>tumor</li> <li>mental disorder</li> <li>stroke</li> <li>intracranial injury-<br/>intoxication</li> <li>hospital stay &gt; 30</li> </ul> | une 2015<br>4 h<br>d < 14 d<br>r order to<br>of brain<br>-<br>days | ABCDE bundle ≥<br>60% | ABCDE<br>bundle<br>adherence<br>≤ 60% | Primary endpoint:<br>- in-hospital<br>mortality<br>Secondary<br>outcomes:<br>- LOS<br>- home discharge ´<br>- direct costs of<br>hospital care (cost<br>difference)<br>- costs and QALYs for<br>pts 1 year follow up | Primary endpoint<br>- In-hospital mortality (%) :<br>control =684 (54.7) vs. intervention= 318 (18.4) ,<br>Adjusted (95% CI) OR 0.28 (0.24–0.34); P< 0.001<br>Secondary outcomes:<br>- LOS (days): mean (sd) control= 9.9 (7.0) vs.<br>intervention= 12.3 (6.8), Adjusted (95% CI) 0.57<br>(0.45–0.69); p< 0.001<br>- discharge (%): control= 206 (16.5) vs.<br>Intervention= 637 (37.3); Adjusted (95% CI)<br>OR=2.46 (2.02–2.89); p < 0.001<br>- Cost difference (\$) n (%):<br>control= 25.685 (26.370) vs. Intervention =<br>31.170 (33.109), adjusted (95% CI) 4.067 (989–<br>7.144); p< 0.001<br>- 1 year follow up:<br>control= \$34.181 (cost per patient),<br>0.2237(Inpatient Survival Rate), \$152.799 (Cost/<br>Effectiveness)<br>- intervention= \$39.130 (cost per patient), \$4.949<br>(incremental cost), 0.3412 (inpatient survival<br>rate), 0.1175 (Incremental Effectiveness),<br>\$115.088 (Cost/ Effectiveness Ratio) | 3 → 4<br>(mobilization<br>evaluated as<br>part of<br>bundle) |

ABCDE= awakening and breathing, coordination, delirium monitoring/management, early exercise/mobility, CI= confidence interval, ICU= intensive care unit, LOS = length of stay, MV= mechanical ventilation, OR= odds ratio, pts= patients, QALY= quality-adjusted life-years, SD= standard deviation

#### The ABCDE bundle appears to be a cost-effective means to reduce in-hospital and 1-year mortality for patients in the ICU.

| Reference,<br>Study Type                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                                                                                   | Control | Optimal<br>Population                                                                                                                                                                                        | Primary<br>Results                           | Evidence<br>Grade                                           |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|
| 099 Mayer<br>2020<br>(PMID:<br>33001619<br>DOI:<br>10.1097/CCM.<br>00000000000<br>4526)<br>Systematic<br>Review | 15 publications <sup>1-15</sup> including 437 patients<br>Inclusion criteria:<br>- adult pts (≥ 18 years old) explicitly receiving CRRT located in the<br>ICU<br>- received physical therapy or occupational therapy, physical<br>rehabilitation, active mobilization, or exercise while on CRRT<br>- data on AEs or "potential safety events"<br>- reasons for early termination of activity or presafety screening<br>were reported<br>Exclusion criteria:<br>- review articles, conference abstracts, and non–peer-reviewed<br>articles<br>Per Branch |                      | Physical therapy,<br>occupational therapy,<br>active mobilization or<br>exercise while on CRRT |         | Primary<br>endpoint:<br>- AEs per total<br>number of<br>rehabilitation<br>sessions<br>- feasibility<br>measured by<br>implementation<br>rate and level of<br>physical<br>activity/mobilisat<br>ion achieved. | Primary<br>endpoint:<br>no meta-<br>analysis | 1 → 2<br>(downgraded<br>due to<br>inclusion of<br>non-RCTs) |

AE = adverse events, CRRT = continuous renal replacement therapy, ICU = intensive care unit, pts = patients

#### Mobilisation seems to be safe in relation to AEs by patients with CRRT in the ICU.

1. Pohlman MC, Schweickert WD, Pohlman AS, et al: Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit Care Med 2010; 38:2089–2094

2. Crowe SB, Haljan G: Continuous renal replacement therapy and mobilization: Yes, it is possible. Can J Crit Care Nurs 2019; 30:12–16

3. Mayer KP, Hornsby AR, Soriano VO, et al: Safety, feasibility, and efficacy of early rehabilitation in patients requiring continuous renal replacement: A quality improvement study. Kidney Int Rep 2020; 5:39–47 4. Lee H, Ko YJ, Jung J, et al: Monitoring of potential safety events and vital signs during active mobilization of patients undergoing continuous renal replacement therapy in a medical intensive care unit. Blood Purif 2016; 42:83–90

5. Toonstra AL, Zanni JM, Sperati CJ, et al: Feasibility and safety of physical therapy during continuous renal replacement therapy in the intensive care unit. Ann Am Thorac Soc 2016; 13:699–704

6. Brownback CA, Fletcher P, Pierce LN, et al: Early mobility activities during continuous renal replacement therapy. Am J Crit Care 2014; 23:348–351; quiz 352

7. Wang YT, Haines TP, Ritchie P, et al: Early mobilization on continuous renal replacement therapy is safe and may improve filter life. Crit Care 2014; 18:R161

8. Talley CL, Wonnacott RO, Schuette JK, et al: Extending the benefits of early mobility to critically ill patients undergoing continuous renal replacement therapy: The Michigan experience. Crit Care Nurs Q 2013; 36:89–100

9. Rebel A, Marzano V, Green M, et al: Mobilisation is feasible in intensive care patients receiving vasoactive therapy: An observational study. Aust Crit Care 2019; 32:139–146

10. Jolley SE, Moss M, Needham DM, et al; Acute Respiratory Distress Syndrome Network Investigators: Point prevalence study of mobilization practices for acute respiratory failure patients in the United States. Crit Care Med 2017; 45:205–215

11. Kimawi I, Lamberjack B, Nelliot A, et al: Safety and feasibility of a protocolized approach to in-bed cycling exercise in the intensive care unit: Quality improvement project. Phys Ther 2017; 97:593–602

12. Kho ME, Molloy AJ, Clarke FJ, et al; Canadian Critical Care Trials Group: TryCYCLE: A prospective study of the safety and feasibility of early in-bed cycling in mechanically ventilated patients. PLoS One 2016; 11:e0167561

13. Hickmann CE, Castanares-Zapatero D, Bialais E, et al: Teamwork enables high level of early mobilization in critically ill patients. Ann Intensive Care 2016; 6:80

14. Lee H, Ko YJ, Suh GY, et al: Safety profile and feasibility of early physical therapy and mobility for critically ill patients in the medical intensive care unit: Beginning experiences in Korea. J Crit Care 2015; 30:673–677 15. Kho ME, Martin RA, Toonstra AL, et al: Feasibility and safety of in-bed cycling for physical rehabilitation in the intensive care unit. J Crit Care 2015; 30:1419.e1–1419.e5

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention | Control             | Optimal<br>Population                                                                                                                         | Primary Results                                                                                                                           | Evidence<br>Grade                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| 109<br>Deng 2020<br>(PMID: 32919363<br>DOI:<br>10.1016/j.jcrc.2020.08.019)<br>Specification of study:<br>Systematic review and<br>meta-analysis | <ul> <li>n = 26 studies included in<br/>the meta analysis (n = 7035<br/>pts)<sup>1-14</sup></li> <li>Inclusion criteria: <ul> <li>RCTs or cohort studies</li> <li>pts &gt;18 years</li> <li>admitted to an ICU</li> <li>non-pharmacological<br/>interventions for<br/>prevention of ICU<br/>delirium</li> <li>peer-reviewed</li> <li>assessment of<br/>incidence of delirium,<br/>delirium duration, ICU<br/>LOS or hospital<br/>mortality</li> </ul> </li> <li>Exclusion criteria: <ul> <li>case reports</li> <li>protocol study</li> </ul> </li> </ul> |                      | EP           | Standard<br>of Care | <ul> <li>delirium<br/>incidence</li> <li>delirium<br/>duration</li> <li>hospital<br/>mortality</li> <li>ICU<br/>length of<br/>stay</li> </ul> | Significant differences between groups in:         -       delirium incidence:         ○       CHI (RR 0.55, 95% CI 0.34-0.89, p < 0.001) | 1 → 3<br>(downgraded<br>for<br>imprecision,<br>heterogeneity/<br>risk of bias,<br>not exclusively<br>RCTs) |

CHI = cerebral hemodynamic improving, CI = confidence interval, EP = exercise program, FP = family participation, HR = hazard ratio, ICU = intensive care unit, LOS = length of stay, MD = mean difference, MLT = multicomponent studies, PEI = physical environment intervention, pts = patients, RCT = randomized controlled trial, RR = risk ratio, SR = sedation reducing, SUCRA = surface under the cumulative ranking curve

Physical exercise in an ICU-environment leads to improved delirium incidence and survival.

#### References

- 1. Potharajaroen S, Tangwongchai S, Tayjasanant T, Thawitsri T, Anderson G, Maes M. Bright light and oxygen therapies decrease delirium risk in critically ill surgical patients by targeting sleep and acid-base disturbances. Psychiatry Res 2018;261:21–7.
- 2. Simons KS, Laheij RJ, van den Boogaard M, Moviat MA, Paling AJ, Polderman FN, et al. Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir Med 2016;4 (3):194–202.
- 3. Taguchi T, Yano M, Kido YJI, Nursing CC. Influence of bright light therapy on postoperative patients: a pilot study. Intensive Crit Care Nurs 2007;23(5):289–97.
- 4. Girard TD, Kress JP, Fuchs BD, Thomason JW, Schweickert WD, Pun BT, et al. Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (awakening and breathing controlled trial): a randomised controlled trial. Lancet 2008;371(9607):126–34.
- 5. Munro CL, Cairns P, Ji M, Calero K, Anderson WM, Liang ZJH, et al. Delirium prevention in critically ill adults through an automated reorientation intervention-a pilot randomized controlled trial. Heart Lung 2017;46(4):234-8.
- 6. Palmbergen WA, van Sonderen A, Keyhan-Falsafi AM, Keunen RW, Wolterbeek R. Improved perioperative neurological monitoring of coronary artery bypass graft patients reduces the incidence of postoperative delirium: the Haga brain care strategy. Interact Cardiovasc Thorac Surg 2012;15(4):671–7.
- 7. Álvarez EA, Garrido MA, Tobar EA, Prieto SA, Vergara SO, Briceño CD, et al. Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: a pilot randomized clinical trial. J Crit Care 2017;37:85–90.
- 8. Bryczkowski SB, Lopreiato MC, Yonclas PP, Sacca JJ, Mosenthal AC. Delirium prevention program in the surgical intensive care unit improved the outcomes of older adults. J Surg Res 2014;190(1):280-8.
- 9. Colombo R, Corona A, Praga F, Minari C, Giannotti C, Castelli A, et al. A reorientation strategy for reducing delirium in the critically ill. Results of an interventional study. Minerva Anestesiol 2012;78(9):1026.
- 10. Dale CR, Kannas DA, Fan VS, Daniel SL, Deem S, Yanez III ND, et al. Improved analgesia, sedation, and delirium protocol associated with decreased duration of delirium and mechanical ventilation. Ann Am Thorac Soc 2014;11(3):367–74.
- 11. Estrup S, Kjer CKW, Poulsen LM, Gogenur I, Mathiesen O. Delirium and effect of circadian light in the intensive care unit: a retrospective cohort study. Acta Anaesthesiol Scand 2018;62(3):367–75.
- 12. Fraser D, Spiva L, Forman W, Hallen C. Implementation of an early mobility program in an ICU. Am J Nurs 2015;115(12):49–58.
- 13. Junior APN, Park MJ. Daily sedative interruption versus intermittent sedation in mechanically ventilated critically ill patients: a randomized trial. Ann Intensive Care 2014;4(1):14.
- 14. Giraud K, Pontin M, Sharples LD, Fletcher P, Dalgleish T, Eden A, et al. Use of a structured mirrors intervention does not reduce delirium incidence but may improve factual memory encoding in cardiac surgical ICU patients aged over 70 years: a pilot time-cluster randomized controlled trial. Front Aging Neurosci 2016;8:228.
- 15. Karadas C, Ozdemir L. The effect of range of motion exercises on delirium prevention among patients aged 65 and over in intensive care units. Geriatr Nurs 2016;37(3): 180-5.
- 16. Martinez F, Donoso AM, Marquez C, Labarca E. Implementing a multicomponent intervention to prevent delirium among critically ill patients. Crit Care Nurse 2017;37 (6):36–46.
- 17. Moon KJ, Lee SM. The effects of a tailored intensive care unit delirium prevention protocol: a randomized controlled trial. Int J Nurs Stud 2015;52(9):1423-32.
- 18. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. Jama 2016;315(24):2694–702.
- 19. Patel J, Baldwin J, Bunting P, Laha S. The effect of a multicomponent multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia 2014;69(6):540–9.
- 20. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373(9678):1874–82.
- 21. Ono H, Taguchi T, Kido Y, Fujino Y, Doki Y. The usefulness of bright light therapy for patients after oesophagectomy. Intensive Crit Care Nurs 2011;27(3):158–66.
- 22. Van Rompaey B, Elseviers MM, Van Drom W, Fromont V, Jorens PG. The effect of earplugs during the night on the onset of delirium and sleep perception: a randomized controlled trial in intensive care patients. Crit Care 2012;16(3):R73.
- 23. Black P, Boore JR, Parahoo K. The effect of nurse-facilitated family participation in the psychological care of the critically ill patient. J Adv Nurs 2011;67(5):1091–101.
- 24. Kram SL, DiBartolo MC, Hinderer K, Jones RA. Implementation of the ABCDE bundle to improve patient outcomes in the intensive care unit in a rural community hospital. Dimens Crit Care Nurs 2015;34(5):250-8.
- 25. Mehta S, Burry L, Cook D, Fergusson D, Steinberg M, Granton J, et al. Daily sedation interruption in mechanically ventilated critically ill patients cared for with a sedation protocol: a randomized controlled trial. Jama 2012;308(19):1985–92.
- 26. Rivosecchi RM, Kane-Gill SL, Svec S, Campbell S, Smithburger PL. The implementation of a nonpharmacologic protocol to prevent intensive care delirium. J Crit Care 2016;31(1):206–11.

| Reference,<br>Study Type                                                                                                          | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                            | Drop<br>-out<br>Rate | Intervention         | Control             | Optimal Population                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence Grade                              |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 111<br>Yang 2021<br>(https://pub<br>med.ncbi.nlm<br>.nih.gov/3290<br>0917/)<br>Specification<br>of study:<br>systematic<br>review | <ul> <li>- 24 studies<sup>1-24</sup></li> <li>Inclusion criteria: <ul> <li>no study type restrictions</li> <li>original studies</li> <li>&gt;18y, admitted to ICU and MV for &gt;24h</li> </ul> </li> <li>Exclusion criteria: <ul> <li>articles with only active in-bed mobilization and no out-of-bed mobilization</li> </ul> </li> </ul> |                      | - early mobilization | - usual<br>ICU care | <b>Primary Endpoints:</b><br>- safety assessment<br>criteria | Primary Results:<br>- safety assessment criteria: 17 variables<br>and 48 parameters<br>- 4 criteria included in flow diagram:<br>- consciousness: S5Q ≥3; RASS -2 - +2 or<br>SAS 3-4<br>- cardiac reserve: heart rate: 40-130<br>beats/min; blood pressure: MAP 65-<br>110mmHg and SBP 90-200 mmHg, <20%<br>fluctuation; low/medium level of single<br>vasoactive medication and no increase in<br>the past 2h<br>- respiratory reserve: F <sub>i02</sub> ≤0.6 and PEEP<br>≤10; 5-40 breaths/min; S <sub>p02</sub> ≥88% and<br>fluctuation <4%; P <sub>a02</sub> /F <sub>i02</sub> ≥200; No<br>ventilator dysynchrony<br>- muscle strength: upper limbs: MRC ≥III<br>or Lovett >3; Bilateral quadriceps<br>strength: MRC ≥III or Lovett ≥2 | 1 → 3<br>(not only RCTs,<br>no metanalysis) |

y=years; ICU=Intensive care unit; h=hours; S5Q=standardized 5 ques-tions for cooperation; RASS=Richmond Agitation Sedation Scale; SAS=Sedation-Agitation Scale; MAP=mean arterial pressure; SBP=systolic blood pressure; MRC=Medical Research Council

Yang et al defined safety criteria for early mobilization based on their systematic review.

#### References

1. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical inten-sive care unit: a randomised controlled trial. Lancet 2016;388(10052):1377-1388.

2. Clark DE, Lowman JD, Griffin RL, Matthews HM, Reiff DA.Effectiveness of an early mobilization protocol in a trauma and burnsintensive care unit: a retrospective cohort study. Phys Ther 2013;93(2):186-196.

3. Bourdin G, Barbier J, Burle JO, Durante GR, Passant S, Vincent B, et al. The feasibility of early physical activity in intensive care unitpatients: a prospective observational one-center study. Respir Care2010;55(4):400-407.

4. Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med 2007;35(1):139-145.

5. Boyd J, Paratz J, Tronstad O, Caruana L, McCormack P, Walsh J.When is it safe to exercise mechanically ventilated patients in the in-tensive care unit? An evaluation of consensus recommendations in acardiothoracic setting. Heart Lung 2018;47(2):81-86.

6. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 2008;36(8):2238-2243.

7. Thomsen GE, Snow GL, Rodriguez L, Hopkins RO. Patients with respi-ratory failure increase ambulation after transfer to an intensive care unitwhere early activity is a priority. Crit Care Med 2008;36(4):1119-1124.

8. Witcher R, Stoerger L, Dzierba AL, Silverstein A, Rosengart A, Brodie D, et al. Effect of early mobilization on sedation practices in the neurosciences intensive care unit: a preimplementation and post-implementation evaluation. J Crit Care 2015;30(2):344-347.

9. Davis J, Crawford K, Wierman H, Osgood W, Cavanaugh J, SmithKA, et al. Mobilization of ventilated older adults. J Geriatr Phys Ther2013;36(4):162-168.

10. Gao C, Feng J, Yin H, Wang X. Formulating the plan of early exerciseand safety management of mechanically ventilated patients in ICU. Chinese J Nurs 2012;47(9):810-812.

11. Zeng F, Jin X. Application of early activity strategies in patients withmechanical ventilation in ICU. Chinese J Emerg Med 2017;26(2):211-213.

12. Dong Z, Yu B, Sun Y, Fang W, Li L. The effects of early rehabilitationtherapy in mechanically ventilated patients. Chinese J Emerg Med2013;22(10):1153-1156.

13. Liu Z, Meng S, Yang S, Yang W, Liu J, Yuan J, Jiang S. Influenceof early mobilization on delirium and respiratory dynamics inmechanically ventilated patients with acute excerbation of COPD: aprospective study. Chinese J Respir Crit Care Med 2016;15(04):324-328.

14. Dantas CM, Silva P, Siqueira F, Pinto R, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral musclestrength in critically ill patients. Rev Bras Ter Intensiva 2012;24(2):173-178.

15. Dong Z, Yu B, Zhang Q, Pei H, Xing J, Fang W, et al. Early rehabilita-tion therapy is beneficial for patients with prolonged mechanical venti-lation after coronary artery bypass surgery. Int Heart J 2016;57(2):241-246.

16. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A binational multicenter pilot feasibility randomized controlledtrial of early goal-directed mobilization in the ICU. Crit Care Med2016;44(6):1145-1152.

17. Mcwilliams D, Jones C, Atkins G, Hodson J, Whitehouse T, VeenithT, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: a feasibility randomised controlled trial. J CritCare 2018;44:407-412.

18. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechan-ically ventilated, critically ill patients: a randomised controlled trial.Lancet 2009;373(9678):1874-1882.

19. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, WarnerML, et al. A randomized trial of an intensive physical therapy programfor patients with acute respiratory failure. Am J Respir Crit Care Med2016;193(10):1101-1110.

20. Wright SE, Thomas K, Watson G, Baker C, Bryant A, Chadwick TJ, et al. Intensive versus standard physical rehabilitation therapy in the critically ill (EPICC): a multicentre, parallel-group, randomised con-trolled trial. Thorax 2018;73(3):213-221.

21. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized rehabilitation and hospital length of stay amongpatients with acute respiratory failure: a randomized clinical Trial.JAMA 2016;315(24):2694-2702.

22. Wang C, Qin J, Ben Y. Effect of early rehabilitation training on ICUacquired myasthenia in patients with mechanical ventilation. ChineseNurs Manag 2019;19(3):457-461.

23. Yu P, Wu J, Ren G, Yang Z. Effects of light sedation combined withearly mobilization and occupational therapy on mechanical ventilated patients. Chinese Nurs Manag 2018;18(5):627-632. 24. Zhu C, Liu B, Yang T, Mei Q, Pan A, Zhao D. Effect of early rehabili-tation physiotherapy on muscle guality and function in critically illpatients. Chinese Crit Care Med 2018;30(6):569-572.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                             | Drop-out Rate                                                                                                                                                                    | Intervention                                                                                                               | Control                                     | Optimal<br>Population                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 112 Nakanishi<br>2020<br>(PMID:<br>32897665<br>DOI:<br>10.1097/CCM.<br>00000000000<br>4522)<br><b>Specification</b><br>of study:<br>Multicenter<br>RCT | 42 ptsInclusion criteria:- expected to be MV $\geq$ 48 h- expected stay in the ICU $\geq$ 5 daysExclusion criteria:- <18 years | Intervention: 4<br>pts (14%)<br>(1 died before<br>day 5; 2 no<br>muscle<br>contraction; 1<br>withdrawn due<br>to pain)<br>Control: 2 pts<br>(died before 5 <sup>th</sup><br>day) | Neuromuscular<br>electrical<br>stimulation:<br>- 30 min for 5<br>days and<br>- standardized<br>progressive<br>mobilization | Standardized<br>progressive<br>mobilization | Primary<br>endpoint:<br>- muscle<br>thickness via<br>ultrasound<br>Secondary<br>outcomes:<br>- cross sectional<br>area via<br>ultrasound<br>- muscle<br>strength MRC<br>score<br>- ICU mobility<br>scale<br>- hospital LOS<br>- ventilator-free<br>days<br>- ICU-free days<br>- ICU-free days<br>- IMS at ICU<br>discharge | Primary endpoint:<br>-muscle thickness M. biceps brachii (difference in<br>% between day 1 and 5, mean $\pm$ SD), control -11.2<br>$\pm$ 2.1 vs intervention -1.9 $\pm$ 2.4, p = 0.007<br>Secondary outcomes:<br>- muscle cross sectional area M. biceps brachii<br>(difference in % between day 1 and 5, mean $\pm$ SD),<br>control -10.0 $\pm$ 1.5 vs intervention -2.7 $\pm$ 2.6, p = 0.03<br>- muscle thickness M. rectus femoris (difference in %<br>between day 1 and 5, mean $\pm$ SD), control -14.7 $\pm$ 2.7<br>vs intervention -0.9 $\pm$ 3.1, p = 0.003<br>- muscle cross sectional area M. rectus femoris<br>(difference in % between day 1 and 5, mean $\pm$ SD),<br>control -10.4 $\pm$ 2.8, intervention -1.7 $\pm$ 2.9, p = 0.04<br>- MRC score day 5(median [IQR]), control 52 [35 – 59]<br>vs intervention 55 [50 – 58], p = 0.53<br>- hospital LOS (median [IQR]), control 40 [26 – 64] vs<br>intervention 23 [19 – 34], p = 0.04<br>- ventilator-free days (median [IQR]), control 22 [10 –<br>24] vs intervention 23 [19 – 25], p = 0.45<br>- ICU-free days, median [IQR], control 20 [9 – 23] vs<br>intervention – median [IQR]: 21 [12 – 23], p = 0.97<br>- IMS (median [IQR]), control 2 [1 - 3] vs intervention<br>3 [1 - 4], p = 0.42 | 2                 |

ICU = intensive care unit, IMS = ICU mobility scale, IQR = interquartile range, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

Neuromuscular electrical stimulation decreased muscle thickness loss between day 1 and 5.

| Reference,<br>Study Type                                                                                                                                                                     | Cases and<br>(Partici<br>Charact                   | pant #,<br>eristics)                                   | Drop-out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Control                                                                                               | Optimal Population                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 122<br>Chin-Ming<br>2019<br>(PMID:<br>32767475<br>DOI:<br>10.1111/nicc.1<br>2530)<br>Specification of<br>study:<br>retrospective,<br>observational,<br>before-and-<br>after outcome<br>study | 173 pts<br>Inclusion cri<br>- ICU patient<br>years | <b>teria:</b><br>ts > 18<br>dmitted to a<br>ter ICU in |                  | Implementation of quality<br>improvement program:<br>multidisciplinary team<br>performed ABCDE bundle<br>Mobilization:<br>- EM within 72 hours of MV<br>- twice daily (each 30 min),<br>5 days/ week in co-<br>operation with family<br>members<br>- 4-step mobilization<br>program:<br>Level I (passive extremities<br>movement for unconscious<br>pts),<br>Level II (active extremities<br>movement),<br>Level III (sitting on edge of<br>bed)<br>Level IV (chair) | Pts on ICU on MV<br>before<br>implemention of<br>ABCDE<br>- not further defined<br>(Standard of care) | Primary endpoints:<br>- duration of ICU and<br>hospital LOS<br>- duration of MV<br>- intra-hospital<br>mortality<br>- costs before and after<br>ABCDE bundle care<br>Secondary outcome:<br>-APACHE II<br>sample size calculation:<br>no power calculation<br>reported | Primary endpoints:<br>- intervention group had<br>lower mean ICU LOS (8.0 vs<br>12.0 days)<br>- similar MV duration (170.2<br>vs 188.1 hours) and hospital<br>stay (21.1 vs 23.3 days)<br>- intervention group caused<br>lower costs (22.1 vs 31.7x10 <sup>4</sup><br>New Taiwan Dollars) and<br>intra-hospital mortality (8.3<br>vs 36.6%).<br>Secondary outcome:<br>Apache Score II before<br>intervention 23.4+/- 9.4 vs<br>after intervention 19.8+/-6.9<br>p=0.004<br>adverse events:<br>n/a | 4                 |

ABCDE bundle = daily awakening, breathing trial, drug co-ordination, delirium survey and treatment, early mobilization, APACHE II = acute physiology and chronic health evaluation II, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

The ABCDE care bundle improved the outcome of acute renal failure patients with MV, especially shortening ICU stays, lowering medical costs and hospital mortality.

| Reference,<br>Study Type                                                                                                                                              | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                        | Drop-<br>out Rate | Intervention                 | Control | Optimal<br>Population                                                | Primary Results                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------|---------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                       | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                              |         | -                                                                    |                                                                                                                                                                                                                                                                                                                                             |                   |
| 124 Worraphan 2020<br>(PMID: 32750371<br>DOI:<br>10.1016/j.apmr.2020.<br>07.004))<br>Specification of study:<br>Systematic Review<br>with<br>Network-Meta<br>analysis | 18 RCTs investigating the effect of IMT, EM, or CPT on<br>MV duration and the weaning duration in patients with<br>MV (934 patients)<br>Inclusion criteria:<br>- aged > 18 years<br>- received MV via an endotracheal or tracheostomy tube<br>Exclusion criteria:<br>- had a successful simple weaning process<br>- received combined intervention treatments (EM and<br>IMT)<br>- presence of neurologic conditions<br>- previous musculoskeletal conditions |                   | EM or<br>CPT + IMT or<br>IMT | СРТ     | Primary<br>outcomes:<br>- duration of<br>MV<br>- weaning<br>duration | Primary outcome<br>-MV duration, EM was<br>more effective than CPT<br>(MD; 95% CI) (-2.00; -3.57<br>to -0.44)<br>-MV duration (-2.01; -<br>3.81 to -0.221), (P=0.45)<br>- IMT+CPT significantly<br>reduced the weaning<br>duration compared to<br>CPT (mean difference;<br>95% confidence interval)<br>(-2.60; -4.76 to -0.45),<br>(P=0.02) | 1                 |

CPT = conventional physical therapy, EM = early mobilization, IMT = inspiratory muscle training, MD= mean difference, MV = mechanical ventilation, NMA = network-metaanalysis, pts = patients, RCT = randomized controlled trial

#### EM shows a benefit for MV duration.

#### References

1. Dong ZH, Yu BX, Sun YB, et al. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med 2014;5:48-52.

3. Cader SA, Vale RG, Castro JC, et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. J Physiother 2010; 56:171-7.

4. Martin AD, Smith BK, Davenport PD, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011;15:R84.

5. Condessa RL, Brauner JS, Saul AL, et al. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother 2013;59:101-7.

6. Dixit A, Prakash S. Effects of threshold inspiratory muscle training versus conventional physiotherapy on the weaning period of mechanically ventilated patients: a comparative study. Int J Physiother Res 2014;2:424-8.

7. Mohamed A, Basiouny H, Salem N. Response of mechanically ventilated respiratory failure patients to respiratory muscles training. Med J Cairo Univ 2014;82:19-24. 8. Shimizu J, Manzano R, Quite´rio R, et al. Determinant factors for mortality of patients receiving mechanical ventilation and effects of a protocol muscle training in weaning. Man Ther Posturology Rehabil J 2014;12:136-42.

9. Tonella RM, Ratti L, Delazari LEB, et al. Inspiratory muscle training in the intensive care unit: a new perspective. J Clin Med Res 2017;9: 929-34.

10. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009; 37:2499-505.

11. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373:1874-82.

12. Chang MY, Chang LY, Huang YC, et al. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir Care 2011;56:1533-8.

13. Chen Y-H, Lin H-L, Hsiao H-F, et al. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation. Respir Care 2012;57:727.

14. Dong Z, Yu B, Zhang Q, et al. Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int Heart J 2016;57:241-6.

15 HodgsonCL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 2016;44:1145-52.

16. Franc, a EE, Ribeiro LC, Lamenha GG, et al. Oxidative stress and immune system analysis after cycle ergometer use in critical patients. Clinics (Sao Paulo) 2017;72:143-9. 17. Maffei P, Wiramus S, Bensoussan L, et al. Intensive early rehabilitation in the intensive care unit for liver transplant recipients: a randomized controlled trial. Arch Phys Med Rehabil 2017;98:1518-25.

18. Sandoval Moreno LM, Casas Quiroga IC, Wilches Luna EC, et al. Efficacy of respiratory muscle training in weaning of mechanical ventilation in patients with mechanical ventilation for 48 hours or more: a randomized controlled clinical trial. Med Intensiva 2019;43:79-89.

| Reference,<br>Study Type                                                                                                                                                | (Partic<br>Charact                                                                                                                                                                              | d Controls<br>ipant #,<br>teristics)<br>otal                                     | Drop-<br>out<br>Rate | Intervention               | Control                                                       | Optimal Population                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------|----------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 127 Semsar-<br>kazerooni<br>2021<br>(PMID:<br>32739452<br>DOI:<br>10.1016/j.cjca<br>.2020.03.038)<br><b>Specification</b><br>of study:<br>Retrospective<br>cohort study | 1.489 pts adm<br>Inclusion crite<br>- consecutive p<br>admitted to th<br>February 1, 20<br>30, 2019<br>Exclusion crite<br>- incomplete d<br>- pts undergoi<br>surgery during<br>Per B<br>N= 852 | eria:<br>patients<br>ne CICU from<br>018, to June<br>eria:<br>data<br>ng cardiac |                      | Nurse-driven<br>EM program | Historic control<br>before<br>implementation of<br>EM program | Primary outcome<br>- discharge home<br>Secondary outcomes<br>- CICU and hospital LOS<br>- in-hospital mortality<br>- emergency room (ER) visit<br>and hospital readmission<br>within 30 days of discharge | Primary outcome<br>- discharge home: $83.9\%$ (n= $852$ )<br>vs 78.3%(n= $637$ ), P < 0.007<br>Secondary outcome<br>- in-hospital mortality 36 (4.2%),<br>43 (6.8%); p= $0.04$<br>- no difference in CICU or hospital<br>length of stay between the groups<br>(P = $0.63$ and P = $0.54$ ,<br>respectively)<br>- ER visit: intervention= 144<br>(13.5%) vs. Control=122 (19.2%),<br>p= $0.003$<br>- hospital readmission:<br>Intervention= 55 (6.5%) vs.<br>Control= 56 (8.8%), p= $0.14$ | 4                 |

CICU = cardiovascular intensive care unit, EM = early mobilization, ER = emergency room, ICU= intensive care unit, LOS = length of stay, pts = patients

#### A nurse-driven EM program resulted in lower in-hospital mortality in cardiac ICU patients.

| Reference,<br>Study Type                                                                                                                                           | Cases and Controls<br>(Participant #,<br>Characteristics)                                                                                                                                                     | Drop-out<br>Rate | Intervention                                                                                        | Control                                                                                              | Optimal Population                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 128 Wang 2020<br>(PMID:<br>32736250<br>DOI:<br>10.1016/j.ijnur<br>stu.2020.10370<br>8)<br>Specification of<br>study:<br>Systematic<br>Review with<br>meta analysis | Total<br>39 RCTs with a total of<br>3837 pts <sup>1-39</sup><br>Inclusion criteria:<br>- RCTs<br>- age >18 years<br>- pts in ICU<br>- intervention: EM and<br>rehabilitation<br>- control: daily nursing care |                  | EM and<br>rehabilitation<br>- including a<br>range of active<br>or passive<br>physical<br>exercises | Daily nursing<br>care<br>- no exercise<br>intervention<br>or only<br>respiratory<br>PT<br>treatment) | Primary endpoints:<br>- ICUAW rate<br>- duration of MV<br>- ICU LOS<br>- ICU mortality<br>Secondary outcomes:<br>- MRC score<br>- handgrip strength<br>(kg)<br>- Barthel index score<br>- delirium rate<br>- hospital LOS<br>- mortality<br>- ventilator-associated<br>pneumonia rate (VAP)<br>- DVT rate<br>Pressure sore rate<br>past begnital | Significant differences between groups in:<br>- ICU-AW (RR 0.49 [0.32, 0.74]; p=0.0008,<br>I <sup>2</sup> >50%)<br>- length of MV (MD -2.10 [-2.47, -1.73]; p<0.001;<br>I <sup>2</sup> >50%)<br>- ICU LOS (MD -2.74 [-3.52, -1.97]; p<0.001,<br>I <sup>2</sup> >50%)<br>- MRC Score (MD 5.99 [3.22, 8.76]; p<0.001,<br>I <sup>2</sup> >50%)<br>- MRC Score (MD 5.99 [3.22, 8.76]; p<0.001,<br>I <sup>2</sup> >50%)<br>- Barthel index score (MD 12.78 [2.71, 22.85];<br>p=0.01, I <sup>2</sup> >50%)<br>- hospital LOS (MD -3.71 [-5.70, -1.71];<br>p=0.0003, I <sup>2</sup> >50%<br>- VAP (RR 0.68 [0.49,0.94]; p=0.02)<br>- DVT (RR 0.16 [0.06, 0.47]; p= 0.0007)<br>- pressure sore rate (RR 0.17 [0.06,0.49]<br>p=0.001)<br>No significant differences between groups in:<br>- ICU mortality (RR 0.003 [-0.08, 0.03]; p=0.36)<br>- hospital mortality n.s. | 1                 |
|                                                                                                                                                                    |                                                                                                                                                                                                               |                  |                                                                                                     |                                                                                                      | <ul> <li>post-hospital</li> <li>discharge</li> </ul>                                                                                                                                                                                                                                                                                             | <ul> <li>delirium rate n.s.</li> <li>handgrip strength n.s.19.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |

DVT = deep vein thrombosis, EE = effect estimate, ICU = intensive care unit, ICU-AW = ICU- acquired weakness, LOS = length of stay, MD = mean difference, MRC = medical research council score, MV = mechanical ventilation, n.s. = not significant, PT = physio therapy, pts = patients, RCT = randomized controlled trial, RR= relative risk, VAP = ventilator-associated pneumonia

# Early mobilization and rehabilitation seems to have a benefit in relation to ICU-AW, length of MV, ICU LOS, MRC score, Barthel Index and hospital LOS.

#### References

1. Alvarez, E.A., Garrido, M.A., Tobar, E.A., Prieto, S.A., Vergara, S.O., Briceno, C.D., Gonzalez, F.J., 2017. Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: A pilot randomized clinical trial. J. Crit. Care 37, 85–90.

2. Barr, J., Fraser, G.L., Puntillo, K., Ely, E.W., Gélinas, C., Dasta, J.F., Davidson, J.E., Devlin, J.W., Kress, J.P., Joffe, A.M., Coursin, D.B., Herr, D.L., Tung, A., Robinson, B.R., Fontaine, D.K., Ramsay, M.A., Riker, R.R., Sessler, C.N., Pun, B., Skrobik, Y., Jaeschke, R. American College of Critical Care Medicine, 2013. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit. Care Med. 41 (1), 263–306.

3. Bartolo, M., Bargellesi, S., Castioni, C.A., Intiso, D., Fontana, A., Copetti, M., Scarponi, F., Bonaiuti, D. Intensive Care and Neurorehabilitation Italian Study Group, 2017. Mobilization in early rehabilitation in intensive care unit patients with severe acquired brain injury: An observational study. J. Rehabil. Med. 49 (9), 715–722.

4. Booth, K., Rivet, J., Flici, R., Harvey, E., Hamill, M., Hundley, D., Holland, K., Hubbard, S., Trivedi, A., Collier, B., 2016. Progressive mobility protocol reduces venous thromboembolism rate in trauma intensive care patients: a quality improvement project. J. Trauma Nurs. 23 (5), 284–289.

5. Brummel, N.E., Girard, T.D., Ely, E.W., Pandharipande, P.P., Morandi, A., Hughes, C.G., Graves, A.J., Shintani, A.K., Murphy, E., Work, B., Pun, B.T., Boehm, L., Gill, T.M., Dittus, R.S., Jackson, J.C., 2014. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 40 (3), 370–379.

6. Castro-Avila, A.C., Seron, P., Fan, E., Gaete, M., Mickan, S., 2015. Effect of early rehabilitationduring intensive care unit stay on functional status: systematic reviewand meta-analysis. PLoS One 10 (7), 1–21.

7. Clarissa, C., Salisbury, L., Rodgers, S., Kean, S., 2019. Early mobilisation in mechanically ventilated patients: a systematic integrative review of definitions and activities. J. Intensive Care 7, 3 8. Devlin, J.W., Skrobik, Y., Gélinas, C., Needham, D.M., Slooter, A.C., Pandharipande, P.P., Watson, P.L., Weinhouse, G.L., Nunnally, M.E., Rochwerg, B., Balas, M.C., Van den, B.M.,

Bosma, K.J., Brummel, N.E., Chanques, G., Denehy, L., Drouot, X., Fraser, G.L., Harris, J.E., Joffe, A.M., Kho, M.E., Kress, J.P., Lanphere, J.A., McKinley, S., Neufeld, K.J., Pisani, M.A., Payen, J.F., Pun, B.T., Puntillo, K.A., Riker, R.R., Robinson, B.H., Shehabi, Y., Szumita, P.M., Winkelman, C., Centofanti, J.E., Price, C., Nikayin, S., Misak, C.J., Flood, P.D., Kiedrowski, K., Alhazzani, W., 2018. Clinical Practice Guidelines for the Prevention and Management of Pain, Agitation/ Sedation, Delirium, Immobility, and Sleep Disruption in Adult Patients in the ICU. Crit. Care Med. 46 (9). e825–e873.

9. Doiron, K.A., Hoffmann, T.C., Beller, E.M., 2018. Early intervention (mobilization or active exercise) for critically ill adults in the intensive care unit. Cochrane Database Syst. Rev. 3, CD010754.

10. Dong, Z., Yu, B., Zhang, Q., Pei, H., Xing, J., Fang, W., Sun, Y., Song, Z., 2016. Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int. Heart J. 57 (2), 241–246.

11. Engel, H.J., Needham, D.M., Morris, P.E., Gropper, M.A., 2013. ICU Early Mobilization: From Recommendation to Implementation at Three Medical Centers. Crit. Care Med. 41 (9), S69–S80.

12. Fan, E., Cheek, F., Chlan, L., Gosselink, R., Hart, N., Herridge, M.S., Hopkins, R.O., Hough, C.L., Kress, J.P., Latronico, N., Moss, M., Needham, D.M., Rich, M.M., Stevens, R.D., Wilson, K.C., Winkelman, C., Zochodne, D.W., Ali, N.A. Adults, A.T.S.C.o.I.-a.W.i., American Thoracic, S., 2014. An official American Thoracic Society Clinical Practice guideline: the diagnosis of intensive care unit-acquired weakness in adults. Am. J. Respir. Crit. Care Med. 190 (12), 1437–1446.

13. J. Wang, D. Ren and Y. Liu et al. / International Journal of Nursing Studies 110 (2020) 103708 11 Fuke, R., Hifumi, T, Kondo, Y, Hatakeyama, J, Takei, T, Yamakawa, K, Inoue, S, Nishida, O., 2018. Early rehabilitation to prevent postintensive care syndrome in patients with critical illness: a systematic review and meta-analysis. BMJ Open 8 (5), e019998.

14. Gan, J.H., Dai, K.L., Ye, J.B., Shi, H.M., Wang, W.S., Wang, J., Wen, B., Men, H.L., 2018. The nursing interventions of acquired decay in ICU:a literature review. Mod. Clin. Nurs. 17 (9), 74–78.

15. Gomez-Cabrera, M.C., Domenech, E., Vina, J., 2008. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med. 44 (2), 126–131.

16. Higgins, J.P., Altman, D.G., Gotzsche, P.C., Juni, P., Moher, D., Oxman, A.D., Savovic, J., Schulz, K.F., Weeks, L., Sterne, J.A. Cochrane Bias Methods, G., Cochrane Statistical Methods, G., 2011. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ 343, d5928.

17. Higgins, S.D., Erdogan, M., Coles, S.J., Green, R.S., 2019. Early mobilization of trauma patients admitted to intensive care units: a systematic review and meta-analyses. Injury 50 (11), 1809–1815.

18. Hodgson, C.L., Bailey, M., Bellomo, R., Berney, S., Buhr, H., Denehy, L., Gabbe, B., Harrold, M., Higgins, A., Iwashyna, T.J., Papworth, R., Parke, R., Patman, S., Presneill, J., Saxena, M., Skinner, E., Tipping, C., Young, P., Webb, S. Trial Early Activity, M., 2016. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit. Care Med. 44 (6), 1145–1152.

19. Hu, Y., Hu, X.Y., Xiao, J., Li, D.Y., 2019. Effect of early mobilization on the physical function of patients in intensive care unit: a Meta-analysis. Chin. Crit. Care Med. 31 (4), 458–463. 20. Jiang, Y.L., Yu, B., Dai, Y.H., Li, X.X., Yin, H.M., Chen, S.L., 2017. Implementation of nursing procedure in early rehabilitation stage for ICU mechanical ventilated patients. J. Nurs. Sci. 32 (21), 97–98 102.

21. Kayambu, G., Boots, R., Paratz, J., 2015. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 41 (5), 865–874.

22. Kho, M.E., Molloy, A.J., Clarke, F.J., Reid, J.C., Herridge, M.S., Karachi, T., Rochwerg, B., Fox-Robichaud, A.E., Seely, A.J., Mathur, S., Lo, V., Burns, K.E., Ball, I.M., Pellizzari, J.R., Tarride, J.E., Rudkowski, J.C., Koo, K., Heels-Ansdell, D., Cook, D.J., 2019. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respir. Res. 6 (1), e0 0 0383.

23. Li, Z., Peng, X., Zhu, B., Zhang, Y., Xi, X., 2013. Active mobilization for mechanically ventilated patients: a systematic review. Arch. Phys. Med. Rehabil. 94 (3), 551–561.

24. Li, Y.L., Yang, B.Y., Wang, R., 2018. Effects of early rehabilitation treatment on ICU acquired weakness prevention in critical patients. Chin. J. Mod. Nurs. 1, 56–59.

25. Luo, D.H., Wan, X., Liu, J.M., Tong, T.J., 2017. How to estimate the sample mean and standard deviation from the sample size, median, extremes or quartiles? Chin. J. Evid. Based Med. 17 (11), 1350–1356.

26. Machado, A.D., Pires-Neto, R.C., Carvalho, M.T.X., Soares, J.C., Cardoso, D.M., de Albuquerque, I.M., 2017. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation and length of hospital stay in critically ill patients: a randomized clinical trial. J. Bras. De Pneumol. 43 (2), 134–139.

27. Malone, D., Ridgeway, K., Nordon-Craft, A., Moss, P., Schenkman, M., Moss, M., 2015. Physical therapist practice in the intensive care unit: results of a national survey. Phys. Ther. 95 (10), 1335–1344.

28. McWilliams, D., Jones, C., Atkins, G., Hodson, J., Whitehouse, T., Veenith, T., Reeves, E., Cooper, L., Snelson, C., 2018. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J. Crit. Care 44, 407–412.

29. Messer, A., Comer, L., Forst, S., 2015. Implementation of a progressive mobilization

program in a medical-surgical intensive care unit. Crit. Care Nurse 35 (5), 28–42. Vucur, M., Roderburg, C., Kaiser, L., Schneider, A.T., Roy, S., Loosen, S.H., Luedde, M., Trautwein, C., Koch, A., Tacke, F., Luedde, T., 2018. Elevated serum levels of mixed lineage kinase domain-like protein predict survival of patients during intensive care unit treatment. Dis. Markers 1-8.

30. Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Group, P., 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62 (10), 1006–1012.

31. Morandi, A., Brummel, N.E., Ely, E.W., 2011. Sedation, delirium and mechanical ventilation: the 'ABCDE' approach. Curr. Opin. Crit. Care 17 (1), 43–49.

32. Morris, P.E., Berry, M.J., Files, D.C., Thompson, J.C., Hauser, J., Flores, L., Dhar, S., Chmelo, E., Lovato, J., Case, L.D., Bakhru, R.N., Sarwal, A., Parry, S.M., Campbell, P., Mote, A., Winkelman, C., Hite, R.D., Nicklas, B., Chatterjee, A., Young, M.P., 2016. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315 (24), 2694–2702.

33. Nakahara, R., Weibel, L., Zollinger, A., Hofer, C., 2008. Quality of life after prolonged ICU stay: preliminary results of a prospective survey in critically ill patients. Crit. Care 12 (2), 1–5. 34. Nie, J., 2017. Application of early exercise therapy in ICU mechanical ventilation patients. J. Qilu Nurs. 23 (1), 95–96.

35. Nydahl, P., Günther, U., Diers, A., Hesse, S., Kerschensteiner, C., Klarmann, S., Borzikowsky, C., Köpke, S., 2019. Protocol-based mobilization on intensive care units: stepped-wedge, clusterrandomized pilot study (Pro-Motion). Nurs. Crit. Care doi: 10.1111/nicc.12438.

36. Patman, S., Sanderson, D., Blackmore, M., 2001. Physiotherapy following cardiac surgery: Is it necessary during the intubation period? Aust. J. Physiother. 47, 7–16.

37. Rengel, K.F., Hayhurst, C.J., Pandharipande, P.P., Hughes, C.G., 2019. Long-term cognitive and functional impairments after critical illness. Anesth. Analg. 128 (4), 772–780.

38. Prohaska, C.C., Sottile, P.D., Nordon-Craft, A., Gallagher, M.D., Burnham, E.L., Clark, B.J., Ho, M., Kiser, T.H., Vandivier, R.W., Liu, W., Schenkman, M., Moss, M., 2019. Patterns of utilization and effects of hospital-specific factors on physical, occupational, and speech therapy for critically ill patients with acute respiratory failure in the USA: results of a 5-year sample. Crit. Care 23 (1), 175.

39. Rao, Q.Y., Yin, Z.Q., Hu, H.H., Liu, Y., 2017. Application effect of routine nursing combined with early activities to prevent the delirium in patients with mechanical ventilation in ICU. Chin. J. Gen. Pract. 15 (9), 1609–1611.

| Reference,<br>Study Type                                                                                                                                         | Cases and Cont<br>(Participant #, Charad<br>Total |          | Drop-out Rate | Intervention | Control | Optimal Population                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------|---------------|--------------|---------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 130<br>Bento<br>2020<br>(PMID: 32695996<br>DOI:<br>10.1097/CCE.00000<br>0000000131)<br>Specification of<br>study: retrospective<br>observational<br>cohort study |                                                   | ent unit |               | CRRT + PT    |         | <b>Primary endpoint:</b><br>- therapy data (IMS,<br>Number of PT sessions)<br>- safety and feasibility of<br>PT | <ul> <li>Primary endpoints: <ul> <li>IMS median 5</li> <li>1517 PT sessions, 377 included ambulation</li> <li>ambulation mean of 4,83/d; daily average of 150,61 feet</li> <li>in-hospital mortality highest for pts. with no therapy (73,53%) and lowest for pts. who ambulated (17,95%)</li> <li>one safety event (0,0007% of all PT sessions)</li> </ul> </li> </ul> | 4                 |

CRRT = continuous renal replacement therapy, CVIVU = cardiovascular ICU, IMS = ICU mobility scale, PT = physical therapy, SICU = surgical ICU

Physical therapy, including ambulation, while on CRRT is feasible and safe.

No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                               | (Participant #                                                                                                                                                                                                          | nd Controls<br>‡, Characteristics)<br>Total                                                             | Drop-out<br>Rate | Intervention                 | Control                      | Optimal Population                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 131<br>Miguel 2020<br>(PMID:<br>32695988<br>DOI:<br>10.1097/CCE.<br>0000000000<br>00119)<br>Specification<br>of study:<br>Comparative<br>effectiveness<br>cohort study | 2014-2015<br>- critical ill patient<br>group 3 or 4 (3:red<br>> 96h + major ope<br>procedure; 4: trac<br>with MV >96h)<br><b>Exclusion criteria:</b><br>- imminent death,<br>- active bleeding c<br>- emergent vitals s | rs with MV within<br>ts (diagnosis-related<br>quiring ECMO or MV<br>erating room<br>cheostomy placement |                  | Included patients in<br>2014 | Included patients<br>in 2015 | Primary endpoints:<br>- average LOS for<br>diagnostic related<br>group 3,4 coded pts<br>- days until initiation<br>of physical therapy<br>Secondary outcome:<br>- no. of physical<br>therapy follow-up<br>consults | Significant differences<br>between groups in:<br>- mean ICU LOS (34.4d<br>control vs. 30.5d; p < 0.05)<br>- overall LOS (52.7d vs.<br>43.3d; p < 0.002)<br>- days until initiation of<br>physical therapy (20.09d vs.<br>14.78d; p<0.001)<br>- increased no. of physical<br>therapy follow-up consults<br>6.14 vs. 7.7; p<0.05) | 4                 |

ECMO = extracorporeal membrane oxygenation, HTN = hypertension, ICU = intensive care units, LOS = length of stay, MV = mechanical ventilation, pts = patients

Mobilizing individuals in an intensive care setting decreases length of stay and hospital costs.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                    | Cases and Controls<br>(Participant #, Characteristics<br>Total                                          | ) Drop-out<br>Rate                                                                                      | Intervention | Control                         | Optimal Population                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 132<br>Liu et al.<br>2020<br>(PMID:<br>32685621<br>DOI:<br>10.1016/j.ijnss.<br>2020.03.002)<br>Systematic<br>Review<br>+ MA | 11 RCTs with 576 pts         Inclusion criteria:         - ICU pts         - ≥ 18 and < 85 years of age | 11 included<br>studies in<br>total, for<br>some<br>endpoints<br>only 2-6<br>included in<br>the analysis | NMES         | Sham NMES<br>or<br>routine care | Primary endpoints:<br>- MRC<br>duration of MV<br>- ICU LOS<br>- total LOS<br>Secondary outcomes:<br>- Barthel index<br>- FSS-ICU<br>- MIWD<br>- GCS<br>Not prespecified<br>outcomes:<br>- mortality | Significant differences between groups in:<br>- MRC, MD (95%Cl):1.78 (0.44 – 3.12), p =<br>0.009<br>- MV duration, MD (95%Cl): -0.65 (-1.03<br>0.27) p<0.001<br>- ICU LOS, MD (95%Cl): -3.41 (-4.58<br>2.24), p<0.001<br>- total LOS, MD (95%Cl): -3.97 (-6.89<br>1.06), p = 0.008<br>- Barthel index, MD (95%Cl): 0.09 (0.45 –<br>1.35), p<0.001<br>- FSS-ICU, MD (95%Cl): 9.14 (-1.14 –<br>19.43), p = 0.08<br>- MIWD, MD (95%Cl): 239.03 (179.22 –<br>298.85), p <0.001<br>- GCS, MD 0.78 (-0.07 – 1.62), p = 0.07<br>No significant differences between groups<br>in:<br>Mortality, RR (95%Cl): 1.07 (0.62 – 1.84),<br>p = 0.80 | 1                 |

ICU = intensive care unit, LOS = length of stay, MD = mean deviation, MRC = medical research council, MV = mechanical ventilation, NMES = neuromuscular electric stimulation, pts = patients, RCT = randomized controlled trial

Neuromuscular electrical stimulation increased muscle strength, reduced duration of mechanical ventilation, ICU length of stay and total length of stay in a meta-analysis including 3 to 6 out of 11 studies.

#### References

1: M.A. Leite, E.F. Osaku, J. Albert, C. Costa, A.M. Garcia, F. Czapiesvski, *et al.* Effects of neuromuscular electrical stimulation of the quadriceps and diaphragm in critically ill patients: a pilot study Crit Care Res Pract, 2018 (1) (2018), pp. 4298583-4298584

2. I. Patsaki, V. Gerovasili, G. Sidiras, E. Karatzanos, G. Mitsiou, E. Papadopoulos, *et al.* Effect of neuromuscular stimulation and individualized rehabilitation on muscle strength in Intensive Care Unit survivors: a randomized trial J Crit Care, 40 (1) (2017), pp. 76-82

3. A. Acqua, A. Sachetti, L. Santos, F. Lemos, T. Bianchi, W. Naue, et al. Use of neuromuscular electrical stimulation to preserve the thickness of abdominal and chest muscles of critically ill patients: a randomized clinical trial J Rehabil Med, 49 (1) (2017), pp. 40-48

4. M.E. Kho, A.D. Truong, J.M. Zanni, N.D. Ciesla, R.G. Brower, J.B. Palmer, *et al.* Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, shamcontrolled pilot trial with blinded outcome assessment J Crit Care, 30 (1) (2015), pp. 32-39

5. I.P. Vivodtzev, R.P. Debigaré, P.M. Gagnon, V.M. Mainguy, D.P. Saey, A.P. Dubé, *et al.* Functional and muscular effects of neuromuscular electrical stimulation in patients with severe COPD Chest, 141 (3) (2012), pp. 716-725

6. P.O. Rodriguez, M. Setten, L.P. Maskin, I. Bonelli, S.R. Vidomlansky, S. Attie, *et al.* Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation J Crit Care, 27 (3) (2012), pp. 311-319

7. R.L. Meesen, P. Dendale, K. Cuypers, J. Berger, A. Hermans, H. Thijs, *et al.* Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the intensive care unit: a pilot study Neuromodulation, 13 (4) (2010), pp. 315-320 321

8. W. Gruther, F. Kainberger, V. Fialka-Moser, T. Paternostro-Sluga, M. Quittan, C. Spiss, *et al.* Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study J Rehabil Med, 42 (6) (2010), pp. 593-597

9. H. Chen, X.L. Ren, Q.H. Cheng Effects of neuromuscular electrical stimulation and early passive activity on ICU acquired weakness in mechanically ventilated patients Chin J Rehabil Med, 33 (2) (2018), pp. 146-150 J.L. Sun, J.B. Xu, Y.Q. Ding

10. Study on the preventive effect of nerve electrical stimulation on ICU acquired fthenia Pract Clin Nurs Electron J, 1 (11) (2016), pp. 12-13

11. E. Koutsioumpa, D. Makris, A. Theochari, D. Bagka, S. Stathakis, E. Manoulakas, et al. Effect of transcutaneous electrical neuromuscular stimulation on myopathy in intensive care patients Am J Crit Care, 27 (6) (2018), pp. 495-503

| Reference,<br>Study Type                                                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention           | Control                   | Optimal Population                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|---------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 135 Takaoka<br>2020<br>(PMID:<br>32628501<br>DOI:<br>10.1513/Ann<br>alsATS.20200<br>1-059OC)<br>Specification<br>of study:<br>Systematic<br>Review and<br>Meta-<br>analysis | <ul> <li>- 14 publications (12 randomized, 2<br/>non-randomized, 926 pts)<sup>1-14</sup></li> <li>Inclusion criteria:         <ul> <li>examining critically ill pts</li> <li>&gt;18 y, admitted to an ICU for at least 24h</li> <li>leg-cycle ergometry in the ICU</li> <li>compared with no leg-cycle ergometry</li> </ul> </li> <li>Per Branch</li> </ul> |                      | Leg-cycle<br>ergometry | No leg-cycle<br>ergometry | <b>Primary outcomes:</b><br>- physical function<br>- duration of MV<br>- LOS<br>- mortality<br>- QoL | No significant differences between<br>groups in:<br>- hospital discharge: 3 RCTs; n = 225;<br>standardized MD, 0.07 [95% Cl,<br>20.38 to 0.53]; very low certainty<br>- MV duration: 9 RCTs; n = 676; MD,<br>0.01 [21.04 to 1.07] days; moderate<br>certainty<br>- ICU LOS: 10 RCTs; n = 511; MD,<br>0.23 [21.44 to 1.89] days; moderate<br>certainty<br>- hospital LOS :7 RCTs; n = 393, MD<br>20.07 [23.87 to 3.73] days;<br>moderate certainty<br>- QoL at 6 months after hospital<br>discharge: 2 RCTs; n = 103; MD, 9.13<br>[13.80 to 32.05] points higher; very<br>low certainty<br>- hospital mortality: 7 RCTs; n = 710;<br>RR 1.09 [0.82 to 1.46]; moderate<br>certainty | 2<br>(downgraded<br>due to<br>inclusion of<br>non-RCTs) |

LOS = length of stay, MD = mean difference, MV = mechanical ventilation, pts = patients, QoL = quality of life, Y = years

#### Leg-cycling could not show a benefit in relation to physical function, duration of MV, LOS, mortality, QoL, muscle strength.

#### References

1. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009;37:2499–2505.

2. Bahouth MN, Power MC, Zink EK, Kozeniewski K, Kumble S, Deluzio S, et al. Safety and feasibility of a neuroscience critical care program to mobilize patients with primary intracerebral hemorrhage. Arch Phys Med Rehabil 2018;99:1220–1225.

3. Bianchi T, dos Santos LJ, Aguiar Lemos FD, Sachetti A, Dall'Acqua AM, et al. The effect of passive cycle ergometry exercise on diaphragmatic motion of invasive mechanically ventilated critically ill patients in intensive care unit: a randomized clinical trial. Int J Phys Med Rehabil 2018;6:499.

4. Coutinho WM, dos Santos LJ, Fernandes J, Viera SRR, Forgiarini LA Jr., Dias AS. Acute effect of the use of cycle ergometer during physical therapy treatment in mechanically ventilated critically ill patients [in Portuguese]. Fisioter Pesqui 2016;23:278–283.

5. Dantas CM, Silva PFDS, Siqueira FH, Pinto RM, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients [in English, Portuguese]. Rev Bras Ter Intensiva 2012;24:173–178.

6. Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: a randomised controlled trial. PLoS One 2018;13:e0207428.

7. Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA 2018;320:368–378.

8. França EE, Ribeiro LC, Lamenha GG, Magalhães IK, Figueiredo TG, Costa MJ, et al. Oxidative stress and immune system analysis after cycle ergometer use in critical patients. Clinics (São Paulo) 2017;72: 143–149.

9. Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, et al. Impact of very early physical therapy during septic shock on skeletal muscle: a randomized controlled trial. Crit Care Med 2018;46:1436–1443.

10. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015;41:865–874.

11. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, Albuquerque IM. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol 2017;43:134–139

12. Nava S. Rehabilitation of patients admitted to a respiratory intensive care unit. Arch Phys Med Rehabil 1998;79:849–854.

13. Parry SM, Berney S, Warrillow S, El-Ansary D, Bryant AL, Hart N, et al. Functional electrical stimulation with cycling in the critically ill: a pilot casematched control study. J Crit Care 2014;29:695.e1–695, e7.

14. Kho ME, Molloy AJ, Clarke FJ, Reid JC, Herridge MS, Karachi T, et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respir Res 2019;6: e000383.

|                                                                                                                                               | Tot                                                                                                                                                                                                                                                                                                                                                                            | haracteristics)<br>al                                                                                                          | Drop-out Rate                                                                                                                                                                                                                                                                             | Intervention                                                                                                                                                                               | Control                                            | Optimal Population                                                                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                      | Evidence<br>Grade                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 136<br>Nickels 2020 -<br>(PMID: E:<br>32585438 -<br>DOI: m<br>10.1016/j.j -<br>crc.2020.0 -<br>5.008) -<br>Specificati<br>on of -<br>study: - | 74 pts<br>nclusion criteria:<br>• expected to be MV for<br>• recruited within 96h a<br>• expected to remain in<br>Exclusion criteria:<br>• <18y old<br>• pre-existing condition<br>mobility<br>• neurological disorder<br>• injuries precluding in-<br>• >135kg body weight<br>• pregnant<br>• uncontrolled seizures<br>• unlikely to survive the<br>admission<br>Per Br<br>37 | after ICU admission<br>h the ICU for > 48h<br>h that impaired<br>-bed cycling<br>c or status epilepticus<br>e current hospital | Intervention<br>group: 6 (1 did<br>not receive<br>allocated<br>intervention; 1<br>died, 4<br>discharged from<br>acute hospital<br>prior to<br>assessment)<br>Control group: 6 (<br>1 excluded as<br>ineligible; 1 died,<br>4 discharged from<br>acute hospital<br>prior to<br>assessment) | Daily<br>assessment of<br>routine<br>physiotherapy<br>+ 30 minutes<br>in-bed cycling<br>-once daily<br>(MOTOmed<br>Letto2 (RECK-<br>Technik GmbH<br>& Co. KG,<br>Betzenweiler,<br>Germany) | Daily<br>assessment of<br>routine<br>physiotherapy | Primary outcome:<br>- muscle atrophy in RF <sub>CSA</sub><br>at day 10 post-study<br>enrolment<br>Secondary outcomes:<br>- RFT and VIT thickness<br>- MRC <sub>SUM</sub><br>- HGS<br>- functional status score<br>- 6MWT<br>- ICU mobility score<br>- functional milestones<br>- delirium incidence<br>- EQ5D-5L<br>Sample size calculation:<br>- 68 pts (34 per group) | Primary endpoint:<br>- no significant between-<br>group differences<br>(p=0.52)<br>Secondary outcomes:<br>- no significant between-<br>group differences in any<br>secondary outcome | 3<br>(dowgraded<br>as under-<br>powered) |

H = hours, HGS = handgrip strength, ICU = intensive care unit, MRC<sub>SUM</sub> = medical research council sum score, pts = patients, RCT = randomized controlled trial, RF<sub>CSA</sub> = rectus femoris cross-sectional area, RFT = rectus femoris thickness, VIT = vastus intermedius thickness, y = years, 6MWT = six-minute walk test

#### In-bed cycling in addition to early mobilization showed no benefit in relation to muscle atrophy. The study was underpowered.

| Reference,<br>Study Type                                                                                                          | (Participant #, cha<br>Total                                                                                                                                                                                                                                                 | · · ·                                                                                       | Drop-out Rate                                                                                                                                                    | Intervention      | Control | Optimal<br>Population                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Jochmans 2020<br>(https://pubmed<br>.ncbi.nlm.nih.go<br>v/32449068/)<br>Specification of<br>study:<br>Prospective<br>cohort study | 103 patients perform<br>sessions<br>Inclusion criteria:<br>- PP was indicated in<br>moderate-to severe<br>with PaO2/FiO2 < 15<br>PEEP of at least 10 c<br>use of NMBA<br>Exclusion criteria:<br>- severe hemodynam<br>or withdrawal of life<br>treatments<br>Per Bran<br>103 | n case of<br>hypoxemia<br>50 despite a set<br>mH2O and the<br>nic instability<br>sustaining | - severe<br>hemodynamic<br>compromise<br>( <i>n</i> =5), missing<br>data at<br>inclusion ( <i>n</i> =3),<br>therapeutic<br>limitation<br>decision ( <i>n</i> =1) | Prone<br>position |         | Primary Endpoint:<br>- time sufficient to<br>obtain the<br>maximum<br>improvement in<br>several<br>physiological<br>respiratory<br>parameters in the<br>first PP session<br>and in all PP<br>sessions<br>Secondary<br>Endpoint:<br>- physiological<br>parameters<br>related to patient<br>survival in PP | Primary Result:<br>- pooled responder sessions showed<br>beneficial physiological effect continued<br>after 16 h of PP and at least up to 24 h<br>Secondary Result:<br>Before PP vs 2h after PP<br>Increase in:<br>- pH 7.26 $\pm$ 0.1 vs 7.29 $\pm$ 0.1 (p<0.05)<br>- static compliance 39 $\pm$ 16 vs 40 $\pm$ 15<br>[mL/cmH2O] (p>0.05)<br>- PaO2/FiO2 129 $\pm$ 52 vs 189 $\pm$ 79 (p<0.05)<br>- PaO2 77 $\pm$ 32 vs 99 $\pm$ 60 [mmHg] (p<0.05)<br>Decrease in:<br>- PaCO2 54 $\pm$ 13 vs 51 $\pm$ 15 [mmHg] (p<0.05)<br>- decrease in $\Delta P$ was the only parameter<br>significantly associated with an increase in<br>PaO2/FiO2 > 50% | 3                 |

PP=prone position; ICU=intensive care unit; PEEP=positive endexpiratory pressure; NMBA=neuromuscular blocking agents; h=hours

PP sessions should be prolonged at least 24 h and be extended if the PaO2/FiO2 ratio at 24 h remains below 150, especially since no criteria can predict which patient will benefit or not from it.

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                       | Drop-<br>out Rate | Intervention                                                                                                                                                                                                                       | Control | Optimal Population                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 150 Boyd<br>2020<br>(PMID:<br>32349888<br>DOI:<br>10.1016/j.aucc<br>.2020.02.004)<br>Specification<br>of study: a<br>prospective<br>observation | 20 patients after cardiac<br>surgery who were<br>receiving vasoactive<br>therapy<br>Inclusion criteria:<br>- > 18 years<br>- undergoing elective<br>open-heart surgery<br>- postoperatively<br>receiving low, moderate,<br>or high levels of<br>vasoactive support<br>Per Branch<br>N=20 |                   | Positional changes:<br>- supine<br>- high sitting (60 degrees)<br>- sit on the edge of bed<br>- standing<br>- marching on the spot<br>- sit on the edge of bed<br>- high sitting (60 degrees)<br>- supine<br>1-minute-per-position |         | Primary endpoints:<br>- cardiac output<br>- cardiac index<br>- stroke volume<br>Secondary outcomes:<br>- heart rate<br>- rhythm,<br>- arterial systolic and<br>diastolic blood pressure<br>- mean arterial pressure<br>- respiratory rate,<br>- oxygen saturation<br>- adverse events | <ul> <li>Primary outcome:</li> <li>mean arterial pressure, upright<br/>positioning caused significant increases<br/>(p=0.018) values increasing from baseline<br/>(supine) from 72.31 (11.91) mmHg to<br/>77.44 (9.55) mmHg when back in supine.</li> <li>No significant differences in: <ul> <li>cardiac output, heart rate, stroke<br/>volume, or cardiac index with upright<br/>positioning</li> </ul> </li> </ul> | 3 → 4             |

pts = patients

Low-level exercise in patients after cardiac surgery receiving vasoactive medication was well tolerated with a low incidence of adverse events and led to significant increases in MAP. Upright positioning and low-level exercise appeared safe and feasible in this patient cohort.

No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                         | Drop-<br>out<br>Rate | Intervention                                                                                                                       | Control                                         | Optimal Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 151<br>Waldauf 2020<br>(PMID:<br>32345834<br>DOI:<br>10.1097/CCM.00<br>000000000438<br>2)<br>Systematic<br>Review mit MA | 43 studies (RCTs) with<br>3.548 pts<br>Inclusion criteria:<br>- RCTs<br>- critically ill pts<br>Per Branch |                      | Rehabilitation<br>- protocolized<br>physical<br>rehabilitation<br>- neuromuscular<br>electrical<br>stimulation<br>- supine cycling | No intervention<br>or<br>Placebo<br>stimulation | <b>Outcomes:</b><br>- ICU mortality<br>- end of study<br>mortality<br>- duration of MV<br>- ICU LOS<br>- hospital LOS<br>- long-term functional<br>outcome | Significant differences between groups in:<br>ICU LOS<br>Mean difference: $(95\%CI)$ : -1.2 (-2.5 – 0.0)<br>PPR - mean difference $(95\%CI)$ : -2.02 (-3.49<br>0.56)<br>NMES - mean difference $(95\%CI)$ : -0.23 (-2.45 –<br>1.98)<br>Cycling - mean difference $(95\%CI)$ : 1.10 (-1.59 –<br>3.80)<br>effect influenced by exposure to the intervention<br>early initiation of the therapy had no effect<br>duration of mechanical ventilation<br>mean difference: $(95\%CI)$ : -1.7 (-2.50.8<br>PPR - mean difference $(95\%CI)$ : -2.0 (-3.30.7)<br>NMES - mean difference $(95\%CI)$ : -2.1 (-3.70.6)<br>cycling - mean difference $(95\%CI)$ : -0.1 (-2.1 – 1.8)<br>effect influenced by ICU length of stay measured<br>as duration of mechanical ventilation<br><b>No significant differences between groups in:</b><br>- ICU mortality, OR (95%CI): 1.02 (0.84 – 1.24)<br>- mortality end of study, OR (95%CI): 0.94 (0.79 –<br>1.12)<br>-hospital LOS, MD: (95%CI): -1.6 (-4.3 – 1.2)<br>- SF-36 Physical Component Score, MD: (95%CI):<br>1.5 (-2.1 – 5.1) | 1                 |

ICU = Intensive care unit, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electric stimulation, RCT = randomised controlled trial, pts = patients

Rehabilitation interventions in critically ill patients do not influence mortality and are safe. Protocolized physical rehabilitation significantly shortens time spent on mechanical ventilation and in ICU, but this does not consistently translate into long-term functional benefit. Stable patients with lower Acute Physiology and Chronic Health Evaluation II at admission (<20) and prone to protracted ICU stay may benefit most from rehabilitation interventions.

| Reference,<br>Study Type                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-out<br>Rate                                                                                                                                     | Intervention                                                                                                                       | Control            | Optimal<br>Population                                | Primary Results                                                                                                                                                                                                                                                                                               | Evidence<br>Grade               |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 155 Franca<br>2020<br>(PMID:<br>32294698<br>DOI:<br>10.1590/1414<br>-<br>431X2020877<br>0)<br><b>Specification</b><br>of study:<br>RCT | 35 pts         Inclusion criteria:         - ≥21 years         - intubated ≥ 24 h         - adequate cardiac reserve (demonstrated by variability o20% heart rate at rest)         - systolic blood pressure between 90 and 180 mmHg         - normal electrocardiogram         - peripheral capillary oxygen saturation > 90%         - fraction of inspired oxygen < 60%         - respiratory rate < 25 bpm         - hemoglobin > 7 g/dL         - platelets > 20,000 cells/mm³         - without sepsis         Exclusion criteria:         - unable to walk without assistance before ICU         - pregnant         - BMI > 35 kg/m²         - preexisting neuromuscular disease, vascular disease or stroke         - skin lesions at electrode locations         - unconsolidated fracture         - pacemaker         - signs of low or high blood pressure         - clot at blood collection site         Per Branch         PCE = 9         FES = 9       control = 10         PCE + FES = 7 | Interventio<br>n: 4 pts (did<br>not receive<br>allocated<br>interventio<br>n)<br>Control: 3<br>(did not<br>receive<br>allocated<br>interventio<br>n) | 3<br>Intervention<br>groups:<br>- NMES:<br>- M. rectus<br>femoris/vast<br>us lateralis<br>20 min<br>- PCE:<br>20 min<br>- NMES+PCE | Physio-<br>therapy | <b>Outcomes:</b><br>- ICU LOS<br>- duration<br>of MV | Outcomes:<br>- ICU LOS (days),<br>mean ± SD:<br>control 4.7 ± 2.45 vs<br>NMES 7.22 ± 5.91,<br>NMES+PCE 4.57 ±<br>1.27,<br>PCE 7.78 ± 3.96, p =<br>0.108<br>- duration of MV<br>(days), mean ± SD:<br>control 4.90 ± 2.80 vs<br>NMES 5.67 ± 3.35,<br>NMES+PCE 4.29 ±<br>1.38,<br>PCE 6.44 ± 3.64, p =<br>0.174 | 2 → 3<br>(high risk<br>of bias) |

ICU = intensive care unit, FES = Functional electrical stimulation, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electric stimulation, PCE = passive cycle ergometry, RCT = randomized controlled trial, pts = patients

Neuromuscular electrical stimulation and passive cycle ergometry did not influence ICU length of stay or duration of mechanical ventilation.

| Reference,<br>Study Type                                                                                                            | (Partic<br>Charac                                                                                                | d Controls<br>ipant #,<br>teristics)<br>otal                                                                                                                 | Drop-out Rate                                                                                                                                                                                                             | Intervention                                                                                                                                            | Control                       | Optimal<br>Population                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 156<br>Schujmann<br>2020<br>(PMID:<br>32205595<br>DOI:<br>10.1097/CC<br>M.0000000<br>00004181)<br>Specification<br>of study:<br>RCT | <ul> <li>contraindica<br/>mobilization</li> <li>cognitive impaninability to<br/>commands an<br/>tests</li> </ul> | of 100 in the 2<br>CU admission<br>eria:<br>ospitalized at<br>ls<br>lterations<br>ys in the ICU<br>oon admission<br>tions for<br>pairment with<br>understand | intervention:<br>n= 18 (7 died;<br>1 discharge<br>before<br>evaluation, 10<br>discharge ICU<br>before 3 days)<br>control:<br>n= 18 (11 died;<br>2 discharge<br>before<br>evaluation; 5<br>discharge ICU<br>before 3 days) | - PPR<br>- NMES<br>- Cycling<br>all patients in<br>intervention<br>groups started<br>physical<br>therapy care<br>within 48<br>hours of ICU<br>admission | conventional<br>physiotherapy | Primary endpoint:<br>- functional status<br>(BI scores) after<br>ICU discharge<br>Secondary<br>outcomes:<br>- respiratory,<br>muscular, and<br>physical activity<br>- ICU and hospital<br>LOS | Primary endpoint:- Barthel Index at discharge $97\pm5$ ; $76\pm20$ ; $p<0.001$ - ICU Mobility Scale in discharge moment $9.8\pm0.4$ ; $7\pm2$ ; $p<0.001$ Secondary outcomesPhysical activity (% of the time)- inactive $92.3\pm2.8$ ; $95.7\pm2$ ; $p<0.001$ - light $6.4\pm2.4$ ; $3.85\pm1.9$ ; $p<0.001$ - moderate $1.012\pm0.6$ ; $0.3\pm0.2$ ; $p<0.001$ - intense $0.15\pm0.10$ ; $0.03\pm0.02$ ; $p=0.002$ Muscular function- sit and stand (repetitions) $8\pm3$ ; $5\pm3$ ; $p<0.001$ - timed up and go (s) n.s handgrip strength (kgf) n.s.ICU LOS (days)-5 (4-7); $8(5-12)$ ; $p=0.003$ Hospital LOS n.s functional independence (using BI) at 3 months afterdischarge $39(97,5\%)$ VS. $29(74,4\%)$ , $p = 0.03$ - no adverse events that would require intervention werereported | 2                 |

d = days, ICU = intensive care unit, LOS = length of stay, NMES = neuromuscular electrical stimulation, n.s. = not significant, PPR = protocolized physical rehabilitation, RCT = randomized controlled trial

# An early and progressive mobility program seems to have a benefit in relation to Barthel Index, ICU Mobility Score, physical activity and shortens the ICU length of stay.

| Reference,<br>Study Type                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention                                                                                                                  | Control | Optimal Population                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 159<br>Kim 2019<br>(PMID: 32166241<br>DOI:<br>10.1097/CCE.00000<br>0000000060)<br>Specification of<br>study:<br>Retrospective<br>cohort study | 183 pts Inclusion criteria: <ul> <li>ICU pts</li> <li>&gt; 18 years</li> <li>receiving EM</li> <li>admitted to hospital from home</li> </ul> Exclusion criteria: <ul> <li>ineligible ICU admission (discharged to hospice or transferred to another hospital)</li> <li>LOS &gt; 45d, NICU LOS &gt; 21 d</li> <li>history of limb amputation</li> <li>no surviving until hospital discharge</li> </ul> Per Branch 183 |                      | <b>None</b><br>ICU-related and<br>mobilization-related<br>factors were tested<br>for their association<br>with discharge home |         | Primary endpoint:<br>-discharge home<br>Secondary endpoint:<br>- adverse events<br>Sample size<br>calculation:<br>no power calculation<br>reported | Primary endpoint:<br>- incremental increase in the<br>maximum level of mobility<br>was associated with 46%<br>greater odds of discharge<br>home (odds ratio, 1.46; 95%<br>Cl, 1.13-1.88).<br>- increased age was<br>associated with 5%<br>decreased odds (odds ratio,<br>0.95) and each additional day<br>of hospitalization with a 5%<br>decrease (odds ratio, 0.94)<br>was associated with<br>decreased odds of discharge<br>home<br>Adverse events:<br>n/a | 4                 |

ICU = intensive care unit, LOS = length of stay, pts = patients

Among medical ICU patients who resided at home prior to their ICU admission, the maximum level of mobility achieved in the medical ICU was the factor most strongly associated with discharge back home.

No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                              | (Participant                           | nd Controls<br>#, Characteristics)<br>Total                                                | Drop-out Rate                                                                                                                                       | Intervention                                                                                                                                                | Control                  | Optimal<br>Population                                                                         | Primary Results                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade                                    |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 160<br>Yu 2019<br>(PMID:<br>32156142<br>DOI:<br>10.21037/ap<br>m.2020.02.12<br>)<br>Spezification<br>of study:<br>RCT | arrhythmia, blood p<br>and ECMO assist | for final analysis<br>fter admission<br>dmission<br>cause of ICU<br>before admission<br>10 | - 5 (due to<br>being<br>transferred to<br>another<br>hospital due to<br>the change in<br>disease<br>condition or<br>discharge from<br>the hospital) | Routine ICU treatment<br>+ in-bed cycling<br>- (MOTOmed letto2,<br>Germany) with upper<br>limb passive joint<br>activity<br>- passive and active<br>cycling | Routine ICU<br>treatment | <b>Outcomes:</b><br>- ICU-AW<br>- adverse events<br>- MV time<br>- ICU LOS<br>- Barthel Index | Outcomes:<br>- ICU LOS [d]<br>(11.87±2.00,<br>13.24±2.32, p = 0.001)<br>- MV time [h](<br>200.57±25.97,<br>248.10±39.43, p<0.001)<br>- Barthel Index<br>(41.04±7.016,<br>33.70±8.81, p<0.001)<br>- incidence of ICU-AW<br>(16 (30.2%), 32 (59.3%),<br>p=0.003)<br>- no serious adverse<br>events in both groups | 2 → 3<br>(downgrade:<br>high risk of<br>bias in RoB) |

ARF = acute respiratory failure, y = years, APACHE II score = acute physiology and chronic health score, d = day, GCS = Glasgow coma scale, h = hours, ICU-AW = intensive care unit acquired weakness, ICU LOS = intensive care unit length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

In-bed cycling seems to have a benefit on ICU-AW, MV time, ICU LOS and Barthel Index in relation to usual ICU care.

| Reference,<br>Study Type                                                                                                                            | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Interventio<br>n  | Control    | Optimal Population                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 162<br>Anekwe<br>2020<br>(PMID:<br>32135387<br>DOI:<br>10.1016/j.p<br>hysio.2019.<br>12.004)<br>Specificatio<br>n of study:<br>systematic<br>review | 9 publications (RCTs) including<br>948 pts<br>Inclusion criteria:<br>- conducted in the ICU<br>- RCTs<br>- adult pts<br>- evaluated the effect of EM or<br>NMES<br>- reported the incidence of<br>ICUAW or assessed muscle<br>strength using the MRC<br>Exclusion criteria:<br>- pts already diagnosed with<br>ICUAW<br>Per Branch |                      | EM and/or<br>NMES | Usual care | Primary endpoint:<br>- incidence of ICUAW<br>measured at any time point<br>after initiation of intervention<br>Secondary outcomes:<br>- length of time spent on<br>MV(ventilator-free days and<br>duration of MV)<br>- discharge location<br>- ICU and hospital LOS<br>- acute mortality (defined as<br>death in the ICU or hospital) | Primary outcome<br>- random effect model OR 0.63 (95% CI: 0.43<br>to 0.92) (screened population) 0.71(95% CI:<br>0.53 to 0.95) (total population randomized)<br>- the fixed effect model had the same results.<br>significantly more pronounced effect of EM in<br>patients with longer ICU-LOS.<br>-NMES had a greater effect on ICUAW than<br>EM (0.71 vs. 0.26)<br>-EM <72h is more effective than EM >72h (0.7<br>vs. 0.75)<br>Secondary outcomes<br>- acute mortality: no difference between<br>groups (OR 1.19; 95% CI: 0.79 to1.80)<br>- ICU LOS no meta analysis<br>- MV Duration no meta analysis<br>- discharge home OR 1.69 (95% CI: 1.04 to<br>2.75) in favour of rehabilitation for being<br>discharged home<br>- only two studies favoring discharge home in<br>the intervention group (p = 0.06 and 0.0007) | 1                 |

EM = early mobilization, ICU-AW = ICU-acquired weakness, ICU = intensive care unit, LOS = length of stay, MRC = medical research council scale, NMES = neuromuscular electrical stimulation, pts = patients

EM and/or NMES shows a benefit in relation to the incidence of ICU-AW.

#### Reference

1. Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, MacielC, *et al*. Influence of early mobilization on respiratory and periph-eral muscle strength in critically ill patients. Rev Bras Ter Intensiva2012;24(2):173–8.

2. Fischer A, Spiegl M, Altmann K, Winkler A, Salamon A, Themessl-Huber M, *et al.* Muscle mass, strength and functional outcomes incritically ill patients after cardiothoracic surgery: does neuromuscularelectrical stimulation help? The Catastim 2 randomized controlled trial.Crit Care 2016;20(1):1.

3. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015;41(5):865–74.

4. Kho ME, Truong AD, Zanni JM, Ciesla ND, Brower RG, PalmerJB, *et al*. Neuromuscular electrical stimulation in mechanically ven-tilated patients: a randomized, sham-controlled pilot trial with blindedoutcome assessment. J Crit Care 2015;30(1):32–9.

5. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, *et al.* Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet2016;388(10052):1377–88.

6. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripo-daki E, et al. Electrical muscle stimulation prevents critical

illnesspolyneuromyopathy: a randomized parallel intervention trial. Crit Care2010;14(2):R74.

7. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, HawthorneG, *et al.* Exercise rehabilitation for patients with critical illness: arandomized controlled trial with 12 months of follow-up. Crit Care2013;17(4):R156.

8. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L,*et al.* A binational multicenter pilot feasibility randomized controlledtrial of early goal-directed mobilization in the ICU. Crit Care Med2016;44(6):1145–52.

9. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechan-ically ventilated, critically ill patients: a randomised controlled trial.Lancet 2009;373(9678):1874–82.

| Reference,<br>Study Type                                                                                                                                                        | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                               | Control | Optimal Population                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 170<br>Ding<br>2020<br>PMID:<br>32000806<br>DOI:<br>10.1186/s1305<br>4-020-2738-5<br><b>Specification of</b><br><b>study</b> :<br>a multi-center<br>prospective<br>cohort study | 20 pts. Between January 2018 and<br>April 2019<br>Inclusion criteria:<br>- Non-intubated moderate to severe<br>ARDS patients<br>- arterial blood gas analysis after a<br>PEEP of 5 cmH2O supported by NIV<br>(CPAP/BiPAP mode) with<br>FiO2 0.5 for at least 30 min →<br>PaO2/FiO2 was less than 200 mmHg<br>Exclusion criteria:<br>-signs of respiratory fatigue (RR ><br>40/min, PaCO2 > 50 mmHg/pH <<br>7.30, and obvious accessory<br>respiratory muscle use)<br>- immediate need for<br>intubation (PaO2/FiO2 < 50 mmHg,<br>unable to protect airway or change<br>of mental status)<br>- inability to collaborate with PP with<br>agitation<br>or refusal |                      | Interventions:<br>(1) <u>HFNC</u> ,<br>high-flow nasal<br>cannula support<br>alone.<br>(2) <u>HFNC+PP</u> ,<br>high-flow nasal<br>cannula therapy<br>combined with<br>prone positioning.<br>(3) <u>NIV</u> ,<br>non-invasive<br>ventilation support<br>alone.<br>(4) <u>NIV+PP</u> ,<br>non-invasive<br>ventilation combined<br>with prone<br>positioning. |         | No sample size calculation<br>Primary endpoints:<br>- rate of avoidance for<br>intubation.<br>Secondary endpoints:<br>- increase in PaO2/FiO2 from<br>HFNC alone to HFNC+PP, to<br>NIV alone, and to NIV+PP<br>- threshold of PaO2/FiO2 for<br>successful PP cases<br>- time duration (tolerance) for<br>each PP therapy session | Primary endpoints:<br>- 11/20 pts, 55% avoided intubation → success<br>group.<br>-9/20 intubated, 3 needed ECMO, 1 died → failure<br>group Secondary endpoints:<br>-PaO2/FiO2 showed a trend of increase in<br>transitions from HFNC to HFNC+PP, to NIV, and to<br>NIV+PP (no p value) -in the success group: <ul> <li>PaO2/FiO2 higher in HFNC+PP than in<br/>HFNC (130 ± 35 mmHg vs 95 ± 22<br/>mmHg, P = 0.016).</li> <li>PaO2/FiO2 upward trend when PP was<br/>added to NIV (166 ± 12mmHg vs 140 ±<br/>30 mmHg, P = 0.133)</li> <li>-in the failure group:</li> <li>PaO2/FiO2 were significantly higher in<br/>NIV+PP compared to NIV (111 ± 20<br/>mmHg vs 77 ± 14 mmHg, P = 0.011)</li> <li>PaO2/FiO2 in those evaluated on HFNC+PP was<br/>significantly higher in the success group than in<br/>the failure group (125 ± 41 mmHg vs 119 ± 19<br/>mmHg, P = 0.043)</li> <li>No significant difference in total days, frequency,<br/>and duration of PP between the successful and<br/>the failure groups was demonstrated</li> </ul> | 3 → 4             |

Pts. =patients; ARDS= acute respiratory distress syndrome; PEEP= end-expiratory positive airway pressure; NIV=non-invasive ventilation; HFNC= high-flow nasal cannula; PP=prone position

Early application of PP with HFNC, especially in patients with moderate ARDS and baseline SpO2 > 95%, may help avoid intubation.

| Reference,<br>Study<br>Type                                                                                                              |                                                                                                                                                                                                                                                                               | and Controls<br>#, Characteristics)<br>Total                                                                                                                                                                             | Drop-out Rate                                              | Intervention                                                                                                                                                                                                                                                | Control                                                                                                                                                                                                        | Optimal<br>Population                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 171 Gama<br>Lordello<br>2020<br>(PMID:<br>31994405<br>DOI:<br>10.1177/0<br>269215520<br>901763)<br>Specificati<br>on of<br>study:<br>RCT | <ul> <li>either elective<br/>revascularization<br/>by median stere<br/>extracorporeal</li> <li>Exclusion critee</li> <li>difficulty und<br/>activities</li> <li>motor or neu-<br/>that would pre-<br/>using a cycle en-<br/>walking independent<br/>- discontinued</li> </ul> | ria:<br>cardiac surgery<br>e myocardial<br>on or valve surgery<br>motomy with<br>circulation<br>ria:<br>erstanding the<br>rological impairment<br>event them from<br>rgometer or from<br>endently<br>the protocol on the | 6 pts,<br>return to ICU: 3<br>interventions, 3<br>control) | Rehabilitation program:<br>-start 6 to 8 hours after<br>extubation<br>- twice in a 24-hour<br>period using only the<br>cycle ergometer (Delta-<br>Sport Handelskontor<br>GmbH Nr. AT-2154,<br>version 08/2015;<br>Hamburg, Germany)<br>- 10 minute sessions | Standard<br>mobilization:<br>-6 to 8 hours after<br>extubation<br>- 10 minutes sessions<br>- active exercises for<br>lower and upper limbs<br>- each movement<br>repeated 10 times in<br>an open kinetic chain | Primary endpoint:<br>- difference in total<br>number of steps<br>recorded on<br>pedometer over 3<br>days of use<br>Secondary<br>outcomes:<br>- mobility<br>- reasons that<br>prevented pts<br>from walking<br>during phase I<br>cardiac<br>rehabilitation<br>Sample size<br>calculation:<br>- 216 pts, 108 in<br>each group | <ul> <li>Primary endpoint: <ul> <li>no significant</li> <li>difference (p=0.167)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>higher motivation to</li> <li>walk in intervention</li> <li>group (37,6%, 25,2%, p=0.04)</li> <li>no significant</li> <li>differences in other</li> <li>outcomes</li> </ul> </li> </ul> | 2                 |
|                                                                                                                                          | 114                                                                                                                                                                                                                                                                           | 120                                                                                                                                                                                                                      |                                                            |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                            |                   |

ICU = intensive care unit, pts = patients, Y = years

In-bed cycling seems to have no benefit in relation to number of steps on pedometer after intervention.

| 173<br>Windmoller<br>202042 pts enrolled, 31 analyzedI<br>11pts<br>(6 Inter-<br>vention, 5<br>Control; 6 for<br>arhythmia, 111pts<br>(6 Inter-<br>vention, 5<br>Control; 6 for<br>arhythmia, 1Primary endpoint:<br>- 6MWTPrimary endpoint:<br>- 6MWT0/VID:<br>31988253- underwent myocardial<br>revascularization surgery11pts<br>(6 Inter-<br>vention, 5<br>Control; 6 for<br>arhythmia, 1<br>for surgical<br>reinter-<br>vention, 2<br>not<br>respiratoryStep program in<br>immediate<br>postoperative period<br>arhythmia, 1Physiotherapeutic<br>program (step<br>program):<br>2 daily session with<br>a average duration<br>of 5tudy:<br>RCTPrimary endpoint:<br>- 6MWT, no significant<br>difference (p=0.16)Primary endpoint:<br>- 6MWT, no significant<br>difference (p=0.16)10.4187/resp<br>care.06919Exclusion criteria:<br>- unable to understand and<br>follow the research procedures<br>postoperative<br>postoperative<br>gostoperative<br>postoperative<br>gostoperative<br>postoperativePrimary endpoint:<br>- 6MWT, no significant<br>difference (p=0.16)Specification<br>of study:<br>RCT- unable to understand and<br>follow the research procedures<br>and 2 for<br>death- for<br>deathNot<br>respectication<br>of study:<br>RCTPer Branch- we have a set of the 4th<br>postoperative day- no significant differences<br>in other outcomes- no significant differences<br>in other outcomes- no significant differences<br>in other outcomes | Reference,<br>Study Type                                                                                      | Cases and Cont<br>(Participant #, Chara<br>Total                                                                                                                                                                       |                                                 | Drop-out<br>Rate                                                                                                                                  | Intervention                                                                                                                                  | Control                                                                      | Optimal Population                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                    | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 21 21 and control)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Windmoller<br>2020<br>(PMID:<br>31988253<br>DOI:<br>10.4187/resp<br>care.06919)<br>Specification<br>of study: | Inclusion criteria:<br>- 40–70 years<br>- underwent myocard<br>revascularization surg<br>Exclusion criteria:<br>- unable to understand<br>follow the research pr<br>- had complications<br>postoperative<br>Per Branch | dial<br>gery<br>nd and<br>rocedures<br><b>h</b> | (6 Inter-<br>vention, 5<br>Control; 6 for<br>cardiac<br>arrhythmia, 1<br>for surgical<br>reinter-<br>vention, 2<br>not<br>reassessed<br>and 2 for | immediate<br>postoperative period<br>+<br>cycle ergometer<br>with CPAP:<br>1 daily session from<br>the 2 <sup>nd</sup> to the 4 <sup>th</sup> | <pre>program (step program): 2 daily sessions with an average duration</pre> | <ul> <li>- 6MWT</li> <li>Secondary outcomes: <ul> <li>respiratory muscle</li> <li>strength</li> <li>lower limbs muscle</li> <li>resistance</li> <li>MV time</li> <li>ICU LOS</li> <li>hospital LOS</li> </ul> </li> <li>Sample size <ul> <li>calculation:</li> <li>30 (15 intervention</li> </ul></li></ul> | <ul> <li>- 6MWT, no significant<br/>difference (p=0.16)</li> <li>Secondary outcomes: <ul> <li>- significantly lower ICU</li> <li>LOS [d] (2.5±0.5, 2.9 ± 0.7, p=0.05)</li> <li>- no significant differences</li> </ul> </li> </ul> | 2                 |

CPAP = continuous positive airway pressure, d = days, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial, 6MWT = 6 minute walk test

#### In-bed cycling with CPAP seems to have a small benefit on ICU LOS in comparison to a standard physiotherapeutic program.

| Reference,<br>Study Type                                                                                                                                          | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                        | Characteristics)                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                               | Control                                               | Optimal<br>Population                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 174 Coles<br>2020<br>(PMID:<br>31972758<br>DOI:<br>10.1097/TA.<br>000000000<br>002588)<br><b>Specification</b><br>of study:<br>retrospective<br>pre-post<br>study | 526 critically ill trauma p<br>Inclusion criteria:<br>- adult trauma pts (>18 y<br>- admitted to ICU at a Le<br>over a 2-year period prive<br>EMP implementation (w<br>period)<br>- admitted during study<br>Exclusion criteria:<br>- pediatric pts(<18 years<br>- any trauma pts admitted<br>the transition period (Ap<br>, 2015)<br>Per Br<br>234 post-EMP | years old)<br>evel I trauma center<br>or to and following<br>vith a 1-year transition<br>v period.<br>s)<br>ed to ICU during<br>pril 1, 2014 to March 3 |                      | Multidisciplinary,<br>stepwise approach to<br>patient mobilization with<br>a new Early Mobilization<br>Protocol<br>- ICU clinicians evaluate pts<br>readiness for participation<br>in mobilization activities<br>using a 4-level system<br>- for unconscious pts<br>mobility sessions consist of<br>passive ROM activities | Usual care<br>- prior to<br>EMP<br>implemen<br>tation | Primary endpoint:<br>- in-hospital<br>mortality<br>Secondary<br>outcomes:<br>- ICU mortality<br>- ICU LOS<br>- hospital LOS<br>- ventilator-free<br>days | Significant differences<br>between groups in:<br>- in-hospital mortality, n<br>(%): 41 (17.5); 74 (25.3);<br>p=0.031<br>- ICU mortality n (%) 30<br>(12.8); 63 (21.6); p=0.009<br>No significant differences<br>between groups in:<br>- ICU LOS n.s.<br>- hospital LOS n.s.<br>-ventilator-free days n.s. | 4                 |

EMP = early mobilization protocol, ICU = intensive care unit, LOS = length of stay, n.s. = not significant, pts = patients, ROM = range of motion

# A multidisciplinary, stepwise approach to patient mobilization seems to have a benefit in relation to in-hospital and ICU mortality.

| Reference,<br>Study Type                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 176 Aquim<br>2019<br>(PMID:<br>31967216<br>DOI:<br>10.5935/010 | <ul> <li>28 publications (16 RCTs, 3 SRs, and 9 prognostic cohort studies)</li> <li>Inclusion criteria: <ul> <li>adult pts ≥ 7 days hospitalized in the ICU</li> <li>receiving MV</li> <li>early mobilization</li> <li>full texts available</li> <li>RCTs</li> <li>prognostic cohort studies</li> <li>SRs with or without meta-analysis</li> </ul> </li> </ul> | <ol> <li>Early mobilization is safe. Adverse events are mainly related to hemodynamic and/or respiratory changes, are<br/>low-frequency and are reversible with the interruption of the intervention. Adverse events are not frequent or<br/>severe, and early mobilization is considered safe</li> <li>Early mobilization is indicated for adults in the ICU, preferably those under<br/>spontaneous breathing, who cooperate and who do not have intracranial<br/>hypertension. Mechanical ventilation and noncooperation may be<br/>considered limitations for early mobilizations, but not contraindications.</li> <li>Early mobilization is contraindicated for terminal patients with systolic<br/>hypertension (systolic blood pressure &gt; 170mmHg) or intracranial<br/>hypertension, unstable fractures, recent acute myocardial infarction and open abdominal wounds.</li> <li>The appropriate dose of early mobilization is defined by clinical efficacy and<br/>individual tolerance.<br/>The doses are as follows:         <ul> <li>passive mobilization: approximately 10 to 20 mobilizations per selected<br/>joint, up to two times/day.</li> </ul> </li> </ol> |
| 3-<br>507X.201900                                              | Definition of EM                                                                                                                                                                                                                                                                                                                                               | - active exercises: 1 hour per day, up to two 30-minute sessions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 84)<br>Specification<br>of study:<br>National<br>Guideline     | <b>Early physical therapy</b><br>- for critically ill pts<br>- starting in the first 48 hours after the<br>institution of MV                                                                                                                                                                                                                                   | <ul> <li>The following constitute positioning and progression: <ul> <li>assisted verticalization with an orthostatic board: up to 1 hour per day, up to twice a day.</li> <li>passive ergometer cycling: 20 minutes, 20 cycles/minute.</li> <li>active ergometer cycling: two 10-minute sessions per day.</li> </ul> </li> <li>The care and safety criteria for early mobilization do not require specific monitoring, and hemodynamic and respiratory stability characterize a safe intervention model.</li> <li>The prognostic indicators include an assessment of the risk of functional decline, weight, functional range, muscle strength, hemodynamic instability, respiratory dysfunction, recent extubation, protective factors, sedation, length of stay in the ICU and duration of mechanical ventilation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                  |

| Reference,<br>Study Type                                                                                                                  | (Partic                                                                                                                                                                                                               | d Controls<br>ipant #,<br>teristics)            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control                | Optimal Population                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                           | Тс                                                                                                                                                                                                                    | otal                                            | nate                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| 177 Mayer 2019<br>(PMID: 31922059<br>DOI:<br>10.1016/j.ekir.2019.<br>10.003)<br>Specification of<br>study: A quality<br>Improvement Study | N = 67<br>Inclusion crit<br>- adult pts<br>- requiring CF<br>Exclusion crit<br>- RASS > 2 or<br>- high ventila<br>(FiO2 > 70%,<br>- 2+ vasopres<br>- hemodynan<br>Per E<br>112 complete<br>rehabilitation<br>sessions | RRT<br>≤ 2<br>tion settings<br>PEEP >8)<br>sors |                      | Mobility progression scheme of<br>early rehabilitation:<br>Level 1 & 2 (PT or OT):<br>Level 1: passive activity in bed<br>Level 2: active activity in bed<br>Monitor CRRT access/return<br>pressure alarms<br>Level 3 (PT, OT and RN)<br>Edge of Bed activity<br>Monitor CRRT access/ return<br>pressure alarms<br>Level 4 (PT, OT & RN (RT if MV)):<br>Standing and Transfer<br>CRRT fluid removal paused for 15-<br>20 minutes<br>Level 5 (PT, OT, & RN (RT if MV)):<br>Ambulation<br>CRRT machine in recirculation<br>mode if filter life < 36h | No<br>control<br>group | Primary outcomes:<br>- feasibility<br>- safety<br>Secondary outcome:<br>- clinical outcomes | Primary outcomes:<br>feasibility:<br>- 112 rehabilitation sessions were<br>performed of 152 attempts (74%<br>completion rate)<br>Safety:<br>- no major adverse events<br>Secondary outcome:<br>Clinical outcomes:<br>- patients achieving higher levels<br>of mobility were more likely to be<br>alive at discharge (p = 0.076).<br>- number of completed<br>rehabilitation sessions directly<br>correlated with MV days, hospital<br>LOS, ICU LOS, and CRRT days (r %<br>0.392, 0.254, 0.384, 0.467) | 4                 |

\*CRRT = continous renal replacement therapie, MV = mechanical ventilation, OT = occupational therapie, PT = physical therapy, RN = registered nurse, RT = respiratory therapist

The provision of early rehabilitation in critically ill patients requiring CRRT is safe and feasible.

| Reference,<br>Study Type                                                                                                       | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                         | Drop<br>-out<br>Rate | Intervention                                                                                                                                                              | Control                                                                      | Optimal Population                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 181 Okada 2019<br>(PMID: 31867111<br>DOI:<br>10.1186/s40560-<br>019-0413-1)<br>Specification of<br>study: systematic<br>review | 11 publications 1322<br>pts <sup>1-11</sup><br><b>Inclusion criteria</b><br>- RCTs<br>- adult pts ≥18 y<br>admitted to ICU |                      | <b>Early mobilization</b><br>- physical and/or<br>occupational therapy<br>- start within 1 week of<br>ICU admission,<br>- initiated earlier than<br>usual care or control | Usual care or<br>mobilization<br>- started later<br>than the<br>intervention | <ul> <li>Primary endpoints: <ul> <li>in-hospital mortality</li> <li>ICU/hospital LOS</li> <li>SF-36 or EQ-5D</li> </ul> </li> <li>Secondary outcomes: <ul> <li>physical function</li> <li>cognitive function</li> <li>mental disorders such as depression or anxiety</li> <li>all adverse events</li> </ul> </li> </ul> | Significant outcomes:<br>- in-hospital mortality: OR<br>(95% CI: 0.80 to 1.58)<br>- ICU-LOS: OR -1.54 (95% CI:<br>-3.33 to -0.25)<br>- hospital LOS: OR -2.86<br>(95% CI -5.51 to -0.21, I 2 =<br>85%)<br>- MRC: MD 4.84 (95% CI:<br>0.36-9.31)<br>Not significant outcomes:<br>- PFIT, handgrip and AE n.s.<br>- SF-36 PF: MD 4.65 (95%<br>CI: -16.13 to -25.43)<br>- EQ-50: MD 0.29 (95% CI: -<br>11.19 – 11.78) | 1                 |

AE = adverse events, EQ-5D = EuroQol 5 dimension, ICU = intensive care unit, LOS = length of stay, MRC = Medical Research Council Scale for Muscle Strength, n.s. = not significant, PFIT = physical function in ICU Test, pts = patients, QOL = quality of life, RCT = randomized controlled trial, SF-36 = short form health survey 36-item, y = years

#### Early mobilisation seems to have a benefit in relation to a shorter length of hospital stay and muscle strength.

#### References

1.Patman S, Sanderson D, Blackmore M. Physiotherapy following cardiac surgery: is it necessary during the intubation period? In: Aust J Physiother. Volume 47. Australia; 2001. p. 7–16. 2. Pohlman MC, Schweickert WD, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, et al. Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit Care Med. 2010;38(11):2089–94.

3. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, Graves AJ, Shintani A, Murphy E, Work B, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med. 2014;40(3):370 –9.

4. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015;41(5):865–74. 5. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, Dhar S, Chmelo E, Lovato J, Case LD, et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA. 2016;315(24):2694–702.

6. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, Kriekels W, McNulty M, Fairclough DL, Schenkman M. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. Am J Respir Crit Care Med. 2016;193(10):1101–10.

7. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, Heim M, Houle T, Kurth T, Latronico N, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377 – 88.

8. Dong Z, Yu B, Zhang Q, Pei H, Xing J, Fang W, Sun Y, Song Z. Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int Heart J. 2016;57(2):241–6.

9. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, Gabbe B, Harrold M, Higgins A, Iwashyna TJ, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med. 2016;44(6):1145 – 52.

10. Maffei P, Wiramus S, Bensoussan L, Bienvenu L, Haddad E, Morange S, Fathallah M, Hardwigsen J, Viton JM, Le Treut YP, et al. Intensive early rehabilitation in the intensive care unit for liver transplant recipients: a randomized controlled trial. Arch Phys Med Rehabil. 2017;98(8):1518–25.

11. Moradian ST, Najafloo M, Mahmoudi H, Ghiasi MS. Early mobilization reduces the atelectasis and pleural effusion in patients undergoing coronary artery bypass graft surgery: a randomized clinical trial. J Vasc Nurs. 2017; 35(3):141–5.

| Reference,<br>Study Type                           | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                         | Drop-out<br>Rate | Intervention                                                                         | Control                                   | Optimal Population                                                                                                                     | Primary Results                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| https://doi.org/10.<br>1053/j.jvca.2019.1<br>0.055 | 1 institutional database between<br>October 2016 and October<br>2018→ 24 pts., 6 pts.<br>undergoing PP during ECMO<br>therapy.<br>Inclusion criteria:<br>-PP for the treatment of ARF<br>after cardiac surgery<br>Exclusion criteria:<br>-not stated<br>Per Branch<br>6 |                  | <b>PP</b><br>Data before,<br>after (6h), at<br>the end of PP<br>and after SP<br>(6h) | Patients acted as<br>their own<br>control | No sample size<br>calculation<br>(retrospective study)<br><b>Outcomes:</b><br>- respiratory conditions<br>(e.g., HI)<br>- ECMO support | <b>Results:</b><br>-increase in HI at the end of PP (p < 0.001) as<br>well as 6h after SP (p < 0.001)<br>-a significant reduction of ECMO support<br>from 3.0 (2.2-5.6) liters/min to 2.5 (2.0-4.6)<br>liters/min (p = 0.023) in pts. undergoing PP<br>and ECMO | 4                 |

PP=Prone position; pts=patients; ARF=acute respiratory failure; ECMO= extracorporeal membrane oxygenation; SP=supine position; HI=Horowitz index

PP can be considered for the treatment of ARF after cardiac surgery to improve short-term respiratory conditions and possibly facilitate ECMO weaning.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                 | Cases and<br>(Participant #, o<br>To                    | characteristics)                                                                                              | Drop-out<br>Rate | Intervention                                                     | Control                                    | Optimal Population      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------|--------------------------------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #185<br>Lucchini<br>2020<br>(PMID: 31789984<br>DOI:<br>10.1097/DCC.00000000<br>00000393) | Exclusion criteria:<br>- Patients with noninv<br>Per Bi | position in a general<br>m January 2008 –<br>undergoing invasive<br>n in prone position<br>rasive ventilation | - none           | Prone Position<br>maneuvers<br>(patients with<br>pressure sores) | maneuvers<br>(patients<br>without pressure | - incidence of pressure | Results<br>- 23 (14%) of pts developed<br>pressure sores<br>- 31 pressure sores related to PP<br>on these 23 pts<br>Significant differences<br>- difference in the PaO <sub>2</sub> /FiO <sub>2</sub><br>mmHg ratios observed in 4 time<br>frames (before PP: 109mmHg (IQR<br>80-148, after 1h: 144mmHg (IQR<br>96-200), before placed in supine<br>position: 158mmHg (110-213),<br>after 1h supine position:<br>131mmHg (95-175); p<0.0001) | 4                 |
|                                                                                          | 170                                                     |                                                                                                               |                  |                                                                  |                                            |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |

ARDS = acute respiratory distress syndrome ; ICU = intensive care unit; pts = patients; PP = prone position

#### The overall incidence of pressure sores under PP was low. The PaO<sub>2</sub>/FiO<sub>2</sub> mmHg ratio could positively influenced by PP.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                 | Cases and<br>(Participant #, C<br>Tota                                                                                                                                                                                                                     | haracteristics)                                                                                         | Drop-out Rate                                                                                                                                                            | Intervention                                             | Control                                                                                                                                                 | Optimal Population                                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 186<br>Schieren,<br>2020<br>(PMID:<br>31757469<br>DOI:<br>10.1016/j.i<br>njury.2019.<br>11.009)<br>retrospecti<br>ve<br>matched-<br>pair cohort<br>study | 60 pts<br>Inclusion criteria:<br>- ≥18 y, ventilated v<br>trauma (abbreviate<br>(AIS)Thorax ≥3)<br>Exclusion criteria<br>- no/minor chest<br>(AISThoraxA 2)<br>- secondary hospi<br>>24 hours from a<br>- duration of mec<br>ventilation <72 ho<br>Per Bra | with thoracic<br>ed injury scale<br>:<br>trauma<br>ital admission<br>ccident<br>hanical<br>ours<br>anch | Exclusion during<br>data collection<br>(16 patients)<br>(incomplete/illeg<br>ible records (8<br>patients),<br>exclusion of<br>corresponding<br>partners (8<br>patients)) | <b>CLRT:</b><br>- with a rotational<br>arc of up to 124° | <b>Conventional</b><br><b>therapy:</b><br>- manually turning<br>pts from side-to-<br>side in 2-4 h<br>intervals with the<br>head of the bed<br>elevated | Outcomes:<br>- depth of sedation<br>- level of agitation<br>- pneumothorax/<br>pleural infusion/<br>pulmonary infiltrates<br>on X-ray<br>- Lung injury score<br>- paO2/FiO2 ratio<br>- incidence in<br>pneumonia, sepsis,<br>liver or kidney failure<br>- ICU and hospital LOS | Significant differences<br>between groups:<br>- deeper Sedation in control<br>(RASS -3.6 vs. 4.0, p = 0.01)<br>- more agitation (RASS ≥2) after<br>intervention (41% v. 9%, p =<br>0.01)<br>No significant differences<br>between groups in:<br>- visibility of pneumothoraxes<br>or pulmonary infiltrates or<br>pleural effusion on chest X-Ray<br>- change in Lung Injury Score<br>- development of severe<br>respiratory dysfunction<br>- paO2/FiO2 ratio<br>- incidence in pneumonia,<br>sepsis, liver or kidney failure<br>- ICU and hospital LOS | 4                 |
|                                                                                                                                                          | 30                                                                                                                                                                                                                                                         | 30                                                                                                      |                                                                                                                                                                          |                                                          |                                                                                                                                                         |                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

CLRT = continuous lateral rotation therapy, ICU = intensive care unit, LOS = length of stay, pts = patients

In this well-matched sample, the use of CLRT did not seem to translate into relevant clinical benefits in patients with thoracic trauma in the setting of modern ICU care with the widespread implementation of lung protective ventilation. Agitation was more likely in the CLRT group. *No detailed assessment was carried out because higher-quality evidence is available on this topic.* 

| Reference,<br>Study Type                                                                                            | (Parti<br>Charao                                                                             | nd Controls<br>cipant #,<br>cteristics)          | Drop<br>-out<br>Rate | Intervention                                                                                                                                              | Control              | Optimal<br>Population                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 189<br>Kim<br>2019                                                                                                  | im<br>19 Inclusion criteria:<br>- adults (≥18 years) with<br>/IID: sepsis                    |                                                  |                      |                                                                                                                                                           |                      |                                                                                                        | Comparison between low skeletal mass and non-low skeletal mass groups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| (PMID:<br>31700866<br>DOI:<br>10.21037/at<br>m.2019.08.1<br>17)<br>Specification<br>of study: case<br>control Study | - adults (≥18 years) with                                                                    |                                                  | -                    | Rehabilitation<br>- 30 minutes daily<br>- stretching,<br>strengthening<br>exercises, NMES,<br>dysphagia therapy<br>for pts with<br>swallowing difficulty, | No<br>Rehabilitation | Primary<br>Endpoints:<br>- hospital<br>stay<br>- ICU stay<br>- in-hospital<br>mortality<br>- discharge | <ul> <li>hospital mortality: no significant difference between groups</li> <li>6-months mortality higher in the low skeletal muscle mass group(44.9% vs. 26.3%, p=0.001)</li> <li>1-year mortality higher in the low skeletal muscle mass group (50.1% vs. 32.6%, p=0.002)</li> <li>rate of discharge to home lower in the low skeletal muscle mass group(39.4% vs. 58.9%, p=0.001)</li> <li>Low skeletal mass group, rehabilitation vs control:</li> <li>urinary tract infection higher in the rehabilitation group (15.3% vs. 7.8%, p=0.015)</li> <li>mean hospital LOS higher in the rehabilitation group (73.2</li> </ul> | 4                 |
|                                                                                                                     | Low<br>skeletal<br>muscle<br>mass:<br>n = 421<br>(Interventi<br>on: 215,<br>Control:<br>206) | Non-low<br>skeletal<br>muscle<br>mass:<br>n = 95 |                      |                                                                                                                                                           |                      | to home<br>- 6-month<br>mortality<br>- 1 year<br>mortality                                             | <ul> <li>vs. 35.5 days, p&lt;0.001)</li> <li>mean ICU LOS higher in the rehabilitation group(22.5 vs. 15.9 days, p=0.004).</li> <li>hospital mortality lower in the intervention group (26% vs. 39.8%, p=0.003)</li> <li>6-month mortality lower in the rehabilitation group(38.6% vs. 51.5%, p=0.008)</li> <li>rate of discharge to home higher in the rehabilitation group (43.3% vs. 35.4%, p=0.011)</li> <li>no differences in the non-low skeletal muscle mass group.</li> </ul>                                                                                                                                         |                   |

CT = computer tomography, ICU = intensive care unit, LOS = length of stay, NMES = neuromuscular electric stimulation, pts = patients

ICU rehabilitation was independently associated with reduced 1-year mortality from sepsis among low skeletal muscle mass patients, but not among non-low skeletal muscle mass patients. Therefore, the delayed initiation of ICU-rehabilitation should be avoided, especially in low skeletal muscle mass patients.

| Reference,<br>Study Type                 | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                 | Drop-out<br>– Rate | Intervention                                                              | Control | Optimal Population                                                                        | Primary Results                                                                                                                                                       | Evidence<br>Grade |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 190                                      | 155 pts selected from an ICU                                                                                                                                                                                    |                    |                                                                           |         |                                                                                           |                                                                                                                                                                       |                   |
| Shimogai<br>2019                         | Inclusion criteria:<br>- ≥ 20 y<br>- rehabilitation was performed                                                                                                                                               |                    |                                                                           |         |                                                                                           | Significant outcomes:<br>- age (p=0.001, OR= 1.06                                                                                                                     |                   |
| (PMID:<br>31698814                       | - medical patients admitted to ICU                                                                                                                                                                              |                    | - data collection<br>- evaluating ADL                                     |         | Primary outcomes:<br>- factors affecting                                                  | 95%CI=1.02 – 1.09)<br>- APACHE II score                                                                                                                               |                   |
| DOI:<br>10.3390/ijerph<br>16224324)      | <ul> <li>Exclusion criteria:</li> <li>rehabilitation started in general ward</li> <li>rehabilitation was prescribed in the ICU but was not performed while the patient was in the ICU</li> <li>death</li> </ul> |                    | before admission<br>- assessment of<br>muscle strength<br>- assessment of |         | discharge to home<br>from ICU (Age,<br>APACHE-II-Score,<br>Independence at<br>home before | <ul> <li>(p=0.002, OR=1.12,<br/>95%CI= 1.04 - 1.20)</li> <li>independence at home<br/>before admission</li> <li>(P=0.008, OR=7.10,<br/>95%CI=1.65 - 30.44)</li> </ul> | 4                 |
| Specification of study:<br>Retrospective | <ul> <li>cerebrovascular disease</li> <li>patient declined rehabilitation</li> <li>missing data in the variable of interest</li> </ul>                                                                          |                    | disability                                                                |         | admission, standing<br>within 5 days of<br>admission)                                     | <ul> <li>95%CI=1.65 - 30.44)</li> <li>standing within 5 days<br/>of admission (p&lt;0.001,<br/>OR=6.58, 95% CI=2.60</li> </ul>                                        |                   |
| cohort study                             |                                                                                                                                                                                                                 |                    |                                                                           |         |                                                                                           | - 16.61)                                                                                                                                                              |                   |
|                                          | 155                                                                                                                                                                                                             |                    |                                                                           |         |                                                                                           |                                                                                                                                                                       |                   |

ADL = activities of daily life, CI = confidence interval, ICU= intensive care unit, OR = odds ratio, Pts = patients, y = years

Independence of home life before admission and early start of standing were identified as factors strongly related to discharge to home. The degree of independence in living before hospital admission and progress toward early mobilization are helpful when considering an ICU patient's discharge destination.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                       | (Participant #                                                                                                                              | nd Controls<br>‡, Characteristics)<br>Total                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                    | Control               | Optimal<br>Population                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 194 Ding<br>2019<br>(PMID:<br>31589642<br>DOI:<br>10.1371/jour<br>nal.pone.022<br>3151)<br>Specification<br>of study:<br>systematic<br>review with<br>network<br>meta-analysis | Chinese<br>Exclusion criter<br>- abstracts, lette<br>non-RCTs, expe<br>reviews, repeat<br>- did not specify<br>mobilization ini<br>outcomes | ia:<br>years<br>e MV<br>d in English and<br>ia:<br>ers, case reports,<br>rt opinions,<br>ed literature |                      | <b>Early mobilization</b><br>- initiated at various<br>time points, as follows:<br>within ≤ 24h, 24–48h,<br>48–72h, 72–96h, and ><br>96 h of MV, and > 5<br>and > 7 days after ICU<br>admission | Usual<br>nursing care | <b>Outcomes:</b><br>- ICU-AW (MRC )<br>- duration of MV<br>- ICU LOS | Significant differences between groups<br>between:<br>- incidence of ICU-AW, in mobilization<br>within 72–96 h and 24–48 h of MV, with<br>the former leading to a greater reduction in<br>ICU-AW<br>- duration of MV, in mobilization within $\leq$<br>24 h, 48–72 h, > 96 h, and 24–48 h of MV,<br>with shorter durations for pts mobilized at<br>$\leq$ 24h, 48–72h, and > 96 h relative to 24–<br>48 h<br>- mobilization within $\leq$ 24 h or > 96 h of MV<br>and > 5 days after ICU admission, with $\leq$ 24<br>h or > 96 h leading to shorter durations<br>No significant differences between groups<br>in:<br>- ICU LOS among the 7 initiation times | 1                 |

ICU-AW = ICU-acquired weakness, ICU = intensive care unit, MRC = medical research council, MV = mechanical ventilation, NMA = network meta-analysis, pts = patients, RCT = randomized controlled trial

Mobilization within 48–72 h of mechanical ventilation may be optimal for improvement of clinical outcomes.

#### References

1. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009; 37(9): 2499–2505. https://doi.org/10.1097/CCM.0b013e3181a38937 PMID: 19623052.

2. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care. 2013; 17(4): R156. https://doi.org/10.1186/cc12835 PMID: 23883525.

3. Dong ZH, Yu BX, Sun YB, Fang W, Li L. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med. 2014; 5(1): 48. https://doi.org/10.5847/wjem.j.1920-8642.2014.01. 008 PMID: 25215147

4. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med. 2016; 44 (6): 1145–1152. https://doi.org/10.1097/CCM.0000000001643 PMID: 26968024.

5. Hu HJ, Wei HY, Xu J, Chen Q. Effect of early mobilisation on patients with ICU acquired weakness. Nurs Res. 2014, 28(27): 3378–3379.

6. Huang HY, Wang XF, Luo J, H L, Zhou XJ. Effect of early level 4 rehabilitation training for patients with mechanical ventilation in ICU. J Nurs Sci. 2016; 31(15): 1–5.

7. Ke H, Huang HY. Effect of four-stage early activity and rehabilitation exercise therapy on prevention of ICU acquired weakness. Nurs Res. 2016; 30(18): 2202–2205.

8. Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008; 36(8): 2238–2243. https://doi.org/10.1097/CCM.0b013e318180b90e PMID: 18596631.

9. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, et al. A randomized trial of an intensive physical therapy program for acute respiratory failure patients. Am J Respir Crit Care Med. 2016; 193(10): 1101. https://doi.org/10.1164/rccm.201505-1039OC PMID: 26651376.

10. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis, Heim M, et al. Early goaldirected mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016; 388 (10052):1377–1388. https://doi.org/10.1016/S0140-6736(16)31637-3 PMID: 27707496.

11. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet. 2009; 373(9678): 1874–1882. https://doi.org/10.1016/S0140-6736(09)60658-9 PMID: 19446324.

12. Shao X. The relationship between early activity and the incidence of delirium of patients with mechanical ventilation in ICU. Zunyi Medical University. 2015.

13. Yu LN. Effect of early exercise in intensive care unit acquired weakness. Dalian Medical University, 2013.

14. Yu P, Ren GQ, Lu XM, Yang ZY, Li YT. Application of early activity and rehabilitation program in ICU mechanical ventilation patients. J Nurs Train. 2016; 31(02): 161–164

15. Zhang AM, ding AP, Lu YH. Effect of early mobilisation in preventing ICU acquired weakness in patients with COPD mechanical ventilation. Nursing Journal of Chinese People's Liberation Army. 2017; 34(15): 44–46.

| Reference,<br>Study Type                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention          | Control             | Optimal<br>Population                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 195 Zhang<br>2019<br>(PMID:<br>31581205<br>DOI:<br>10.1371/journ<br>al.pone.02231<br>85)<br>Specification<br>of study:<br>systematic<br>review | <ul> <li>- 23 publications<sup>1-23</sup></li> <li>Inclusion criteria: <ul> <li>English publications</li> <li>pts ≥18y</li> <li>RCTs</li> </ul> </li> <li>Exclusion criteria: <ul> <li>pts with neurological conditions</li> <li>inclusion of ineligible interventions, such as, NMES, continuous lateral rotation of the bed, lateral positioning in bed, inspiratory muscle training / diaphragmatic electrical stimulation/breathing exercises, chest physiotherapy/airway clearance, massage therapy, and stroke rehabilitation <ul> <li>exercises performed after ICU discharge</li> <li>pediatric, animal or cell-based studies</li> </ul> </li> </ul></li></ul> |                      | Early<br>mobilization | Standard<br>of care | Outcomes:<br>- muscle strength<br>- functional<br>mobility capacity<br>- duration of MV<br>- ventilator-free<br>days<br>- mortality rates<br>(28-day, ICU, and<br>hospital)<br>- discharged-to-<br>home rate<br>- adverse events | Significant differences between groups in:<br>- ICUAW at hospital discharge (RR: 0.60,<br>95% CI [0.40, 0.90]; $p = 0.013$ , $I2 = 0.0\%$ )<br>- number of ventilator-free days (SMD: 0.17,<br>95% CI [0.02, 0.31]; $p = 0.023$ , $I^2 = 35.5\%$ )<br>- discharged-to-home rate (RR: 1.16, 95% CI<br>[1.00, 1.34]; $p = 0.046$ )<br>No significant differences between groups<br>in:<br>- no change in MRC (n.s.)<br>- ICUAW at ICU discharge n.s.<br>- MV duration n.s. (SMD -0.33; 95% CI: -0.66<br>to -0.00; $p = 0.051$ ; $I^2 = 89.1\%$ )<br>- handgrip force n.s.<br>- quadriceps force n.s.<br>- no meta-analysis on functional mobility<br>capacity | 1                 |

CI = confidence interval, EM = early mobilization, ICU-AW = ICU-acquired weakness, ICU = intensive care unit, MV = mechanical ventilation, NMES = neuromuscular electric stimulation, pts = patients, RCT = randomized controlled trial, RR = relative risk, SMD = standardized mean difference, y = years

Early mobilization seems to have a benefit in relation to muscle strength, ventilator free days and discharge to home rate.

#### References

- 1. Kho ME, Molloy AJ, Clarke FJ, Reid JC, Herridge MS, Karachi T, et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respiratory Research. 2019; 6(1): e000383. https://doi.org/10.1136/bmjresp-2018-000383 PMID: 30956804
- 2. Sarfati C, Moore A, Pilorge C, Amaru P, Mendialdua P, Rodet E, et al. Efficacy of early passive tilting in minimizing ICU-acquired weakness: A randomized controlled trial. Journal of Critical Care. 2018; 46 (031): 37–43. https://doi.org/10.1016/j.jcrc.2018.03.031 PMID: 29660670
- 3. McWilliams D, Jones C, Atkins G, Hodson J, Whitehouse T, Veenith T, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J Crit Care. 2018; 44(001): 407–412. https://doi.org/10.1016/j.jcrc.2018.01.001 PMID: 29331668
- 4. Hickmann CE, Castanares-Zapatero D, Deldicque L, Van den Bergh P, Caty G, Robert A, et al. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Critical Care Medicine. 2018; 46(9): 1436–1443. https://doi.org/10.1097/CCM. 00000000003263 PMID: 29957714
- 5. Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically III Adults: A Randomized Clinical Trial. JAMA. 2018; 320(4): 368–378. https://doi.org/10.1001/jama.2018.9592 PMID: 30043066
- 6. Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS ONE. 2018; 13(11): e0207428. https://doi.org/10.1371/journal.pone.0207428 PMID: 30427933
- 7. Maffei P, Wiramus S, Bensoussan L, Bienvenu L, Haddad E, Morange S, et al. Intensive Early Rehabilitation in the Intensive Care Unit for Liver Transplant Recipients: A Randomized Controlled Trial. Arch Phys Med Rehabil. 2017; 98(8): 1518–1525. https://doi.org/10.1016/j.apmr.2017.01.028 PMID: 28279659
- 8. Machado ADS, Pires-Neto RC, Carvalho MTX, Soares JC, Cardoso DM, Albuquerque IM. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. Jornal brasileiro de pneumologia. 2017; 43 (2): 134–139. https://doi.org/10.1590/S1806-37562016000000170 PMID: 28538781
- 9. Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016; 388(10052): 1377– 1388. https://doi.org/10.1016/S0140-6736(16)31637-3 PMID: 27707496
- 10. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, et al. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. American Journal of Respiratory and Critical Care Medicine. 2016; 193(10): 1101–1110. https://doi.org/10.1164/rccm. 201505-1039OC PMID: 26651376 Early mobilization of critically ill patients PLOS ONE | https://doi.org/10.1371/journal.pone.0223185 October 3, 2019 14 / 16
- 11. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA. 2016; 315(24): 2694–2702. https://doi.org/10.1001/jama.2016.7201 PMID: 27367766
- 12. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med. 2016; 44(6): 1145–1152. https://doi.org/10.1097/CCM.00000000001643 PMID: 26968024
- 13. Dong Z, Yu B, Zhang Q, Pei H, Xing J, Fang W, et al. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery. International heart journal. 2016; 57 (2):241–246. https://doi.org/10.1536/ihj.15-316 PMID: 26973269
- 14. Coutinho WM, Santos LJd, Fernandes J, Vieira SRR, Forgiarini Junior LA, Dias AS. Efeito agudo da utilização do cicloergo<sup>metro</sup> durante atendimento fisioterapêutico em pacientes críticos ventilados mecanicamente. Fisioterapia e Pesquisa. 2016; 23(3): 278–283. https://doi.org/10.1590/1809-2950/ 15549123032016
- 15. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015; 41(5): 865–874. https://doi.org/ 10.1007/s00134-015-3763-8 PMID: 25851383
- 16. Dong Z-H, Yu B-X, Sun Y-B, Fang W, Li L. Effects of early rehabilitation therapy on patients with mechanical ventilation. World journal of emergency medicine. 2014; 5(1): 48–52. https://doi.org/10. 5847/wjem.j.1920-8642.2014.01.008 PMID: 25215147
- 17. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: The Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Medicine. 2014; 40(3): 370– 379. https://doi.org/10.1007/s00134-013-3136-0 PMID: 24257969
- 18. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: A randomized controlled trial with 12 months of follow-up. Critical Care. 2013; 17(4): R156. https://doi.org/10.1186/cc12835 PMID: 23883525
- 19. Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, Maciel C, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva. 2012; 24 (2): 173–178. https://doi.org/10.1590/S0103-507X2012000200013 PMID: 23917766
- 20. Chang MY, Chang LY, Huang YC, Lin KM, Cheng CH. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir Care. 2011; 56(10): 1533–1538. https://doi.org/10.4187/respcare.00938 PMID: 21513602
- 21. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009; 373(9678): 1874–1882. https://doi.org/10.1016/S0140-6736(09)60658-9 PMID: 19446324
- 22. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009; 37(9): 2499–2505. https://doi.org/10.1097/CCM.0b013e3181a38937 PMID: 19623052
- 23. Nava S. Rehabilitation of patients admitted to a respiratory intensive care unit. Archives of physical medicine and rehabilitation. 1998; 79 (7):849–854. https://doi.org/10.1016/s0003-9993(98)90369-0 PMID: 9685104

| Reference,<br>Study Type                                                                   | (Participant #,                                                                                                                                                                                                                      | nd Controls<br>, Characteristics)<br>otal                                                                                                                        | Drop-out<br>- Rate                                                                                                                                         | Intervention                                                                                                             | Control                                                           | Optimal<br>Population                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade                                     |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 198<br>Nakamura<br>2019<br>(PMID:<br>31544949<br>DOI:<br>10.2340/165<br>01977-2594)<br>RCT | <ul> <li>multiple-drug-resis</li> <li>lower extremity events</li> <li>pacemaker</li> <li>neuromuscular dise</li> <li>CT not performed of</li> <li>do not attempt ressioned to obtain in</li> <li>included in other clipse</li> </ul> | cted discharge from<br>s<br>co our ICU<br>ed pregnant<br>mbrane oxygenation<br>tant bacteria<br>ent<br>eases<br>on the first day<br>uscitation<br>formed consent | N = 57<br>(60,6%)<br>NMES: 26 (6<br>died, 18<br>discharged<br>early, 2 CT<br>unable)<br>Control: 31<br>(7 died, 17<br>discharged<br>early, 7 CT<br>unable) | Early<br>rehabilitation:<br>- for 20 min<br>per day<br>NMES:<br>- lower<br>extremities 20<br>min per day<br>until day 10 | <b>Early</b><br><b>rehabilitation:</b><br>- for 20 min<br>per day | Primary<br>endpoint:<br>- femoral<br>muscle volume<br>cia CT<br>Secondary<br>outcomes:<br>- ICU LOS<br>- hospital LOS<br>- 28-day<br>survival<br>- duration of<br>MV<br>- Barthel index | Primary endpoint:<br>- femoral muscle volume change day 1<br>to 10 (%), control – MD (95%Cl): -17.7<br>(-11.9 – -23.5) vs intervention - MD<br>(95%Cl): -10.4 (-5.8 – 15.1), p = 0.04<br>Secondary outcomes:<br>- ICU LOS, control: Mean $\pm$ SD: 10.6 $\pm$<br>4.7 vs intervention: Mean $\pm$ SD: 9.9 $\pm$<br>5.7, p = 0.71<br>- hospital LOS, control: Mean $\pm$ SD:<br>20.6 $\pm$ 8.9 vs intervention: Mean $\pm$ SD:<br>17.4 $\pm$ 9.9<br>p = 0.32<br>- duration of MV (days), control: Mean $\pm$<br>SD: 8.5 $\pm$ 4.5 vs intervention: Mean $\pm$ SD:<br>29.0 $\pm$ 18.8 vs intervention: Mean $\pm$ SD:<br>29.0 $\pm$ 18.8 vs intervention: Mean $\pm$ SD:<br>50.4 $\pm$ 31.6, p = 0.16<br>- 28-day survival, control: %: 51.5 vs<br>intervention: %: 49.2, p = 0.63 | 2 → 3<br>(downgraded<br>due to high<br>drop-out rate) |

CT = computer tomography, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation

Belt electrode electrical muscle stimulation reduces muscle loss in the ICU.

| Reference,<br>Study Type                                                                                        | (Participant #                                                                                                                                                                                                                                                                                                                                                                             | nd Controls<br>, Characteristics)<br>Fotal                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Control                                                                                                                                                                                                                                                                                                                                                                                                                            | Optimal Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade                                                                       |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 199 Pang<br>2019<br>(PMID:<br>31537777<br>DOI:<br>10.12659/M<br>SM.916210)<br>Specification<br>of study:<br>RCT | injury<br>- APACHE II score ≥:<br>- age 18–80 y<br>- onset of disease for<br>- signed informed c<br><b>Exclusion criteria:</b><br>- long-term inability<br>independently prior<br>- advanced stage of<br>underwent radiother<br>chemotherapy of tu<br>months<br>- imperfect limbs ar<br>- long-term MV due<br>diseases<br>- heart rate exceeder<br>allowable for age<br>- family members d | or the first time<br>onsent<br>y to move<br>r to onset of disease<br>malignant tumors or<br>erapy or<br>umors within the last 6<br>and new fracture<br>to neuromuscular<br>ed the 70% maximum |                      | Early rehabilitation<br>therapy:<br>- performed at 2 days<br>after the pts became<br>stable<br>- once daily, 6 times per<br>week for 10 days<br>- awaking therapy,<br>hyperbaric oxygen<br>therapy ,<br>comprehensive sensory<br>stimulation therapy,<br>and fastigial nucleus<br>stimulation ,<br>therapeutic exercise<br>(such as intelligent<br>rehabilitation training<br>system for lower limbs ,<br>passive activity<br>training/active assistant<br>activity training), and<br>electrical stimulation<br>therapy | <ul> <li>monitored for<br/>respiratory<br/>functions and<br/>blood oxygen</li> <li>provided<br/>nutritional<br/>support therapy</li> <li>placed in supine<br/>position or lateral<br/>decubitus<br/>position.</li> <li>bed sores were<br/>prevented by<br/>turning over,<br/>slapping the back,<br/>and massaging<br/>skin, and sputum<br/>was drained to<br/>avoid asphyxia.</li> <li>rehabilitation in<br/>usual care</li> </ul> | Derived endpoints:<br>- incidence rates of ICU-AW<br>- incidence rate of<br>DVT/pneumonia<br>- APACHE II scores/MRC<br>scores prior to and after<br>treatments<br>- MV time<br>- hospital stay in ICU<br>- total hospital stay<br>no power analysis | Derived outcomes:<br>- APACHE II after treatment<br>(8.90±2.07; 10.24±2.19;<br>p<0.05)<br>- MRC post treatment<br>(52.95±3.99; 50.10±4.21;<br>p<0.05)<br>- improved GCS (GCS>9; 86%<br>vs 76%; p<0.05, GCS>12; 48%<br>vs 24%; p<0.05, GCS=15;<br>24% vs 9.5%; p< 0.05)<br>- incidence of complications<br>(ICUAW, DVT, pneumonia)<br>19%; 43%; p<0.05<br>- ICU- LOS (11.76±2.63;<br>14.00±2.19; p<0.05)<br>- hospital stay (31.38±4.006;<br>35.24±5.059; p<0.05)<br>- MV duration (3.00±0.71;<br>5.17±0.75; p<0.05) | 2 → 4<br>(downgraded<br>due to high<br>risk of bias<br>and and low<br>number of<br>pts) |

APACHE II = acute physiology and chronic health evaluation, DVT = deep vein thrombosis, DVT = deep venous thrombosis, GSC = Glasgow coma scale, ICU-AW = intensive care unit – acquired weakness, ICU = intensive care unit, IV = intravenous, LOS = Length of stay, MRC = medical research council, MV = mechanical ventilation, pts = patients, y = years,

Early rehabilitation therapy seems to have a benefit in relation to APACHE II, MRC, consciousness rate, adverse events, ICU and hospital length of stay and MV time compared to Control Group.

| Reference,<br>Study Type                                                                                                                              | (Participant #, | d Controls<br>characteristics)<br>otal                                               | Drop-<br>out Rate | Intervention      | Control             | Optimal<br>Population                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|-------------------|-------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Seo<br>2019<br>PMID:<br>31522973<br>https://doi.org<br>/10.1016/j.auc<br>c.2019.07.005<br><b>Specification</b><br>of study:<br>Retrospective<br>study |                 | for at least three<br>ved more than one<br>session<br>e medical record<br>plantation |                   | < 65 years of age | ≥ 65 year of<br>age | No sample size<br>calculation<br>(retrospective<br>study)<br>Endpoints:<br>- rehabilitation<br>characteristics<br>(activity level)<br>- functional<br>recovery<br>- AM-PAC scores<br>- safety events | <b>Results:</b><br>- Activity level of session (Level II<br>(AROM): 59 (17.6); 38 (8.5), Level III<br>(sitting): 145 (43.3); 189 (42.5), Level IV<br>(standing): 84 (25.1); 162 (36.4), Level V<br>(walking <10m): 13 (3.9); 12 (2.7), Level<br>VI (walking<br>- no significant differences in functional<br>recovery were seen between the age<br>groups<br>- AM-PAC scores increased from the<br>beginning of rehabilitation to the time of<br>ICU discharge (from $11.6 \pm 0.4$ to $13.9 \pm 0.4$ , p < 0.01)<br>- AM-PAC scores increased in both age<br>groups (from $12.4 \pm 4.9$ to $14.8 \pm 4.9$ in<br>those aged < 65 years and from 111.1<br>$\pm 4.1$ to $13.1 \pm 4.8$ in those aged $\ge 65$<br>years)<br>-During the 780 rehabilitation sessions,<br>23 potential safety events (3.0%), most<br>common dyspnoea (n = 7), patient<br>refuel (n = 4), and tachyaerdia (n = 2) | 4                 |
|                                                                                                                                                       | 68              | 89                                                                                   |                   |                   |                     |                                                                                                                                                                                                      | refusal (n = 4), and tachycardia (n = 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |

SICU = surgical intensive care unit; pts = patients; AROM = active range of motion; pts. =patients; AM-PAC= Activity Measure for Post-Acute Care

Active rehabilitation in critically ill surgical is feasible and sage regardless of age.

| 21 pts admitted to two ICUs within the<br>Charité – Universitätsmedizin Berlin<br>receiving NMES were considered in this<br>sub-analysis branched into Responders and<br>Non-Responders       Amitted to two ICUs within the<br>Charité – Universitätsmedizin Berlin<br>receiving NMES were considered in this<br>sub-analysis branched into Responders and<br>Non-Responders       Non-Responders       Primary Endpoint:<br>- Significantly greater proportion<br>of stimulations leading to an<br>adequate<br>contractile response in responders         201       Non-Responders       Non-Responders       Sample Size calculation:<br>None for sub-analysis<br>son-responders       Significantly greater proportion<br>of stimulations leading to an<br>adequate<br>contractile response in responders         2019       - Admitted to the ICU < 72h<br>Exclusion criteria:<br>- Admitted to the ICU < 72h<br>Exclusion criteria:<br>- Prior hospital treatment for longer<br>than 7 days<br>- lillness prohibiting early mobilization<br>- pre-existing neuromuscular disease<br>- insulin-dependent diabetes mellitus<br>Secondary analysis of<br>RCT       - Prior hospital treatment diabetes mellitus<br>Body Mass Index > 35 kg/m2<br>- not ambulating before admission<br>- poor prognosis with a high likelihood<br>of death within the next hours       - none<br>Per Branch       - None<br>Per Branch       - None<br>Per Branch       - None<br>NES during the<br>itervention       - SOFA score<br>- necessary electrical<br>intervention       - SOFA score<br>- necessary electrical<br>intervention | Reference,<br>Study Type                                                                                                                            | Cases and<br>(Participant #, c<br>Tot                                                                                                                                                                                                                                                                                                                                                                          | haracteristics)                                                                                                                                                                                                                          | Drop-out<br>Rate | Intervention                                                                                        | Control                                                                                     | Optimal Population                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 201<br>Grunow<br>2019<br>PMID: 31506074<br>https://doi.org/10.1186<br>/s13054-019-2540-4<br><b>Specification of study:</b><br>Secondary analysis of | Charité – Universitätsr<br>receiving NMES were of<br>sub-analysis branched<br>Non-Responders<br>Inclusion criteria:<br>- ≥ 18 y<br>- SOFA Score ≥ 9<br>- Admitted to the IO<br>Exclusion criteria:<br>- Prior hospital treat<br>than 7 days<br>- illness prohibiting<br>- pre-existing neuro<br>- insulin-dependent<br>- Body Mass Index 3<br>- not ambulating be<br>- poor prognosis wi<br>of death within th | nedizin Berlin<br>considered in this<br>into Responders and<br>CU < 72h<br>atment for longer<br>early mobilization<br>pmuscular disease<br>t diabetes mellitus<br>> 35 kg/m2<br>efore admission<br>th a high likelihood<br>ie next hours | - none           | Defined as<br>>50%<br>contractile<br>response to<br>NMES during<br>the first 7 days<br>of the study | with ≤ 50%<br>contractile<br>response to<br>NMES during the<br>first 7 days of<br>the study | Sample Size calculation:<br>None for sub-analysis<br>Endpoints:<br>-contractile response<br>-SOFA score<br>-necessary electrical<br>current | <ul> <li>Significantly greater proportion<br/>of stimulations leading to an<br/>adequate<br/>contractile response in responders<br/>vs non-responders</li> <li>Significant difference:</li> <li>Significantly higher SOFA score in<br/>non-responders.</li> <li>The electrical current necessary<br/>for a muscle contraction in<br/>responders was significantly lower<br/>(38.0 [32.8/42.9] vs. 54.7<br/>[51.3/56.0] mA, p&lt; 0.001). Muscle<br/>strength showed higher values in<br/>the upper extremities of<br/>responders at ICU discharge (4.4<br/>[4.1/4.6] vs. 3.3 [2.8/3.8] MRC</li> </ul> | 4                 |

ICU = Intensive Care Unit; NMES = Neuromuscular electrical stimulation SOFA = Sepsis-related organ failure assessment; MRC=Medical Research Council; ICU=intensive care unit

# Patients show a differential contractile response to NMES, which appears to be dependent on the severity of illness and also relevant for potential outcome benefits.

No detailed assessment was carried out because higher-quality evidence is available on this topic

| Reference,<br>Study Type                                                                                                                                                 | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                           | Drop-out Rate                                                                                                                                                                         | Intervention                                                                                                                                                                                                                                                                                                                                                 | Control | Optimal Population                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 203<br>de Figueiredo<br>2020<br>PMID:<br>31466922<br>DOI:<br>10.1016/j.burn<br>s.2019.07.037<br><b>Specification of</b><br><b>study</b> :<br>Prospective<br>cohort study | 74 pts. From April 2014<br>to March 2015 → 32<br>pts. Evaluated at<br>hospital discharge<br>Inclusion criteria:<br>-older than 16 years<br>admitted to the burn<br>ICU<br>Exclusion criteria:<br>no data on admission<br>- ICU death<br>- refusal of performing<br>tests<br>- discharge before<br>evaluation<br>- Transference<br>Per Branch | N=28 (ICU death);<br>n=14 (excluded<br>from post-ICU<br>analysis) due to<br>refused to perform<br>all the tests (n=4);<br>discharge before<br>evaluation (n=9);<br>transference (n=1) | Routine<br>physiotherapy care:<br>-respiratory therapy<br>(airway clearance<br>maneuvers, lung<br>expansion<br>techniques, oxygen<br>therapy and<br>NIMV<br>-mobility therapy<br>(20 min of<br>positioning,<br>general limb<br>(passive, active or<br>resistive) and trunk<br>exercises,<br>SOEOB, SOOB,<br>standing up and<br>walking away from<br>the bed) | -       | No sample size<br>calculation<br><b>Primary endpoints:</b><br>-MRCS<br>-6MWT<br>-handgrip<br><b>Secondary</b><br><b>endpoints:</b><br>-mobility practice<br>-barriers<br>-addition of a<br>mobility session<br>(12h-shift v. 24h-<br>shift)<br>-mobility level and<br>outcomes (IMS) | Primary endpoints:         - no improvement in the MRCS scores at hospital discharge compared to the MRCS scores at ICU discharge (57.5 [9] vs 55 [7]; p = 0.368).         - positive relationship between the 6MWT and handgrip strength (r = 0.555; p = 0.04)         - negative correlation between length of hospital stay and handgrip strength (r =0.444; p = 0.03).         Secondary endpoints:         -mobility therapies (3088 sessions)         ○ IMS=0 1048/3088 (34%)         ○ IMS=0 1048/3088 (51%)         ○ IMS>4 444/3088(14%)         -barriers:         ○ hemodynamic instability in 71 events (2% of sessions)         ○ limited time for assistance in 49 events (1% of sessions)         ○ addition of a mobility session:         ○ no difference founded in any clinical (ICU LOS, MV duration and mortality) or functional outcomes (6MWD, handgrip strength, maximum mobility level)         - mobility level and outcome:         ○ association between IMSmax and mortality (p < 0.001 OR: 0.5, 95%CI: 0.36–0.68) | 3                 |

ICU = intensive care unit ; LOS = length of stay ; MRCS = Medical Research Council Scale ; TBSA = total burn surface area; 6MWT= 6-minute walking test; SOEOB= sitting on the edge of the bed; SOOB= sitting out of bed; NIMV= noninvasive mechanical ventilation;

Mobilization therapy of patients with burns in the ICU was characterized by a low mobility level during MV with a low functional status at hospital discharge

| Reference <i>,</i><br>Study Type                                                                                                                   | Cases and<br>Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention | Control             | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 209 Griffiths<br>2019<br>https://doi.org/1<br>0.1136/bmjresp-<br>2019-000420<br><b>Specification of</b><br><b>study:</b><br>National<br>Guidelines | 14 publications<br>from 1999-2015<br>(14 systematic<br>reviews, 12 with<br>meta-analysis) <sup>1-14</sup><br>(number of pts.,<br>inclusion criteria,<br>intervention and<br>control not<br>specified)<br>Inclusion criteria:<br>Systematic reviews<br>comparing prone<br>positioning to<br>standard of care in<br><u>ARDS</u> patients<br>Per Branch |                      | РР           | Standard<br>of Care | <ul> <li>No primary endpoint defined</li> <li>Endpoints extracted: <ul> <li>Mortality (n = 8 studies with 2141 patients)</li> <li>Treatment harms</li> <li>a. Pooled analysis (n = seven studies with 7377 participants)</li> <li>b. Subgroup analysis of cardiac events (n = three studies with 1599 participants)</li> <li>c. Subgroup analysis of endotracheal tube displacement (n = five studies with 1597 participants)</li> <li>d. Subgroup analysis of ventilator-associated pneumonia (n = four studies with 1007 participants)</li> <li>e. Subgroup analysis of pressure sores (n = two studies with 1095 participants)</li> <li>f. Subgroup analysis of incidence of pneumothorax (n = four studies with 1160 participants)</li> <li>g. Subgroup analysis of loss of venous access (n = two studies with 646 participants)</li> </ul> </li> </ul> | <ul> <li>Results:</li> <li>Mortality (defined as overall mortality at the longest available follow-up) was reduced by PP (RR 0.9; 95% CI 0.82 – 0.96)</li> <li>a. Subgroup analysis based on lung-protective ventilation (low tidal volume, 6-8 ml/kg/body weight): PP in combination with lung-protective ventilation reduced mortality RR 0.73; 95% CI 0.62 – 0.86) compared to PP without lung-protective ventilation (RR 1.01; 95% CI 0.9 – 1.13)</li> <li>b. Subgroup analysis based on the duration of intervention: PP &gt; 12 hours reduced mortality (RR 0.75; 95% CI 0.65 – 0.87) compared to PP &lt; 12 hours (RR 1.03, 95% CI 0.91 – 1.17)</li> <li>Treatment Harms</li> <li>a. Pooled risk of adverse events was increased by PP (RR 1.10; 95% CI 1.01 – 1.12)</li> <li>b. PP increases the risk of cardiac events (RR 1.01; 95% CI 0.87 – 1.17)</li> <li>C. PP increases the risk of ventilator-associated pneumonia (RR 0.88, 95% CI 0.71 – 1.17)</li> <li>e. PP increases the incidence of pressure sores (RR 1.23; 95% CI 1.07 – 1.41)</li> <li>f. PP reduces the incidence of pneumothorax (RR 0.87; 95% CI 0.59 – 1.30)</li> <li>g. PP increases the incidence of loss of venous access (RR 1.98; 95% CI 1.11 – 3.55)</li> </ul> | 1                 |

Pts = patients, ARDS = acute respiratory distress syndrome, PP = prone positioning, RR = risk ratio, CI = confidence interval, P/F ratio = partial pressure of oxygen in relation to fraction of inspired oxygen

Use of prone positioning for at least 12 hours per day is strongly recommended for patients with moderate and severe ARDS (P/F ratio ≤ 20 kPa).

#### References

- 1. Tonelli AR, Zein J, Adams J, et al. Effects of interventions on survival in acute respiratory distress syndrome: an umbrella review of 159 published randomized trials and 29 meta-analyses. Intensive Care Med 2014;40:769–87.
- 2. Abroug F, Ouanes-Besbes L, Dachraoui F, et al. An updated study- level meta-analysis of randomised controlled trials on proning in ARDS and acute lung injury. Crit Care 2011;15.
- 3. Abroug F, Ouanes-Besbes L, Elatrous S, *et al.* The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis. areas of uncertainty and recommendations for research. *Intensive Care Med* 2008;34:1002–11.
- 4. Alsaghir AH, Martin CM. Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med 2008;36:603–9.
- 5. Ball C. Use of the prone position in the management of acute respiratory distress syndrome. Intensive Crit Care Nurs 1999;15:192–203.
- 6. Beitler JR, Shaefi S, Montesi SB, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med 2014;40:332–41.
- 7. Curley MA. Prone positioning of patients with acute respiratory distress syndrome: a systematic review. *Am J Crit Care* 1999;8:397–405.
- 8. Hu SL, He HL, Pan C, et al. The effect of prone positioning on mortality in patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Crit Care 2014;18.
- 9. Kopterides P, Siempos II, Armaganidis A. Prone positioning in hypoxemic respiratory failure: meta-analysis of randomized controlled trials. J Crit Care 2009;24:89–100.
- 10. Lee JM, Bae W, Lee YJ, *et al*. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome: updated study-level meta-analysis of 11 randomized controlled trials. *Crit Care Med* 2014;42:1252–62.
- 11. Park SY, Kim HJ, Yoo KH, *et al*. The efficacy and safety of prone positioning in adults patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. *J Thorac Dis* 2015;7:356–67.
- 12. Sud S, Friedrich JO, Adhikari NKJ, *et al.* Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta- analysis. *CMAJ* 2014;186:E381–E390.
- 13. Sud S, Friedrich JO, Taccone P, *et al.* Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. *Intensive Care Med* 2010;36:585–99.
- 14. Tiruvoipati R, Bangash M, Manktelow B, et al. Efficacy of prone ventilation in adult patients with acute respiratory failure: a meta- analysis. J Crit Care 2008;23:101–10.

| Reference,<br>Study Type                                                                                                                       | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                                  | Control                                               | Optimal Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 210 Zang<br>2020<br>(PMID:<br>31219229<br>DOI:<br>10.1111/nic<br>c.12455)<br><b>Specificatio</b><br><b>n of study:</b><br>systematic<br>review | 15 publications <sup>1-15</sup> incl.<br>Chinese database, 1.914<br>pts<br>Inclusion criteria:<br>- RCTs<br>- adult pts admitted to<br>the ICU<br>- paper outcomes: ICU-<br>AW, mortality rate,<br>length of ICU stay,<br>hospital LOS, MRC<br>score, Barthel Index<br>score, ventilator-free<br>days, handgrip strength,<br>deep vein thrombosis,<br>VAP, and pressure sores<br>Per Branch |                      | Early<br>mobilization<br>or<br>rehabilitation | Standard<br>physical care<br>or daily<br>nursing care | Derived outcomes<br>- ICU-AW<br>- ICU mortality rate<br>- length of ICU stay<br>- length of hospital stay<br>- handgrip strength<br>- MRC score<br>- ventilator free days<br>- Barthel Index<br>- VAP<br>- deep vein thrombosis<br>- pressure sores | Significant differences between groups in:         - incidence of ICU-AW (RR = 0.49, 95% CI: 0.26, 0.91; p =         0.025), I <sup>2</sup> = 89.8%         - ICU LOS (WMD = -1.82 days, 95% CI: -2.88, -0.76; p =         0.001), I <sup>2</sup> = 95.9%         - length of hospital stay (WMD = -3.90 days, 95%         CI-5.94, -1.85; p < 0.001), I <sup>2</sup> = 10.4%         - MRC score (WMD = 4.47, 95% CI: 1.43, 7.52; p = 0.004),         I <sup>2</sup> = 10.4%         - Barthel Index score at hospital discharge (WMD =         21.44, 95% CI: 10.97, 31.91; p < .001) | 1                 |

ICU-AW = ICU-acquired weakness, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, n.s.= not significant, RCT = randomized controlled trial, RR = risk ratio, pts = patients, VAP = ventilator-associated pneumonia; WMD = weight mean difference

# Early mobilization showed a benefit in relation to ICU-AW, length of ICU and hospital stay, MRC score, Barthel Index, deep vein thrombosis and pressure sores.

#### References

- 1. Moss M, Nordon-Craft A, Malone D, et al. A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. Am J Respir Crit Care Med. 2016;193:1101-1110.
- 2. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388:1377-1388.
- 3. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med. 2009;37:2499-2505.
- 4. Fossat G, Baudin F, Courtes L, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA. 2018;320: 368-378.
- 5. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874-1882.
- 6. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015;41:865-874.
- 7. Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146:583-589.
- 8. Gruther W, Pieber K, Steiner I, Hein C, Hiesmayr JM, PaternostroSluga T. Can early rehabilitation on the general Ward after an intensive care unit stay reduce hospital length of stay in survivors of critical illness?: a randomized controlled trial. Am J Phys Med Rehabil. 2017;96:607-615.
- 9. Hodgson CL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med. 2016;44:1145-1152.
- 10. Morris PE, Mj B, Files DC, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA. 2016;315:2694-2702.
- 11. Hu H, Wei H, Xu J, Chen Q. Influence of early intervention activities on acquired myasthenia patients in ICU. Chin Nurs Res. 2014;28: 3378-3379.
- 12. Huang H, Wang X, Luo J, Hu L, Zhou X. Effect of level 4 rehabilitation training for patients with mechanical ventilation in ICU. J Nurs Sci. 2016;31:1-5.
- 13. Lin S, He L, Liu Z. Effect of early activities on the muscle strength and intensive care unit acquired weakness in ICU patients. J Qiqihar Univ Med. 2016;37:3239-3241.
- 14. Wang J. Effect of early activity combined with somatosensory music on ICU-AW in patients with mechanical ventilation in ICU. Hebei Med J. 2018;40:306-313.
- 15. Yang Q. Effect of early physical activities in intensive care patients with chronic obstructive pulmonary disease. Med Equip. 2018;31: 26-27.

| Reference,<br>Study Type                                                                                                                                             | Cases and<br>(Partici<br>Charact<br>To                                                                                                                                                                                                                                                                                                    | eristics)                                                                                                                      | Drop-<br>out<br>Rate | Intervention                                                                  | Control                                                                                 | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 211 Liu<br>2019<br>(PMID:<br>31162197<br>DOI:<br>10.1097/CCM<br>.000000000<br>003850)<br>Specification<br>of study:<br>Retrospective<br>before-after<br>cohort study | 391 pts<br>Inclusion criter<br>- admitted to 10<br>- 18 years or ol<br>Exclusion criter<br>- acute cardiov<br>disease<br>- acute cerebro<br>disease<br>- progressive ne<br>disease<br>- post cardiopu<br>arrest syndrom<br>- condition lim<br>mobilization in<br>unstable pelvic<br>- discharged from<br>within 48 hours<br>Per Bi<br>187 | CU<br>der<br>ria:<br>ascular<br>ovascular<br>euromuscular<br>lmonary<br>ne<br>iting<br>cluding<br>fractures<br>om the ICU<br>s |                      | The<br>Maebashi EM<br>Protocol:<br>progressive<br>goal-directed<br>EM program | Historical<br>control<br>with<br><b>routine</b><br><b>care</b> , not<br>well<br>defined | Primary endpoint:<br>- hospital mortality<br>- total hospital costs<br>Secondary outcomes:<br>- % of pts who achieved each<br>rehabilitation level<br>- days from ICU admission to<br>achievement of each rehabilitation<br>level<br>- adverse effects<br>- duration of MV<br>- ICU and hospital LOS<br>- % of pts who ambulate at hospital<br>discharge<br>- discharge destination<br>- functional independence measure<br>value<br>- SOFA Score and subscores at ICU<br>admission, maximum during the ICU<br>stay and at ICU discharge, the<br>change between ICU admission and<br>maximum, ICU admission and ICU<br>discharge | Primary endpoints:- hospital mortality: was reduced in intervention<br>group (adjusted hazard ratio, 0.25; 95% CI, 0.13–<br>0.49; $p < 0.01$ ), declined from 24% to 11%- mean hospital costs : (from \$29,220 to \$22,706),<br>estimated effect of the intervention was \$–5,167<br>per patient (95% CI, 1,069–8,304; $p = 0.02$ )Secondary outcomes:<br>Significant differences<br>- intervention group: 78% of pts could get out of<br>bed within 3 days (median, 2.0 d; IQR, 1.3–2.9 d)<br>- length of MV decreased by 40%, and the ICU LOS<br>decreased by 17%<br>- hospital LOS reduced by 17%<br>- SOFA score at ICU discharge significantly<br>decreased after introduction of the protocol (3.0 vs<br>2.0; $p < 0.01$ )No significant difference between :<br>- SOFA score and subscores at admission and at<br>maximum<br>- functional independence measure sum and motor<br>values at hospital discharge improved | 4                 |

CI = confidence interval, EM = early mobilization, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MV = mechanical ventilation, pts = patients, SOFA = sequential organ failure assessment

# This single-center historical quality comparison study shows that hospital mortality and total hospital costs are significantly decreased after the introduction of a progressive EM program in the ICU.

| Reference,<br>Study Type                | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop<br>-out<br>Rate | Intervention                               | Control       | Optimal Population                        | Primary Results                                                                                                      | Evidence<br>Grade |
|-----------------------------------------|--------------------------------------------------------------------|----------------------|--------------------------------------------|---------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------|
| 212 Zayed<br>2020                       |                                                                    |                      |                                            |               |                                           |                                                                                                                      |                   |
| (PMID: 31160215                         | 6 publications <sup>1-6</sup><br>718 pts                           |                      |                                            |               | Primary outcome:<br>- MRC                 | No significant differences between groups in:<br>- MRC, MD (95%CI): 0.45 (-2.89 – 3.80), p = 0.79                    |                   |
| DOI:<br>10.1016/j.aucc.201<br>9.04.003) | Inclusion criteria:<br>- RCTs<br>- ICU pts                         |                      | Neuromuscular<br>electrical<br>stimulation | Usual<br>care | Secondary<br>outcomes:<br>- ICU mortality | - ICU Mortality, RR: (95%Cl): 1.30 (0.95 – 1.78), p = 0.10<br>- ICU LOS, MD: (95%Cl): -3.06 (-9.79 – 3.68), p = 0.18 | 1                 |
| Specification of study:                 | $- \ge 18$ years of age                                            |                      |                                            |               | - ICU LOS<br>- duration of MV             | - duration of MV, MD: (95%Cl): -2.07 (-5.06 – 0.92), p = 0.37                                                        |                   |
| Systematic Review with Meta-Analysis    |                                                                    |                      |                                            |               |                                           |                                                                                                                      |                   |

ICU = intensive care unit, LOS = length of stay, MD = mean difference, MRC = medical research council, MV = mechanical ventilation, pts = patients, RCT = Randomized controlled trial

# Neuromuscular electrical stimulation had no effect on muscle strength, ICU mortality, ICU length of stay or duration of mechanical ventilation

#### References

1 Fossat G, Baudin F, Courtes L, Bobet S, Dupont A, Bretagnol A, et al. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. J Am Med Assoc 2018;320(4):368e78. https://doi.org/10.1001/jama.2018.9592.

2 Kho ME, Truong AD, Zanni JM, Ciesla ND, Brower RG, Palmer JB, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care 2015;30(1):32e9. https://doi.org/10.1016/j.jcrc.2014.09.014.

3 Patsaki I, Gerovasili V, Sidiras G, Karatzanos E, Mitsiou G, Papadopoulos E, et al. Effect of neuromuscular stimulation and individualized rehabilitation on muscle strength in Intensive Care Unit survivors: a randomized trial. J Crit Care 2017;40:76e82. https://doi.org/10.1016/j.jcrc.2017.03.014.

4 Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki E, et al. Electrical muscle stimulation prevents critical illness poly- neuromyopathy: a randomized parallel intervention trial. Crit Care 2010;14(2):R74. https://doi.org/10.1186/cc8987.

5 Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 2003;124(1):292e6. http://www.ncbi.nlm.nih.gov/pubmed/12853536.

6 Abu-Khaber H, Abouelela A, Abdelkarim E. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alexandria J Med 2013;49:309e15.

| Reference,<br>Study Type                                                                                                                                  | (Partici<br>Charact                                                                                        | d Controls<br>ipant #,<br>eristics)<br>tal       | Drop-out<br>Rate                                             | Intervention                                                                                                                                       | Control       | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 214 Nydahl<br>2019<br>(PMID:<br>31125163<br>DOI:<br>10.1111/nicc<br>.12438)<br><b>Specification</b><br>of study:<br>cluster-<br>randomized<br>pilot study | mobilization pr<br>Exclusion crite<br>- palliative stat<br>- had an immo<br>- mobilisation v<br>documented | v and order for<br>resent<br>ria<br>bility order | 2<br>(interven<br>tion<br>group;<br>lost to<br>follow<br>up) | period of usual care<br>and a protocol for<br><b>early mobilisation</b><br>intervention in a<br>stepwise manner,<br>based on ICU<br>mobility scale | Usual<br>care | <ul> <li>Primary endpoint: <ul> <li>percentage of pts with at least one active out-of-bed mobilization, defined as ≥ level 3 on the ICU Mobility Scale</li> </ul> </li> <li>Secondary outcomes <ul> <li>presence/duration of MV</li> <li>delirium, ICU / hospital LOS</li> <li>adverse events</li> </ul> </li> <li>Power analysis: <ul> <li>using five ICUs and steps with 12 included pts per prevalence survey and per ICU</li> <li>(=360 pts overall), and with an assumed intra-class correlation coefficient 35 of 0.05, the pilot study would have a power of 50% to find significant results.</li> </ul> </li> </ul> | <ul> <li>Primary endpoint: <ul> <li>no significant difference</li> <li>in relation to percentage</li> <li>of out-of-bed mobilization</li> <li>(p = 0.106)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>no significant differences</li> <li>adherence to the</li> <li>protocol was &gt;90%</li> <li>unwanted safety events</li> <li>were rare</li> </ul> </li> </ul> | 4                 |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, y = years

Implementation of a protocol for early mobilization seems to have no benefit in relation to percentage of out of bed mobilization.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                           | Cases and<br>(Participant #, 0<br>To                                                                                                                                     |                                                                                                                                                                                                                                                         | Drop-<br>out<br>Rate | Intervention                                     | Control                                               | Optimal<br>Population                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 215 Ferreira<br>2018<br>(PMID:<br>31090853<br>DOI:<br>10.5935/010<br>3-<br>507X.20190<br>017)<br><b>Specificatio</b><br><b>n of study:</b><br>Systematic<br>Review | <ul> <li>hospitalized in ICL</li> <li>underwent PT usin<br/>protocols (respirato<br/>electrophysical inte<br/>including light, sour<br/>electrical stimulatio</li> </ul> | e control, case<br>es including<br>ese & Spanish, 317<br>dies (cohort, cross-<br>trol, case report, or<br>rs<br>Js on ECMO<br>ng multimodal<br>ory, motor, and/or<br>erventions,<br>nd, thermal, or<br>on) during ECMO<br>omparison<br>uese and Spanish |                      | Physical<br>therapy<br>during<br>ECMO<br>support | Usual<br>care (no<br>PT)<br>during<br>ECMO<br>support | Primary<br>endpoint:<br>- safety of PT<br>(evaluated<br>according to the<br>mortality rate,<br>adverse events,<br>oxygen perfusion<br>characteristics,<br>hemodynamic<br>stability)<br>Secondary<br>outcomes:<br>- the length of<br>MV<br>- length of ECMO<br>support<br>- ICU LOS<br>- hospital LOS | <ul> <li>Primary outcome <ul> <li>8 studies provided data on the number of deaths, which ranged from 1-16</li> <li>mortality in patients: IG vs. CG (odds ratio, 0.19; 95% confidence interval, 0.04 - 0.98), (IG=1, CG=7)</li> </ul> </li> <li>Secondary outcome <ul> <li>length of MV:</li> <li>3 studies reported significant differences (IG vs. CG), length of MV in IG &gt; CG</li> <li>(Rehder et al.) mean MV times in IG= 1.75 and CG= 0.77 days</li> <li>(Munshi et al.)reported significant differences: IG vs. CG (median [interquartile range] of 3 [0.87 - 7.00] and 1.16 [0.33 - 4.00] days</li> <li>(Bain et al) IG= 12days (5 - 15) vs. CG= 1 (1 - 5) day</li> </ul> </li> <li>hospital LOS /ICU LOS: <ul> <li>(10 studies) IG=8 [6 - 22] vs. CG=45 [34 - 56] days</li> <li>(2 studies) PT reduced hospital LOS</li> <li>(Rehder et al.) mean total hospitalization time IG= 22 days (n = 10) and 60 days in the CG (n = 3), mean length of ICU stay : IG= 11 days , CG= 45 - (Keibun) mean total hospitalization time IG= 22 days (n = 10) and 60 days in the CG (n = 13), mean ICU stay IG= 14 days vs. CG= 42 days</li> </ul> </li> <li>length of ECMO support(in days): <ul> <li>(Bain et al.) IG= 12, CG=30</li> <li>(Rehder et al.) IG= 12, CG=30</li> <li>(Rehder et al.) IG= 8.75, CG= 2.17(mean)</li> <li>(8 studies) 5-125</li> </ul> </li> </ul> | 1 → 5<br>(no<br>RCTs, no<br>meta-<br>analysis) |

CG = control group, ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit, IG = intervention group, LOS = length of stay, MV = mechanical ventilation, PT = physical therapy, pts = patients

This review demonstrated that physical therapy using respiratory techniques, early progressive mobilization (standing and ambulation), and functional electrical stimulation cycling is feasible and safe for patients on extracorporeal membrane oxygenation support regardless of the type of cannulation used.

#### References

1. Abrams D, Javidfar J, Farrand E, Mongero LB, Agerstrand CL, Ryan P, et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care. 2014;18(1):R38.

2. Bain JC, Turner DA, Rehder KJ, Eisenstein EL, Davis RD, Cheifetz IM, et al. Economic outcomes of extracorporeal membrane oxygenation with and without ambulation as a bridge to lung transplantation. Respir Care. 2016;61(1):1-7.

3. Carswell A, Roberts A, Rosenberg A, Zych B, Garcia D, Simon A, et al. Mobilisation of patients with veno-venous extracorporeal membrane oxygenation (VV ECMO): A case series. Eur J Heart Fail. 2017;19(Suppl 2):26-7.

4. Cork G, Barrett N, Ntoumenopoulos G. Justification for chest physiotherapy during ultra-protective lung ventilation and extra-corporeal membrane oxygenation: a case study. Physiother Res Int. 2014;19(2):126-8.

5. Dennis DR, Boling B, Tribble TA, Rajagopalan N, Hoopes CW. Safety of nurse driven ambulation for patients on venovenous extracorporeal membrane oxygenation. J Heart Lung Transplant. 2014;33(4 Suppl):S301.

6. Hermens JA, Braithwaite SA, Heijnen G, van Dijk D, Donker DW. Awake' extracorporeal membrane oxygenation requires adequate lower body muscle training and mobilisation as successful bridge to lung transplant. Intensive Care Med Exp. 2015;3(Suppl 1):A510.

7. Keibun R. Awake ECMO and active rehabilitation strategies for venovenous ECMO as a bridge to recovery. Crit Care Med. 2016;44(12 Suppl):321.

8. Kikukawa T, Ogura T, Harasawa T, Suzuki H, Nakano M. H1N1 influenza- associated pneumonia with severe obesity: successful management with awake veno-venous extracorporeal membrane oxygenation and early respiratory physical therapy. Acute Med Surg. 2015;3(2):186-9.

9. Ko Y, Cho YH, Park YH, Lee H, Suh GY, Yang JH, et al. Feasibility and safety of early physical therapy and active mobilization for patients on extracorporeal membrane oxygenation. ASAIO J. 2015;61(5):564-8.

10.Kulkarni T, Teerapuncharoen K, Trevor J, Wille K, Diaz-Guzman E. Ambulatory low blood flow extracorporeal membrane oxygenation in a patient with refractory status asthmaticus. Am J Respir Crit Care Med. 2015;191:A4564.

11. Morris K, Barrett N, Curtis A. Exercise on ECMO: an evolving science. J Intensive Care Soc. 2014;15(1 Suppl):S60-1.

12. Munshi L, Kobayashi T, DeBacker J, Doobay R, Telesnick T, Lo V, et al. Intensive care physiotherapy during extracorporeal membrane oxygenation for acute respiratory distress syndrome. Ann Am Thorac Soc. 2017;14(2):246-53.

13. Norrenberg M, Gleize A, Preiser JC. Impact of restricted hip moviment during ECMO on later joint mobility. Intensive Care Med Exp. 2016;4(Suppl 1):A579.

14. Pastva A, Kirk T, Parry SM. Functional electrical stimulation cycling pre-and post-bilateral orthotopic lung transplantation: A case report. Am J Respir Crit Care Med. 2015;191:A1643.

15. Pruijstein R, van Thiel R, Hool S, Saeijs M, Verbiest M, Reis Miranda D. Mobilization of patients on venovenous extracorporeal membrane oxygenation support using an ECMO helmet. Intensive Care Med. 2014;40(10):1595-7.

16. Rahimi RA, Skrzat J, Reddy DR, Zanni JM, Fan E, Stephens RS, et al. Physical rehabilitation of patients in the intensive care unit requiring extracorporeal membrane oxygenation: a small case series. Phys Ther. 2013;93(2):248-55.

17. Rehder KJ, Turner DA, Hartwig MG, Williford WL, Bonadonna D, Walczak RJ Jr, et al. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir Care. 2013;58(8):1291-8.

18. Salam S, Kotloff R, Garcha P, Krishnan S, Joshi D, Grady P, et al. Lung transplantation after 125 days on ECMO for severe refractory hypoxemia with no prior lung disease. ASAIO J. 2017;63(5):e66-8.

19. Turner DA, Cheifetz IM, Rehder KJ, Williford WL, Bonadonna D, Banuelos SJ, et al. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: a practical approach. Crit Care Med. 2011;39(12):2593-8.

20. Wells CL, Forreseter J, Vogel J, Rector R, Herr D. The feasibility and safety in providing early rehabilitation and ambulation for adults on percutaneous venous to arterial extracorporeal membrane oxygenation support. Am J Respir Crit Care Med. 2017;195:A2710.

| Reference,<br>Study Type                                                                                                          | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                  | Characteristics)                                            | Drop-<br>out<br>Rate | Intervention                                                                    | Control                                                                                                                   | Optimal Population                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 217<br>McWilliams,<br>2014<br>(PMID:<br>25316527<br>DOI:<br>10.1016/j.jcrc.20<br>14.09.018)<br>Specification of<br>study: quality | 582 pts<br>Inclusion criteria:<br>- invasively ventilated for<br>Exclusion criteria:<br>- significant neurologic i<br>- orthopedic injury with<br>mobilize<br>- significant burn<br>- poor preadmission mo<br>reported by the pts fam | njury<br>a contraindication to<br>bility levels (<10 yards) |                      | invasively<br>ventilated for<br>at least 5 days<br>in the previous<br>12 months | ventilated for<br>at least 5<br>days in the 12<br>months after<br>the<br>introduction<br>of the<br>rehabilitation<br>team | Primary endpoints:<br>- mobility level at ICU<br>discharge (assessed<br>via the Manchester<br>Mobility Score)<br>- mean ICU LOS<br>- post-ICU LOS<br>- ventilator days | Primary outcome<br>- MMS on ICU discharge, median<br>(IQR): Intervention(n=202) = 3 (2-<br>5), control group(n=225) = 5 (3-6),<br>p=0.05<br>Significant differences between<br>groups in:<br>- ICU LOS (16.9 vs 14.4 days,<br>p=0.007)<br>- ventilator days (11.7 vs 9.3 days,<br>P <0.05)<br>- total hospital LOS (35.3 vs 30.1 | 4                 |
| improvement                                                                                                                       | Per Branch                                                                                                                                                                                                                            |                                                             |                      |                                                                                 |                                                                                                                           |                                                                                                                                                                        | days, p< 0.001)                                                                                                                                                                                                                                                                                                                  |                   |
| project                                                                                                                           | n=290                                                                                                                                                                                                                                 |                                                             |                      |                                                                                 |                                                                                                                           | - in-hospital mortality                                                                                                                                                | - in-hospital mortality (39% vs<br>28%, p<0.05)                                                                                                                                                                                                                                                                                  |                   |

ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MMS= Manchester mobility score, pts= patients

The implementation of a new rehabilitation team with a focus on early and enhanced rehabilitation was associated with a significant reduction of mortality, ICU and hospital LOS and increase of mobility at discharge.

| Reference,<br>Study Type                                                                                                                                      | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                                             | Characteristics)                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention                                                                                                                                                     | Control                             | Optimal Population                                                                                                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 218<br>Wollersheim<br>2019<br>(PMID:<br>31016887<br>DOI:<br>10.1002/jcsm<br>.12428)<br><b>Specification</b><br>of study:<br>randomized<br>controlled<br>trial | 50 pts<br>Inclusion criteria:<br>- pts on MV ≥18 yea<br>- sepsis related MOI<br>sepsis-related orgar<br>- assessment (SOFA<br>the first 72 h after lo<br>Exclusion criteria:<br>- pre-existing neuro<br>illness prohibiting ea<br>- insulin-dependent<br>prior treatment<br>for longer than 7 da<br>- body mass index ><br>- not ambulating be<br>- with a poor prograve<br>- prone to die within<br>Per Br<br>33 | DS indicated by a<br>n failure<br>) score ≥9 within<br>CU admission<br>muscular disease,<br>arly mobilization<br>diabetes mellitus,<br>NS<br>• 35 kg/m2<br>fore admission<br>osis<br>n the next hours |                      | Muscle<br>activating<br>measures such<br>as:<br><b>NMES and/or</b><br><b>WBV</b><br>- in addition to<br><b>protocol-</b><br><b>based</b><br><b>physiotherapy</b> | Protocol-<br>based<br>physiotherapy | Derived endpoints:<br>- muscle strength evaluated<br>by MRC score and handgrip<br>dynamometry on the 1 <sup>st</sup> day<br>the pts became awake, at<br>ICU discharge, at a 12<br>month in-hospital follow-up<br>- FIM at ICU discharge and<br>at a 12-month follow-up<br>- 6 min walking test at the<br>12 month in-hospital follow-up<br>up | Significant differences between<br>groups in:<br>- muscle strength from the 1 <sup>st</sup> day<br>pts became sufficiently awake until<br>ICU discharge (control group<br>p=0.008, intervention group = 0.009)<br>No significant differences between<br>groups in:<br>- MRC score, handgrip Strength, FIM<br>score at ICU discharge<br>- MRC score and function (minimal<br>modified FIM) compared with<br>common physiotherapeutic practice<br>- 6 min walking test at 12 month<br>follow up | 2                 |

FIM = Functional Independence Measurment, ICU = intensive care unit; MODS = multiple organ dysfunction syndrome, MRC = medical research council, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, WBV = whole-body vibration

In patients with sepsis at high risk for ICU-acquired weakness, muscle activating measures in addition to early protocol-based physiotherapy did not improve muscle strength or function at first awakening, ICU discharge, or 12-month follow-up.

| Reference,<br>Study Type                                                                                                                                    | (Partici<br>Charact                                                                | d Controls<br>pant #,<br>eristics)<br>tal | Drop<br>-out<br>Rate | Intervention                                                                       | Control                                                             | Optimal Population                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-------------------------------------------|----------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 219 Hsieh<br>2019<br>(PMID:<br>30985390<br>DOI:<br>10.1097/CC<br>M.0000000<br>00003765)<br><b>Specification</b><br>of study:<br>Prospective<br>cohort study | 1.855 pts<br>Inclusion c<br>- on MV<br>- ≥18 years<br>- admitted<br>Per B<br>1.036 | 5                                         |                      | <b>Full bundle ICU:</b><br>- Baseline: B<br>- Period 1: A + D<br>- Period 2: E + C | <b>Partial bundle<br/>ICU:</b><br>- Baseline: B<br>- Period 1:A + D | Primary endpoint:<br>-hospital LOS<br>Secondary outcomes:<br>- ICU-LOS<br>- duration of MV<br>Cost outcomes:<br>- total hospital and ICU<br>cost<br>Clinical quality<br>outcomes:<br>- ICU restraint use,<br>prevalence of ICU-<br>acquired pressure ulcers | Significant differences between groups in:<br>-implementation of the full (B-AD-EC)<br>reduced hospital LOS (-7.8%, 95% CI -8.7%<br>to -6.9%, p=0.006)<br>- MV duration (-22.3%, 95% CI -22.5% to<br>-22.0%, p <0.001) in full bundle<br>- ICU LOS (-10.3%, 95% CI -15.6% to<br>-4.7%, p=0.028) in full bundle<br>- total ICU and hospital cost reduced by<br>24.2% (95% CI -41.4% to -2.0%, p=0.03)<br>and 30.2% (95% -46.1% to -9.5%, p=0.007)<br>- ICU-acquired pressure ulcers and physical<br>restraint use decreased (period 1 vs 2: 39%<br>vs 23% of pts; 30% vs 26% pts days,<br>respectively, p<0.001 for both) | 3                 |

ABCDE-Bundle = awakening, breathing trials, coordination, delirium, early mobilization, CI = confidence interval, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

The implementation of (E)arly Mobilization and (C)oordination in addition to spontaneous (B)reathing trials, (A)wakening and (D)elirium management can have a positive impact on hospital and ICU LOS, duration of MV and costs.

| Reference,<br>Study Type                                                                                                                                      | (Participant #, | d Controls<br>Characteristics)                                               | Drop-<br>out<br>Rate | Intervention | Control                 | Optimal Population                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                   | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------|----------------------|--------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------|
| 222 Defosse<br>2019<br>(PMID:<br>30923850<br>DOI:<br>10.1007/s00<br>063-019-<br>0565-8)<br><b>Specification</b><br>of study:<br>retrospective<br>cohort study | D               | 2005<br>:<br>Thorax ≥3)<br>ted<br>:<br>days after injury<br>al trauma center |                      | CLRT         | Conventional<br>therapy | Retrospective – no<br>determination of primary<br>endpoint<br>Derived endpoints, rates of:<br>- organ and multi-organ<br>dysfunction<br>- incidence of sepsis<br>- ICU and hospital LOS<br>- duration of MV<br>- ventilation-free days<br>- discharge to home or<br>rehabilitation facility<br>- hospital mortality<br>- duration of CLRT | Significant differences between groups:         - less secondary relocation in CLRT (%11.3;         17.6 p<0.016) | 4                 |

AIS = abbreviated injury scale, CLRT = continual-lateral rotation therapy, ICU= intensive care unit, LOS= length of stay, MV= mechanical ventilation

#### In thoracic trauma CLRT has no clinical benefit but but duration of ventilation and ICU length of stay) in a retrospective analysis.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-out Rate                                                        | Intervention                                                     | Control                                                           | Optimal<br>Population                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 225 Jahani<br>2018<br>(PMID:<br>30894882<br>DOI:<br>10.25122/jml<br>-2018-0028)<br><b>Specification</b><br>of study:<br>single group<br>clinical trail | 58 pts in single group trial Inclusion criteria: <ul> <li>ARF</li> <li>18 – 60 y</li> <li>tracheal intubation &gt; 6h</li> <li>synchronized intermittent mechanical ventilation</li> <li>hemodynamically stable</li> <li>no pressure ulcers</li> <li>no ICP</li> </ul> Exclusion criteria: <ul> <li>HR &lt; 60 or &gt; 100</li> <li>blood pressure &gt; 140 or &lt; 60</li> <li>SpO<sub>2</sub> &lt; 80%</li> <li>ventricular tachycardia</li> <li>asystole</li> <li>ventricular fibrillation</li> <li>need for variation of ventilation mode</li> </ul> | 4 (HR > 100, removal<br>of MV equipment,<br>RR = 32,<br>hypotension) | <b>prone</b><br><b>position</b> for<br>2h repeated<br>for 3 days | <b>supine</b><br><b>position</b> for<br>2h repeated<br>for 3 days | <b>Outcome:</b><br>- Physiological<br>signs after 1h and<br>2h<br>- ABG at 2h | Significant differences:<br>- SpO <sub>2</sub> : Day 1: PP: 93.76 $\pm$ 7.56<br>vs. SP: 95.46 $\pm$ 7.33; p< 0.05<br>Day 2: PP: 97.82 $\pm$ 7.49 vs. SP:<br>95.69 $\pm$ 7.48; p< 0.05<br>Day 3: PP: 99.45 $\pm$ 7.83 vs. SP:<br>97.73 $\pm$ 7.74; p < 0.05<br>- PaO <sub>2</sub> : Day 1: PP: 92.24 $\pm$ 2.008<br>vs. 93.74 $\pm$ 1.82; p < 0.05<br>Day 2: PP 95.40 $\pm$ 1.23 vs. SP:<br>93.92 $\pm$ 1.46; p < 0.05<br>Day 3: PP: 96.72 $\pm$ 1.12 vs.<br>95.27 $\pm$ 1.17; p < 0.05<br><b>No Significant differences:</b><br>- Systolic blood pressure<br>- Diastolic blood pressure<br>- Respiratory rate | 4                 |

ABG = arterial blood gas, ARF = acute respiratory failure, HR = heart rate, ICP = intracranial pressure, MV = mechanical ventilation, PP = prone positioning, SP = supine positioning

Prone positioning improved SpO<sub>2</sub> and PaO<sub>2</sub> on day 2 and 3 compared to supine positioning.

| Reference,<br>Study Type                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                 |                                                                                                                      | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 226<br>Bonizzoli<br>2019<br>(PMID:<br>30871301<br>DOI:<br>10.23736/S03<br>75-<br>9393.19.1328 | n = 101<br>Inclusion criteria:<br>- adults with refractor<br>ECMO support<br>- admitted to an ICU<br>referral center<br>- submitted to physi<br>- 2016<br>Per B | of a tertiary ECMO<br>otherapy from 2009                                                                             |                      | Early PT     |         | Primary<br>endpoint:<br>- ICU<br>mortality<br>Secondary<br>outcomes:<br>- LOS | Primary outcome:ICU mortality (early physiotherapy (within<br>the first week) vs. delayed physiotherapy)<br>12 vs 14 (p>0.05)Multivariable logistic regression analysis:<br>BMI was an independent predictor of in-<br>ICU mortality<br>(OR 0.899, 95% CI 0.823 – 0.981, p =<br>0.017)Secondary outcomes:<br>Time from ECMO start to first<br>physiotherapy session showed a significant | 4→5               |
| 9393.19.1328<br>7-7)<br>Specification<br>of study:<br>Retrospective<br>observational<br>study | n = 33<br>Time from ECMO<br>start to first<br>physiotherapy<br>session within the<br>first week                                                                 | Time from ECMOTime from ECMOstart to firststart to firstphysiotherapyphysiotherapyession within thesession after the |                      |              |         | - LOS<br>- duration of<br>MV                                                  | physiotherapy session showed a significant<br>relation with<br>LOS:<br>12 (7.25-21) days vs 25 (18.75-36.25)<br>(r <sup>2</sup> = 0.48, p < 0.001)<br>Duration of MV:<br>11 (5-17.75) vs 23 (13.75-33.25)<br>(P=0.001)                                                                                                                                                                   |                   |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, SAPS II = simplified acute physiology score, T = physiotherapy, vvECMO = veno-venous extracorperal membrane oxygenation

In patients with VV-ECMO support, physiotherapy is feasible and safe and the early physiotherapy, initiated within the first week from ECMO start, is associated with shorter duration of ECMO support and ICU length of stay.

| Reference <i>,</i><br>Study Type                                                                                                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                           | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                  | Control       | Optimal Population                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 227 Chiarici<br>2019<br>(PMID:<br>30796918<br>DOI:<br>10.1016/j.apmr<br>.2019.01.015)<br><b>Specification</b><br>of study:<br>Observational<br>prospective<br>cohort study,<br>with<br>retrospective<br>controls | 275 pts<br>Inclusion criteria:<br>- admitted to ICU<br>Exclusion criteria:<br>- died/transferred<br>within 24 hours of<br>admission<br>Per Branch<br>152 133 |                      | Rehabilitation care<br>pathway based on:<br>- interdisciplinary<br>teamwork<br>- early customized and<br>goal-oriented<br>rehabilitation<br>- daily functional<br>monitoring and<br>treatment revision<br>- agreed discharge<br>policy<br>- continuity of care<br>- treatment was<br>customized to pts'<br>clinical condition in<br>terms of training<br>content and duration | Usual<br>care | Primary endpoint:<br>- ICU LOS<br>- proportion of<br>ventilator-free days<br>out of the total ICU<br>stay<br>Secondary outcomes:<br>- feasibility<br>- safety<br>Power analysis:<br>the number of pts who<br>should be included is<br>126 for each group<br>(with alpha error <0.05<br>and beta error <0.10 | <ul> <li>Significant differences between groups in:</li> <li>proportion of ventilator free days: increased<br/>from 30% to 48% (p&lt;0.0006) in the total sample<br/>and from 30% to 62% (p&lt;0.0001) in those who<br/>underwent rehabilitation</li> <li>ICU LOS in postoperative subgroups, decrease<br/>from 22.9±12.9 to 7.0 ± 7.9 (p&lt;0.0001) in<br/>retrospective group and from 55.3±15.4 to<br/>21.2±16.6 (p=0.01) in prospective group</li> <li>No significant differences between groups in:</li> <li>adverse effects</li> <li>ICU LOS, comparison of the total retrospective<br/>and prospective cohorts(p=0.089)</li> <li>Skewed evidence: The rehabilitation team<br/>assessment was performed in 100% of cases in<br/>the prospective group p&lt;0.0001)</li> </ul> | 4                 |

ICU = intensive care unit, LOS = length of stay, pts = patients

An early interdisciplinary rehabilitation in the ICU reduces the hospital LOS and increases ventilator-free time with greater benefits for postoperative patients.

| Reference,<br>Study Type                                                                                                                                           | (Partici<br>Charact | l Controls<br>pant #,<br>eristics)<br>tal   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                  | Control                                                      | Optimal Population                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 228 Chou<br>2018<br>(PMID:<br>30789023<br>DOI:<br>10.1177/147<br>99731188203<br>10)<br><b>Specification</b><br>of study:<br>Retrospective<br>case control<br>study | Per B               | nitted at ICU<br>nvasive MV<br>racheal tube |                      | <b>Early rehabilitation:</b><br>- within 72 hours of<br>MV in<br>hemodynamically and<br>respiratory stable pts<br>- provided twice daily,<br>5 days per week. | Matched pts<br>with <b>no early</b><br><b>rehabilitation</b> | <b>Primary endpoints:</b><br>- duration of MV<br>- ICU and hospital LOS<br>- medical costs | Primary endpoint:<br>- MV duration (hours): intervention =<br>137.3 ± 136.9, control = 160.1 ± 125.7;<br>p= 0.396<br>- ICU stays (days): intervention= 5.8 ±<br>6.1, control = 9.2 ± 8.3, p= 0.033<br>- hospital LOS (days): intervention= 17.9<br>± 14.6, control= 25.4 ± 24.0; p= 0.095<br>- medical costs (x \$10.000):<br>intervention= 15.2 ± 13.6, control = 22.9<br>± 21.7; p=0.058 | 4                 |

COPD = chronic obstructive lung disease, ER = early rehabilitation, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

#### Early rehabilitation for patients in the ICU with COPD with acute respiratory failure shortened the duration of their MV.

| Reference,<br>Study Type                                                                                                                                       | Cases and<br>Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                   | Drop-<br>out<br>Rate | Interventio<br>n                                                                                                                                                                                                        | Control                                                  | Optimal<br>Population | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 234<br>Trethewey<br>2019<br>PMID:<br>30673625<br>https://doi.<br>org/10.101<br>6/j.jcrc.201<br>9.01.008<br>Specificatio<br>n of study:<br>Systematic<br>review | 22 RCTs (n =<br>2792 pts) <sup>1-22</sup><br>Inclusion<br>criteria:<br>-RCTs<br>investigating<br>interventions to<br>preserve muscle<br>mass and/or<br>function in<br>critically ill<br>patients<br>-pts. admitted to<br>a HDU or ICU for<br>level 2 or level 3<br>care |                      | improving<br>or<br>maintaining<br>muscle<br>mass/size<br>and/or<br>muscle<br>function<br>(strength or<br>performanc<br>e)<br>Subgroups:<br>1. NMES<br>2. Exercise-<br>based<br>3. nutrition-<br>based<br>4.<br>combined | usual<br>care or<br>placebo<br>/sham<br>interven<br>tion | -ICU/hospital         | <ul> <li>Primary Endpoint:         <ul> <li>measure of muscle</li> <li>mass/size and muscle function</li> <li>NMES: MRC-Score, HGS, Quadriceps MLT, Leg and thigh circumference, ankle joint movement, leg or arm circumference, bicep thickness, quadriceps muscle fibre CSA; Quadriceps CSD, quadriceps muscle volume</li> <li>1 study: greater preservation of muscle strength (MRC-Score) (median [range]: 58points [33-60 points] vs. 52 points [2-60 points], p=0.04)</li> <li>EB: no study assessed muscle mass/size; 6MWT; incremental shuttle walk Test; quadriceps force; Functional Independence Measure; maximum walking distance; IMS Scale; PFIT; Functional Status Score in ICU test; SPPB, HGS</li> <li>1 study: daily cycle ergometer sessions until ICU discharge had greater 6MWT (median [range]: 196m [126-329m] vs.143m [37–226m], p&lt;0.05) and improved self-reported physical performance (median [range]: 21 points [18–23 points] vs. 15 points [14–23 points], p&lt;0.01)</li> <li>1 study: daily physical and occupational therapy greater return to independent functional status (number [%]: 29 [59%] vs. 19 [35%], p=0·02), greater maximum walking distance at hospital discharge (median [range]: 33·4m [0–91·4m] vs. 0m [0–30·4m], p=0·004)</li> <li>NB: HGS, femoral volume, FEV1; FVC; maximal inspiratory pressure, Mid-arm muscle circumference; muscle wasting and fat loss (subjective)</li> <li>1 study: Greater impairment of post-op FEV1 and FVC in intervention group. (no p-value)</li> <li>1 study: Increased return to independent functional status, maximum walking distance (no p value)</li> <li>1 study: Faster initial rate of improvement ti nuddriceps force at hospital discharge in the intervention group (no p value)</li> <li>1 study: NMES and early, targeted physical rehabilitation improvement in HRQOL in the domains of 'physical role' (mean score ±5D: 61.4 ±43.8 vs. 17.1 ±34.4, p=0.005) measured at</li></ul></li></ul> | 1 → 2<br>(no meta-<br>analysis) |

| Secondary Endpoints:                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -ICU/hospital LOS                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>NMES: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>EB: 1 study 2x daily intensive physical therapy resulted in shorter ICU LOS (no p-</li> </ul>                                                                                                                                                                                                                                                                  |
| value)                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>NB: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>CINT: 1 study: Shorter ICU LOS in the exercise + placebo group (no p-value)</li> </ul>                                                                                                                                                                                                                                                                         |
| -days with MV                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>NMES: 1 study shorter duration of weaning from MV (median [range]: 1 day [0-16 days] vs. 4 days [0-44 days], p=0.003) and a shorter time off MV (median [range]: 4 days [0-16 days] vs. 6 days [0-41 days], p=0.003)</li> <li>EB: 1 study: daily physical and occupational therapy greater number of ventilator-</li> </ul>                                    |
| free days (median [range]: 23·5 days [7·4–25·6 days] vs. 21·1 days [0·0–23·8 days], p=0·05)                                                                                                                                                                                                                                                                             |
| <ul> <li>NB: 1 study: early parenteral nutrition (starting day 1 of ICU admission) continued until ICU discharge compared with usual care resulted in a shorter duration of invasive mechanical ventilation (number of days, adjusted for duration of ICU stay: 7.26 vs. 7.73 days per 10 patient x ICU days, p=0.01)</li> <li>CINT: no difference mentioned</li> </ul> |
| -rate of hospital readmission                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>NMES: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>EB: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>NB: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>CINT: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                       |
| -mortality                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>NMES: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                       |
| • EB: no difference mentioned                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>NB: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>CINT: no difference mentioned</li> </ul>                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                         |

RCT=randomized controlled trial; pts. =patients; HDU=high dependency unit; ICU=intensive care unit; LOS=length of stay; MV=mechanical ventilation; MRC=Medical Research Council; MLT=muscle layer thickness; HGS=hand grip strength; 6MWT=6-minute walking test; TUAG= timed up-and-go test; HRQoL= health related quality of life; EB=exercise-based; SPPB=short physical performance battery; NB=nutrition-based; CINT=combined intervention; ACIF= acute care index of function; PFIT=physical function ICU test; CSA= cross sectional area; CSD= cross sectional diameter; IMS= ICU Mobility Scale

NMES and exercise-based interventions may preserve muscle mass and function in patients with critical illness, but there is a lack of consistency seen in the effects of these interventions.

#### References

1. Fischer A, Spiegl M, Altmann K, Winkler A, Salamon A, Themessl-Huber M, et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care 2016 Jan 29;20:3

2. Falavigna LF, Silva MG, Freitas AL, Silva PF, Paiva Junior MD, de Castro CM, et al. Effects of electrical muscle stimulation early in the quadriceps and tibialis anterior muscle of critically ill patients. Physiother Theory Pract 2014 May;30(4):223-228.

3. Rodriguez PO, Setten M, Maskin LP, Bonelli I, Vidomlansky SR, Attie S, et al. Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care 2012 Jun;27(3):319.e8.

4. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki E, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 2010;14(2):R74.

5. Dirks ML, Hansen D, Van Assche A, Dendale P, Van Loon LJ. Neuromuscular electrical stimulation prevents muscle wasting in critically ill comatose patients. Clin Sci (Lond) 2015 Mar;128(6):357-365.

6. Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P, Koroneos A, et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care 2009;13(5):R161.

7. Poulsen JB, Moller K, Jensen CV, Weisdorf S, Kehlet H, Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med 2011 Mar;39(3):456-461.

8. Gruther W, Kainberger F, Fialka-Moser V, Paternostro-Sluga T, Quittan M, Spiss C, et al. Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study. J Rehabil Med 2010 Jun;42(6):593-597.

9. Connolly B, Thompson A, Douiri A, Moxham J, Hart N. Exercise-based rehabilitation after hospital discharge for survivors of critical illness with intensive care unit-acquired weakness: A pilot feasibility trial. J Crit Care 2015 Jun;30(3):589-598.

10. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care 2013 Jul 24;17(4):R156.

11. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009 Sep;37(9):2499-2505.

12. Yosef-Brauner O, Adi N, Ben Shahar T, Yehezkel E, Carmeli E. Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unitacquired weakness. Clin Respir J 2015 Jan;9(1):1-6.

13. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised c ontrolled trial. Lancet 2009 May 30;373(9678):1874-1882.

14. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2016 Jun 28;315(24):2694-2702.

15. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med 2016 Jun;44(6):1145-1152.

16. Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics and decreased mobility. Ann Surg 1997 Sep;226(3):80.

17. Casaer MP, Langouche L, Coudyzer W, Vanbeckevoort D, De Dobbelaer B, Guiza FG, et al. Impact of early parenteral nutrition on muscle and adipose tissue compartments during critical illness. Crit Care Med 2013 Oct;41(10):2298-2309.

18. Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, et al. Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA 2013 May 22;309(20):2130-2138.

19. Jones C, Eddleston J, McCairn A, Dowling S, McWilliams D, Coughlan E, et al. Improving rehabilitation after critical illness through outpatient physiotherapy classes and essential amino acid supplement: A randomized controlled trial. J Crit Care 2015 Oct;30(5):901-907.

20. Patsaki I, Gerovasili V, Sidiras G, Karatzanos E, Mitsiou G, Papadopoulos E, et al. Effect of neuromuscular stimulation and individualized rehabilitation on muscle strength in Intensive Care Unit survivors: A randomized trial. J Crit Care 2017 Aug;40:76-82.

21. Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. Chest 2003 Jul;124(1):292-296.

22. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015 May;41(5):865-874.

| 200 pts on MV       Primary outcome       Primary outcome         Inclusion criteria:       - ≤ 18 years       - functional       - immediate postrandomization         - MV < 48 h and expected to require MV for > 24       h at the time of screening       - functional independence at hospital       GCS had no effect on the         236 Schaller       - functional independent at baseline with a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2019       -functional independent at baseline with a<br>Barthel Index Score 270 at 2 weeks before<br>admission to the surgical ICU<br>30666366       Secondary outcome<br>admission to the surgical ICU<br>admission to the hospital > 5 days before<br>screening       Inter-<br>admission to the hospital > 5 days before<br>screening       Inter-<br>vention:<br>7       SOMS-<br>guided<br>mobility       Standard<br>treatment<br>with a<br>facilitator       Standard<br>for Stady:       - average achieved<br>mobility level during the<br>interaction GCS × intervention)       - EM significantly increased the<br>functional independence at<br>hospital discharge<br>hospital discharge         001:<br>34-019-<br>05528-x)       - motor component of the immediate post-injury<br>34-019-<br>05528-x)       Inter-<br>vention:<br>7       Standard<br>freatment<br>mortality of > 50%       Standard<br>freatment<br>mortality of > 50%       Standard<br>independence at<br>hospital discharge       Hospital discharge<br>hospital discharge       Hospital discharge | 3 |

EM = early goal directed mobilization, GCS= Glasgow coma scale, ICU = intensive care unit, ICP = intracranial pressure, MV= mechanical ventilation, SOMS = surgical optimal mobilization score

Early, goal-directed mobilization in patients with an impaired initial conscious state (GCS≤8) is not harmful but effective.

| Reference,<br>Study Type                                                                                                                                                                                  |                                                                                                                                           | es and Cont<br>int #, Chara<br>Total                                                                         |                                                    | Drop-<br>out Rate | Intervention                                                                                                                                                                                                                      | Control                                                                                                         | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 237 Young<br>2019<br>(PMID:<br>30659467<br>DOI:<br>10.1007/s120<br>28-019-00670-<br>2)<br><b>Specification</b><br>of study:<br>prospective<br>observational<br>cohort study<br>with historical<br>control | the Neuro<br>quaternar<br>center fro<br>- patients<br>perimeser<br>for whom<br>hospice ca<br>were not i<br><b>Phase 1 a</b><br>prospectiv | cephalic SA<br>comfort me<br>re were init<br>ncluded<br><b>nd phase 2</b> :<br>rely enrollec<br>exclusion cr | medical<br>014<br>H or those<br>asures or<br>iated | not<br>reported   | <b>Phase I:</b> use of a PT/OT-<br>driven protocol.<br>Mobilization during<br>formal PT/OT sessions<br>with continuous<br>presence of both the<br>therapist and the bedside<br>nurse<br><b>Phase II:</b> nurse-driven<br>protocol | Phase 0:<br>retrospectiv<br>ely enrolled<br>control<br>either Phase<br>0 or Phase 1<br>depending<br>on analysis | Primary endpoint:<br>- frequency of patient<br>mobilization<br>Secondary outcomes<br>- ICU and hospital<br>length of stay<br>- rate of tracheostomy<br>and<br>ventriculoperitoneal<br>shunt placement<br>- discharge disposition<br>- ventilator days<br>- Safety outcomes:<br>elevation of ICP, acute<br>onset of headache<br>during mobilization,<br>and acute<br>focal/worsening of<br>neurologic deficits<br>No power analysis was<br>conducted | <ul> <li>Primary results: <ul> <li>Phase I (n=24), first mobilization occurred 14 days earlier (hospital day 6 versus hospital day 20; p &lt; 0.0001)</li> <li>Phase II mobilization occurred on average 1 day earlier than with the therapy-driven protocol (p=0.099).</li> </ul> </li> <li>Secondary results concerning safety: <ul> <li>four sessions in Phase I were aborted mid-session due to pain, increased ICP, and hypotension. In Phase II, one session was stopped mid-session due to elevated ICP.</li> <li>no falls, incidental medical device dislodgement, acute hypoxia, new onset arrhythmias, prolonged elevated ICP, or neurologic changes occurred in association with early mobilization.</li> </ul> </li> <li>No significant differences in secondary outcomes (Table 2)</li> </ul> | 4                 |

ICP = intracranical pressure, OT = occupational therapy, PT = physical therapie, SAH = subarachnoid haemorrhage

Nurse-driven mobilization for patients with EVDs is safe, feasible, and leads to more frequent ambulation compared to a therapy-driven protocol. Nurse-driven mobilization may be associated with improved discharge disposition, although exact causation cannot be determined by these data.

| Reference,<br>Study Type                                                                                                                               |                                                                                                                                                                           | and Controls<br>#, Characteristics)<br>Total                                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                       | Control                                                               | Optimal Population                                                                                          | Primary Results                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 238<br>Ragland<br>2019<br>(PMID:<br>30642773<br>DOI:<br>10.1016/j.iccn<br>.2018.12.005)<br>Specification<br>of study:<br>Retrospective<br>before-after | failure with IHD, E<br>Exclusion criteria:<br>- in process of wit<br>- not passing the s<br>- ordered transfer<br>- RRT patients afte<br>evaluation remain<br>than a week | DVVH, or CRRT<br>DVVH, or CRRT<br>hdrawing care<br>safety screening<br>out of ICU<br>er first mobility<br>hing on ICU for longer |                      | <b>Mobility plan</b><br>following introduction<br>of a stepwise <b>mobility</b><br><b>protocol</b> | before<br>implement<br>ation of<br><b>mobility</b><br><b>protocol</b> | Primary outcome:<br>- compliance to the mobility<br>plan<br>Secondary outcomes:<br>- safety/adverse advents | Primary outcome:<br>compliance to mobility<br>before vs after introduction<br>of the protocol:<br>12.5% vs 62.5% (overall<br>increase of 400%)<br>Secondary outcome:<br>adverse events: no adverse<br>events during the project | 4                 |
| cohort study                                                                                                                                           | 31                                                                                                                                                                        | Post protocol<br>25                                                                                                              |                      |                                                                                                    |                                                                       |                                                                                                             |                                                                                                                                                                                                                                 |                   |

CRRT = continuous renal replacement therapy, DVVH = daily venonenous filtration, ICU = intensive care unit, IHD = intermittent heamodialysis, pts = patients, RRT = renal replacement therapy

The use of a step-wise mobility protocol was an effective and safe strategy to increase mobility in the renal replacement therapy patient population.

| Reference,<br>Study Type                                                                                                                                 | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                              | Drop-<br>out<br>Rate      | Intervention                                                                                                                                                                                                                        | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evide<br>nce<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 242<br>Yatabe<br>2018<br>PMID: 30541003<br>https://doi.org/10<br>1159/000495213<br>Specification of<br>study:<br>A Multicenter<br>Observational<br>Study | 13 hospitals in Japan (10<br>university hospitals and 3<br>public hospitals) between April<br>2015 and March 2016 -> 389<br>pts.<br>Inclusion criteria:<br>-MV for at least 24 h<br>-in the ICU for >72 h<br>Exclusion criteria:<br>-aged <20 years<br>-on their second or<br>subsequent<br>readmission to the ICU during<br>the study period<br>-refused the use of their data<br>223<br>GG: 105<br>PG: 118 | n=107<br>(ICU <<br>7days) | No intervention<br>(observational<br>study)<br><u>Divided for</u><br><u>analysis of</u><br><u>secondary</u><br><u>endpoint by</u><br><u>physical status:</u><br>GG:<br>more than end<br>sitting.<br>PG:<br>bed rest and<br>sitting. | /       | Sample Size calculation:<br>- minimum of 240 pts.,<br>because number of<br>potential factors<br>that affected physical<br>status=10<br>→ 360 pts., predicted that<br>two thirds of all pts.<br>remained in the ICU for ≥7<br>day<br>Primary Endpoint:<br>- calorie and protein intake<br>in the ICU on days 3 and 7,<br>and at ICU discharge<br>Secondary Endpoints:<br>- physical status at ICU<br>discharge in patients who<br>remained in the ICU for ≥7<br>days | Primary Endpoint:<br>-Day 3, 44% pts. received EN, 86% PN and median amount<br>of protein intake via EN and PN: 0.2 (0–0.5) g/kg/day<br>-Day 7, 66% pts. received EN, 10% PN and median amount<br>of protein intake via EN and PN: 0.4 (0.1–0.8) g/kg/day<br>-ICU discharge, median amount of protein intake via EN<br>and PN: 0.3 (0–0.7) g/kg/day<br>Secondary Endpoint:<br>-CIN on day 3 in the PG higher than in GG (10.1 [5.8, 16.2]<br>vs. 5.2 [1.9, 12.4] kcal/kg/day, p < 0.001).<br>- pts. received higher rehabilitation in the GG than in the<br>PG (92 vs. 63%, p < 0.001)<br>-orally fed on day 7 and at ICU discharge in GG higher than<br>in PG (21%, 6%; p = 0.001 and 42%, 16%; p < 0.0001,<br>respectively)<br>multivariate analysis:<br>- CIN (day 3) and rehabilitation in ICU, use of<br>ventilator at ICU discharge as independent factors that<br>affect physical status (OR 1.19; 95% CI 1.05-1.34; p = 0.005<br>and OR 0.07; 95% CI 0.01-0.34; p = 0.001 and OR 20.4; 95%<br>CI 4.36–95.2; p < 0.001, respectively);<br>-initiation of rehabilitation during ICU stay and oral intake<br>at ICU discharge, independent factors affecting physical<br>status (OR 0.07; 95% CI 0.02–0.29; p < 0.0001 and OR 0.20;<br>95% CI 0.06–0.74; p = 0.02, respectively) |                       |

Pts.=patients; MV=mechanical ventilation; ICU=Intensive Care Unit; GG=Good Group; PG=Poor group; EN=enteral nutrition; PN=parenteral nutrition; CIN=caloric intake; CI= Confidence interval

Critically ill patients might benefit from low caloric intake (less than 10 kcal/kg/day) until day 3 and rehabilitation during ICU stay.

| Reference,<br>Study Type                                                   | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                     |                            |  | Intervention                                                                  | Control          | Optimal Population                                                                                                | Primary Results                                                                                                                                                                                                   | Evidence<br>Grade |
|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|-------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 244<br>Chohan<br>2018                                                      | was carried out in an<br>hospital in an urban<br>Inclusion criteria:<br>- responsive to verba<br>commands                                                                                                                                                                           | al stimulation and obeying |  |                                                                               |                  | No sample size<br>calculation                                                                                     | <b>Results:</b><br>- reliability of 87% (median)<br>was achieved                                                                                                                                                  |                   |
| PMID:<br>30515467<br>https://doi.org<br>/10.1136/bmjo<br>q-2018-<br>000339 | <ul> <li>PEEP &lt; 8 and FiO2 &lt;50% an CV stable</li> <li>Vasopressor/Inotrope Infusions have not<br/>increased in the last 2 hours</li> <li>no active volume resuscitation</li> <li>controlled arrhythmias</li> <li>no active myocardial ischemia</li> </ul> Exclusion criteria: |                            |  | Achieve 95%<br>reliability with a<br>standardized<br>mobilization<br>process. | No<br>population | (retrospective study)<br>Endpoints:<br>- Reliability<br>- Delirium Rates<br>-Length of stay and<br>adverse events | <ul> <li>PDSA (Plan, Do, Study, Act) cycles allowed development of the process and achieved a median of 87% reliability</li> <li>Delirium rates fell from 54,1% to 28,8%</li> <li>no change in average</li> </ul> | 4 → 5             |
| Specification<br>of study:<br>Retrospective<br>study                       | <ul> <li>bony/soft tissue injury requiring immobilization</li> <li>abdominal compartment syndrome</li> <li>Vac dressing or Sengstaken tube</li> <li>BMI &gt; 45</li> <li>Difficult Airways</li> </ul> Per Branch                                                                    |                            |  |                                                                               |                  |                                                                                                                   | length of stay and adverse<br>events                                                                                                                                                                              |                   |
|                                                                            | Not specified                                                                                                                                                                                                                                                                       | Not specified              |  |                                                                               |                  |                                                                                                                   |                                                                                                                                                                                                                   |                   |

AE = adverse events ; BMI = body mass index ; CAM-ICU = confusion assessment method for the ICU ; CV = cardiovascular ; ICU = intensive care unit ; LOS = length of stay ; PDSA = Plan, Do, Study, Act

# Team learning from Plan, Do, Study, Act (PDSA)cycles, as well as feedback from both staff and patients, allowed us to develop the process and achieve a median 87% reliability.

No detailed assessment was carried out because higher-quality evidence is available on this topic

| Reference,<br>Study Type | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                | Characteristics)                                                                                                                                               | Drop-out Rate                                                                              | Intervention                                                                                                 | Control                                                      | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| nal.pone.020<br>7428)    | 115 pts<br>Inclusion criteri<br>- adults 18 years<br>- expected stay<br>≥72h<br>- had been inde<br>before the onse<br>illness<br>Exclusion criteri<br>- previous musc<br>- contraindicatio<br>- enrolment in a<br>intervention stu<br>- palliative care<br>- admission diag<br>excluding possifi<br>walking at hosp<br>- did not unders<br>or French<br>Per Br<br>58 | s<br>on MV for<br>pendent<br>it of critical<br>ia:<br>le weakness<br>ons to cycling<br>inother<br>idy<br>gnosis<br>pility of<br>ital discharge<br>itand German | Total 9 pts:<br>intervention:<br>4 lost to<br>follow up<br>control: 5 lost<br>to follow-up | Early endurance<br>(motor-assisted<br>bed-cycle) and<br>resistance training<br>combined with<br>mobilization | Standard<br>physiotherapy<br>including early<br>mobilization | Primary endpoint:<br>- functional capacity (6-<br>MWD)<br>Secondary outcome:<br>- FIM and muscle<br>strength at ICU<br>discharge<br>Sample size<br>determination was<br>based on the 6MWD to<br>show a difference of<br>54m and a mean<br>walking distance of<br>301m (SD 81). A<br>statistical power of<br>80% and an α-level of<br>0.05 required a sample<br>size of 72 pts in<br>total(36 per group). | Primary endpoints:<br>- 6-MWD (experimental 123m (IQR<br>25–280) vs control 100m (IQR 0–300);<br>p = 0.542<br>- or functional independence (98 (IQR<br>66–119) vs 98 (IQR 18–115); p =<br>0.308 Secondary endpoints:<br>- no differences found, except a trend<br>towards improved mental health in<br>the experimental group after 6<br>months (84 (IQR 68–88) vs 70 (IQR<br>64–76); p = 0.023<br>- adverse events: rare (0.6%) and<br>without consequences | 2                 |

FIM = functional independence measurement, ICU = intensive care unit, IQR = interquartile range, MV= mechanical ventilation, pts = patients, SD = standard deviation, 6-MWD = 6-minute walking distance

Early endurance and resistance training in mechanically ventilated, intensive care patients does not improve functional capacity or independence at hospital discharge compared to early standard physiotherapy but may improve mental health 6-months after critical care discharge.

| 11     Not     conventional     Secondary Endpoints:       11     Exclusion criteria:     specified     physical       Secondary Endpoints:     - incidence of histologically diagnosed     (high riteria) | Reference,<br>Study Type                                                                                                                                   | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                | Drop-out<br>Rate | Intervention                          | Control                  | Optimal Population                                                                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 38 42                                                                                                                                                                                                      | 247 Koutsioumpa<br>2018<br>( <u>https://doi.org/1</u><br>0.4037/ajcc20183<br><u>11</u> )<br><b>Specification of</b><br><b>study:</b><br>prospective, open- | Inclusion criteria:<br>-aged 18 years or older<br>-ICU stay of 96h or more<br>-MV for 96h or more<br>Exclusion criteria:<br>-known vasculopathies if these<br>conditions had induced<br>myopathy<br>Per Branch |                  | conventional<br>physical<br>therapy + | conventional<br>physical | calculation specified<br><b>Primary Endpoint:</b><br>- incidence of<br>histologically diagnosed<br>myopathy<br>on the 14th ICU day<br><b>Secondary Endpoints:</b><br>- incidence of<br>histologically diagnosed<br>myopathy on the 4th ICU<br>day<br>-MRC-Score on the 14 <sup>th</sup><br>ICU day<br>-ICU LOS | <ul> <li>- incidence of histologically diagnosed<br/>myopathy on the 14th ICU day (P=0.3)</li> <li>Secondary Endpoints: <ul> <li>- incidence of histologically diagnosed<br/>myopathy on the 4th ICU day (P=0.6)</li> <li>-MRC-Score on the 14<sup>th</sup> ICU day (P&lt;0.001)</li> <li>-ICU LOS (P=0.01)</li> </ul> </li> </ul> | 2 → 3<br>(high risk of<br>bias) |

Pts.=patients; ICU=Intensive Care Unit; MV=Mechanical Ventilation; TENMS=transcutaneous electrical neuromuscular stimulation; MRC=Medical Research Council Score; LOS=Length of stay; n.s.=not significant

TENMS had no significant impact on myopathy in the critically ill patients in this study.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                     | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop<br>-out<br>Rate | Intervention             | Control                                  | Optimal Population                                                                                                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 249 Yataco<br>2018<br>PMID:<br>30357597<br>DOI:<br>10.1007/s1<br>2028-018-<br>0632-7<br><b>Specificatio</b><br><b>n of study:</b><br>Retrospecti<br>ve study | NSICU at Mayo Clinic in Jacksonville, Florida between 1.<br>January 2013 and May 16. 2016. →153 pts.<br>Inclusion criteria:<br>- all patients in NSICU who underwent placement of an EVD<br>- hemodynamically and medically/neurosurgically stable<br>Exclusion criteria:<br>- femoral sheath or recent removal of femoral vascular<br>sheath<br>- hemodynamic instability, active bleeding or angioedema<br>- heart rate greater than 120 beats per minute<br>- ICP higher than 25 mm Hg or as deemed unstable by the<br>treating NSICU/neurosurgery team<br>- a cerebral perfusion pressure lower<br>than 50 mm Hg<br>- resting heart rate of 50% age-predicted<br>maximum or less,<br>- systolic blood pressure lower than 90<br>or higher than 180, diastolic blood pressure higher than 105<br>- peripheral oxygen saturation of 90% or less<br>- marked diaphoresis, facial pallor, intense anxious or painful<br>facial expression (especially in patients who were aphasic)<br>- active bleeding from lines, catheters, or wounds |                      | patients<br>received EVD | Populati<br>on was<br>its own<br>control | No sample size<br>calculation<br>(retrospective study)<br>Endpoints:<br>- principal diagnosis<br>- survival to discharge<br>- LOS<br>- discharge disposition<br>- mobilized or reason<br>not mobilized<br>- completed<br>mobilization activities<br>- time from EVD<br>placement to first<br>mobilization<br>- degree of required<br>mobility assistance<br>- AE with mobilization | Results:<br>- SAH was the most common diagnosis<br>(61.4%)<br>- 127 survived to discharge<br>- median LOS was 18 days (range, 2-106)<br>- 117 patients were mobilized and<br>median time from EVD placement to<br>initial mobilization was 38h (range 4-537)<br>- mean time from EVD placement to<br>initial mobilization was 83h<br>- 36 patients not mobilized: most<br>common reason was decreased patient<br>responsiveness (23 – 63%)<br>- The highest level of patient mobility<br>activity achieved by the group was<br>ambulation for 51 patients (43.6%),<br>followed by transferring from supine to<br>sitting for 36 patients (30.8%), from bed<br>to a chair for 20 patients (17.1%), and<br>from sitting to standing for 10 patients<br>(8.5%). The peak distance mobilized<br>during ambulation was 120 feet (range,<br>1–1080)<br>- only 6.9% of patients experienced any<br>sort of AE | 4                 |
|                                                                                                                                                              | 153                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                    |                          |                                          |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

AE = adverse events; EVD = external ventricular drain; ICP = intracranial pressure; LOS = length of stay; NSICU = Neurosurgical intensive care unit; LOS=length of stay;

| Reference,<br>Study Type                                                                                                                          | Cases and<br>(Participant #, C<br>Tota                                                                                                                                                                                                                                                               | haracteristics)                                            | Drop-<br>out<br>Rate  | Intervention                                                                                        | Control       | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade               |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 251 Dos Santos<br>2020<br>(PMID:<br>30321084<br>DOI:<br>10.1080/09593<br>985.2018.14903<br>63)<br><b>Specification of</b><br><b>study:</b><br>RCT | 51 pts<br>Inclusion criteria:<br>- ≥ 18 years of age 18<br>- MV < 72 h<br>- no known neuromus<br>Exclusion criteria:<br>- cardiopulmonary arr<br>- end stage malignanc<br>- Increased ICP<br>- obstacles that did no<br>NMES<br>- prolonged MV (> 21<br>Per Bra<br>Ex: 13<br>NMES: 11<br>NMES+Ex: 12 | ecular disease<br>est<br>y<br>ot allow the use of<br>days) | N=18<br>(35%)<br>Died | NMES: 2x daily for 55<br>min<br>Exercise (Ex):<br>structured<br>assisted/active<br>exercise program | Usual<br>care | Sample size calculation:<br>calculated (G*power<br>version 3.1.4, Franz,<br>Universitat Kiel,<br>Germany) based on the<br>first RCT about early<br>physical therapy in ICU<br>patients (Schweickert et<br>al. 2009), resulting in a<br>total sample size of 52<br>patients ( $\alpha = 0.05$ , $\beta =$<br>0.80)<br>Primary endpoints:<br>- duration of MV<br>Secondary endpoints:<br>-duration of sedation<br>-ICU LOS | Primary endpoints:<br>- overall comparison, duration<br>on MV was significantly<br>shorter ( $p = 0.007$ ) in the<br>NMES + EX group ( $5.7 \pm 1.1$<br>days) and NMES group ( $9.0 \pm$<br>7.0 days) in comparison to CG<br>( $14.8 \pm 5.4$ days)<br>Secondary endpoints:<br>- duration of sedation,<br>statistical significance only<br>survival's analysis in<br>comparisons among NMES +<br>EX ( $0.6 \pm 1.0$ ) and EX ( $0.4 \pm 0.5$ )<br>groups with CG ( $5.83 \pm 5.1$ )<br>-ICU LOS mean Standard<br>deviation: NMES+EX:11.4 ( $9.8$ ),<br>EX:10.3( $8.7$ ), NMES: 13.8 ( $6.9$ )<br>and CG: 14.2 ( $9.7$ ) ( $p=0.03$ ) | 2 → 3<br>(high risk<br>of bias) |

ICP = intracranial pressure, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation

Neuromuscular electrical stimulation reduced duration of mechanical ventilation. The impact on ICU mortality and ICU length of stay is not clear.

| Reference,<br>Study Type                                                                                                                                            | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                 | Control             | Optimal<br>Population                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 252 Kang 2018<br>PMID:<br>30300863<br>https://doi.org<br>/10.1016/j.jcrc.<br>2018.09.032<br>Specification<br>of study:<br>systematic<br>review and<br>meta-analysis | 35 publications from<br>2007 - 2016 (11 RCTs,<br>20 cohort studies,<br>one CBA study and<br>one CCT with n =<br>25283 pts) <sup>1-35</sup><br>(one article divided in<br>two substudies) <sup>19,20</sup><br>Inclusion criteria:<br>- age ≥ 18 years<br>- ICU treatment<br>- non-<br>pharmacological<br>intervention for<br>delirium<br>prevention<br>compared to<br>usual care and<br>assessed for<br>occurrence or<br>duration of<br>delirium<br>- English language<br>- published in a<br>journal between<br>2007 and 2016<br>Exclusion criteria:<br>- case reports<br>- protocol studies<br>- non-accessible<br>studies |                      | Non-<br>pharmacological<br>interventions for<br>delirium prevention:<br>- multicomponent<br>intervention<br>- physical<br>environment<br>intervention<br>- daily interruption<br>of sedation<br>intervention | Standard<br>of Care | Endpoints:<br>- occurrence of<br>delirium<br>- duration of<br>delirium<br>- ICU LOS<br>- ICU mortality | <ul> <li>15 articles included in meta-analysis.</li> <li>5ignificant differences between groups:         <ul> <li>total-effect-size-analysis:</li> <li>a. occurrence of delirium is reduced by non-pharmacological interventions             (OR 0.65, 95% CI 0.50 – 0.86, p = 0.002).</li> <li>b. duration of delirium is reduced by non-pharmacological interventions             (OR 0.41, 95% CI 0.10 – 0.94, p = 0.039).</li> <li>effect-size-per-intervention-analysis: effects of multicomponent intervention on delirium occurrence were significant             (OR 0.48, 95% CI 0.35 – 0.65, p &lt; 0.002).</li> </ul> </li> <li>essnitutiva manksis: effect size of the included studies investigating duration of delirium occurrence were significant         (OR 0.48, 95% CI 0.35 – 0.65, p &lt; 0.002).</li> <li>essnitutiva manksis: effect size of the included studies investigating duration of delirium moccurrence were significant         (OR 0.47, 95% CI 0.55 – 0.93) &gt; 10% and therefore with possible impact on validity of the findings)</li> <li>Non-significant differences between groups:         <ul> <li>total-effect-size-analysis:</li>             a. (CU LOS (OR 0.85, 95% CI 0.67 – 1.09, p = 0.194)</ul></li>             b. (CU mortality (OR 0.92, 95% CI 0.83 – 1.01, p = 0.138)             effects are unitcomponent intervention on duration of delirium (OR 0.20, 95% CI 0.04 – 1.14, p = 0.071) <li>effects of multicomponent intervention on delirium occurrence             (OR 0.77, 95% CI 0.68 – 1.16, p = 0.38)</li> </ul> <li>effect size of dali interruption of sedation intervention on delirium occurrence             (OR 0.89, 95% CI 0.68 – 1.16, p = 0.38)</li> <li>subgroup analysis:             <ul> <li>effect sizes of multicomponent and physical environment interventions were not different between studies using             delirium occurrence as the outcome variable (OR 0.45 vs. 0.83, p = 0.418)&lt;</li></ul></li> | 1                 |

Pts = patients, RCT = randomized controlled trials, CBA = controlled before and after, CCT = controlled clinical trial, ICU = intensive care unit, LOS = length of stay, SCCM = Society of Critical Care, CAM-ICU = Confusion Assessment Method for the Intensive Care Unit, ICDSC = Intensive care Delirium Screening Checklist

| Reference,<br>Study Type                                                                                                                                                    | (Participant #,                                                                                                                                                                                                                                                                                                                    | nd Controls<br>, Characteristics)<br>otal                                                                                                                                                                                                      | Drop-out<br>Rate                                                             | Intervention                                             | Control                                   | Optimal<br>Population                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 256 Barbalho<br>2019<br>(PMID:<br>30246555<br>DOI:<br>10.1177/0269<br>215518801440<br>)<br><b>Specification</b><br>of study:<br>a within-<br>patient<br>randomized<br>trial | partial pressure of o<br>inspired oxygen (Pa<br>oxygen saturation <<br>systolic blood press<br>arterial blood press<br>arterial blood press<br>diastolic 50–120 mr<br>respiratory rate of u<br>minute, absence of<br>electrocardiogram a<br><b>Exclusion criteria:</b><br>- not meeting inclus<br>- declined to partici<br>- death | from September to<br>assive mobilization<br>ollowing parameters:<br>oxygen/fraction of<br>O2 / FiO2) > 300,<br>140 bpm,<br>ure 90–180 mmHg,<br>ure <60 bpm,<br>ure (PaO2) >90%,<br>nHg,<br>up to 30 breaths per<br>uncontrolled<br>arrhythmias | n=14<br>excluded<br>(11 not<br>meeting<br>inclusion<br>criteria,<br>3 death) | Experimental<br>blood flow<br>restriction in<br>one limb | Limb with no<br>blood flow<br>restriction | Primary<br>endpoints:<br>- thigh muscle<br>thickness and<br>circumference | Primary outcomes<br>- muscle thickness:<br>within-subjects analysis showed<br>significant differences (F = 334.6,<br>$\eta^2 = 0.90, p < 0.001$ )<br>between-subjects analysis showed no<br>significant difference (F = 0.22, $\eta^2 = 0.01,$<br>P = 0.64)<br>- thigh circumference:<br>significant differences in within-subject<br>analysis (F = 257.81, $\eta^2 = 0.87, p < 0.001$ )<br>between-subjects analysis showed no<br>significant difference (F = 0.23, $\eta^2 = 0.01,$<br>P = 0.63) | 4                 |

ICU = intensive care unit

The use of blood flow restriction did not present adverse effects and seems to be a valid strategy to reduce the magnitude of the rate of muscle wasting that occurs in intensive care unit patients.

| Reference,<br>Study Type | (Participant #, (                              | l Controls<br>Characteristics)<br>tal | Drop-<br>out Rate | Intervention                                      | Control                    | Optimal<br>Population | Primary Results                                | Evidence<br>Grade |
|--------------------------|------------------------------------------------|---------------------------------------|-------------------|---------------------------------------------------|----------------------------|-----------------------|------------------------------------------------|-------------------|
| 258 Whelan<br>2018       | 26 patients                                    |                                       |                   |                                                   |                            |                       |                                                |                   |
| (PMID:                   | - adult pts admitted                           | into trauma ICU                       |                   |                                                   |                            |                       |                                                |                   |
| 30214949                 | - surgical pts admitte                         |                                       |                   | <b>CPAx tool</b> as part of physiotherapy patient |                            | Primary               | Primary endpoint:                              |                   |
| DOI:                     | Non-inclusion criter                           | ia:                                   |                   | assessment                                        | Historical control         | endpoint:             | - no significant difference                    |                   |
| 10.4102/sajp.v           | - bedbound prior to                            | admission                             |                   | - CPAx tool assesses pts                          | group:<br>part of standard | ICU LOS               | in median ICU LOS in days                      | 4                 |
| 74i1.450)                | - traumatic brain injure received for other ne |                                       |                   | functional ability<br>- rehabilitation goals      | ,<br>physiotherapy         |                       | between groups<br>(intervention 3.7 [2.3–5.4]; |                   |
| Specification            | conditions                                     |                                       |                   | were modified according                           | practice                   |                       | control 2.7 [IQR 1.1–5.2]; p                   |                   |
| of study:                | - placed on bedrest in ICU as a result of      |                                       |                   | to their CPAx score                               |                            |                       | = 0.27).                                       |                   |
| historically             | complex orthopedic                             | or spinal injuries                    |                   |                                                   |                            |                       |                                                |                   |
| controlled               | Per B                                          | ranch                                 |                   |                                                   |                            |                       |                                                |                   |
| interventional<br>trial  | 26                                             | 26                                    |                   |                                                   |                            |                       |                                                |                   |

CPAx = Chelsea critical care physical assessment, ICU = intensive care unit, LOS = length of stay

Problem-oriented patient rehabilitation informed by the CPAx tool resulted in improvement of physical function but did not reduce ICU or hospital LOS.

| Reference<br>Study Type                                                                                                          |                                                                                                                                                                                                                                         | ases and Con<br>nt #, Charact<br>Total                                                                                                                                               |                                  | Drop-<br>out Rate                                                                                | Intervention                                                                                                                                                                                                      | Control                                  | Optimal<br>Population                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 264 Leite<br>2018<br>(PMID:<br>30123586<br>DOI:<br>10.1155/201<br>8/4298583)<br><b>Specification</b><br>of study:<br>Pilot study | <ul> <li>pregnan</li> <li>BMI &gt; 35</li> <li>neuromu</li> <li>brain des</li> <li>peripher</li> <li>bone fra</li> <li>use of in</li> <li>fixators</li> <li>skin lesio</li> <li>end-stag</li> <li>pacemal</li> <li>spinal in</li> </ul> | criteria:<br>namic instabi<br>cy<br>is kg/m <sup>2</sup><br>uscular diseas<br>ath<br>al vascular di<br>ctures<br>ternal or exter<br>ons<br>e cancer<br>ser<br>jurie<br>to receive Mi | se<br>sease<br>ernal<br>RC score | 12:<br>7 QG (4<br>death, 3<br>cognitive<br>state), 5<br>DG (2<br>death, 3<br>cognitive<br>state) | DG: conventional<br>physical therapy<br>1x/d<br>+<br>1x/d session of<br>diaphragm NMES<br>(Neurodyn<br>Multicorrentes <sup>™</sup> )<br>QG: conventional<br>physical therapy<br>1x/d +<br>1x/d quadriceps<br>NMES | Conventional<br>physical<br>therapy 2x/d | Outcomes:<br>- MIP at<br>discharge<br>- MRC at<br>discharge<br>- MV time<br>- Hospital LOS<br>- FSS-ICU | Outcomes:<br>- MIP (mmHg): QG: $-40.4 \pm 8.71$<br>vs. DG: $-37.9 \pm 10.31$ vs. CG: $-25.9 \pm 9.59$ ; p= 0.00003<br>- MRC: QG: $48.2 \pm 11.48$ vs. DG<br>$41.8 \pm 11.14$ vs. CG: $43.4 \pm 6.45$ ;<br>n.s.<br>- MV time: QG: $23.3 \pm 10.61$ vs.<br>DG: $27.5 \pm 12.16$ vs. CG: $15.8 \pm 5.75$ ; p=0.0001<br>- Hospital LOS: QG: $18.2 \pm 11.28$<br>vs. DG: $29.3 \pm 13.59$ vs. CG: $25.4 \pm 12.04$ ; p= 0.0031<br>- FSS-ICU: QG: $29.1 \pm 12.38$ vs. DG:<br>$21.5 \pm 10.16$ vs. CG $14.6 \pm 8.01$ ;<br>p=0.001 | 3                 |

BMI = body mass index, CG = control group, DG = diaphragm group; FSS-ICU = functional status score for the ICU, LOS = length of stay, MIP = maximal inspiratory pressure, MRC = medical research council, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, QG = quadriceps group

NMES of the diaphragm does not improve MRC, MIP, duration of mechanical ventilation or hospital LOS compared to conventional physical therapy. But NMES of the quadriceps exeeds both diaphragmatic NMES and conventional physiotherapy in all the before mentioned outcomes except MRC.

| Reference,<br>Study Type                                                                                                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Interventio<br>n             | Control                                                                                                                   | Optimal<br>Population                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 265 Devlin<br>2018<br>(PMID:<br>30113379<br>DOI:<br>10.1097/CCM.00<br>000000000329<br>9)<br><b>Specification of</b><br><b>study:</b><br>Guideline for<br>pain, agitation/<br>sedation,<br>delirium,<br>immobility and<br>sleep | <ul> <li>16 RCTs</li> <li>Inclusion criteria: <ul> <li>range of motion</li> <li>mobilisation, including in bed mobility, transfers out of bed, and walking</li> <li>physical and occupational therapy</li> <li>interventions, including exercises, transfer</li> <li>training, sitting, and ambulation</li> <li>in-bed cycle ergometry</li> <li>neuromuscular electrical stimulation</li> </ul> </li> <li>Exclusion criteria: <ul> <li>continuous lateral rotation of bed</li> <li>lateral positioning in bed</li> <li>inspiratory muscle training/diaphragmatic</li> <li>electrical stimulation/breathing exercises</li> <li>chest physiotherapy/airway clearance</li> <li>massage therapy</li> <li>stroke rehabilitation</li> <li>any intervention conducted in a long-term acute care hospital or similar facility since</li> </ul> </li> </ul> |                      | See<br>inclusion<br>criteria | Usual care,<br>a different<br>rehabilitation<br>/<br>mobilization<br>intervention,<br>placebo, or<br>sham<br>intervention | <b>Derived</b><br><b>outcomes:</b><br>- mortality<br>- duration of<br>MV<br>- quality of life | Duration of mechanical ventilation:<br>(11 RCTs, 1.128 patients)<br>Significant reduction by 1.31 days (95%<br>CI, -2.44 to -0.19; low quality evidence)<br>(406-409, 411, 413-416)<br>Quality of life:<br>(measured using 36-item short form<br>health survey instrument)<br>no statistically significant improvement<br>p>0.05 (SMD, 0.64 [95% CI, -0.05 to<br>1.34])<br>Mortality:<br>no effect on hospital mortality was<br>observed | 1                 |

MV = mechanical ventilation, RCT = randomized controlled trial

The guideline offeres recommendations to improve pain, agitation/sedation, delirium, immobility and sleep in critically ill patients.

| Reference,<br>Study Type                                                                                                                                                |        | l Controls<br>Characteristics)<br>tal                                              | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                          | Control    | Optimal Population                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 268 Taito<br>2018<br>(PMID: 30048540<br>DOI:<br>10.1371/journal.po<br>ne.0201292)<br><b>Specification of</b><br><b>study:</b><br>Systematic review<br>and meta-analysis | sepsis | a:<br>unpublished<br>s<br>≥18 years) with<br>a:<br>cord injury<br>ires<br>probable |                      | Protocolised rehabilitation:<br>- neuromuscular stimulation<br>- passive range of motion<br>exercise,<br>- active exercises<br>- designed to either<br>commence earlier and/or be<br>more intensive than the<br>care received by the control<br>group | Usual care | Primary endpoints:<br>- QoL<br>- ADL<br>- ICU mortality<br>Secondary<br>outcomes:<br>- ICU LOS<br>- Hospital LOS<br>- MRC score<br>- AEs | <ul> <li>QoL very low evidence</li> <li>21.10 [6.57–35.63] and 44.40</li> <li>[22.55–66.05] (n=1 RCT)</li> <li>ICU mortality (RR 2.02 [95% CI:<br/>0.46–8.91], I2 = 0%; (n = 2 RCT)<br/>(p&gt;0.05)</li> <li>ICU LOS/ hospital LOS and<br/>muscle strength no meta-analysis.</li> <li>no meta-analysis for QoL or ADL</li> <li>no adverse events (n=2 RCT)</li> </ul> | 1→2               |

ADL = activities of daily living, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, pts = patients, QoL = quality of life, RCT = randomized control trial

#### Earlier or more intensive rehabilitation did not have a significant impact on ICU mortality in sepsis patients.

#### References

- 1. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med. 2015; 41(5):865–74. https://doi.org/10. 1007/s00134-015-3763-8 PMID: 25851383
- 2. Shen SY, Lee CH, Lin RL, Cheng KH. Electric Muscle Stimulation for Weaning from Mechanical Ventilation in Elder Patients with Severe Sepsis and Acute Respiratory Failure—A Pilot Study. Int J Gerontol. 2017; 11(1):41–5.

| a.2018.9592<br>) crebral disease requiring deep sedation for at least 72<br>hours<br>- acute polyradiculoneuropathy (Guillain-Barré<br>syndrome)<br>- myasthenia<br>- advanced dementia<br>- deep venous thrombosis or pulmonary embolism<br>treated for ≤ 48 hours<br>- contraindication to EMS or leg cycling for<br>musculoskeletal, dermatological, or surgical reasons<br>- contraindication to standing or transfer to a chair<br><b>Per Branch</b><br>- corebral disease requiring deep sedation for at least 72<br>hours<br>- acute polyradiculoneuropathy (Guillain-Barré<br>syndrome)<br>- myasthenia<br>- advanced dementia<br>- contraindication to EMS or leg cycling for<br>musculoskeletal, dermatological, or surgical reasons<br>- contraindication to standing or transfer to a chair<br><b>Per Branch</b><br>- contraindication to standing or transfer to a chair<br><b>Per Branch</b><br>- contraindication to standing or transfer to a chair<br><b>Per Branch</b><br>- thickness of the M. rectus<br>- 50 min NMES<br>- 50 | Reference,<br>Study Type                                                                            | Cases and C<br>(Participant #, Cha<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | aracteristics)                                                                                                                                                                                                                                                              | Drop-out<br>Rate                    | Intervention                                                                  | Control                 | Optimal<br>Population                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2018<br>(PMID:<br>30043066<br>DOI:<br>10.1001/jam<br>a.2018.9592<br>)<br>Specification<br>of study: | Inclusion criteria:<br>- ≥18 years or older<br>- admitted to the ICU ≤ 72 hours<br>- deemed to need ≥ 48h of care<br>- independent walking ability w<br>admission<br>- Barthel Index ≥ 55 within 15 d<br>Exclusion criteria:<br>- pregnant<br>- cardiac arrest was the cause o<br>- cardiac arrest before screening<br>- pacemaker or implantable car<br>- cerebral disease requiring dee<br>hours<br>- acute polyradiculoneuropathy<br>syndrome)<br>- myasthenia<br>- advanced dementia<br>- deep venous thrombosis or put<br>treated for ≤ 48 hours<br>- contraindication to EMS or leg<br>musculoskeletal, dermatologica<br>- contraindication to standing o | e in the ICU<br>vithin 15 days before ICU<br>days before ICU admission<br>of ICU admission<br>og<br>rdioverter-defibrillator<br>ep sedation for at least 72<br>y (Guillain-Barré<br>ulmonary embolism<br>g cycling for<br>al, or surgical reasons<br>or transfer to a chair | (one<br>patient<br>in each<br>group | early<br>rehabilitation:<br>- weekdays<br>- 15 min leg<br>cycling<br>exercise | early<br>rehabilitation | - MRC<br>Secondary<br>outcomes:<br>- ICU mobility scale<br>- Katz Index of<br>independence<br>- Barthel Index<br>- duration of MV<br>(Number of<br>ventilator-free<br>days until day 28)<br>- SF-36<br>- thickness of the<br>M. rectus femoris<br>via ultrasound | - MRC, MD (95%Cl): -3.0 (-7.0 –<br>2.8)<br>p = 0.28<br>Secondary outcomes:<br>- ICU mobility scale, MD<br>(95%Cl): 0 (-1 – 2), p = 0.52<br>- Katz Index of Independence,<br>MD (95%Cl): 0.3 (-1.0 – 1.3),<br>p = 0.57<br>- Barthel Index at 6-months, MD<br>(95%Cl): 0 (-5 – 5), p = 0.90<br>- duration of MV, MD (95%Cl):<br>1.0 (-2.0 – 3.0), p = 0.24<br>- SF-36 n.s<br>- thickness of the M. rectus<br>femoris<br>MD (95%Cl): -0.5 (-1.0 – 2.4), p<br>= 0.17<br>- adverse events (7/4159 | 2                 |

CI = confidence interval, EMS = electrical muscle stimulation, MD = median difference, MRC = medical research council score, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, n.s. = not significant, SF-36 = short form 36

Neuromuscular electrical stimulation + in-bed cycling did not increase muscle strength, howeverthe study was underpowered for the primary endpoint.

| Reference,<br>Study Type                                                                                                                                 | (Participant #,                                                                                                                                                        | d Controls<br>Characteristics)<br>tal    | Drop-<br>out<br>Rate | Intervention      | Control            | Optimal Population                                                                                                 | Primary Results                                                                                                                                                                                    | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------|-------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 272 Lucchini<br>2018<br>(PMID:<br>30037534<br>DOI:<br>10.1016/j.icc<br>n.2018.04.00<br>2)<br>Specification<br>of study:<br>Retrospective<br>cohort study | 45 pts in PP partly with<br>retrospective analysis<br>- admitted in general I<br>2009 to November 20<br>- supported by VV-ECN<br>- experienced at least<br>Per B<br>14 | of pts:<br>ICU from November<br>14<br>MO |                      | PP and<br>vv-ECMO | PP without<br>ECMO | Primary endpoint:<br>- modification on<br>PaO2/FiO2 ratio<br>Secondary<br>endpoint:<br>- safety and<br>feasibility | Primary outcome:<br>- pre- vs end-prone position (113<br>mmHg vs 147 mmHg) (p=0.034)<br>Secondary outcome:<br>- 45 prone positioning manoeuvres<br>performed (median 8 hours IQR 6-10)<br>- no AEs | 4                 |

AE = adverse event, PP = prone position, (vv-)ECMO = (veno-venous) ectracorporeal membrane oxygeation

The application of prone position during VV-ECMO has shown to be a safe and reliable technique when performed in a recognised ECMO centre with the appropriately trained staff and standard procedures.

| Reference,<br>Study Type | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                                                     | Control                                      | Optimal Population                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| DOI:                     | 30 pts. in a NCU of a university<br>hospital in Istanbul between<br>August 2013 and December 2016<br>Inclusion criteria:<br>-aged 18 years or older<br>-undergone EVD and/or ICP<br>monitoring<br>-intra-arterial catheters<br>-granted permission by a legally<br>authorized representative.<br>Exclusion criteria:<br>-neurologically and<br>hemodynamically unstable<br>-do not tolerate a position<br>change (ICP>25 mmHg for 5<br>minutes after positioning)<br>-diagnosed with brain death<br>-no or irregular ICP waves<br>-undergoing craniotomy in the NCU<br>where the study was conducted<br>Per Branch | N=16                 | HOB<br>positions:<br>-15°,30°,45°<br>supine;<br>-15°,30°,45°<br>left lateral;<br>-15°,30°,45° -<br>right lateral | Patients<br>acted as<br>their own<br>control | Sample Size calculation:<br>Difference between mean<br>pre-and post-positioning<br>(right lateral position HOB<br>15°) ICP score averages<br>(2.93), Power of 80% and an<br>alpha of 0.05.<br>Endpoints:<br>- pre-and post-positioning<br>ICP and CPP values<br>- impact on ICP and CPP in<br>patients with different GCS<br>scores | Significant differences between groups:<br>- 15° left lateral position, increased ICP<br>in patients with a GCS score of 13-15<br>(p=0.024); decreased CPP with GCS score of<br>3-8 compared to GCS score of 9-12<br>(p=0.034)<br>- 15° right lateral position, increased ICP in<br>patients with a GCS score of 3-8 (p=0.04),<br>CPP decreased (p=0.007)<br>-right lateral position, HOB 45° with GCS<br>score 9-12 and 13-15 CPP decreased<br>(P=0.018)<br>No significant differences between groups<br>in:<br>- Supine positions, left lateral and right<br>lateral with HOB elevations differences<br>were n.s. | 3 → 4             |

NCU=neurocritical care units; pts. = patients; EVD= external ventricular drainage; ICP = intracranial pressure; HOB=head of bed; CPP=cerebral perfusion pressure; GCS=Glasgow Coma Scale; n.s. =not significant

Different positions (HOB degree of 15, 30, and 45) led to slight insignificant changes in ICP and CPP.

| Reference,<br>Study Type                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                                                                                                                                                 | Control             | Optimal<br>Population                                                                      | Primary Results                                                                                                                                                                                                                                                    | Evidence<br>Grade                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| 278 Sanchez<br>2018<br>(PMID:<br>29958844<br>DOI:<br>10.1016/j.en<br>fi.2018.03.0<br>01)<br><b>Specificatio</b><br><b>n of study:</b><br>SR | <ul> <li>primary studies published from 30/04/2009<br/>until present</li> <li>retrospective observational studies,<br/>prospective studies or full text clinical trials<br/>performed on critically ill patients in the ICU,<br/>aged &gt;15 years, with MV and whose outcome</li> </ul> |                      | Early mobilisation via<br>PT/Ergo<br>or<br>Electrical stimulation<br>or<br>Early mobilisation<br>together with insulin<br>therapy / euglycemic<br>management | Standard<br>of care | <b>Outcomes:</b><br>- duration of<br>ventilation<br>- ICU length of<br>stay<br>- mortality | No meta-analysis<br>statistically significant<br>(p<0.05) relationship was<br>observed between ICUAW<br>and<br>- failure in ventilator<br>disconnection<br>- mortality<br>- increase in ICU stay<br>- time that the patients<br>required mechanical<br>ventilation | 1 → 4<br>(downgraded<br>as no meta-<br>analysis and<br>not only RCTs) |

ICU = intensive care unit, ICUAW = intensive care unit acquired weaknes,s PT = physiotherapie

This systematic review showed a significant relashionship between ICUAW and duration of ventilation, ICU length of stay and mortality. All of this improved in this type of patients with the application of a rehabilitation therapy.

#### **References:**

1. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373:1874---82. Available from: http://www.thelancet.com/journals/lancet/article/PIIS0140- 6736(09)60658-9/fulltext [accessed 20.04.18] [Internet].

2. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki ES, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care. 2010;14:R74. Available from: http://ccforum.biomedcentral.com/articles/10.1186/cc8987 [accessed 20.04.17] [Internet].

3. Santos PD, Teixeira C, Savi A, Maccari JG, Neres FS, Machado AS, et al. The critical illness polyneuropathy in septic patients with prolonged weaning from mechanical ventilation: is the diaphragm also affected? A pilot study. Respir Care. 2012;57:1594---601. Available from: https://www.ncbi.nlm.nih. gov/pubmed/22417531 [accessed 20.04.17] [Internet].

4. Hough CL, Steinberg KP, Taylor Thompson B, Rubenfeld GD, Hudson LD. Intensive care unit-acquired neuromyopathy and corticosteroids in survivors of persistent ARDS. Intensive Care Med. 2009;35:63---8.

5. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence risk factors, and prognostic impact. A prospective study. Am J Respir Crit Care Med. 2013;188:213---9. Available from: http://www.atsjournals.org/ doi/abs/10.1164/rccm.201209-16680C [accessed 24.04.17] [Internet].

6. Khalil Y, Mustafa EED, Youssef A, Imam MH, Behiry AF. Neuromuscular dysfunction associated with delayed weaning from mechanical ventilation in patients with respiratory failure. Alexandria J Med. 2012;48:223---32. Available from: http:// linkinghub.elsevier.com/retrieve/pii/S2090506812000231 [accessed 20.04.17] [Internet].

7. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42:853---61.

8. Mikaeili H, Yazdchi M, Barazandeh F, Ansarin K. Euglycemic state reduces the incidence of critical illness polyneuropathy and duration of ventilator dependency in medical intensive care unit. Bratisl Lek Listy. 2012;113:616---9.

9. Patel BK, Pohlman AS, Hall JB, Kress JP. Impact of early mobilization on glycemic control and ICU-acquired weakness in critically ill patients who are mechanically ventilated. Chest. 2014;146:583---9.

10. The LN, Huu CN. Critical illness polyneuropathy and myopathy in a rural area in Vietnam. J Neurol Sci. 2015;357:276---81. Available from: http://www.jns-journal.com/article/S0022- 510X(15)00498-0/fulltext [accessed 21.04.17] [Internet].

| Reference,<br>Study Type                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                  | Drop-out<br>Rate                                                                                             | Intervention                                                                                                                                                                                | Control                                            | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 79 Hickmann<br>2018<br>(PMID:<br>29957714<br>DOI:<br>10.1097/CC<br>M.00000000<br>00003263)<br>Specification<br>of study:<br>RCT | 21 pts<br>Inclusion criteria:<br>- adults with septic shock<br>within 72 hours after ICU<br>admission<br>Exclusion criteria:<br>- pre-existing cognitive<br>abnormalities<br>-malnutrition or cachexia<br>- inability to walk<br>independently<br>- leg amputation<br>- fractures<br>-ongoing chemotherapy<br>- long-term corticoid<br>treatment | 3 (died before<br>2nd muscle<br>biopsy<br>- 1<br>intervention<br>group<br>- 2 before<br>group<br>allocation) | intervention with<br>two daily (7/7<br>days) sessions of<br>both <b>manual</b><br><b>mobilization</b> and<br>30 minutes each<br><b>passive/ active</b><br><b>cycling therapy</b> (1<br>h/d) | manual<br>mobilization<br>once a day<br>(5/7 days) | Primary endpoint:<br>regulation of protein<br>degradation / synthesis<br>pathways during the 1 <sup>st</sup><br>week following the<br>onset of septic shock<br>Secondary outcome:<br>- preservation of the<br>muscle fiber CSA<br>- presence of exercise-<br>induced muscle<br>Inflammation<br>- restoration of<br>neuromuscular function<br>by measuring<br>electrophysiology<br>values and muscle<br>strength<br>- safety<br>- tolerance of the<br>intervention by<br>monitoring<br>hemodynamic/<br>respiratory values<br>- pts perception | <ul> <li>Primary endpoints: <ul> <li>catabolic ubiquitin proteasome pathway: no significant difference for</li> <li>a. MARbx: -7.3% ± 138.4% in control vs -56.4% ± 37.4% in intervention group; p = 0.23</li> <li>b. MURF-1: -30.8% ± 66.9% in control vs -62.7% ± 45.5% in intervention group; p = 0.15)</li> <li>autophagy-Lysosomal System better control at D7</li> <li>a. ULK1 Ser-757: IG 30% ± 59% vs. CG -16% ± 33%, p = 0.01</li> <li>b. ULK1 Ser-317: IG 20% ± 148% vs. CG 311% ± 703%, p = 0.03</li> <li>c. LC3b mRNA: IG -21% ± 18% vs. CG 5% ± 47%, p = 0.16</li> <li>d. Bnip3 mRNA: IG -59% ± 23% vs. CG 27% ± 198%, p = 0.003</li> <li>e. GabarapL1: IG -16% ± 85% vs. CG 73% ± 174%, p = 0.09</li> <li>f. unchanged: Cathepsin-L, p62 mRNA, LC3bII/I ratio, p62 protein levels, co-staining LC3b-p62</li> <li>g. LAMP2/p62 colocalization was decreased at D7 in IG and increased in CG (p = 0.007)</li> <li>anabolic Akt-mTOR pathway</li> <li>a. Akt(Ser-473) increased D7 in IG (p = 0.04)</li> <li>b. m-TOR downstream unchanged</li> </ul> Secondary results: <ul> <li>CSA (µm2) was preserved by exercise (all fibers, Type 1 fibers, Type-IIa and Type-IIb fibers all p &lt; 0.05)</li> <li>markers of inflammation were not modified by the intervention</li> <li>electrophysiology: too few data to compare</li> <li>muscle strength: Paucity of data did not allow any comparison between the two time points by groups</li> <li>safety: 1 reversible hypotension in intervention</li> </ul></li></ul> | 2                 |

CG = control group, CSA = cross sectional area, IG = intervention group, ICU = intensive care unit, LAMP = lysosomal-associated membrane protein, MARbx = muscle ubiquitin ligases (E3-ligases) muscle atrophy F-box, MURF = muscle ring finger-1, pts = patients, ULK = Unc-51 like kinase

#### Early physical therapy during the first week of septic shock is safe and preserves muscle fiber cross-sectional area.

| Reference,<br>Study Type                                                                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total          | Drop-<br>out Rate | Intervention                                        | Control                                       | Optimal Population                                             | Primary Results                                                                                                                                                                                                                     | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------|-----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 280 Goldfarb<br>2018<br>(PMID: 29879568<br>DOI:<br>10.1016/j.jcrc.2018.<br>05.013)<br><b>Specification of</b><br><b>study:</b><br>retrospective<br>analysis frail vs non-<br>frail | - EM but no frailty assessment<br>- neither EM nor frailty<br>assessment |                   | <b>Early</b><br><b>mobilisation</b><br>in frail pts | <b>Early mobilisation</b><br>in non-frail pts | <b>Primary outcomes:</b><br>mean change in LOF<br>at discharge | <b>Primary outcomes:</b><br>- mean LOF improvement was 0.5 ±<br>0.8 and did not differ based on<br>frailty status<br>- mean LOF increased by 0.37 in frail<br>patients compared to 0.52 in non-<br>frail patients ( <i>p</i> =0.15) | 4                 |

CICU = cardiovascular ICU, EM = early mobilization, LOF = level of function

Functional status improved in both frail and non-frail older adults.

| Reference,<br>Study Type                                                                                                                              | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                      | l Controls<br>Characteristics)<br>tal                                                                                               | Drop-out<br>Rate | Intervention                                                                                                          | Control | Optimal<br>Population                | Primary Results   | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|-------------------|-------------------|
| 283 Shah<br>2018<br>(PMID: 29747562<br>DOI:<br>10.1177/0885066<br>616677507)<br><b>Specification of</b><br><b>study:</b><br>Prospective QI<br>project | 90 pts with a total of 185<br>were recorded over a 12-<br>Inclusion criteria:<br>- pts with EVD<br>- SAH:<br>- awake and followir<br>- Lindegaard ratio <3<br>- MCA mean flow ve<br>- MAP> 80 mm Hg<br>- ICP consistently <20<br>- ICH:<br>- stable CT scan after<br>- ICP consistently <20<br>- others (TBI, hydrocepha<br>consistently <20 mm Hg<br>Exclusion criteria:<br>- pts were delirious using<br>intubated | patient encounters<br>month period.<br>ag commands<br>3.0<br>locity <120 cm/s,<br>0 mm Hg<br>r 24h<br>0 mm Hg<br>alus, tumor,): ICP |                  | <b>Evaluation by PT</b><br>+<br><b>Standardised early mobilisation</b><br>(30-60 min ranging from PROM to<br>walking) |         | <b>Outcome:</b><br>adverse<br>events | AEs: 4 AEs (2.2%) | 4                 |
|                                                                                                                                                       | Per B                                                                                                                                                                                                                                                                                                                                                                                                                | ranch                                                                                                                               | -                |                                                                                                                       |         |                                      |                   |                   |

CAM-ICU = confusion assessment method for ICU, ICP = intracranial pressure, ICH = intracranial hemorrhage, MAP = mean arterial pressure, MCA = middle cerebral artery, PT = physical therapist, PROM = passive range of motion, QI = quality improvement, SAH = subarachnoid hemorrhage, TBI = traumatic brain injury

#### Early mobilisation is safe in patients with EVD.

| Reference,<br>Study Type                                                                                                                                                    | (Participant #,                                                                                                                                           | l Controls<br>Characteristics)<br>tal            | Drop-<br>out<br>Rate | Intervention                                                                                                                      | Control                                        | Optimal Population                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 284 Fuke<br>2018<br>(PMID:<br>29730622<br>DOI:<br>10.1136/bmjope<br>n-2017-019998)<br><b>Specification of</b><br><b>study:</b><br>Systematic<br>review and<br>meta-analysis | 6 RCTs with 709<br>Inclusion criteria<br>- adult pts admit<br>Exclusion criteria<br>- traumatic brain<br>- stroke<br>- did not fulfill th<br>Per B<br>298 | <b>i:</b><br>ted to ICU<br><b>a:</b><br>i injury |                      | <b>Early</b><br><b>rehabilitation</b><br>- start earlier<br>than usual care<br>or<br>- start within 7<br>days of ICU<br>admission | Standard care<br>or no early<br>rehabilitation | Primary endpoints:<br>- short-term physical related<br>outcome assessed during<br>hospitalization<br>- cognitive related outcomes<br>- mental status related<br>outcomes<br>Secondary outcomes (long<br>term):<br>- HRQL (EQ5D)<br>- S F-36 for physical function | Significant differences between<br>groups in:<br>- ICUAW (OR 0.42, 95% CI 0.22 to<br>0.82, p=0.01, I <sup>2</sup> = 0%<br>- MRC score (SMD): 0.38, 95% CI<br>0.10 to 0.66, p=0.009) I <sup>2</sup> = 0%<br>No significant differences<br>between groups in:<br>- delirium-free days n.s<br>- HADS n.s<br>- EQ5D n.s.<br>- SF-36 n.s. | 1                 |

EQ5D = european quality of life 5 dimensions, HADS = Hospital Anxiety and Depression Scale; HRQL = health related quality of life, ICUAW = ICU-acquired weakness, MRC = medical research council, n.s. = not significant, PICS = postintensive care syndrome, pts = patients, SF-36 = short form 36, SMD = standard mean difference

#### Early rehabilitation increases muscle strength but does not influence cognitive and mental outcomes.

1. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med 2014;40:370-9.

2. Hodgson CL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU. Crit Care Med 2016;44:1145–52.

3. Jones C, Eddleston J, McCairn A, et al. Improving rehabilitation after critical illness through outpatient physiotherapy classes and essential amino acid supplement: a randomized controlled trial. J Crit Care 2015;30:901-7.

4. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomized controlled trial. Intensive Care Med 2015;41:865-74.

5. Morris PE, Berry MJ, Files DC, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 2016;315:2694-702.

6. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373:1874–82

| Reference,<br>Study Type                                                                                                                                 | Cases and<br>(Participant #, o<br>Tot                                    | characteristics)                                                | Drop-<br>out<br>Rate | Intervention                                  | Control                                       | Optimal Population                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-----------------------------------------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 285<br>Rebel<br>2019<br>(PMID: 29703636<br>DOI:<br>10.1016/j.aucc.20<br>18.03.004)<br><b>Specification of</b><br><b>study:</b><br>Retrospective<br>study | <ul> <li>patients with<br/>therapy at one<br/>during their ad</li> </ul> | 119 pts. ria: ient vasoactive or more points mission in od ria: | none                 | Mobilization<br>with<br>Vasoactive<br>therapy | Patients<br>acted as<br>their own<br>controls | No sample size calculation<br>(retrospective study)<br><b>Primary Endpoint:</b><br>- frequency and intensity of<br>mobilization in patients<br>receiving vasoactive therapy<br><b>Secondary Endpoints:</b><br>- occurrence of adverse events<br>during mobilization | Primary Endpoint:<br>- Frequency: Low (76.8%) and moderate<br>(13.7%) dose vasoactive therapies associated<br>with a higher probability of mobilization<br>relative to high (9.4%) dose therapy (OR =<br>5.50, 95% CI = 2.23-13.59 and OR = 2.50, 95%<br>CI= 0.95-6.59, respectively)<br>-intensity: on vasoactive therapy (n = 72),<br>maximum mobilization intensity was low<br>(IMS = 1-2) in 31%, moderate (IMS = 3-5) in<br>51%, and high (IMS = 6-10) in 18% of<br>vasoactive days<br>Secondary Endpoints:<br>- no SAE<br>- AE: reversible hypotension requiring<br>transient escalation of vasoactive therapy<br>(7.3%), associated with lower mean arterial<br>pressure (p = 0.001) |                   |

pts. = patients; ICU=Intensive Care Unit; CI= confidence interval; OR= odds ratio; SAE=serious adverse event; AE= adverse event; IMS=ICU Mobility Scale

It appears that the level of vasoactive support may not be an absolute indicator of safety to mobilize.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                           | Drop-out<br>Rate                                                   | Intervention                                                                                                                                                                | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 286 Medrinal<br>2018<br>(PMID:<br>29703223<br>DOI:<br>10.1186/s1305<br>4-018-2030-0)<br><b>Specification</b><br>of study:<br>Randomised<br>cross-over trial | 20 pts admitted to ICU<br>were included<br>Inclusion criteria:<br>- ≥18 years<br>- intubated for at least<br>24h<br>- ventilated with<br>"pressure support"<br>- Ramsay score ≥4 -<br>sedated<br>Exclusion criteria:<br>- pacemaker<br>- other contraindications<br>for electrical stimulation<br>- ventilated under "assist<br>control ventilation"<br>- were conscious<br>Per Branch<br>19 | 1 patient<br>excluded<br>from the<br>analysis<br>(missing<br>data) | PROM,<br>passive cycle-<br>ergometry,<br>quadriceps<br>electrical<br>stimulation<br>and FES<br>cycling<br>consecutive<br>10-min<br>sessions with<br>a 30-min rest<br>period |         | Primary endpoint: -<br>cardiac output during the<br>exercises<br>Secondary outcomes:<br>- TAPSE<br>- PASP<br>- MAP<br>- expiratory tidal volume<br>- respiratory rate<br>all were measured at<br>baseline and every 3 min<br>during the exercises<br>relative change in: THb in<br>the vastus lateralis muscle,<br>oxyhaemoglobin and<br>oxymyoglobin (HbO2) and<br>deoxyhaemoglobin and<br>deoxymyoglobin (HbD2) and<br>deoxyhaemoglobin and<br>deoxymyoglobin (HHb)<br>were continuously<br>recorded<br>Power calculation:<br>19 subjects should be<br>included to detect a<br>difference between groups<br>in mean CO of 1.1 L, and to<br>reject the null hypothesis<br>with power of 90% and<br>associated type I<br>probability error of 0.05. | <ul> <li>Primary results: <ul> <li>cardiac output increased significantly (+ 1 L/min) after 9</li> <li>min of FES cycling (7.7 L/min (6.7–8.7))</li> <li>no change in cardiac output over time during PROM,</li> <li>passive cycle ergometry or quadriceps electrical stimulation</li> <li>no differences between the increase in cardiac output</li> <li>during FES cycling in pts with or without cardiorespiratory comorbidities</li> </ul> </li> <li>Secondary outcomes: <ul> <li>significant increase in heart rate (97b/min (90–104)),</li> <li>TAPSE (2cm (1.8–2.2)) and MAP (91mmHg (85–97)) during FES cycling</li> <li>MAP increased during passive cycle ergometry (89mmHg (83–95))</li> <li>PASP was significantly higher during FES cycling than</li> <li>PROM and quadriceps electrical stimulation (51 (95% CI 36–67) mmHg vs. 45 (95% CI 32–59) mmHg (p = 0.007) vs. 46 (95% CI 35–57) mmHg (p &lt; 0.001))</li> <li>respiratory rate was significantly higher during FES cycling than during PROM and quadriceps electrical stimulation (respectively, 24 (95% CI 19–30) c/min vs.20 (95% CI 16–24) c/min (p &lt; 0.001) vs. 21 (95% CI 16–26) c/min (p= 0.005))</li> <li>at the end of PROM, level of THb decreased significantly by 23% (95% CI – 41.5 to – 4.9) (p = 0.046), significant reduction in HHb level (– 27% (95% CI – 50 to – 4), HbO2 did not change</li> <li>end of the passive cycle-ergometry, there was a nonsignificant increase in THb and nonsignificant increase in HbO2</li> <li>non-significant increase in THb, HHb and HbO2 at the end of the quadriceps electrical stimulation</li> <li>non-significant increase in THb during FES cycling, but significant increase in Hb of 24% (95% CI 1.1–46.7), HbO2 decreased significantly by 13% (95% CI – 31.8 to –4.7)</li> </ul> </li> </ul> | 2                 |

FES = functional electrical stimulation, ICU = intensive care unit, MAP = mean arterial pressure, PASP = pulmonary arterial systolic pressure, PROM = passive range of movements, TAPSE = tricuspid annular plane systolic excursion, THb = total haemoglobin

FES cycling was the only exercise that increased cardiac output and produced sufficient intensity of muscle work. No muscle or systemic effects were induced by the passive techniques.

| Reference,<br>Study Type                                                                                                                                       | (Partic<br>Charact                                                                                                                                                                                                                             | d Controls<br>ipant #,<br>ceristics)<br>ital                                             | Drop-out Rate                                                                                                                                                                                                                                                                                         | Intervention                                                                                                                                                                                                                                                                         | Control                                                                                                                                                                                           | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 289 Sarfati<br>2018<br>(PMID:<br>29660670<br>DOI:<br>10.1016/j.jcrc.<br>2018.03.031)<br><b>Specification</b><br>of study:<br>Randomized<br>controlled<br>trial | n=145<br>Inclusion crite<br>- MV for > 3 da<br>- 18 years or o<br>- no expectation<br>on the day of s<br>Exclusion crite<br>- transfer to arra<br>after a stay > 5<br>- central nervor<br>injury<br>- spine, pelvis,<br>limb injuries<br>Per B | ays<br>Ider<br>on of weaning<br>screening<br>eria:<br>nother ICU<br>5 days<br>ous system | n= 48<br>Intervention:<br>n=7 did not receive<br>treatment (5 died, 2<br>transferred to<br>another ICU)<br>n=9 missing data for<br>primary endpoint<br>Control:<br>n=13 did not<br>receive treatment<br>(12 died, 1<br>transferred to<br>another ICU)<br>n=19 missing data<br>for primary<br>endpoint | TILT-Group<br>daily:<br>standard care<br>+<br>tilting for at least<br>1h/d (1<br>session/d):<br>verticalized on an<br>electrical tilt-<br>table, secured to<br>the table by<br>Velcro straps at<br>the torso and<br>knees and<br>gradually tilted<br>from 30° to 60°<br>in 10° steps | Standard<br>care:<br>daily:<br>≥ 1 TCI:<br>PROM in-<br>bed<br>exercises<br>and/or<br>active ROM<br>in-bed<br>exercises.<br>No TCI:<br>sitting in<br>armchair at<br>least 2h/d<br>(1<br>session/d) | <ul> <li>Primary endpoint: <ul> <li>MRC at ICU discharge</li> </ul> </li> <li>Secondary outcomes: <ul> <li>muscle recovery (median change in MRC from baseline to ICU discharge)</li> <li>AE</li> <li>time to ability to stand alone</li> <li>ICU-LOS</li> <li>hospital LOS</li> <li>MV duration</li> <li>use of sedatives and NMB</li> <li>hospital mortality</li> <li>infections</li> <li>severe ICU complications</li> </ul> </li> <li>Power: <ul> <li>MRC estimated to be 47 (control) vs. 50 (intervention) with SD 8</li> <li>85% power, 0.05 alpha, optimal n=50 evaluable pts in each group. With 30% attrition (e.g., mortality) = 150 pts</li> </ul> </li> </ul> | Primary endpoint:<br>- MRC: 50 [45-56] vs. 48<br>[45-56], p = 0.56<br>Secondary outcomes:<br>- muscular recovery:<br>DMRC 14 [10-24] vs. 10<br>[5-15], p = 0.004<br>- hospital mortality 0 (0)<br>vs. 6 (10), p = 0.010<br>- AE: n.s.<br>- time to ability to stand<br>alone: n.s.<br>- time to ability to stand<br>alone: n.s.<br>- ICU-LOS: n.s.<br>- hospital LOS: n.s.<br>- hospital LOS: n.s.<br>- use of sedatives and<br>NMB: n.s.<br>- infections: n.s.<br>- severe ICU<br>complications: n.s. | 2 → 3             |

d = day, MRC = medical research council scale for muscle strength, PROM = passive range of motion, pts = patients, TCI = temporary contraindication for out-of-bed mobilization

# 1 h passive tilting per day added to standard care did not improve muscle strength at ICU discharge in surgical patients, however, increase of MRC over time until ICU discharge was significant.

| Reference,<br>Study Type                                                                                                                                                                                        | (Participant #,                                                                                                                              | d Controls<br>Characteristics)<br>otal       | Drop-<br>out<br>Rate | Intervention         | Control               | Optimal Population                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|----------------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 292 Babouth<br>2018<br>(PMID:<br>29580936<br>DOI:<br>10.1016/j.ap<br>mr.2018.01.0<br>34)<br>Specification<br>of study:<br>pragmatic,<br>quasi-<br>experimental<br>, consecutive<br>group<br>comparison<br>study | 57 pts<br>Inclusion criter<br>- admitted to a<br>ICU<br>- with primary I<br>- older than 18<br>Exclusion criter<br>- secondary ICH<br>n = 28 | neurological<br>ICH<br>years<br>r <b>ia:</b> |                      | Pre-<br>intervention | Post-<br>intervention | Primary endpoints:<br>- time of admission to first<br>mobilisation out of bed<br>(without lift, min. 5 sitting<br>or standing).<br>- number of mobilisations<br>No sample size<br>calculation: partially<br>retrospective analysis, pre<br>vs. post comparison | <ul> <li>Significant differences between groups in: <ul> <li>mobilisation on day 7 in pre-algorithm group 8 (29%) vs. post group 16 (55%), p = 0.04</li> <li>higher probability of the post-algorithm group to be mobilized on day 7, OR 8.7, 95% Cl 2.1 - 36.6; p= 0.003.</li> <li>mobilisations during NCCU: pre-group 9 (32%) vs. post-group 17 (59%) p = 0.045</li> </ul> </li> <li>No significant differences between groups in: <ul> <li>mobilisation on day 1, 3 and 5</li> <li>time to first mobilization, MW 2.6 days in both groups.</li> </ul> </li> </ul> | 4                 |

ICH = intracranial hematoma/hemorrhage, ICU = intensive care unit, NCCU = neuroscience critical care unit, pts = patients

Implementation of a progressive mobility algorithm was feasible, did not increase the number of adverse events, and was associated with a higher likelihood of mobilisation in the first week after spontaneous ICH for patients admitted to the ICU.

| Reference,                        |                                                                                                                 | d Controls<br>Characteristics) | Drop-<br>out                                   | Intervention                                                          | Control                                                                                | Optimal Population                                                                                                                                          | Primary Results                                                                                                                                                                           | Evidence |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Study Type                        | T                                                                                                               | otal                           | Rate                                           |                                                                       |                                                                                        |                                                                                                                                                             | -                                                                                                                                                                                         | Grade    |
|                                   |                                                                                                                 |                                |                                                |                                                                       |                                                                                        | Primary outcomes:                                                                                                                                           |                                                                                                                                                                                           |          |
|                                   | 764 consecutive adr<br>and 88 pts included<br>Exclusion criteria:                                               |                                |                                                |                                                                       |                                                                                        | - rate of walking and number<br>of days needed to achieve<br>walking (minimum of 45m)                                                                       | Primary results:<br>- walking independence,                                                                                                                                               |          |
| 205 Wataraha                      |                                                                                                                 | nical ventilation <24 h        |                                                |                                                                       |                                                                                        |                                                                                                                                                             | n(%): non-ICU-AW 35 (87.5),<br>ICU-AW 33 (67.4); p = 0.078                                                                                                                                |          |
| 295 Watanabe<br>2018              | hospitalization                                                                                                 |                                |                                                |                                                                       |                                                                                        | Secondary outcomes:                                                                                                                                         | Secondary results:                                                                                                                                                                        |          |
| (PMID:                            | <ul> <li>death during hospitalization</li> <li>diagnosis of dementia before</li> <li>hospitalization</li> </ul> |                                | Rehabilitation activity<br>in the ICU based on |                                                                       | - MV days                                                                              | - MV duration in days: non-<br>ICU-AW 2, ICU-AW 3; p =                                                                                                      |                                                                                                                                                                                           |          |
| 32789228<br>DOI:<br>10.2490/prm.2 | - unavailability of co                                                                                          | ming exercise due to           |                                                | an EM Protocol and<br>retrospective analysis<br>of patients diagnosed |                                                                                        | - rate of ICU-AD, discharge<br>home, FSS-ICU                                                                                                                | 0.385<br>- ICU-AD, n(%): non-ICU-AW<br>3 (7.5), ICU-AW 19 (38.8); p                                                                                                                       | 4        |
| 0180003)                          |                                                                                                                 |                                |                                                | with ICU-AW and those not diagnosed                                   |                                                                                        | - Bl score                                                                                                                                                  | = <0.0001<br>- discharge home, n(%): non-                                                                                                                                                 |          |
| Specification<br>of study:        | Per I                                                                                                           | Branch                         |                                                | with ICU-AW at<br>hospital discharge                                  |                                                                                        |                                                                                                                                                             | ICU-AW 28 (70.0), ICU-AW 27 (55.1); p = 0.031                                                                                                                                             |          |
| Retrospective<br>cohort           | ICU-AW<br>n = 48                                                                                                | non-ICU-AW<br>n = 40           |                                                |                                                                       |                                                                                        | Sample size calculation:<br>estimated on the basis of a<br>threshold walking<br>independence of 35% and an<br>expected walking<br>independence of 50%, with | <ul> <li>FSS-ICU at ICU discharge:<br/>non-ICU-AW 22, ICU-AW 10;<br/>p = &lt;0.0001</li> <li>BI at Hospital discharge:<br/>non-ICU-AW 77.5, ICU-AW</li> <li>60; p = &lt;0.0001</li> </ul> |          |
|                                   |                                                                                                                 |                                |                                                |                                                                       | an 80% power level and a<br>one-sided alpha value of<br>0.05, using the binomial test. |                                                                                                                                                             |                                                                                                                                                                                           |          |

BI score = Barthel index, EM = early mobilization, FSS-ICU = functional status score ICU, ICU-AD = intensive care unit acquired delirium, ICU-AW = intensive care unit acquired weakness, MV = mechanical ventilation, pts = patients

The amount of daily activity time significantly influenced to walking independence.

| Reference,<br>Study Type                                                                                                             | (Participant #, | d Controls<br>Characteristics)<br>ttal | Drop-<br>out<br>Rate | Intervention                                                             | Control                    | Optimal Population                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|----------------------|--------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 296 Sawada<br>2018<br>(PMID:<br>29496765<br>DOI:<br>10.4037/ajcc<br>2018911)<br>Specification<br>of study:<br>retrospective<br>study | admission Per B | onia admitted to<br>:<br>ed pneumonia  |                      | <b>Early</b><br><b>rehabilitation</b><br>(within 2 days<br>of admission) | No early<br>rehabilitation | Primary endpoint:<br>- in-hospital mortality<br>Secondary Outcomes:<br>- length of ICU stay<br>- length of hospital stay<br>- total costs of<br>hospitalization | Significant difference between groups<br>in :<br>- in-hospital mortality was lower in the<br>early rehabilitation group (17.9% vs<br>21.9%, respectively; risk difference,<br>4.0%; 95% Cl, 0.5%-7.6%; number<br>needed to treat, 25;<br>p = 0.03)<br>No significant differences between<br>groups in:<br>- length of ICU stay (p = 0.51)<br>- length of hospital stay (p = 0.70)<br>- total costs of hospitalization (p =<br>0.79) | 4                 |

CAP = community-acquired pneumonia, ICU = intensive care unit, pts = patients

Early rehabilitation within 2 days of admission was associated with a reduction in the in-hospital mortality of patients with CAP admitted to the ICU.

| Reference,<br>Study Type                                                                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-<br>out<br>Rate | Intervention            | Control       | Optimal Population                                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 295 Liu<br>2018<br>(PMID: 29484188<br>DOI:<br>10.1186/s40560-<br>018-0281-0)<br><b>Specification of</b><br>study:<br>single-center<br>prospective<br>observational study | Total         232 patients         Inclusion criteria:         - 18 years of age or older         - unplanned admission to the ICU         Exclusion criteria:         - planned post-operative         - acute cardiovascular         - acute cerebrovascular disease         - progressive neuromuscular         disease         - post cardiopulmonary arrest         syndrome         - a condition limiting mobilization         such as an unstable pelvic fracture | Rate                 | Maebashi EM<br>protocol | No<br>control | Primary outcome:<br>- incidence rate of<br>adverse events in all<br>rehabilitation sessions<br>Secondary outcomes:<br>- number of days to first<br>rehabilitation and the<br>number of days to<br>progress to higher<br>rehabilitation levels<br>- percentage of patients<br>who got out of bed,<br>standing, or ambulating | <ul> <li>total of 587 rehabilitation sessions were conducted for 232 patients</li> <li>Primary results: <ul> <li>incidence rate of adverse events among all rehabilitation sessions was 2.2% (95% confidence interval [CI] 1.2–3.8%)</li> <li>no significant difference between the incidence rate in active rehabilitation, (levels 3 to 5, 387 sessions, 11 adverse events, 2.8%; 95% confidence interval [CI] 1.4–5.0%) and the incidence rate for non-active rehabilitation, (levels 1 and 2, 200 sessions, 2 adverse events, 1.0%; 95% confidence interval [CI] 1.0–3.6%), (<i>P</i> = 0.15)</li> </ul> </li> <li>Secondary results: <ul> <li>median number of days to the first protocolized rehabilitation session was 0.7 (IQR 0.0–0.9)</li> <li>C20( effective (n. 142) and effective for a first protocolized rehabilitation for a first protocolized first</li></ul></li></ul> | 3                 |
|                                                                                                                                                                          | Per Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                         |               |                                                                                                                                                                                                                                                                                                                             | - 62% of patients ( <i>n</i> = 143) got out of bed<br>during their ICU stay, and the median time<br>to first getting out of bed was 1.2 (IQR 0.1–<br>2.0) days                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |

CI = confidence interval, EM = early mobilization, ICU = intensive care unit

Protocolized EM led by ICU physicians can be initiated in the acute phase of critical illness without serious adverse events requiring additional treatment.

| Reference,<br>Study Type                                                                                                                                               | (Participant #,                                                                                                                                                                                                                                                                                          | d Controls<br>Characteristics)<br>otal                                                                                                | Drop-out<br>Rate                                                          | Intervent<br>ion                         | Control                                                                   | Optimal<br>Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 300<br>Murat Türk,<br>2018<br>(PMID:<br>29404183<br>DOI:<br>10.5152/TurkTh<br>oracJ.2017.170<br>36)<br>Specification of<br>study:<br>Randomized<br>Controlled<br>Study | respiratory failure<br>- SpO2 ≤ 90% and F<br>- NIV therapy<br>Exclusion criteria:<br>- anatomical proble<br>- terminal stage of t<br>- experienced loss of<br>clinical unstabilisati<br>during follow-up (sh<br>vasopressor suppor<br>endotracheal intuba<br>- couldn't remain in<br>recumbent or latera | m for NIV<br>their disease<br>of consciousness or<br>on at any time<br>hock, need for<br>t, GCS < 10, required<br>ation)<br>the semi- | 19 pts<br>(changed<br>to another<br>ventilatio<br>n mode or<br>intubated) | Pressure<br>support<br>(BiPAP-S<br>mode) | Average<br>volume<br>targeted<br>pressure<br>support<br>(AVAPS-S<br>mode) | <ul> <li>Primary<br/>endpoints:</li> <li>ICU LOS</li> <li>course of<br/>PaCO2</li> <li>Secondary<br/>endpoints:</li> <li>obesity and<br/>course of<br/>PaCO2</li> <li>body<br/>positioning<br/>effects on the<br/>ventilation<br/>variables</li> </ul> | Primary outcome:           (BiPAP-S vs AVAPS-S)           -         ICU LOS 7.4±2.6 days vs 8.4±3.2 (p=0.17)           -         PaCO2 62.5±5.8 vs 65.1±7.2 (p=0.12)           Secondary outcomes:         no significant changes in course of PaCO2 (pts           BMI<30 vs pts BMI>30):         F=3.245, p=0.053 for BiPAP-S           F=2.931, p=0.097 for AVAPS-S         body position endpoints:           BiPAP-S         no significant changes for (semi-recumbent vs lateral):           -         peak inspiratory pressure (PIP) 17.4±3.5 vs 17.8±3.9 (p=0.87)           -         mean ventilation 10.3±1.8 vs 10.2±3.3 (p=0.18)           -         leak 26.9±5.1 vs 29.1±5.8 (p=0.11)           -         respiratory rate 23.4±4.6 vs 22.1±3.1 (p=0.07)           AVAPS-S         no significant changes for (semi-recumbent vs lateral):           -         peak inspiratory pressure (PIP) 22.1±4.9 vs 21.1±5.1 (p=0.42)           -         mean ventilation 10.2±2.9 vs 10.5±2.6 (p=0.9)           -         leak 24.8±3.8 vs 26.1±7.4 (p=0.96)           -         respiratory rate 22.6±4.9 vs 21.8±4.2 (p=0.57) | 2 → 3<br>(downgraded<br>as evaluation<br>of body<br>composition<br>was not<br>primary aim) |
|                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                       | 29                                                                                                                                    |                                                                           |                                          |                                                                           |                                                                                                                                                                                                                                                        | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                            |

AVAPS-S = average volume targeted pressure support, BiPAP-S = pressure support, GCS = Glasgow coma scale, LOS = length of stay, NIV = non-invasive ventilation, PIP = peak inspiratory pressure, pts = patients

No significant effect of semi-recumbent vs. lateral position in NIV patients.

| Reference,<br>Study Type                                                                                                                                                                                        | (Participant #,                            | d Controls<br>Characteristics)<br>otal                                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                  | Control                                                 | Optimal Population                                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 301<br>Klein 2018<br>(PMID:<br>29396165<br>DOI:<br>10.1016/j.iccn.<br>2018.01.005)<br>Specification<br>of study:<br>prospective,<br>longitudinal,<br>non-<br>equivalent,<br>three-group<br>comparative<br>study | - deceased prior to t<br>health assessment | ey, and hostility<br>ish speaking,<br>m, combativeness<br>nd inability to<br>cionnaire due to<br>Ty<br>to being approached |                      | Nurse-driven EPM program:<br>- immediate post<br>intervention (group two)<br>- late post intervention<br>sustainability data (group<br>three) | - pre-<br>intervention<br>(group one),<br>not specified | Primary outcome:<br>- sustainability of EPM<br>programme over a 22-<br>month period<br>Secondary outcomes:<br>- difference in clinical<br>outcomes (LOS, 30-<br>day mortality,<br>discharge disposition<br>and quality metrics<br>that included DVT,<br>VAP, BSI, and HAPI)<br>and psychological<br>health (depression,<br>anxiety and hostility) | Primary outcomes:<br>- in 260 pre-intervention,<br>377 post-implementation,<br>and 480 12-month post-<br>implementation pts (N =<br>1.117) walking increased<br>post-implementation and<br>was sustained at the 8-<br>month (p < .001)<br>Secondary outcomes:<br>-ICU and hospital LOS and<br>psychological distress were<br>reduced compared to the<br>pre-early mobility programs<br>(all p < .001)<br>- no differences in discharge<br>disposition mortality or<br>quality metrics | 4                 |

BSI = blood stream infection, DVT = deep vein thrombosis, EPM = early progressive mobility, HAPI = hospital acquired pressure injury, LOS = length of stay, n.s. = not significant, pts = patients, SD = standard deviation, VAP = ventilator associated pneumonia

A nurse-driven EPM program seems to have a benefit in relation to hospital and ICU length of stay.

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                                                           | Control                       | Optimal Population                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 302<br>Woo 2018<br>(PMID:<br>31723855<br>DOI:<br>10.4266/acc.<br>2017.00542)<br><b>Specification</b><br>of study:<br>Case Series –<br>intraindividu<br>al design | command                                                            |                      | In-bed cycling:<br>-20 min<br>+<br>FES:<br>-only left thigh<br>-20 min | In-bed<br>cycling:<br>-20 min | Outcomes<br>- circumferences M. rectus<br>femoris pre- and post-<br>intervention via ultrasound<br>- cross-sectional area rectus<br>femoris pre- and post-<br>intervention via ultrasound<br>- MRC score | Significant differences between groups in:<br>circumference (cm)<br>right side- pre mean $\pm$ SD: 47.43 $\pm$ 5.79- post mean $\pm$ SD: 47.43 $\pm$ 5.79- post mean $\pm$ SD: 48.24 $\pm$ 5.56, p = 0.006<br>left side- pre mean $\pm$ SD: 47.83 $\pm$ 5.79- post mean $\pm$ SD: 48.75 $\pm$ 4.73, p = 0.027<br>cross-sectional area (cm <sup>2</sup> )<br>right side- pre mean $\pm$ SD: 5.28 $\pm$ 1.89- post mean $\pm$ SD: 6.59 $\pm$ 2.23, p = 0.003<br>left side- pre mean $\pm$ SD: 6.59 $\pm$ 2.23, p = 0.008No significant differences between groups in:<br>MRC score<br>right side- pre median (IQR): 4 (3.75 - 4.25)- post median (IQR): 4 (3.75 - 4.25)- post median (IQR): 4 (4 - 4), p = 0.368<br>No difference between the legs regarding all<br>outcomes | 3                 |

FES = functional electrical stimulation, pts = patients

In-bed cycling increased surrogate parameters of muscle mass in a before-after design while not affecting muscle strength. No additional effect of NMES could be observed.

| Reference,<br>Study Type                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                                                     | Control | Optimal Population                                                                                                  | Primary Results                      | Evidence Grade                              |
|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------------|
| 305 Conceicao 2017<br>(PMID: 29340541<br>DOI: 10.5935/0103-<br>507X.20170076)<br><b>Specification of</b><br><b>study:</b> systematic<br>review | <ul> <li>37 publications (6.641 pts )</li> <li>(6x RCT, 1x prospective study, 9x<br/>retrospective study, 13x case series, 2x<br/>independent group design, 2x RCT protocol,<br/>4x care delivery protocol)</li> <li>Inclusion criteria: <ul> <li>RCTs</li> <li>prospective and retrospective studies</li> <li>case series with at least 10 consecutive pts</li> <li>with independent or parallel group design</li> <li>RCT protocols and care delivery protocols</li> <li>&gt;18 years old</li> <li>admitted to the ICU</li> <li>MV for &gt; 24 hours.</li> <li>in Portuguese, English, Spanish and French</li> </ul> </li> <li>Exclusion criteria: <ul> <li>safety criteria to start EM not described</li> <li>review studies, monographs/</li> <li>dissertations/theses, annals, chapters from books</li> <li>experts' points of view or opinions</li> </ul> </li> </ul> |                      | <b>Mobilization:</b><br>- under<br>adequate<br>monitoring and<br>with due safety |         | <b>Endpoint</b><br>- most widely used safety<br>criteria to start EM for pts<br>under MV and admitted<br>to the ICU | L rechiratory criteria the varianies | 1 → 3<br>(not only RCTs,<br>no metanalysis) |

EM = early mobilization, ICU = intensive care unit, MV = mechanical ventilation, pts = patients

The parameters and variables located in the present systematic review can be used as orientation for safety criteria to start EM.

| Reference,<br>Study Type                                                                                                                                                   | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                           | Drop-<br>out<br>Rate | Intervention                                                                                                                                                  | Control | Optimal<br>Population | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 307 Boyd<br>2018<br>(PMID:<br>29246774<br>DOI:<br>10.1016/j.hrtIn<br>g.2017.11.006)<br><b>Specification</b><br>of study:<br>Prospective,<br>single-center,<br>cohort study | 91 pts<br>- pts>18y<br>- MV in the ICU for<br>cardiothoracic surgery<br><b>Exclusion criteria:</b><br>- pts<18y<br>- no MV<br>- expected death<br>Per Branch |                      | <b>Mobilization:</b><br>- on the basis of a<br>traffic light system<br>for risk stratification<br>and for deciding on<br>the type of possible<br>mobilisation |         | Outcomes:<br>-AEs     | <ul> <li>- 10 (0.0182%) AEs on 549 in- or out-of-bed mobilization units, all minor</li> <li>In-bed cycling: <ul> <li>despite red traffic light parameters, mobilization in bed in</li> <li>2/101 units (1.98%), but no AE</li> <li>despite yellow traffic light parameters in 72/101 units</li> <li>(71.28%), here 1 AE (1.38%, not considered significant as only bladder catheter disconnect).</li> <li>no AE with in-bed mobilisation under vaso-pressive or inotropic medication, 1 AE (0.87%) with tilt table use despite yellow/red parameters in patients under vaso-active support</li> <li>higher probability of AE in pts without inotropic support</li> </ul> </li> <li>Out-of-bed mobilization despite yellow parameters in 189/448 units (42.18%), here 1 AE (0.52%),</li> <li>despite red traffic light parameters in 43/448 (9.59%) units, here 4 AE (9.30%)</li> <li>AE significantly higher with red parameters and out-of-bed mobilisation (p &lt; 0.01)</li> </ul> | 4                 |

AE = adverse event, ICU = intensive care unit, MV = mechanical ventilation

The consensus recommendations are a useful tool in guiding safe exercise rehabilitation of mechanically ventilated patients. No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop<br>-out<br>Rate | Intervention                                                                                                                     | Control | Optimal Population                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|-----------------------------------------|--------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| DOI:<br>10.1038/s41598-<br>017-17624-3) | - ≥18 years of age                                                 |                      | <b>Physical therapy</b> :<br>- evaluation<br>treatment based on<br>consultation from<br>the primary<br>physician service<br>line |         | Outcomes:<br>- days of physical therapy<br>treatment during<br>hospitalization<br>- days requiring mechanical<br>ventilation<br>- time to first physical<br>therapy evaluation<br>- comorbidity score<br>- age during hospitalization<br>- CT ICU LOS<br>- hospital LOS | <ul> <li>Outcomes:</li> <li>days of physical therapy treatment during hospitalization:<br/>post CABG and Valve surgery had fewer mean days (CABG<br/>3.6 ± 2.6/ Valve surgery 4.1 ± 3.2, no p-value)</li> <li>days requiring mechanical ventilation:<br/>no distinguishable difference was found (no p-value stated)</li> <li>time to first physical therapy evaluation:<br/>with respiratory failure more days than all the other<br/>subgroups (no p-value stated)</li> <li>comorbidity score,<br/>post CABG and Valve surgery showed the lowest CCI<br/>respiratory failure had a much larger CCI (CABG 4.0 ± 2.8,<br/>Valve surgery 3.9 ± 2.7, respiratory failure 5.9 ± 3.2, no p-<br/>value stated)</li> <li>age during hospitalization not stated</li> <li>post CABG or post Valve surgery have shorter CT ICU LOS<br/>(CABG 4.0 ± 2.6, Valve 4.1 ± 2.9) and hospital LOS (statistically<br/>significant differences in between: CABG 10.4 ± 6.9, Valve<br/>17.2 ± 16.9, no p-value stated)</li> <li>with respiratory failure significantly different in hospital LOS<br/>(44.9 ± 43.9) and CT ICU LOS (17.6 ± 22.9) (no p-value stated)</li> </ul> |                   |

CCI = Charlson comorbidity score, CT = cardiothoracic, ICU = intensive care unit, LOS = length of stay

Timing and amount of physical therapy in patients with cardiac and respiratory illness differs more based on procedure required during hospitalization than on patient comorbidity and is associated with hospital and CT ICU LOS in this patient population.

|                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                               |    |       |                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| <ul> <li>310 Guerin 2017</li> <li>ARI</li> <li>Berli</li> <li>29218379</li> <li>Intu</li> <li>DOI:</li> <li>10.1007/s00134-</li> <li>017-4996-5)</li> <li>Specification of study:</li> <li>international 1-</li> <li>duu provalance</li> </ul> | usion criteria:<br>DS criteria according to the<br>in definition<br>e ≥ 18 years.<br>ubated or tracheotomized and<br>hanically ventilated<br>usion criteria:<br>t intubated on the day of the<br>y<br>ARDS on the day of the study<br>n if ARDS criteria had been<br>led between ICU admission<br>the study day<br>Per Branch | РР | Νο ΡΡ | Primary outcome:<br>- prevalence of use of<br>PP in ARDS patients<br>Secondary outcome:<br>- physiological effects<br>of PP, and the reasons<br>for not using it | Primary outcome:<br>- rate of PP use was 5.9% (11/187), 10.3%<br>(41/399) and 32.9% (49/149) in mild,<br>moderate and severe ARDS, respectively (P<br>= 0.0001)<br>Secondary outcome:<br>- before and at the end of the first PP<br>session:<br>PaO2/FIO2 increased from 101 (76–136) to<br>171 (118–220) mmHg (P = 0.0001); driving<br>pressure decreased from 14 [11–17] to 13<br>[10–16] cmH2O (P = 0.001); Pplat<br>decreased from 26 [23–29] to 25 [23–28]<br>cmH2O (P = 0.04) | 3 → 4 |

ARDS = acute respiratory distress syndrom, ICU = intensive care unit, PP = prone position, pts = patients

PP was associated with low complication rates, significant increase in oxygenation and a significant decrease in driving pressure.

| Reference,<br>Study Type                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control | Optimal<br>Population                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 312 Martinez<br>2017<br>(PMID:<br>29196586<br>DOI:<br>10.4037/ccn<br>2017531)<br>Specification<br>of study: A<br>before-and-<br>after study | <ul> <li>refused to</li> <li>participate</li> </ul>                |                      | Diagnostic phase:<br>preintervention providing<br>baseline<br>Intervention period:<br>(Multicomponent strategy):<br>- physiotherapy and early<br>mobilization<br>- daily reorientation<br>- drug reorientation<br>- prevention of sensory<br>deprivation<br>-drug reviews<br>- pain control,<br>- sleep hygiene,<br>- environmental stimulation,<br>- monitoring of urinary and<br>rectal function,<br>- avoidance of restraints,<br>- family participation in care |         | <b>Endpoints:</b><br>- delirium rates<br>- overall mortality<br>- duration of MV<br>- total ICU LOS | Delirium was strongly associated with removal of feeding<br>tubes (RR, 12.9; 95% CI, 1.72-96; p < 0.001)<br>Significant differences between groups in:<br>-interventional period, delirium developed in 55 pts (24%;<br>95% CI, 19.0%-30.7%), a significant reduction when<br>compared with the diagnostic phase (RR, 0.64; 95% CI,<br>0.43-0.95; p = 0.03)<br>-reduction in self-withdrawals of implements in the<br>interventional phase, RR 0.42 (95% CI, 0.19-0.92; p = 0.04)<br>No significant differences between groups in:<br>-mortality: p = 0.32, pts with delirium had a no significant<br>increase in risk of death (RR, 1.28; 95% CI, 0.65-2.5; P =<br>0.54)<br>-duration of MV: median [IQR], 2 [1-5] days vs 1 [0-3] days;<br>p = 0.29<br>-total ICU LOS: median [IQR], 3 [2-5] days vs 3 [2-6] days; p<br>= 0.066) | 4                 |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

#### Multicomponent interventions are effective in preventing delirium among the critically ill.

No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                    | (Partio<br>Charac                                 | nd Controls<br>cipant #,<br>cteristics)<br>otal | Drop-out<br>Rate                                                                                                  | Interventio<br>n                                                 | Control                                                                     | Optimal Population                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 313 Li-Bassi<br>2017<br>(PMID:<br>29149418<br>DOI:<br>10.1007/s0<br>0134-017-<br>4858-1)<br><b>Specificatio</b><br><b>n of study:</b><br>multicenter<br>RCT | ≥ 48 h<br>- within 12<br>endotrache<br>intubation | from 18<br>to be on MV<br>hours from            | 5 pts: 1<br>excluded by<br>clinician, 3<br>risk<br>conditions,<br>1 withdrew<br>consent, 1<br>randomized<br>twice | LTP:<br>- with the<br>head<br>of the bed<br>tilted 5–10°<br>down | <b>SRP:</b><br>- with the<br>head of the<br>bed<br>elevated at<br>least 30° | Primary endpoint:<br>- incidence of<br>microbiologically<br>confirmed VAP<br>Secondary outcomes:<br>- ICU mortality<br>- duration of mechanical<br>ventilation<br>- ICU LOS | Primary endpoint:<br>- microbiologically confirmed VAP 0.5% vs. 4.0%,<br>RR 0.13 (95%Cl 0.02-1.03, risk difference -3.5%<br>(95%Cl -6.4 to -0.6), p = 0.04<br>Secondary outcomes:<br>- ICU mortality: SRP = 48 (23.9%), LTP = 59<br>(30.4%), (95%Cl, risk difference) 1.27 (0.92-1.76);<br>p = 0.17, no difference in hospital or 28-d<br>mortality (p > 0.05)<br>- duration MV: SRP = 4 (2–9), LTP = 5 (2–-), (95%Cl,<br>risk difference) 0.00 (-1.00 to 1.00); p = 0.73<br>- ICU LOS (days): SRP = 16 (9–30), LTP = 15 (8–28),<br>95%Cl, risk difference -2.00 (-5.00 to 1.00), p =<br>0.24 | 2 → 3<br>(premature<br>study stop<br>due to low<br>VAP<br>incidence) |

AE = adverse events, CI = confidence interval, ICU = intensive care unit, LOS = length of stay, LTP = lateral Trendelenburg position, MV= mechanical ventilation, pts = patients, SRP = semi recumbent position, VAP = ventilator-associated pneumonia

# LTP seems to decrease the incidence of microbiologically confirmed VAP, but implementation seems difficult and safety concerns exist. Study was stopped prematurely due to low VAP incidence.

| Reference,<br>Study Type                                                                                                                                                      | (Partic<br>Charac                                                                          | d Controls<br>tipant #,<br>teristics)<br>otal                        | Drop<br>-out<br>Rate | Intervention                                              | Control                                          | Optimal Population                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 315<br>Munshi<br>2017<br>(PMID:<br>29068269<br>DOI:<br>10.1513/Ann<br>alsATS.2017<br>04-343OT)<br>Specification<br>of study:<br>Systematic<br>Review and<br>Meta-<br>Analysis | prone positio<br>in the supine<br>adults with Al<br>reported mor<br>- pts with Ber<br>ARDS | eria:<br>Impared MV in<br>n to ventilation<br>position in<br>RDS and |                      | <b>Prone position</b> :<br>-12 hours or longer<br>per day | Supine or prone<br>position:<br>- less than 12 h | Primary outcome:<br>-28-day mortality<br>Secondary outcomes:<br>- 90-day mortality<br>- 6-month<br>Mortality<br>-absolute PaO2/FIO2<br>ratio on Day 4<br>- adverse events<br>(unplanned central<br>catheter removal,<br>unplanned extubation,<br>endotracheal tube<br>obstruction, ventilator<br>associated<br>pneumonia, and pressure<br>sores) | Primary outcome:<br>- no difference in mortality (RR,<br>0.84; 95% Cl, 0.68–1.04)<br>- subgroup analyses found lower<br>mortality with 12h or greater<br>duration prone (5 trials; RR, 0.74;<br>95% Cl, 0.56–0.99) and for patients<br>with moderate to severe ARDS (5<br>trials; RR, 0.74; 95%Cl, 0.56–0.99)<br>Secondary outcome<br>- PaO2 /FIO2 ratio on Day 4:<br>higher for n=1093 (MD, 23.5; 95%<br>Cl, 12.4–34.5, I <sup>2</sup> , 24%)<br>- prone positioning associated with<br>higher risks of endotracheal tube<br>obstruction (RR, 1.76; 95% Cl, 1.24–<br>2.50; I <sup>2</sup> , 26%; three studies [5, 20,<br>21]) and pressure sores (RR, 1.22;<br>95% Cl, 1.06–1.41; I <sup>2</sup> , 0%) | 1                 |

AE = adverse event, ARDS = acute respiratory distress syndrome, CI = confidence interval, FiO2 = inspiratory oxygen concentration, MV = mechanical ventilation, paO2 = partial oxygen pressure, pts = patients, RR = risk ratio

Prone positioning was associated with a reduction in mortality in patients with moderate to severe ARDS (PaO2/FIO2 < 200) if applied for a longer duration (>12 h), but also with an increase in endotracheal tube obstruction and pressure sores.

#### References

1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, et al.; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568–573

2. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379–2387

3. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, Bock E, Gotzen L, Obertacke U, Nast-Kolb D. Prone positioning improves oxygenation in posttraumatic lung injury—a prospective randomized trial. J Trauma 2005;59:333–341. [Discussion, pp. 341–343.]

4. Mancebo J, Fern ´andez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodr´ıguez F, Garro P, Ricart P, Vallverd ´u I, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173: 1233–1239.

5. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, et al.; Prone–Supine II Study Group. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977–1984.

6. Guerin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, Mercier E, Badet M, Mercat A, Baudin O, et al.; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159–2168.

7. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, Tirapu JP, Santos A, Mas A, Parraga M, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 2008;34:1487–1491.

8. Chan MC, Hsu JY, Liu HH, Lee YL, Pong SC, Chang LY, Kuo BI, Wu CL. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc 2007;106:708–716

| Reference,<br>Study Type                                                                                                                                                           | (Partici<br>Charact                                                                                                                                                                                                  | d Controls<br>ipant #,<br>eristics)<br>tal                  | Drop-<br>out<br>Rate       | Intervention                                                                                                                                                                          | Control                                        | Optimal<br>Population                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 317 Bartolo<br>2017<br>(PMID:<br>28980699<br>DOI:<br>10.2340/1650<br>1977-2269)<br>Specification<br>of study:<br>Secondary<br>analysis of<br>prospective<br>observational<br>study | 103 pts<br>Inclusion crite<br>- admitted at<br>with sABI<br>Exclusion crite<br>- premorbid C<br>disability<br>- neurological<br>- neoplastic d<br>metastatic inv<br>the CNS<br>Per B<br>Mobilized<br>(MOB)<br>68 pts | ICU/NICU<br>eria:<br>CNS-related<br>diseases<br>isease with | 6 pts<br>(missing<br>data) | Early passive-<br>active-<br>assisted<br>mobilization<br>including:<br>- sitting over<br>the edge of<br>the bed<br>- sitting on a<br>chair<br>- use of a tilt<br>bed/table to<br>≥40° | Not well<br>defined,<br>no<br>mobilizati<br>on | Primary<br>outcomes:<br>- clinical and<br>functional status<br>measured with<br>GCS, DRS, LCF (at<br>each visit), ERBI<br>(at admission<br>and discharge),<br>GOS, FIM (at<br>discharge only),<br>- in-hospital<br>death | Primary outcomes:<br>Significant difference between groups in:<br>- LOS, MOB group (26.2 (SD) 13.7 days) and NoMOB group<br>(19.5 (SD) 14.2 days), p=0.01.<br>- ERBI, MOB -225 [-250, -125], NoMOB mean (95% Cl): -250<br>[-325, -175], p=0.005<br>- GOS, MOB (3 (95% Cl 3; 3)) vs NoMOB (2 (95% Cl 2; 3)), p =<br>0.009<br>- FIM cognitive, MOB 7 (95% Cl 5; 14) vs NoMOB 5 (95% Cl 5;<br>8.75) ( <i>p</i> = 0.04)<br><b>No significant difference at discharge between groups in:</b><br>- GCS, MOB 10.3 (9.2–11.6), NoMOB mean (95% Cl): 7.3 (6.1–<br>8.7), p=0.480<br>- DRS, MOB 20.4 (19.1–21.8), NoMOB mean (95% Cl): 24.2<br>(22.1–26.4), p=0.291<br>- LCF, MOB 3.5 (3.0–4.1), NoMOB mean (95% Cl): 2.3 (1.9–2.9),<br>p=0.707<br>- FIM total score, MOB 21 (95% Cl 18; 27) vs NoMOB 18 (95%<br>Cl 18; 21.75)<br>- in-hospital death p=0.375 | 4                 |

CI = confidence interval, CNS = central nervous system, DRS = disability rating scale, ERBI = early rehabilitation Barthel index, FIM = functional independence measure, GCS = Glasgow Coma Scale, ICU = intensive care unit, LCF = levels of cognitive functioning, LOS = length of stay, NICU = neurological intensive care unit, pts = patient, sABI = severe acquired brain injury

Data from this study show that early mobilization seems to benefit clinical and functional recovery in ICU patients with sABI.

| Reference,<br>Study Type                                                                                                                                                                                       | Cases and Con<br>(Participant #, Char<br>Total                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          | Drop-out Rate                                                                                                                                                                                  | Intervention                                                                                                                                                                                                                               | Control                                                                                                                                                                                                    | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 323<br>Wright<br>2016<br>(PMID:<br>28780504<br>DOI:<br>10.1136/thor<br>axjnl-2016-<br>209858)<br><b>Specification</b><br>of study:<br>multicenter,<br>parallel-<br>group,<br>randomized<br>controlled<br>trial | 308 pts<br>Inclusion criteria:<br>- pts 18 years or old<br>admitted at ICU<br>- received 48+ hours<br>invasive or non-inva<br>mechanical ventilati<br>Exclusion criteria:<br>- end-of-life care<br>- acute brain or spin<br>injury<br>- multiple burns<br>- rapidly progressive<br>neuromuscular dise<br>- enrolled in anothe<br>trial without a co-er<br>agreement in place<br>- previously enrolled<br>trial<br>Per Branc<br>150 | rs of<br>asive<br>tion<br>nal cord<br>e<br>ease<br>er clinical<br>nrolment<br>ed in this | total 98:<br>- intervention:<br>43 (29%) died,<br>11 (7%)<br>withdrawn, 34<br>(23%) lost to<br>follow-up<br>- control: 56<br>(35%) died, 5<br>(3%) withdrawn,<br>43 (27%) lost to<br>follow-up | Physical<br>rehabilitation:<br>- functional<br>training and<br>individually<br>tailored exercise<br>programs +<br>respiratory<br>physiotherapy<br>- goal of 90<br>minutes per day<br>(Monday to<br>Friday) split in at<br>least 2 sessions | Physical<br>rehabilitation:<br>- functional<br>training and<br>individually<br>tailored exercise<br>programs +<br>respiratory<br>physiotherapy<br>- goal of 30<br>minutes per day<br>(Monday to<br>Friday) | Primary endpoint:<br>- PCS at 6 moths follow up to<br>assess quality of life<br>Secondary outcomes:<br>- MCS<br>- physical ability at ICU<br>discharge<br>- LOS (hospital and ICU)<br>- exercise capacity (6-minute<br>walk test)<br>- FIM<br>- hand grip strength<br>- survival status and place of<br>residence at 3 and 6 months<br>after randomization<br>Power analysis<br>80% power and a significance<br>level of 0.05 required 77 pts<br>to contribute primary<br>outcome data at 6 months | Primary endpoints:<br>- PCS, mean (SD): 37<br>(12.2) in the<br>intervention group and<br>37 (11.3) control with<br>an adjusted difference<br>in means –1.1 (95% CI<br>–7.1 to 5.0)<br>Secondary outcomes:<br>- ICU LOS, days, median<br>(IQR): 6 (4–9)<br>intervention vs 5 (4–8)<br>control.<br>- only 1 FIM at 3months<br>was significantly<br>different between<br>groups<br>- other outcomes n.s | 2 → 4<br>(downgraded<br>as<br>intervention<br>goal not<br>reached) |

FIM = functional independence measure, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MCS = mental health component summary, n.s = not significant, PCS = physical component summary, pts = patients, SD = standard deviation

In this context, ICU-based physical rehabilitation did not appear to improve physical outcomes at 6 months compared with standard physical rehabilitation.

| Reference,<br>Study Type                                                                                                          | Cases and Controls<br>(Participant #, Characteristics)<br>Total                      | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 324<br>Hashimoto<br>2017<br>(PMID: 28770093<br>DOI: 10.1186/s40560-017-<br>0222-3)<br><b>Specification of study:</b><br>Guideline | Systematic review of RCTs regarding<br>PP in adult pts with ARDS. 8 RCTs<br>included | <ol> <li>PP reduces mortality (RR 0.77; 95% CI 0.62-0.96)</li> <li>Mortality was also reduced in moderate/severe ARDS (RR 0.71; 95% CI 0.52-0.97)</li> <li>No reduction in mortlity in prolonged PP (&gt;8h): RR 0.77; 95% CI 0.58-1.02</li> <li>No increase in adverse events (endotracheal complications): (RR 1.29; 95% CI 0.87-1.91 but sig. increase in incidence of decubitus ulcers (RR 1.36; 95% CI 1.06-1.75)</li> </ol> | 1              |

ARDS = acute respiratory distress syndrome, PP = prone positioning, pts = patients, RCT = randomized controlled trial

#### Prone positioning is suggested in adult patients with ARDS (especially in patients with moderate to severe respiratory dysfunction).

#### References

- 1. Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC. Proneposition as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med. 2002;28(5):564–9.
- 2. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: a multicenterrandomized clinical trial. Intensive Care Med. 2008;34(8):1487–91.
- 3. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345(8):568–73.
- 4. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: arandomized controlled trial. JAMA. 2004;292(19):2379– 87.
- 5. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Pronepositioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368(23):2159–68.
- 6. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. Amulticenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(11):1233–9.
- 7. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acuterespiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302(18):1977–84.
- 8. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, et al. Prone positioning improves oxygenation in post-traumatic lunginjury–a prospective randomized trial. J Trauma. 2005;59(2):333–41.discussion 41-3.

| From February 2016 to September<br>2015: 32 included mechanical<br>ventilated pts. at ICU of the AMC       Results:         331       Inclusion criteria:       - 12 (no<br>- mechanical ventilation >48h       No sample size calculation<br>specified       - 4 480         (PMID:<br>28549273<br>DOI:<br>10.1016/j.jcrc.       - mechanical ventilation >48h       - 12 (no<br>consent or<br>ICU<br>discharge       - 14 of 54 sessions: participants<br>would not have been able to walk<br>(FAC O)       - 40 of 54 sessions: participants<br>would not have been able to walk<br>(FAC O)       - 40 of 54 sessions: participants<br>would be able to walk fm with<br>BWSTT - with BWSTT participant<br>waiked >10m<br>valked >10m<br>valient or ICU PT       - patients antifaction: median 5 (I | Reference,<br>Study Type                                                                                                                             | (Participant #,                                                                                                                                                                                                                                                                                                                                            | d Controls<br>characteristics)<br>otal                                                                                                                      | Drop-out<br>- Rate | Intervent<br>ion | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 20 none                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sommers<br>2017<br>(PMID:<br>28549273<br>DOI:<br>10.1016/j.jcrc.<br>2017.05.010)<br>Specification<br>of study:<br>proof of<br>concept<br>prospective | 2016: 32 included r<br>ventilated pts. at IC<br>Inclusion criteria:<br>- ICU patients > 18 v<br>- mechanical ventila<br>Exclusion criteria:<br>- imminent to death<br>- one or more ampu<br>extremities<br>- language barrier (r<br>- S5Q <5<br>- MRC score 0-1 for<br>muscle strength<br>- contraindications<br>exercise according<br>Statement for ICU F | nechanical<br>CU of the AMC<br>years<br>ation >48h<br>h<br>utated lower<br>dutch language)<br>M. quadriceps<br>for physical<br>to Evidence<br>PT<br>Stranch | consent or<br>ICU  | BWSTT            | none    | specified<br><b>Outcomes:</b><br>- eligibility<br>- recruitment rates<br>- number of staff needed<br>- adverse events<br>- successful number of<br>BWSTT<br>- number of patients that<br>could not have walked<br>without BWSTT<br>- patient satisfaction (1 =<br>very unhappy – 5 =very<br>happy)<br>- patient anxiety (0 = no<br>anxiety – 10 = severe<br>anxiety)<br>- MRC score | <ul> <li>- 54 sessions BWSTT with median of<br/>2 (IQR of 1-3) for each participant</li> <li>- median MRC-Score 40 (IQR 32.5-<br/>47.5) with 75% having ICU-AW (MRC<br/>&lt;48)</li> <li>- median duration 25 minutes (IQR<br/>20-30)</li> <li>- number of staff needed: 2 (IQR 2-3)</li> <li>- no adverse events occurred</li> <li>- walking distance: median 31 (3-95)<br/>steps</li> <li>- 40 of 54 sessions: participants<br/>would not have been able to walk<br/>(FAC 0)</li> <li>-14 of 54 sessions: participants<br/>would be able to walk 5m with<br/>BWSTT -&gt; with BWSTT participant<br/>walked &gt;10m</li> <li>- patient satisfaction: median 5 (IQR<br/>3-5)</li> </ul> | 4                 |

Pts. = patients, AMC = Academic Medical Center, ICU = Intensive Care Unit, BWSTT = Body Weight-Supported Treadmill Training, S5Q = Short 5 item Questionnaire, MRC = Medical Research Council, PT = physiotherapy, FAC = functional ambulation Categories, IQR = interquartile range, ICU-AW = intensive care unit acquired weakness

#### BWTT in critically ill patients is feasible, safe, and potentially effective.

#### No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                      | Drop<br>-out<br>Rate | Intervention                                                                                          | Control                                                                | Optimal Population                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| 332<br>Schieren 2017<br>(PMID:<br>28538631<br>DOI:<br>10.1097/TA.0<br>0000000000<br>1572)<br><b>Specification</b><br>of study:<br>Systematic<br>review and<br>meta-analysis | 8 publications from 1988 -<br>2012 (7 randomized, 1 non-<br>randomized, n = 422 pts) <sup>1-8</sup><br>Inclusion criteria:<br>-prospective controlled<br>trials<br>-comparing CLRT to<br>conventional manual<br>positioning in trauma pts<br>Per Branch |                      | <b>CLRT</b><br>(prophylactic<br>in 4 studies<br>(n=243),<br>therapeutic in<br>4 studies (n =<br>179)) | Standard of<br>care:<br>- manual<br>turning in<br>regular<br>intervals | No primary endpoint<br>defined<br>Extracted endpoints:<br>- rates of pneumonia<br>- ICU LOS<br>- hospital mortality | Significant differences between groups:<br>- pCLRT decreased HAP (OR: 0.33 [95% CI: 0.17, 0.65],<br>p = 0.001, I2 = 0%; NNT = 4)<br>No significant differences between groups in:<br>hospital mortality<br>-pCLRT OR 1.39 [95% CI: 0.69, 2.43], p = 0.42, I <sup>2</sup> = 0%<br>-tCLRT OR 0.54 [95%CI 0.22, 1.33], p = 0.18, I <sup>2</sup> = 0%<br>duration of MV<br>-pCLRT: -1.88 d [95%CI -4.72, 0.97], p = 0.20, I <sup>2</sup> = 0%<br>-tCLRT: -2.97 d [95%CI -7.44, 1.50], p = 0.19, I <sup>2</sup> = 41%<br>ICU LOS<br>-pCLRT: 0.91 d [95%CI -2.79, 4.60], p = 0.63, I <sup>2</sup> = 58%<br>-tCLRT: -1.43 d [95%CI -5.60, 2.74], p = 0.50, I <sup>2</sup> = 0%<br>HAP frequency (tCLRT): OR 1.00 [95%CI 0.15, 6.53], p = 1.00 | 1 → 2<br>(downgraded<br>for<br>indirectness) |

CLRT = continuous lateral rotation therapy, HAP = hospital acquired pneumonia, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pCLRT = prophylactic CLRT, pts = patients, tCLRT = therapeutic CLRT

Prophylactic CRLT seems to decrease the rate of HAP in trauma patients.

#### References

- 1. Gentilello L, Thompson DA, Tonnesen AS, et al. Effect of a rotating bed on the incidence of pulmonary complications in critically ill patients. Critical care medicine 1988;16(8):783-6. DOI: 10.1097/00003246-198808000-00010.
- 2. Demarest GB, Schmidt-Nowara WW, Vance LW, Altman AR. Use of the kinetic treatment table to prevent the pulmonary complications of multiple trauma. West J Med 1989;150(1):35-8. (https://www.ncbi.nlm.nih.gov/pubmed/2735022).
- 3. Clemmer TP, Green S, Ziegler B, et al. Effectiveness of the kinetic treatment table for preventing and treating pulmonary complications in severely head-injured patients. Critical care medicine 1990;18(6):614-7. DOI: 10.1097/00003246-199006000-00007.
- 4. Fink MP, Helsmoortel CM, Stein KL, Lee PC, Cohn SM. The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma. A prospective study. Chest 1990;97(1):132-7. DOI: 10.1378/chest.97.1.132.
- 5. Nelson LD, Choi SC. Kinetic therapy in critically ill trauma patients. Clin Intensive Care 1992;3(6):248-52. (https://www.ncbi.nlm.nih.gov/pubmed/10148407).
- 6. Shapiro MJ, Keegan MJ. Continuous oscillation therapy for the treatment of pulmonary contusion. Am Surg 1992;58(9):546-50; discussion 550. (https://www.ncbi.nlm.nih.gov/pubmed/1524321).
- 7. Pape HC, Regel G, Borgmann W, Sturm JA, Tscherne H. The effect of kinetic positioning on lung function and pulmonary haemodynamics in posttraumatic ARDS: a clinical study. Injury 1994;25(1):51-7. DOI: 10.1016/0020-1383(94)90185-6.
- 8. Bein T, Zimmermann M, Schiewe-Langgartner F, et al. Continuous lateral rotational therapy and systemic inflammatory response in posttraumatic acute lung injury: results from a prospective randomised study. Injury 2012;43(11):1892-7. DOI: 10.1016/j.injury.2011.08.034.

| Reference,<br>Study Type                                                                                                       | Cases and Con<br>(Participant #, Chara<br>Total                                                                                                                                                                                                                               |                                                  | Drop-<br>out<br>Rate | Intervention       | Control              | Optimal Population                                                                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|--------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 333 Semler<br>2017<br>(PMID:<br>28487139<br>DOI:<br>10.1016/j.ch<br>est.2017.03.<br>061)<br>Specificatio<br>n of study:<br>RCT | 260 pts undergoing endotract<br>ICU<br>Inclusion criteria<br>- ≥ 18 years<br>Exclusion criteria:<br>- intubation was required too<br>perform randomization<br>- treating clinicians felt a spec<br>patient position was required<br>performance of the procedur<br>Per Branch | o emergently to<br>cific<br>d for the safe<br>re |                      | Ramped<br>position | Sniffing<br>position | <ul> <li>Primary outcome <ul> <li>lowest arterial</li> <li>oxygen saturation</li> <li>between induction</li> <li>and 2 minutes after</li> <li>intubation</li> </ul> </li> <li>Secondary outcomes: <ul> <li>Cormack-Lehane</li> <li>grade of glottic view</li> <li>difficulty of</li> <li>intubation</li> <li>number of</li> <li>laryngoscopy</li> <li>attempts</li> </ul> </li> </ul> | Primary outcome (ramped vs<br>sniffing)<br>- p3% [84%-99%] vs 92% [79%-<br>98%] (p=0.27)<br>Secondary outcomes:<br>ramped position increased:<br>- incidence of grade III or IV view<br>(25.4% vs 11.5%) (p=0.01)<br>- incidence of difficult intubation<br>(12.3% vs 4.6%) (p=0.04)<br>Ramped position decreased:<br>- rate of intubation on the first<br>attempt (76.2% vs 85.4%)<br>(p=0.02) | 2                 |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

#### A ramped position in relation to a sniffing position for intubation seems to have no clinical benefit.

| Reference,<br>Study Type                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention                  | Control                       | Optimal Population                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 334<br>Fan 2017<br>(PMID:<br>28459336<br>DOI:<br>10.1164/rcc<br>m.201703-<br>0548ST)<br><b>Specification</b><br>of study:<br>Guideline | 2.129 pts (8 RCTs) <sup>1-8</sup><br>Inclusion criteria:<br>- patients with ARDS<br>- mechanical ventilation in<br>adult patients<br>Exclusion criteria:<br>- cointerventions (e.g.,<br>higher PEEP)<br>- did not mandate LTV in the<br>control group<br>Per Branch |                      | <b>PP</b> in pts with<br>ARDS | <b>SP</b> in pts<br>with ARDS | Outcomes:<br>- mortality<br>- endotracheal tube<br>obstruction<br>- pressure sores<br>- barotrauma | Significant differences between groups in:<br>- mortality reduced, in trials with prone duration ><br>12h/d (5 RCTs; 1002 pts; RR 0.74; [95% CI 0.56-0.99];<br>high confidence) - PP associated with higher rates of endotracheal tube<br>obstruction (3 studies, 1594 pts; RR 1.76 [95% CI 1.24-<br>2.50]; moderate confidence) - PP associated with higher rates of pressure sores<br>obstruction (3 studies, 1109 pts; RR 1.22 [95% CI 1.06-<br>1.41]; high confidence) No significant difference between groups in:<br>- mortality: prone vs. supine groups<br>(8 RCTs; 2129 pts; RR 0.84; [95% CI 0.68–1.04];<br>moderate confidence) - barotrauma: (4 studies, 988 pts; RR 0.77 [95% CI 0.48-<br>1.24]; moderate confidence) | 1                 |

ARDS = acute respiratory distress syndrome, CI = confidence interval, RR = risk ratio

Prone positioning with a duration > 12h/d seems to reduce mortality but increases the rate of endotracheal tube obstruction and pressure sores in ARDS patients.

| Reference,<br>Study Type                                                                                                                                | Cases and C<br>(Participant #, Cha<br>Total                                                                                           | aracteristics) | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                            | Control                                                 | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 339<br>Hester 2017<br>(PMID:<br>28328648<br>DOI:<br>10.1097/CCM<br>.000000000<br>002305)<br><b>Specification</b><br>of study:<br>retrospective<br>study | 2.645 pts.<br>Inclusion criteria:<br>- Neuro-ICU LOS ≥ 2<br>- ≥18 years old<br>Per Bran<br>731 Post Period<br>796 Sustained<br>Period |                |                      | Post period:<br>immediately<br>after<br>implementati<br>on of the<br>PUMP Plus<br>program +<br>mobility<br>program<br><u>Sustained</u><br><u>period:</u><br>2 years after<br>implementati<br>on of the<br>PUMP Plus<br>program +<br>mobility<br>program | before<br>implementation<br>of the PUMP Plus<br>program | Primary outcome:<br>- economic impact of the<br>progressive mobility<br>program (total cost per case)<br>Secondary outcomes:<br>- Neuro-ICU and hospital LOS<br>- ventilator days<br>- percentage requiring<br>mechanical ventilation<br>- discharge disposition<br>- mortality<br>- 30-day readmissions<br>- falls/falls with injury rates<br>- HAI rates<br>- central line—associated<br>bloodstream infection<br>- catheter-associated urinary<br>tract infection (CAUTI)<br>- protocol utilization<br>compliance | Significant differences between groups in:<br>- Mean total cost per case comparison with<br>preintervention: post and sustained period (p <<br>0.05)<br>-Neuro-ICU LOS [days] shorter in the post<br>period (5.2±6.9) vs preintervention period<br>(6.5±9.1) (p = 0.031)<br>- hospital LOS shorter in post (8.6±8.8) and<br>sustained periods (8.8±9.3) vs LOS in the<br>preintervention period (11.3±14.1) (p < 0.001)<br>- discharge disposition home (p=0.008) and<br>long-term Care (p=0.003)<br>No significant differences between groups in:<br>- ventilator days n.s.<br>- percentage requiring mechanical ventilation<br>(p=0.076)<br>-30-day-readmissions (p=0.335)<br>- falls/falls with injury rate (P= 1.0)<br>-HAI (p=0.607)<br>- CAUTI (p=0.583)<br>- protocol utilization compliance not stated | 4                 |

CAUTI = catheter-associated urinary tract infection, HAI = hospital acquired infections, ICU = intensive care unit, LOS = length of stay, Neuro-ICU = neuro-ICU, n.s. = not significant, PUMP = Progressive Upright Mobility Protocol

The implementation of the 'Progressive Upright Mobility Protocol' with a mobility program seems to have a benefit in relation to Neuro-ICU and hospital LOS.

No detailed assessment was carried out further because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                              | (Participant #,                                                                                                                                                                                                            | l Controls<br>Characteristics)<br>tal                                              | Drop-<br>out<br>Rate | Intervention                                                                                                                             | Control                                                                                                    | Optimal Population                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                | Evidence<br>Grade                                                        |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| 340<br>Maffei 2017<br>(PMID:<br>28279659<br>DOI:<br>10.1016/j.ap<br>mr.2017.01.<br>028)<br>Specification<br>of study: | 40 pts<br>Inclusion criteria<br>- aged >18<br>- registered on th<br>waiting list<br>- consent<br>- absence of moto<br>major neuromyo<br>score <36) before<br>Exclusion criteria<br>- important hemo<br>instability or seve | :<br>e liver transplant<br>or paralysis and<br>pathy (MRC<br>e LT<br>:<br>odynamic |                      | Intensive and early<br>mobilization<br>protocol:<br>- started by<br>physiotherapist<br>assessment<br>- applied 2x day for 5<br>days/week | Usual care:<br>- rehabilitation as<br>prescribed by the<br>physician<br>-applied 1x day<br>for 5 days/week | Primary endpoints:<br>- tolerance measured by number of<br>adverse effects defined as: HR <35<br>or >130 bpm, MAP <60mmHg, RR<br>>35 breaths per minute, SpO2<br><88%, NPS >5 (out of 10)<br>- feasibility<br>Secondary outcomes:<br>- LOS in ICU | Significant differences<br>between groups in:<br>- AE: 38/3584 vs 21/1376,<br>p>0.05<br>- feasibility:<br>first sitting on the edge of<br>bed (3±2 vs. 10±13 d,<br>p=0.018),<br>first transit (4±2 vs. 6±3 d,<br>p= 0.015)<br>No significant differences<br>between groups in: | 2 →3<br>(downgraded<br>for lack of<br>blinding and<br>power<br>analysis) |
| pilot,<br>prospective,<br>randomized,<br>single-center<br>study                                                       | <b>Рег В</b><br>20                                                                                                                                                                                                         | ranch<br>20                                                                        |                      |                                                                                                                                          |                                                                                                            | <ul> <li>LOS in a department of<br/>abdominal surgery</li> <li>duration of ventilation</li> <li>No power analysis</li> </ul>                                                                                                                      | <ul> <li>first sitting on chair n.s.</li> <li>first walking n.s.</li> <li>MV duration n.s.</li> <li>ICU LOS n.s.</li> <li>Hospital LOS</li> </ul>                                                                                                                              |                                                                          |

bpm = beats per minute, HR = heart rate, ICU = intensive care unit, LOS = length of stay, LT = lung transplantation, MAP = mean arterial pressure, MRC = medical research council, MV= mechanical ventilation, NPS = numerical pain scale, pts = patients, RR = respiratory rate, SPO2 = peripheral oxygen saturation

# An ongoing progressive mobility program in the neurological critical care population has clinical and financial benefits associated with its implementation and should be considered.

| Reference,<br>Study Type                                                                                                                                             | Cases and Co<br>(Participa<br>Characteris<br>Total                                                                                                                                                                                         | int #,<br>istics)                                                                     | Drop-out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 342<br>Gaudry 2017<br>(PMID:<br>28236174<br>DOI:<br>10.1186/s136<br>13-017-0235-<br>z)<br>Specification<br>of study:<br>Retrospective<br>multicenter<br>cohort study | 98 pts<br>Inclusion criter<br>- ARDS (PaO2/I<br><300 mmHg w<br>or CPAP ≥5 cm<br>a context of re<br>(less than 7 da'<br>abdominal sur<br>Exclusion crite<br>- laparoscopy<br>- pts who died<br>next 48h follow<br>surgery<br>Per Bran<br>36 | /FiO2<br>vith PEEP<br>hH2O) in<br>ecent<br>ays)<br>rgery<br>eria:<br>l in the<br>wing |                  | PP           | SP      | Primary endpoint:<br>- number of pts who had at least<br>one surgical complication<br>induced or worsened by PP<br>Secondary outcomes:<br>- number of revision surgeries<br>due to complication induced or<br>worsened by PP<br>- effects of PP on oxygenation<br>- duration of MV<br>- mortality<br>- LOS<br>no sample size calculation | Primary outcome:<br>-no significant difference in rate of<br>surgical complications induced or<br>worsened by PP [respectively, 14 (39%) vs<br>27 (44%); p = 0.65]<br>Secondary outcomes:<br>Significant differences between groups<br>in:<br>- PaO2/FiO2 ratio, the first PP significantly<br>increased from 95 ± 47 to 189 ± 92<br>mmHg, p < 0.0001<br>No significant differences between<br>groups in:<br>- revision surgery (p = 0.10)<br>- duration of MV (p = 0.72)<br>- ICU LOS (p= 0.77)<br>- ICU mortality (p= 0.43) | 4                 |

ICU = intensive care unit, LOS = length of stay, PP = prone position, pts = patients, SP = supine position

### Prone position of ARDS patients after abdominal surgery was not associated with an increased rate of surgical complication.

| Reference,<br>Study Type                                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drop<br>-out<br>Rate | Intervention                                  | Control                                     | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 343<br>Nydahl 2017<br>(PMID:<br>28231030<br>DOI:<br>10.1513/Ann<br>alsATS.20161<br>1-843SR)<br><b>Specification</b><br>of study:<br>Systematic<br>review and<br>meta-analysis | 48 publication (6 RCTs, 2 non-<br>RTCs, 5 before/after studies,<br>22 prospective cohort studies,<br>2 1-day point prevalence<br>studies, 7546 total pts) <sup>1-48</sup><br><b>Inclusion criteria:</b><br>- pts received mobilisation-<br>related interventions in ICU<br>- studies reported on safety<br>events<br><b>Exclusion criteria:</b><br>- the majority (>50%) of pts<br>were under 18 years old<br>- data on the incidence of<br>potential safety events could<br>not be calculated<br>- interventions did not involve<br>pts mobilisation<br>- sample size was less than 10<br>pts<br><b>Per Branch</b> |                      | Mobilisation/<br>Rehabilitation<br>in the ICU | No<br>mobilisa<br>tion<br>while<br>ICU stay | Primary<br>endpoint:<br>-safety<br>incidents<br>defined as:<br>1)<br>hemodynamic<br>changes (high<br>HR > 125–140<br>beats/min,<br>low MAP <<br>55–70 mm Hg,<br>low systolic BP<br>< 80–90 mm<br>Hg, high MAP<br>> 100–140<br>mm Hg, and<br>high systolic<br>BP > 180–200<br>mm Hg)<br>2)<br>desaturation<br>(using the<br>categories,<br>< 80, <85, <88,<br>and <90%) | <ul> <li>Primary endpoint: <ul> <li>safety: total 22351 mobilisation/rehabilitation sessions with 583 reported potential safety events, for a cumulative incidence of 2.6%.</li> <li>most frequently reported types of event: oxygen desaturation and hemodynamic changes, each reported in 33 studies (69% of studies), and removal or dysfunction of intravascular catheter in 31 studies (65% of eligible studies)</li> </ul> </li> <li>Meta-analysis: <ul> <li>high HR, 6 publications, 319 pts and 1,784 mobilisation/rehabilitation sessions, pooled incidence of 1.9 episodes (95% CI = 0.3–15) per 1,000 mobilisation/rehabilitation sessions (I2 = 0%).</li> <li>low BP, 11 publications, 2,793 pts and 8,757 mobilisation/ rehabilitation sessions, pooled incidence of 4.3 episodes (95% CI = 1.6–12.1) per 1,000 mobilisation/rehabilitation sessions (I2 = 67%)</li> <li>low systolic BP, 9 publications, 329 pts and 2,808 mobilisation/ rehabilitation sessions (I2 = 0%).</li> <li>high BP, 1,931 pts and 6,517 mobilisation/ rehabilitation sessions, pooled incidence of 1.8 episodes (95% CI = 0.8–3.9) per 1,000 mobilisation/ rehabilitation sessions (I2 = 0%).</li> <li>high BP, 1,931 pts and 6,517 mobilisation/ rehabilitation sessions, pooled incidence of 3.9 episodes (95% CI = 1.0–14.8) per 1,000 mobilisation/ rehabilitation sessions (I2 = 31%)</li> <li>high systolic BP, 6 studies, 317 pts and 2,896 mobilisation/rehabilitation sessions, pooled incidence of 0.3 episodes (95% CI = 0.1–1.2) per 1,000 mobilisation/rehabilitation sessions, total pooled incidence of 1.9 episodes (95% CI = 0.9–4.3) per 1,000 mobilisation/rehabilitation sessions (I2 = 6%)</li> <li>Oxygen desaturation, 24 publications, 3,051 pts and 12,798 mobilisation/ rehabilitation sessions (I2 = 6%)</li> <li>oxygen desaturation, 24 publications, 3,051 pts and 12,798 mobilisation/ rehabilitation sessions (I2 = 6%)</li> <li>no significant difference in subgroup analysis results comparing prospective and retrospective studies (P = 0.719), nor in comparing intervention and control groups</li></ul></li></ul> | 1                 |

BP = blood pressure, CI = confidence interval, HR = heart rate, ICU = intensive care unit, MAP = mean arterial pressure, pts = patients, RCT = randomized controlled trial

Patient mobilisation and physical rehabilitation in the ICU appears safe, with a low incidence of potential safety events, and only rare events having any consequences for patient management.

#### References

1 Stiller K, Phillips A, Lambert P. The safety of mobilisation and its effects on haemodynamics and respiratory status of intensive care patients. Physiother Theory Pract 2004;20:175–185. 2 Zafiropoulos B, Alison JA, McCarren B. Physiological responses to the early mobilisation of the intubated, ventilated abdominal surgery patient. Aust J Physiother 2004;50:95–100 3 Bailey P, Thomsen GE, Spuhler VJ, Blair R, Jewkes J, Bezdjian L, Veale K, Rodriquez L, Hopkins RO. Early activity is feasible and safe in respiratory failure patients. Crit Care Med 2007;35:139– 145.

4 Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 2008;36:2238–2243.

5 Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373:1874–1882.

6 Skinner EH, Berney S, Warrillow S, Denehy L. Development of a physical function outcome measure (PFIT) and a pilot exercise training protocol for use in intensive care. Crit Care Resusc 2009; 11:110–115.

7 Bourdin G, Barbier J, Burle JF, Durante G, Passant S, Vincent B, Badet M, Bayle F, Richard JC, Gu 'erin C. The feasibility of early physical activity in intensive care unit patients: a prospective observational one-center study. Respir Care 2010;55:400–407.

8 Hildreth AN, Enniss T, Martin RS, Miller PR, Mitten-Long D, Gasaway J, Ebert F, Butcher W, Browder K, Chang MC, et al. Surgical intensive care unit mobility is increased after institution of a computerized mobility order set and intensive care unit mobility protocol: a prospective cohort analysis. Am Surg 2010;76:818–822.

9 Needham DM, Korupolu R, Zanni JM, Pradhan P, Colantuoni E, Palmer JB, Brower RG, Fan E. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil 2010;91:536–542.

10 Pohlman MC, Schweickert WD, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, et al. Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit Care Med 2010; 38:2089–2094.

11 Zanni JM, Korupolu R, Fan E, Pradhan P, Janjua K, Palmer JB, Brower RG, Needham DM. Rehabilitation therapy and outcomes in acute respiratory failure: an observational pilot project. J Crit Care 2010;25:254–262.

12 Garzon-Serrano J, Ryan C, Waak K, Hirschberg R, Tully S, Bittner EA, Chipman DW, Schmidt U, Kasotakis G, Benjamin J, et al. Early mobilisation in critically ill patients: patients' mobilisation level depends on health care provider's profession. PM R 2011;3:307–313.

13 Nordon-Craft A, Schenkman M, Ridgeway K, Benson A, Moss M. Physical therapy management and patient outcomes following ICU-acquired weakness: a case series. J Neurol Phys Ther 2011;35:133–140.

14 Perme C, Lettvin C, Throckmorton TA, Mitchell K, Masud F. Early mobility and walking for patients with femoral arterial catheters in intensive care unit: a case series. J Acute Care Phys Ther 2011; 2:32–36.

15 Berney S, Haines K, Skinner EH, Denehy L. Safety and feasibility of an exercise prescription approach to rehabilitation across the continuum of care for survivors of critical illness. Phys Ther 2012; 92:1524–1535.

16 Genc A, Ozyurek S, Koca U, Gunerli A. Respiratory and hemodynamic responses to mobilisation of critically ill obese patients. Cardiopulm Phys Ther J 2012;23:14–18.

17 Kho ME, Damluji A, Zanni JM, Needham DM. Feasibility and observed safety of interactive video games for physical rehabilitation in the intensive care unit: a case series. J Crit Care 2012;27:219.e1–e6.

18 Leditschke IA, Green M, Irvine J, Bissett B, Mitchell IA. What are the barriers to mobilizing intensive care patients? Cardiopulm Phys Ther J 2012;23:26–29.

19 Winkelman C, Johnson KD, Hejal R, Gordon NH, Rowbottom J, Daly J, Peereboom K, Levine AD. Examining the positive effects of exercise in intubated adults in ICU: a prospective repeated measures clinical study. Intensive Crit Care Nurs 2012;28:307–318.

20 Berney SC, Harrold M, Webb SA, Seppelt I, Patman S, Thomas PJ, Denehy L. Intensive care unit mobility practices in Australia and New Zealand: a point prevalence study. Crit Care Resusc 2013;15: 260–265.

21 Clark DE, Lowman JD, Griffin RL, Matthews HM, Reiff DA. Effectiveness of an early mobilisation protocol in a trauma and burns intensive care unit: a retrospective cohort study. Phys Ther 2013;93: 186–196.

22 Damluji A, Zanni JM, Mantheiy E, Colantuoni E, Kho ME, Needham DM. Safety and feasibility of femoral catheters during physical rehabilitation in the intensive care unit. J Crit Care 2013;28:535.e9–e15.

23 Davis J, Crawford K, Wierman H, Osgood W, Cavanaugh J, Smith KA, Mette S, Orff S. Mobilisation of ventilated older adults. J Geriatr Phys Ther 2013;36:162–168.

24 Hanekom S, Louw QA, Coetzee AR. Implementation of a protocol facilitates evidence-based physiotherapy practice in intensive care units. Physiotherapy 2013;99:139–145.

25 Medrinal C, Lebret M, Bousta M, Nassaj A, Colas G. Effects of sitting at the bedside of the patient with mechanical ventilation [article in French]. Kinesither Rev 2013;13:43–49.

26 Olkowski BF, Devine MA, Slotnick LE, Veznedaroglu E, Liebman KM, Arcaro ML, Binning MJ. Safety and feasibility of an early mobilisation program for patients with aneurysmal subarachnoid hemorrhage. Phys Ther 2013;93:208–215.

27 Perme C, Nalty T, Winkelman C, Kenji Nawa R, Masud F. Safety and efficacy of mobility interventions in patients with femoral catheters in the ICU: a prospective observational study. Cardiopulm Phys Ther J 2013;24:12–17.

28 Abrams D, Javidfar J, Farrand E, Mongero LB, Agerstrand CL, Ryan P, Zemmel D, Galuskin K, Morrone TM, Boerem P, et al. Early mobilisation of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care 2014;18:R38.

29 Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, Graves AJ, Shintani A, Murphy E, Work B, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med 2014;40:370–379.

30 Dinglas VD, Parker AM, Reddy DR, Colantuoni E, Zanni JM, Turnbull AE, Nelliot A, Ciesla N, Needham DM. A quality improvement project sustainably decreased time to onset of active physical therapy intervention in patients with acute lung injury. Ann Am Thorac Soc 2014;11:1230–1238.

31 Nydahl P, Ruhl AP, Bartoszek G, Dubb R, Filipovic S, Flohr HJ, Kaltwasser A, Mende H, Rothaug O, Schuchhardt D, et al. Early mobilisation of mechanically ventilated patients: a 1-day pointprevalence study in Germany. Crit Care Med 2014;42:1178–1186.

32 Roberts M, Johnson LA, Lalonde TL. Early mobility in the intensive care unit: standard equipment vs a mobility platform. Am J Crit Care 2014; 23:451–457.

33 Sricharoenchai T, Parker AM, Zanni JM, Nelliot A, Dinglas VD, Needham DM. Safety of physical therapy interventions in critically ill patients: a single-center prospective evaluation of 1110 intensive care unit admissions. J Crit Care 2014;29:395–400.

34 Wang YT, Haines TP, Ritchie P, Walker C, Ansell TA, Ryan DT, Lim PS, Vij S, Acs R, Fealy N, et al. Early mobilisation on continuous renal replacement therapy is safe and may improve filter life. Crit Care 2014;18:R161.

35 Dafoe S, Chapman MJ, Edwards S, Stiller K. Overcoming barriers to the mobilisation of patients in an intensive care unit. Anaesth Intensive Care 2015;43:719–727.

36 Fields C, Trotsky A, Fernandez N, Smith BA. Mobility and ambulation for patients with pulmonary artery catheters: a retrospective descriptive study. J Acute Care Phys Ther 2015;6:64–70. 37 Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015;41:865–874. 38 Lee H, Ko YJ, Suh GY, Yang JH, Park CM, Jeon K, Park YH, Chung CR. Safety profile and feasibility of early physical therapy and mobility for critically ill patients in the medical intensive care unit: beginning experiences in Korea. J Crit Care 2015;30:673–677.

39 Lima NP, Silva GM, Park M, Pires-Neto RC. Mobility therapy and central or peripheral catheter-related adverse events in an ICU in Brazil. J Bras Pneumol 2015;41:225–230. 40 Pires-Neto RC, Lima NP, Cardim GM, Park M, Denehy L. Early mobilisation practice in a single Brazilian intensive care unit. J Crit Care 2015;30:896–900.

41 Piva S, Dora G, Minelli C, Michelini M, Turla F, Mazza S, D'Ottavi P, Moreno-Duarte I, Sottini C, Eikermann M, et al. The Surgical Optimal Mobility Score predicts mortality and length of stay in an Italian population of medical, surgical, and neurologic intensive care unit patients. J Crit Care 2015;30:1251–1257.

42 Skinner EH, Haines KJ, Berney S, Warrillow S, Harrold M, Denehy L. Usual care physiotherapy during acute hospitalization in subjects admitted to the ICU: an observational cohort study. Respir Care 2015;60:1476–1485.

43 Hodgson C, Bellomo R, Berney S, Bailey M, Buhr H, Denehy L, Harrold M, Higgins A, Presneill J, Saxena M, et al.; TEAM Study Investigators. Early mobilisation and recovery in mechanically ventilated patients in the ICU: a bi-national, multi-centre, prospective cohort study. Crit Care 2015;19:81.

44 Lee H, Ko YJ, Jung J, Choi AJ, Suh GY, Chung CR. Monitoring of potential safety events and vital signs during active mobilisation of patients undergoing continuous renal replacement therapy in a medical intensive care unit. Blood Purif 2016;42:83–90.

45 McGarrigle L, Caunt J. Physical therapist–led ambulatory rehabilitation for patients receiving centrimag short-term ventricular assist device support: retrospective case series. Phys Ther 2016;96:1865–1873.

46 Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, Kriekels W, McNulty M, Fairclough DL, Schenkman M. A randomized trial of an intensive physical therapy program for patients with acute respiratory failure. Am J Respir Crit Care Med 2016;193:1101–1110.

47 Toonstra AL, Zanni JM, Sperati CJ, Nelliot A, Mantheiy E, Skinner EH, Needham DM. Feasibility and safety of physical therapy during continuous renal replacement therapy in the intensive care unit. Ann Am Thorac Soc 2016;13:699–704.

48 Umei N, Atagi K, Okuno H, Usuke S, Otsuka Y, Ujiro A, Shimaoka H. Impact of mobilisation therapy on the haemodynamic and respiratory status of elderly intubated patients in an intensive care unit: a retrospective analysis. Intensive Crit Care Nurs 2016;35:16–21.

| Reference,<br>Study Type                                                                                                                                                                 |                                                                                                                                            | and Controls<br>t #, Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                    | Control                                             | Optimal Population                                                                                                          | Primary Results                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------|---------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 344 Moyer<br>2017<br>(PMID:<br>28230563<br>DOI:<br>10.1097/JNN.00<br>000000000025<br>8)<br>Specification of<br>study:<br>prospective<br>cohort study<br>with historical<br>control group | Exclusion crite<br>- intolerance to<br>clamping<br>- sustained into<br>hypertension<br>- fluctuating ro-<br>examination co<br>mobilization | co 30min of drain<br>cracranial<br>(ICP > 20   |                      | Early mobilization<br>algorithm | historical control<br>group of patients<br>with SAH | Primary endpoints:<br>- time to first<br>mobilization<br>- ICU and hospital LOS<br>Secondary outcomes:<br>- ventilator days | Significant differences between<br>groups in:<br>- decreased the mean length of time<br>to the first mobilization from 18.7 to<br>6.5 days (p<0.0001)<br>No significant differences between<br>groups in:<br>- ICU and hospital LOS n.s.<br>- ventilator days n.s. | 4                 |

EVD = external ventricular drain, ICU = intensive care unit, LOS = length of stay, n.s. = not significant, pts = patients, SAH = subarachnoid hemorrhage

## Implementation of an early mobilization algorithm for patients with EVD seems to decrease the mean length of time to first mobilization.

| Reference,<br>Study Type                                                                                                                   | (Participant #                                                             | nd Controls<br>#, Characteristics)<br>Total         | Drop-<br>out<br>Rate | Intervention                                                                                                        | Control                                                                                                                                                       | Optimal<br>Population                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 345<br>Yamashita<br>2017<br>(PMID:<br>28210060<br>DOI:<br>10.1589/jpts.<br>29.138)<br>Specification<br>of study:<br>retrospective<br>study | of daily wake-<br>- usual care PT<br>introduction w<br>mobilization<br>Per | ore introduction<br>up attempts<br>as well as after | -                    | <b>Early mobilization:</b><br>- 7d/week in<br>cooperation with<br>PT/nursing<br>-activity according to<br>tolerance | Deep sedation<br>and usual care<br>PT:<br>- activity level<br>of the pts<br>according to the<br>doctor's<br>instructions and<br>trained only by<br>therapists | Primary outcome<br>A-time to first<br>mobilization<br>-duration of<br>sedation<br>- analgesia,<br>-intubation<br>- MV<br>- LOS<br>no sample size<br>calculation<br>(retrospective<br>study) | Significant differences between groups<br>in:<br>- duration of sedation (7 (5-8) vs. 5 (4-7))<br>days, $p < 0.05$<br>-analgesia (5 (4-6.5) vs. 4 (3-6) days)<br>- duration of ventilation (7 (6-9) vs. 5 (5-<br>7) days), $p < 0.05$<br>-duration of intubation (7 (6-9) vs. 5 (4-<br>7) days), $p < 0.05$<br>- time to first mobilization out of bed (10<br>(8-15) vs. 7 (6-11) days),<br>-time to stand (11 (8.5-18.5) vs. 9 (7-13)<br>days), $p < 0.05$<br>- walking (13 (9.5-20.5) vs. 11 (7-16)<br>days), $p < 0.05$<br>-LOS (11 (8.5-18.5) vs. 9 (7-13) days) | 4 → 5             |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, PT = physical therapy, pts = patients

These results suggest that the new sedation and cooperative rehabilitation methods for critically ill patients were effective in the early stage of treatment and shortened the duration of stay in the ward.

| Reference,<br>Study Type                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-out<br>Rate                                                                                                                                                                                                                                                  | Interventio<br>n                                                                                                                                                                                                      | Control                                                                                                                                                                                                          | Optimal Population                                                                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade                         |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| 347<br>Dall'Acqua<br>2017<br>(PMID:<br>28101565<br>DOI:<br>10.2340/16501<br>977-2168)<br>Specification of<br>study:<br>RCT | 38 pts         Inclusion criteria:         - both sexes         - ≥ 18 years         - hospitalized for no longer than 15 days         - received ≥ 24 h of IMV         Exclusion criteria:         - neuromuscular diseases associated with motor deficits.         - extubated within 48 h after inclusion         - complications during the protocol         - prolonged weaning (failed 3 spontaneous breathing trials)         - BMI > 35 kg/m²         - pacemaker         - haemodynamic instability         (noradrenaline > 0.5 µg/kg/min for a mean arterial pressure > 60 mmHg)         - history of epilepsy         - postoperatively with abdominal or chest incision         neuromuscular blockers for 2 or more consecutive days         Per Branch         19       19 | 13 (34,2%)<br>Intervention:<br>n=8 (clinical<br>decompensatio<br>n (n=3),<br>surgical wound<br>abdominal<br>(n=1), comfort<br>measures<br>(n=1),<br>extubated (n =<br>1))<br>Control: n=5<br>(clinical<br>decompensatio<br>n (n=3); EVA<br>(n=1); death<br>(n=1)) | NMES:<br>- chest and<br>abdominal<br>muscles<br>- for 30<br>minutes up<br>to day 7 or<br>extubation<br>Convention<br>al physical<br>therapy:<br>- twice daily<br>for 30<br>minutes<br>until day 7<br>or<br>extubation | Sham NMES:<br>- chest and<br>abdominal<br>muscles<br>- for 30 minutes<br>up to day 7 or<br>extubation<br>Conventional<br>physical<br>therapy:<br>- twice daily for<br>30 minutes until<br>day 7 or<br>extubation | Primary endpoint:<br>- difference in M. rectus<br>abdominis and chest<br>muscle thickness via<br>ultrasound between day 1<br>and 7 or extubation<br>Secondary outcomes:<br>- diaphragm muscle<br>thickness<br>- diaphragm motion<br>during inhalation and<br>exhalation<br>- ICU LOS<br>- duration of invasive MV<br>- successful extubation<br>- mortality | Primary endpoint:<br>- muscle thickness M. rectus abdominis<br>MD (95%Cl): -0.07 (-0.100.04), $p > 0.001$<br>- muscle thickness chest, MD (95%Cl): -0.06 (-<br>0.100.02), $p > 0.001$<br>Secondary outcomes:<br>- diaphragm muscle thickness: MD (95%Cl): -<br>0.02 (-0.05 - 0.03), $p = 1.000$<br>- inspiratory diaphragmatic motion, MD<br>(95%Cl): 0.05 (-0.23 - 0.33), $p = 1.000$<br>- expiratory diaphragmatic motion, MD<br>(95%Cl): -0.04 (-0.28 - 0.20), $p = 1.000$<br>- LOS ICU (days), mean (SD): control 16 (9)<br>vs intervention 10 (4), $p = 0.045$<br>- duration of IMV (days), mean (SD): control 8<br>(3) vs intervention 7 (2), $p = 0.607$<br>- reintubation rate, $n$ (%): control 5 (38) vs<br>intervention 3 (25), $p = 1.000$ | 2 → 4<br>(bias risk<br>and pilot<br>size) |

BMI = body mass index, EVA = encephalic vascular accident, IMV = invasive mechanical ventilation, LOS = length of stay, MD = mean difference, NMES = neuromuscular electrical stimulation, pts = patients

#### Neuromuscular electrical stimulation reduced loss of chest and abdominal wall muscle thickness.

| Reference,<br>Study<br>Type                                                                                                                                                      |                                                                                                                                                                                                                                                          | es and Controls<br>ant #, Characteristics)<br>Total                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                            | Control     | Optimal<br>Population                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 348 van<br>Willigen<br>2016<br>(PMID:<br>28090326<br>DOI:<br>10.1136/b<br>mjquality.<br>u211734.<br>w4726)<br>Specificati<br>on of<br>study:<br>Quality<br>improvem<br>ent study | Inclusion criteria:<br>- ventilated < 72 hou<br>- expected to remain<br>- cognitively intact and<br>prior to admission<br>Exclusion criteria:<br>- age < 18<br>- rapidly deterioration<br>- raised intracranial p<br>- post cardiac arrest<br>- BMI > 35 | n ventilated for ≥ 24 hours<br>nd functionally independent<br>ng neuromuscular disease, |                      | Quality improvement<br>project to deliver early<br>mobilization:<br>- twice-daily 30-minute<br>sessions of rehabilitation<br>therapy<br>- addition to standard<br>physiotherapy sessions for<br>≥ 5days per week<br>- mobility therapy was<br>started within 72 hours of<br>the pts being intubated and<br>ventilated, and was<br>continued until discharge<br>from ICU | Pre-QI time | Derived<br>outcomes<br>- first out of<br>bed<br>mobilization<br>- ICU and<br>hospital LOS | <ul> <li>Derived outcomes</li> <li>pts mobilized out of bed</li> <li>8.3 days earlier</li> <li>reduction in mean ICU LOS</li> <li>by 6.6 days after QI</li> <li>implementation</li> <li>mean number of therapy</li> <li>sessions received by ICU</li> <li>survivors doubled</li> <li>hospital LOS decreased, by</li> <li>11.9 days following</li> <li>improvement cycle 1 and by</li> <li>a further 3.9 days following</li> <li>improvement cycle 2</li> </ul> | 4                 |

BMI = body-mass index, ICU = intensive care unit, LOS = length of stay, pts = patients, QI = quality improvement

# An implementation of a quality improvement (QI) project to deliver early mobilization seems to have a benefit in relation to ICU and hospital LOS and patients are mobilized out of bed earlier.

| Reference,<br>Study Type                                                                                                                                     | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                              | Control | Optimal<br>Population                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 349<br>Wollersheim<br>2017<br>(PMID:<br>28065165<br>DOI:<br>10.1186/s13054<br>-016-1576-y)<br>Specification of<br>study:<br>Pilot<br>interventional<br>study | 19 pts. from mixed ICU and a neurosurgical<br>ICU at university hospital<br>Inclusion criteria:<br>- critically ill patients with mechanical<br>ventilation >48hours<br>- ICU stay at least 7 days<br>Exclusion criteria:<br>- lack of informed consent<br>- age <18<br>- preexisting neuromuscular disease<br>- implanted pacemaker or defibrillator<br>- pregnancy<br>- acute venous thrombosis<br>- unhealed fractures or recently attached<br>implants in body region to be stimulated<br>- recent eye surgery<br>- acute herniated discs or recently history of<br>herniated disc<br>- participant in another study<br>- terminal cases | none                 | Passive PT<br>followed by a<br>single session of<br>WBV in supine<br>position<br>(Promedi,<br>Vibrosphere/Galil<br>eo, 26 Hz, 9 times<br>for 1 minute or<br>home-ICU, 24 Hz,<br>3 times for 3<br>minutes) | none    | Outcomes:<br>- safety and<br>tolerability of WBV<br>- heart rate and<br>blood pressure<br>- hemodynamic<br>parameters via<br>PiCCO <sub>2</sub> (CO, SV, SV<br>range, CPO)<br>- indirect<br>calorimetry<br>- BGA (pO <sub>2</sub> , pCO <sub>2</sub> ,<br>pH, sodium,<br>potassium, blood<br>glucose) | Results:<br>- diastolic BP elevated during PT<br>compared with baseline (p=0.014)<br>- HR, MAP, systolic BP and SpO <sub>2</sub> did<br>not differ from baseline, PT, WBV,<br>and resting periods<br>- CPO: significant decrease<br>(p=0.047) during WBV, no changes<br>in CO or BP<br>- SV range: variability increased<br>during PT in comparison with<br>baseline (p < 0.001)<br>- increased EE (p=0.0007) during<br>WBV compared with baseline:<br>oxygen uptake levels increased<br>(p=0.012), carbon dioxide<br>production enhanced (p<0.001)<br>- PT increased elimination of<br>carbon dioxide (p=0.041)<br>- PT (p<0.01) and WBV (p<0.001)<br>increased respiratory rate<br>- RQ increased during PT (p=0.003)<br>- BGA: WBV was associated with<br>increase of potassium compared<br>with baseline (p=0.048) | 3 → 4             |

Pts. = Patients, ICU = intensive care unit, WBV = whole-body vibration, PT = physiotherapy, PiCCO = Pulse Contour Cardiac Output, BGA = blood gas analyses, ICP = intracranial pressure, CO = cardiac output, SV = stroke volume, CPO = cardiac power output, IGF-1 = insulin-like growth factor 1, pH = potential hydrogen, BP = blood pressure, HR = heart rate, MAP = mean arterial pressure, SpO<sub>2</sub> = peripheral capillary oxygen saturation, EE = energy expenditure, RQ = respiratory quotient

Whole-body vibration is safely applicable even to critically ill patients in severe condition.

| Reference,<br>Study Type                                                                                                                              |                                                                                                   | s and Controls<br>It #, Characteristics)<br>Total              | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                     | Control                  | Optimal Population                                                              | Primary Results                                                                                                                                                                                                           | Evidence<br>Grade                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 351 Lai<br>2016<br>(PMID:<br>27979608<br>DOI:<br>10.1016/j.ap<br>mr.2016.11.0<br>07)<br>Specification<br>of study:<br>quality<br>improvement<br>study | 153 adults pts w<br>90 phase 2<br>(intervention<br>period),<br>Phase 3<br>(maintenance<br>period) | vith MV<br>Per Branch<br>63 phase 1<br>(preintervention phase) |                      | <b>Early mobilization</b><br><b>program:</b><br>- within 72 hours of MV<br>- twice daily, 5d/wk<br>during the 30-minute<br>family visiting time, and, if<br>possible, cooperating with<br>family | preintervention<br>phase | <b>Clinical outcomes:</b><br>- MV duration (d)<br>- ICU and hospital<br>LOS (d) | Significant differences<br>between groups in:<br>- MV duration (d) 4.7+-2.3;<br>7.5+-7.0; p<0.001<br>- ICU LOS 6.9+-3.5; 9.9+-<br>7.6; p=0.001<br>No significant differences<br>between groups in:<br>- hospital LOS n.s. | 4<br>(downgra<br>ded due<br>to<br>historic<br>control) |

d = days, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, n.s. = not significant, pts = patients, wk = week

### An early mobilization program seems to have a benefit in relation to a shorter MV duration and ICU LOS.

| 447 pts. January through August 2012         Inclusion criteria:         - ICU pts. 18 years or older         352         Smith 2016         - ICU pts who were delirium-positive on admission                                                                                                                                                                                                                                                                                 | Reference,<br>Study Type                                                                                                          | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                               | haracteristics)                                                                                                                                   | Drop-out<br>Rate | Intervention                                                                                                                                                  | Control | Optimal Population                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Image: Primite 27963224       - were transferred to a lower level of care or laterally transferred from the intervention group to the control group       - consisting of:       1. Sedation       - consisting of:       1. Sedation       - incidence of delirium       - increases in age, length of stay in the ICU, and use of mechanical         Specification of study:       - mere transferred form the intervention a controlled interventional cohort study       - mere transferred form the intervention group       - consisting of:       1. Sedation       - incidence of delirium       - increases in age, length of stay in the ICU, and use of mechanical         Note:       - mere transferred to a lower level of care or laterally transferred from the intervention group       - consisting of:       1. Sedation       - incidence of delirium       - increases in age, length of stay in the ICU, and use of mechanical         Specification of study:       - mere transferred to a lower level of care or laterally transferred from the intervention and control group       - secondary outcomes:       - increases in age, length of stay in the ICU, and use of mechanical         Note:       - mere transferred form the intervention and control group       - mere transferred form the intervention and control group       - secondary outcomes:       - increases in age, length of stay in the ICU, and use of mechanical         Note:       - mere transferred form the intervention and control group       - mere transferred form the intervention and control group       - mere transferred form the intervention and control group | Smith 2016<br>(PMID: 27965224<br>DOI:<br>10.4037/ajcc2017<br>374)<br>Specification of<br>study:<br>a controlled<br>interventional | 447 pts. January throug<br>Inclusion criteria:<br>- ICU pts. 18 years or ol<br>Exclusion criteria:<br>- ICU pts who were deli<br>admission<br>- ICU stay for 4 months<br>- were transferred to a<br>laterally transferred fro<br>group to the control gro<br>Per Br | gh August 2012<br>der<br>rium-positive on<br>or longer<br>lower level of care or<br>om the intervention<br>oup<br><b>anch</b><br>n = 298 (control |                  | -implemented<br>by nurses<br>- consisting of:<br>1. Sedation<br>cessation<br>2. Pain control<br>3. Sensory<br>stimulation<br>4. Early<br>mobility<br>5. Sleep |         | <ul> <li>incidence of delirium</li> <li>Secondary outcomes:</li> <li>risk factors associated</li> </ul> | <ul> <li>significant reductions (78%) in the relative risk for delirium in intervention group (odds ratio, 0.22; 95% CI, 0.08-0.56; <i>P</i> = .001)</li> <li>Secondary outcomes: <ul> <li>increases in age, length of stay in the ICU, and use of mechanical ventilation and restraints were associated with significant increases in the relative risk of delirium (all p &lt;.001)</li> <li>-pts' race, number of comorbid conditions, and sex were not</li> </ul> </li> </ul> | 4                 |

CI = confidence interval, DPB = delirium prevention bundle, ICU = intensive care unit, pts = patients

### The delirium prevention bundle was effective in reducing the incidence of delirium in critically ill medical-surgical patients

| Reference,<br>Study Type                                                                                                  | (Participant #,                                                                                                                                                                                    | nd Controls<br>, Characteristics)<br>otal                                      | Drop-<br>out<br>Rate | Intervention    | Control  | Optimal Population                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|-----------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 355 Munshi<br>2017<br>(PMID:<br>27898220<br>DOI:<br>10.1513/Ann<br>alsATS.20160<br>6-484OC)<br>Specification<br>of study: | 107 pts with E0<br>ICU-ECMO coh<br>2010 - 2015 -><br>ARDS<br>Inclusion criter<br>- veno-venous<br>Exclusion crite<br>- ECMO as a br<br>transplant<br>- post-transpla<br>- ECMO for isol<br>failure | ort between<br>61 (57%) with<br>ria:<br>ECMO<br>ria<br>idge to lung<br>nt ECMO |                      | PT/Mobilisation | Bed rest | No sample size<br>calculation<br>(retrospective study)<br><b>Primary outcome</b><br>- association between<br>ICU PT and ICU<br>mortality<br><b>Secondary outcome</b> :<br>- factors associated<br>with a higher IMS | Primary outcome:         - ICU- and in-hospital mortality: 22% who         underwent ICU PT compared with 64% who did not         (p = 0.006)         Significant differences in ICU-mortality for:         - ICU-physiotherapy (OR, 0.19; 95% CI, 0.04-0.98)         - APACHE II score (OR, 1.13; 95% CI, 1.01-1.26)         - sex (OR, 9.4;95% CI, 1.71 -41.7)         No significant differences between groups in:         - APACHE II score (p = 0.63)         - pre ECMO PF ratio (p = 0.30) | 4                 |
| retrospective<br>study                                                                                                    | Per Branch                                                                                                                                                                                         |                                                                                |                      |                 |          | - $PaO_2$ on Day 1 post-ECMO (p = 0.65)                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                                                                                                                           | 50                                                                                                                                                                                                 | 11                                                                             |                      |                 |          |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |

ARDS = acute respiratory distress syndrome, APACHE II = acute physiology and chronic health evaluation II, ECMO = extracorporal membranous oxygenation, ICU= intensive care unit, IMS = ICU mobility scale, PF = PaO<sub>2</sub>/FiO<sub>2</sub> ratio, PT = physical therapy, pts = patients

ICU physiotherapy while on ECMO was significantly associated with reduced ICU mortality.

| Reference,<br>Study<br>Type                                                                                                                                                    | (Partic<br>Charact                                                                                                                             | d Controls<br>ipant #,<br>:eristics)<br>ıtal                             | Drop<br>-out<br>Rate | Intervention                 | Control    | Optimal Population                                                                                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidenc<br>e Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 358<br>Tipping<br>2017<br>(PMID:<br>27864615<br>DOI:10.100<br>7/s00134-<br>016-4612-<br>0)<br><b>Specificati</b><br>of study:<br>systematic<br>review and<br>meta-<br>analysis | 14 publicatio<br>pilot RCT, 2 c<br>observationa<br>included 175<br>Inclusion crit<br>- adult patier<br>years) admitt<br>ICU for great<br>Per B | control<br>Il study)<br>3 pts<br>t <b>eria</b><br>hts (>16<br>ted to the |                      | Active early<br>mobilisation | Usual care | Primary endpoint:<br>- hospital mortality<br>Secondary outcomes:<br>- 6 and 12-month mortality<br>- days alive and out of hospital at<br>180 days<br>- functional status<br>- mobility<br>- muscle strength<br>- quality of life and mood state<br>at ICU/hospital discharge and 6- 12<br>months follow-up<br>- LOS ICU<br>- duration of ventilation<br>- discharge destination | Significant differences between groups in:<br>- muscle strength at discharge from ICU (mean<br>8.62 points in MRC Sum Score, 95% Cl 1.39-15.86,<br>p = 0.02)<br>- likelihood of walking unassisted at discharge<br>from hospital (odds ratio 2.13, 95% Cl 1.19-3.83, p<br>= 0.01<br>- more days alive and days out of hospital at day<br>180 (MD 9.69, 95% Cl 1.7-17.66)<br>No consistent effects regarding:<br>functionality, quality of life, length of stay in ICU<br>without hospital or mechanical ventilation. | 1                  |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, MD = mean difference, MRC = medical research council scale, pts= patients, RCT = randomized controlled trial

Active early mobilization has no impact on mortality, but may have an impact on muscle strength. A subgroup of early (within 72 hours) mobilized patients spent more days alive and out of hospital at 180 days.

#### References

1. Hodgson CL, Bailey M, Bellomo R, Berney S, Buhr H, Denehy L, Gabbe B, Harrold M, Higgins A, Iwashyna TJ, Papworth R, Parke R, Patman S, Presneill J, Saxena M, Skinner E, Tipping C, Young P, Webb S, Trial of Early Activity and Mobilization Study Investigators (2016) A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in ICU. Crit Care Med. doi:10.1097/ CCM.00000000001643

2. Kayambu G, Boots R, Paratz J (2015) Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 41(5):865–874. doi:10.1007/ s00134-015-3763-8

 Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, Spears L, Miller M, Franczyk M, Deprizio D, Schmidt GA, Bowman A, Barr R, McCallister KE, Hall JB, Kress JP (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised control trial. Lancet 373:1874–1882
 Morris PE, Goad A, Thompson C, Taylor K, Harry B, Passmore L, Ross A, Anderson L, Baker S, Sanchez M, Penley L, Howard A, Dixon L, Leach S, Small R, Hite RD, Haponik E (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 36(8):2238–2243. doi:10.1097/CCM.0b013e318180b90e
 Schaller SJ, Anstey M, Blobner M, Edrich T, Grabitz SD, Gradwohl-Matis I, Heim M, Houle T, Kurth T, Latronico N, Lee J, Meyer MJ, Peponis T, Talmor D, Velmahos GC, Waak K, Walz JM, Zafonte R, Eikermann M, International Early SOMS-guided Mobilization Research Initiative (2016) Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 388(10052):1377–1388. doi:10.1016/ S0140-6736(16)31637-3

6. Dong Z, Yu B, Zhang Q, Pei H, Xing J, Fang W, Sun Y, Song Z (2016) Early rehabilitation therapy is beneficial for patients with prolonged mechanical ventilation after coronary artery bypass surgery. Int Heart J 57(2):241–246. doi:10.1536/ihj.15-316

7. Morris PE, Berry MJ, Files DC, Thompson JC, Hauser J, Flores L, Dhar S, Chmelo E, Lovato J, Case LD, Bakhru RN, Sarwal A, Parry SM, Campbell P, Mote A, Winkelman C, Hite RD, Nicklas B, Chatterjee A, Young MP (2016) Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315(24):2694–2702. doi:10.1001/jama.2016.7201

8. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, Graves AJ, Shintani A, Murphy E, Work B, Pun BT, Boehm L, Gill TM, Dittus RS, Jackson JC (2014) Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the activity and cognitive therapy in ICU (ACT-ICU) trial. Intensive Care Med 40(3):370–379. doi:10.1007/s00134-013-3136-0

9. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, Gough K, Hoorn SV, Morris ME, Berney S (2013) Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care 17(4):R156. doi:10.1186/cc12835

10. Dong ZH, Yu BX, Sun YB, Fang W, Li L (2014) Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med 5(1):48–52. doi:10.5847/wjem.j.1920-8642.2014.01.008

11. Hanekom SD, Louw Q, Coetzee A (2012) The way in which a physiotherapy service is structured can improve patient outcome from a surgical intensive care: a controlled clinical trial. Crit Care 16(6):R230. doi:10.1186/ cc11894

12. Moss M, Nordon-Craft A, Malone D, Van Pelt D, Frankel SK, Warner ML, Kriekels W, McNulty M, Fairclough DL, Schenkman M (2016) A randomized trial of an intensive physical therapy program for acute respiratory failure patients. Am J Respir Crit Care Med 193(10):1101–1110. doi:10.1164/rccm.201505-1039OC

13. Yosef-Brauner O, Adi N, Ben Shahar T, Yehezkel E, Carmeli E (2015) Effect of physical therapy on muscle strength, respiratory muscles and functional parameters in patients with intensive care unit-acquired weakness. Clin Respir J 9(1):1–6. doi:10.1111/crj.12091

14. Dantas CM, Silva PF, Siqueira FH, Pinto RM, Matias S, Maciel C, Oliveira MC, Albuquerque CG, Andrade FM, Ramos FF, Franca EE (2012) Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva 24(2):173–178

| Reference,<br>Study Type                                                                                                                                                     | (Participant #, | d Controls<br>Characteristics)<br>Ital                                                                                                             | Drop-out Rate                          | Intervention                                                                       | Control                                  | Optimal<br>Population                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 359 Bounds<br>2016<br>(PMID:<br>27802955<br>DOI:<br>10.4037/ajcc2<br>016209)<br><b>Specification</b><br>of study:<br>Retrospective<br>pre and after<br>case control<br>study | in death        | or older<br>nan 24 hours<br>ssure increased<br>rom first ICU<br>bitalization<br>without use of<br>res only as<br>he medical<br>al orders for life- | 2 pts<br>(incomplete<br>documentation) | Delirium<br>prevention<br>bundle:<br>- 6<br>components<br>- of which<br>one was EM | historical<br>control<br>(usual<br>care) | Primary<br>outcomes:<br>- prevalence<br>and duration of<br>delirium<br>- ICU and<br>hospital LOS<br>- days of<br>mechanical<br>ventilation<br>no sample size<br>calculation | Primary outcome:<br>Significant differences between groups in:<br>-days of delirium decreased (mean, SD): $3.8\pm2.9$<br>vs. $1.72\pm0.8$ (p<0.001)<br>-number of pts with delirium-free stays<br>increased (from 62% to 77%; p=0.01)<br>- decreases in delirium prevalence (from 69% to<br>31%; p< .001) and duration (from 2.96 to 0.56<br>days, p< .001) in ICU pts with mechanical<br>ventilation<br>-pts with mechanical ventilation who had<br>delirium-free stays increased (from 31% to 69%;<br>p < .001)<br>No significant differences between groups in:<br>- ICU LOS (p =0.47) or hospital LOS (p=0.15)<br>- total days of mechanical (p=0.78) | 4                 |

EM = early mobilization, GCS = Glasgow coma scale, LOS = length of stay, pts = patients

The implementation of an ABCDE bundle was associated with a decrease in prevalence and duration of delirium. *No detailed assessment was carried out further because higher-quality evidence is available on this topic.* 

| Reference,<br>Study Type                      | Cases and Controls<br>(Participant #,<br>Characteristics)                                                                                                         | Drop-<br>out<br>Rate | Intervention          | Control                              | Optimal Population                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                               | Total                                                                                                                                                             |                      |                       |                                      |                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| (PMID:<br>27762595<br>DOI:<br>10 1164/rccm 20 | 3 systematic reviews <sup>1-3</sup><br>Inclusion criteria:<br>- acutely hospitalized<br>adults mechanically<br>ventilated for more than<br>24 hours<br>Per Branch |                      | Early<br>mobilisation | SOC without<br>early<br>mobilisation | Outcomes:<br>- mortality<br>- ICU Length of stay<br>- ability to walk at ICU<br>and hospital discharge<br>- 6-minute-walk<br>distance at hospital<br>discharge<br>- duration of mechanical<br>ventilation<br>- ventilator-free days<br>- serious adverse events<br>- arrhythmias | No Significance stated:<br>-mortality (mean difference 3; 95% CI, -58 – 103)<br>- ICU Length of stay (mean difference –0.56; 95%<br>CI, -2.76 – 1.63)<br>-more likely to be able to walk at hospital discharge<br>(64.0 vs. 41.4%; RR, 1.56; 95% CI, 1.15–2.10)<br>- 6-minute-walk distance at hospital discharge<br>(Mean difference 53; 95% CI, -16.96 to 122.96)<br>-shorter duration of mechanical ventilation (mean<br>difference 2.7 fewer days; 95% CI, 1.19–4.21)<br>- ventilator-free days (mean difference 2.4; 95% CI,<br>-3.59 to 8.39)<br>- serious adverse events (6.5 events per 1,000 PT<br>treatment sessions)<br>- arrhythmias (1.9 events per 1,000 PT treatment | 1                 |

ICU = intensive care unit, PT = physio therapy, SOC = standard of care

## For acutely hospitalized adults who have been mechanically ventilated for more than 24 hours, protocolized rehabilitation directed toward early mobilization is suggested.

#### References

- 1. Stiller K. Physiotherapy in intensive care: an updated systematic review. Chest 2013;144:825–847.
- 2. Adler J, Malone D. Early mobilization in the intensive care unit: a systematic review. Cardiopulm Phys Ther J 2012;23:5–13.
- 3. Calvo-Ayala E, Khan BA, Farber MO, Ely EW, Boustani MA. Interventions to improve the physical function of ICU survivors: a systematic review. Chest 2013;144:1469–1480.

| Reference,<br>Study Type                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 361<br>Cho 2016<br>(PMID: 27790273<br>DOI:<br>10.4046/trd.2016.79.4.214) | Patients with acute<br>respiratory distress<br>syndrome<br>No data available | <ul> <li>Recommendations regarding mobilization: <ul> <li>Prone position can be applied to patients with moderate or above ARDS to reduce mortality if it is not contraindicated (grade 1B).</li> <li>Prone position should be applied when there is no improvement of oxygenation at early stage of mechanical ventilation.</li> <li>Prone position is recommended at least for 10 hours.</li> <li>Lung protective strategy should also be applied during prone positioning.</li> </ul> </li> </ul> | 1                 |
| Specification of study:<br>Clinical Practice Guideline                   | Definition of EM                                                             | Grading of quality level of evidence following GRADE recommendations (1 = high recommendation, 2 = weak recommendation; A to D = Quality level of evidence)                                                                                                                                                                                                                                                                                                                                          |                   |

ARDS = acute respiratory distress syndrome, FiO2 = fraction of inspired oxygen, GRADE = grading of recommendations, assessment, development and evaluations, HFOV = high frequency oscillatory ventilation, ICU = intensive care unit, iNO = inhaled nitric oxide, PaO2 = partial pressure of oxygen, PEEP = positive post-endexpiratory pressure, pts = patients

#### References

- 1. Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome: rationale, indications, and limits. Am J Respir Crit Care Med 2013;188:1286-93
- 2. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73).
- 3. Alsaghir AH, Martin CM. Effect of prone positioning in patients with acute respiratory distress syndrome: a meta-analysis. Crit Care Med 2008;36:603-9.
- 4. Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, Latini R, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010;36:585- 99.
- 5. Guerin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159-68.
- Lee JM, Bae W, Lee YJ, Cho YJ. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome: updated study-level meta-analysis of 11 randomized controlled trials. Crit Care Med 2014;42:1252-62.
- 7. Hu SL, He HL, Pan C, Liu AR, Liu SQ, Liu L, et al. The effect of prone positioning on mortality in patients with acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. Crit Care 2014;18:R109.
- 8. Sud S, Friedrich JO, Adhikari NK, Taccone P, Mancebo J, Polli F, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ 2014;186:E381-90.
- 9. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84.
- 10. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.
- 11. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 2008;34:1487-91.
- 12. Beitler JR, Shaefi S, Montesi SB, Devlin A, Loring SH, Talmor D, et al. Prone positioning reduces mortality from acute respiratory distress syndrome in the low tidal volume era: a meta-analysis. Intensive Care Med 2014;40:332-41.
- 13. Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med 2005;31:776-84.
- 14. Galiatsou E, Kostanti E, Svarna E, Kitsakos A, Koulouras V, Efremidis SC, et al. Prone position augments recruitment and prevents alveolar overinflation in acute lung injury. Am J Respir Crit Care Med 2006;174:187-97.

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention                                                                                                                         | Control                                    | Optimal<br>Population                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 363<br>Corcoran<br>2017<br>(PMID:<br>27346093<br>DOI:<br>10.1016/j.pm<br>rj.2016.06.01<br>5)<br>Specification<br>of study:<br>cohort study,<br>historical<br>control | 283 ICU pts         Inclusion criteria:         - admitted to the hospital on or after March 10, 2014         - discharged from the hospital on or before June 30, 2014         - admitted to the ICU within 3 days of hospital admission         - 18 years or older         - received PT or OT orders within 3 days of ICU admission         Exclusion criteria:         - transferred from outside facility         - independent at hospital admission in both mobility and activities of daily living         - non-ambulatory preadmission         - receiving end-of-life care         - transferred         out of the ICU         - refusing rehabilitation         therapy for more than 3 days         - requiring subsequent surgery within 1 week of initial surgery         secondary to complications         - progressive neurological, muscular, orthopedic or medical disorders         precluding mobility         - moderate-to-severe Alzheimer disease         - awaiting organ transplant         - complications of         pregnancy         - moderate-to-severe stroke postoperative         - post-left ventricular         assist device surgery         - extracorporeal membrane         oxygenation |                      | Initiation of<br>"Performance<br>Improvement<br>Project":<br>-including<br>physiotherapy<br>-1-2/day<br>-occupational<br>therapy 1/d | historical<br>control,<br>not<br>specified | Primary<br>outcomes:<br>- ICU and<br>hospital LOS<br>- intensity of<br>service<br>- medications<br>- pain<br>- discharge<br>disposition<br>- functional<br>mobility<br>- average cost<br>per day | Primary outcomes:<br>- rehabilitation therapy<br>services increased from<br>2012 to 2014 by<br>approximately<br>60mins/patient<br>- average ICU LOS<br>decreased by almost<br>20% from 4.6 days (pre-<br>PIP) to 3.7 days (PIP) (P<br>= 0.05)<br>- increased percentage<br>of PIP patients, (40.5%)<br>discharged home<br>without services<br>compared with (18.2%)<br>the pre-PIP phase (P<br><0.01)<br>- average cost per day in<br>the ICU and floor bed<br>decreased in the PIP<br>group, resulting in an<br>annualized net cost<br>savings of \$1.5 million | 4                 |
|                                                                                                                                                                      | 160 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                                                      |                                            |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |

LOS = length of stay, OT = occupational therapy, PIP = performance improvement project, PT = physical therapy, pts = patients

Benefits of this performance improvement program included reduced hospitalization LOS, decreased health care costs, and decreased need for post-acute care services.

| Reference,<br>Study Type                                                                                                                                                                     | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                       | Drop-out Rate                                                                                                                                    | Intervention                                 | Control                                           | Optimal Population                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 364<br>McWilliams<br>2017<br>(PMID:<br>27745753<br>DOI:<br>10.1016/j.aucc<br>.2016.09.001)<br><b>Specification</b><br>of study:<br>single center<br>prospective<br>before and<br>after study | 80 ICU pts         Inclusion criteria:         - ventilated for ≥ 5 days         - > 18 years         Exclusion criteria:         - contraindications to         mobilization         - severe neurological injury         or neuromuscular disease         or motor neuron disease         - MV >48h         - poor preadmission level of         mobility         - over 6ft 5in tall         - weight over 440lbs         40       40 | control n=9<br>-7 died<br>-2 transferred<br>to another<br>hospital<br>intervention<br>n=8<br>-7 died<br>-1 transferred<br>to another<br>hospital | Training and use<br>of "Sara<br>Combilizer®" | Standard<br>care without<br>"Sara<br>Combilizer®" | <ul> <li>Primary endpoint: <ul> <li>Time to 1<sup>st</sup> mobilization (MMS)</li> </ul> </li> <li>Secondary endpoints: <ul> <li>SOFA score at 1<sup>st</sup> mobilization</li> <li>ICU LOS</li> <li>Duration of ventilation</li> <li>MRC at ICU discharge</li> <li>MRC at hospital discharge</li> <li>Readmission to ICU</li> </ul> </li> </ul> | Primary outcome:<br>(control vs intervention)Significant differences between groups in:<br>- time to 1st mobilization (MMS of≥2): 13.6<br>(11.7–15.8) 10.6 (9.1–12.4) days (p=0.028)Secondary outcomes:<br>(control vs intervention)Significant differences between groups:<br>- SOFA 2.9 (0.5) vs 5.1 (2.4) (p=0.005)<br>- ICU LOSNo significant differences between<br>groups in:<br>- ventilation duration 11 (6, 15) vs 8 (6, 12)<br>(p=0.104)<br>- ICU LOS 17.1 (14.3–20.5) vs 15.3 (13.3–<br>17.5) (p=0.331)<br>- MRC at ICU discharge 51 (41, 54) [n = 16]<br>vs 47 (34, 56) [n = 22] (p=0.579)<br>- MRC at hospital discharge 58 (48, 60) [n =<br>19] vs 54 (50, 60) [n = 27] (p=0.855)<br>- readmission to ICU 3 (10%) vs 1 (3%)<br>(p=0.355) | 4                 |

ICU = intensive care unit, LOS = length of stay, MMS = Manchester mobility score, MV = mechanical ventilation

## The Sara Combilizer<sup>®</sup> may be a useful adjunct to an early mobility protocol within the ICU. *No detailed assessment was carried out further because higher-quality evidence is available on this topic.*

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                  | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                                                                         | Control             | Optimal<br>Population                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 365<br>Silva 2017<br>(PMID: 27732921<br>DOI:<br>10.1016/j.jcrc.20<br>16.09.012)<br><b>Specification of</b><br><b>study:</b><br>prospective<br>observational<br>study | 11 pts admitted at ICU (from<br>February to July 2013 in a tertiary<br>public hospital in Teresina, Brazil)<br>Inclusion criteria:<br>≥ 18 years<br>- APACHE II > 13<br>- MV from 24 to 48h<br>- prediction to stay in MV for ≥ 3<br>days<br>Exclusion criteria:<br>- MAP < 65 or > 110 mmHg<br>- lesions on the skin that prevent<br>the realization of protocol<br>- fractures in lower limbs,<br>vertebral fractures<br>- brain death<br>N=11 |                      | NMES:<br>- for 15 min (90<br>contractions)<br>daily for 3 days<br>- pulse width<br>equal to<br>chronaxie,<br>pulse frequency<br>of 100 Hz, ON<br>time 5 seconds,<br>OFF time of 5<br>seconds, no<br>rise time, and<br>decay<br>- on tibialis<br>anterior and<br>hamstrings,<br>quadriceps<br>femoris | No control<br>group | <b>Outcome</b> (not<br>exactly defined)<br>- creatine kinase<br>- lactate<br>- central venous<br>oxygen saturation<br>- burn injuries<br>- chronaxie<br>assessments | No significant differences:<br>- creatine Kinase (UI/L):<br>- baseline – mean (SD): 470 (270)<br>- 24 hours – mean (SD): 350 (245)<br>- 48 hours – mean (SD): 430 (245)<br>- 72 hours – mean (SD): 430 (280), p-value<br><0.99<br>- lactate on days 1, 2, and 3 pre to post<br>stimulation<br>- central venous oxygen saturation on days 1, 2,<br>and 3<br>- central venous oxygen saturation and serum<br>lactate: same pattern with no significant<br>variations (P = .23 and P = .8, respectively)<br>- no burn injuries on the skin<br>- comparisons of intermuscular groups over day<br>2 and day 3 did not demonstrate any significant<br>difference<br>Significant difference<br>- day 1: gluteus maximus=550 (±150) ms vs.<br>quadriceps=300 (±90) ms;<br>quadriceps= 300 (±90) ms vs. tibialis anterior=<br>540 (±160) ms (P = .005 and P = .005) | 4                 |

APACHE II = acute physiology and chronic health evaluation, ICU= intensive care unit, MAP = mean arterial pressure, ms = microseconds, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, pts = patients, SD = standard deviation

## No differences in laboratory parameters as surrogates for muscle damage could be observed after neuromuscular electrical stimulation. *No detailed assessment was carried out further because higher-quality evidence is available on this topic.*

| Reference,<br>Study Type                                                                                                                                          |    | l Controls<br>Characteristics) | Drop-<br>out | Intervention | Control  | Optimal Population                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------|--------------|--------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Study Type                                                                                                                                                        | То | tal                            | Rate         |              |          |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 369 Booth<br>2016<br>(PMID:<br>27618376<br>DOI:<br>10.1097/JTN.00<br>00000000002<br>34)<br>Specification of<br>study:<br>Observational<br>study,<br>retrospective |    | NTICU<br>achieved              |              | Mobilisation | Bed rest | Outcomes:<br>- venous<br>thromboembolism<br>(VTE)<br>- ICU and hospital LOS<br>- duration of<br>ventilation<br>- falls<br>- resp. failures<br>- pneumonia<br>No sample size<br>calculation (pre-<br>intervention cohort<br>analyzed<br>retrospectively) | Significant differences between groups in:<br>- incidence/VTE pre-intervention group (21%)<br>and post-intervention group (7.5%) (p =<br>0.0004).<br>No significant differences between groups in:<br>- hospital and ICU LOS<br>- average duration of ventilation<br>- mortality<br>- falls,<br>- respiratory failure<br>- pneumonia<br>no adverse events (extubation, hypoxia, falls) | 4                 |

ICU = intensive care unit, LOS = length of stay, MOVE = myocardial stability/oxygenation adequate/vasopressor(s) minimal/elevated intracranial pressure, NTICU = neurotrauma intensive care unit, RASS = Richmond agitation sedation score, VTE = venous thromboembolism

Progressive mobility protocols reduced the incidence of VTEW in the at-risk intensive care trauma patient population. *No detailed assessment was carried out further because higher-quality evidence is available on this topic.* 

| Reference,<br>Study Type                                                                                                                                              | Cases and Contro<br>(Participant #, Charact<br>Total                                                                                                                                                                                                                                                                              | teristics)                                        | Drop-<br>out<br>Rate | Intervention | Control         | Optimal<br>Population                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------|--------------|-----------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 370<br>Deng 2016<br>(PMID:<br>27595451<br>DOI:<br>10.1016/j.bur<br>ns.2016.07.02<br>9)<br><b>Specification</b><br>of study:<br>cohort study,<br>historical<br>control | 73 ICU pts (survivors)<br>Inclusion criteria:<br>- admitted to the BICU f<br>January 2011 to Decem<br>2013<br>- within 7 days of severa<br>- 16–65 years old<br>- TBSA burns equal to o<br>than 50%<br>- length of BICU stay was<br>same as the length of histay<br>- received rehabilitation<br>BICU<br>- survived<br>Per Branch | nber<br>re burns<br>or more<br>as not<br>nospital |                      | Active PT    | Passive PT only | Outcomes:<br>-ICU and hospital<br>LOS<br>- ROM<br>- ADL (assessed<br>with BI and FIM)<br>No sample size<br>calculation | Significant differences between groups in:<br>- ICU LOS 65 ± 38 h vs. 39 ± 16 h, p=0.002<br>- hospital LOS 184 ± 141 vs. 101 ± 42, p=0.010<br>- ROM: mobility training group better<br>performance in shoulder abduction (p=0.013),<br>wrist extension (p=0.001), hip flexion (p=0.003)<br>hip abduction (p=0.001), knee flexion (p=0.001),<br>ankle dorsiflexion (p<0.001) and plantar flexion<br>(p=0.012)<br>- cognitive subscale of the FIM in the mobility<br>training cohort lower (p<0.001)<br>Not significant differences between groups in:<br>- total Score of FIM (p=0.627)<br>- BI total score (p=0.552) | 4                 |

ADL = activities of daily living, BI = Barthel index, BICU = burn intensive care unit, FIM = functional independence measure, ICU = intensive care unit, LOS = length of stay, PT = physio therapy, pts = patients, ROM = range of motion, TBSA = total body surface area

# Mobility training in the BICU was shown to be feasible and effective in achieving better outcomes than passive training for severe burn patients.

| Reference,<br>Study Type                                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                         | Drop-out Rate                                                                    | Intervention                          | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| 372<br>Hickman 2016<br>(PMID:<br>27553652<br>DOI:<br>10.1186/s1361<br>3-016-0184-y)<br><b>Specification</b><br>of study:<br>cohort study | 171 ICU pts, 731 patient days<br>Inclusion criteria:<br>- pts either already hospitalized in or<br>newly admitted to ICU between<br>December 1, 2014, and January 31,<br>2015<br>Exclusion criteria for EM (3% of<br>patient days):<br>- active bleeding (n = 7),<br>- increased intracranial pressure with<br>major instability (n = 3)<br>- unstable pelvic fractures (n = 2)<br>- therapy withdrawal (n = 10)<br>Per Branch | 22 patient<br>days (3%)<br>fulfilled their<br>local exclusion<br>criteria for EM | Protocolized<br>early<br>mobilization |         | <ul> <li>Primary outcome: <ul> <li>feasibility of:</li> <li>mobilisation (passive, active-assisted, active, active-resisted)</li> <li>passive/active transfer in chair</li> <li>cycle ergometer in bed/chair (legs/arms)</li> <li>verticalization / standing / leg press / assisted walk</li> </ul> </li> <li>Secondary outcomes: <ul> <li>safety of early mobilisation</li> <li>early mobilization rate in MV according to hypoxemia severity - pts' perception</li> </ul> </li> <li>No sample size calculated</li> </ul> | <ul> <li>Primary outcomes: <ul> <li>intervention on 86 % of pts days,</li> <li>bed-to-chair transfer 74 %, at least.</li> <li>1 PT session 59 %.</li> <li>time to 1st PT 19 h (IQR = 15–23)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>(mild) adverse events 0.8%</li> <li>(reversible hypotension or arrhythmia)</li> <li>in MV pts bed-to-chair transfer was achieved on 68 % of patient-days and at least one early mobilisation activity on 80 %</li> <li>pts were comfortable with intervention</li> </ul> </li> </ul> | 3                 |

EM = early mobilisation, ICU= intensive care unit, MV = mechanical ventilation, PT = physical therapy, pts = patient

### Early mobilisation was feasible and safe.

| Reference,<br>Study Type                                                                                                                     | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                              | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                                                                          | Control          | Optimal<br>Population                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 374<br>Floyd 2016<br>(DOI:<br>10.1097/DCC.00<br>000000000019<br>7)<br>Specification of<br>study:<br>Retrospective<br>matched paired<br>study | Preintervention: 517 cardiac surgery pts and         65 thoracic surgery pts. From June 2014 –         November 2014         Postintervention: 392 cardiac surgery pts and         59 thoracic surgery pts. from December 1,         2014 to June 30, 2015         Inclusion criteria:         - ICU patients age >16 or <99 | none                 | PMP:<br>Level 1: active/passive<br>ROM in Bed<br>Level2: sitting on edge<br>of bed<br>Level 3: Stand up &<br>lateral side steps along<br>bed<br>Level 4: OOB to chair<br>via stand pivot transfer<br>Level 5: Ambulation<br><50 ft.<br>Level 6: Ambulation<br>100 ft<br>Level 7: Ambulation<br>>100ft | Standard<br>care | No sample<br>size<br>calculation<br><b>Outcomes:</b><br>- ICU<br>readmission<br>within 30 days<br>- ICU LOS<br>- hospital LOS<br>- pressure<br>ulcer<br>prevalence<br>- DVT or PE | Results:<br>- mean Hospital LOS: cardiac group:<br>preintervention 8.6 days, postintervention<br>group: 6.5 days (p=0.502)<br>thoracic group: preintervention 12.6 days,<br>postintervention group: 9.8 days<br>(p=0.779)<br>- mean ICU LOS<br>cardiac group:<br>2.6 days for pre- and postintervention<br>group thoracic group: preintervention: 6.3<br>days, postintervention: 4.6 days<br>- DVT: 2 preintervention group (cardiac +<br>thoracic), 0 postintervention group<br>(p=0.492)<br>- PE: 0 preintervention group, 1<br>postintervention group (cardiac+ thoracic)<br>(p=1.0)<br>- ICU readmission:<br>preintervention group: 3,<br>postintervention: 1, (p=0.301)<br>- Pressure ulcers: preintervention group:<br>1, postintervention group: 0, (p=0.313) | 4→5               |

Pts = Patients; ICU = intensive care Unit; ECMO = extracorporeal membrane oxygenation; VAD = ventricular assist device; PMP = progressive Mobility control; ROM = range of motion; OOB = out of bed; ft = feet; LOS = length of stay; DVT = deep vein thrombosis; PE = pulmonary embolism

Progressive mobility control had no significant influence on patient outcomes.

| Reference,<br>Study Type                                                                                                                 | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd Controls<br>, Characteristics)<br>otal                                                                                                             | Drop-out Rate                                | Intervention                                                                                                                                                                           | Control                                                             | Optimal Population                                                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade                     |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 375 Frazzitta<br>2016<br>(PMID:<br>27447483<br>DOI:<br>10.1371/jour<br>nal.pone.015<br>8030)<br><b>Specification</b><br>of study:<br>RCT | <ul> <li>40 pts with DOC</li> <li>within 24 hours fr</li> <li>Inclusion criteria:</li> <li>≥18 years</li> <li>GCS ≤8 for ≥24h</li> <li>diagnosis of VS of the CRSr on the the</li> <li>injury</li> <li>adequate pulmodexchanging functities</li> <li>stable hemodyne</li> <li>Exclusion criteria</li> <li>sedation</li> <li>unstable ICP</li> <li>CPP &lt;60mmHg</li> <li>fractures or skin</li> <li>deep vein throwne</li> <li>body weight&gt;136</li> <li>height&gt;210 cm</li> </ul> | admitted to ICU<br>om a severe ABI<br>from the Event<br>or MCS according to<br>hird day after the<br>nary gas<br>on<br>amics<br>:<br>lesions<br>bosis | 9 pts died<br>(intervention 5,<br>control 4) | early stepping<br>verticalization<br>(Erigo. Hocoma AG,<br>Switzerland)<br>- 30 min sessions<br>- 5x week for 3<br>consecutive weeks<br>- plus 30 min<br>conventional<br>physiotherapy | <b>conventional</b><br><b>physiotherapy</b><br>- 60 min<br>sessions | Primary outcomes:<br>- GCS<br>- DRS<br>- CRSr<br>- LCF<br>- [all measured at TO<br>(3d day after injury),<br>T1 (ICU discharge),<br>T2<br>(neurorehabilitation<br>discharge)]<br>Secondary<br>outcomes:<br>- ICU LOS<br>- Hospital LOS<br>- Adverse Events<br>Power analysis<br>- none | Significant differences between<br>groups in:<br>- ICU LOS ( $38.8 \pm 15.7 \text{ vs } 25.1 \pm 11.2 \text{ days}, p = 0.01$ )<br>- $\Delta$ DRS (T2-T0) (-20.0 (-22.0,-4.5);<br>-6.0 (-12.7,-2.0); p=0.04)<br>- $\Delta$ CRSr (T2-T0) (17.0 (5.1,18.8);<br>5.0 (2.3,11.0); p=0.033)<br>No significant differences<br>between groups in:<br>- $\Delta$ GCS (T2-T0) (n.s.)<br>- $\Delta$ LCF (T2-T0) (n.s.)<br>- hospital LOS (n.s.)<br>- no adverse events | 3<br>(risk of<br>bias, pilot<br>size) |

ABI = acquired brain injury, CRSr = coma recovery scale revised, CPP = cerebral perfusion pressure, DOC = disorders of consciousness, DRS = disability rating scale, GCS = Glasgow coma scale, ICP = intracranial pressure, ICU = intensive care unit, LCF = levels of cognitive functioning, LOS = length of stay, MCS = minimally conscious State, n.s. = not significant, pts = patients, VS = vegetative state,  $\Delta$  = delta

#### An early stepping verticalization seems to have a benefit on DRS and CRSr but may result in a longer length of stay in the ICU.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                                                                                    | Control | Optimal Population                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|---------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 380<br>Fields 2015<br>(PMID:<br>27347435<br>DOI:<br>10.1097/JAT.00<br>00000000000<br>12)<br><b>Specification</b><br>of study:<br>Retrospective<br>descriptive<br>study | L botwoon lung 2010 and                                            |                      | Data was<br>extracted on all<br>documented<br>mobility activity<br>(nursing, by PT or<br>by OT) |         | <b>Primary outcome:</b><br>- PAC complications | Primary outcome:<br>- physician notes reported 15<br>occurrences of PAC complications in 15<br>different pts<br>- PAC complications included: bleeding<br>from PAC site (n = 3), PAC dislodgement<br>or accidental removal (n = 5), or PAC<br>induced arrhythmia (n = 7)<br>- no PAC complications during any<br>physical therapy or occupational<br>therapy session<br>- no PAC complications were associated<br>with nursing reported mobility activities | 4                 |

OT = occupational therapist, PAC = pulmonary artery catheter, PT = physical therapist, pts = patients

The data suggest that participation in mobility activities does not place patients with an indwelling PAC at increased risk of PAC-related complications.

| Reference,<br>Study Type                                                                                                                                    | (Participant #                                                                                                                                                                                             | nd Controls<br>, Characteristics)<br>otal | Drop-out<br>Rate | Intervention | Control                         | Optimal Population                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|--------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 383<br>Wutzler 2016<br>DOI:<br>10.1007/s00068-<br>016-0692-3)<br><b>Specification of</b><br><b>study:</b><br>Prospective<br>cohort study<br>(observational) | Total         264 pts (76 pts with CLRT of 1         trauma center from 2011-2013; 188         pts from the German         TraumaRegister®)         Inclusion criteria:         -       ISS ≥16 (blunt and |                                           |                  | CLRT         | No CLRT/<br>Standard<br>of Care | <b>Derived endpoints:</b><br>- time on MV<br>- ICU/ hospital LOS<br>- rates of pneumonia<br>- rates of sepsis<br>- rates of ARDS<br>- hospital mortality<br>- rates of re-intubation | <ul> <li>Outcomes: CLRT vs. no CLRT</li> <li>Significant differences between groups in: <ul> <li>time on MV: (7.8 vs. 11.1 days)</li> <li>p=0.002</li> <li>intensive care unit LOS (11.9 vs. 15.8 days) p&lt;0.001</li> </ul> </li> <li>No significant differences between groups in: <ul> <li>ARDS (5.3 vs 9) p=0.438</li> <li>Sepsis (18.9 vs 14.3) p=0.524</li> <li>hospital mortality (6.6 vs 11.2)</li> <li>p=0.365</li> </ul> </li> <li>Total patients: <ul> <li>re-intubation rate 9.2%</li> <li>rates of pneumonia 25%</li> </ul> </li> </ul> | 4                 |

CLRT = continuous lateral rotational therapy, ISS = injury severity score, AIS=abbreviated injury score; ICU=Intensive Care Unit; ARDS=acute respiratory distress syndrome; LOS = length of stay, MV = mechanical ventilation

### CLRT remains a therapeutic option to reduce pulmonary complications after severe chest trauma.

| Reference,<br>Study Type                                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                  | Drop-out<br>Rate | Intervention                   | Control | Optimal Population                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 384<br>McGarrigle<br>2016<br>(PMID:<br>27256069<br>DOI:<br>10.2522/ptj.2<br>0150644)<br>Specification<br>of study:<br>Retrospective<br>Case-Series | 10 pts.<br>Inclusion criteria:<br>- pts who received VAD support<br>- pts awake and able to consent to<br>rehabilitation<br>- consent for data use<br>- sternum surgically wired closed,<br>cannulae surgically secured with<br>confirmation from the surgeon<br>Exclusion criteria:<br>- inability to actively participate<br>- cardiovascular instability: ongoing<br>ECMO support, multi-organ failure<br>unresponsive to medical therapy<br>- ongoing sedation<br>Per Branch |                  | Early mobilisation with<br>VAD |         | Primary outcomes:<br>- feasibility<br>- safety<br>- rehabilitation strategy<br>Secondary outcome:<br>- physical function (CPAx) | Primary outcomes:<br>- all 10 pts were at least<br>partially mobilized (arm<br>and leg movements)<br>- 330 sessions in total<br>(X=33, SD=18.1,<br>range=16–72) and<br>progressed to ambulation<br>on 71 occasions (X=7.1,<br>SD=7.7, range=1–27)<br>- distance ambulated<br>ranged from 7 to 1,200 m<br>(X=157.7, SD=367.3)<br>- 8 minor adverse events<br>- no major adverse events<br>Secondary outcome:<br>- CPAx score for 7 pts<br>improved from a median<br>of 0 (interquartile<br>range=0–1) on day 1 to a<br>median peak score of 39<br>(interquartile range=37–<br>42) | 4                 |

CPAx = Chelsea critical care physical assessment tool, ECMO = extracorporeal membrane oxygenation, pts = patients, VAD = ventricular assist device

Early rehabilitation and ambulation of recipients of short-term VAD support was safe and feasible.

| Reference,<br>Study Type                                                          | Cases and Controls<br>(Participant #, Characteristics<br>Total  | Drop-<br>out<br>Rate | Intervention                                       | Control | Optimal Population                                                   | Primary Results                                                                                                                                                                                                          | Evidence<br>Grade |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|----------------------------------------------------|---------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 385<br>Sigler 2016<br>(PMID: 27255089<br>DOI<br>10.14423/SMJ.0000<br>00000000472) | 32 pts<br>Inclusion criteria:<br>- ventilated ICU pts in a MICU |                      | Early mobilisation<br>according to new<br>protocol |         | <b>Extracted outcomes:</b><br>- feasibility<br>- safety<br>- ICU LOS | Outcomes:<br>- ambulation of 32<br>ventilated pts "feasible ",<br>ambulation distance was<br>102 ± 152 f. and usually<br>required three ICU staff<br>members with 5 to 10<br>minutes of preparation<br>before ambulation | 4                 |
| Specification of<br>study:<br>Retrospective<br>Case-Series                        | Per Branch                                                      |                      |                                                    |         |                                                                      | <ul> <li>no adverse events</li> <li>decrease in ICU LOS (from 4.8 to 4.1 days)</li> </ul>                                                                                                                                |                   |

ICU= intensive care unit, LOS = length of stay, MICU= medical intensive care unit, pts = patients

Early mobilisation is safe and effective in ventilated ICU patients.

| Reference,<br>Study Type                                                                                                                              | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                       | Drop-<br>out Rate | Intervention                                                                          | Control                                       | Optimal<br>Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 386<br>Connolly<br>2016<br>(PMID:<br>27220357<br>DOI:<br>10.1136/thora<br>xjnl-2015-<br>208273)<br>Specification<br>of study:<br>Systematic<br>Review | SR based on 5 SR from<br>2013 to 2015<br>Inclusion criteria:<br>- SR reporting on RCTs<br>- any physical<br>rehabilitation<br>(exercise and mobility<br>programs, cycle<br>ergometers or NMS)<br>- critically ill patients<br>Per Branch |                   | Early<br>mobilisation<br>or<br>mobilisation<br>via PT during<br>ITS stay<br>or<br>NMS | Usual care<br>or<br>Placebo<br>or<br>Bed rest | Outcomes:<br>- impairment<br>(peripheral and<br>respiratory<br>muscle strength,<br>CIP/CIM)<br>- activity<br>limitation<br>(physical<br>function, QoL)<br>- Healthcare<br>utilisation (VFD,<br>ICU-LOS, hospital<br>LOS, mortality,<br>duration of MV) | No meta-analysis<br>Outcomes from SR:<br>a) Early mob/mob. via PT<br>- impairment: peripheral muscle strength <sup>1</sup> (n = 244), Hedge's g=0.27 (0.02<br>to 0.52), p=0.03<br>- respiratory muscle strength <sup>1</sup> (n = 105), Hedge's g=0.51 (0.12 to 0.89),<br>p=0.01<br>- CIP/CIM (Hermans et al, n=104), RR 0.62 (0.39 to 0.96) p=0.03<br>- activity limitation: physical functionality <sup>1</sup> (n=143), Hedge's g=0.46 (0.13<br>to 0.78), p=0.01<br>- participation restriction: quality of life <sup>1</sup> (n = 154), Hedge's g=0.46 (0.08 to<br>0.71), p=0.01<br>- health care utilisation: VFD <sup>1</sup> (n = 334), Hedge's g=0.38 (0.16 to 0.59),<br>p<0.001,<br>- ICU LOS <sup>1</sup> (n = 597), Hedge's g=-0.34 (-0.51 to -0.18), p<0.001<br>- LOS <sup>1,2</sup> (n= 441) Hedge's g=-0.34 (-0.53 to -0.15), p<0.001<br>- mortality <sup>1,2</sup> (n=274), OR 1.0. (0.54 to 1.85) p=1.0,<br>- duration of MV <sup>2</sup> (n=not reported), median (IQA) 3.4 d (2.3 to 7.3) vs 6.1 d<br>b) NMS<br>- impairment: muscle strength <sup>3</sup> (n= 66), SMD 0.77, (0.13 to 1.40), p=0.02<br>- CIP/CIM <sup>2</sup> (n= 52), RR 0.32 (0.10 to 1.01), p=0.05 | 1 → 5<br>(indirectness) |

CIM = critical illness myopathy, CIP = critical illness polyneuropathy, LOS = length of stay, MV = mechanical ventilation, NMS = neuromuscular stimulation, RCT = randomized controlled trial, SR = systematic review, VFD = ventilator-free days

# Early mobilisation improves muscle strength, physical function and quality of life and reduces time on ventilation, length of stay but not mortality. Neuromuscular stimulation improves muscle strength.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

#### References

- 1. Kayambu G, Boots R, Paratz J. Physical therapy for the critically ill in the ICU: a systematic review and meta-analysis. Crit Care Med 2013; 41:1543–54.
- 2. Hermans G, De Jonghe B, Bruyninckx F, et al. Interventions for preventing critical illness polyneuropathy and critical illness myopathy. Cochrane Database Syst Rev 2014;1:CD006832.
- 3. Wageck B, Nunes GS, Silva FL, et al. Application and effects of neuromuscular electrical stimulation in critically ill patients: systematic review. Med 2014; 38:444–54
- 4. Calvo-Ayala E, Khan BA, Farber MO, et al. Interventions to improve the physical function of ICU survivors: a systematic review. Chest 2013; 144:1469–80.
- 5. Connolly B, Salisbury L, O'Neill B, et al. Exercise rehabilitation for recovery from critical illness following intensive care unit discharge. Cochrane Database Syst Rev 2015;(5):CD008632.

| Reference,<br>Study Type                                                                                                               | · · · · · · · · · · · · · · · · · · ·                                                                                 | d Controls<br>characteristics)<br>otal                                                                                             | Drop-<br>out<br>Rate | Intervention                                                                                                      | Control      | Optimal Population                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 387<br>Thelandersson<br>2016<br>DOI:<br>10.1007/s12028-<br>016-0278-2<br><b>Specification of</b><br><b>study:</b><br>Prospective study | the risk of vasosp<br>-fractures of the s<br>extremities<br>-severe infections<br>-severe obesity<br>-non-Swedish-spe | 4<br>014 to February<br>arction, or<br>rebellar<br>uiring intensive<br>ed<br>a:<br>emorrhage due to<br>pasm<br>spine or lower<br>s | /                    | 20-min leg<br>exercise using<br>a bedside cycle<br>ergometer (SP,<br>backrest of the<br>bed slightly<br>elevated) | own controls | -Safety and feasibility<br>with regards to ICP and | Significant differences between groups:<br>-20-min bedside cycle exercise increased<br>MAP (p = 0.029) and SV (p = 0.003)<br>-After exercise CPP, MAP, CO, and SV<br>decreased significantly versus during<br>exercise (p < 0.01)<br>No significant differences between<br>groups in:<br>-20-min bedside cycle exercise increase<br>in CO (p = 0.066) and CPP (p = 0.057)<br>-changes in ICP, HR, SVV, or SpO2 during<br>the procedure (n.s.)<br>-no differences between data obtained<br>before versus after<br>exercise in any of the recorded variables | 3                 |

Pts.=patients; NICU=neurointensive care unit; TBI= traumatic brain injury; ICP=intracranial pressure; SP=supine position; CPP=cerebral perfusion pressure; MAP= mean arterial blood pressure; HR= heart rate; CO=cardiac output; SV=stroke volume; SVV=stroke volume variation; SpO2=peripheral oxygen saturation

Early passive exercise with a bedside cycle ergometer for patients with severe brain injuries or stroke is considered a safe procedure as it does not increase ICP and, if anything, increases CPP.

| Reference,<br>Study Type                                                                                                   | Cases and<br>(Participant #,<br>To                                                                                                                                                              | Drop-<br>out Rate | Intervention | Control                | Optimal<br>Population | Primary Results                                                                      | Evidence<br>Grade                                                                                                                                                                                                                                                                                                                                                                      |   |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|------------------------|-----------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 388<br>Lee 2016<br>(PMID: 27189339<br>DOI:<br>10.1159/000446175<br>)<br><b>Specification of</b><br><b>study:</b><br>Review | 29 pts<br>Inclusion criteria:<br>- pts in medical ICU<br>2014 and August 20<br>- CRRT<br>- received PT<br>PROM group (n=<br>15)<br>(3 pts underwent<br>both PROM and<br>active<br>mobilization) |                   |              | Active<br>mobilisation | PROM                  | Primary<br>outcomes:<br>- occurrence of<br>safety events<br>- vital signs<br>changes | Primary outcomes:<br>- no safety events during 33<br>sessions with PROM, 2 events<br>during 48 active mobilisation<br>sessions (4.1%) (both events:<br>ECMO + CRRT delivered)<br>- systolic BP, diastolic BP, mean<br>arterial pressure, heart rate,<br>respiratory rate, or peripheral<br>oxygen saturation before and<br>after both PROM and active<br>mobilisation PT sessions: n.s | 5 |

BP = blood pressure, CRRT = continuous renal replacement therapy, ECMO = extracorporeal membrane oxygenation, n.s. = not significant, PROM = passive range of motion, PT = physical therapy, pts = patients

Active mobilisation can be performed safely in patients who are being treated with CRRT without significant hemodynamic changes, but patients with ECMO should be monitored carefully.

| Reference,<br>Study Type                                                                                                                                                  | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                             | Drop<br>-out<br>Rate | Intervention                                     | Control                 | Optimal Population                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence Grade                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| 389 Hewitt<br>2016<br>(PMID:<br>27169365<br>DOI:<br>10.1002/14651<br>858.CD007205.<br>pub2)<br>Specification of<br>study:<br>Systematic<br>review<br>(Cochrane<br>Review) | 24 publications (24 RCTs ) <sup>1-24</sup><br>Inclusion criteria:<br>- lateral positioning<br>- manual/automated turns<br>- duration of body position > 10<br>minutes<br>- randomized and quasi<br>randomized trials with<br>- at least 1 comparator<br>- single therapy/repetitive therapy |                      | Single/repeated<br>use of lateral<br>positioning | Other body<br>positions | Primary endpoints:<br>- in-hospital mortality<br>- incidence of morbidity<br>- clinical adverse effects<br>during or after<br>repositioning<br>Secondary endpoints:<br>- pulmonary physiology<br>or hypoxia score<br>- vital signs<br>- duration of assisted<br>ventilation<br>- LOS in critical care<br>area<br>- LOS in hospital<br>- differences in<br>participant comfort or<br>satisfaction | Significant differences between groups:<br>- meta-analysis: favoured good lung down in<br>participants with unilateral lung disease (MD -<br>85.33 points, 95% CI -107.14 to -63.53; P value<br>< 0.00001)<br>- heart rate: 30 minutes after turning for supine<br>position versus allograft lung down (MD -7.64,<br>95% CI -13.00 to -2.29; P value = 0.005) and five<br>minutes after turning for supine position versus<br>native lung down (MD 3.36, 95% CI 0.29 to<br>6.42; P value = 0.03)<br>- temperature: 17.60 fewer hours with fever for<br>repetitive lateral positioning versus supine<br>positioning at 72 hours (MD -17.60, 95% CI -<br>26.12 to -9.08; P value < 0.00001)<br>- ICU LOS: repetitive lateral positioning over<br>supine immobilization (MD -18.60, 95% CI -<br>33.07 to -4.13; P value = 0.01)<br>No significant differences between groups:<br>- No study reported to reveal adverse events<br>- no study reported mortality as outcome of<br>interest<br>- data were unavailable for Morbidity.<br>- no analyses of pulmonary physiology possible. | 1 → 3<br>(due to lack of<br>sufficiently<br>consistent data<br>for meta-<br>analyses) |

RCTs = randomized controlled trials

Insufficient data and reporting, therefore no conclusive recommendation is possible. Good lung down seems better for oxygenation than bad lung down.

#### References

- 1. Chulay M, Brown J, Summer W. Effect of postoperative immobilization after coronary artery bypass surgery. Critical Care Medicine 1982;10(3):176-9. [PUBMED: 7037302]
- 2. Gavigan M, Kline-O'Sullivan C, Klumpp-Lybrand B. The effect of regular turning on CABG patients. Critical Care Nursing Quarterly 1990;12(4):69-76. [MEDLINE: 2306655]
- 3. Lewis P, Nicols E, Mackey G, Fadol A, Sloane L, Villagomez E, et al. The effect of turning and backrub on mixed venous oxygen saturation in critically ill patients. *American Journal of Critical Care* 1997;6(2):132-40. [PUBMED: 9172850]
- 4. Reed SL. The effect of lateral positioning on tissue oxygenation in cardiovascular surgical patients with anemia. Unpublished MN thesis, University of Washington, Seattle, Washington, United States of America, 2002.
- 5. Shively M. Effect of position change on mixed venous oxygen saturation in coronary artery bypass surgery patients. Heart & Lung 1988;17(1):51-9. [MEDLINE: 3257482]
- 6. de Laat E, Schoonhoven L, Grypdonck M, Verbeek A, de Graaf R, Pickkers P, van Achterberg T. Early postoperative 30° lateral positioning after coronary artery surgery: influence on cardiac output. Journal of Clinical Nursing 2007;16(4):654-61. [PUBMED: 17402946]
- 7. Pena M. The effect of position change on mixed venous oxygen saturation measurements in open heart surgery patients during the immediate postoperative period. Heart & Lung 1989;18(3):305.
- 8. Kim MJ, Hwang HJ, Song HH. A randomized trial on the effects of body positions on lung function with acute respiratory failure patients. *International Journal of Nursing Studies* 2002;39(5):549-55. [MEDLINE: 11996875]
- 9. Tidwell SL, Williams JR, Osguthrope SG, Paull DL, Smith TL. Effects of position changes on mixed venous oxygen saturation in patients after coronary revascularization. *Heart & Lung* 1990;19(5 Pt 2):574-8. [MEDLINE: 2211171]
- 10. Banasik JL, Bruya MA, Steadman RE, Demand JK. Effect of position on arterial oxygenation in postoperative coronary revascularization patients. *Heart & Lung* 1987;16(6 Pt 1):652-7. [PUBMED: 3500152]
- 11. Banasik JL, Emerson RJ. Effect of lateral position on arterial and venous blood gases in postoperative cardiac surgery patients. *American Journal of Critical Care* 1996;5(2):121-6. [PUBMED: 8653163]
- 12. Banasik JL, Emerson RJ. Effect of lateral positions on tissue oxygenation in the critically ill. Heart & Lung 2001;30(4):269-76. [MEDLINE: 11449213]
- 13. Chan M, Jensen L. Positioning effects on arterial oxygen and relative pulmonary shunt in patients receiving mechanical ventilation after CABG. *Heart & Lung* 1992;21(5):448-56. [PUBMED: 1399664]
- 14. George EL, Hoffman LA, Boujoukos A, Zullo TG. Effect of positioning on oxygenation in single-lung transplant recipients. American Journal of Critical Care 2002;11(1):66-75. [PUBMED: 11785558]
- 15. Whitman GR, Howaniak DL, Verga TS. Comparison of cardiac output measurements in 20-degree supine and 20-degree right and left lateral recumbent positions. Heart & Lung 1982;11(3):256-7.
- 16. Bein T, Metz C, Keyl C, Pfeifer M, Taeger K. Effects of extreme lateral posture on hemodynamics and plasma atrial natriuretic peptide levels in critically ill patients. *Intensive Care Medicine* 1996;22(7):651-5. [MEDLINE: 8844229]
- 17. Carroll K. The effects of early position changes on cardiac output and SvO2 in the coronary artery bypass graft surgery patient. Heart & Lung 1992;21(3):286. [ISSN 0147-9563]
- 18. Doering L, Dracup K. Comparisons of cardiac output in supine and lateral positions. Nursing Research 1988;37(2):114-8. [PUBMED: 3347519]
- 19. Gawlinski A, Dracup K. Effect of positioning on SvO<sub>2</sub> in the critically ill patient with a low ejection fraction. Nursing Research 1998;47(5):293-9. [MEDLINE: 9766458]
- 20. Ibañez J, Raurich JM, Abizanda R, Claramonte R, Ibañez P, Bergada J. The effect of lateral positions on gas exchange in patients with unilateral lung disease during mechanical ventilation. *Intensive Care Medicine* 1981;7(5):231-4. [MEDLINE: 6792251]
- 21. Schellongowski P, Losert H, Locker GJ, Laczika K, Frass M, Holzinger U, et al. Prolonged lateral steep position impairs respiratory mechanics during continuous lateral rotation therapy in respiratory failure. *Intensive Care Medicine* 2007;33(4):625-31. [DOI: 10.1007/s00134-006-0513-y]
- 22. Thomas PJ. Examination of the role of postural changes in ventilated intensive care patients. Current practice, investigation and guidelines. Unpublished PhD thesis, University of Queensland, Queensland, Australia, Queensland, Australia, School of Health and Rehabilitation Sciences, University of Queensland, 2006:103-129.
- 23. Remolina C, Khan AU, Santiago TV, Edelman NH. Positional hypoxemia in unilateral lung disease. New England Journal of Medicine 1981;304(9):523-5. [PUBMED: 6779161]
- 24. Tripathi M, Pandey M, Nepal B, Rai H, Bhattarai B. Evaluation of lung infiltration score to predict hypoxemia in ventilated acute respiratory distress syndrome patients and the lateralization of skin pressure sore. *Indian Journal of Medical Sciences* 2009;63(9):392-401. [PUBMED: 19805918]

| Reference,<br>Study Type                                                                                                                                                            | (Participant #,                                                                            | nd Controls<br>, Characteristics)<br>otal | Drop-<br>out<br>Rate | Intervention                                                                            | Control          | Optimal Population                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                    | Evidenc<br>e Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------|----------------------|-----------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 391<br>Azuh 2016<br>(PMID: 27107920<br>DOI:<br>10.1016/j.amjmed.2<br>016.03.032)<br><b>Specification of</b><br><b>study:</b><br>cohort before-after<br>study, historical<br>control | 3233 MICU pts<br>Inclusion criter<br>- admission to I<br>- Braden Scale s<br>Per I<br>3233 | <b>ia:</b><br>MICU                        |                      | <b>(Early) mobilisation<br/>protocol:</b><br>- time to<br>implementation not<br>defined | Standard<br>care | Primary endpoint:<br>- occurence of pressure<br>ulcers<br>Secondary endpoints:<br>- rate of VAP<br>- hospital LOS<br>- ICU LOS<br>- hospital readmission<br>rate<br>No sample size<br>calculation | <ul> <li>Primary outcome:</li> <li>pressure ulcer incidence of 6.1%<br/>(vs. 9.2% before intervention), p =<br/>0.0405</li> <li>Secondary outcomes:</li> <li>VAP: n.s.</li> <li>hospital readmission rate 11.50%<br/>vs 17.10%, p=0.001</li> <li>ICU LOS 11.7 vs. 10.7 days, p=0.17</li> <li>hospital LOS: not reported</li> </ul> | 4                  |

LOS = length of Stay, MICU = medical intensive care unit, VAP = ventilator-associated pneumonia

The implementation of a mobilization protocol reduced the incidence of pressure ulcers and hospital readmissions as well as shortening the length of stay in the ICU.

| 106 adult ICU pts<br>Inclusion criteria:<br>- underwent CABG<br>- disease in the left anterior descending artery,<br>circumflex artery or right coronary anglography<br>or NNHA IV)<br>- invasive coronary anglography showed severe<br>luminal stenosis > 75%,<br>- prolonged mechanical ventilation (>72h)<br>- stable oxygen saturation, fraction of inspired oxygen<br>55%, and positive end expiratory pressure ≤ 8 cm<br>H2O       Significant differences between groups in:<br>- duration of mechanical ventilation (days)<br>8.1 ± 3.3 vs 13.9 ± 4.1 (p=0.01)<br>- dopamine at a dose of < 10 µg/kg/minute and<br>epinephrine at a dose of < 0.10 µg/kg/minute and<br>epinephrine at a dose of < 0.10 µg/kg/minute and<br>therapy lish<br>- a doser of choric mental illness<br>- had normal cognitive function<br>Evelusion criteria:<br>- increased intracranial pressure<br>- wree admitted to ICU after cardiopulmonary<br>resuscitation<br>- received radiotherapy or chemotherapy within the<br>previous 5 months<br>- acute myocarditis, peripheral vascular<br>thrombosis/embolism, cerebrovascular<br>actioned<br>- received radiotherapy or chemotherapy within the<br>previous 5 months<br>- acute myocarditis, peripheral vascular<br>thrombosis/embolism, cerebrovascular<br>thrombosis/embolism, cerebrovascular<br>thrombosis/emboli | Reference,<br>Study Type                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drop<br>-out<br>Rate | Intervention                                   | Control                                    | Optimal<br>Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dong 2016<br>(PMID:<br>26973269<br>DOI:<br>10.1536/ihj.1<br>5-316)<br>Specification<br>of study:<br>Randomized<br>controlled | Inclusion criteria:         - underwent CABG         - disease in the left anterior descending artery, circumflex artery or right coronary artery (angiography or NYHA IV)         - invasive coronary angiography showed severe luminal stenosis > 75%         - prolonged mechanical ventilation (>72h)         - stable oxygen saturation, fraction of inspired oxygen         ≤ 55%, and positive end expiratory pressure ≤ 8 cm         H2O         - dopamine at a dose of < 10 µg/kg/ minute and epinephrine at a dose of < 0.4 µg/kg/minute |                      | <b>therapy</b><br>- Mobilisation<br>before ICU | <b>care:</b><br>-mobilisation<br>after ICU | <ul> <li>duration of MV</li> <li>hospital and</li> <li>ICU LOS</li> <li>Hospital</li> <li>mortality</li> <li>Time of death</li> <li>No sample size</li> </ul> | <ul> <li>- duration of mechanical ventilation (days)<br/>8.1 ± 3.3 vs 13.9 ± 4.1 (p=0.01)</li> <li>- ICU LOS (days) 11.7 ± 3.2 vs 18.3 ± 4.2 (P=0.01)</li> <li>- hospital LOS (days) 22.0 ± 3.8 vs 29.1 ± 4.6 (p=0.01)</li> <li>Not significant differences between groups in:</li> <li>- hospital mortality 2 (4%) vs. 3 (6%) (p=0.65)</li> </ul> | (downgraded<br>for<br>indirectness<br>and lack of<br>power |

CABG = coronary artery bypass surgery, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilated, NYHA = New York heart association, pts = patients

The results provide evidence for supporting the application of early rehabilitation therapy in patients requiring prolonged mechanical ventilation after CABG.

| Reference,<br>Study Type                                                                     | (Participant #,                                    | d Controls<br>Characteristics)<br>otal        | Drop-<br>out<br>Rate | Intervention                                              | Control    | Optimal Population                                           | Primary Results                                                                                                         | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------|-----------------------------------------------------------|------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------|
| 401<br>Wahab 2016<br>(PMID:<br>28979452<br>DOI:<br>10.1177/175<br>11437156051<br>18)         | before and afte<br>implementatio<br>mobilization p | n of an early<br>rotocol<br>xclusion criteria |                      | Implementation<br>of an early<br>mobilisation<br>protocol | Usual care | Primary outcomes:<br>-ICU and hospital LOS<br>No sample size | Primary outcomes:<br>- ICU LOS: 5.8 ± 7.6 vs 5.4 ± 7.0 days,<br>p < 0.001<br>- hospital LOS: 14.7 ± 16.7 vs 13.9 ± 15.6 | 4                 |
| Specification<br>of study:<br>retrospective<br>cohort study<br>with<br>historical<br>control |                                                    |                                               |                      |                                                           |            | calculation                                                  | days, p < 0.001<br>- no PT: 21% vs 69%, p < 0.001                                                                       |                   |

ICU = intensive care unit, LOS = length of stay, PT = physio therapy, pts = patients

A multi-ICU, coordinated implementation of an early rehabilitation program markedly increased rehabilitation treatments in the ICU and was associated with reduced ICU and hospital LOS as well as increased ICU admissions.

| Reference,<br>Study Type                                                                                                            |                                                                                                                                                                                   | s and Controls<br>nt #, Characteristics)<br>Total                                | Drop-out<br>Rate                                                                                                                                                                                                                                                               | Interven<br>-tion                                                                    | Control      | Optimal Population                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 402 Fischer<br>2016<br>(PMID:<br>26825278<br>DOI:<br>10.1186/s130<br>54-016-1199-<br>3)<br><b>Specification</b><br>of study:<br>RCT | surgery<br>- anticipate<br>≥ 48h<br><b>Exclusion d</b><br>- < 18 year:<br>BMI >40 kg<br>- metal imp<br>- skin lesion<br>area<br>- neuromu:<br>- implanted<br>device or in<br>pump | nt cardiothoracic<br>ed to stay in the ICU<br>criteria:<br>s<br>g/m <sup>2</sup> | Interventi<br>on group:<br>14 (6 lost<br>to follow-<br>up at ICU<br>discharge,<br>8 lost to<br>follow-up<br>at<br>hospital<br>discharge)<br>Control<br>group: 19<br>(7 lost to<br>follow-up<br>at ICU<br>discharge,<br>12 lost to<br>follow-up<br>at<br>hospital<br>discharge, | NMES:<br>- 2x<br>daily for<br>30 min<br>- until<br>ICU<br>discharg<br>e or day<br>14 | Sham<br>NMES | Primary endpoints:<br>- muscle layer<br>thickness M.<br>quadriceps femoris<br>- muscle strength via<br>the MRC<br>Secondary<br>outcomes:<br>- hand grip strength<br>- FIM-Score<br>- TUG-Score<br>- TUG-Score<br>- SF-12<br>- average mobility<br>level<br>- satisfaction<br>- ICU LOS<br>- mortality | Primary endpoints:<br>muscle layer thickness (cm)<br>- postoperative day - effect in a linear mixed model (95%CI: -0.08 (-0.110.06);<br>p < 0.001)<br>- NMES - effect in a linear mixed model (95%CI: -0.18 (-0.59 - 0.23); p = 0.38)<br>- postoperative day x NMES - effect in a linear mixed model (95%CI: 0.02 (-0.01<br>- 0.06); p = 0.21)<br>- MRC postoperative day - effect in a linear mixed model (95%CI): 0.02 (-0.02 -<br>0.05); p = 0.40<br>- NMES - effect in a linear mixed model (95%CI: - 0.45 (-0.880.03); p = 0.04)<br>- postoperative day x NMES - effect in a linear mixed model (95%CI: 0.09 (0.03 -<br>0.14); p = 0.002)<br>Secondary outcomes:<br>patient satisfaction<br>- comfortable Sensation, n (%): intervention 12 (44.4) vs control 5 (18.5), p =<br>0.03<br>- discomfort, n (%): intervention 5 (18.5) vs control 0 (0%)), p = 0.048<br>ICU LOS, median (IQR): intervention (3 - 23) vs control 7 (3 - 213), p-value n.s<br>- Hand Grip Strength/ FIM-Score/ TUG-Score/ SF-12 (PCS-12 + MCS-12)/Average<br>Mobility Level: No difference between groups stated<br>ICU Mortality, n (%): intervention 1 (3.7) vs control 3 (11.1) p-value: n.s | 2                 |
|                                                                                                                                     |                                                                                                                                                                                   |                                                                                  |                                                                                                                                                                                                                                                                                |                                                                                      | l            |                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |

ICU = intensive care unit, NMES = neuromuscular electric stimulation, n.s. = not significant, pts = patients

No effect of neuromuscular electrical stimulation on muscle thickness could be observed but regaining muscle strength in the ICU stay was quicker.

| Reference,<br>Study Type                                                          | (Partici                                                                                                                          | l Controls<br>pant #,<br>eristics)<br>tal | Drop-out Rate                                                          | Intervention                 | Control | Optimal Population                                  | Primary Results                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------|------------------------------|---------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 403<br>Toonstra 2016<br>PMID: 26788890<br>DOI:<br>10.1097/MAT.0000<br>00000000239 | 1.313 pts from July 1 <sup>st</sup> , 2013,<br>to July 31 <sup>st</sup> , 2014<br><b>Inclusion criteria:</b><br>- pts on the MICU |                                           | 408 pts did not<br>receive<br>physiotherapy<br>848 pts.<br>Received PT | Physiotherapy<br>during CRRT | MICU    | Primary endpoint:<br>- feasibility and<br>safety PT | Primary Results:<br>- No CRRT-specific safety events occurred<br>(0%; 95% upper confidence interval, 6.3%).<br>- 6 non-CRRT–related potential safety<br>events (2.2% of all physical therapy<br>sessions; 95% confidence interval, 0.6–<br>8.2%), all transient changes in blood | 3                 |
| Specification of                                                                  | Per B                                                                                                                             | Per Branch                                |                                                                        |                              |         |                                                     | pressure                                                                                                                                                                                                                                                                         |                   |
| study:<br>prospective<br>observational study                                      | 57 1256                                                                                                                           |                                           |                                                                        |                              |         |                                                     |                                                                                                                                                                                                                                                                                  |                   |

CRRT = continuous renal replacement therapy, MICU = medical intensive care unit, pts = patients; PT=physical therapy

Provision of bedside physical therapy while patients underwent CRRT is feasible and appears safe.

| Reference,<br>Study Type                                                         | (Partici<br>charact                                                                    | d Controls<br>ipant #,<br>eristics)<br>tal | Drop<br>-out<br>Rate | Intervention                                                       | Control                      | Optimal Population                                                      | Primary Results                                                                                                                                                                                                                     | Evidence Grade               |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------|----------------------|--------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| 404<br>Karadas<br>2016<br>DOI:<br>10.1016/j.ge<br>rinurse.2015<br>.12.003<br>RCT | 94 ICU pts<br>Inclusion crit<br>-min. 24h on<br>-65y and old<br>- no previous<br>Per B | MV<br>er                                   |                      | Early ROM<br>Exercises<br>(10 repetitions, lying<br>down, 30 min.) | Routine clinical<br>measures | <b>Primary Outcomes:</b><br>- delirium incidence<br>- delirium duration | Primary Outcomes:<br>-delirium (incidence 8.5% in<br>intervention vs. 21.3% in control<br>group p > 0.05, X2 = 3.02)<br>-delirium duration 15 h (3-144 h) in<br>intervention vs 38 h (9-120 h) in<br>control ( p > 0.05; Z =0.997). | 2 → 3<br>(high risk of bias) |

ICU = Intensive care unit; pts = patients; ROM = Range of motion

No significant difference in delirium occurrence and duration.

| Reference,<br>Study Type                                                                                                                                | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                                                                                                         | Characteristics)                                                                                                                                                       | Drop-<br>out<br>Rate | Interven-<br>tion | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 409 Ayzac 2016<br>(PMID: 26699917<br>DOI:<br>10.1007/s00134-<br>015-4167-5)<br><b>Specification of</b><br><b>study:</b><br>Secondary Analysis<br>of RCT | 466 pts<br>Inclusion criteria:<br>- adults (18 years or<br>- endotracheally intu<br>- ongoing for the pre<br>- severity criteria (Pa<br>inspired oxygen (FiO<br>under FiO2 C 0.6 pos<br>expiratory pressure<br>and tidal volume (VT<br>predicted body weig<br>12–24 h stabilizatior<br>- gave consent to pa<br>Per Bi<br>237 | ubated for ARDS<br>evious 36 h<br>iO2/fraction of<br>2)\150 mmHg<br>sitive end-<br>(PEEP) C5 cmH2O<br>c) = 6 ml/kg<br>(ht) fulfilled after a<br>in period<br>rticipate |                      | РР                | SP      | Primary endpoint:<br>- incidence of the first<br>episode of VAP<br>- mortality<br>Secondary endpoints:<br>- fatality rate during the ICU<br>stay up to 90 days after<br>randomization<br>- number of days free from<br>ventilator support<br>- duration of the ICU stay<br>- duration of organ failure<br>- appropriateness of the<br>antibiotic therapy | Primary endpoint:<br>- incidence rate for<br>VAP: 1.18 (0.86–1.60) vs 1.54<br>(1.15–2.02) per 100 days of invasive<br>mechanical ventilation (p = 0.10),<br>- VAP was associated with an increase in<br>the mortality rate during the ICU stay<br>[HR 1.65 (1.05–2.61), p = 0.03]<br>Secondary endpoint:<br>- cumulative probability of VAP at 90<br>days estimated at 46.5 % (27–66) in PP<br>and at 33.5 % (23–44) in SP<br>- difference between the two cumulative<br>probability curves was not statistically<br>significant (p = 0.11) | 3                 |

ARDS = acute respiratory distress syndrome, PP = prone position, pts = patients, SP = supine position, VAP = ventilator associated pneumonia, VT = tidal volume

In severe ARDS patients prone positioning did not reduce the incidence of VAP and VAP was associated with higher mortality.

| Reference,<br>Study Type                                                                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Drop-<br>out<br>Rate | Intervention                                              | Control       | Optimal Population                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                       | Eviden<br>ce<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 411<br>Fraser 2015<br>(PMID:<br>26600359<br>DOI:<br>10.1097/01.NAJ<br>.0000475292.2<br>7985.fc)<br><b>Specification of</b><br>study:<br>Retrospective<br>cohort with<br>historical<br>controls | 132 ICU pts, retrospectively "randomly" chosen<br>Inclusion criteria:         - at least 18 years of age         - admitted directly to an ICU         - intensivist as attending or consulting physician         Exclusion criteria:         - inability to walk without assistance before ICU<br>admission         - neuromuscular disease that would prevent weaning<br>from mechanical ventilation         - acute stroke, body mass index greater than 45 kg/m<br>admission by the trauma service, acute lower extremi<br>fracture, unstable cervical spine or pathologic fracture<br>hospitalization 30 days prior to admission, hospice cat<br>immediate plans to transfer to an outside hospital,         - score greater than 60 on the initial Barthel         Per Branch         66       66 | y<br>,               | Implementation<br>of an early<br>mobilization<br>protocol | Usual<br>care | Primary outcomes:<br>- readmission rate<br>- quality outcomes<br>(falls, ventilator-<br>associated events,<br>pressure ulcers,<br>urinary tract<br>infections)<br>- costs<br>- LOS<br>No sample size<br>calculation | Significant differences between groups<br>in:<br>- readmission: 10.6 vs 22.7% (p<0.001)<br>- quality outcomes 25.7 vs 1.5%<br>(p<0.001)<br>No significant differences between<br>groups in:<br>- LOS: n.s<br>- costs: savings of \$111,566 (\$1,690 per<br>patient) for the mobility group<br>(\$125,309 versus \$127,000; t130 =<br>-0.42; P = 0.68) | 4                     |

ICU = intensive care unit, LOS = length of stay, n.s. = not significant, pts = patients

It is feasible for a community hospital to create and implement a dedicated ICU mobility team. Early mobilisation of ICU patients contributed to fewer delirium days and improved patient outcomes, sedation levels, and functional status.

| Reference,<br>Study Type                                                                                                                                          | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                               | Drop-<br>out<br>- Rate | Intervention | Control                                  | Optimal Population                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #412<br>Bloomfield<br>2015<br>PMID:<br>26561745<br>DOI:<br>10.1002/14651<br>858.CD008095.<br>pub2<br>Specification<br>of study:<br>Systematic<br>Review and<br>MA | <ul> <li>9 RCTs with 2165 pts<sup>1-9</sup></li> <li>Inclusion criteria: <ul> <li>RCTs that examined the effects of PP vs supine/semi recumbent position</li> <li>during conventional MV</li> <li>in adult pts with acute</li> </ul> </li> </ul> |                        | PP           | Supine/<br>semi<br>recumbent<br>position | Endpoints:<br>- risk ratio for<br>mortality<br>- risk ratio or mean<br>difference for<br>secondary<br>outcomes | Significant differences between groups in:<br>- pressure ulcers (4trials; 823 pts) with an RR of 1.25 (95%<br>Cl 1.06 to 1.48), p-value = 0.02)<br>- tracheal tube obstruction increased with PP (RR of 1.78<br>(95% Cl 1.22 to 2.60), p-value = 0.003)<br>- reduced arrhythmia with PP (RR of 0.64 (95% Cl 0.47 to<br>0.87), p-value = 0.005)<br>No significant differences between groups in:<br>- short- and longer-term mortality (6 trials): RR of 0.84 to<br>0.86 in favor of the PP<br>Primary analysis:<br>- short term mortality RR of 0.84 (95% confidence interval<br>(Cl) 0.69 to 1.02)<br>- longer-term mortality RR of 0.86 (95% Cl 0.72 to 1.03) | 1                 |

MV = mechanical ventilated, PP = prone position, RCT = randomized controlled trials, RR = risk ratio

There is no convincing evidence of benefit nor harm from universal application of PP in adults with hypoxaemia and mechanical ventilation in intensive care units (ICUs).

#### References

- 1. Chan MC, Hsu JY, Liu HH, Lee YL, Pong SC, Chang LY, et al. Effects of prone position on inflammatory parkers in patients with ARDS due to community-acquired pneumonia. *Journal of the Formosan Medical Association* 2007;106(9):708-16. [PMID: 17908660]
- 2. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. *Intensive Care Medicine* 2008;34(8):1487-91. [PMID: 18427774]
- 3. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. *New England Journal of Medicine* 2001;345(8):568-73. [PMID: 11529210]
- 4. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. *JAMA* 2004;292(19):2379-87. [PMID: 15547166]
- 5. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. *New England Journal of Medicine* 2013;368(23):2059-68. [DOI: 10.1056/NEJMoa1214103] [NCT00527813]
- 6. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. *American Journal of Respiratory & Critical Care Medicine* 2006;173(11):1233-9. [DOI: 10.1164/rccm.200503-353OC] [PMID: 16556697]
- 7. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302(18):1977-84. [PMID: 19903918]
- 8. Voggenreiter G, Aufmkolk M, Stiletto MJ, Baacke MG, Waydhas C, Ose C, et al. Prone positioning improves oxygenation in post-traumatic lung injury—A prospective randomized trial. *Journal of Trauma* 2005;59(2):333-43. [PMID: 16294072]
- 9. Leal RP, Gonzales R, Gaona C, Garcia G, Maldonado A, Dominguez-Cherit G. Randomized trial compares prone v supine position in patients with ARDS. *American Journal of Respiratory & Critical Care Medicine* 1997;155:A745.

| Reference,<br>Study Type                                                                                             | (Participant #                                                                                                                                                                                                                                 | nd Controls<br><sup>e</sup> , characteristics)<br><sup>-</sup> otal               | Drop-<br>out<br>Rate | Interve<br>ntion | Control | Optimal<br>Population                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------|------------------|---------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 413 Kimmoun<br>2015<br>DOI:<br>10.1186/s1361<br>3-015-0078-4<br>Specification of<br>study:<br>Retrospective<br>study | January 2012 and J<br>Inclusion criteria:<br>- PP during VV-ECM<br>- severe ARDS defir<br>consensus<br>- one unsuccessful<br>- refractory hypoxe<br>- persistent high pla<br>Exclusion criteria:<br>- no PP during vaso<br>- recent open chest | 10<br>ned by BERLIN<br>ECMO weaning<br>mia<br>ateau pressure<br>pressor treatment | none                 | PP > 24<br>hours | none    | Outcomes:<br>- safety data<br>- oxygenation<br>- respiratory<br>system<br>compliance | <b>Results:</b><br>- total of 27 sessions<br>- PaO <sub>2</sub> /FiO <sub>2</sub> ratio increased from 111<br>(IQR 84-128) to 173 (IQR 120-203)<br>mmHg after 24 hours of PP<br>- RS compliance increased from 18 (IQR<br>12-36) to 32 (IQR 15-36) ml/cmH <sub>2</sub> O<br>- tidal volume: increased from 3.0 (IQR<br>2.2 - 4.0) to 3.7 (IQR 2.8 - 5.0) ml/kg<br>- PaO <sub>2</sub> /FiO <sub>2</sub> increased over 20% in<br>14/14 sessions for late sessions (>7<br>days), and in 7/13 sessions for early<br>sessions (<7 days) - 1<br>oxygenator thrombus, 1 fluid<br>resuscitation | 4                 |
|                                                                                                                      | n = 17                                                                                                                                                                                                                                         |                                                                                   |                      |                  |         |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |

VV = venovenous, ECMO = extracorporeal membrane oxygenation, ARDS = acute respiratory distress syndrome, PP = prone positioning, RS = respiratory system, IQR = interquartile range

PP improved oxygenation during VV-ECMO and was not associated with side effects.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                     | Cases and<br>(Participant #, c<br>Tot                                                                                                                                                                                                                    | characteristics)                                                                 | Drop-out<br>Rate           | Intervention            | Control                            | Optimal Population                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------|-------------------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 414 Bartolo<br>2016<br><u>PMID:</u><br>26530213<br><b>Specification</b><br>of study:<br>Prospective<br>multicenter<br>observational<br>study | 102 consecutive se<br>pts. admitted to IC<br>Inclusion criteria:<br>- CNS damage due<br>nontraumatic caus<br>- GCS ≤8<br>Exclusion criteria:<br>- previous sABI pts<br>consciousness diso<br>- neoplastic disease<br>involvement of the<br>Per Br<br>102 | to traumatic or<br>tes<br>with persistent<br>order<br>e with metastatic<br>e CNS | 15 (1 missing,<br>14 died) | Early<br>rehabilitation | Without<br>early<br>rehabilitation | No sample size was<br>calculated.<br><b>Outcomes:</b><br>- which early<br>rehabilitation<br>treatment is carried<br>out in Italian<br>ICU/NICUs<br>- which kind of<br>treatment is<br>performed<br>- which care<br>pathways are<br>indicated for sABI<br>pts. at discharge | Results:<br>Rehabilitation treatments:<br>- postural changes were performed in<br>65 (63.7%) pts.<br>- passive/active assited multijoint<br>mobilization was prescribed in 52<br>(51%) pts.<br>- mobilization was executed in all pts.<br>by phyiotherapists<br>- rehabilitation interventions<br>(respiratory rehabilitation and/or<br>bronchial drainage, speech therapy,<br>multisensory stimulation<br>Discharge destinations:<br>- 38 pts. severe acquired brain injury<br>unit<br>- 18 pts. extensive rehabilitation clinic<br>- 18 pts. neurosurgery<br>- 13 pts. other destination (e.g. other<br>ICU/NICU, other acute ward) | 3                 |

DRS = disability rating scale, ERBI = Early rehabilitation Barthel Index, FIM = Functional Independence Measure, GCS = Glasgow coma scale, GOS = Glasgow Outcome Scale, LCF = levels of cognitive functioning, pts = patients; CNS = central nervous system; ICU = intensive care unit; NICU = neurological intensive care unit; sAIB = severe acute brain injury

More than half of all sABI patients received multijoint mobilization and postural changes at ICU/NICU.

| Reference,<br>Study Type                                                                                              | Cases and Controls<br>(Participant #, characteristics)<br>Total | Drop<br>-out<br>Rate | Intervention                      | Control                                    | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                               |
|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-----------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 415 Culbreth<br>2016<br>https://doi.org/10.4<br>187/respcare.03882<br>Specification of<br>study:<br>Systematic review | . ,                                                             | n/a                  | PP and ECMO<br>simultaneous<br>ly | No control<br>group due to<br>study design | No primary endpoint<br>defined<br>Extracted endpoints:<br>- ECMO Cannula<br>Complications<br>- Central Venous and<br>Arterial Catheter<br>Complications<br>- Chest Tube<br>Complications<br>- Airway Dislodgment and<br>Obstruction<br>- Hemodynamic<br>Instability During<br>Positioning<br>- Miscellaneous Non-Life-<br>Threatening<br>Complications<br>- PP Maneuver Type:<br>Mechanical Versus<br>Manual<br>- ECMO Equipment and<br>Cannula Site<br>- Outcomes: Oxygenation<br>and Survival | Extracted endpoints:<br>- No occurrence of ECMO cannula<br>dislodgment; CSB was common among<br>these studies, CSB is a frequent<br>occurrence of subjects receiving ECMO<br>due to anticoagulation therapy.<br>- Only 1 study reported catheter<br>complications<br>- None of the adult studies reported<br>chest tube dislodgment in this review.<br>- No episodes of tracheal or<br>endotracheal tube dislodgment was<br>found.<br>- 2 studies reported episodes of<br>hemodynamic instability. (e.g.,<br>Bradycardia, decrease in systolic blood<br>pressure).<br>- None of the studies in this review<br>reported cutaneous pressure sores.<br>- Only 1 study reported the use of<br>automated, rotating beds to perform PP<br>of subjects.<br>- The type of ECMO equipment used, all<br>studies reported using either a<br>centrifugal pump system or an occlusive<br>pump system.<br>- 3 studies found a significant difference<br>between the PaO2/FIO2 ratio before<br>and after PP. | 1 → 4<br>(not only RCTs,<br>no<br>metaanalysis) |

ECMO= Extracorporeal membrane oxygenation; PP=prone position; RF=respiratory failure; CSB= cannula site bleeding;

#### More studies are needed to assess the clinical efficacy of the addition of PP therapy to ECMO for patients in severe RF.

#### References

- 1. Goettler CE, Pryor JP, Hoey BA, Phillips JK, Balas MC, Shapiro MB. Prone positioning does not affect cannula function during extracorporeal membrane oxygenation or continuous renal replacementtherapy. Crit Care 2002;6(5):452-455.
- 2. Litmathe J, Sucker C, Easo J, Wigger L, Dapunt O. Prone and ECMO: a contradiction per se? Perfusion 2012;27(1):78-82.
- 3. Otterspoor LC, Smit FH, van Laar TJ, Kesecioglu J, van Dijk D. Prolonged use of extracorporeal membrane oxygenation combined with prone positioning in patients with acute respiratory distress syndrome and invasive Aspergillosis. Perfusion 2012;27(4):335-337.
- 4. Kipping V, Weber-Carstens S, Lojewski C, Feldmann P, Rydlewski A, Boemke W, et al. Prone position during ECMO is safe and improves oxygenation. Int J Artif Organs 2013;36(11):821-832.
- 5. Masuda Y, Tatsumi H, Imaizumi H, Gotoh K, Yoshida S, Chihara S, et al. Effect of prone positioning on cannula function and impaired oxygenation during extracorporeal circulation. J Artif Organs 2014; 17(1):106-109.
- 6. Guervilly C, Hraiech S, Gariboldi V, Xeridat F, Dizier S, Toesca R, et al. Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults. Minerva Anestesiol 2014;80(3):307-313.
- 7. Kredel M, Bischof L, Wurmb TE, Roewer N, Muellenbach RM. Combination of positioning therapy and venovenous extracorporeal membrane oxygenation in ARDS patients. Perfusion 2014;29(2): 171-177.

| Reference,<br>Study Type                                                                 | Cases and Controls<br>(Participant #, Characteristics)                   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                    | Cont<br>rol | Optimal Population                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                          | Total                                                                    | nate                 |                                                                                                                                                                 |             |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| 419<br>Pandullo<br>2015<br>(PMID:<br>26346813<br>DOI:<br>10.1016/j.jcrc<br>.2015.08.007) | Per Branch                                                               |                      | Retrospective<br>analysis of<br>patient mobility<br>achievements<br>(JH-HLM)<br>3 groups<br>depending on<br>highest ICU JH-<br>HLM: bed (n =<br>51), chair (n = |             | Primary outcomes:<br>- hours between ICU<br>admission and bed<br>- hours between ICU<br>admission and chair,<br>- hours between ICU<br>admission and<br>ambulation<br>- hours to<br>regain/exceed<br>mobility level after<br>transfer<br>- ambulation on day of<br>discharge from<br>hospital<br>- ambulation at any | Primary outcomes:<br>- hours between ICU admission and bed, median (IQR):<br>bed:1.8 (0.3, 4.0), chair:1.8 (0.5-4.8), ambulation 1.4 (0.5-<br>4.0); p =0.27<br>- hours between ICU admission and chair, median (IQR):<br>bed: 118 (75-238), chair: 59 (29-94), ambulation: 39 (19-<br>65); p <0.001<br>- hours between ICU admission and ambulation, median<br>(IQR): bed: 177 (111-355), chair: 135 (89-200),<br>ambulation: 60 (37-96); p<0.001<br>- hours to regain/exceed mobility level after transfer,<br>median (IQR): bed: 2.5 (0.5-5.9), chair: 16 (4-26),<br>ambulation: 7 (3-19); p<0.001<br>- ambulation: 37 (59.7);<br>p>0.001<br>- ambulation at any time during hospitalization, n (%): | 4                 |
| Specification<br>of study:<br>Retrospective<br>cohort study                              | Bed group:<br>n=51<br>Chair group<br>n=69<br>Ambulation<br>group<br>n=62 |                      | 69), ambulation<br>(n = 62)                                                                                                                                     |             | time during<br>hospitalization<br>Secondary outcomes:<br>-ICU-LOS<br>-post-ICU LOS<br>-hospital LOS                                                                                                                                                                                                                  | bed: 25 (49.0), chair: 51 (73.9), ambulation: 62 (100)<br><b>Secondary outcomes:</b><br>-ICU LOS(h), median (IQR): bed: 80 (57, 161), chair: 97<br>(71-131) ambulation: 88 (62-138); p=0 .96<br>- post-ICU LOS (h), median (IQR): bed: 237 (96-436),<br>chair: 186 (108-297), ambulation: 84 (51-131); p<0.001<br>- hospital LOS (h), median (IQR): bed: 382 (216-724),<br>chair: 355 (230-550), ambulation: 230 (140-358); p<0.001                                                                                                                                                                                                                                                                    |                   |

IQR = interquartile range, JH-HLM = John Hopkins highest level of mobility, LOS = length of stay, pts = patients

Study findings show the need for improvement in maintaining early ICU mobilization achievement during the crucial phase between ICU stay and hospital discharge.

| Reference,<br>Study Type                                                         | (Participant #,                                                                                                                                                                | d Controls<br>Characteristics)<br>otal                   | Drop-out<br>Rate                                      | Intervention                                                                                       | Control                  | Optimal<br>Population                             | Primary Results                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 424<br>Yusuke<br>2016<br>(PMID:<br>26311924<br>DOI:<br>10.1589/jpts.<br>27.2053) | 86 pts<br>Inclusion criteri<br>- admitted to IC<br>Exclusion criter<br>- <64 years<br>- bedridden bef<br>pneumonia<br>- with serious co<br>such as severe h<br>- discharged du | ia:<br>ore the onset of<br>omplications<br>neart failure | 15 pts:<br>11 control<br>(died),<br>4<br>Intervention | <b>Early physical</b><br><b>therapy:</b><br>- 40 min per day<br>- begin the day after<br>admission | Standard<br>intervention | Primary<br>endpoints:<br>- ICU LOS<br>- FIM score | Primary endpoints:<br>Significant differences between groups in:<br>- ICU admission period shorter in early<br>intervention (12.03 ± 4.14 days) vs control<br>(15.45 ± 3.76 days, p < 0.01)<br>- rate of change in the FIM smaller in early<br>intervention (14.3 ± 5.7) than in standard | 4                 |
| Specification                                                                    | Per B                                                                                                                                                                          | Franch                                                   | (died)                                                |                                                                                                    |                          |                                                   | intervention (20.3 ± 7.6, p < 0.01)                                                                                                                                                                                                                                                       |                   |
| of study:<br>Single Centre<br>Cohort Study<br>Before After                       | 38                                                                                                                                                                             | 33                                                       |                                                       |                                                                                                    |                          |                                                   |                                                                                                                                                                                                                                                                                           |                   |

FIM = functional independence measure, ICU = intensive care unit, LOS = length of stay, pts = patients

Physiotherapy should be recognized as an effective treatment method that prevents complications and improves the prognosis associated with activities of daily living, and not solely as a method to prevent disuse syndrome.

| Reference,<br>Study Type                                                                                                                              | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drop<br>-out<br>Rate | Intervention                                                                                       | Control | Optimal<br>Population                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 425<br>Polastri M<br>2015<br>(PMID:<br>26274362<br>DOI:<br>10.1002/pri.1<br>644)<br>Specification<br>of study:<br>Systematic<br>Review<br>Case series | <ul> <li>9 publications<sup>1-9</sup>( 54 pts, 3 cohort studies, 6 case reports/case studies)</li> <li>Inclusion criteria: <ul> <li>pts in ICU</li> <li>describe the physiotherapeutic activities of subjects on awake VV ECMO</li> <li>publication date January 2010 to November 2014</li> <li>in English, French or Italian</li> </ul> </li> <li>Exclusion criteria: <ul> <li>editorials, opinion pieces, conference proceedings and citations that did not describe physiotherapeutic interventions in subjects on awake VV ECMO</li> </ul> </li> </ul> |                      | Awake ECMO<br>Combination active<br>and passive<br>physiotherapy<br>(commenced within 2-5<br>days) |         | <b>Primary endpoint:</b><br>- assess<br>advantages and<br>safety of<br>physiotherapeutic<br>interventions | Primary endpoints:<br>- physiotherapy was<br>commenced as soon as<br>possible (within 2–5days)<br>in almost all patients, and<br>this was clear in all<br>studies<br>- mobilization (passive<br>and active movements<br>and postural changes),<br>in-bed positioning (either<br>sitting or upright) and<br>ambulation were the<br>most commonly used<br>physiotherapeutic<br>interventions | 3                 |

ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit, pts = patients, VV = veno-venous

# Patients on awake ECMO usually received a combination of passive and active physiotherapy, and most achieved an acceptable degree of autonomy after treatment.

#### References

1. Abrams D, Javidfar J, Farrand E, Mongero LB, Agerstrand CL, Ryan P, Zemmel D, Galuskin K, Morrone TM, Boerem P, Bacchetta M, Brodie D. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit Care 2014; 18: R38.

2. Garcia JP, Jacono A, Kon ZN, Griffith BP. Ambulatory ex- tracorporeal membrane oxygenation: a new approach for bridge-to-lung transplantation. J Thorac Cardiovasc Surg 2010; 139: e137–e139.

3. Garcia JP, Kon ZN, Evans C, Wu Z, Iacono AT, McCor- mick B, Griffith BP. Ambulatory veno-venous extracor- poreal membrane oxygenation: innovation and pitfalls. J Thorac Cardiovasc Surg 2011; 142: 755–761. 4. Hayes D, Jr, McConnell PI, Preston TJ, Yates AR, Kirkby S, Galantowicz N. Active rehabilitation with venovenous extracorporeal membrane oxygenation as a bridge to lun transplantation in a pediatric patient. World J Pediatr 2013; 9: 373–374.

5. Rahimi RA, Skrzat J, Reddy DR, Zanni JM, Fan E, Ste- phens RS, Needham DM. Physical rehabilitation of patients in the intensive care unit requiring extracorpo- real membrane oxygenation: a small case series. Phys Ther 2013; 93: 248–255.

6. Redher KJ, Turner DA, Hartwig MG, Williford WL, Bonadonna D, Walczak RJ, Jr, Davis RD, Zaas D, Cheifetz IM. Active rehabilitation during extracorporeal membrane oxygenation as a bridge to lung transplantation. Respir Care 2013; 58: 1291–1298.

7. Turner DA, Cheifetz IM, Redher KJ, Williford WL, Bonadonna D, Banuelos SJ, Peterson-Carmichael S, Lin SS, Davis RD, Zaas D. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: a practical approach. Crit Care Med 2011; 39: 2593–2598.

8. Turner DA, Redher KJ, Bonadonna D, Gray A, Lin S, Zaas D, Cheifetz IM. Ambulatory ECMO as a bridge to lung transplant in a previously well pediatric patient with ARDS. Pediatrics 2014; 134: e583–e585. 9. Zebuhr C, Sinha A, Skillman H, Buckvold S. Active reha- bilitation in a pediatric extracorporeal membrane oxygenation. PMR 2014; 6: 456–460.

| Reference,<br>Study Type                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                  | and Controls<br>t #, Characteristics)<br>Total                                         | Drop-<br>out<br>Rate | Intervention                              | Control       | Optimal Population                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------|-------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 434<br>Castro-Avila 2015<br>(PMID: 26132803<br>DOI:<br>10.1371/journal.po<br>ne.0130722)<br><b>Specification of</b><br><b>study</b> : Systematic<br>Review<br>Meta Analysis | Inclusion criteria:<br>- randomised or control<br>- comparing rehabilitat<br>patients<br>- adult pts admitted to<br>- followed for outcome<br>Exclusion criteria:<br>compared passive to u<br>- started rehabilitation<br>- evaluated interventio<br>- enrolled more than 2<br>- had pts admitted to a<br>conditions or trauma t | ion to usual care in ICU/HDU<br>ICU/HDU for at least 48 hours<br>s until ICU discharge |                      | Early<br>rehabilitation<br>/ mobilisation | Usual<br>Care | Primary endpoint:<br>- functional Status at ICU<br>discharge<br>Secondary outcomes:<br>- walking ability<br>- muscle strength<br>- quality of life<br>- duration of MV<br>- hospital and ICU LOS<br>- time in rehabilitation<br>after hospital discharge | Significant differences<br>between groups in:<br>- (n=4) improved walking<br>without assistance at<br>discharge (pooled risk ratio<br>1.42, Cl 1.17-1.72), p =0.02<br>No significant differences<br>between groups in:<br>- functional status at ICU<br>discharge (no meta-<br>analysis)<br>- all other outcomes are<br>non-significant: muscle<br>strength, QoL, MV duration,<br>ICU LOS, hospital LOS, time<br>in rehabilitation | 2                 |

CI = confidence interval, ER = early rehabilitation, HDU = high-dependency unit, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, QoL = quality of life, RCT = randomized controlled trial

# Early rehabilitation did not improve functional status at ICU discharge, muscle strength, quality of life, or healthcare utilization. However, early mobilisation improved walking ability without assistance at hospital discharge.

#### References

1.Nava S (1998) Rehabilitation of patients admitted to a respiratory intensive care unit. Arch Phys Med Rehabil 79: 849–854. PMID: 9685104

2. Burtin C, Clerckx B, Robbeets C, Ferdinande P, Langer D, Troosters T, et al. (2009) Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 37: 2499–2505. doi: 10. 1097/CCM.0b013e3181a38937 PMID: 19623052

3. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. (2009) Early phys- ical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 373: 1874–1882. doi: 10.1016/S0140-6736(09)60658-9 PMID: 19446324

4. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki E, et al. (2010) Electrical mus- cle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial with consumer summary]. Crit Care 14: R74. doi: 10.1186/cc8987 PMID: 20426834

5. Hanekom SD, Louw Q, Coetzee A (2012) The way in which a physiotherapy service is structured can improve patient outcome from a surgical intensive care: a controlled clinical trial. Crit Care 16: R230. doi: 10.1186/cc11894 PMID: 23232109

6. Denehy L, Skinner EH, Edbrooke L, Haines K, Warrillow S, Hawthorne G, et al. (2013) Exercise rehabil- itation for patients with critical illness: a randomized controlled trial with 12 months follow up. Crit Care 17: R156. doi: 10.1186/cc12835 PMID: 23883525

7. Brummel NE, Girard TD, Ely EW, Pandharipande PP, Morandi A, Hughes CG, et al. (2014) Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med 40: 370–379. doi: 10.1007/s00134-013-3136-0 PMID: 24257969

| Reference <i>,</i><br>Study Type                                                                                                                      | (Partic<br>charact                                                                                                                                                                    | d Controls<br>ipant #,<br>teristics)<br>otal    | Drop-<br>out<br>Rate  | Intervention | Control | Optimal<br>Population                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #437<br>Daniel<br>2015<br>PMID: 25995558<br>DOI:<br>10.1589/jpts.27.1067<br><b>Specification of study:</b><br>retrospective cross-<br>sectional study | and July 2013<br>Inclusion crite<br>- ≥ 18 years of<br>- admission to<br>- mechanically<br>Exclusion crite<br>- incomplete r<br>- length of ICU<br>hours<br>- > 30 days of I<br>Per B | age<br>the ICU<br>ventilated<br>eria:<br>ecords | not<br>applic<br>able | female       | male    | Primary endpoint:<br>- time interval needed<br>to be able to perform<br>active exercises (e.g.,<br>to sit) out of bed<br>(days)<br>Secondary Outcomes:<br>- time to sitting out of<br>bed (days)<br>- time to the<br>withdrawal of<br>sedation (days)<br>- duration of MV<br>- duration of weaning<br>from MV<br>- ICU length of stay<br>(days) | Primary endpoint:<br>- time interval needed to be able to<br>perform active exercises (e.g., to sit) out<br>of bed (days): Female $3.7 \pm 4.0$ vs Male<br>$5.7 \pm 5.9$ (p = significant)<br>Secondary Outcomes:<br>- time to sitting out of bed (days): Female<br>$3.1 \pm 4.1$ vs. $5.0 \pm 6.8$ (p = n.s.)<br>- time to the withdrawal of sedation<br>(days): Female $2.0 \pm 2.1$ vs Male $3.6 \pm 2.3$<br>(p = significant)<br>- duration of MV (days): Female $4.8 \pm 4.4$<br>vs Male $6.7 \pm 5.5$ (p = significant)<br>- duration of weaning from MV (days):<br>Female $1.6 \pm 3.6$ vs $2.2 \pm 3.9$ (p = n.s.)<br>- ICU length of stay (days): Female $6.7 \pm 5.0$ vs $8.2 \pm 5.9$ (p = n.s.) | 4                 |

ICU = Intensive Care Unit, LOS = length of stay, MV = mechanical ventilation, n.s. = non significant; pts.=patients

Women generally have a better functional response when admitted to the ICU, as they spend less time in the unit and are able to perform active exercises earlier.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| 99 patients, admitted to the medical intensive care unit of a single hospital in Korea between May 1 and December 31, 2013, retrospectivel evaluated       Inclusion criteria:       Inclusion criteria: | Reference,<br>Study Type                                                                                                                  | (Participant #,                                                                                                                                                                                                                                                                                                                                         | d Controls<br>characteristics)<br>otal                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                 | Control            | Optimal Population                                                                                                             | Primary Results                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2015<br>PMID: 25957499<br>https://doi.org/10.1<br>016/j.jcrc.2015.04.0<br>12<br><b>Specification of</b><br><b>study:</b><br>Retrospective | intensive care unit of a<br>Korea between May 1<br>2013, retrospectively<br>Inclusion criteria:<br>- No deep vein thro<br>- RASS -2 to +2<br>- PEEP <10 cmH2O<br>- FiO2 <0.6<br>- SpO2 >90%<br>- Respriratory rate<br>Exclusion criteria:<br>- Systolic blood pre<br>>200 mmHg<br>- Mean arterial pre<br><65 mmHg<br>- Arrhythmia<br>- Increment of dos | a single hospital in<br>and December 31,<br>evaluated<br>ombosis or bleeding<br><35/min<br>essure <90 mmHg or<br>essure >110 mmHg or<br>e of vasopressors |                      | factors for safety<br>events (adverse<br>events) during<br>mobility physical | acted as their own | calculation<br>(retrospective<br>study)<br>Endpoints:<br>- safety events<br>- variables<br>associated with<br>potential safety | 26 SE of 520 mobilization<br>sessions (5,0% CI 3,4-7,3%)<br>in 17 of 99 patients (17,2%<br>CI 10,6-26,4%)<br>After multivariate logistic<br>regression analysis for<br>safety events revealed:<br>ECMO was associated with<br>SE during physical mobility<br>therapy (OR 5,8 CI 2,2- | 4                 |

RASS = Richmond agitation sedation scale; PEEP = positive endexpiratory pressure; FiO2 = oxygen fraction of the air; SpO2 = oxygen saturation of the blood; SE = safety events; CI = confidence interval; ECMO = extracorporeal membrane oxygenation; OR = odds ratio

Early mobility physical therapy performed by a newly established group was feasible, but ECMO was associated with SE during physical mobility therapy.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                            | Cases and<br>(Participant #, C<br>Tota                                                                                                                                                                                                                                 | haracteristics)                                                                        | Drop-out<br>Rate                                                                                        | Intervention                                                                                                                                                                                                                                                                               | Control  | Optimal Population                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 439<br>Ota H 2015<br>(PMID:<br>25931747<br>DOI:<br>10.1589/jpts.27.<br>859)<br>Specification of<br>study:<br>Retrospective<br>Cohort<br>Descriptive | 111 pts<br>Inclusion criteria:<br>- age ≥ 18 years ad<br>- performance stat<br>- independent livin<br>prior to hospitaliza<br>- duration of MV f<br>- survival after MV<br>Exclusion criteria:<br>- cervical spine inju<br>neuromuscular dis<br>burns<br>Per Bra<br>48 | tus score of 0–2<br>ng at their home<br>ation<br>for > 48h<br>ury,<br>teases, or major | 18(12/15<br>in EM<br>group<br>and 3/15<br>in control<br>died,<br>3/18<br>missing<br>medical<br>records) | <b>EM program:</b><br>- passive and active limb<br>exercise<br>- relaxation of the muscles<br>- deep breathing exercises<br>- chest physiotherapy<br>- elevation of the head up<br>to 30–90 degrees<br>- changing pts position<br>from supine to up to a<br>135-degree lateral<br>position | Bed rest | <b>Derived endpoints:</b><br>- delirium after<br>weaning from MV<br>- tracheostomy<br>- duration of MV<br>- hospital LOS after<br>initiating MV<br>- discharge<br>disposition | Significant difference between<br>groups in:<br>- duration of MV, median 13<br>(IQR 7–22) in EM and 8 (IQR 6–<br>12) in control, p < 0.05<br>- tracheostomy, 29/48 pts(60%)<br>in EM and 23/60(38%) in<br>control, p<0.05<br>- discharge disposition to home,<br>28/48 pts EM vs 18/60 pts<br>control, p<0.05<br>No significant difference<br>between groups in:<br>- delirium incidents, 13(27%)<br>EM vs 17(28%) control<br>- hospital LOS, median<br>56days(IQR 38-85) EM vs 58<br>days(IQR 36-78) control group | 4                 |

EM = early mobilisation, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MV = mechanical ventilation, pts = patients

#### Early mobilisation program resulted in an improved rate of discharge to home among survivors after mechanical ventilation.

| Reference,<br>Study Type                                                                                                                              | (Participant #,                                                                                                                                                                                                                                                      | d Controls<br>, characteristics)<br>otal                                                                                                                                       | Drop-out<br>Rate | Intervention                                                                                                            | Control | Optimal Population                                                                                                                                     | Primary Results                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 440 Ko Y<br>2015<br>DOI:<br>10.1097/MAT.000<br>00000000239<br><b>Specification of</b><br><b>study:</b><br>Retrospective<br>Case Series<br>Descriptive | <ul> <li>stable vital sig<br/>Hg, respiratory<br/>beats/minute, a<br/>saturation high</li> <li>stable cannula</li> <li>Exclusion criter</li> <li>coagulopathy</li> <li>bleeding from</li> <li>use of vasopre</li> <li>open surgical</li> <li>unstable ECM</li> </ul> | ia:<br>perative patient<br>perative patient<br>(MAP > 60mm<br>rate less than 30<br>arterial oxygen<br>er than 95%)<br>ation site<br>ria:<br>cannulation site<br>essor<br>wound | Not<br>specified | Mobilization<br>during ECMO:<br>Daily assessment<br>for early<br>mobilization on<br>ECMO by multi-<br>disciplinary team | NA      | No sample size calculation<br>through study design<br><b>Outcomes:</b><br>-safety events during PT<br>-PT interruptions due to<br>unstable vital signs | <b>Results:</b><br>- no clinically significant adverse<br>event in patients<br>- Three sessions (5%) were<br>stopped due to tachycardia (n = 1)<br>and tachypnea (n = 2). | 4                 |

Pts.=patients; MAP=mean arterial pressure; ECMO=extracorporeal membrane oxygenation; PT=physiotherapy

It is feasible and safe to perform PT and mobilization for patients on ECMO in an experienced ECMO center.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                             | Cases and Con<br>(Participant #, Chara<br>Total                                                                                                                                                                                                                                                                                                                   |                                                                    | Drop-out<br>Rate                                                                                                                                               | Intervention                                                                                                                                                                                                                                     | Control                                                   | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade           |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 443<br>Kayambu<br>2015<br>(PMID:<br>25851383<br>DOI:<br>10.1007/s0013<br>4-015-3763-8)<br><b>Specification</b><br>of study:<br>RCT; Single<br>center | 50 pts<br>Inclusion criteria:<br>- ≥ 18 years admitted<br>- MV ≥48 h<br>- diagnosed with sep<br>sepsis, or septic shoce<br>Exclusion criteria:<br>- head injuries<br>- burns<br>- spinal injuries<br>- multiple fractured I<br>limbs,<br>- with septic shock b<br>unresponsive to max<br>treatment<br>- moribund or had ar<br>mortality within 48 h<br>Per Brance | epsis, severe<br>ock<br>lower<br>out<br>iximal<br>an expected<br>h | 8 at<br>discharge (4<br>died, 4 had<br>delirium) for<br>primary<br>endpoint<br>ACIF<br>+ 20 (16<br>death, 3 non-<br>contactable,<br>1 readmitted)<br>for SF-36 | Early targeted<br>physical<br>rehabilitation:<br>-electrical<br>stimulation, active<br>and passive range of<br>motion, sitting,<br>transfer,<br>ambulation<br>- 30 min, 1 or 2<br>times daily until<br>discharge<br>- within 48h of<br>diagnosis | Standard of<br>care:<br>physical<br>therapy<br>strategies | Primary endpoint:<br>- physical function via ACIF<br>- QOL via SF-36 at 6 months<br>post discharge<br>Secondary outcomes:<br>- PFIT<br>- muscle strength via MRC<br>muscle score<br>- anxiety on discharge<br>- duration of MV<br>- ventilator-free days<br>- ICU and hospital LOS<br>- ICU readmission<br>- ICU and 90-day mortality<br>and resuscitation status<br>Power analysis:<br>A sample size of 35 per<br>group (total 70) was<br>calculated with an effect<br>size of 0.7 and 90 % power<br>with a type 1 error rate of<br>0.05 and 0.025 with<br>Bonferroni adjustment | Primary endpoints:<br>- physical function, ACIF final scores<br>( $61.1 \pm 33.1 vs. 55.0 \pm 24.4$ , p = 0.45)<br>and mobility scores ( $39.8 \pm 38.2 vs.$<br>$34.5 \pm 27.1$ , p = 0.67)<br>- exercise group QOL improvement in<br>the domains of physical function ( $81.8 \pm 22.2 vs. 60.0 \pm 29.4$ in control,<br>p = 0.04) and physical role ( $61.4 \pm 43.8 vs. 17.1 \pm 34.4$ in control, p = 0.005)<br>Secondary outcomes:<br>- duration of MV (p=0.22),<br>- ventilator-free days (p=0.71),<br>- ICU and hospital LOS (p=0.43 and p =<br>0.80),<br>- ICU readmission (p=0.13),<br>- ICU and 90-day mortality (p=0.34<br>and p=0.08 respectively),<br>- resuscitation status (p=0.15),<br>- MRC scores (p=0.24),<br>- PFIT scores (p=0.61) | 2 → 3<br>small pilot<br>RCT |

ACIF = acute care index of function, h = hours, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, PFIT = physical functional ICU test, pts = patients, QOL = quality of life, RCT = randomized controlled trial

Early ICU exercise can moderate the detrimental effects of sepsis.

| Reference,                                                                | Cases and Controls                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drop-       |                       |         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                            | Evidence |
|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Study Type                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Intervention          | Control | Optimal Population                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                            | Grade    |
|                                                                           | (Participant #, characteristics)<br>Total<br>192 pts. Between August 2012 and March 2013<br>Inclusion criteria:<br>-independently<br>able to mobilize prior to the current hospital admission.<br>-in the ICU <72 hours<br>-receiving invasive ventilation for >24 hour, expected to<br>stay<br>invasively ventilated for at least the next 48 hours.<br>Exclusion criteria:<br>-age <18 years<br>-proven or suspected neurological<br>Impairment<br>-inability to communicate in English | out<br>Rate | Early<br>mobilization | Control | Optimal Population<br>Extracted<br>endpoints:<br>-mobilization during<br>invasive ventilation<br>-Sedation RASS<br>-Duration of MV<br>-Co-interventions | Primary Results<br>Results:<br>-Mortality at day 90 was 26.6%<br>(51/192)<br>-no mobilization occurred in 1,079<br>(84%)<br>-maximum levels of mobilization<br>were exercises in bed (N = 94, 7%),<br>standing at<br>the bed side (N = 11, 0.9%) or walking<br>(N = 26, 2%)<br>-at ICU discharge and 48 (52%) had<br>ICU-acquired weakness | Grade    |
| Specification<br>of study:<br>Prospective<br>Multi-centre<br>Cohort study | -inability to communicate in English<br>-cognitive impairment prior to the ICU admission<br>- unstable fractures or any other injury that would<br>require specific medical bed rest orders<br>-ICU admission for palliative care or proven or suspected<br>primary myopathic or neurological process associated<br>with prolonged weakness or ICU readmission<br>Per Branch                                                                                                              | -           |                       |         | -ICU acquired<br>weakness<br>-Mortality 90 days<br>6 month<br>-functional recovery                                                                      | -MRC-SS score was higher in<br>those patients who mobilized while<br>mechanically ventilated ( $50.0 \pm 11.2$<br>versus 42.0 ± 10.8, P = 0.003)<br>-survived to ICU discharge but who<br>had died by day 90 had a mean MRC<br>score of 28.9 ± 13.2 compared with<br>44.9 ± 11.4 for day-90 survivors (P<br><0.0001)                       |          |
|                                                                           | 192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1           |                       |         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                            |          |
|                                                                           | 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                       |         |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                            |          |

Pts. = patients; ICU=intensive care unit; RASS=Richmond Agitation and Sedation Scale; MV=mechanical Ventilation

More than 50% of patients discharged from the ICU had developed ICU-acquired weakness, which was associated with death between ICU discharge and day-90.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                          | Cases and Controls<br>(Participant #,<br>characteristics)                                                | Drop-<br>out<br>Rate | Intervention                            | Control | Optimal Population                             | Primary Results                                                                                                                                                                                                 | Evidence<br>Grade |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------|---------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                   | Total                                                                                                    |                      |                                         |         |                                                |                                                                                                                                                                                                                 |                   |
| 448<br>Miyamoto 2014                              | ICU patients of a tertiary care hospital with respiratory failure                                        |                      |                                         |         |                                                |                                                                                                                                                                                                                 |                   |
| PMID: 25705410                                    | → 15 pts.                                                                                                |                      |                                         |         |                                                | Results:                                                                                                                                                                                                        |                   |
| https://doi.org/1<br>0.1186/s40560-<br>014-0052-5 | <ul> <li>Inclusion criteria:</li> <li>PP &gt; 40 hours</li> <li>Pts. With respiratory failure</li> </ul> |                      | Extended<br>duration PP<br>(> 40 hours) |         | <b>Extracted Endpoint:</b><br>-PaO2/FiO2 ratio | <ul> <li>- PP improved the PaO2/FiO2 ratio (mean ± SD):</li> <li>a. baseline vs. 8h: 193.8 ± 70.1 vs. 274.7 ± 70.7 mmHg (p = 0.02)</li> <li>b. baseline vs. 16 h: 193.8 ± 70.1 vs. 294.1 ± 78.0 mmHg</li> </ul> | 4                 |
| Specification of study:                           | Exclusion criteria:<br>- PP < 40 hours                                                                   |                      |                                         |         |                                                | (p = 0.23)                                                                                                                                                                                                      |                   |
| Retrospective                                     | Per Branch                                                                                               |                      |                                         |         |                                                |                                                                                                                                                                                                                 |                   |
| monocenter<br>study                               | 15                                                                                                       |                      |                                         |         |                                                |                                                                                                                                                                                                                 |                   |

Pts = patients, ICU = intensive care unit, PP = prone positioning, PaO2 = partial pressure of oxygen, FiO2 = fraction of inspired oxygen

# Extended duration-prone positioning resulted in a progressive improvement of oxygenation during the first 8 hours of treatment exclusively.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                            | -                                                                                                                                    | trols<br>characteristics)<br>Total                                                       | Drop<br>-out<br>Rate | Intervention                                                | Control             | Optimal Population                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 449<br>Rand 2015<br>PMID: 25701637<br>https://doi.org/10.1<br>016/j.apmr.2015.02.<br>008<br><b>Specification of</b><br><b>study:</b><br>single center before-<br>after cohort study | pts<br>Inclusion criter<br>- ≥ 18 years<br>- pts from a pri<br>with hemorrha<br>to Internationa<br>Diseases, Ninth<br>Modification d | mary stroke center<br>gic stroke according<br>Il Classification of<br>Revision, Clinical |                      | Daily mobility<br>intervention<br>based on<br>patient's LOF | standard of<br>Care | <b>Endpoints:</b><br>- LOF before and<br>after introduction of<br>a mobility<br>intervention in NICU<br>- variables associated<br>with higher<br>functional outcomes<br>- similarities among<br>pts achieving a LOF<br>of 5 at discharge<br>No power analysis | <ul> <li>Primary Endpoints: <ul> <li>LOF before and after introduction of a mobility intervention in NICU: Pts with hemorrhagic stroke had a 2.3-fold increase in LOF &gt; 5 at discharge</li> <li>variables associated with higher functional outcome (according to a MLRM including NICU LOS as a covariate [OR; 95% CI]): <ul> <li>a. the intervention (5.28; 2.52-11.06)</li> <li>b. LOF of 5 at admission (6.02; 1.45 – 24.96)</li> <li>c. SAH stroke type (3.78; 1.83 – 7.80)</li> <li>d. third (vs. lowest) quartile of NICU LOS (2.94; 1.16 – 7.47)</li> <li>e. absence of aphasia and/or hemiplegia (17.77; 6.59 – 47.92)</li> </ul> </li> </ul></li></ul> | 4                 |

Pts = patients, LOF = level of function, NICU = Neurointensive care unit, ICH = intra-cerebral hemorrhage, MLRM = multivariable logistic regression model; CI = confidence interval, SAH = subarachnoid hemorrhage, OR = odds ratio, LOS = length of stay

Evidence-based mobility intervention can improve outcomes for patients with hemorrhagic stroke and is feasible in any intensive care setting. *No detailed assessment was carried out because higher-quality evidence is available on this topic.* 

| Reference,<br>Study Type                                                                                                                       | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Recommendations | Evidence<br>Grade   |
|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|---------------------|
| 450 Sommers<br>2015<br>PMID:<br>25681407<br>DOI:<br>10.1177/02692<br>15514567156<br><b>Specification</b><br>of study:<br>National<br>Guideline | Definition of early<br>mobilization                                |                 | 1 → 5<br>(outdated) |

| Reference,<br>Study Type                                                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-out<br>Rate | Intervent<br>ion | Control | Optimal Population                                                                                                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 456 Mora-<br>Arteaga<br>2015<br>(PMID:<br>25599942<br>DOI:<br>10.1016/j.med<br>in.2014.11.003<br>)<br>Specification<br>of Study:<br>Systematic<br>Review |                                                                 |                  | РР               | SP      | Outcomes:<br>- mortality after<br>maximum follow-up<br>- stay in intensive care<br>(days)<br>- days on mechanical<br>ventilation<br>- adverse effects and<br>complications<br>- severity of ARDS<br>(Berlin classification)<br>- daily duration of<br>pronation<br>- start of pronation and<br>duration of ARDS<br>- tidal volume used | <b>Significant differences between groups in:</b><br>- subgroup mortality in pts. ventilated with low<br>tidal volume (OR: 0.58; 95%CI: 0.38-0.87<br>p = 0.009, I2 33%),<br>- prolonged pronation (OR: 0.6; 95%CI: 0.43-0.83;<br>p = 0.002, I2 27%),<br>- start within the first 48 h of disease evolution<br>(OR 0.49; 95%CI 0.35-0.68; p = 0.0001, I2 0%)<br>- severe hypoxemia (OR: 0.51: 95%CI: 0.36-1.25; p<br>= 0.0001, I2 0%).<br><b>No significant differences between groups in:</b><br>- overall mortality: (OR: 0.76; 95%CI:0.54-1.06; <i>p</i> =<br>0.11, <i>I</i> 2 63%) | 2                 |

ARDS = acute respiratory distress syndrome, APRV = airway pressure release ventilation, HFOV = high-frequency oscillation ventilation, PP = prone position, pts = Patients, SP = supine position

Prone position ventilation is a safe strategy and reduces mortality in patients with severely impaired oxygenation. It should be started early, for prolonged periods, and should be associated with a protective ventilation strategy.

#### References

- 1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001;345:568---73.
- 2. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292:2379---87
- 3. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydas C, Ose C, et al. Prone positioning improves oxygenation in post-traumatic lung injury----a prospective randomized trial. J Trauma. 2005;59:333---41.
- 4. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:1233---9.
- 5. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med. 2008;34:1487---91. 12.
- 6. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009;302:1977---84
- 7. Guérin C, Reignier J, Richard J, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013;368:2159---68

| Reference,<br>Study Type                                                                                                             | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                         | Characteristics)                                         | Drop-out<br>- Rate                                                                      | Intervention                                                               | Control                                                              | Optimal<br>Population                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 458<br>Schallom<br>2015<br>(PMID:<br>25554555<br>DOI:<br>10.4037/ajcc2<br>015781)<br>Specification<br>of study:<br>Cross-over<br>RCT | <ul> <li>15 ICU pts</li> <li>Inclusion criteria:</li> <li>confirmed gastric<br/>feeding tube</li> <li>ventilated per en</li> <li>at least 18 years of<br/>approval to rando</li> <li>45º</li> <li>anticipated MV<br/>and tube feeding of<br/>hours</li> </ul> | dotracheal tube<br>old<br>omize pts to<br>duration of 48 | 4 pts<br>(extubated<br>early and<br>had partial<br>data included<br>in the<br>analysis) | HOB<br>-elevated at 30º for<br>12h on day 1<br>-at 45º for 12h on<br>day 2 | HOB<br>- elevated at 45°<br>on day 1<br>-elevated at 30°<br>on day 2 | Primary<br>outcomes:<br>- reflux<br>- aspiration<br>- pressure<br>ulcers | <ul> <li>Primary outcomes</li> <li>overall mean HOB angle and the % of pepsin-positive oral secretions for each HOB assignment demonstrated a significant negative correlation (t = -0.536, p = 0.008 at 30° and t = -0.433, p = 0.03 at 45°)</li> <li>no significant difference in aspiration/pepsin positive tracheal secretion (p = 0.37)</li> <li>no pts developed a pressure ulcer</li> </ul> | 4                 |

HOB = head of bed elevation, ICU = intensive care unit, pts = patients, RCT = randomized controlled trial

HOB angle seems to have a benefit in relation to aspirations.

| 15171)- Intubation within the preceding 2 weeks<br>- weight ≥ 159 kgbefore<br>start of<br>interventi<br>on- acclimation<br>mode: gradual<br>increase in the<br>degree of rotation<br>over several hours<br>from 25° to the<br>maximum lateral<br>angle)right) at least<br>45° head<br>elevation ≥ 30°- ICU LOS 11.1 [IQR 5.4-<br>23.4] vs. 8.2 [IQR 3.6-14.9]<br>days<br>- ICU mortality 25% vs.<br>29%Specification<br>of study:<br>Pilot RCT- Day 7 or<br>- death or<br>- transfer from study unit or<br>- consent revoked<br>Follow up until ICU discharge- Mode: gradual<br>interventi<br>on- ICU LOS 11.1 [IQR 5.4-<br>23.4] vs. 8.2 [IQR 3.6-14.9]<br>days<br>- ICU mortality 25% vs.<br>29%Per Branch- Day 7 or<br>- death or<br>- consent revoked<br>Follow up until ICU discharge- ICU dischargePer Branch- Day 7 or<br>- consent revoked- ICU mortalityPer Branch- Per Branch- Hot daysParticle Allow of 0.05- ICU LOS 11.1 [IQR 5.4-<br>- UL OS 11.1 [IQR 5.4-<br>- ICU Mortality 25% vs.<br>- ICU mortality | Reference,<br>Study Type                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es and Controls<br>nt #, Characteristics)<br>Total                                                                                                                                                                                                | Drop-out<br>Rate                                            | Intervention                                                                                                                                                                                                                                                                       | Control                                                                                                  | Optimal Population                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hannemann<br>2015<br>(PMID:<br>25554551<br>DOI:<br>10.4037/ajcc20<br>15171)<br>Specification<br>of study: | <ul> <li>medical, 1 medical-</li> <li>Inclusion criteria: <ul> <li>≥ 18 y</li> <li>MV ≤ 8 h</li> </ul> </li> <li>Exclusion criteria: <ul> <li>pulmonary mass hemothorax, ple potential source</li> <li>systolic bp &lt; 90 r support</li> <li>injuries requiring</li> <li>head injury requ monitoring</li> <li>Intubation within</li> <li>weight ≥ 159 kg</li> </ul> </li> <li>Study duration till <ul> <li>Day 7 or</li> <li>discontinuation of</li> <li>death or</li> <li>transfer from stu</li> <li>consent revoked</li> </ul> </li> </ul> | surgical ICU)<br>, pneumothorax,<br>ural effusion, or other<br>of compression atelectasis<br>mmHg with vasopressor<br>g immobilization<br>iring intracranial pressure<br>n the preceding 2 weeks<br>of MV or<br>udy unit or<br><b>I discharge</b> | ion<br>group):<br>death<br>before<br>start of<br>interventi | Triadyne Proventa<br>bed<br>- rotation angle<br>45° in the lateral<br>positions<br>Head elevation ≥<br>30°<br>(At beginning of<br>protocol)<br>- acclimation<br>mode: gradual<br>increase in the<br>degree of rotation<br>over several hours<br>from 25° to the<br>maximum lateral | care:<br>- manual<br>turning every 2<br>hours (back to<br>left to back to<br>right) at least<br>45° head | calculation:<br>- None for pilot<br>study.<br>Primary endpoint:<br>- incidence and<br>progression or<br>resolution of PPCs by<br>serial chest Xrays<br>Secondary<br>outcomes:<br>- turning-related AEs<br>- duration of MV<br>- ICU LOS | no significant difference (p<br>= 0.16, no effect size)<br>Secondary endpoints:<br>- AEs (n.s.)<br>- found no statistically<br>significant differences<br>between groups in<br>turning-related adverse<br>events, duration of MV,<br>ICU LOS or ICU mortality<br>- MV duration 6.0 ± 5.0 vs.<br>5.2 ± 4.3 days<br>- ICU LOS 11.1 [IQR 5.4-<br>23.4] vs. 8.2 [IQR 3.6-14.9]<br>days<br>- ICU mortality 25% vs.<br>29%<br>Posthoc power analysis:<br>a sample size of 54<br>patients (27 per group)<br>necessary to detect an<br>effect on PPCs with 80% |                   |

AEs = adverse events, bp = blood pressure, CLRT = continuous lateral rotation therapy, ICU = intensive care unit, IQR = interquartile range, LOS = length of stay, MV = mechanical ventilation, PPCs = preventable pulmonary complications (e.g., atelectasis or pneumonia)

#### CLRT showed no benefit compared to standard of care. 54 pts would be necessary to detect an effect on PPC with 80% power.

| Reference,<br>Study Type                                                                                                                                          | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                      | Drop-<br>out<br>Rate | Intervention                                                                                             | Control                                                       | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 460<br>Klein<br>2015<br>(PMID:<br>25517476<br>DOI:<br>10.1097/CCM<br>.000000000<br>000787)<br><b>Specification</b><br>of study:<br>prospective<br>cohort<br>study | <ul> <li>- confusion, combativeness,</li> <li>- chronic psychiatric condition</li> <li>- expiration or discharge from the</li> </ul> |                      | Early<br>progressive<br>mobilisation<br>- 16 mobility<br>levels<br>- initiated on<br>day of<br>admission | Standard of<br>Care<br>- no early<br>mobilization<br>(Pre-EM) | <ul> <li>Primary endpoint: <ul> <li>daily mobility levels</li> </ul> </li> <li>Secondary outcomes: <ul> <li>hospital and NICU LOS</li> <li>30-day mortality</li> <li>discharge disposition</li> <li>VAP</li> <li>blood stream infection</li> <li>DVT</li> <li>HAPUS</li> <li>anxiety</li> <li>depression/hostility</li> </ul> </li> <li>Power analysis: <ul> <li>300 pts (150 per study phase)</li> <li>would provide 80% power to</li> <li>detect a decrease in mean LOS</li> <li>of at least 30% (assuming LOS</li> <li>was distributed log-normally</li> <li>with a coefficient of variation</li> <li>of 1.25 and that a significance</li> <li>level of 0.05)</li> </ul></li></ul> | Significant differences between groups<br>in:<br>- higher mobility levels in intervention (p<br>< 0.001)<br>- LOS of hospital and NICU stay for pts in<br>the EM group were reduced by 33% and<br>45% respectively (both $p < 0.001$ )<br>- prevalence of blood stream infection<br>was reduced by 3% ( $p = 0.015$ )<br>-prevalence of HAPU was reduced by<br>2.7% ( $p = 0.026$ )<br>- EM pts had lower anxiety scores ( $p = 0.029$ )<br>No significant differences between<br>groups in:<br>- 30-day mortality ( $p = 0.12$ )<br>- VAP ( $p=0.11$ )<br>- DVT ( $p=0.12$ )<br>- depression ( $p=0.055$ )<br>- hostility ( $p=0.18$ ) | 3                 |

DVT = deep vein thrombosis, EM = early mobilization, HAPU = hospital-acquired pressure ulcer, ICU = intensive care unit, LOS = length of stay, NICU = neurologic ICU, pts = patients, VAP = ventilator-associated pneumonia

# An early progressive mobility protocol increased patients' highest level of mobility and decreased hospital and NICU LOS, but did not affect psychological profile.

| Reference,<br>Study Type                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                         |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------|
| 461                                                 | Number of publications not stated                                                          |
| Hodgson 2014                                        | Inclusion criteria:<br>- adults                                                            |
| PMID:<br>25475522                                   | -mechanically ventilated,<br>intensive care unit patients                                  |
| DOI:<br>10.1186/s1305                               | Definition of categories                                                                   |
| 4-014-0658-y                                        | Safety parameters for                                                                      |
| Specification<br>of study:<br>National<br>Guideline | mobilization categories:<br>1.respiratory<br>2.cardiovascular<br>3.neurological<br>4.other |
|                                                     |                                                                                            |

| Reference,<br>Study Type                                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)                                                                                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                               | Control    | Optimal Population                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                     | Total                                                                                                                                                                                                                                                                                                                                            |                      |                                                            |            |                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |                   |
| 465<br>Burke 2016<br>(PMID:<br>25353646<br>DOI:<br>10.1111/crj.1223<br>4)<br>Specification of<br>study:<br>Systematic<br>Review + Meta-<br>Analysis | 12 publications (11 RCT, 1<br>case control) <sup>1-12</sup><br>Inclusion criteria:<br>- adult ICU pts<br>- ≥ 18 years of age<br>Exclusion criteria:<br>- cadaveric studies<br>- cardiac pacing<br>- spinal cord stimulation<br>- phrenic nerve<br>stimulation<br>- stable pts. not requiring<br>ICU admission<br>- incomplete data<br>Per Branch |                      | Percutaneous<br>neuromuscular<br>electrical<br>stimulation | Usual care | <b>Outcomes:</b><br>- muscle bulk<br>- muscle strength with MRC<br>- cardiovascular fitness<br>- independence from MV<br>- activity limitations | Significant differences between<br>groups in:<br>- MRC, MD: 95%CI): 0.93 (0.51 – 1.35)<br>P-value: < 0.0001<br>- three RCTs supported NMES to<br>preserve muscle strength using a fixed-<br>effects model [n = 146; standardised<br>mean difference 0.93 (0.51, 1.35)<br>P = 0.0002] | 2                 |

ICU = intensive care unit, MRC = medical research council, MV = mechanical ventilation, RCT = randomized controlled trial

Neuromuscular electrical stimulation increased muscle strength in a meta-analysis including 3 out of 12 studies.

#### References

- Abdellaoui A, Préfaut C, Gouzi F, et al. Skeletal muscle effects of electrostimulation after COPD exacerbation: a pilot study. Eur Respir J. 2011; 38(4): 781–788.
- 2. Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation in prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. *Intensive Care Med*. 2013; **49**(4): 309–315.
- 3. Falavigna LF, Silva MG, Freitas AL, et al. Effects of electrical muscle stimulation early in the quadriceps and tibialis anterior muscle of critically ill patients. *Physiother Theory Pract*. 2014; **30**(4): 223–228.
- 4. Gerovasili V, Stefanidis K, Vitzilaios K, et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study [with consumer summary]. Crit Care. 2009; **13**(5): R161.
- 5. Gruther W, Kainberger F, Fialka-Moser V, et al. Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study. J Rehabil Med. 2010; 42(6): 593–597.
- 6. Meesen RLJ, Dendale P, Cuypers K, *et al.* Neuromuscular electrical stimulation as a possible means to prevent muscle tissue wasting in artificially ventilated and sedated patients in the intensive care unit: a pilot study. *Neuromodulation*. 2010; **13**(4): 315–320.
- 7. Poulsen JB, Møller K, Jensen CV, Weisdorf S, Kehlet H, Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. *Crit Care Med*. 2011; **39**(3): 456–461.
- 8. Routsi C, Gerovasili V, Vasileiadis I, *et al*. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. *Crit Care*. 2010; **14**(2): R74.
- 9. Karatzanos E, Gerovasili V, Zervakis D, *et al*. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. *Crit Care Res Pract*. 2012; **2012**: 432752.
- 10. Zanotti E, Felicetti G, Maini M, Fracchia C. Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: effect of electrical stimulation. *Chest*. 2003; **124**(1): 292–296.
- 11. Rodriguez PO, Setten M, Maskin LP, *et al*. Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation. *J Crit Care*. 2012; **27**(3): 319, e1–8.
- 12. Hirose T, Shiozaki T, Shimizu K, *et al*. The effect of electrical muscle stimulation on the prevention of disuse muscle atrophy in patients with consciousness disturbance in the intensive care unit. *J Crit Care*. 2013; **28**(4): 536, e1–7.

| Reference,<br>Study Type                                                                    | Cases and Co<br>(Participant #, Cha<br>Total                                                                                                                                                                                                           |                                                 | Drop-<br>out<br>Rate | Intervention                                                                                                                                                          | Control                                           | Optimal Population                                                                                                               | Primary Results                                                                                                                                                                                                                                | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 295<br>McWilliams,<br>2015<br>(PMID:<br>25316527<br>DOI:<br>10.1016/j.jcrc.20<br>14.09.018) | 582 pts<br>Inclusion criteria:<br>- invasively ventilated for<br>Exclusion criteria:<br>- significant neurologic i<br>- orthopedic injury with<br>to mobilize<br>- significant burn<br>- poor preadmission mo<br>yards) reported by the p<br>admission | njury<br>contraindication<br>bility levels (<10 |                      | New supportive<br>rehabilitation team was<br>created, with a focus on<br>promoting<br>early and enhanced<br>rehabilitation for patients<br>at high risk for prolonged | Previous<br>12<br>month<br>without<br>new<br>care | <b>Primary endpoints:</b><br>- mobility level at ICU<br>discharge (MMS)<br>- mean ICU LOS<br>- post-ICU LOS<br>- ventilator days | Significant differences between<br>groups in:<br>- significant increase in mobility at<br>ICU discharge<br>- ICU LOS (16.9 vs 14.4 days,<br>P=0.007)<br>- ventilator days (11.7 vs 9.3 days,<br>p <0.05)<br>- total hospital LOS (35.3 vs 30.1 | 4                 |
| Specification of                                                                            | Per Branch                                                                                                                                                                                                                                             |                                                 |                      | ICU and hospital LOS                                                                                                                                                  | team                                              | - in-hospital mortality                                                                                                          | days, p < 0.001)                                                                                                                                                                                                                               |                   |
| <b>study:</b> quality<br>improvement<br>project                                             | N=292                                                                                                                                                                                                                                                  | N=290                                           |                      |                                                                                                                                                                       |                                                   |                                                                                                                                  | - in-hospital mortality (39% vs<br>28%, p<0.05)                                                                                                                                                                                                |                   |

ICU= intensive care unit, LOS = length of stay

The implementation of a new rehabilitation team with focus on early and enhanced rehabilitation was associated with significant reduction of mortality, ICU and hospital LOS and increase of mobility at discharge.

| Reference,<br>Study Type                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-out<br>Rate                                                                                                       | Interven<br>tion               | Control             | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 468<br>Kho 2015<br>(PMID:<br>25307979<br>DOI:<br>10.1016/j.jcrc.20<br>14.09.014)<br><b>Specification of</b><br><b>study:</b><br>RCT | <ul> <li>36 pts</li> <li>Inclusion criteria: <ul> <li>≥ 18 years of age</li> <li>MV for ≥ 1 day</li> <li>expected to remain in the ICU ≥ 2 days</li> </ul> </li> <li>Exclusion criteria: <ul> <li>BMI ≥ 35 kg/m2</li> <li>moribund status</li> <li>ICU LOS &gt; 7 days before enrolment</li> <li>&gt; 4 days of continuous MV before enrolment</li> <li>known intracranial process</li> <li>primary systemic neuromuscular disease</li> <li>unable to speak English</li> <li>baseline cognitive impairment before ICU admission</li> <li>conditions preventing NMES or primary outcome evaluation</li> <li>unable to transfer independently from bed to chair before ICU admission</li> <li>implanted cardiac pacemaker or defibrillator</li> <li>Ilimitation in core other than no cardiopulmonary resuscitation</li> <li>pregnancy</li> <li>suspected malignancy in the legs</li> </ul> </li> </ul> | n = 2<br>interventiona<br>l pts (due to<br>new<br>information<br>regarding<br>presence of<br>an exclusion<br>criteria) | NMES:<br>60 minutes<br>per day | Sham<br>stimulation | Primary endpoint:<br>lower extremity<br>muscle strength via<br>MRC<br>Secondary<br>outcomes:<br>- muscle<br>strength via<br>MRC<br>- dynamometry<br>of the M.<br>quadriceps,<br>tibialis<br>anterior und<br>gastrocnemius<br>- HGS<br>- MIP<br>- FSS for ICU<br>- MWD<br>- duration of<br>MV<br>- ICU LOS<br>- hospital LOS<br>- ICU<br>randomisation<br>- hospital<br>mortality<br>- total hospital<br>charges<br>- survivors'<br>hospital<br>discharge<br>disposition<br>- iADLs | <ul> <li>Primary endpoints:</li> <li>lower extremity MRC, [mean (SD)] at hospital discharge: intervention 28 (2) vs control 27 (3), p = 0.072</li> <li>Secondary outcomes: <ul> <li>lower extremity MRC, [mean (SD)] at</li> <li>first awakening: intervention 23 (6) vs. control 25 (5), p = 0.271</li> <li>UC discharge, [mean (SD)]: intervention 27 (23) vs. control 25 (4), p = 0.139</li> <li>increase in first awakening to ICU discharge [mean (SD)]: litervention 5.3 (5.9) vs. control 0.8 (3.8);</li> <li>p-value: 0.047</li> <li>increase in first awakening to hospital discharge [mean (SD)]: intervention 5.7 (5.1) vs. control 1.8 (2.7), p-value: 0.019</li> <li>overall MRC at</li> <li>first awakening: intervention [mean (SD)]: 42 (10) vs. control 45 (11), p-value: 0.374</li> <li>ICU discharge [mean (SD)]: intervention 49 (6) vs. control 48 (8), p-value: 0.374</li> <li>ICU discharge [mean (SD)]: intervention 53 (4) vs. control 50 (7), p-value: 0.141</li> <li>dynamometry M. tibialis anterior (kg) at</li> <li>first awakening [mean (SD)]: intervention 18 (11) vs. control 16 (9), p-value: 0.874</li> <li>ICU discharge [mean (SD)]: intervention 21 (10) vs. control 19 (9), p-value: 0.874</li> <li>ICU discharge [mean (SD)]: intervention 21 (10) vs. control 19 (16), p-value: 0.874</li> <li>ICU discharge [mean (SD)]: intervention 25 (16) vs. control 32 (12), p-value: 0.309</li> <li>ICU discharge [mean (SD)]: intervention 31 (17) vs. control 32 (12), p-value: 0.473</li> <li>dynamometry M. guadriceps femoris (kg) at</li> <li>first awakening [mean (SD)]: intervention 23 (11) vs. control 23 (12), p-value: 0.473</li> <li>dynamometry M. quadriceps femoris (kg) at</li> <li>first awakening [mean (SD)]: intervention 23 (11) vs. control 33 (14), p-value: 0.458</li> <li>hospital discharge [mean (SD)]: intervention 28 (14) vs. control 33 (14), p-value: 0.458</li> <li>hospital discharge [mean (SD)]: intervention 28 (7.5 (28/7.5) vs. control 39/10.5 (43/10.0), p-value: 0.472/421</li> <li>ICU discharge [mean (SD)]: intervention -34/9.4 (26/7.2) vs.</li></ul></li></ul> | 3                 |

| Р              | Per Branch |                      |  | <ul> <li>hospital discharge [mean (SD)]: intervention 61 (16) vs. control 51 (37), p-value: 0.68</li> <li>FSS-ICU at:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|------------|----------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contr<br>n = 1 | 01         | tervention<br>n = 16 |  | <ul> <li>first awakening [mean (SD)]: intervention 12 (8) vs. control mean 13 (6), p-value: 0.503</li> <li>ICU discharge [mean (SD)]: intervention 20 (10) vs. control 19 (6), p-value: 0.897</li> <li>hospital discharge [mean (SD)]: intervention 30 (7) vs. control -26 (8), p-value: 0.140</li> <li>increase first awakening to ICU discharge [mean (SD)]: intervention 11.4 (6.2) vs. control 4.3 (5.6), p-value: 0.019</li> <li>MWD (feet) at: <ul> <li>first awakening [mean (SD)]: intervention 64 (123) vs. control 29 (97), p-value: 0.458</li> <li>ICU discharge [mean (SD)]: intervention -216 (343) vs. control 29 (97), p-value: 0.458</li> <li>ICU discharge [mean (SD)]: intervention 514 (398) vs. control 251 (210), p-value: 0.250</li> <li>hospital discharge [mean (SD)]: intervention 514 (398) vs. control - [mean (SD)]: 26 (8), p-value: 0.050</li> </ul> </li> <li>number of iADL at: <ul> <li>first awakening [mean (SD)]: intervention 0 (0) vs. control 0.1 (0.5), p-value: 0.410</li> <li>ICU discharge [mean (SD)]: intervention 1.2 (1.8) vs. control 0.9 (1.7) p-value: 0.728</li> <li>hospital discharge intervention 4.0 (2.3) vs. control 2.4 (2.6), p-value: 0.101</li> </ul> </li> <li>ICU LOS [mean (SD)]: intervention 26.8 (20.9) vs. control 27.7 (18.1), p-value: 0.905</li> <li>hospital LOS [mean (SD)]: intervention 3 (17) vs. control 3 (19), p-value: 1.000</li> <li>ICU mortality [n (%)]: intervention 1 (5) vs. control 3 (19), p-value: 0.323</li> <li>duration of mechanical ventilation (days) [mean (SD)]: intervention 16 (15) vs. control 20 (18), p-value: 0.492</li> </ul> |

BMI = body mass index, FSS = functional status score, HGS = hand grip strength, iADL = independent activities of daily living, ICU = intensive care unit, LOS = length of stay, MIP = maximum inspiratory pressure, MRC = medical research council, MV = mechanical ventilation, MWD = maximum walking distance, NMES = neuromuscular electrical stimulation, pts = patients

Neuromuscular electrical stimulation did not improve leg strength at ICU discharge.

| Reference,<br>Study Type                                                                                                                                  | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Drop-out<br>Rate                                                                              | Intervention | Control    | Optimal<br>Population                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|------------|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 469<br>Dirks 2015<br>(PMID: 25296344<br>DOI:<br>10.1042/CS2014044<br>7)<br><b>Specification of</b><br><b>study:</b><br>RCT –<br>intraindividual<br>design | 9 pts<br>Inclusion criteria:<br>-ICU pts<br>Exclusion criteria:<br>- <18 or >80 years of age<br>- not expected to undergo complete sedation<br>- suffering from spinal cord injury<br>- recent arterial surgery on the legs<br>- local wounds that prohibit the application<br>of NMES<br>- chronic use of corticosteroids<br>- intake of certain anti-thrombotic drugs<br>- presence of an implantable cardioverter-<br>defibrillator (ICD) and/or pacemaker<br>- expected sedation time estimated by the<br>responsible physician was <3 days<br>Per Branch | 3 pts<br>(33,3%)<br>because of<br>early<br>awakening<br>(after <3<br>study days)<br>and death | NMES         | Usual care | Primary<br>endpoint:<br>- MFCSA<br>difference<br>between first<br>and second<br>measurement) | <b>Primary endpoint:</b><br>MFCSA- Type I (μm <sup>2</sup> ), mean<br>(SD):<br>- control pre/post: 4560 ± 261 /<br>3879 ± 484, p < 0.05<br>- intervention pre/post: 4414 ±<br>441 / 4512 ± 550, p-value: n.s<br>MFCSA- Type II (μm <sup>2</sup> ), mean<br>(SD):<br>- control pre/post: 3412 ± 530 /<br>2647 ± 51, p < 0.05<br>- intervention pre/post: 3168 ±<br>607 / 3246 ± 590, p-value n.s | 4                 |

ICD = implantable cardioverter-defibrillator, ICU = intensive care unit, MFCSA = muscle fiber cross sectional area, NMES = neuromuscular electrical stimulation, n.s = not significant, pts = patients, SD = standard deviation

#### Neuromuscular electrical stimulation did not increase MFCSA.

| Reference,<br>Study Type                                                                                                                          | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Controls<br>Characteristics)<br>otal                                                                                   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                         | Control             | Optimal<br>Population                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 474<br>Dong 2014<br>(PMID:<br>25215147<br>DOI:<br>10.5847/wje<br>m.j.issn.1920<br>-<br>8642.2014.0<br>1.008)<br>Specification<br>of study:<br>RCT | 60 pts admitted to the ICU<br>Inclusion criteria:<br>- ventilated for 48-72h<br>- >18y, expected MV ≥1 week<br>- clear consciousness<br>- cardiovascular stability<br>- respiratory stability<br>- no unstable fracture<br>Exclusion criteria:<br>- inability to do activities independ<br>- rapid development of neuromused<br>disorders,<br>-an estimated 6-month mortality ><br>- increased intracranial pressure<br>- absent limbs<br>- preadmission glucocorticoids >20<br>- ICU admission after cardiopulmo<br>- tumor radiotherapy and chemoth<br>- acute myocardial infarction or ur<br>80 | cular disease, and irreversible<br>> 50%<br>D days (prednisone >20 mg/d)<br>nary resuscitation<br>herapy within 6 months |                      | Early<br>rehabilitation:<br>- until hospital<br>discharge<br>- heading up<br>actively,<br>transferring<br>from SP to<br>sitting position<br>at the edge of<br>the bed or<br>sitting in chair,<br>and from sitting<br>to standing, and<br>walking bedside<br>- 2x daily<br>- intensity was<br>adjusted<br>according to<br>the condition of<br>the pts | Standard<br>of care | Primary endpoint:<br>- not defined<br>(feasibility study)<br>Derived endpoints:<br>- duration of MV in<br>days<br>- ICU LOS in days<br>- APACHE II Score<br>- hospital mortality<br>No power analysis<br>(feasibility study) | Significant difference<br>between groups in:<br>- duration of MV, $5.6\pm2.1$<br>intervention vs $7.3\pm2.8$<br>control, p = 0.005<br>- ICU LOS, $12.7\pm4.1$<br>intervention vs $15.2\pm4.5$<br>control, p = 0.01<br>No significant difference<br>between groups in:<br>- APACHE II Score ( $10.0\pm3.1$<br>interventions vs $10.0\pm3.2$<br>control, p = 0.50)<br>- hospital mortality (2 pts<br>( $6.7\%$ ) intervention vs 3 pts<br>( $10\%$ ) control, p = $1.0$ ) | 2                 |

APACHE II = acute physiology and chronic health evaluation, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patient

Early rehabilitation therapy reduces the duration of mechanical ventilation and the length of stay in the ICU.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                   | Drop-out<br>Rate                    | Intervention                                            | Control                                           | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 478<br>Wang<br>2014<br>PMID: 25069952<br>https://doi.org/10.<br>1186/cc14001<br><b>Specifiation of</b><br><b>study:</b><br>Prospective cohort<br>study | Pts. requiring CVVH, 35 pts. included (40 planned)         Exclusion control (passive mobilization):         - RASS +3 or +4         - HR >160 or <40 beats/min or new arrhythmia | 1 (permanent<br>dialysis<br>access) | Mobilization<br>group:<br>1. Low-level<br>2. High-level | <b>Baseline Pts.:</b><br>-passive<br>mobilization | No sample size<br>calculation à<br>Convenience<br>sample of 40 Pts.<br><b>Primary</b><br>endpoints:<br>-AE<br>Secondary<br>endpoints:<br>-Filter life<br>(duration,<br>subgroup)<br>-Intervention<br>feasibility<br>(measured by filter<br>alarm rates,<br>pressures (access,<br>return,<br>transmembrane),<br>blood flow<br>recorded each<br>minute from the<br>digital output<br>screen) | Primary results:<br>-No AEs occurred<br>Secondary results:<br>-Intervention filters lasted<br>longer than nonintervention<br>filters (regression coefficient<br>= 13.8, robust 95%<br>confidence interval (CI) = 5.0<br>to 22.6, P = 0.003).<br>-femoral filter subgroup<br>(regression coefficient = 15.7,<br>robust 95% CI = 4.6 to 26.7, P<br>= 0.008), but not in the<br>nonfemoral access filter<br>subgroup (regression<br>coefficient = 9.2, robust 95%<br>CI = −6.0 to 24.4, P = 0.20)<br>(Figure 2).<br>-Feasibility:<br>○ 61% of the time no<br>filter alarm<br>○ No differences in<br>pressures in the first<br>and final phases of<br>the interventions | 3                 |

Pts. = patients; CVVH = continuous veno-venous hemofiltration; AE = adverse events; CI = confidence interval; RASS= Richmond Agitation–Sedation Scale; HR=heart rate; MAD= Mean arterial blood pressure

# Mobilization during renal replacement therapy via a vascular catheter in patients who are critically ill is safe and may increase filter life. *No detailed assessment was carried out because higher-quality evidence is available on this topic.*

| Reference,<br>Study Type                                                                                                                                      | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Interventi<br>on | Control              | Optimal<br>Population                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence Grade          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 479<br>Wageck 2014<br>(PMID:<br>25060511<br>DOI:<br>10.1016/j.med<br>n.2013.12.003<br>Specification<br>of study:<br>Systematic<br>review with<br>metaanalysis | 9 randomized and quasi-<br>randomized controlled<br>trials, 274 pts <sup>1-9</sup> , 2 trials<br>included in meta-analysis<br>Inclusion criteria:<br>- randomized and quasi-<br>randomized controlled<br>- non-invasive NMES<br>applied to lower and/or<br>upper limbs<br>- critical pts in ICU<br>Exclusion criteria:<br>- < 18 years of age<br>- NMES < 48h<br>Per Branch<br>Intervention<br>group<br>(n=135) Control |                      |                  | Not<br>specifie<br>d | Primary<br>outcomes:<br>- muscle<br>strength<br>- muscle<br>structure<br>Secondary<br>outcomes:<br>- ICU LOS<br>- duration of<br>mechanical<br>ventilation<br>- complications<br>from<br>immobilization<br>and bed rest | <b>Primary outcomes:</b><br>- meta-analysis on the effects of NMES on quadriceps femoris strength showed effect<br>of NMES in MRC Scale (standardized mean difference 0.77 points; $p = 0.02$ ; 95% CI:<br>0.13-1.40)<br><b>Mixed results for muscle structure</b><br>-3 studies: no difference;<br>- Gerovasili et al: smaller decrease in diameter for the NMES group for all muscles,<br>except left rectus femoris ( $-0.13 \pm 0.10$ cm vs $-0.19 \pm 0.16$ cm, respectively; $p = 0.07$ )<br>- Bouletreau et al: smaller elimination during NMES application only for creatinine (79.2<br>$\pm 25 \mu$ mol/kg/day vs 92.4 $\pm 6.8 \mu$ mol/kg/day, respectively; $p < 0.01$ ) and 3-methyl<br>histidine ( $3.15 \pm 0.32 \mu$ mol/kg/day $3.78 \pm 0.37 \mu$ mol/kg/day, respectively; $p < 0.01$ )<br><b>Secondary outcomes:</b><br>-ICU LOS and ventilation: Rousti et al: no difference between groups for average time in<br>ICU and average time in MV<br>- Rousti et al.: better performance for the weaning period in NMES group when<br>(median 1 day, range 0-10 vs 3 days, range 0-44, respectively; $p = 0.003$ )<br>- Rousti et al: shorter period between extubation until ICU discharge (days off MV) for<br>the NMES group (median 4 days, range 0-16 vs 6 days, range 0-41, respectively; $p =$<br>0.003)<br><b>Complications:</b><br>Velmhos et al.: higher venous flow velocity for NMES group in superficial femoral left<br>vein (21 ± 6 cm/min vs 16 ± 5 cm/min, respectively; $p = 0.02$ ) and in the left popliteal<br>vein (22 ± 10 cm/min vs 15 ± 9 cm/min, respectively; $p = 0.03$ ;<br>- Rousti et al.: development of critical illness polyneuropathy between groups and<br>found an odds ratio = 0.22 (95% CI = 0.05-0.92; $p = 0.04$ ) in favor of the NMES | 1 → 2<br>(downgraded as |

LOS = length of stay, MRC = medical research council, NMES= neuromuscular electrical stimulation, pts = patients

NMES has good results when used for the maintenance of muscle mass and strength.

#### References

1. Poulsen JB, Møller K, Jensen CV, Weisdorf S, Kehlet H, Perner A. Effect of transcutaneous electrical muscle stimulation on muscle volume in patients with septic shock. Crit Care Med. 2011;39:456-61

2. Rodriguez PO, Setten M, Maskin LP, Bonelli I, Vidomlansky SR, Attie S, et al. Muscle weakness in septic patients requiring mechanical ventilation: protective effect of transcutaneous neuromuscular electrical stimulation. J Crit Care. 2012;27:e1-8.

3. Velmahos GC, Petrone P, Chan LS, Hanks SE, Brown CV, Demetriades D. Electrostimulation for the prevention of deep venous thrombosis in patients with major trauma: a prospective randomized study. Surgery. 2005;137:493-8

4. Gruther W, Kainberger F, Fialka-Moser V, Paternostro-Sluga T, Quittan M, Spiss C, et al. Effects of neuromuscular electrical stimulation on muscle layer thickness of knee extensor muscles in intensive care unit patients: a pilot study. J Rehabil Med. 2010;42:593-7

5. Gerovasili V, Stefanidis K, Vitzilaios K, Karatzanos E, Politis P, Koroneos A, et al. Electrical muscle stimulation preserves the muscle mass of critically ill patients: a randomized study. Crit Care. 2009;13:R161.

6. Routsi C, Gerovasili V, Vasileiadis I, Karatzanos E, Pitsolis T, Tripodaki E, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care. 2010;14:R74.

7. Karatzanos E, Gerovasili V, Zervakis D, Tripodaki E-S, Apos- tolou K, Vasileiadis I, et al. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit Care Res Pract. 2012;2012:1-8.

8. Bouletreau P, Patricot MC, Saudin F, Guiraud M, Mathian B. Effects of intermittent electrical stimulations on muscle catabolism in intensive care patients. JPEN J Parenter Enteral Nutr. 1987;11:552-5.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                       | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evide<br>nce<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 480<br>Roth 2014<br>(PMID:<br>24985500<br>DOI:<br>10.1007/s12028-<br>014-0004-x)<br><b>Specification of</b><br><b>study:</b><br>A retrospective<br>analysis | 29 pts Inclusion: - severe intracranial pathologies - documented kinetic therapy due to respiratory failure Exclusion criteria: - < 18 years - MV in pressure-controlled mode Per Branch |                      | PP           | SP      | Endpoints:<br>-ICP<br>-CPP<br>-PEEP<br>-pCO2<br>-P/F ratio<br>-MAP<br>No sample size<br>calculation | Significant differences between groups:<br>- mean ICP baseline in SP 9.5 $\pm$ 5.9 mmHg (range 0–40 mmHg),<br>increased during PP to 15.4 $\pm$ 6.2 (range 0–40 mmHg) (p < 0.0001)<br>- MAP decreased from 72.6 $\pm$ 17.5 mmHg in SP to 64.7 $\pm$ 17.5 mmHg<br>in PP (p < 0.001)<br>- pCO2 increased In PP (during and after PP)<br>- PaO2/FiO2 ratio increased In PP (during and after PP)<br>- ICP values >20 mmHg occur more often in PP (17.9 %, n = 145/831)<br>compared to SP (4 %, n = 28/703, p < 0.0001)<br>- more often episodes of decreased CPP in PP (24.4 %, n = 203/831)<br>vs SP (17.9 %, n = 126/703, p = 0.0022)<br>No significant difference between the groups:<br>- CPP in SP (82 $\pm$ 14.5 mmHg, range 37–137 mmHg) or PP (80.1 $\pm$<br>14.1 mmHg, range 37–118 mmHg) (p = 0.0591)<br>- PEEP not significant | 4                     |

CPP = cerebral perfusion pressure, ICP = intracranical pressure, MAP = mean arterial pressure, MV = mechanical ventilated, PEEP = positive end expiratory pressure, PP = prone position, pts = patients, SP = supine position

A significant elevation of ICP during prone positioning is shown and an achieved benefit for oxygenation by far exceeded the changes in ICP.

| Reference,<br>Study Type                                                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                            | Drop<br>-out<br>Rate | Intervention                                                                                                                                       | Control                                                                                                                                                                                     | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Eviden<br>ce<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 485<br>Parry 2014<br>(PMID:<br>24768534<br>DOI:<br>10.1016/j.jcrc.<br>2014.03.017)<br><b>Specification</b><br>of study:<br>interventional<br>observational<br>study | <pre>16 pts<br/>Inclusion criteria:<br/>- 18 years or older<br/>- diagnosis of sepsis or<br/>severe sepsis<br/>- predicted to MV &lt; 48<br/>hours<br/>-expected to remain in IC<br/>≥ 4 days<br/>Exclusion criteria:<br/>- presence of an external<br/>fixator, pacemaker or<br/>defibrillator<br/>- open wound or skin<br/>abrasions<br/>- obesity, BMI &gt; 40<br/>- physician deemed the p<br/>to be approaching<br/>imminent death</pre> |                      | Usual care +<br>FES-cycling<br>- within 96h<br>of admission<br>- daily until<br>ICU<br>discharge<br>- min 20 min<br>- max 60<br>min/d<br>- 5x/week | Usual care<br>- early<br>mobility<br>activities:<br>sitting on the<br>edge of bed,<br>sitting out of<br>bed, standing,<br>marching in<br>place and<br>walking to a<br>maximum of<br>15min/d | Primary endpoints:<br>Feasibility of FES cycling<br>defined as:<br>- time from ICU admission to<br>1 <sup>st</sup> training session<br>- total number of sessions<br>- % of total potential sessions<br>completed and reasons not<br>completed<br>- number of sessions with<br>muscle contractions<br>Safety, defined as:<br>- recording variability in<br>cardiovascular + respiratory<br>bedside parameters<br>- behavioral pain score / VAS<br>Secondary outcomes:<br>- PFIT-s scored on awakening<br>- time to reach functional<br>milestones<br>- incidence and duration of<br>delirium | Primary endpoints:<br>- time from recruitment to 1 <sup>st</sup> intervention<br>session: 15.3 (12.0-31.5) h<br>- cycling sessions conducted 8.6 (SD 2.5)<br>- 69 sessions out of 95 (73%)<br>- one minor adverse event<br>- greatest difference between min and max<br>values recorded observed with HR with<br>variation of 20-40 bpm<br>- RR/HR: values at start (5 min prior to<br>exercise) and 30 min post similar<br>- FES-cycling session time 35.8± 10.7 min,<br>quadriceps intensity of 67.0±29.6 mA<br>- visible quadriceps muscle contraction<br>49/69 sessions (71%); palpable (not visible)<br>contraction 6/69(9%)<br>Secondary outcome:<br>- fewer required rehabilitation in<br>intervention group (43%) compared to<br>control group (86%) p=0.5<br>- duration of delirium significantly shorter<br>in intervention group (p=0.042) | 3                     |

BMI = body mass index, bpm = beats per minute, FES = functional electrical stimulation, HR = heart rate, ICU = intensive care unit, MV = mechanical ventilated, PFIT = physical function in intensive care test-scored on awakening, pts = patients, SD = standard deviation, VAS = visibal analoge scala

# FES-Cycling seems to be safe and feasible, but the sample size is too small regarding functional outcomes and frequency and duration of delirium

| Reference,<br>Study Type                                                                                                                                                  | Cases and<br>(Particip<br>character<br>Tota                                                                                                                                                                                                                                                                   | ant #,<br>ristics)                                                                    | Drop<br>-out<br>Rate | Intervention                                                                                           | Control                                                                                                                    | Optimal<br>Population                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 490 Kim<br>2014<br>PMID:<br>24567696<br>https://doi.<br>org/10.158<br>9/jpts.26.1<br>49<br><b>Specificatio</b><br>n of study:<br>A<br>prospective<br>multicenter<br>study | NSICU pts of a t<br>hospital with <u>ac</u><br>→ 37 pts<br>Inclusion criter<br>-below G3 in a<br>strength test<br>-no existing cor<br>would disrupt<br>treatment<br>-no Amputatior<br>-no disfigureme<br>-no external wo<br>-no other defor<br>with regard to<br>extremities<br>Per Bra<br>25<br>experimental | ia:<br>muscle<br>nditions that<br>medical<br>ns<br>ents<br>ounds<br>rmations<br>upper |                      | Early bilateral<br>passive ROM<br>exercise<br>- Twice a day<br>- Five days per<br>week<br>- Four weeks | Standard<br>of care<br>(participan<br>ce in<br>bilateral<br>passive<br>ROM<br>exercise<br>two weeks<br>after<br>diagnosis) | No primary<br>endpoint<br>defined<br>Extracted<br>endpoints:<br>- Function of<br>upper<br>extremities<br>- ADLs | <ul> <li>Hesults:</li> <li><u>function of upper extremities:</u> <ul> <li>a. edema (baseline, two weeks, four weeks; mean ± 5D; mm)</li> </ul> </li> <li>affected finger: <ul> <li>a. intervention (73.3 ± 6.9, 69.2 ± 6.8, 65.9 ± 6.7) vs. control (73.7 ± 6.3, 77.6 ± 6.6, 77.9 ± 7.0), p = 0.001</li> <li>b. difference in change between groups at four weeks significant, p = 0.002</li> </ul> </li> <li>affected wrist: <ul> <li>a. intervention (171.6 ± 12.6, 167.4 ± 12.4, 163.7 ± 11.6) vs. control (173.8 ± 15.2, 180.5 ± 13.4, 180.5 ± 12.7), p = 0.022</li> <li>b. difference in change between groups at four weeks significant, p = 0.016</li> </ul> </li> <li>affected elbow: <ul> <li>a. intervention (250.7 ± 23.2, 242.5 ± 22.0, 235.7 ± 19.8) vs. control (256.1 ± 29.4, 262.2 ± 26.5, 263.1 ± 28.0), p = 0.001</li> <li>b. difference in change between groups at four weeks significant, p = 0.037</li> <li>unaffected finger: intervention (68.8 ± 7.7, 66.5 ± 7.0, 64.0 ± 7.0) vs. control (71.7 ± 5.8, 70.3 ± 4.9, 67.8 ± 5.1), p = 0.001</li> </ul> </li> <li>5. unaffected virst: intervention (167.2 ± 12.9, 164.2 ± 12.7, 161.2 ± 12.4) vs. control (253.3 ± 21.4, 169.0 ± 10.2, 165.6 ± 9.4), p = 0.001</li> <li>anaffected elbow: intervention (245.3 ± 21.0, 239.1 ± 21.3, 233.8 ± 19.5) vs. control (253.3 ± 27.4, 249.5 ± 25.6, 244.9 ± 24.8), p = 0.001</li> <li>b. ROM of affected shoulder (baseline, two weeks, four weeks; mean ± 5D, ")</li> <li>I. Flexion: <ul> <li>a. intervention (n = 19; 11.4 ± 13.0, 116.7 ± 12.8, 119.0 ± 12.6) vs. control (n = 18; 109.1 ± 20.2, 109.8 ± 20.7, 111.1 ± 21.1); non-significant differences</li> <li>b. difference in change between groups at four weeks significant, p = 0.001</li> </ul> </li> <li>Extension: <ul> <li>a. intervention (n = 19; 25.2 ± 5.2, 27.1 ± 4.9, 29.5 ± 5.3) vs. control (n = 18; 31.2 ± 4.7, 31.3 ± 4.7, 31.9 ± 4.8), p = 0.007</li> <li>b. difference in change between groups at four weeks significant, p = 0.001</li> </ul> </li> <li>Extension: <ul> <li>a. intervention (n = 19; 91.3 ± 19.8, 53.8 ± 19.5, 55.6 ±</li></ul></li></ul> | 3 → 4<br>261      |

| a. intervention (n = 19; 46.4 ± 28.2, 48.5 ± 28.7, 50.2 ± 28.5) vs. control (n = 18; 49.0 ± 18.9, 49.5 ± 19.1,                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $49.8 \pm 19.0$ )                                                                                                                                            |
| b. difference in change between groups at four weeks significant, p = 0.001                                                                                  |
| 3. Pronation:                                                                                                                                                |
| a. intervention (n = 19; 53.7 ± 16.1, 56.0 ± 16.0, 57.3 ± 15.7) vs. control (n = 18; 64.6 ± 11.7, 65.1 ± 11.7, 65.7 ± 11.7)                                  |
| b. difference in change between groups at four weeks significant, p = 0.001                                                                                  |
| d. ROM of affected wrist (baseline, two weeks, four weeks; mean ± SD, °)                                                                                     |
| 1. Flexion:                                                                                                                                                  |
| a. intervention (n = 19; 40.3 ± 7.4, 42.0 ± 7.3, 42.9 ± 7.0) vs. control (n = 18; 46.0 ± 3.6, 46.6 ± 3.6, 47.1 ± 3.7); non-significant differences           |
| b. difference in change between groups at four weeks significant, p = 0.016                                                                                  |
| <ol> <li>Extension: intervention (n = 19; 36.7 ± 7.3, 38.6 ± 6.6, 40.1 ± 6.6) vs. control (n = 18; 37.0 ± 7.2, 37.5 ± 7.1, 38.0 ± 7.3), p = 0.007</li> </ol> |
| 3. Ulnar deviation:                                                                                                                                          |
| a. intervention (n = 19; 20.7 ± 5.0, 22.8 ± 4.5, 24.1 ± 4.2) vs. control (n = 18; 23.1 ± 2.3, 23.5 ± 2.1, 24.0 ± 2.5); non-significant differences           |
| b. difference in change between groups at four weeks significant, p = 0.001                                                                                  |
| 4. Radial deviation:                                                                                                                                         |
| a. intervention (n = 19; 15.4 ± 5.8, 17.0 ± 5.3, 17.7 ± 5.2) vs. control (n = 18; 15.5 ± 3.8, 15.8 ± 3.7, 16.1 ± 3.8); non-significant differences           |
| b. difference in change between groups at four weeks significant, p = 0.001                                                                                  |
| - ADLs (two weeks to four weeks; points): Intervention (16.84 to 18.21) vs. control (12.50 to 12.67), p = 0.001                                              |

NSICU= neurosciences intensive care unit, Pts = patients, ICU = intensive care unit, ROM = range of motion, ADLs = activities of daily living

#### Early passive range of motion exercise improves function of upper extremities and activities of daily living in patients with acute stroke.

| Reference,<br>Study Type                                                                                                                                                                    | Cases and<br>Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention     | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 491<br>Sricharoenchai<br>2014<br>PMID: 24508202<br>https://doi.org/1<br>0.1016/j.jcrc.201<br>3.12.012<br>Specification of<br>study:<br>Monocenter,<br>prospective<br>observational<br>study | ICU patients from<br>a tertiary hospital<br>during July 2009<br>and December<br>2011 → 1787 pts<br>Inclusion criteria:<br>- ICU admission<br>for at least 24<br>hours<br>- Receiving<br>physical therapy<br>intervention<br>Per Branch |                      | Physical therapy |         | <ul> <li>No sample size calculation stated</li> <li>Endpoints: <ul> <li>Number of physical therapy sessions</li> </ul> </li> <li>Incidence of abnormal events: <ul> <li>a. cardiac arrhythmia, hypertension (mean arterial pressure greater than 140 mm Hg)</li> <li>b. hypotension (mean arterial pressure less than 55 mm Hg)</li> <li>c. desaturation (oxygen saturation less than 85% for more than 3 minutes)</li> <li>d. fall</li> <li>e. removal of medical device</li> <li>f. cardiorespiratory arrest</li> </ul> </li> <li>Number of events with consequences for the prevalence of additional treatments, cost, length of stay</li> </ul> | <ul> <li>Number of physical therapy sessions (n [%]): 1110 pts (62%) participated in 5267 physical therapy sessions</li> <li>Incidence of abnormal events (n [%]): 34 (0.6%) a. arrythmia: 10 (0.2%) b. hypertension: 8 (0.2%) c. hypotension: 5 (0.1%) d. no data for other abnormal events</li> <li>Number of events with consequences (n [%]): 4 (0.1%)</li> </ul> | 3                 |

Pts = patients, ICU = Intensive Care Unit

Physical therapy in critically ill patients seems safe.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                               | Cases and C<br>(Participa<br>character<br>Tota                                          | ant #,<br>istics)                                                                                 | Drop-out<br>Rate                                               | Interventio<br>n                                                            | Control             | Optimal Population                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 494 Balas<br>2014<br>PMID:<br>24394627<br>https://doi.or<br>g/10.1097/cc<br>m.00000000<br>0000129<br><b>Specification</b><br>of study:<br>before-after<br>cohort study | surgical ICU<br>Exclusion crite<br>-no legal repre<br>available withi<br>hours post adr | e-down<br>natology<br>nit<br>eria:<br>with<br>ernal or<br>eria:<br>esentative<br>in 48<br>mission | 4<br>(control/<br>,pre'<br>group)<br>withdrew<br>from<br>study | Fixed<br>protocol for<br>early<br>complex<br>treatment:<br>ABCDE-<br>bundle | Standard<br>of care | No sample size<br>calculation<br><b>Primary Endpoint:</b><br>-days without MV<br>within 28 days<br><b>Secondary Endpoints:</b><br>-prevalence, duration<br>and % of ICU pts with<br>delirium or coma<br>-mobilization rate<br>-Mortality<br>-number of discharges<br>not home<br>-adverse events | Significant differences between groups in:<br>-days without MV, control median 21d [IQA 0 - 25] vs<br>intervention median 24 d [IQA 7 - 26]; p = 0.04<br>-delirious pts: control 62.3% vs intervention 48.7%; p = 0.02<br>-delirium duration/d: - 17% (control 50% [IQA 30 - 64.3] vs<br>intervention 33.3% [IQA 18.8 to 50]; p = 0.003), significance<br>retained when adjusting for sex, co-morbidity APACHE II,<br>age and MV<br>-mobilization rate out of bed: control 48% vs intervention<br>66% within IICU time, p = 0.002<br>-pts mobilized according to fixed ABCDE-bundle protocol<br>with significantly higher probability of mobilization for at<br>least 1 unit out of bed 95% CI, 1.30-3.45, p = 0.003<br>-unadjusted mortality/illness in intervention (p = 0.04)<br>No significant differences between groups in:<br>-unadjusted mortality/ICU, p = 0.07<br>-mortality rate control 19.9% vs intervention 11.3% (OR<br>0.56, 95% CI 0.28-1.10; p = 0.09)<br>-discharge rates<br>-no adverse events | 4                 |

Pts. = patients; ICU = Intensive Care Unit, MV = Mechanical Ventilation, APACHE II = Acute Physiology and Chronic Health Evaluation II

The ABCDE Bundle seems to reduce the duration of mechanical ventilation, delirium and mortality while also increasing the rate of mobilization out of bed.

| Reference,<br>Study Type                                                                                                             |                                                                                                                                                                                                                                                                            | and Controls<br>: #, Characteristics)                                                                                                                                                                                                                             | Drop<br>-out | Intervention | Control | Optimal Population                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Study Type                                                                                                                           | Total                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                   | Rate         |              |         |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                   |
| 496 Lee 2014<br>(PMID:<br>24368348<br>DOI:<br>10.1097/CC<br>M.0000000<br>0000122)<br>Specification<br>of study:<br>Meta-<br>Analysis | (PaO2/FIO2 ≤ 30)<br>acute lung injurt<br>- mechanical ver<br>- randomly assig<br>or more groups,<br>supine positioni<br>- all-cause mort<br>regardless of the<br>collection Exclusion criter<br>- pediatric patie<br>- randomized cri<br>assigned patient<br>supine groups | pts ) <sup>1-11</sup><br><b>a:</b><br>nic respiratory failure<br>D0 mm Hg), including<br>y (ALI) and ARDS<br>ntilatory support<br>gned patients to two<br>, including prone or<br>ing, during ventilation<br>ality was reported<br>e timing of data<br><b>ia:</b> |              | PP           | SP      | Primary outcome:<br>- overall mortality at<br>the longest available<br>follow-up<br>Secondary outcome:<br>- mortality stratified<br>to:<br>1. the duration of<br>prone position<br>2. lung protective<br>ventilation<br>- adverse events | Primary outcome:         - overall mortality: Prone position group (OR, 0.77; 95% Cl, 0.59–0.99; p = 0.039, I = 33.7%)         Secondary outcome:         - duration of prone position: effect on mortality was not significant (p=0,130)         - duration of prone ventilation more than 10 hr/session showed a significant reduction in overall mortality (p < 0.001) | 1                 |
|                                                                                                                                      | 1142 PP                                                                                                                                                                                                                                                                    | 1104 SP                                                                                                                                                                                                                                                           |              |              |         |                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                           |                   |

ARDS = acute respiratory distress syndrome, pts = patients, PP = prone position, SP = supine position

Ventilation in the prone position significantly reduced overall mortality in patients with severe acute respiratory distress syndrome.

#### References

1. Gattinoni L, Tognoni G, Pesenti A, et al; Prone-Supine Study Group: Effect of prone positioning on the survival of patients with acute respiratory failure. *N Engl J Med* 2001; 345:568–573

2. Guerin C, Gaillard S, Lemasson S, et al: Effects of systematic prone positioning in hypoxemic acute respiratory failure: A randomized controlled trial. *JAMA* 2004; 292:2379–2387

3. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al: Prone positioning improves oxygenation in post-traumatic lung injury—A prospective randomized trial. *J Trauma* 2005; 59:333–341

4. Mancebo J, Fernández R, Blanch L, et al: A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. *Am J Respir Crit Care Med* 2006; 173:1233–1239

5. Taccone P, Pesenti A, Latini R, et al; Prone-Supine II Study Group: Prone positioning in patients with moderate and severe acute respiratory distress syndrome: A randomized controlled trial. *JAMA* 2009; 302:1977–1984

6. Guérin C, Reignier J, Richard JC, et al; PROSEVA Study Group: Prone positioning in severe acute respir

7. Beuret P, Carton MJ, Nourdine K, et al: Prone position as prevention of lung injury in comatose patients: A prospective, randomized, controlled study. *Intensive Care Med* 2002; 28:564–569

8. Demory D, Michelet P, Arnal JM, et al: High-frequency oscillatory ventilation following prone positioning prevents a further impairment in oxygenation. *Crit Care Med* 2007; 35:106–111

9. Fernandez R, Trenchs X, Klamburg J, et al: Prone positioning in acute respiratory distress syndrome: A multicenter randomized clinical trial. *Intensive Care Med* 2008; 34:1487–1491

10. Papazian L, Gainnier M, Marin V, et al: Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. *Crit Care Med* 2005; 33:2162–2171

11. Chan MC, Hsu JY, Liu HH, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc. 2007;106:708–716

| Reference,<br>Study Type                                                                                                                                           | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                                                         | Control                                  | Optimal Population                                                                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 499 Yosef-<br>Brauner<br>2015<br>PMID:<br>24345055<br>DOI:<br>10.1111/crj.1<br>2091<br>Specification<br>of study:<br>a<br>prospective,<br>single-<br>blinded study | 1 center from June 2011 to Februar         2012 → 18 pts.         Inclusion criteria:         - over the age of 18         -independent before the current         hospitalization         -fully conscious and able to perform         simple commands         - MRC physical strength examinatio         score lower than 48 points         Exclusion criteria:         -unconsciousness         -central or peripheral neurological         damage         -hemodynamic instability (i.e., bloo         pressure >200 or <80 mmHg, heart | n/a                  | Group I/<br>Routine Care<br>group:<br>PT according<br>to daily<br>custom<br>protocol | treatment<br>group:<br>same<br>protocol, | No sample size<br>calculation stated<br>No primary<br>endpoint defined<br><b>Extracted</b><br><b>Endpoints:</b><br>-MRC physical<br>strength<br>examination<br>-MIP<br>-hg dynamometer<br>-SB<br>-ICU LOS<br>-ventilation time<br>Performed at:<br>T1(at baseline),<br>T2(48-72h after),<br>T3(ICU discharge) | <b>Significant differences between groups:</b><br>-improvement for MIP and MRC<br>in the intensive treatment group II in Mean diff(SE)<br>T2 – T1 (MIP: (–)6.5 (0.613) p=0.018; MRC: 8.333 (3.454)<br>p=0.029)<br>-decrease in the number of intensive care hospitalization<br>days in favor of the intensive treatment group: LOS was<br>18.11 ± 3.1 days in group I vs 13 ± 4.6 days in group II (P =<br>0.043)<br>-strong positive relationship between the MRC index and<br>the SB (r = 0.673); between the MRC index and the right hg<br>dynamometer test (r = 0.619) at T1<br>-strong negative correlation between the average changes<br>in MRC in relation to average changes in MIP (r = -0.623)<br>between T1 and T2<br><b>No significant differences between groups in:</b><br>-no difference at baseline between groups in any endpoint<br>-ventilation time in group II (9 ± 5 days) compared<br>with group I (16.22 ± 2 days; P = 0.076)<br>-no difference in percentage of pts who were able to walk<br>during hospitalization in the ICU (P = 0.343) | (pilot<br>RCT)    |

pts. = patients; MRC=Medical Research Council; PT=physical therapy; MIP= maximal inspiratory pressure; SB= sitting balance; LOS=Length of stay; hg=hand grip

#### It is possible that an intensive therapy protocol may facilitate the initial recovery process in patients who suffer from ICUAW.

| 55 pts. From December 2009 to December 2012 in<br>two academic medical centers505<br>Winkelman<br>2018Inclusion criteria:<br>- Pts. not enrolled in another study<br>- received MV for 36 hr and expected to require<br>24 hr more of MVPMID:<br>29902939- ICU LOS of 14 or more days prior to eligibility to<br>enroll,<br>- weight >350 lbhttps://doi.org<br>/10.1177/1099<br>800418780492- a history or acute diagnosis of neurological or<br>orthopedic injury that precluded the ability to<br>participate in volitional and progressive EM<br>- new myocardial infarction<br>- open fascia from abdominal or lower extremity<br>surgery<br>- end-stage or end-of-life or intensivist opinion |                                           |                                                                                              |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| that the individual was moribund <ul> <li>patients without a surrogate or with a surrogate</li> <li>who could not be contacted over a 2-day period.</li> </ul> Per Branch 29 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 from<br>the<br>twice<br>daily<br>branch | EM Group:<br>1. Protocol<br>based EM<br>twice daily<br>2. Protocol<br>based EM<br>once daily | Pts.<br>acted as<br>their<br>own<br>control<br>in a<br>before<br>after<br>design | <ul> <li>Sample Size calculation: it was estimated that a sample size of 50 would have .80 power to detect a .30 effect size with an alpha of .10</li> <li>Primary Endpoint: <ul> <li>Change scores of Interleukins 6, 10, 8, 15, and TNF-α collected from serum before and after EM</li> </ul> </li> <li>Secondary outcomes: <ul> <li>Manual muscle and handgrip strength</li> <li>delirium onset</li> <li>duration of MV</li> <li>ICU LOS</li> </ul> </li> </ul> | <b>Primary Endpoint:</b><br>TNF-α level was<br>significantly and negatively<br>associated with frequency,<br>however the CI includes 0<br>(-0.35 to 0.01)<br><b>Secondary endpoints:</b><br>-Only ICU LOS was<br>"significantly" different<br>between the groups (Once<br>daily:18.76 + 14.47; Twice<br>daily:13.40 + 7.97; P=0.06<br>(they choose 0.10 as<br>significance level)<br>-no difference in the other<br>secondary endpoints | 2 |

Pts = patients; MV = mechanical ventilation; hr = hour; ICU = intensive care unit; LOS = Length of stay; EM = early mobilization; CI = confidence interval; TNF= Tumor necrosis factor

Twice daily mobility interventions did not alter serum inflammatory markers.

| of study:<br>multi-<br>center, pilot-<br>RCTinde writter rest in bed orders due to<br>documented injury or process that<br>precluded mobilization such as<br>suspected or proven instability of spine<br>or pelvis<br>- severe acute brain injury<br>- unsafe to commence mobility therapy<br>- cardiovascular or respiratory instabilityto follow<br>up, 2<br>declined)to follow<br>up, 2<br>declined)inde works<br>down to<br>maximize<br>activity- ICU-acquired weakness at <48h<br>after ICU discharge<br>- follow up at 6 months:<br>independent activities, return to<br>work, health-related quality of life,<br>healthcare utilization, hospital<br>anxiety and depressiongroup 3.0 d [2.4–4.5 d]; p = 0.88; time to<br>walk: median [IQR], intervention 6.0 d<br>[3.0–12.0 d] vs control group 6.0 d [3.0–<br>8.0 d]; p = 0.97)<br>- duration of MV: p=0.18<br>- ICU LOS: p=0.28<br>- hospital LOS: p=0.33<br>- total LOS: p=0.37<br>- ventilator-free days: p=0.4<br>- no differences in all outcomes at 6<br>months follow up | Reference,<br>Study Type                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l Controls<br>Characteristics)<br>tal                                                                                                                                                                                                                       | Drop-out<br>Rate                                                                                                                                   | Intervention                                                                                                                                               | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hodgson<br>2016<br>PMID:<br>26968024<br>DOI:<br>10.1097/CC<br>M.0000000<br>00001643<br>Specification<br>of study:<br>multi-<br>center, pilot- | Inclusion criteria:<br>- invasively ventilate<br>tomorrow,<br>- >18 years old<br>Exclusion criteria:<br>- second or subseque<br>during a single hospi<br>- unable to follow sir<br>commands in English<br>- inevitable/imminer<br>- unable to walk with<br>to the ICU admission<br>- diagnosed with der<br>current acute illness<br>- had written rest in<br>documented injury of<br>precluded mobilizati<br>suspected or proven<br>or pelvis<br>- severe acute brain<br>- unsafe to commend<br>- cardiovascular or re | ent ICU admission<br>ital admission<br>mple verbal<br>n<br>it death<br>nout assistance prior<br>mentia prior to<br>bed orders due to<br>or process that<br>ion such as<br>i instability of spine<br>injury<br>ce mobility therapy<br>espiratory instability | 8/29 (2<br>died in<br>ICU, 4 lost<br>to follow<br>up, 2<br>declined at<br>6 months)<br>and 5/21<br>(1 died in<br>ICU, 2 lost<br>to follow<br>up, 2 | concept):<br>- active<br>functional<br>activities<br>- start at the<br>highest level<br>of activity pts<br>can sustain<br>and works<br>down to<br>maximize |         | <ul> <li>feasibility of intervention delivery<br/>(higher maximal level of activity<br/>measured via IMS, increased<br/>duration of activity measured with<br/>min/day)</li> <li>Secondary outcomes: <ul> <li>time from admission to</li> <li>randomization and from admission<br/>to mobilisation</li> <li>duration of MV, ICU and hospital<br/>LOS, and total inpatient stay</li> <li>serious AEs</li> <li>ventilator-free days and ICU-free<br/>days on day 28</li> <li>physical function</li> <li>ICU-acquired weakness at &lt;48h<br/>after ICU discharge</li> <li>follow up at 6 months:<br/>independent activities, return to<br/>work, health-related quality of life,<br/>healthcare utilization, hospital<br/>anxiety and depression</li> </ul> </li> </ul> | <ul> <li>higher IMS in intervention vs control<br/>(mean IMS (95% Cl) 7.3 (6.3–8.3) vs 5.9<br/>(4.9–6.9), unadjusted p = 0.05 at ICU<br/>discharge, and after adjustment mean<br/>IMS (95% Cl) for intervention 7.5 (6.5–<br/>8.5) vs control 5.6 (4.6–6.6), p = 0.01</li> <li>duration of activity was &gt; in<br/>intervention, median 20min/d [IQR, 0–<br/>40] for EGDM vs 7min/d [IQR, 0–15] for<br/>control; p = 0.002</li> <li>Secondary outcomes:</li> <li>time from admission to randomization<br/>(3[2-6] intervention vs 3[2-4] control,<br/>p=0.5)</li> <li>time from admission to mobilisation<br/>(time to stand: median [IQR],<br/>intervention 3.0 d [2.0–6.0 d] vs control<br/>group 3.0 d [2.4–4.5 d]; p = 0.88; time to<br/>walk: median [IQR], intervention 6.0 d<br/>[3.0–12.0 d] vs control group 6.0 d [3.0–<br/>8.0 d]; p = 0.97)</li> <li>duration of MV: p=0.18</li> <li>ICU LOS: p=0.28</li> <li>hospital LOS: p=0.37</li> <li>ventilator-free days: p=0.4</li> <li>no differences in all outcomes at 6</li> </ul> | Pilot RCT         |

AE = adverse effects, CI = confidence interval, EGDM = early goal-directed mobilization, ICU = intensive care unit, IMS = ICU mobility scale, IQR = interquartile range, LOS = length of stay, min = minute, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial

# EGDM was feasible, safe and resulted in increased duration of active exercises and an increase in the mobility milestones achieved during ICU stay.

| Reference,<br>Study Type                                                                                                                  |                                                                                                                                    | and Controls<br>#, Characteristics)<br>Total                                          | Drop-out<br>Rate                                 | Intervention                                                                                        | Control                                                                    | Optimal Population                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #507<br>Machado<br>2017<br>PMID:<br>28538781<br>DOI:<br>10.1590/S18<br>06-<br>3756201600<br>0000170<br>Specificatio<br>n of study:<br>RCT | Exclusion cri<br>- palliative ca<br>- amputees<br>- leg fracture<br>- neuromuso<br>disease<br>- ICU-AW<br>- joint/muso<br>disorder | teria:<br>of sedation<br>mically stable<br>iteria:<br>are<br>es<br>cular/neurological | 11 pts died:<br>(4<br>Intervention,<br>7 control | Passive cycling<br>+<br>conventional PT<br>5 days a week (20<br>minutes, fixed 20<br>cycles/minute) | <b>Conventional PT:</b><br>- 2x a day for 30<br>minutes<br>- 7 days a week | <b>Outcomes:</b><br>- peripheral muscle<br>strength (MRC Score)<br>- cardiovascular<br>parameters (SpO2, HR,<br>mean arterial pressure)<br>- duration of sedation<br>- time to first treatment<br>- time to first muscle<br>strength assessment | <b>Outcomes:</b><br>- peripheral muscle strength:<br>intervention 38.73 ± 11.11 vs.<br>47.18 ± 8.75; control: 40.81 ± 7.68<br>vs. 45.00 ± 6.89, p < 0.001)<br>- MRC score pre- and post-<br>implementation periods: IG 8.45 ±<br>5.20 vs. GG 4.18 ± 2.63; p = 0.005)<br>- MV, Hospital LOS, ICU LOS n.s. | 2                 |

CG = control group, ICU = intensive care unit, IG = intervention group, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, n.s = not significant, PT =physio therapy, pts = patients

The results suggest that the performance of continuous passive mobilization on a cyclical basis helps to recover peripheral muscle strength in ICU patients.

| Reference,<br>Study Type                                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                        | Drop-out<br>Rate                                                                                                    | Intervention                                                | Control             | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #508<br>Schaller<br>2016<br>PMID: 27707496<br>DOI:<br>10.1016/S0140-<br>6736(16)31637-3<br>Specification of<br>study:<br>multicenter RCT | 200 pts         Inclusion criteria:         - SICU pts 18 years or older         - MV<48h | 7 / 104:<br>(3 ineligible,<br>4 withdrew<br>consent)<br>Loss of<br>follow up at 3<br>months:<br>57/104 and<br>52/96 | Early goal<br>directed<br>mobilization<br>(SOMS<br>concept) | Standard<br>of care | <ul> <li>Primary endpoints:<br/>hierarchically tested</li> <li>mean mobilization score (SOMS level)</li> <li>SICU LOS</li> <li>function: mmFIM at hospital discharge</li> <li>Secondary outcomes:</li> <li>global muscle strength via MRC sum score</li> <li>QoL at 3 months after hospital discharge</li> <li>Tertiary outcomes: daily high serum glucose<br/>concentrations, functional status at discharge,<br/>hospital LOS, in-hospital mortality, 3-month<br/>mortality, discharge disposition, ICU delirium-<br/>free days, ventilator-free days, ICU sedation-free<br/>days, neuromuscular blocking agent-free days,<br/>vasopressor- free days, mean daily morphine<br/>equivalent dose (mg), number of days receiving<br/>corticosteroids, and daily high serum sodium<br/>concentration (mmol/L)</li> <li>Power analysis:<br/>With the assumption of an 11% mortality rate,<br/>and an 11% attrition rate, it is estimated that<br/>enrolling 100 pts in each treatment group would<br/>result in a &gt; 80% power to identify an inter-group<br/>difference with a two-sided α error of 0-05</li> </ul> | Primary endpoints:<br>- SOMS higher in intervention vs control<br>(2.2 (1.0), 1.5 (0.8), p<0.0001)<br>- ICU LOS shorter in intervention (7 (5-12)<br>vs 10 (5-15), p=0.0054)<br>- functionally independent at hospital<br>discharge: 44 (51) intervention vs 25 (28)<br>control, p = 0.0030.<br>Secondary outcomes:<br>- no significant difference between groups<br>in QoL (p=0.69) and muscle weakness<br>(0.95)<br>Tertiary outcomes:<br>Significant difference between groups in:<br>- functional status at ICU discharge<br>(p=0.009)<br>- hospital LOS (p=0.011)<br>- discharge disposition (p=0.0007)<br>- ICU delirium-free days (p=0.016)<br>No significant difference between groups<br>in:<br>- in-hospital mortality (p=0.09)<br>- 3-months mortality (p=0.35)<br>- daily high serum glucose (p=0.83)<br>- ICU sedation-free days (p=0.38)<br>- neuromuscular blocking drug-free days<br>(p=0.38)<br>- vasopressor-free days (p=0.12)<br>- ventilator-free days (p=0.31)<br>- mean daily morphine equivalent dose<br>(p=0.62)<br>- corticosteroid days (p=0.42)<br>- daily high serum sodium (p=0.32) | 2                 |

GCS = Glasgow coma scale, ICP = intracranial pressure, LOS = length of stay, MI = myocardial infarction, MRC = medical research council, MV = mechanical ventilation, RCT = randomized controlled trial, SICU = surgical intensive care unit, SOMS = SICU optimal mobilization score

Early, goal-directed mobilization improved patient mobilization throughout SICU admission, shortened patient length of stay in the SICU, and improved patients' functional mobility at hospital discharge.

| #509       S0 pts<br>Inclusion criteria:<br>- 18-80 years<br>- MV > 48h<br>- ambulate independently<br>before acute illness<br>available       Daily<br>Intensive<br>upright<br>nobilization:<br>- MV duration       Primary endpoints:<br>- MV duration       Primary endpoints:<br>- MV duration       - MV duration (median [IQR]), 8.8 days<br>(6.4–19.3) in intervention vs 7.8 days<br>(8.4–10.6) in intervention vs 1.0 days<br>(8.4–10.6) in intervention vs<br>(8.4–10.6) in control, p= 0.86<br>- hospital JOS (median [IQR]), 3.6.9<br>days (21.5–55.7) in intervention vs<br>(downgrade;<br>under-<br>powered)         https://doi.org/<br>169.2019.1615       Daily<br>initiated after<br>absolitization:<br>instability, severe head injuries<br>or substantial unstable<br>fractures)       Daily<br>initiated after<br>absolitication:<br>instability, severe head injuries<br>or substantial unstable<br>fractures)       Daily<br>initiated after<br>absolitication:<br>based on Burtin et al. 36 pts necessary<br>and α 0.05. Planned to include 120       Primary endpoints:<br>- MV       Primary endpoints:<br>- MV         29       21 | Reference,<br>Study Type                                                                                                                                | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                                                                | Control                                                           | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| pts. $-$ employment n.s., $p = 0.65$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amundadottir<br>2019<br>PMID: not<br>available<br><u>https://doi.org/</u><br>10.1080/21679<br>169.2019.1645<br><u>880</u><br>Specification of<br>study: | Inclusion criteria:<br>- 18-80 years<br>- MV > 48h<br>- ambulate independently<br>before acute illness<br>Exclusion criteria:<br>- poor survival prognosis<br>- admitted to the hospital >2<br>weeks prior to admission to<br>the ICU<br>- progressive upright<br>mobilization contraindicated<br>(prolonged hemodynamic<br>instability, severe head injuries<br>or substantial unstable<br>fractures) |                      | Intensive<br>upright<br>mobilization:<br>- IMS ≥ 3<br>- twice a day<br>- initiated after<br>48h after start | <b>mobilization:</b><br>- 1x daily<br>- commenced<br>after 96h of | <ul> <li>- MV duration</li> <li>- Hospital/ICU LOS</li> <li>Secondary outcomes: <ul> <li>health-related QoL via SF-36v2, at baseline, 3/6/12 months after ICU discharge.</li> <li>physical function via 6MW, MRC-SS, and MBI (at baseline, ICU discharge, hospital discharge, 3/6/12 months after ICU discharge</li> </ul> </li> <li>Additional endpoints: <ul> <li>hospital mortality</li> <li>employment 12 months after ICU discharge</li> </ul> </li> <li>Sample size calculation: <ul> <li>based on Burtin et al. 36 pts necessary for 50 m in 6MWT with 80% power and α 0.05. Planned to include 120</li> </ul> </li> </ul> | <ul> <li>MV duration (median [IQR]), 8.8 days<br/>(6.4–19.3) in intervention vs 7.8 days<br/>(5.4–17.7) in control, p =0.89</li> <li>ICU LOS (median [IQR]), 12.4 days<br/>(8.4–19.6) in intervention vs 11.0 days<br/>(7.3–22.8) in control, p=0.86</li> <li>hospital LOS (median [IQR]), 36.9<br/>days (21.5–55.7) in intervention vs<br/>24.6 days (15.5–56.6) in control, p =<br/>0.29</li> <li>Secondary outcomes: <ul> <li>health-related QoL across time<br/>points n.s. (12 months SF36 PCS: p<br/>=1.0, 12 months SF36 MCS: p = 0.99)</li> <li>functionality across time points n.s<br/>(6MWT 3 monts, 6months and 12<br/>months: p = 1.0, MRC hospital<br/>discharge p = 0.9, MRC 12 months p =<br/>1.0)</li> </ul> </li> </ul> | 2 → 3<br>(downgrade;<br>under- |

ICU = intensive care unit, LOS = length of stay, MBI = modified Barthel Index, MRC-SS = the medical research council sum-score, MSC = mental component score, MV = mechanical ventilation, PSC = physical component score, pts = patients, QoL = quality of life, RCT = randomized controlled trial, SF-36v2 = short-form 36 health survey version 2; 6MWT = six-minute walking test

#### There was no difference in short-term or long-term outcomes in the intensive twice-daily mobilization group.

| Reference,<br>Study Type                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                               | Control                      | Optimal<br>Population                                      | Primary Results                                                                                               | Evidence<br>Grade                                   |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| #515<br>Higgins<br>2019                      | 9 publications (3 retrospective cohort, 2<br>prospective cohort, 2 prospective<br>observational, 1 bidirectional case-control,<br>1retrospective control, 15 to 1132 pts) <sup>1-9</sup><br><b>Inclusion criteria:</b> |                      |                                                                            |                              |                                                            | Significant differences between<br>groups in:<br>- MV duration, shorter in<br>intervention: mean difference - |                                                     |
| PMID:<br>31526602                            | <ul> <li>adult trauma ICU pts</li> <li>compared EM vs no/SOC</li> <li>≥ 1 relevant outcome (mortality, hospital</li> </ul>                                                                                             |                      | EM:                                                                        |                              | Derived                                                    | 1.18 days, 95% Cl, -2.17 – -0.19, p<br>=0.02, l <sup>2</sup> = 0%                                             | 1→3                                                 |
| DOI:<br>10.1016/j.inj<br>ury.2019.09.<br>007 | LOS, ICU LOS, duration of MV) Exclusion criteria:                                                                                                                                                                      |                      | - any mobilization<br>in the ICU<br>delivered earlier<br>than intervention | No<br>mobilization<br>or SOC | endpoints:<br>- in-hospital<br>mortality<br>- hospital LOS | No significant differences<br>between groups in:<br>- hospital mortality                                      | (downgrade,<br>heterogenity<br>and small<br>effect) |
| Specification                                | <ul> <li>- case series or reports</li> <li>- &lt;18 years</li> <li>- EM delivered as part of a bundle intervention</li> </ul>                                                                                          |                      | in standard care                                                           |                              | - ICU LOS<br>- MV duration                                 | <ul> <li>ICU LOS</li> <li>hospital LOS</li> <li>Quality of studies and risk of bias:</li> </ul>               |                                                     |
| of Study:                                    | Per Branch                                                                                                                                                                                                             |                      |                                                                            |                              |                                                            | Only 1 study was judged as good                                                                               |                                                     |
| Systematic                                   |                                                                                                                                                                                                                        |                      |                                                                            |                              |                                                            | quality with low risk of bias across                                                                          |                                                     |
| review and<br>meta-                          |                                                                                                                                                                                                                        |                      |                                                                            |                              |                                                            | the 3 domains of selection,                                                                                   |                                                     |
| analyses                                     |                                                                                                                                                                                                                        |                      |                                                                            |                              |                                                            | comparability, and outcome.                                                                                   |                                                     |

CI = confidence interval, EM = early mobilization, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, SOC = standard of care

# The results of the meta-analysis showed a reduction in the duration of mechanical ventilation among patients who received EM, but no difference in mortality or LOS.

1. Gillick BT, Marshall WJ, Rheault W, Stoecker J. Mobility criteria for upright sitting with patients in the neuro/trauma intensive care unit: an analysis of length of stay and functional outcomes. Neurohospitalist 2011;1:172–7.

2. Clark DE, Lowman JD, Griffin RL, Matthews HM, Reiff DA. Effectiveness of an early mobilization protocol in a trauma and burns intensive care unit: a retrospective cohort study. Phys Ther 2013;93:186–96.

3. Taylor S, Pelham L, Dickinson S. Can the utilization of an early mobility protocol improve outcomes in the burn patient? J Burn Care Res 2013;34:S97.

4. Booth K, Rivet J, Flici R, Harvey E, Hamill M, Hundley D, et al. Progressive mobility protocol reduces venous thromboembolism rate in trauma intensive care patients: a quality improvement project. J Trauma Nurs 2016;23:284–9.

5. Teichman A, Scantling D, McCracken B, Eakins J. Early mobilization of patients with non-operative liver and spleen injuries is safe and cost effective. Eur

J Trauma Emerg Surg 2018;44:883–7.

6. Wang E, Inaba K, Byerly S, Mendelsberg R, Sava J, Benjamin E, et al. Safety of early ambulation following blunt abdominal solid organ injury: a prospective observational study. Am J Surg 2017;214:402–6.

7. Deng H, Chen J, Li F, Li-Tsang CW, Liu Q, Ma X, et al. Effects of mobility training on severe burn patients in the BICU: a retrospective cohort study. Burns 2016;42:1404–12.

8. Andelic N, Bautz-Holter E, Ronning P, Olafsen K, Sigurdardottir S, Schanke AK, et al. Does an early onset and continuous chain of rehabilitation improve the long-term functional outcome of patients with severe traumatic brain injury? J Neurotrauma 2012;29:66–74.

9. Bartolo M, Bargellesi S, Castioni CA, Intiso D, Fontana A, Copetti M, et al. Mobilization in early rehabilitation in intensive care unit patients with severe acquired brain injury: an observational study. J Rehabil Med 2017;49:715–22.

| Reference,<br>Study Type                                                                                        | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                      | Control | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                      |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| #516<br>Akar<br>2017<br>PMID:<br>26597394<br>DOI:<br>10.1111/crj.12<br>411<br>Specification<br>of study:<br>RCT | 30 pts<br>Inclusion criteria:<br>- intubated COPD pts (COPD<br>stage C or D)<br>- monitored ≥ 24 h on MV<br>- no DVT<br>- no comorbidities e.g. renal<br>failure, congestive heart failure,<br>cerebrovascular diseases,<br>neuromuscular diseases,<br>diabetes mellitus, malignancy<br>Exclusion criteria:<br>- monitored on MV < 24 h<br>- discharged ≤ 48 h from the ICU<br>- infection during the study<br>- unconscious pts<br>- DVT or pulmonary embolism<br>- hemodynamically unstable pts<br>Per Branch<br>NMES + exercise:<br>10 pts<br>Exercise:<br>10 pts |                      | 3 Groups<br>NMES +<br>exercise:<br>- NMES 5 days<br>a week for a<br>total of 20<br>sessions<br>-active exercise<br>training<br>NMES:<br>- NMES 5 days<br>a week for a<br>total of 20<br>sessions<br>Exercise:<br>- active<br>exercise<br>training |         | Outcomes:<br>- MRC score<br>- ICU LOS<br>- MV duration<br>- time to sit up<br>assisted in bed<br>- time to sit up<br>unassisted in bed<br>- time to sit up<br>unassisted at bedside<br>- time to st up<br>unassisted at<br>bedside<br>- time to stand<br>assisted<br>- time to stand<br>unassisted<br>- time to move from<br>bed to chair<br>- ICU discharge | <b>Outcomes:</b><br>MRC score:<br>- NMES + exercise (lower extremities, median [min -max]): before 3 [3-5], after 5 [4-5],<br>p = 0.014<br>- NMES + exercise (upper extremities, median [min-max]): before 4 [3-5], after 5 [4-5], p = 0.038<br>- NMES (lower extremities, median [min-max]): before 4 [3-5], after 5 [3-5], p = 0.046<br>- NMES (lower extremities, median [min-max]): before 4 [3-5], after 5 [3-5], p = 0.046<br>- exercise (lower extremities, median [min-max]): before 4 [3-5], after 5 [3-5], p = 0.046<br>- exercise (lower extremities, median [min-max]): before 4 [3-5], after 5 [3-5], p = 0.034<br>- exercise (upper extremities, median [min-max]): before 4 [4-5], after 5 [4-5], p = 0.034<br>- ICU length of stay (days, median [min-max]): before 4 [4-5], after 5 [4-5], p = 0.034<br>- ICU length of stay (days, median [min-max]): NMES + exercise 2 [1-3], NMES 2 [2-9],<br>exercise 4 [2-17], p = 0.781<br>- time to sit up assisted in bed (mean ±SD): NMES + exercise 1.25 ± 0.5, NMES 3.33<br>± 4.04, exercise 4.40 ± 3.91, p = 0.712<br>- time to sit up assisted in bed (mean ± SD): NMES + exercise 1.5 ± 1.0, NMES 3.66 ±<br>4.61, exercise 6.80 ± 3.96, p = 0.500<br>- time to sit up anassisted at bedside (mean ± SD): NMES + exercise 3.75 ± 2.50, NMES<br>4.00 ± 5.19, exercise 7.60 ± 4.90, p = 0.402<br>- time to sit up unassisted at bedside (mean ± SD), NMES + exercise 3.75 ± 2.50, NMES<br>6.00 ± 3.35, exercise 7.60 ± 4.50, p = 0.304<br>- time to stand assisted (mean ± SD): NMES + exercise 3.75 ± 2.50, NMES<br>6.00 ± 3.24, p = 0.671<br>- time to stand anssisted (mean ± SD): NMES + exercise 5.25 ± 2.62, NMES 8.00 ±<br>4.35, exercise 12.00 ± 5.61, p = 0.123<br>- time to move from bed to chair (mean ± SD): NMES + exercise 5.25 ± 2.62, NMES 8.33<br>$\pm 4.04$ , exercise 12.60 $\pm 6.30$ , p = 0.102<br>- ICU discharge (n (%): NMES + exercise 8 (80), NMES 8 (80), exercise 5 (50), p = 0.240 | 2 → 3<br>(methodo<br>logical<br>flaws) |

COPD = chronic obstructive pulmonary disease, DVT = deep venous thrombosis, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV= mechanical ventilation, NMES = neuromuscular electrical stimulation, pts = patients

#### Neuromuscular electrical stimulation could not show an effect on muscle strength or functional milestones.

| 60-019-0417-<br>x       injury       for controls       week       Secondary         y       pregnancy       -skin lesions in       extubation,         specification<br>of study:       the region to be       intervention - n (%): 0 (0), RR (95%CI): 16 (2.9 - 88.9), p = 0.0001; evoked peak force         rectus femoris: between group comparison day 14: control - n (%): 4 (13),       intervention - n (%): 0 (0), RR (95%CI): 16 (2.9 - 88.9), p = 0.0001; evoked peak force         specification<br>of study:       intervention the vertebral column<br>and lower limbs       intervention - mean difference (95%CI): 2.34 (1.89 - 2.79), p < 0.0001; between group difference         Per Branch       Per Branch       intervention - median [IQR]: 14.0 [8.0 - 18.0], p = 0.65         Hospital LOS:       intervention - median [IQR]: 12.5 [2.0 - 27.3] vs. intervention - median<br>[IQR]: 34.0 [10.0 - 26.0], p = 0.58         Hospital LOS:       Hospital LOS:       intervention - median<br>[IQR]: 34.0 [10.5, -24.2], p = 0.06 | Reference,<br>Study Type                                                                                      | Cases and<br>Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                         | Drop-out<br>Rate                                                                        | Intervention | Control                         | Optimal<br>Population                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Silva<br>2019<br>PMID:<br>31890221<br>DOI:<br>10.1186/s405<br>60-019-0417-<br>x<br>Specification<br>of study: | Inclusion<br>criteria:<br>- 18-60y of age<br>- MV ≤ 24h<br>- traumatic brain<br>injury<br>Exclusion<br>criteria:<br>- history of<br>alcoholism<br>- HIV<br>- chronic kidney<br>failure<br>- spinal cord<br>injury<br>- pregnancy<br>- skin lesions in<br>the region to be<br>treated<br>- unstable<br>fractures in the<br>vertebral column<br>and lower limbs | 10<br>interventio<br>ns (death,<br>extubation)<br>10 controls<br>(death,<br>extubation, | Usual care:  | <b>care:</b><br>- with<br>PT 2x | endpoints:<br>-muscle<br>architecture<br>-neuromuscular<br>electrophysiologic<br>al disorders<br>-evoked peak force<br>Secondary<br>outcomes:<br>-ICU LOS<br>-hospital LOS<br>-duration of MV | muscle thickness difference day 1 until day 14<br>M. tibialis anterior (mm)<br>-interaction time x group: effective size = 0.35, p < 0.0001; control-mean (95%Cl): -<br>0.33 (-0.390.26), p < 0.0001 vs intervention – mean (95%Cl): 0.01 (-0.069 – 0.08), p<br>= 0.78<br>M. rectus femoris (mm): interaction time x group: effective size = 0.34; control – mean<br>(95%Cl): -0.49 (-0.580.4), p < 0.0001; intervention – mean (95%Cl): -0.04 (-0.11 –<br>0.02), p = 0.15<br>Echogenicity difference day 7 until day 14<br>M. tibialis anterior: interaction time x group: effective size = 0.23, p < 0.0001<br>M. rectus femoris: interaction time x group: effective size = 0.24, p < 0.0001<br>chronaxie difference day 1 until day 14<br>M. tibialis anterior: interaction time x group: effective size = 0.22, p < 0.0001<br>M. rectus femoris: interaction time x group: effective size = 0.22, p < 0.0001<br>Incidence of neuromuscular electrophysiological disorders<br>M. tibialis anterior: control: day 1 – n (%): 3 (10%), Day 14 – n(%): 14 (47%), p = 0.003;<br>intervention: day 1 – n (%): 5 (17%), Day 14 – n(%): 0 (0%), p = 0.06; between group<br>comparison day 14: RR (95%Cl): 16 (2.9 – 88.9), p = 0.0001<br>M. rectus femoris: between group comparison day 14: control – n (%): 4 (13),<br>intervention – n (%): 0 (0), RR (95%Cl): 1.56 (-2.0 – 3.8.9), p = 0.0001; woked peak force<br>(kg/F) difference day 1 until day 14; -interaction time x group: np2 = 0.55, p < 0.0001;<br>control – mean difference (95%Cl): 2.34 (1.89 – 2.79), p < 0.0001; between group difference<br>day 7: p < 0.0001<br><b>Secondary Outcomes:</b><br>- duration of MV (days): control – median [IQR]: 15.5 [8.8 – 19.9] vs intervention –<br>median [IQR]: 14.0 [8.0 – 18.0], p = 0.65<br>- ICU LOS: control – median [IQR]: 19.5 [12.0 – 27.3] vs. intervention – median [IQR]:<br>19.0 [10.0 – 26.0], p = 0.58<br>- Hospital LOS: control – median [IQR]: 42.0 [20.0 – 56.0] vs -intervention – median | 2 → 3<br>(risk of |

ICU = intensive care unit, IHT = inter-hospital transfers, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, PT = physiotherapy

| Reference,<br>Study Type                                                                                                     | (Partic<br>Charact                                                                                                                                                                                                                              | d Controls<br>ipant #,<br>teristics)<br>otal                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Control                                                                                                                                                                                                                                                  | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade               |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| #523<br>Moss<br>2016<br>PMID:<br>26651376<br>DOI:<br>10.1164/rcc<br>m.201505-<br>1039OC<br>Specification<br>of study:<br>RCT | 120 ICU pts<br>Inclusion crite<br>- at least 4d or<br>- older than 18<br>Exclusion crite<br>- physical impa<br>- cognitive imp<br>- cardiopulmor<br>- lived >45 mile<br>hospital<br>- unlikely to su<br>months<br>- patient/docto<br>Per Branch | n MV<br>Sy<br>eria:<br>hirment<br>hary risk<br>es from<br>rvive after 6 |                      | Mobilisation:<br>- intensified PT until d28<br>Inpatient:<br>- 7d/week<br>- 30 min in ICU<br>- up to 60 min. on normal ward<br>Outpatient/ home:<br>- 3d/week<br>5 components of intensive PT:<br>- techniques for proper breathing during<br>exercise<br>- progressive ROM<br>- therapeutic exercises focusing on<br>muscle strengthening<br>- exercises to improve core mobility and<br>strength<br>- functional mobility retraining, including<br>bed mobility, transfers, gait, balance. | SOC:<br>-until d28<br>Inpatients:<br>-3d/week<br>Outpatients:<br>-information only<br>ROM exercises,<br>positioning and<br>functional<br>movement training.<br>As soon as possible,<br>assistance with ADL<br>(transfers to bed or<br>chair and walking) | Primary endpoint:         - CS-PFP-10 after 1 month         Secondary Outcomes:         - CU- and hospital-free days         on d28         - discharge home         - morbidity on d28         - days without         institutionalization on d90         and 180 (def. as living, not in         hospital, AHB, long-term         care or similar)         Power analysis: enrollment         of 120 pts could detect a         difference of 12.3 points         between the group mean         CS-PFP-10 score at 1 month         with a significance level (α)         of 0.05 and a power of 80%         using a two-sided | Primary endpoint:<br>- CS-PFP-10 scores at 1, 3<br>and 6 months: $p = 0.73$ , $p = 0.29$ , $p = 0.43$<br>- total CS-PFP-10 score<br>trajectory: $p = 0.71$<br>Secondary outcome:<br>- mortality: 17%, 10/ 59<br>intensive PT vs. 10%,<br>6/61 SOC, $p = 0.25$<br>- d without ITS on day 28:<br>p = 0.69<br>- d without hospital on<br>d28: $p = 0.97$<br>- discharge home: $p = 0.84$ | 2 → 3<br>(high risk<br>of bias) |

CS-PFP-10 = continuous scale physical, functional performance test short form, d = day, ICU = intensive care unit, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial, ROM = range of motion, SOC = standard of care

#### Intensified physical therapy does not improve the functional outcome measured by the CS-PFP-10.

| Reference,<br>Study Type                                                                         | Cases and<br>Controls<br>(Participant #,<br>characteristics)                                                                                                                                                            | Drop<br>-out<br>Rate | Intervention             | Control             | Optimal<br>Population                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade             |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                                                                                                  | Total<br>8 publications until<br>February 2019 (8<br>RCTs, n = 3941 pts)                                                                                                                                                |                      |                          |                     |                                                                                                                                                                                     | Significant differences between groups:         - Cumulative incidence of PI:         a. 3-hourly vs. 4-hourly repositioning frequency:         reduction of incidence might be associated with 3-hourly repositioning (RR 0.20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |
| 524 Gillespie<br>2020                                                                            | <ul> <li><sup>1-8</sup></li> <li>Inclusion criteria:</li> <li>- RCTs or cluster<br/>RCTs</li> </ul>                                                                                                                     |                      |                          |                     | Primary<br>outcome:                                                                                                                                                                 | <ul> <li>95% Cl 0.04 – 0.92), low certainty of evidence; (n = 1 RCT with 407 pts<sup>1</sup>)</li> <li>b. 4-hourly vs. 6-hourly repositioning frequency:<br/>27% reduction of incidence associated with 4-hourly repositioning (RR 0.73, 95% Cl 0.53 – 1.02 %), very low certainty of evidence; (n = 1 RCT with 129 pts<sup>2</sup>)</li> <li>c. 2-hourly repositioning frequency using a 20° tilt vs. standard of care:<br/>reduction of incidence associated with 2-hourly repositioning (RR 0.28, 95% Cl 0.10 – 0.75), very low certainty of evidence; (n = 1 RCT with 1312 pts<sup>6</sup>)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |                               |
| PMID: 32484259<br>https://doi.org/1<br>0.1002/1465185<br>8.CD009958.pub<br>3<br>Specification of | <ul> <li>Adults without<br/>existing PI in<br/>any healthcare<br/>or long-term<br/>care setting</li> <li>Assessment of<br/>effects of<br/>repositioning<br/>regimes</li> <li>Measurement<br/>of PI incidence</li> </ul> |                      | Repositioning<br>regimes | Standard<br>of care | <ul> <li>Cumulative<br/>incidence of<br/>Pl</li> <li>Secondary<br/>outcome:         <ul> <li>health-<br/>related<br/>quality of<br/>life</li> <li>procedural</li> </ul> </li> </ul> | <ul> <li>Non-significant differences between groups: <ul> <li>Cumulative incidence of PI:</li> <li>2-hourly vs. 3-hourly repositioning frequency:<br/>due to high heterogeneity (I<sup>2</sup> = 77%) <i>data was not pooled</i>; no clear differences were<br/>found (n = 2 RCTs with 1229 pts)<sup>1,2</sup></li> <li>2-hourly vs. 4-hourly repositioning frequency:<br/>fixed-effect-model; I<sup>2</sup> = 45%, pooled RR 1.06, 95% CI 0.80 – 1.41, no clear difference<br/>in incidence of PI, very low certainty of evidence (n = 3 RCTs with 1074 pts)<sup>1,2,4</sup></li> <li>30° vs. 90° tilt: random-effect-model; I<sup>2</sup> = 69%, pooled RR 0.62, 95% CI 0.10 – 3.97,<br/>very low certainty of evidence, no clear difference in the incidence of stage 1 or 2<br/>PI; (n = 2 RCTs with 259 pts)<sup>5,7</sup></li> <li>30° HOB elevation vs. 45° HOB elevation vs. standard of care: no PI occurred, low<br/>certainty of evidence; (n = 1 RCT with 120 pts<sup>3</sup>)</li> </ul> </li> </ul> | 1 → 3<br>(high<br>uncertainty |
| study:<br>Systematic<br>review and<br>meta-analysis                                              | Per Branch                                                                                                                                                                                                              |                      |                          |                     | <ul> <li>procedural pain</li> <li>patient satisfaction</li> <li>costs</li> </ul>                                                                                                    | <ul> <li>h. prone positioning vs. supine positioning: increase of incidence of PI stage 1 associated with prone positioning, low certainty of evidence; (n = 1 RCT with 116 pts<sup>8</sup>)</li> <li>health-related quality of life, procedural pain, patient satisfaction not reported in the publications</li> <li>costs: <ul> <li>a. Comparing 2-hourly repositioning regimen with 3-/4-hourly regimens a cost reduction of 11.05, 16.74 CAD per resident per day resulted, respectively (n = 1 RCT<sup>1</sup>)</li> <li>b. Comparing 30° tilt 3-hourly repositioning regimen with 90° tilt 6-hourly repositioning regimen for 588 individuals, who were completely immobile or had very limited mobility an annual cost difference of 512800€, equivalent to 21462 hours of nursing time resulted; mean nurse time cost per patient 206.6 € vs. "53.1 €, incremental difference -46.5€, 95% Cl -1.25 to -74.6€; (n = 1 RCT<sup>5</sup>)</li> </ul> </li> </ul>                                              |                               |

Pts = patients, RCTs = randomized controlled trials, PI = pressure injury, RR = risk ratio, CI = confidence interval, CAD = Canadian Dollar, HOB = head of bed

#### The effectiveness of repositioning frequency and positioning for PI prevention remains unclear due to low certainty levels of evidence.

#### References

- 1. Bergstrom N, Horn SD, Rapp MP, Stern A, Barrett R, Watkiss M. Turning for Ulcer ReductioN: a multisite randomised clinical trial in nursing homes. *Journal of the American Geriatrics Society* 2013;**61**(20):1705-13.
- 2. Defloor T, De Bacquer D, Grypdonck MH. The effect of various combinations of turning and pressure reducing devices on the incidence of pressure ulcers. *International Journal of Nursing Studies* 2005;**42**(1):37-46.
- 3. Ghezeljeh T, Kalhor L, Moghadam O, Lahiji M, Haghani H. The comparison of the effect of the head of bed elevation to 30 and 45 degrees on the incidence of ventilator associated pneumonia and the risk for pressure ulcers: a controlled randomised clinical trial. *Iranian Red Cresecent Medical Journal* 2017;**19**(7):e14224.
- 4. Manzano F, Colmenero M, Pérez-Pérez AM, Roldán D, del Mar Jiménez-Quintana M, Mañas MR, et al. Comparison of two repositioning schedules for the prevention of pressure ulcers in patients on mechanical ventilation with alternating pressure air mattresses. *Intensive Care Medicine* 2014;**40**(11):1679-87.
- 5. Moore Z, Cowman S, Conroy RM. A randomised controlled clinical trial of repositioning, using the 30° tilt, for the prevention of pressure ulcers. *Journal of Clinical Nursing* 2011;**20**(17-18):2633-44.
- 6. Pickham D, Berte N, Pihulic M, Valdex A, Mayer B, Sesai M. Effect of a wearable patient sensor on care delivery for preventing pressure injuries in acutely ill adults: a pragmatic randomised clinical trial (LS-HAPI study). *International Journal of Nursing Studies* 2018;**80**:12-9.
- 7. Young T. The 30 degree tilt position vs the 90 degree lateral and supine positions in reducing the incidence of non-blanching erythema in a hospital inpatient population: a randomised controlled trial. *Journal of Tissue Viability* 2004;**14**(3):88, 90, 92-6.
- 8. Zhou X, Dawei L, Zhang G, Cui N, He H, Zhao H, et al. Effect of prone position ventilation combined with lung recruitment on the prognosis of patients with severe acute respiratory distress syndrome. *Chung-Hua Nei Ko Tsa Chih [Chinese Journal of Internal Medicine]* 2014;**53**(6):437-41.

| Reference,<br>Study Type                                              | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention | Control    | Optimal Population                                                                                                                | Primary Results                                                                                                                                                                                                                     | Evidence<br>Grade                   |
|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| #526<br>Hermans<br>2014<br>PMID:<br>24477672<br>DOI:<br>10.1002/14651 | 1 publication <sup>1</sup><br>Inclusion criteria:<br>- RCTs in humans<br>- ≥ 18 years of age<br>- any treatment used<br>to prevent or reduce<br>the incidence of CIP or<br>CIM as a primary or<br>secondary outcome<br>Exclusion criteria:<br>- not stated<br>Per Branch |                      | NMES         | Usual care | Primary endpoint:<br>incidence of CIP or CIM<br>Secondary outcomes:<br>duration of MV<br>ICU LOS<br>death on 30- and 180-<br>days | Primary endpoint:<br>incidence of CIP/CIM<br>- 0.81 RR (95%CI) 0.94 (0.78 – 1.15), p = 0.56<br>Secondary outcomes:<br>no significant differences between groups in:<br>- duration of MV<br>- ICU LOS<br>- death on 30- and 180-days | 1 → 2<br>(only 1 study<br>included) |

CIM = critical illness myopathy, CIP = critical illness polyneuropathy, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, RCT = randomized controlled trial

NMES does not significantly reduce the incidence of CIP/CIM compared to usual care.

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention                    | Control        | Optimal Population                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| #527<br>Herling<br>2018<br>PMID: 30484283<br>DOI:<br>10.1002/14651858<br>.CD009783.pub2<br>Specification of<br>study:<br>Systematic review<br>with meta analysis | 12 RCTs, 3.885 pts<br>only 1 study with physical<br>therapy as intervention<br>(n=65) <sup>1</sup><br>Inclusion criteria:<br>- RCTs<br>- adult patients in internal<br>medicine or surgical ICU<br>- any intervention to prevent<br>delirium/ICU<br>- control via standard of<br>care, placebo or both<br>- search period: 1980-2018<br>No exclusion criteria<br>defined<br>Per Branch |                      | Prevention of<br>immobilization | Not<br>defined | Primary outcomes:<br>- event rate of delirium in<br>ICU (CAM-ICU positive)<br>- in-hospital mortality<br>Secondary outcomes:<br>- number of delirium- and<br>coma-free days<br>- ventilator-free days<br>- ICU-LOS<br>- MMSE<br>- AEs of interventions | Primary outcome:<br>- event rate of delirium: not<br>reported<br>- In-hospital mortality: RR 0.94, 95%<br>Cl 0.40 to 2.20; p = 0.88, n = 65<br>Secondary outcomes:<br>- number of delirium- and coma-<br>free days: MD -2.77, 95% Cl -10.09<br>to 4.55; p = 0.46, n = 65<br>- ventilator-free days: median days<br>25.3 versus 27.4; p = 0.81, n = 65<br>- ICU-LOS: MD 1.23, 95% Cl -0.68 to<br>3.14; p = 0.21, n = 65<br>- MMSE: MD 0.97, 95% Cl-0.19 to<br>2.13; p = 0.10, n = 30<br>- AEs: no calculations | 1 → 4<br>(only 1<br>study<br>with PT) |

AE = adverse event, ICU = intensive care unit, LOS = length of stay, MMSE = mini mental state examination, PT = physical therapy, RCT = randomized controlled trial

#### PT does not seem to reduce in-hospital mortality

#### References

1 Brummel NE, Girard TD, Ely EW, Pandhariphande PP, Morandi A, Hughes CG, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Medicine 2014;40(3):370-9. [DOI: 10.1007/s00134-013-3136-0

| Reference,<br>Study Type                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                      | Drop<br>-out<br>Rate | Intervention                                                                                                 | Control                                              | Optimal Population                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade    |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1001 Abroug<br>2008<br>(PMID: 18350271<br>DOI: 10.1007/s00134-<br>008-1062-3)<br><b>Specification of study:</b><br>Meta-Analysis | 6 RCTs to November<br>2007<br>Inclusion criteria:<br>- adults with ARDS or ALI<br>Exclusion criteria:<br>- non-controlled studies<br>- studies that only<br>examined the<br>physiological effects of<br>prone positioning<br>Per Branch |                      | Ventilation in<br>prone position<br>whatever its<br>duration, on a 24-h<br>basis, and during<br>the ICU stay | Conventional<br>ventilation in<br>supine<br>position | Primary endpoint:<br>- mortality in the ICU or at<br>28 days<br>Secondary outcomes:<br>- effect on PaPO <sub>2</sub> /FiO <sub>2</sub><br>ratio<br>- rate of VAP<br>- procedure-related major<br>airway complication<br>- ICU LOS | Significant differences between groups in:<br>- PaPO <sub>2</sub> /FiO <sub>2</sub> by 25mmHg; 95% Cl 15–35,<br>p for effect <0.00001, p for heterogeneity =<br>0.06, l2= 56%<br>No significant differences between groups<br>in:<br>- mortality [249 of 713 pts (34.9%) in the<br>prone ventilation group versus 234 of 659<br>pts (35.5%) in the supine position]: OR<br>0.97, 95% Cl 0.77–1.22, p for effect = 0.79,<br>p for heterogeneity = 0.35; l2= 9.3%<br>- rate of VAP: n.s.<br>- complications: n.s.<br>- ICU LOS: n.s. | 1 → 2<br>(downgrade) |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, ICU LOS = intensive care unit length of stay, pts = patients, RCT = randomized controlled trial, VAP = ventilator-associated pneumonia

#### Prone positioning has no significant effect on the mortality of critical ill patients but seems to improve the PaPO<sub>2</sub>/FiO<sub>2</sub> ratio.

#### References

- 1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573
- 2. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. Jama 292:2379–2387
- 3. Curley MA, Hibberd PL, Fineman LD, Wypij D, Shih MC, Thompson JE, Grant MJ, Barr FE, Cvijanovich NZ, Sorce L, Luckett PM, Matthay MA, Arnold JH (2005) Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. Jama 294:229–237
- 4. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodriguez F, Garro P, Ricart P, Vallverdu I, Gich I, Castano J, Saura P, Dominguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239
- 5. Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC (2002) Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 28:564–569
- 6. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, Bock E, Gotzen L, Obertacke U, Nast-Kolb D (2005) Prone positioning improves oxygenation in post-traumatic lung injury a prospective randomized trial. J Trauma 59:333–341; discussion 341–333

| Reference,<br>Study Type                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                                                                  | Control | Optimal<br>Population                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|---------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1002<br>Abroug<br>2011<br>(PMID:<br>21211010<br>DOI:<br>10.1186/cc940<br>3)<br>Specification<br>of study:<br>Meta-Analysis | or ARDS Per Branch                                              |                      | <b>Prone positioning</b><br>(7-24h/day) while<br>on mechanical<br>ventilation |         | <b>Primary</b><br>endpoints:<br>- ICU-mortality<br>- adverse effects | Significant differences between groups in:<br>- ICU- mortality in pts. with ARDS (n=540):<br>(OR = 0.71; 95% CI = 0.5 to 0.99; P= 0.048;<br>NNT= 11; $I_2$ = 0%)<br>Non-significant differences between<br>groups in:<br>- ICU-mortality overall: non-significant 9%<br>reduction (OR = 0.91, 95% CI= 0.75 to 1.1;<br>P= 0.39; $I_2$ = 0%)<br>- adverse effects: n.s. OR = 1.16; 95%CI =<br>0.75 to 1.78; P= 0.5 | 1                 |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, ARI = acute respiratory failure, ICU = intensive care unit, NNT = number needed to treat, RCT = randomized controlled trial

# Prone positioning has no significant effect on the mortality of respiratory patients overall but significantly reduces mortality in ARDS patients.

#### References

- 1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573
- Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. Jama 292:2379–2387
- Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, Bock E, Gotzen L, Obertacke U, Nast-Kolb D (2005) Prone positioning improves oxygenation in post-traumatic lung injury a prospective randomized trial. J Trauma 59:333–341; discussion 341–333
- 4. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodriguez F, Garro P, Ricart P, Vallverdu I, Gich I, Castano J, Saura P, Dominguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239
- 5. Chan MC, Hsu JY, Liu HH, Lee YL, Pong SC, Chang LY, Kuo BI, Wu CL: Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc 2007, 106:708-716.
- 6. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, Tirapu JP, Santos A, Mas A, Parraga M, Jubert P, Frutos F, Anon JM, Garcia M, Rodriguez F, Yebenes JC, Lopez MJ: Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 2008, 34:1487-1491.
- 7. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, Mancebo J, Guerin C, Ayzac L, Blanch L, Fumagalli R, Tognoni G, Gattinoni L: Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009, 302:1977-1984.

| Reference,<br>Study Type                                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-out<br>Rate | Intervention                                                             | Control                                                                                                   | Optimal<br>Population                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1004<br>Alsaghir 2008<br>(PMID:<br>18216609<br>DOI:<br>10.1097/01.CCM<br>.0000299739.98<br>236.05)<br><b>Specification of</b><br><b>study:</b><br>Meta-analysis | incidence of VAP                                                |                  | Prone<br>positioning:<br>sessions of ≥<br>6h (n=4) or<br>single sessions | Supine<br>positioning<br>(n=4) or SP in<br>combination<br>with high-<br>frequency<br>ventilation<br>(n=1) | <ul> <li>mortality</li> <li>changes in<br/>PaO2/FiO2</li> <li>total<br/>ventilator<br/>days</li> <li>incidence of<br/>VAP</li> </ul> | <ul> <li>Significant differences between groups in: <ul> <li>post-hoc analysis: mortality for patients with SAPS II of &gt; 50</li> <li>mortality at 10 days: PP vs. SP 19.4% vs. 28.5% (RR, 0.4; 95% CI, 0.19-0.85)</li> </ul> </li> <li>changes in <ul> <li>PaO2/FiO2:</li> <li>early stage (12 hours to 2 days) (n=4): WMD of 51.5 (95% CI, 6.95–96.05)</li> <li>intermediate stage (day 4) (n=3):</li> <li>WMD of 43.87 (95% CI, 13.86 –73.88)</li> <li>late stage (day 7-10) (n=4):</li> <li>WMD of 24.89 (95% CI, 15.3–34.48)</li> </ul> </li> <li>Non-significant differences between groups in: <ul> <li>ICU-mortality (n=3): PP vs. SP (pooled OR, 0.79; 95% CI, 0.71–1.28</li> <li>90d-mortality (n=4): pooled OR, 0.99; 95% CI, 0.77–1.27</li> <li>total ventilator days (n=2)</li> <li>incidence of VAP (n=3)</li> </ul> </li> </ul> | 1                 |

MV = mechanical ventilation, PP = prone positioning, pts = patients, RCT = randomized controlled trial, SP = supine positioning, VAP = ventilator-associated pneumonia, WMD = weighted mean difference

PP has a significant positive effect on mortality and early as well as late-stage oxygenation but does not reduce the number of ventilator days or the rate of VAP.

#### References

- 1. Gattinoni L, Tognoni G, Pesenti A, et al: Effects of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001; 345:568–573
- 2. Guerin C, Gaillard S, Lemasson S, et al: Effects of systematic prone positioning in hypoxemic acute respiratory failure: A randomized controlled trial. JAMA 2004; 292: 2379–2387
- 3. Mancebo J, Fermandez R, Blanch L, et al: a Multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 173:1233–1239
- 4. Papazian L, Gainnier M, Marin V, et al: Comparison of prone positioning and high frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 2005; 33:2162–2171
- 5. Voggenreiter G, Aufmakolk M, Stiletto RJ, et al: Prone positioning improves oxygenation in post-traumatic lung injury: A prospective randomized trial. J Trauma 2005; 59: 333–343

| Reference,<br>Study Type                                                                                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention                                             | Control                       | Optimal Population                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence Grade                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 1006<br>Niël-Weise<br>2011<br>PMID:<br>21481251<br><u>https://doi.org/<br/>10.1186/cc101</u><br><u>35</u><br><b>Specification of</b><br><b>study:</b><br>Systematic<br>Review with<br>meta-analysis | 3 RCTs (337 pts) <sup>1-3</sup><br>Inclusion criteria:<br>- RCTs and quasi randomized<br>trials<br>- published as full papers<br>- stated outcomes<br>- sufficient data to calculate<br>the risks in both the<br>treatment<br>and the control group<br>Per Branch |                      | Semi-upright<br>positioning<br>45° bed head<br>elevation | 25°, 10°, or<br>0° elevations | Primary endpoints:<br>- clinically suspected and<br>microbiologically confirmed<br>VAP<br>Secondary outcomes:<br>- mortality<br>- venous<br>thromboembolism<br>- hemodynamic instability<br>- duration of<br>mechanical ventilation<br>- ICU LOS<br>- decubitus<br>- ulcers<br>- patient comfort and safety | Primary outcomes:<br>- it was uncertain whether a 45° bed head<br>elevation was effective or harmful with<br>regard to the occurrence of clinically<br>suspected or microbiologically confirmed<br>VAP (test of overall effect clinical: Z=1.62;<br>p=0.10; microbiology: Z=0.71,p=0.48)<br>Secondary outcomes:<br>- it was unknown whether 45° elevation<br>for 24h a day increased the risk for<br>thromboembolism or hemodynamic<br>instability<br>- uncertain whether a 45° bed head<br>elevation was effective or harmful with<br>regard to the occurrence of decubitus and<br>mortality (test for overall effect:<br>Z=0.58,p=0.56)<br>-not indicated:<br>ICU LOS, duration of mechanical<br>ventilation, ulcers, patient comfort, and<br>safety | 1 → 3<br>(not only RCTs,<br>heterogenity,<br>indirectness) |

ICU = intensive care unit, LOS = length of stay, pts = patients, RCT = randomized controlled trial, VAP = ventilator associated pneumonia

#### Experts prefer elevated position in ventilated patients, even though this study could not show clinical benefits.

#### References

1. Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M: Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 1999, 354:1851-1858.

2. Keeley L: Reducing the risk of ventilator-acquired pneumonia through head of bed elevation. Nurs Crit Care 2007, 12:287-294.

3. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, Joore HC, van Schijndel RJ, van dT I, Ramsay G, Bonten MJ: Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 2006, 34:396-402.

| Reference,<br>Study Type                                                                                                          | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                        | haracteristics)                                            | Drop-<br>out<br>Rate | Intervention | Control               | Optimal<br>Population                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|--------------|-----------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1013<br>Beitler 2014<br>(PMID: 24435203<br>DOI: 10.1007/s00134-013-<br>3194-3)<br><b>Specification of study:</b><br>Meta-Analysis | 7 RCTs including 2<br>Inclusion criteria:<br>- adults meeting t<br>definition of ARDS<br>Exclusion criteria:<br>- review for non-coventilation in the<br>- non-randomized<br>Per Bra<br>1088 | the Berlin<br>S<br>conventional<br>control arm<br>d design | -                    | nrone        | Supine<br>positioning | Endpoints:<br>- risk ratio of<br>death at 60 days<br>- ICU mortality +<br>other duration of<br>MV | Significant differences between groups in:<br>- decrease in mean baseline tidal volume of 1<br>ml/kg PBW was associated with a decrease in<br>risk ratio of death at 60 days by 16.7 % (95 %<br>CI 6.1–28.3; p = 0.001)<br>- prone positioning: decrease in risk ratio of<br>death using low tidal volumes (RR = 0.66; 95 %<br>CI 0.50–0.86; p = 0.002) | 1                 |

ARDS = acute respiratory distress syndrome, ICU = intensive care unit, MV = mechanical ventilation, PBW = predicted body weight, PP = prone positioning, RCT = randomized controlled trial, SP = supine positioning, TV = tidal volume

#### Prone positioning reduces 60-day mortality in patients receiving low tidal volume but not in those receiving high tidal volumes.

#### References

Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med. 2001; 345:568–573. [PubMed: 11529210] 2 . Guérin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004; 292:2379–2387. [PubMed: 15547166]
 Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in posttraumatic lung injury—a prospective randomized trial. J Trauma. 2005; 59:333–341. [PubMed: 16294072]

4. Mancebo J, Fernández R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006; 173:1233–1239. [PubMed: 16556697]

5. Fernández R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med. 2008; 34:1487–1491. [PubMed: 18427774]

6. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2009; 302:1977–1984. [PubMed: 19903918]

7. Guérin C, Reignier J, Richard J-C, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013; 368:2159–2168. [PubMed: 23688302]

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                     | Drop-out Rate                                                                                      | Intervention                                                                               | Control                               | Optimal Population                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidenc<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1016<br>Göcze 2013<br>(PMID:<br>23622019<br>DOI:<br>10.1186/cc12<br>694)<br>Specification<br>of study:<br>prospective<br>randomized<br>multivariable<br>analysis | 202 pts<br>Inclusion criteria:<br>- hemodynamically stable<br>- MV<br>- 18 years or older<br>- central venous catheter<br>situated in the superior vena cava<br>Exclusion criteria: | 2 pts from 202<br>(severe<br>hypotension<br>requiring<br>volume and<br>inotropic<br>resuscitation) | sequence of<br>HBE positions<br>(0°, 30°, and<br>45°) was<br>adopted<br>in random<br>order | pts acted as<br>their own<br>controls | Primary endpoints:<br>- effect of head of bed<br>elevation (HBE) on<br>hemodynamic status<br>- factors that<br>influence MAP and<br>central venous oxygen<br>saturation (ScvO2)<br>when pts were<br>positioned at 0°, 30°,<br>and 45° | Primary endpoints:<br>- changing HBE from supine to 45°<br>caused significant reductions in<br>MAP (from 83.8 mmHg to 71.1<br>mmHg, P < 0.001) and ScvO2 (76.1%<br>to 74.3%, P < 0.001)<br>- mode and duration of mechanical<br>ventilation (p= <0.001), the<br>norepinephrine dose (p=0.005), and<br>HBE (p= <0.001) had statistically<br>significant influences<br>- PCV was the most influential risk<br>factor for hypotension when HBE<br>was 45° (odds ratio (OR) 2.33, 95%<br>confidence interval (CI), 1.23 to<br>4.76, P = 0.017) | 3                |

HBE = head of bed elevation, MAP = mean arterial pressure, MV = mechanical ventilation, PCV = pressure-controlled ventilation, pts = patients

HBE is associated with decrease in MAP and ScvO2 in mechanically ventilated patients.

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                      | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1021 Chiumello<br>2012<br>PMID: 22187085<br>DOI: 10.1007/s00134-<br>011-2445-4<br><b>Specification of</b><br><b>study:</b><br>Observational<br>prospective study | 5 centers → 26 pts.<br>Inclusion criteria:<br>-pts with ARDS enrolled in<br>a randomized multicenter<br>trial (PSII study)<br>Exclusion criteria:<br>-not stated<br>Per Branch<br>13 13 | n/a                  | РР           | SP      | No sample size<br>calculation<br>No primary<br>endpoint<br>defined<br><b>Extracted</b><br><b>Endpoints:</b><br>-long-term<br>pulmonary<br>function<br>-quality of life<br>(HRQL;<br>SF-36) | <ul> <li>Results:</li> <li>-Pulmonary function in the normal range without any differences between the two groups</li> <li>Quantitative lung CT scan analysis (PP vs. SP): similar amounts for not aerated (8.1 ± 3.2% versus 7.3 ± 3.4%), poorly aerated (15.3 ± 3.6% versus 17.1 ± 4.9%), and well-aerated (64.0% ± 8.4 versus 70.2 ± 8.4%) lung regions overaerated lung region was slightly higher in the PP (12.5 ± 6.5% versus 5.3 ± 5.5%)</li> <li>-no difference in quality of life stated</li> </ul> |                   |
|                                                                                                                                                                  | 13 13                                                                                                                                                                                   |                      |              |         |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |

pts. = patients; ARDS = acute respiratory distress syndrome; PP = prone position; SP = supine position; HRQL = health-related quality of life; SF-36 = short-form-36; CT = computer tomography

No differences in pulmonary function or quality of life were observed in this small group of ARDS survivor patients treated in PP vs. SP.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-out<br>Rate                                                                                         | Interventio<br>n          | Control                   | Optimal Population                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1025<br>Keeley, 2007<br>(PMID:<br>17983363<br>DOI:<br>10.1111/j.147<br>8-<br>5153.2007.00<br>247.x)<br><b>Specification</b><br>of study:<br>RCT | 30 patients<br>Inclusion criteria:<br>- intubated within 12 h<br>Exclusion criteria:<br>- previous intubation within the last 30d<br>- recent abdominal surgery with vacuum dressin<br>that requires changes of pts position to gain a se<br>or renew the dressing<br>- severely obese pts unable to tolerate head<br>elevation of 45°<br>- haemodynamic instability (i.e. mean arterial<br>pressure below 60 mmHg for more than 30 min<br>refractory to colloid therapy or inotropic suppor<br>- pts receiving renal replacement therapy whose<br>body position results in insufficient flow to<br>continue therapy<br>- pregnancy<br>- spinal surgery or trauma that necessitates nurse<br>the patient flat<br>- intubated for more than 12 h prior to admission | treatment<br>group: 12<br>(developed<br>VAP, Died)<br>t control<br>group: 14<br>(developed<br>VAP, Died) | 45° raised<br>head of bed | 25° raised<br>head of bed | Primary endpoint:<br>-incidence of VAP<br>Secondary outcomes:<br>- ventilator hours<br>- tracheostomy<br>- mortality | Primary endpoints:<br>- 29% (5) in the treatment group<br>and 54% (7) in the control group<br>contracted VAP (p < 0.176)<br>Secondary outcomes:<br>- ventilator hours: 63.1 h in<br>treatment group, 61.5h in control<br>group<br>- tracheostomy: 11 of 12 pts with<br>VAP had tracheostomies<br>- mortality: ICU mortality rate of<br>those pts who developed VAP was<br>50%, with a hospital mortality rate<br>of 58%<br>- no p-values stated for ventilator<br>hours, tracheostomy, mortality | 2→3               |
|                                                                                                                                                 | 17 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                           |                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |

pts = patients, RCT = randomized controlled trial, VAP = ventilator acquired pneumonia

There was no significant reduction of VAP in patients with 45° raised head of bed.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                       | (Participant #,<br>characteristics)     Drop<br>-out     Drop       Bate     Optimal Population |                                             | Optimal Population                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1027<br>Davis, 2007<br>PMID:<br>17495725<br>DOI:<br>10.1097/TA.0<br>b013e31804d<br>490b<br><b>Specification</b><br>of study:<br>Retrospective<br>study | 61 pts<br>Inclusion criteria:<br>- ALI or ARDS<br>Exclusion criteria:<br>- placed on a kinetic<br>therapy bed for<br>prophylaxis against<br>atelectasis or<br>pneumonia<br>- did not tolerate the<br>bed surface<br>Per Branch<br>17 pts<br>prone<br>position<br>(including 4<br>cross-over<br>patients) |                                                                                                 | Supine<br>positioning in<br>oscillating bed | Prone<br>positioning<br>in oscillating<br>bed | Outcomes:<br>- Mortality<br>- Pulmonary associated<br>mortality<br>- PaO2/FiO2 ratio<br>- FiO2 requirement<br>- Ventilator days<br>- Hospital LOS<br>- GCS<br>- Use of pressors<br>- Use of Intracranial pressure<br>monitors<br>- Presence of pneumonia<br>- Days on the kinetic bed<br>- Dynamic compliance<br>- Age<br>- CVP<br>- ISS<br>- RTS<br>- Base deficit<br>- Head AIS<br>- Chest AIS<br>- Abdominal AIS<br>- Probability of survival | Significant differences between groups (SP vs. PP):- Mortality (pts): 18 vs. 1, $p < 0.01$ - PaO2/FiO2 ratio day 5 in cross-over patients (n=4):146 ± 16 vs. 238 ± 6, $p < 0.001$ Significant results (Between groups analysis not stated):- FiO2 requirement decreased in both groups:o Supine group: 0.63 to 0.45 ( $p < 0.001$ )o Prone group: 0.58 to 0.4 ( $p < 0.001$ )Non-significant differences between groups (SP vs. PP):- Pulmonary-related mortality (pts): 7 vs. 0, $p = 0.051$ - PaO2/FiO2 ratios:o Baseline: 149 vs. 153, $p > 0.05$ o Day 5: 200 ± 14 vs. 243 ± 13, $p = 0.066$ - PaO2/FiO2 ratios by day 5:200 vs. 243, $p = 0.066$ )- Ventilator days: 24.2 vs. 13.6, $p = 0.12$ )- Hospital LOS (40 vs. 22 days, $p = 0.08$ )- GCS : 9.8 vs. 13, $p = 0.063$ - Use of pressors: 54% vs. 46%, $p > 0.05$ - Intracranial pressure monitors: 12 vs. 2 ( $p = 0.2$ )- Presence of pneumonia: 22 pts vs. 6 pts, $p = 0.8$ - Bed days: 6.2 ± 0.7 vs. 5.3 ± 0.5, $p > 0.05$ - Dynamic compliance: 29.8 vs. 32.8, $p = n.s.$ )- No difference between the groups in age, CVP, ISS, RTS, basedeficit, head AIS score, chest AIS score, abdominal AIS score, orprobability of survival | 4 → 5 |

ISS = injury severity score; AIS = Abbreviated Injury Scale score; RTS = revised trauma score; GCS = Glasgow coma scale; CVP = central venous pressure; LOS = length of stay, ALI = acute lung injury, ARDS = adult respiratory distress syndrome, n.s. = not stated

Prone kinetic therapy was associated with a reduction in mortality, but not length of stay and decreased duration of ventilation. Due to methodological deficits, the results should be interpreted with caution.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                  | Cases and<br>(Participant #, C<br>Tot | Characteristics)                                                                                                                         | Drop-out<br>Rate                                                   | Intervention                         | Control            | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade         |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1034 Fernandez<br>2008<br>(PMID:<br>18427774<br>DOI:<br>10.1007/s00134-<br>008-1119-3)<br><b>Specification of</b><br><b>study:</b><br>RCT |                                       | d MV<br>der<br>urs<br>ntilation<br>a:<br>ension needing<br>(Cardiovascular<br>in injury<br>c or spinal<br>res<br>dition<br>another trial | n = 2<br>(n = 1 in<br>supine<br>group,<br>n = 1<br>prone<br>group) | Prone<br>position for<br>about 20h/d | Supine<br>position | <ul> <li>Primary endpoint: <ul> <li>mortality</li> </ul> </li> <li>Secondary outcomes: <ul> <li>ICU LOS (days)</li> <li>hospital LOS (days)</li> <li>MV duration (days)</li> <li>prevalence of pneumothorax</li> <li>prevalence of unplanned extubation</li> <li>prevalence of VAP</li> </ul> </li> <li>Sample size calculation: <ul> <li>based on an expected 60% mortality in severe ARDS, the estimated sample size required to confirm a 15% absolute reduction with an alpha error of 0.05 and a power of 80% was 250.</li> </ul> </li> </ul> | This study was stopped prematurely<br>because of slow inclusion process and<br>therefore was underpowered.<br><b>Primary endpoint</b> (SP vs. PP):<br>- mortality: SP vs. PP 10 (53%) vs. 8<br>(38%), p = 0.3<br><b>Secondary outcomes</b> (SP vs. PP):<br>- ICU LOS: $17.5 \pm 16.1$ vs. $14.7 \pm 9.7$ , p =<br>0.5<br>- hospital LOS: $25.5 \pm 17.4$ vs. $31.3 \pm$<br>26.4, p = 0.4<br>- MV duration: $15.7 \pm 16.9$ vs. $11.9 \pm 9.2$ ,<br>p = 0.5<br>- prevalence of pneumothorax:<br>1 (5%) vs. 0 (0%), p = 0.5<br>- prevalence of unplanned extubation:<br>1 (5%) vs. 1 (5%), p = 1.0<br>- prevalence of VAP:<br>1 (5%) vs 3 (14%), p = 0.6 | 2> 3<br>(down-<br>graded) |

ARDS = acute respiratory distress syndrome, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, SOFA = sequential organ failure Assessment, VAP = ventilator associated pneumonia

Prone position compared to supine position did not improve mortality, ICU LOS, hospital LOS or MV duration.

| Reference,<br>Study Type                                                                                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                  | Drop-out<br>Rate                                  | Intervention                                                       | Control | Optimal<br>Population                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1037<br>Galiatsou 2006<br>(PMID: 16645177<br>DOI:<br>10.1164/rccm.200<br>506-899OC)<br><b>Specification of</b><br><b>study:</b><br>Non-randomized,<br>non-controlled<br>interventional<br>study | n = 22 pts<br>Inclusion criteria:<br>- ALI/ARDS<br>- ability to be safely<br>transported to the<br>radiology<br>department<br>Exclusion criteria:<br>- contraindications<br>to the prone<br>position<br>- cardiogenic<br>pulmonary edema<br>- chronic lung<br>disease<br>- hemodynamic<br>instability<br>Per Branch | n = 1<br>(because of<br>accidental<br>extubation) | recruitment<br>maneuver<br>with<br>subsequent<br>prone<br>position |         | Outcomes:<br>- respiratory<br>system<br>compliance<br>- pCO <sub>2</sub><br>- pO <sub>2</sub> /FiO <sub>2</sub> | <ul> <li>Respiratory system compliance (Mean ± SD): <ul> <li>lobar ARDS:</li> <li>baseline vs. post-RM: 32.75 ± 4.23 vs. 37.12 ± 6.31, p = 0.061; 95% CI of the difference: -9.01 - 0.27</li> <li>post-RM vs. prone position: 37.12 ± 6.31 vs. 43.12 ± 6.56, p = 0.019; 95% CI of the difference: -10.69 - 1.31</li> <li>diffuse ARDS: no significant differences</li> </ul> </li> <li>pCO<sub>2</sub>(Mean ± SD): <ul> <li>lobar ARDS:</li> <li>baseline vs. post-RM: 44 ± 6.18 vs. 42.7 ± 5.03, p = 0.095; 95% CI of the difference: -0.28 - 2.78</li> <li>post-RM vs. prone position: 42.7 ± 5.03 vs. 35.25 ± 3.41, p = 0.01; 95% CI of the difference: 3.56 - 9.4</li> <li>diffuse ARDS: no significant differences</li> </ul> </li> <li>pO<sub>2</sub>/FiO<sub>2</sub>(Mean ± SD): <ul> <li>lobar ARDS:</li> <li>baseline vs. post-RM: 106.25 ± 15.88 vs. 143 ± 12.27, p = 0.000 (<i>p</i>-value not further described); 95% CI of the difference: -43.4230.08</li> <li>post-RM vs. prone position: 143 ± 12.27 vs. 225.00 ± 37.82, p = 0.000 (<i>p</i>-value not further described); 95% CI of the difference: -112.86 - 1.14</li> <li>diffuse ARDS:</li> <li>baseline vs. post-RM: 117.8 ± 25.99 vs. 149.6 ± 20.38, p = 0.04; 95% CI of the difference: -60.323.28</li> <li>post-RM vs. prone position: 149.6 ± 20.38 vs. 180.4 ± 17.87, p = 0.0003; 95% CI of the difference: -38.11 - 23.49</li> </ul> </li> </ul> | 3                 |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, CI = confidence interval, pCO<sub>2</sub> = partial pressure of carbon dioxide, pO<sub>2</sub>/FiO<sub>2</sub> = ratio of partial pressure of oxygen and fraction of inspired oxygen, pts = patients, RM = recruitment maneuver, SD = standard deviation

#### Prone positioning seems to be superior to a recruitment maneuver in recruiting lung volume

| Reference,<br>Study Type                                                                                                               | Cases and<br>(Participant #, (<br>To | Characteristics)                                   | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|----------------------|--------------|---------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1038<br>Gattinoni<br>2010<br>PMID:<br>20473258<br>DOI: not<br>available<br>Specification<br>of study:<br>Review with<br>meta-analysis |                                      | 573 pts)<br>n:<br>n of the effects<br>ient outcome |                      | РР           | SP      | Mortality             | <ul> <li>No significant differences between groups.</li> <li>No significant differences between groups in: <ul> <li>mortality (PP vs. SP): absolute reduction at the last follow-up approximately 10% (ranging between 6-21%).</li> <li>Kaplan-Meier estimates of survival rates at the latest follow-up in severly-hypoxaemic pooled showed higher survival in PP vs. SP at each time-point, Log-rank = 0.03, p not stated.</li> </ul> </li> </ul> | 1                 |

PP = prone positioning, pts = patients, RCTs = randomized controlled trials, SP = supine positioning

#### Prone positioning may reduce the absolute mortality of severely hypoxemic ARDS patients.

- 1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V et al. Effect of prone positioning on the sur- vival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73.
- 2. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P et al. Effects of systematic prone positioning in hypoxemic acuterespiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87
- 3. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.
- 4. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84.

| Reference,<br>Study Type                                                                                                                                                                                   | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                           | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                       | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1042<br>Girard<br>2013<br>PMID:<br>24352484<br><u>https://doi.<br/>org/10.100</u><br>7/s00134-<br>013-3188-1<br><b>Specificatio</b><br>n of study:<br>Ancillary<br>study of a<br>RCT<br>(PROSEVA<br>Trial) | <ul> <li>466 pts.</li> <li>Inclusion criteria:<br/>Severe ARDS was<br/>defined by:         <ul> <li>PaO2/FIO2<br/>(partial pressure<br/>oxygen in arterial<br/>blood/fraction of<br/>inspired oxygen)<br/>ratio of &lt;150<br/>mmHg with a<br/>FIO2 of ≥0.6</li> <li>PEEP of ≥5 cm<br/>H2O</li> <li>tidal volume of 6<br/>ml/kg predicted<br/>body weight</li> </ul> </li> <li>Per Branch</li> <li>PP group<br/>= 237</li> <li>SP group =<br/>229</li> </ul> |                      | PP<br>fully horizontal<br>prone position<br>(180°) within 1<br>h after the<br>randomization<br>for sessions of<br>≥16 h until<br>predetermined<br>stopping<br>criteria were<br>met | SP      | Sample size calculation was<br>done in the parent trial.<br>Primary endpoints:<br>- Incidence of new pts<br>with pressure ulcers<br>at stage 2 or higher<br>from randomization<br>to ICU discharge<br>Secondary endpoints:<br>- incidence of new<br>patients with<br>pressure ulcers from<br>day 1 to day 7<br>- incidence of new<br>pressure ulcers from<br>day 1 to day 7 and to<br>ICU discharge<br>- proportion of<br>patients with<br>pressure ulcers both<br>overall and<br>according to site at<br>day 7 and ICU<br>discharge and mean<br>pressure ulcer score<br>overall and by site | <ul> <li>Primary outcome: <ul> <li>incidence: 20.80 and 14.26 / 1,000 days of invasive mechanical ventilation (P = 0.061) and 13.92 and 7.72/1,000 of ICU days (P = 0.002) in both groups</li> </ul> </li> <li>Secondary outcomes: <ul> <li>incidence of new patients with pressure ulcers per 1,000 days of invasive ventilation from day 1 to ICU discharge was not significantly different between groups</li> <li>incidence of new patients with pressure ulcers at stages &gt;1 per 100 days of ICU stay was significantly higher in the PP</li> <li>incidence of new patients with pressure ulcers at stages &gt;1 per 100 days of ICU stay was significantly higher in the PP</li> <li>incidence of new patients with pressure ulcers from day 1 to day 7 was significantly higher in the PP group for both stage analyses and both denominators</li> <li>in both groups, the incidence of pressure ulcers was higher from day 1 to day 7 than during the stay as a whole</li> <li>at day 7, the rate of patients with pressure ulcers was significantly higher in the PP group (116/204 (57.1)) than in the SP group (79/186 (42.5)); P= 0.005; also significantly more often PU in the face (SP: 8/184 (4.3); PP: 58/197 (29.4); P= 0.0001) and anterior thorax (SP: 1/184 (0.5); PP: 35/195 (17.9); P = 0.0001)</li> <li>At the time of ICU discharge, the rate of patients with PUs was not different between groups SP group (85/225 (37.8)); PP group (103/232 (44.4)); P= 0.151, number of PUs involving the face (SP: 3/216 (1.4); PP: 41/223 (18.4) P = 0.0001) and the anterior part of the thorax (SP: 2/216 (0.9); PP: 14/219 (6.4): P= 0.0025) was still significantly higher in patients in the PP group</li> </ul> </li> </ul> | 3                 |

PP = prone position; SP = supine position; pts = patients; ARDS = acute respiratory distress syndrom; ICU = intensive care unit; PEEP = positive endexpiratory pressure; pts = patients

In patients with severe ARDS, prone positioning was associated with a higher frequency of pressure ulcers than the supine position, however, prone positioning was not a determining risk factor.

| Reference,<br>Study Type                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drop<br>-out<br>Rate | Intervention                                                                                                                            | Control                                                   | Optimal Population                                                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1045<br>Guerin, 2013<br>(PMID:<br>23688302<br>DOI:<br>10.1056/NEJ<br>Moa1214103)<br><b>Specification</b><br>of study:<br>RCT | 466 pts with severe ARDS to<br>undergo PP sessions of at least<br>16 hours or to be left in the SP<br><b>Inclusion criteria:</b><br>- ARDS (Pao2:Fio2 ratio of<br><150mmHG, FiO2 ≥ 0.6., PEEP<br>≥ 5cm H2O, Vt > 6ml/kgKG<br>- endotracheal intubation and<br>ventilation for <36h<br><b>Exclusion criteria:</b><br>- contraindication for prone<br>positioning (e.g. Intracranial<br>pressure > 30 mmHG, massive<br>hemoptysis)<br>- respiratory reason (e.g. NOi,<br>ECMO)<br>- clinical context (e.g. lung<br>transplantation, severe burns)<br>- others (e.g. end-of-life<br>decision)<br>Per Branch<br>237 229 |                      | Prone<br>positioning (at<br>least 16h),<br>average<br>number of<br>sessions: 4±4 p.<br>patient, mean<br>duration per<br>session: 17±3 h | Supine<br>positioning<br>(semi-<br>recumbent<br>position) | Primary endpoint:<br>- mortality at day 28<br>Secondary<br>outcomes:<br>- mortality at day 90<br>- rate of successful<br>extubation<br>- time to successful<br>extubation<br>- ICU LOS<br>- use of non-invasive<br>ventilation<br>- tracheotomy rate<br>-ventilator settings<br>- arterial blood gases<br>- respiratory-system<br>mechanics | Primary endpoint:<br>- 28-day mortality<br>n=237: 16%, n= 229: 32.8% (p<0.001)<br>- hazard ratio for death with PP: 0.39 (95% confidence<br>interval [CI], 0.25 to 0.63)<br>Secondary outcomes:<br>- 90-day mortality<br>n=237: 23.6%, n=229: 41.0% (P<0.001), hazard ratio of<br>0.44 (95% CI, 0.29 to 0.67)<br>- successful extubation was significantly<br>higher in the prone group<br>n=237: 80.5% [95% confidence interval [CI], 75.4–85.6],<br>n=229: 65.0% [95% confidence interval [CI], 58.7–71.3]<br>- ICU LOS<br>n=229: 26 $\pm$ 27, n=237: 24 $\pm$ 22 (p=0.05)<br>- non-invasive ventilation (at day 28)<br>n=237: 1.8% [0.1–3.5], n=229: 4.7% [1.9–7.5] (p=0,11)<br>- tracheotomy rate (at day 28)<br>n= 237: 3.8% [1.4–6.0], n=229: 5.2% [2.3–8.1] (p= 0.37)<br>- duration of invasive mechanical ventilation, length of<br>stay in the ICU, incidence of pneumothorax, rate of use<br>of noninvasive ventilation after extubation, and<br>tracheotomy rate: n.s. | 2                 |

ARDS = acute respiratory distress syndrome, ECMO = extracorporeal membranous oxygenation, FiO2 = inspiratory oxygen concentration, LOS = length of stay, NOi = inhaled nitric oxide, n.s. = not significant, PEEP = positive end expiratory pressure, Vt = tidal volume

Prolonged prone-positioning sessions significantly decreased 28-day and 90-day mortality.

| Reference,<br>Study Type                                                                                                                                                     | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                       | Control | Optimal<br>Population                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1051<br>Jozwiak 2013<br>(PMID: 24102072<br>DOI:<br>10.1164/rccm.201<br>303-0593OC)<br><b>Specification of</b><br><b>study:</b><br>non-controlled<br>interventional<br>study | n = 18 pts<br>Inclusion criteria:<br>- ARDS with<br>pulmonary artery<br>catheter<br>Exclusion criteria:<br>- contraindication to<br>transesophageal<br>echocardiography<br>- contraindication to<br>PP<br>- known chronic RV<br>failure<br>Per Branch |                      | PLR test (to<br>assess cardiac<br>index) with<br>following<br>prone<br>positioning |         | Outcomes:<br>- respiratory<br>variables<br>- hemo-<br>dynamic<br>variables<br>- tissue<br>oxygenation<br>variables<br>- Echocardio-<br>graphic<br>variables<br>- ICU<br>mortality<br>Outcomes not<br>divided into<br>primary or<br>secondary | <ul> <li>Outcomes:</li> <li>pre-PP vs. post-PP (in n = 9 pts with significant change in cardiac index after PLR test previous to PP; median [IQR]):</li> <li>PaO2/FiO2 (mmHG): 137 (79-154) vs. 160 (134-202), p &lt; 0.05</li> <li>cardiac index (L/min/m2): 3.0 (2.3-3.5) vs. 3.6 (3.2-4.4), p &lt; 0.05</li> <li>stroke volume (ml/m2): 34 (29-47) vs. 42 (38-58)</li> <li>right atrial pressure (mmHg): 15 (13-18) vs. 17 (16-23)</li> <li>pulmonary artery occlusion pressure (mmHg): 19 (17-20) vs. 22 (19-26), p &lt; 0.05</li> <li>pulmonary artery mean-occlusion pressure gradient (mmHg): 16 (14-23) vs. 11 (9-21), p &lt; 0.05</li> <li>pulmonary vascular resistance (dyn*s/cm5/m2): 514 (333-885) vs. 234 (155-549), p &lt; 0.05</li> <li>pulmonary vascular resistance (dyn*s/cm5/m2): 514 (333-885) vs. 234 (155-549), p &lt; 0.05</li> <li>intra-abdominal pressure (mmHg): 16 (12-17) vs. 18 (17-20), p &lt; 0.05</li> <li>oxygen delivery (ml/min/m2): 355 (273-438) vs. 514 (424-590), p &lt; 0.05</li> <li>oxygen consumption (ml/min/m2): 65 (42-84) vs. 113 (101-126), p &lt; 0.05</li> <li>P(v-a)CO2/C(a-v)O2 (mmHg/m1): 1.4 (1.2-2.2) vs. 1.0 (0.8-1.3), p &lt; 0.05</li> <li>right/left ventricular end-diastolic area ratio (<i>no unit described</i>): 0.65 (0.55-0.80) vs. 0.60 (0.50-0.65), p &lt; 0.05</li> <li>left ventricular end-systolic area * systolic arterial pressure (cm2*mmHg): 603 (420-895) vs. 946 (765-1146), p &lt; 0.05</li> <li>pts with significant change in cardiac index after PLR test previous to PP (n=9) vs. pts without significant change in cardiac index after PLR test previous to PP (n=9); n [%]):</li> <li>left ventricular ejection fraction: Pre-PP 40 (35-56) and Post-PP 40 (36-49) vs. Pre-PP 57 (50-62) and Post-PP 60 (53-65), p &lt; 0.05</li> <li>pts with significant change in cardiac index after PLR test previous to PP (n=9); n [%]):</li> <li>ICU mortality: 5 (56%) vs. 4 (44%), non-significant</li> </ul> | 3                 |

ARDS = acute respiratory distress syndrome, PLR = passive leg raising, PP = prone positioning, pts = patients, RV = right ventricular

Prone Positioning seems to increase cardiac index in ARDS patients.

| Reference,<br>Study Type                                                                                                                                                        | Cases and<br>Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention         | Control             | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1053<br>Kopterides 2018<br>(PMID: 19272544<br>DOI:<br>10.1016/j.jcrc.200<br>7.12.014)<br><b>Specification of</b><br><b>study:</b><br>Systematic Review<br>and<br>Meta-Analysis | 4 publications (n<br>= 4 RCTs, n =<br>1271 pts) <sup>1-4</sup><br>Inclusion<br>criteria:<br>- RCTs on prone<br>positioning<br>- providing data<br>on mortality<br>- population:<br>adult patients<br>with<br>hypoxemic<br>respiratory<br>failure<br>Exclusion<br>criteria:<br>- inappropriate<br>study design<br>- control group<br>not standard<br>of care |                      | Prone<br>positioning | Standard<br>of care | <ul> <li>Primary outcomes:</li> <li>ICU mortality</li> <li>Secondary<br/>outcomes: <ul> <li>duration of<br/>prone<br/>positioning</li> <li>incidence of<br/>VAP</li> <li>ICU LOS</li> <li>duration of MV</li> <li>incidence of<br/>pneumothorax</li> <li>complications <ul> <li>new or<br/>worsening<br/>pressure<br/>sores</li> <li>complications<br/>related to ETT<br/>(accidental<br/>extubation,<br/>obstruction of<br/>ETT)</li> </ul> </li> </ul></li></ul> | Significant differences between groups in (PP vs. SP):<br>ICU mortality [in a subset of the most severely ill pts (n = 195 pts)]:<br>OR 0.34 (95% Cl: 0.18-0.66), p = 0.001; heterogeneity: p = 0.69, l <sup>2</sup> =0%<br>Non-significant differences between groups in (PP vs. SP):<br>ICU mortality (across all pts):<br>OR 0.97 (265/662 pts) vs. 37.8% (230/609 pts)<br>OR 0.97 (95% Cl: 0.77-1.22); heterogeneity: p = 0.22, l <sup>2</sup> = 32.0%<br>duration of prone positioning: mean > 10 h/day in the 2 most recent published<br>articles. ( <i>No further data available</i> )<br>incidence of VAP:<br>OR 0.81 (95% Cl: 0.60-1.10); heterogeneity: p = 0.16, l <sup>2</sup> = 45.9%<br>ICU LOS: 20.5 ± 18.2 vs. 19.1 ± 23.1 days, p = 0.7<br>duration of MV:<br>Weighted mean difference: -1.14 days (95% Cl: -2.86-0.59)<br>heterogeneity: p = 0.77, l <sup>2</sup> =%<br>OR 0.8 (95% Cl: 0.47-1.34); heterogeneity: p = 0.33, l <sup>2</sup> = 0%<br>Complications<br>New or worsening pressure sores:<br>1135 pts, FEM OR 1.49 (95% Cl: 1.17-1.89) REM OR 1.50 (95% Cl: 1.12-2.00);<br>heterogeneity: p = 0.32, l <sup>2</sup> = 13.1%<br>Complications related to ETT<br>1271 pts, OR 1.30 (95% Cl: 0.94-1.80); heterogeneity: p = 0.35, l <sup>2</sup> = 8.4% | 1→2               |

CI = confidence interval, ETT = endotracheal tube, FEM = fixed effect model, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, OR = odds ratio, PP = prone positioning, pts = patients, RCTs = randomized controlled trials, REM = random effect model, SP = supine positioning, VAP = ventilator-associated pneumonia

Except for most severely ill patients, PP seems not to influence mortality in patients with hypoxemic respiratory failure, although the incidence of VAP might decrease at the expense of more pressure sores and complications related to the endotracheal tube.

#### References

- 1. Gattinoni L, Tognoni G, Pesenti A, et al, Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73.
- 2. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87.
- 3. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma 2005;59:333-41 discussion 341-3.

4. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                                                                                                          | Control                                                                     | Optimal Population                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1054<br>Lee, 2010<br>PMID:<br>20195404<br>DOI:<br>10.3904/kjim.<br>2010.25.1.58<br><b>Specification</b><br>of study:<br>retrospective<br>search | 96 patients<br>Inclusion criteria:<br>- ARDS (PaO2/ FiO2 ≤ 150<br>mmHg with a positive end-<br>expiratory pressure (PEEP) of<br>at least 8 cm H2O<br>- bilateral chest radiography<br>showing lung infiltrate without<br>evidence of cardiac failure<br>Exclusion criteria:<br>- not stated<br>Per Branch<br>96<br>divided in:<br>PaO <sub>2</sub> responders<br>(n=60) and PaO <sub>2</sub><br>non-responders<br>(n=36) |                      | PP for ≥ 12 hours<br>and change from<br>prone to supine due<br>to improvement<br>(then PaO <sub>2</sub><br>responder) | patients<br>were<br>divided in<br>the<br>intervention<br>group by<br>itself | Primary endpoint:<br>- 28-day mortality<br>Secondary outcomes:<br>- gas exchange values after<br>prone positioning<br>- ventilatory parameters after<br>prone positioning | <ul> <li>Primary endpoint: <ul> <li>28-day mortality: PaO<sub>2</sub> responders 28 (46.7) and PaO<sub>2</sub> non-responders 26 (72.2) (p=0.019)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>gas exchange values after prone positioning:</li> <li>PaO2 responders mean PaO2/FiO2 increase at 8 to 12 hours of PP 75.4 ± 47.2 mmHg (median, 64.3; range, 20 to 215) and for</li> <li>PaCO2 responders, mean PaCO2 change was - 10.6 ± 10.3 mmHg (median, - 7.4; range, - 42 to 1)</li> <li>ventilatory parameters after PP: no significant differences (p&gt;0.05)</li> </ul> </li> </ul> | 4                 |

ARDS = acute respiratory distress syndrome, PP = prone position; PEEP = positive endexspiratory pressure

The early oxygenation improvement after prone positioning might be associated with an improved 28-day outcome and may be an indicator to maintain prolonged prone positioning in patients with severe ARDS

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                        | Cases and Controls<br>(Participant #, Chara<br>To                                                                                                                                                                                                                                                                                                                                                | ncteristics)<br>Dtal                                                                     | Drop-out<br>Rate                                                                                        | Intervention                        | Control            | Optimal Population                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1056 Mancebo<br>2006<br>(PMID: 16556697<br>DOI:<br>10.1164/rccm.2005<br>03-353OC)<br><b>Specification of</b><br><b>study:</b><br>Randomized<br>Controlled Trial | 136 pts<br>Inclusion criteria:<br>- intubation and MV<br>- 18 years or older<br>- ARDS<br>- diffuse bilateral infi<br>Exclusion criteria:<br>- > 48 hours had elap<br>criteria were met<br>- participation in othe<br>- pregnancy<br>- systolic blood press<br>despite vasopressors<br>- pelvic/spine fractur<br>- cranial trauma and/<br>intracranial pressure<br>- moribund pts<br>Per B<br>76 | osed since inclusion<br>er trials<br>sure < 80 mmHg<br>s<br>res<br>/or suspicion of high | Supine: n=2<br>(Case reports<br>lost)<br>Prone: n = 4<br>(1 lost, 2<br>Data lacking,<br>1 High<br>PCWP) | Prone<br>position for<br>about 7h/d | Supine<br>position | Primary outcome:<br>- ICU mortality<br>Secondary outcomes:<br>- hospital mortality<br>- complications<br>- LOS | <ul> <li>Primary outcome: <ul> <li>ICU mortality was 58%</li> <li>(35/60) in supine group and</li> <li>43% (33/76) in prone group (p = 0.12)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>hospital mortality was higher in supine group (62% vs. 50%; p = 0.22)</li> <li>ICU LOS did not differ between groups</li> <li>total of 28 complications were reported, most were rapidly reversible</li> </ul> </li> </ul> | 2                 |
|                                                                                                                                                                 | 76                                                                                                                                                                                                                                                                                                                                                                                               | 60                                                                                       |                                                                                                         |                                     |                    |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, PCWP = pulmonary capillary wedge pressure, pts = patients

Prone positioning may reduce ICU and hospital mortality in patients with ARDS.

| Reference,<br>Study Type                                                                                                                                         | (Participant #,                                                                                    | d Controls<br>characteristics)<br>otal                                             | Drop-<br>out<br>Rate | Intervention                                                                                                  | Control | Optimal Population                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1062 Mounier<br>2009<br>PMID:<br>19741030<br>DOI:<br>10.1183/09031<br>936.00057509<br><b>Specification</b><br>of study:<br>prospective<br>observational<br>study | MV days<br>- Bilateral lung<br>- Absence of le<br>hypertension<br>Exclusion criteri<br>-not stated | a:<br>≥ 2 days<br>48h after ICU<br>300 in the first 2<br>infiltrates<br>eft atrial | -                    | <b>PP:</b><br>during the MV<br>period, one PP<br>session involving<br>the pts remaining<br>prone for > 6h/day | SRP     | Sample Size calculation:<br>Assuming a 50% VAP rate,<br>at least 200 PP pts and 200<br>matched controls for a HR<br>of 2 for VAP with > 90%<br>power and 0,05 type I error<br>risk<br>Primary Endpoint:<br>-Incidence of VAP<br>Secondary outcome:<br>-Mortality | Primary Endpoint:<br>no significant difference in VAP incidence<br>(p=0,14) Secondary endpoints:<br>-No significant difference in mortality<br>overall or with a single day of PP<br>-Significant delay of mortality in the PP<br>group (p=0,001)<br>-Significantly lower mortality with ≥ 2 PP<br>days (p=0.009) Posthoc power analysis:<br>power of the study decreased by the lower<br>than expected prevalence of VAP | 3                 |

MV = mechanical ventilation, VAP = ventilator associated pneumonia, ALI =acute lung injury, ARDS = acute respiratory distress syndrome, pts = patients; SRP: = Semi-recumbency position; HR=Hazard ratio; ICU=intensive care unit; PP=prone position

#### PP is not superior to SP to prevent VAP, but longer PP use may improve survival.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention                                                          | Control | Optimal Population                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1064           Nekludov, 2006           (PMID: 16923086           DOI:           10.1111/j.1399-           6576.2006.01099.x)           https://pubmed.ncb           i.nlm.nih.gov/16923           086/           Specification of study:           prospective cohort | 8 pts<br>Inclusion criteria:<br>- adults treated for TBI or SAH<br>- GCS = 8<br - association with pulmonary pathology<br>Exclusion criteria:<br>- high or unstable ICP<br>- circulatory unstable<br>- high doses of inotropes<br>- hemodialysis<br>Per Branch |                      | change between<br>supine to prone<br>positioning<br>(same in all pts) |         | <b>Primary endpoints:</b><br>- hemodynamics<br>- arterial<br>oxygenation<br>- respiratory<br>mechanics<br>- ICP and CPP | Significant differences between<br>groups in:<br>- significant improvement in<br>PaO2 in the prone position, from<br>12.6 $\pm$ 1.4 kPa to 15.7 $\pm$ 3.2 kPa<br>(p = 0.02)<br>- intracranial pressure and mean<br>arterial pressure increased in<br>prone position, from 12 $\pm$ 6 to 15<br>$\pm$ 4 mmHg (p = 0.03) and from 78<br>$\pm$ 8 to 88 $\pm$ 8 mmHg (P = 0.005)<br>- arterial pressure increased to a<br>greater extent than ICP, resulting<br>in improved CPP, from 66 $\pm$ 7 to<br>73 $\pm$ 8 mmHg (P 0.03) in the | 3> 4<br>(downgraded<br>for small<br>sample size) |
| study                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                |                      |                                                                       |         |                                                                                                                         | prone position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  |

CPP = cerebral perfusion pressure, GCS = Glasgow coma scale, ICP = intracranial pressure, pts = patients, SAH = subarachnoidal hemorrhage, TBI = traumatic brain injury

Oxygenation was improved during prone positioning as well as CPP, but it also may result in increased ICP.

| Reference,<br>Study Type                                                                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                      | Control                        | Optimal<br>Population                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1066<br>Papazian, 2005<br>(PMID:<br>16215365<br>DOI:<br>10.1097/01.cc<br>m.0000181298<br>.05474.2b)<br><b>Specification</b><br>of study:<br>Prospective,<br>comparative<br>randomized<br>study | 39 pts with ARDS<br>Inclusion criteria:<br>- PaO2/FIO2 ratio ≤ 150 mm Hg<br>while on PEEP ≥ 5 cm H2O<br>- bilateral radiographic pulmonary<br>infiltrates<br>- pulmonary artery occlusion<br>pressure of ≤ 18 mm Hg<br>Exclusion criteria:<br>- younger than 18 years old<br>- lack of informed consent<br>- moribund status<br>- severe chronic respiratory<br>insufficiency requiring long-term<br>oxygen therapy or long-term<br>mechanical ventilation<br>- head injury<br>- unstable pelvic or vertebral<br>fracture, extra-alveolar air in the<br>chest radiograph<br>- a chest tube in place with<br>persistent air leak<br>- patients who had participated in<br>other investigational trials within<br>30 days<br>Per Branch<br>Prone CV: 13<br>Supine-HFOV: 13<br>Prone-HFOV: 13 |                      | 12h period of:<br><u>Prone-CV:</u><br>conventional<br>lung-protective<br>mechanical<br>ventilation in PP<br><u>Supine-HFOV:</u><br>HFOV in SP<br><u>Prone-HFOV:</u><br>HFOV in PP | only<br>intervention<br>groups | <b>Endpoints:</b><br>- oxygenation<br>variables<br>- respiratory<br>variables<br>- venous<br>admixture, the<br>other<br>hemodynamic<br>variables, and gas<br>exchange<br>- cytokines and cell<br>differential counts | Endpoint:<br>- oxygenation variables:<br>prone-CV and prone-HFOV: improvement in PaO2/FIO2 (from 138 ±<br>58 mm Hg to 217 ± 110 mm Hg, p = .0001; and from 126 ± 40 mm Hg<br>to 227 ± 64 mm Hg, p = .0001)<br>- respiratory variables:<br>mean airway pressure under HFOV was not different from the<br>plateau pressure used during the periods that patients with CV<br>(baseline supine-CV: 19 ± 4; supine-HFOV 25 ± 5; prone-CV 19 ± 5;<br>prone-HFOV 25 ± 6; p = < .01)<br>- venous admixture, the other hemodynamic variables, and gas<br>exchange<br>prone position (p < .0001) and HFOV (p < .001) reduced the venous<br>admixture<br>other hemodynamic variables (including cardiac index) remained<br>unchanged (data not shown)<br>modification of PaCO2 n.s. (no p-value)<br>- cytokines and cell differential counts<br>neutrophils counts were higher in the supine-HFOV group (median<br>475,000·mL <sup>-1</sup> , IQR 290,000– 875,000·mL <sup>-1</sup> ) than after prone-CV<br>(median 110,000·mL <sup>-1</sup> , IQR 72,000– 310,000·mL <sup>-1</sup> ; p < 0.05)<br>neutrophil count correlated with BAL IL-8 level at baseline and after<br>all 12-hr periods (p < .001) | 3                 |

ARDS = acute respiratory distress syndrome, CV = conventional mechanical ventilation, HFOV = high-frequency oscillatory ventilation, PEEP = positive end-expiratory pressure, PP = prone position, pts = patients, SP = supine position

HFOV in the supine position does not improve oxygenation or lung inflammation, while the prone position improves both parameters in ARDS patients.

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop<br>-out<br>Rate | Intervention                                   | Control | Optimal Population                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1075<br>Sud 2008<br>(PMID:<br>18427090<br>DOI:<br>10.1503/cma<br>j.071802)<br><b>Specification</b><br>of study:<br>Systematic<br>review and<br>meta-<br>analysis | supine position<br>- report of all-cause mortality,                |                      | mechanical<br>ventilation in<br>prone position |         | Primary endpoint:<br>- all-cause<br>mortality<br>Secondary<br>outcomes:<br>- oxygenation on<br>days 1-3<br>- VAP<br>- number of days on<br>MV<br>- VFD<br>- AEs | Significant differences between groups in:<br>- VAP: PP reduces the risk of VAP (RR 0.81, 95% CI 0.66 to<br>0.99, p = 0.04)<br>- AE: PP increased the risk of pressure ulcers (RR 1.36, 95%<br>CI 1.07 to 1.71; p = 0.01, $l^2$ = 0%).<br>- oxygenation on days 1-3: PP increases PaO <sub>2</sub> /FiO <sub>2</sub> ratio by<br>23%-34% on days 1-3 after randomization, PaO <sub>2</sub> /FiO <sub>2</sub> ratio<br>remained 6-9% higher in pts in the PP group after they<br>were returned to the SP after a prone maneuver<br>- number of MV days (6 trials (n = 992)): shorter duration of<br>MV in the prone group (weighted mean difference -0.9<br>days, 95% CI -1.9 to 0.1; p = 0.06, $l^2$ = 3%<br>No significant differences between groups in:<br>- mortality: (RR 0.96, 95% CI 0.84 to 1.09; p = 0.52),<br>subgroup analysis: mortality between trials of short-term<br>PP and prolonged PP does not differ. [RR 0.77, 95% CI 0.46<br>to 1.28 vs. RR 0.97, 95% CI 0.85 to 1.11; (p = 0.39 for<br>comparison of RRs using z-score)]<br>- VFD (4 trials (n = 148)): weighted mean difference 3.7<br>days, 95% CI -1.8 to 9.3; p = 0.19, $l^2$ = 67% | 1 → 2<br>(downgraded<br>for<br>indirectness /<br>applicability) |

AE = adverse effects, AHRF = acute hypoxemic respiratory failure, CI = confidence interval, MV = mechanical ventilation, PP = prone position, Pts = patients, VAP = ventilator associated pneumonia, VFD = ventilator-free days

# Mechanical ventilation in the prone position does not reduce mortality or increase ventilator-free days despite improved oxygenation and a decreased risk of pneumonia.

- 1. Leal RP, Gonzalez R, Gaona C, et al. Randomized trial compare prone vs supine position in patients with ARDS [abstract]. Am J Respir Crit Care Med 1997;155:A745.
- 2. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73.
- 3. Beuret P, Carton MJ, Nourdine K, et al. Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 2002;28:564-9
- 4. Watanabe I, Fujihara H, Sato K, et al. Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med 2002;30:1799-802
- 5. Gaillard S, Couder P, Urrea V, et al. Prone position effects on alveolar recruitment and arterial oxygenation in acute lung injury [abstract]. Intensive Care Med 2003;29:S12.
- 6. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87.
- 7. Curley MA, Hibberd PL, Fineman LD, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 2005;294:229-37.
- 8. Papazian L, Gainnier M, Marin V, et al. Comparison of prone positioning and high-frequency oscillatory ventilation in patients with acute respiratory distress syndrome. Crit Care Med 2005;33:2162-71.
- 9. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury a prospective randomized trial. J Trauma 2005;59:333-41.
- 10. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.
- 11. Demory D, Michelet P, Arnal JM, et al. High-frequency oscillatory ventilation following prone positioning prevents a further impairment in oxygenation. Crit Care Med 2007;35:106-11.
- 12. Ibrahim TS, El-Mohamady HS. Inhaled nitric oxide and prone position: How far they can improve oxygenation in pediatric patients with acute respiratory distress syndrome? J Med Sci 2007;7:390-5.
- 13. Chan MC, Hsu JY, Liu HH, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc 2007;106:708-16.

| Reference,<br>Study Type                                                                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                                   | Control               | Optimal Population                                                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1076<br>Sud 2010<br>(PMID:<br>20130832<br>DOI:<br>10.1007/s001<br>34-009-1748-<br>1)<br><b>Specification</b><br>of study:<br>Systematic<br>Review and<br>Meta-<br>Analysis | <ul> <li>1.867 pts in 10 publications<br/>(RCT)<sup>1-10</sup></li> <li>Inclusion criteria: <ul> <li>prone positioning used early</li> <li>(within 72 h after initiation of mechanical ventilation) and as late or rescue therapy (72 h after initiation of mechanical ventilation)</li> <li>prone ventilation was applied intermittently or continuously</li> </ul> </li> <li>Exclusion criteria: <ul> <li>patients received both treatment and control interventions in random order</li> <li>short-term trials in which the intervention was applied for ≤48 h</li> </ul> </li> </ul> |                      | <b>Prone</b><br><b>positioning</b><br>for ≥48H | Supine<br>positioning | Primary endpoint:<br>- hospital mortality (pts<br>with PaO <sub>2</sub> /FiO <sub>2</sub> <100<br>mmHg vs. pts PaO <sub>2</sub> /FiO <sub>2</sub><br>>100 mmHg)<br>Secondary outcomes:<br>- hospital mortality<br>(limited to pts. with<br>ALI/ARDS)<br>- rate of VAP<br>- duration of MV<br>- ventilator-free days on<br>day 28<br>- adverse events | Significant differences between groups in:<br>adverse events, PP increased risk of<br>- pressure ulcers: RR1.29, 95% Cl 1.16–1.44, p <0.00001<br>- endotracheal tube obstruction: RR 1.58, 95% Cl 1.24–2.01,<br>p=0.0002<br>- accidental chest tube removal: RR 3.14, 95% Cl 1.02–9.69,<br>p=0.05<br>- PP reduced mortality in pts. with PaO <sub>2</sub> /FiO <sub>2</sub> <100 mmHg (RR<br>0.84, 95% Cl 0.74–0.96; p=0.01; N=555) NNT= 11 (95% Cl 6–<br>50)<br>- mortality in pts. with ALI/ARDS:<br>PaO <sub>2</sub> /FiO <sub>2</sub> <100 mmHg (RR 0.85,95% Cl 0.74–0.98, p=0.02)<br>-VAP: RR 0.81, 95% Cl 0.67–1.00, p=0.05; n=1,066)<br>No significant differences between groups in:<br>- MV duration<br>- ventilator-free days<br>- mortality in pts with PaO <sub>2</sub> /FiO <sub>2</sub> >100 mmHg (RR 1.07, 95% Cl<br>0.93–1.22; p=0.36; N=1,169) | 1> 2              |
|                                                                                                                                                                            | Per Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                |                       |                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |

AHRF = acute hypoxemic respiratory failure, ALI = acute lung injury, ARDS = acute respiratory distress syndrome, CI = confidence interval, MV = mechanical ventilation, PP = prone positioning, pts = patients, RCT= randomized controlled trial, VAP= ventilator-associated pneumonia

Prone positioning reduces mortality in patients with a PaO<sub>2</sub>/FiO<sub>2</sub> ration <100 mmHg but not in those with a higher ratio. It increases the risk of adverse events.

#### References

1. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, Malacrida R, Di Giulio P, Fumagalli R, Pelosi P, Brazzi L, Latini R (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345:568–573

2. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, Palmier B, Le QV, Sirodot M, Rosselli S, Cadiergue V, Sainty JM, Barbe P, Combourieu E, Debatty D, Rouffineau J, Ezingeard E, Millet O, Guelon D, Rodriguez L, Martin O, Renault A, Sibille JP, Kaidomar M (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292:2379–2387

3. Mancebo J, Fernandez R, Blanch L, Rialp G, Gordo F, Ferrer M, Rodriguez F, Garro P, Ricart P, Vallverdu I, Gich I, Castano J, Saura P, Dominguez G, Bonet A, Albert RK (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173:1233–1239

4. Chan MC, Hsu JY, Liu HH, Lee YL, Pong SC, Chang LY, Kuo BJ, Wu CL (2007) Effects of prone position on inflammatory markers in patients with ARDS due to community-acquired pneumonia. J Formos Med Assoc = Taiwan yi zhi 106:708–716

5. Curley MA, Hibberd PL, Fineman LD, Wypij D, Shih MC, Thompson JE, Grant MJ, Barr FE, Cvijanovich NZ, Sorce L, Luckett PM, Matthay MA, Arnold JH (2005) Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 294:229–237

6. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, Tirapu JP, Santos A, Mas A, Parraga M, Jubert P, Frutos F, Anon JM, Garcia M, Rodriguez F, Yebenes JC, Lopez MJ (2008) Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 34:1487–1491

7. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, Bock E, Gotzen L, Obertacke U, NastKolb D (2005) Prone positioning improves oxygenation in post-traumatic lung injury–a prospective randomized trial. J Trauma 59:333–341 discussion 341-333

8. Beuret P, Carton MJ, Nourdine K, Kaaki M, Tramoni G, Ducreux JC (2002) Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 28:564–569

9. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, Caspani L, Raimondi F, Bordone G, Iapichino G, Mancebo J, Gue'rin C, Ayzac L, Blanch L, Fumagalli R, Tognoni G, Gattinoni L (2009) Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 302:1977–1984

10. Watanabe I, Fujihara H, Sato K, Honda T, Ohashi S, Endoh H, Yamakura T, Taga K, Shimoji K (2002) Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med 30:1799–1802

| Reference,<br>Study Type                                                                                                                                    | (Participant #,                                                                                                                                                               | nd Controls<br>, Characteristics)<br>otal                        | Drop-out<br>Rate                                                  | Intervention                                                                   | Control | Optimal Population                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1077<br>Taccone<br>2009<br>(PMID:<br>19903918<br>DOI:<br>10.1001/jam<br>a.2009.1614<br>)<br>Specification<br>of study:<br>Randomized<br>Controlled<br>Trial | to moderate hyp<br>hypoxia.<br>Inclusion criteria<br>-invasive MV and<br>Exclusion criteria<br>- < 16 years,<br>- > 72h since ARD<br>- history of organ<br>- contraindication | :<br>I ARDS diagnosis<br>a:<br>DS diagnosis<br>I transplantation | 2 drop-outs<br>(1 in each<br>group, both<br>inclusion<br>mistake) | <b>PP</b><br>- for ≥ 20h/day<br>until resolution<br>of ARDS or until<br>day 28 | SP      | Primary endpoint:<br>- death by any cause at day 28<br>Secondary outcomes:<br>- death by any cause at ICU<br>discharge and 6 months<br>- SOFA-Score at day 28<br>- Ventilator-free days | Primary endpoint:<br>- overall death by any cause at day<br>28, PP 52 vs SP 57 (RR=0.97 95% CI<br>0.84-1.13 p=0.72)<br>- moderate hypoxia death: PP 24<br>vs SP 22 (RR=1.04 95% CI 0.89-<br>1.22 p=0.62)<br>- severe hypoxia death: PP 28 vs<br>SP 35 (RR=0.87 95% CI 0.66-1.14<br>p=0.31)<br>Secondary outcomes:<br>- mortality at ICU discharge: n.s.<br>(p=0.47)<br>- mortality at 6 months: n.s.<br>(p=0.33)<br>- SOFA-Score at day 28: n.s<br>(p=0.87)<br>- ventilator-free days n.s. (p=0.31) | 2                 |

ARDS = acute respiratory distress syndrome, ICU = intensive care unit, MV = mechanical ventilation, PP = prone positioning, pts = patients, RCT = randomized controlled trial, SOFA = sequential organ failure assessment, SP = supine positioning

#### Prone positioning does not have a significant effect on mortality in ARDS patients regardless of the severity of the disease.

| Reference,<br>Study Type                                                                                                                                                                                                                                            | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                         | Drop-out<br>Rate           | Intervention | Control | Optimal<br>Population                                                                                                                | Primary Results                                                                                                         | Evidence<br>Grade                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1078<br>Theleandersson<br>2006<br>(PMID:<br>16923087<br>DOI:<br>10.1111/j.1399-<br>6576.2006.0103<br>7.x)( <u>https://pub</u><br>med.ncbi.nlm.ni<br><u>h.gov/16923087</u><br><u>/</u> )<br><b>Specification of</b><br><b>study:</b><br>A prospective<br>pilot study | 12 pts<br>all pts received PP; analysis<br>focused of differences in SP to<br>PP for each patient<br>Inclusion criteria:<br>- MV NICU pts with FiO2 of 0.4<br>- intraventricular catheter for<br>ICP measurements<br>Exclusion criteria:<br>- unable PP (fracture)<br>- MV in pressure-controlled<br>mode<br>Per Branch | n = 1<br>(ICP<br>increase) | PP           |         | Outcomes:<br>- ICP<br>- CPP<br>- HR<br>- PaCO2<br>- PaO2<br>- SaO2<br>- MABP<br>- Respiratory<br>system<br>compliance<br>(ml/cm H2O) | Significant differences after turning prone in:-PaO2 Baseline vs. $3h$ PP: $13.2 \pm 2.1$ vs. $19.1 \pm 6.1$ ; p < 0.05 | 3 → 4<br>Pilot / small<br>sample size |

CPP = cerebral perfusion pressure, HR = heart rate, ICP = intracranial pressure, MABP = mean arterial blood pressure, min = minutes, MV = mechanical ventilation, NICU = neuro intensive care unit, PaCO2 = partial pressure of arterial carbon dioxide, PaO2 = partial pressure of arterial oxygen, PP = prone position, pts = patients, SaO2 = saturation of arterial oxygen, SP = supine position

Prone positioning leads to improvement of oxygenation in NICU patients and did not influence CPP, ICP or MABP.

| Reference,<br>Study Type                                                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop<br>-out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence Grade                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1079<br>Tiruvoipati<br>2008<br>(PMID:<br>18359427<br>DOI:<br>10.1016/j.jcr<br>c.2007.09.00<br>3)<br><b>Specification</b><br>of study:<br>Meta-<br>analysis | Per Branch                                                      |                      | ΡV           | SV      | Primary endpoint:<br>- mortality<br>Secondary outcomes:<br>- changes in<br>oxygenation<br>- incidence of VAP<br>- duration of MV<br>- ICU LOS<br>- hospital LOS<br>- complications related<br>to ET tube, intravascular<br>catheters and pressure<br>sores | Primary endpoint:<br>- mortality: n.s. (OR: 0.98, 95% CI 0.7-1.3 p=0.91)<br>Secondary endpoints:<br>Significant differences between groups in:<br>- changes in oxygenation: MD 21.2 mmHg (95% CI<br>12.4-30.0 p<0.001)<br>- pressure sores: OR: 1.95, 95% CI 0.09-4.15, p=0.08<br>No significant differences between groups in:<br>- incidence of VAP: n.s.<br>- ICU LOS: n.s.<br>- ET tube complications: n.s.<br>- duration of MV: no meta-analysis<br>- hospital LOS: no meta-analysis | 1 → 2<br>(downgraded<br>for indirectness<br>/ applicability) |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, ARF = acute respiratory failure, ET = endotracheal, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, n.s. = not significant, pts = patients, PV = prone ventilation, RCT = randomized controlled trial, SV = supine ventilation, VAP = ventilator-associated pneumonia

#### Prone ventilation reduces the mortality compared to supine ventilation in ARDS and ALI patients.

#### Referenes

1. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73.

- 2. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma 2005;59:333-41.
- 3. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87.
- 4. Watanabe I, Fujihara H, Sato K, et al. Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med 2002;30:1799-802.

5. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.

| Reference,<br>Study Type                                                                                                                                 | (Participant #                                                                                                                                                                                                                        | nd Controls<br>, Characteristics)<br>otal                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                              | Control                                                                                                             | Optimal<br>Population                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1080<br>Vieillard-Baron 2007<br>(PMID: 17925425<br>DOI:<br>10.1378/chest.07-<br>1013)<br><b>Specification of</b><br><b>study:</b><br>Retrospective study | were included bet<br>and December 20<br>Inclusion criteria<br>patients with:<br>"severe" ARDS, Ia<br>Pao2/fraction of ii<br>(Fio2) ratio of 100<br>of respiratory sup<br>stretch" respirato<br>- treatment by PP<br>week of respirato | eading to a<br>nspired oxygen<br>) mm Hg after 48 h<br>port with our "low-<br>ry strategy<br>during the first |                      | Patients with acute<br>cor pulmonale<br>(defined by RV<br>enlargement<br>associated with septal<br>dyskinesia)<br>(transesophageal<br>echocardiography<br>before PP and 18 h<br>after PP) | <b>Patients with</b><br><b>normal RV</b><br>(transesophageal<br>echocardiography<br>before PP and 18 h<br>after PP) | <b>Outcome</b><br>(not defined)<br>- RV<br>enlargement<br>- septal<br>dyskinesia<br>- Respiratory<br>compliance | Outcome<br>- intervention group:<br>significant decrease in mean<br>(± SD) RV enlargement (from<br>0.91 ± 0.22 to 0.61 ± 0.21)<br>after 18 h of PP (p =0.000)<br>- intervention: significant<br>reduction in mean septal<br>dyskinesia (from 1.5 ± 0.2 to<br>1.1 ± 0.1) after 18 h of PP (p =<br>0.000)<br>- significantly lower<br>respiratory system<br>compliance : intervention= 22<br>± 7 vs control= 28 ±7 mL/cm<br>H2O, respectively; p= 0.008 | 4                 |

ARDS = acute respiratory distress syndrome, PP = prone position, RV = right ventricle

In the most severe forms of ARDS, PP was an efficient means of controlling RV dysfunction. No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention                                                                                                                               | Control                                                                                                                                     | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1082<br>Voggenreiter<br>2005<br>(PMID:<br>16294072<br>DOI:<br>10.1097/01.t<br>a.000017995<br>2.95921.49)<br><b>Specification</b><br>of study:<br>PRT | 40 multiple trauma pts of the ICUs<br>of 2 university hospitals with ALI or<br>ARDS<br>Inclusion criteria:<br>- multiple trauma pts in an ICU,<br>18–80 years<br>- ISS ≥16<br>- MV (PEEP ≥5cm H2O, PaO2:FiO2<br>≤ 200 mmHg for 8h or PaO2:FiO2 ≤<br>300 mmHg for 24h)<br>Exclusion criteria:<br>- evidence of cardiogenic<br>pulmonary edema, cerebral edema<br>- intracranial hypertension<br>- contraindicated the use of the PP<br>(unstable spine fractures,<br>hemodynamic instability)<br>Per Branch<br>21<br>9 |                      | <b>PP:</b><br>30 ± 17 days;<br>first and third<br>quartile, 18<br>to 39 days;<br>kept prone<br>for at least 8h<br>and a max. of<br>23h/day | SP:<br>33 ± 23 days;<br>first and third<br>quartile, 17<br>to 45 days;<br>were<br>positioned<br>according to<br>standard care<br>guidelines | Primary endpoint:<br>- duration of mechanical<br>ventilation<br>Secondary endpoints:<br>- days with ARDS/ ALI<br>- days with lung injury<br>score<br>- course of PaO2:FiO2<br>ratio<br>- Qs/Qt<br>- total static lung<br>compliance<br>- PIP<br>- PEEP<br>- LIS<br>- TISS-28<br>- SOFA<br>- sepsis<br>- prevalence of<br>pneumonia<br>- mortality<br>-complications/adverse<br>events<br>- ARDS following ALI | Primary outcome:<br>- duration of mechanical ventilation did not<br>significantly differ (p=0.48)<br>Secondary outcome:<br>-number of days with ARDS: $2 \pm 2$ days in the<br>prone group and $3 \pm 1$ days in the supine group<br>(p = 0.07)<br>-number of days with ALI: prone group $8 \pm 4$<br>days; supine group: $11 \pm 5$ days (p = 0.03)<br>-PaO2:FiO2 ratio increased after 4 days: p = 0.03<br>in prone group<br>-reduction of PEEP after 4 days of prone<br>ventilation (p = 0.009)<br>-ICU- mortality (p = 0,27): prone = 5%,<br>supine = 16%<br>-end of study period: spontaneous breathing by<br>19 patients (prone) and 15 pts(supine)<br>-prone positioning: reduced the prevalence of<br>pneumonia (p = 0.048)<br>adverse effects:<br>-pressure sores and skin lesions (p = 0.48)<br>-persisting swelling and edema of the head and<br>neck region (p = 0.26)<br>-brady- or tachyarrhythmias (p = 0.31) | 2 → 3             |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, ICU = intensive care unit, ISS = injury severity score, LIS = lung injury score, TISS-28, PEEP = positive end expiratory pressure, PIP = peak inspiratory pressure, PRT = prospective randomized trial, pts = patients

#### Prone positioning improves oxygenation and the duration of ARDS.

| Reference,<br>Study Type                                                           | (Partici<br>Charact            | l Controls<br>pant #,<br>eristics)<br>tal | Drop-out<br>Rate                                                            | Intervention                                                                                      | Control | Optimal<br>Population                                                                   | Primary Results                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1087<br>Weig 2014<br>(PMID:<br>24666961<br>DOI:<br>10.1016/j.jcrc.2<br>014.02.010) | 82 consecuti<br>receiving PP   | ive ARDS pts                              | 12 pts died or<br>were<br>discharged<br>within 7 days<br>(unknown<br>group) | PP was decided<br>by staff (based<br>on clinical and<br>radiologic<br>findings)<br>1 PP session = |         | <b>Endpoints:</b><br>- death<br>- ICU discharge<br>- renal failure<br>- hepatic failure | <ul> <li>survival: 65.9% (in both groups)</li> <li>median ICU-LOS: 26d</li> <li>Significant differences between the groups:</li> <li>renal failure: obese pts. Showed higher rates of renal failure (p&lt;0.0001)</li> <li>mortality: obesity led to higher risk of mortality (p = 0.0004)</li> </ul> | 4                 |
| Specification                                                                      | Per B                          | ranch                                     |                                                                             | 12h                                                                                               |         |                                                                                         | No significant difference between the                                                                                                                                                                                                                                                                 |                   |
| of study:<br>retrospective<br>cohort study                                         | SAD>26cm SAD<26cm<br>: 41 : 41 |                                           |                                                                             |                                                                                                   |         |                                                                                         | <ul> <li>- hepatic failure</li> </ul>                                                                                                                                                                                                                                                                 |                   |

ARDS = acute respiratory distress syndrome, ICU = intensive care unit, PP = prone positioning, pts = patients, SAD = sagittal abdominal diameter

Prone positioning is associated with a higher risk for mortality and renal failure in obese patients.

No detailed assessment was carried out further because higher-quality evidence is available on this topic

| Reference,<br>Study Type                                                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                     | Drop<br>-out<br>Rate | Intervention | Control | Optimal<br>Population                                                                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 1088<br>Sud<br>2014<br>(PMID:<br>24863923<br>DOI:<br>10.1503/cma<br>j.140081)<br>Specification<br>of study:<br>systematic<br>review and<br>meta-<br>analysis | <ul> <li>only trials with lung protective<br/>ventilation (&lt; 8 mL/kg)</li> </ul> |                      | PP           | SP      | <ul> <li>Primary<br/>endpoint:         <ul> <li>all-cause<br/>mortality, at<br/>hospital<br/>discharge or<br/>the longest<br/>duration of<br/>follow-up</li> </ul> </li> <li>Secondary<br/>outcomes:         <ul> <li>change in<br/>oxygenation<br/>and AEs</li> <li>mortality<br/>with lung<br/>protective<br/>ventilation</li> <li>oxygenation</li> </ul> </li> </ul> | <ul> <li>Significant differences between groups in: <ul> <li>mortality:</li> <li>mortality (n = 6) was reduced with MLPV (RR 0.74, 95% CI 0.59–0.95; l<sup>2</sup> = 29%)</li> <li>prone positioning (&gt;16h daily) reduced all-cause mortality (RR 0.77, 95% CI 0.64–0.92: l<sup>2</sup> = 21%)</li> <li>prone positioning reduced all-cause mortality among patients with severe hypoxemia at baseline (RR 0.76, 95% CI 0.61–0.94: l<sup>2</sup> = 0%).</li> <li>oxygenation: PaO2/FiO2 ratios improvements were greater in PP group than SP group: 25%–36% during the first 3 days after randomization. (Day 1 l<sup>2</sup> = 49%, day 2 l<sup>2</sup> = 27%, day 3 l<sup>2</sup> = 0%).</li> </ul> </li> <li>AEs occurred: pressure Ulcers: RR 1.27 (1.16–1.40); obstruction of endotracheal tube: RR 1.60 (1.27–2.02); dislodgement of thoracostomy tube: RR 3.14 (1.02–9.69)</li> <li>Non-significant differences between groups in: <ul> <li>mortality with lung protective ventilation: no effect on mortality (n = 4) if higher tidal volumes were permitted than currently recommended (RR 0.98, 95% CI 0.86–1.12; l<sup>2</sup> = 0%), which differed when compared with trials using protective lung ventilation (interaction p = 0.05)</li> <li>subgroup-analysis of patients with mild and moderate hypoxemia: No mortality reduction</li> <li>AEs: There was no difference in other adverse events between the two groups.</li> </ul> </li> </ul> | 1 → 2<br>(due to<br>indirectness) |

AEs = adverse events, ARDS = acute respiratory distress syndrome, CI = confidence interval, MV = mechanical ventilation, PP = prone position, pts = patients, RCTs = randomized controlled trials, RR = risk ratio, SP = supine position, MLPV= mandated lung protective ventilation

#### Prone positioning may reduce mortality and improve oxygenation in critically ill ventilated patients on ICU.

#### References

- 1. Taccone P, Pesenti A, Latini R, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977-84.
- 2. Gattinoni L, Tognoni G, Pesenti A, et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568-73.
- 3. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87.
- 4. Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013; 368:2159-68.
- 5. Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 2008;34:1487-91.
- 6. Chan MC, Hsu JY, Liu HH, et al. Effects of prone position on inflammatory markers in patients with ARDS due to community acquired pneumonia. J Formos Med Assoc 2007;106:708-16.
- 7. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.
- 8. Curley MA, Hibberd PL, Fineman LD, et al. Effect of prone positioning on clinical outcomes in children with acute lung injury: a randomized controlled trial. JAMA 2005;294:229-37.
- 9. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury a prospective randomized trial. J Trauma 2005;59:333-41, discussion 341-3.
- 10. Beuret P, Carton MJ, Nourdine K, et al. Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 2002;28:564-9.
- 11. Watanabe I, Fujihara H, Sato K, et al. Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med 2002;30:1799-802.

| Reference,<br>Study Type                                                                                                                                                                                                                                   | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                  | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                               | Control | Optimal<br>Population | Primary Results                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1104<br>Zeppos 2007<br>(PMID: 18047463<br>DOI:<br>10.1016/s0004-<br>9514(07)70009-<br>0) <u>https://doi.org/</u><br>10.1016/s0004-<br>9514(07)70009-0<br><b>Specification of</b><br><b>study:</b><br>multi-centre<br>prospective<br>observational<br>study | 12.281 PT<br>interventions<br>all patients in 5 ICUs<br>over 3 months<br>Per Branch |                      | PT intervention (including:<br>directed<br>positioning, mobilisation,<br>transfer, active or passive<br>exercise,<br>manual hyperinflation,<br>ventilator hyperinflation,<br>recruitment<br>maneuvers, application of<br>oxygen, suction, insertion<br>of airway,<br>manual interventions) |         | Outcome: AEs          | Outcomes:<br>- 27 AEs in 12.281 sessions (0.2%)<br>- 55% AEs related to blood pressure<br>- 30% recovery after stop of<br>intervention, 59% recovery after<br>specific intervention, 11% unknown<br>- pre-existing cardiac comorbidities<br>in 96%<br>- use of vasopressors in 86% | 3                 |

AEs = adverse events, ICU = intensive care unit, PT = physio therapy

AEs during PT interventions are rare and are self-limiting or treatable.

| Grade                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ained to<br>ing)<br>of<br>1 → 3<br>(downgraded<br>for<br>indirectness /<br>applicability<br>and not only<br>RCTs)<br>than the<br>y by<br>rge in<br>tudies,<br>nd |
| cli<br>o<br>s)<br>iir<br>)<br>s t<br>an                                                                                                                          |

AE = adverse event, MRC = medical research council, MV = mechanical ventilation, PF = physical function, pts = patients, SF-36 = short-form 36

#### Early physical therapy and ICU mobilization is feasible and safe, but effects on muscle strength and quality of life need to be studied further.

#### References

1. Stiller K, Phillips, AC, Lambert P. The safety of mobilisa- tion and its effects on haemodynamic and respiratory status of intensive care patients. *Physio Theory Pract.* 2004;20:175-185

2. Zafiropoulus B, Allison JA, McCarren B. Physiological responses to the early mobilization of the intubated, ventilated abdominal surgical patient. *Austr J Physio- ther*. 2004;50(2):95-100.

3. Bailey P, Thomsen GE, Spuhler VJ, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med. 2007;35(1):139-145.

4. Morris PE, Goad A, Thompson C, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med. 2008;36(8):2238-2243.

5. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically patients enhances short-term functional recovery. Crit Care Med. 2009;37(9):2499-2505.

6. Schweickert WD, Pohlman MC, Pohlman AS. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomized controlled. *Lancet*. 2009;373:1874-1882.

7. Pohlman, MC, Schweickert WD, Pohlman AS et al. Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. *Crit Care Med*. 2010;38:2089-2094.

Zanni JM, Korupolu R, Fan E, et al: Rehabilitation therapy and outcomes in acute respiratory failure: an observational pilot project. *J Crit Care.* 2010;25(2):254-262.
 Needham DM, Korupolu R, Zanni JM, et al: Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. *Arch Phys Med Rehabil.* 2010;91:536-542.

10. Bourdin G, Barbier J, Burle JF, et al. The feasibility of early physical activity in intensive care unit patients: A prospective observational one-center study. *Resp Care.* 2010;55:400-407.

11. Chiang LL, Wang LY, Wu CP, Wu HD, Wu YT. Effects of physical training on functional status in patients with prolonged mechanical ventilation. *Phys Ther.* 2006;86:1271-1281.

12. Marti UJ, Hincapie L, Nimchuk M, Gaughan J. Criner GJ. Impact of whole-body rehabilitation in patients re- ceiving chronic mechanical ventilation. *Crit Care Med*. 2005;33(10):2259-2265.

13. Thomsen GE, Snow GL, Rodriguez L, Hopkins RO. Patients with respiratory failure increase ambulation after transfer to an intensive care unit where early activity is a priority. *Crit Care Med.* 2008;36(4):1119-1124.

14. Montagnani G, Vagheggini G, Panait Vlad E, Berrighi D, Pantani L, Ambrosino N. Use of the functional independence measure in people for whom mechanical ventilation is difficult. *Phys Ther.* 2011;91(7):1109-1115.

15. Morris PE, Griffen L, Berry M, et al. Receiving early mobility during and intensive care unit admission is a predictor of improved outcomes in acute respiratory failure. *Am J Med Sci.* 2011;341(5):373-377.

| Reference,<br>Study Type                                                                                                                                   | (Participant #,                                                                                                                                                                                                                                                                                                                                                | d Controls<br>Characteristics)<br>otal                                                                                                                         | Drop-<br>out<br>Rate | Intervention | Control                      | Optimal Population                                                                                                                                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1119<br>Bein<br>2011<br>PMID:<br>21939972<br>DOI:<br>10.1016/j.injur<br>y.2011.08.034<br>Specification<br>of study:<br>prospective<br>randomized<br>study | 27 pts<br>Inclusion criteria:<br>- posttraumatic ALI<br>200–300 mmHg aff<br>and optimization o<br>- absence of contra<br>positioning therapy<br>syndrome, instable<br>spine, severe acute<br>[Glasgow<br>Coma Scale < 9]<br>- age <18 years or 2<br>- absence of preexi<br>chronic lung diseas<br>obstructive lung<br>disease)<br>- absence of multip<br>Per B | ter stabilization<br>of ventilation<br>aindications for<br>y (acute shock<br>e fractures of the<br>e brain injury<br>>80 years<br>isting severe<br>se (chronic |                      | CLRT         | Positioned<br>conventionally | Primary endpoints:<br>- levels of cytokines<br>(Tumour<br>Necrosis Factor,<br>Interleukin 6,<br>Interleukin 8 or<br>Intercellular Adhesion<br>Molecule-1) in BAL and<br>blood<br>Secondary outcomes:<br>- haemodynamic,<br>pulmonary, and<br>laboratory values<br>- ventilator-free days<br>- organ-failure free<br>days<br>- ICU LOS<br>- hospital LOS<br>- mortality | <ul> <li>Primary endpoints: <ul> <li>d5: no significant differences were found in cytokine levels between groups, but a significant decrease in IL-8 (p &lt; 0.01) and TNF-a (p &lt; 0.05) serum levels and an increase in IL-8 BAL levels in the CLRT-group</li> <li>in general, cytokine BAL levels tended to be increased in both groups, but more pronounced during CLRT</li> </ul> </li> <li>Secondary outcomes <ul> <li>Significant differences:</li> <li>daily assessment of the severity of disease (SAPS-II, SOFA) significantly reduced in the study group on days 2–4 (p &lt; 0.05)</li> <li>d5: significant difference of pulmonary gas exchange between groups (p = 0.001); FIO2 at d5 was significantly different between groups (p = 0.035)</li> </ul> </li> <li>No significant differences: <ul> <li>haemodynamic values</li> <li>ventilator free days</li> <li>organ-failure free days</li> <li>ICU + hospital LOS</li> <li>mortality</li> </ul> </li> </ul> | 2 → 3             |

BAL = broncho-alveolar lavage fluid, CLRT = continuous lateral rotational therapy, ICU = intensive care unit, LOS = length of stay, pts = patients

#### CLRT might reduce the inflammatory response to acute lung injury.

| Reference,<br>Study Type                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-<br>out<br>Rate | Intervention | Control                                    | Optimal<br>Population                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1123<br>Amidei<br>2012<br>PMID:<br>22390919<br>DOI:<br>10.1016/j.iccn.<br>2011.09.002<br>Specification<br>of study:<br>concept<br>analysis | <ul> <li>17 publication unknown study type,</li> <li>12 analyzed<sup>1-12</sup></li> <li>Inclusion criteria: <ul> <li>published in English language</li> <li>incorporated mobilization as an</li> <li>intervention in a critically ill (acute or chronic) sample</li> <li>utilized at least one type of physiologic measure in data collection</li> </ul> </li> <li>Exclusion criteria: <ul> <li>reviews only</li> <li>addressed functional or other outcomes alone</li> <li>without discussion of physiologic measures</li> <li>addressed mobilization after resolution of the critical illness</li> <li>written in a language other than English</li> </ul> </li> </ul> |                      | Mobilization | No<br>Mobilization<br>in critically<br>ill | Outcomes:<br>- physiologic<br>outcome<br>(Cardiopulmonary<br>measures)<br>- functional<br>outcome (Borg<br>Rating of Perceived<br>Exertion, Medical<br>Research Council<br>Muscle Strength<br>Grading Scale) | <b>Outcomes:</b><br>- physiologic outcomes: primarily used<br>as indicators of safety;<br>- cardiopulmonary measures comprised<br>the majority of variables;<br>- only the Borg rating of perceived<br>exertion could be suitable for safety<br>measurement;<br>- medical research council muscle<br>strength grading scale could be a<br>physiologic outcome measure<br>no statistically analysis stated and big<br>variance in between the cited studies | 1→2               |

Multiple physiologic variables should be measured when considering response to mobilization in critically ill patients.

#### References

- 1. Astorino et al., 2008 T.A. Astorino, N. Tyerman, K. Wong, E. Harness Efficacy of a new rehabilitative device for individuals with spinal cord injury J Spinal Cord Med, 31 (5) (2008), pp. 586-591
- 2. Chiang et al., 2006 L.L. Chiang, L. Wang, C. Wu, H. Wu, Y. Wu Effects of physical training on functional status in patients with prolonged mechanical ventilation Phys Ther, 86 (9) (2006), pp. 1271-1281
- 3. Higuchi et al., 2006 Y. Higuchi, S. Kitamura, N. Kawashima, K. Nakazawa, T. Iwaya, M. Yamasaki Cardiorespiratory responses during passive walking-like exercise in quadriplegics Spinal Cord, 44 (8) (2006), pp. 480-486
- 4. Morris et al., 2008 P.E. Morris, A. Goad, C. Thompson, K. Taylor, B. Harry, L. Passmore, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure Crit Care Med, 36 (8) (2008), pp. 2238-2243
- 5. Muraki and Tsunawake, 2008 S. Muraki, N. Tsunawake Relationship between pedaling rate and physiologic responses during passive leg cycling Isokinet Exerc Sci, 16 (2008), pp. 19-24
- 6. Pohlman et al., 2010 M.C. Pohlman, W.D. Schweickert, A.S. Pohlman, C. Nigos, A.J. Pawlik, C.L. Esbrook, et al. Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation Crit Care Med, 38 (11) (2010), pp. 2089-2094
- 7. Richard et al., 1994 R. Richard, M. Staley, S.F. Miller The effect of extremity range of motion on vital signs of critically ill patients and patients with burns: a pilot study J Burn Care Rehabil, 15 (3) (1994), pp. 281-284
- 8. Schweickert et al., 2009 W.D. Schweickert, M.C. Pohlman, A.S. Pohlman, C. Nigos, A.J. Pawlik, C.L. Esbrook, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial Lancet, 373 (9678) (2009), pp. 1874-1882
- 9. Stiller et al., 2004 K. Stiller, A.C. Phillips, P. Lambert The safety of mobilisation and its effect on haemodynamic and respiratory status of intensive care patients Physiother Theory Pract, 20 (3) (2004), pp. 175-185
- 10. Winkelman, 2010 C. Winkelman Investigating activity in hospitalized patients with chronic obstructive pulmonary disease: a pilot study Heart Lung, 39 (4) (2010), pp. 319-330
- 11. Winslow et al., 1990 E.H. Winslow, A.P. Clark, K.M. White, D.O. Tyler Effects of a lateral turn on mixed venous oxygen saturation and heart rate in critically ill adults Heart Lung, 19 (5) (1990), pp. 557-561
- 12. Zanotti et al., 2003 E. Zanotti, G. Felicetti, M. Maini, C. Fracchio Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation Chest, 124 (2003), pp. 292-296

| Reference,<br>Study Type                                                                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                       | Drop-out<br>Rate                                                            | Intervention                                                                           | Control                                                                     | Optimal<br>Population                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1126<br>Andersen<br>2014<br>PMID:<br>24335413<br>DOI:<br>10.1097/EJA.<br>000000000<br>00028<br>Specification<br>of study:<br>prospective,<br>controlled,<br>single cohort<br>study | 52 pts in single group trial<br>Inclusion criteria:<br>- spinal surgery > 2h<br>- 18 – 80y<br>- ASA physical status 1-3<br>- free and painless movement<br>of the neck<br>Exclusion criteria:<br>- history of cervical spine<br>disease<br>- central nervous system<br>disorders<br>- carotid vessel disease<br>- BMI > 35<br>Per Branch | 4 (1: no<br>steady-<br>state, 1:<br>short<br>surgey, 2:<br>missing<br>data) | <b>head rotated</b><br><b>left and right</b><br>in prone<br>position during<br>surgery | head in<br>neutral<br>position in<br>prone<br>position<br>during<br>surgery | Outcome:<br>- rScO <sub>2</sub><br>(measured by<br>NIRS) | <ul> <li>rScO<sub>2</sub> was significantly different when the head was lifted vs when rested on a surface this is due to compression of sensors. Therefore, only lifted positions were compared.</li> <li>rScO<sub>2</sub> in lifted position: rotated left vs. neutral: n.s. (MD 1 [IQR -1 to 4.5]; p =0.37)</li> <li>rScO<sub>2</sub> in lifted position: rotated right vs. neutral: n.s. (MD - 0.5 [IQR -3.5 to 1]; p = 0.26)</li> </ul> | 3                 |

ASA = American Society of Anestesiologists, BMI = body mass index, NIRS = near-infrared spectroscopy, pts = patients, rScO<sub>2</sub> = regional cerebral oxygen saturation

#### Rotating the head in prone position during spinal surgery does not change the cerebral oxygen saturation compared to a neutral position.

| Reference,<br>Study Type                                                                                                                                                              | Cases and<br>Controls<br>(Participant #,<br>Characteristics<br>)<br>Total                                                | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                              | Control | Optimal<br>Population                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1128<br>Bird<br>2010<br>PMID:<br>20479345<br>DOI:<br>10.1001/arch<br>surg.2010.69<br>Specification<br>of study:<br>Secondary<br>analysis of<br>prospective<br>observational<br>study | 45 pts<br>Inclusion<br>criteria:<br>- ICU pts<br>- MV<br>Exclusion<br>criteria not<br>further<br>described<br>Per Branch |                      | <ul> <li>VAP-prevention bundle:</li> <li>HOB elevation &gt; 30°</li> <li>Daily sedation break</li> <li>Daily assessment for<br/>extubation</li> <li>Peptic ulcer<br/>prophylaxis</li> <li>Deep vein thrombosis<br/>prophylaxis</li> </ul> |         | Primary<br>Outcome:<br>- Relationship<br>between VAP<br>bundle<br>compliance and<br>VAP incidence<br>Secondary<br>Outcome:<br>- Cost savings<br>resulting from<br>the VAP bundle<br>program | <ul> <li>Primary Outcome: <ul> <li>VAP compliance: Compliance increased in both participating ICUs in the course of the study.</li> <li>ICU A (Mean; (95% CI)): Baseline 63 (57-69); Post-interventional 81 (72-90)</li> <li>ICU B (Mean; (95% CI)): Baseline 53 (46-60); Post-interventional 91 (85-97)</li> </ul> </li> <li>Combined data concerning compliance not described <ul> <li>VAP incidence:</li> <li>baseline 10.2 VAP cases/1000 ventilator days</li> <li>during the study period of three years, the combined VAP rates significantly during the last two years. (No values states; p = 0.01 and p = 0.004, respectively)</li> </ul> </li> <li>Data concerning correlation between compliance/incidence not further described</li> <li>Secondary Outcome: <ul> <li>estimated costs of \$30.000(±20.000) per VAP case in combination with reduced VAP incidence resulted in \$1.080.000 (\$360.000-\$1.800.000) cost savings as a result of VAP prevention</li> </ul> </li> </ul> | 4                 |

HOB = head of bed, ICU = intensive care unit, MV = mechanical ventilation, pts = patients, VAP = ventilator-associated pneumonia

The VAP-prevention bundle seems to decrease VAP incidence and thereby save treatment costs by prevention.

| Reference,<br>Study Type                                                                                                                                                        | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                         | Control                                            | Optimal<br>Population                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1130 Fleegler 2009<br>PMID: 19855209<br>DOI:<br>10.1097/DCC.0b01<br>3e3181b3fff7<br><b>Specification of</b><br><b>study:</b><br>Observational<br>study with historic<br>control | 46 patients<br>Inclusion criteria:<br>- the presence of mechanical<br>ventilation<br>- delivered percentage of inspired<br>oxygen (FIO2) greater than 0.50<br>- PaO2/FIO2 (P/F) ratio less than 300<br>Exclusion criteria:<br>-not defined<br>Per Branch<br>23 intervention 23 control |                      | Use of<br>continuous<br>lateral<br>rotational<br>therapy<br>protocol | Retrospective<br>identified<br>control<br>subjects | Primary<br>Endpoints:<br>- mortality<br>- morbidity<br>- mean ventilator<br>days<br>- ICU LOS<br>- Hospital LOS<br>Secondary<br>Endpoints:<br>- lag time to<br>initiating therapy<br>- effects of lag<br>time on ventilator<br>days, ICU LOS,<br>Hospital LOS | Primary Outcomes:<br>No significant differences between<br>the groups in: (control vs CLRT)<br>- observed mortality rate (0.39 vs<br>0.44)<br>- mean acute physiology score (58.2<br>vs 65.8) p=0.203<br>- mean MV days (13.4 vs 11.6)<br>p=0.403<br>- mean ICU LOS (15.4 vs 15.4) p=1<br>- mean hospital LOS (26.6 vs 23)<br>p=0.425 Secondary Outcomes:<br>(CLRT<5d n=20 vs CLRT≥5d n=14)<br>Early initiation of continuous lateral<br>rotational therapy resulted in<br>significant decreases in:<br>- ventilator days (11.5 vs 23.4)<br>p=0.001<br>- ICU LOS (14.7 vs 27.9) p=0.002<br>No significant changes in:<br>- Hospital LOS (22.5 vs 31.5) p=0.064 | 4 → 5<br>(downgraded<br>for<br>indirectness /<br>applicability) |

LOS = length of stay, ICU = intensive care unit, CLRT = continuous lateral rotational therapy, MV = mechanical ventilation

#### No benefit of CLRT.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                                               | Control | Optimal<br>Population                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------|---------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1134<br>Bailey<br>2006<br>PMID: 17133183<br>DOI:<br>10.1097/01.CCM.000<br>0251130.69568.87<br>Specification of<br>study:<br>prospective cohort<br>study | 103 pts<br>Inclusion criteria:<br>- respiratory failure pts<br>- >4 days of mechanical<br>ventilation<br>- pts admitted to respiratory<br>ICU<br>Exclusion criteria:<br>- mechanical ventilation for ≤<br>4 days<br>Per Branch |                      | Assessment of early activity<br>as part of routine respiratory<br>ICU care |         | <b>Primary<br/>outcomes:</b><br>- safety<br>- feasibility | <ul> <li>Primary outcomes: <ul> <li>activity events included 233 (16%) sit on bed,</li> <li>454 (31%) sit in chair, and 762 (53%) ambulate</li> </ul> </li> <li>for pts with endotracheal tube, there were a total of 593 activity events (249 (42%) were ambulation)</li> <li>&lt;1% activity-related AEs (fall to the knees without injury, feeding tube removal, systolic blood pressure &gt;200 mm Hg, systolic blood pressure &lt;90 mm Hg, and desaturation &lt;80%)</li> <li>no patient was extubated during activity</li> </ul> | 3                 |

AE = adverse event, pts = patients

Early activity is safe and feasible in patients with respiratory failure.

| Reference,<br>Study Type                                                                                                                                                                   | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                 | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                               | Control             | Optimal<br>Population                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1136<br>Bouadma<br>2010<br>PMID:<br>20068461<br>DOI:<br>10.1097/CC<br>M.0b013e31<br>81ce21af<br>Specification<br>of study:<br>Pre- and<br>post-<br>intervention<br>observational<br>study | 1.649 ventilator-days Inclusion criteria: - mechanically ventilated pts Per Branch |                      | <b>Educational session</b> about<br>hand-hygiene, glove-and-<br>gown use, backrest<br>elevation, cuff-pressure<br>maintenance, orogastric<br>tube use, gastric<br>overdistension avoidance,<br>good oral hygiene and<br>elimination of non-<br>essential tracheal suction) | Before<br>education | Outcomes:<br>- compliance<br>to each<br>indicator<br>- VAP | Outcomes:<br>- compliance to each indicator (baseline vs<br>24-months after implementation):<br>- hand-hygiene: n.s.<br>- glove-and-gown use: n.s.<br>- backrest elevation: 5% vs 58%; p < 0.001<br>- cuff-pressure maintenance: 40% vs 89%;<br>p < 0.001<br>- orogastric tube use: 52% vs 96%; p <<br>0.001<br>- gastric overdistension avoidance: 20% vs<br>68%; p < 0.001<br>- good oral hygiene: 47% vs 90%; p <<br>0.001<br>- elimination of non-essential tracheal<br>suction: 41% vs 92%; p < 0.001<br>- VAP: 26.7% vs 11.1%; p < 0.0001 | 3                 |

VAP = ventilator associated pneumonia

Additional education improves the usage of preventive factors for VAP and reduces the rate of VAP.

| Reference,<br>Study Type    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                              | Drop-<br>out Rate | Intervention                                      | Control                                            | Optimal Population                                        | Primary Results                                                                                                                                                                                               | Evidence<br>Grade                            |
|-----------------------------|--------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| # 1138<br>Goldhill<br>2007  | 35 studies (20 RCTs, 15<br>nonrandomized, uncontrolled<br>or retrospective studies)<br>between 1987 and 2004 |                   |                                                   |                                                    |                                                           | Outcomes:                                                                                                                                                                                                     |                                              |
| PMID:<br>17192526           | only 15 RCTs were included in meta-analysis <sup>1-15</sup>                                                  |                   | Rotational therapy<br>using a<br>programmable bed | Manual turning<br>of patients by<br>nurses every 2 | Outcomes:<br>- days of MV<br>- days in ICU<br>- mortality | <ul> <li>days of MV<sup>2, 7-9, 15</sup>: n.s.</li> <li>days in ICU<sup>2, 6,7,9,13,15</sup>: n.s.</li> <li>mortality<sup>1,2, 4-7, 10-15</sup>: n.s.</li> <li>incidence of pneumonia when used as</li> </ul> | 1 → 3<br>(downgrade<br>d for<br>indirectness |
| DOI: not<br>available       | Inclusion criteria:<br>- rotational therapy to prevent                                                       |                   | that turns on its<br>longitudinal axes            | hours                                              | - incidence of<br>pneumonia                               | prophylaxis <sup>1-4, 7-11</sup> : OR: 0.40 (95% Cl 0.27, 0.58);<br>l <sup>2</sup> = 0%                                                                                                                       | /<br>applicability<br>and not only<br>RCTs)  |
| Specification<br>of study:  | or treat respiratory<br>complications                                                                        |                   |                                                   |                                                    |                                                           | - incidence of pneumonia when used as treatment <sup>15</sup> : OR 0.34 (95% CI 0.18, 0.67); $I^2 = 0\%$                                                                                                      | KCTS)                                        |
| Review and<br>Meta-Analysis | Per Branch                                                                                                   |                   |                                                   |                                                    |                                                           |                                                                                                                                                                                                               |                                              |

ICU = intensive care unit, MV = mechanical ventilation, OR = odds ratio, RCT = randomized controlled trial

## Rotational therapy reduces the rate of pneumonia when used as phrophylaxis. It has no effect on duration of mechanical ventilation, length of stay or mortality.

- 1. Kelley RE, Vibulsresth S, Bell L, Duncan RC. Evaluation of kinetic therapy in the prevention of complications of prolonged bed rest secondary to stroke. 1987;18:638-642.
- 2. Gentilello L, Thompson DA, Tonnesen AS, et al. Effect of a rotating bed on the incidence of pulmonary complications in critically ill patients. Crit Care Med. 1988;16:783-786.
- 3. Summer WR, Curry P, Haponik EF, Nelson S, Elston R. Continuous mechanical turning of intensive care unit patients shortens length of stay in some diagnostic-related groups. J Crit Care. 1989;4:45-53.
- 4. Fink MP, Helsmoortel CM, Stein KL, Lee PC, Cohn SM. The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma: a prospective study. Chest. 1990;97:132-137.
- 5. Choi SC, Nelson LD. Kinetic therapy in critically ill patients: combined results based on meta-analysis. J Crit Care. 1992;7:57-62.
- 6. Nelson LD, Choi SC. Kinetic therapy in critically ill trauma patients. Clin Intensive Care. 1992;3:248-252.
- 7. deBoisblanc BP, Castro M, Everret B, et al. Effect of air-supported, continuous, postural oscillation on the risk of early ICU pneumonia in nontraumatic critical illness. Chest. 1993;103:1543-1547.
- 8. Kirschenbaum L, Azzi E, Sfeir T, Tietjen P, Astiz M. Effect of continuous lateral rotational therapy on the prevalence of ventilator-associated pneumonia in patients requiring long-term ventilatory care. Crit Care Med. 2002;30:1983-1986.
- 9. Whiteman K, Nachtmann L, Kramer D, Sereika S, Bierman M. Effects of continuous lateral rotation therapy on pulmonary complications in liver transplant patients. Am J Crit Care. 1995;4:133-139.
- 10. Demarest GB, Schmidt-Nowara WW, Vance LW, Altman AR. Use of the kinetic treatment table to prevent the pulmonary complications of multiple trauma. West J Med. 1989;150:35-38.
- 11. Traver GA, Tyler ML, Hudson LD, Sherrill DL, Quan SF. Continuous oscillation: outcome in critically ill patients. J Crit Care. 1995;10:97-103.
- 12. McLean B. Rotational kinetic therapy for ventilation/perfusion mismatch. Crit Care Nurs Europe. 2001;1:113-118.
- 13. Clemmer TP, Green S, Ziegler B, et al. Effectiveness of the kinetic treatment table for preventing and treating pulmonary complications in severely head-injured patients. Crit Care Med. 1990;18:614-617.
- 14. MacIntyre NR, Helms M, Wunderink R, Schmidt G, Sahn SA. Automated rotational therapy for the prevention of respiratory complications during mechanical ventilation. Respir Care. 1999;44:1447-1451.
- 15. Ahrens T, Kollef M, Stewart J, Shannon W. Effect of kinetic therapy on pulmonary complications. Am J Crit Care. 2004;13:376-383.

| Reference,<br>Study Type                                                                                                          | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                              | Control | Optimal<br>Population                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| # 1139<br>Bukhari<br>2012<br>PMID: 22426908<br>DOI: not available<br>Specification of study:<br>Prospective longitudinal<br>study | n = 2747 pts<br>Inclusion criteria:<br>mechanically ventilated<br>ICU pts<br>Exclusion criteria:<br>non-ventilated pts<br>Per Branch |                      | VAP prevention bundle:<br>- elevation of the head of the<br>bed (30-45°)<br>- daily sedation weaning<br>- daily readiness-to-wean from<br>ventilator assessment<br>- PUD prophylaxis<br>- DVT prophylaxis |         | Primary<br>outcome:<br>- adherence to<br>intervention<br>Secondary<br>outcomes:<br>- rate of<br>pneumonia<br>- days on<br>mechanical<br>ventilation<br>- ICU LOS | <ul> <li>Primary outcome: <ul> <li>adherence to intervention:</li> <li>78.9% compliance rate of VAP bundle overall</li> <li>correlation between the VAP rate and its bundle compliance (<i>r</i>-value not reported; p = 0.001)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>rate of pneumonia (Pre-interventional vs. post-interventional):</li> <li>2.5 infections per 1000 patient days vs. 1.98 infections per 1.000 patient's days (<i>no p</i>-value reported)</li> <li>reduction of VAP rate 1.41 per 1000 ventilator days (<i>no p</i>-value reported)</li> <li>days on mechanical ventilation: not reported</li> <li>ICU LOS: not reported</li> </ul> </li> </ul> | 4              |

DVT = deep venous thrombosis, ICU = intensive care unit, MV = mechanical ventilation, pts = patients, PUD = peptic ulcer disease, VAP = ventilator-associated pneumonia

The VAP-prevention bundle is feasible and well tolerated by patients, relatives and staff.

| Reference,<br>Study Type                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                               | Drop-<br>out<br>Rate | Intervention                     | Control                                      | Optimal Population                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|----------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1141<br>Hamlin<br>2013<br>PMID:<br>18510182<br>DOI:<br>10.1097/01.dcc<br>.0000311593.8<br>7097.6a<br>Specification<br>of study:<br>article | number of pts not stated Inclusion criteria: mechanical ventilated patients on the ICU Exclusion criteria: not stated Per Branch |                      | Turning<br>(Lateral<br>Rotation) | Patients<br>acted as<br>their own<br>control | <b>Endpoints:</b><br>hemodynamic<br>effects of turning | Endpoint:<br>- negative hemodynamic effects of PPV + lateral<br>rotation:<br>Increased pericardial pressure with constrained left<br>ventricular filling/ reduced venous return/ reduced<br>mean arterial pressure, stroke volume, cardiac output<br>/change in the determinants of the venous pressure<br>gradient / reduced SvO2 / inferior vena cava<br>compression that creates a vascular waterfall<br>condition<br>no statistics or p-values mentioned | 4                 |

ICU = intensive care unit, PPV = positive pressure ventilation, pts= patients

There are several negative effects of PPV and Lateral Rotation. No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention | Control | Optimal<br>Population | Primary Results                                                                                                                                                                                                           | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|--------------|---------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| # 1142<br>Balas<br>2013<br>PMID:<br>23758115<br>DOI:<br>10.3928/0098<br>9134-<br>20130530-06<br>Specification<br>of study:<br>Case study | no systematic inclusion of<br>studies<br>Per Branch                |                      | ABCDE-Bundle |         |                       | <ul> <li>immobilization needs to be reduced</li> <li>ambulation protocols should be implemented</li> <li>contraindications need to be defined</li> <li>early mobilization improves DVT, LOS, functional status</li> </ul> | 4                 |

DVT = deep vein thrombosis; LOS = length of stay

No detailed assessment was carried out because there is higher-quality evidence available.

| Reference,<br>Study Type                                                                                             |                                                                                                                                                               | and Controls<br>t #, characteristics)<br>Total                                                  | Drop-out<br>Rate               | Intervention                               | Control                                                                                                                    | Optimal Population                                                                  | Primary Results                                                                                               | Eviden<br>ce<br>Grade |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------|
| 1155 Mauri<br>2010<br>PMID:<br>20196878<br>No DOI<br><b>Specification</b><br>of study:<br>prospective<br>pilot trial | <ul> <li>no pneumo</li> <li>Exclusion crit</li> <li>intubated </li> <li>hemodynam</li> <li>recent esop</li> <li>pulmonary re</li> <li>head or spin</li> </ul> | efore inclusion<br>nia or ALI<br><b>teria:</b><br>72h<br>nic instability<br>phageal, gastric or | 1 withdrew<br>consent<br>(LHG) | Semi-<br>recumbent<br>group<br>30° for 64h | <b>Lateral-Horizontal</b><br><b>group</b><br>Supine position<br>with turning from<br>side to side every 2-<br>4h<br>12-24h | <b>Outcomes:</b><br>- aspiration<br>(measured as pepsin<br>assay)<br>- VFD<br>- VAP | <b>Results:</b><br>- aspiration: n.s.<br>- VFD: SRG 8 (0–21) vs<br>LHG 24 (12–25); p =<br>0.04<br>- VAP: n.s. | 3                     |

MV = Mechanical Ventilation, ALI = Acute Lung Injury, SRG = Semi-recumbent Group, LHG = Lateral-Horizontal Group, VAP = Ventilator-associated pneumonia, VFD = Ventilator-free Days, pts.= patients

Lateral-horizontal positioning does not reduce the risk for aspiration or ventilator associated pneumonia but increases the number of ventilator-free days.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                                                                        | Control                                      | Optimal<br>Population                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1156<br>Deye<br>2012<br>PMID: 23093247<br>DOI: 10.1007/s00134-<br>012-2727-5<br>Specification of study:<br>prospective, crossover<br>study | 24 pts.<br>Inclusion criteria:<br>- at least 1 failure of SBT before the end of<br>a 2h trial<br>- and/or 1 unexplained extubation failure<br>(need for reintubation within the 72 h<br>after extubation not related to an<br>untreated cardiac failure or an<br>intercurrent infectious disease or to<br>laryngeal dyspnea)<br>Exclusion criteria:<br>- hemodynamic instability<br>- uncontrolled sepsis<br>- patient refusal<br>- age less than 18 years<br>- current esophageal pathology<br>Per Branch |                      | three<br>postures:<br>seated<br>position in<br>bed (90°LD),<br>the semi-<br>seated (45°),<br>and the<br>supine (0°)<br>positions<br>(applied in<br>random<br>order) | patient<br>acted as<br>their own<br>controls | Primary<br>outcomes:<br>- breathing<br>pattern<br>- occlusion<br>pressure (P0.1)<br>- PEEPi<br>- inspiratory<br>muscle effort | <b>Primary outcome:</b><br>- 45° position with lowest<br>levels of effort ( $p \le 0.01$ ) and<br>occlusion pressure ( $p < 0.05$ )<br>- Respiratory effort: lowest at<br>45° in 18/24 patients<br>- PEEPi and PEEPi-related<br>work higher in 0° ( $p \le 0.01$ ),<br>- respiratory effort, heart<br>rate, and P <sub>0.1</sub> values<br>increased in 45° ( $p < 0.05$ )<br>- median Ccw highest in 0° ( $p = 0.03$ ), CcW lower in 45° ( $p < 0.05$ )<br>- correlation between PEEPi<br>values and the PTP ( $p < 0.001$ )<br>- correlation PEEPi values and<br>the WOB ( $p < 0.001$ )<br>- correlation PEEPi values and<br>the P <sub>0.1</sub> ( $p < 0.001$ ) | 3                 |

Ccw = chest wall compliance, iPEEP = intristic positive end expiratory pressure, LD = legs down, pts = patients, SBT = spontaneous breathing trial, WOB = work of breathing

A 45° position helps to unload the respiratory muscles, moderately reduces PEEP<sub>i</sub>, and is often considered comfortable and the semi-seated position may help the weaning process in ventilator-dependent patients.

| Reference,<br>Study Type                                                                                                                                | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention                                                                                                                        | Control                         | Outcome                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| # 1158<br>Delaney<br>2006<br>PMID:<br>16684365<br>DOI:<br>10.1186/cc49<br>12<br>Specification<br>of study:<br>systematic<br>review and<br>meta-analysis | 15 RCTs , 1169 pts <sup>1-15</sup><br>no trial met all the validity<br>criteria.<br>Inclusion criteria:<br>- critically ill adults receiving MV<br>- kinetic or rotating bed as<br>intervention applied for > 24<br>hours<br>- intermittent manual turns for<br>the control group<br>- prospective randomized or<br>pseudo-randomized design<br>- outcome measures included<br>any of the incidence of<br>nosocomial pneumonia,<br>mortality, duration of<br>mechanical ventilation, or ICU<br>or hospital LOS |                      | Kinetic or<br>rotating bed<br>applied for at<br>least 24 hours in<br>critically ill<br>mechanically<br>ventilated adult<br>patients | Intermittent<br>manual<br>turns | Outcomes:<br>- incidence of<br>nosocomial<br>pneumonia<br>- the effect of the<br>intervention on<br>mortality, duration of<br>mechanical<br>ventilation, ICU length<br>of stay and hospital<br>length of stay<br>- complications<br>associated with the<br>use of these beds | Significant differences between<br>groups in:<br>- reduction in the incidence of<br>nosocomial pneumonia (pooled odds<br>ratio (OR) 0.38, 95% confidence<br>interval (CI) 0.28 to 0.53)<br>No significant differences between<br>groups in:<br>- reduction in mortality (pooled OR<br>0.96, 95%CI 0.66 to1.14)<br>- duration of MV (pooled standardized<br>mean difference (SMD) -0.14 days,<br>95%CI, -0.29 to 0.02)<br>- duration of ICU stay (pooled SMD -<br>0.064 days, 95% CI, -0.21 to 0.086)<br>- duration of hospital stay (pooled<br>SMD 0.05 days, 95% CI -0.18 to 0.27). | 1→2               |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, OR = odds ratio, pts = patients, RCT = randomized controlled trial, SMD = standardized mean differences, VAP = ventilator associated pneumonia

Kinetic bed therapy is associated with a significant reduction in the odds of developing nosocomial pneumonia in mechanically ventilated patients. However, it is not associated with a significant reduction in the mortality, duration of mechanical ventilation, or ICU or hospital length of stay.

#### References

1.MacIntyre N, Helms M, Wunderink R, Schmidt G, Sahn SA. Automated rotational therapy for the prevention of respiratory complications during mechanical ventilation. *Respiratory Care.* 1999;**44**:1447–1451.

2.Ahrens T, Kollef M, Stewart J, Shannon W. Effect of kinetic therapy on pulmonary complications. Am J Crit Care. 2004;13:376–383.

3.Clemmer TP, Green S, Ziegler B, Wallace CJ, Menlove R, Orme JF, Jr, Thomas F, Tocino I, Crapo RO. Effectiveness of the kinetic treatment table for preventing and treating pulmonary complications in severely head-injured patients. *Crit Care Med.* 1990;**18**:614–617.

4.deBoisblanc B, Castro M, Everret B, Grender J, Walker CD, Summer WR. Effect of air-supported, continuous, postural oscillation on the risk of early ICU pneumonia in nontraumatic critical illness. *Chest.* 1993;**103**:1543–1547.

5.Demarest GB, Schmidt-Nowara WW, Vance LW, Altman AR. Use of the kinetic treatment table to prevent the pulmonary complications of multiple trauma. *West J Med.* 1989;**150**:35–38.

6. Fink M, Helsmoortel CM, Stein KL, Lee PC, Cohn SM. The efficacy of an oscillating bed in the prevention of lower respiratory tract infection in critically ill victims of blunt trauma. A prospective study. *Chest.* 1990;**97**:132–137.

7.Gentilello L, Thompson DA, Tonnesen AS, Hernandez D, Kapadia AS, Allen SJ, Houtchens BA, Miner ME. Effect of a rotating bed on the incidence of pulmonary complications in critically ill patients. *Crit Care Med.* 1988;**16**:783–786.

8.Kirschenbaum L, Azzi E, Sfeir T, Tietjen P, Astiz M. Effect of continuous lateral rotational therapy on the prevalence of ventilator-associated pneumonia in patients requiring long-term ventilatory care. *Crit Care Med.* 2002;**30**:1983–1986. doi: 10.1097/00003246-200209000-00006.

9.Nelson LD, Choi SC. Kinetic therapy in critically ill trauma patients. Clinical Intensive Care. 1992;3:248-252.

10.Shapiro MJ, Keegan MJ. Continuous oscillation therapy for the treatment of pulmonary contusion. *Am Surg.* 1992;**58**:546–550. discussion 550.

11.Summer W, Curry P, Haponik EF, Nelson S, Elston R. Continuous mechanical turning of intensive care unit patients shortens length of stay in some diagnostic-related groups. *J Crit Care.* 1989;**4**:45–53. doi: 10.1016/0883-9441(89)90091-9.

12.Traver GA, Tyler ML, Hudson LD, Sherrill DL, Quan SF. Continuous oscillation: outcome in critically ill patients. *J Crit Care.* 1995;**10**:97–103. doi: 10.1016/0883-9441(95)90000-4.

13.Whiteman K, Nachtmann L, Kramer D, Sereika S, Bierman M. Effects of continuous lateral rotation therapy on pulmonary complications in liver transplant patients. *Am J Crit Care*. 1995;**4**:133–139.

14.Bhazad M, Ross J, Ciddock D, Fenwick J, Ronco J. The effect of continual lateral rotation vs conventional critical care bed in the management of acute respiratory distress syndrome. *Chest.* 2002;**122**:535–54S.

15. Gietzen J, Wacksman RM, Anderson CS: Prospective study of cost and length of stay outcomes for patients with ARDS treated with continuous lateral rotation. Chest 1996, 110: 75S.

| Reference,<br>Study Type                                                                                                       | Cases and<br>(Participant #, C<br>Tota                                                                                                                                                                                                                                                                                                                                                                              | haracteristics)                                                                                             | Drop-out<br>Rate                                                                | Intervention                                                                                                                                            | Control                                                                                                                                                                | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1162<br>Burtin<br>2009<br>PMID:<br>19623052<br>DOI:<br>10.1097/CCM<br>.0b013e3181<br>a38937<br>Specification<br>of study: RCT | 90 critically ill pts<br>Inclusion criteria<br>- expected to have a p<br>of at least 7 more day<br>Exclusion criteria<br>- conditions impairing<br>movement<br>- anticipated fatal out<br>- body length <1.5 m<br>- preexisting diagnosis<br>neuromuscular weakr<br>status epilepticus<br>- coagulation disorder<br>- intracranial pressure<br>- psychiatric disorderss<br>- cardiorespiratory ins<br>Per Bra<br>45 | the cycling<br>come<br>s causing<br>ness, acute stroke,<br>s >20 mmHg<br>s or severe agitation<br>stability | 23 for ICU<br>discharge<br>assessment<br>(14<br>interventio<br>n, 9<br>control) | <b>Cycling exercise</b><br>- session 5 days<br>a week, using a<br>bedside cycle<br>ergometer<br>starting at D5<br>the earliest<br>- standard of<br>care | Standard of care:<br>Respiratory +<br>Physiotherapy<br>and a<br>standardized<br>mobilization<br>session of the<br>upper and lower<br>extremities on 5<br>days per week | Primary endpoint:<br>- 6MWD at hospital<br>discharge<br>Secondary outcomes:<br>- isometric quadriceps<br>force and functional<br>status<br>- weaning time<br>- ICU and hospital LOS<br>- 1 year mortality<br>Sample size<br>- sample size of 36 pts was<br>required in each group to<br>demonstrate a difference<br>of 50 m in 6MWD with a<br>statistical power of 80%<br>and an alpha level of 0.05 | Primary outcome         - 6MWD (196 m [126–329         m] vs. 143 m [37–226 m];         29 [19–43] vs. 25 [8–36]         %pred., p < 0.05) | 2                 |

ICU = intensive care unit, LOS = length of stay, m = meter, n.s. = not significant, pts = patients, RCT = randomized controlled trial, 6MWD = 6 minute walking distance

Early exercise in critically ill patients led to improved functional exercise capacity and self-perceived functional status.

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1164<br>Schellongowski<br>2007                                                                                                                 | 12 pts                                                                                                                                                                                                                                                                                                                                                                   |                      |              |         |                                                                                                                                                                                                                                                     | Significant differences between groups in:                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| PMID:<br>17252227<br>DOI:<br>10.1007/s00134<br>-006-0513-y<br><b>Specification of</b><br><b>study:</b><br>prospective<br>observational<br>study | <ul> <li>acute respiratory failure<br/>requiring MV</li> <li>diagnosis of ALI or ARDS made<br/>within 96h prior to inclusion</li> <li>decision to treat patients with<br/>CLRT taken within 48h prior to<br/>inclusion</li> <li>hemodynamically stable during<br/>rotation over the max. angle for at<br/>least 12h prior to inclusion</li> <li>18 – 85 years</li> </ul> | -                    | CLRT         |         | <ul> <li>Primary endpoints:</li> <li>pulmonary gas exchange<br/>(blood gas analysis)</li> <li>respiratory mechanics (static<br/>lung compliance)</li> <li>hemodynamics (blood<br/>pressure, cardiac index,<br/>pulmonary shunt fraction)</li> </ul> | <ul> <li>lower static compliance was<br/>observed in lateral steep position<br/>than in supine position (p &lt; 0.001)</li> <li>PaCO2, lower in<br/>supine position than in left and right<br/>lateral steep position (p &lt; 0.01)</li> <li>No significant differences between<br/>groups in:</li> <li>no significant changes in PaO2/FiO2<br/>ratio, mean arterial blood pressure,<br/>pulmonary shunt fraction, or cardiac<br/>index</li> </ul> | 3                 |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, CLRT = continuous lateral rotation therapy, MV = mechanical ventilation, pts = patients

Lateral steep position does not lead to benefits with respect to oxygenation or hemodynamics.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                  | Drop-<br>out<br>Rate | Intervention                     | Control | Optimal<br>Population                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1167<br>Goldhill<br>2008<br>PMID: 18412649<br>DOI:<br>10.1111/j.1365-<br>2044.2007.0543<br>1.x<br>Specification of<br>study:<br>Prospective<br>observational<br>study | n = 393 pts<br>Inclusion criteria:<br>- ICU pts<br>Exclusion criteria:<br>- incomplete data<br>sheets<br>Per Branch |                      | Positioning<br>of the<br>patient |         | Outcomes:<br>- time between<br>turns<br>- number of<br>turns<br>- type of<br>positioning<br>(Outcomes not<br>divided into<br>primary or<br>secondary<br>outcomes) | Outcomes:- time between turns: $\circ$ in total (h; mean [SD]; median [IQR]):4.85 [3.3]; 4.0 [3.0-5.5] $\circ$ per RASS (n [%] and hours between turns as median [IQR]):RASS = 1; 19 (5.0%); 3.6 [2.8-4.9]RASS = 2; 159 (41.5%); 4.0 [3.0-6.0]RASS = 3; 31 (8.1%); 4.5 [3.1-5.7]RASS = 4; 86 (22.5%); 3.7 [3.0-4.8]RASS = 5; 42 (11.0%); 4.0 [3.0-4.6]RASS = 6; 34 (8.9%); 4.2 [3.4-5.0] $\circ$ no significant association between average time between turns and age, weight, height, gender, respiratory diagnosis, intubated and ventilated, sedation score, day of week or nurse to patient ratio positions (% of time; mean [SD]): $\circ$ on back: 46.1 [24.1]turned to left: 28.4 [17.0]turned to right: 25.5 [16.1]turn to side < 30°: 46.3 [39.2] | 3                 |

ICU = intensive care unit, IQR = interquartile range, pts = patients, RASS = Ramsay agitation sedation score, SD = standard deviation

Time between turns seems not to be associated with age, weight, height, gender, respiratory diagnosis, intubated- or ventilated-status, sedation score, day of week or nurse to patient ratio.

| Reference,                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drop-<br>out | Intervention           | Control                                                                | Optimal Population                                                                                                                                                                                                                                                                                                                                           | Primary Results                   | Evidence Grade                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------|
| Study Type                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rate         |                        |                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                   |                                                                                              |
| #1168<br>Zhiqiang<br>2013<br>PMID: 23127305<br>DOI:<br>10.1016/j.apmr.20<br>12.10.023<br>Specification of<br>study: Systematic<br>review | 17 studies (7 RCT, 1 quasi-RCT, 7 case-<br>series, 1 prospective cohort study, 1<br>historical controlled study), 1.614 pts <sup>1-17</sup><br>Inclusion criteria:<br>- population consisted of adults, at least<br>60% with MV for 24 h or more<br>- study design: RCT, quasi-RCT, or other<br>comparative study with or without<br>controls or case series with 10 or more<br>cases<br>- active mobilization in ICU or HDU<br>setting<br>- primary outcome: physical function<br>- Secondary outcomes: hospital<br>outcomes<br>Exclusion criteria:<br>- intervention started at home or was<br>conducted both during hospital stay and<br>hospital-discharge<br>- studies which only assessed effects of<br>passive mobilization |              | Active<br>mobilisation | Standard of<br>care / other<br>form of<br>mobilisation /<br>no control | Primary outcomes:<br>- physical function (muscle<br>strength, physical activity,<br>mobility and functional ability,<br>and health-related QoL)<br>Secondary outcomes:<br>- hospital outcomes (weaning<br>rate, duration of MV, ventilator-<br>free days, LOS in the ICU/HDU<br>and hospital, mortality,<br>discharge destination, costs,<br>adverse events) | no meta analysis was<br>conducted | 1 → 4<br>(different study<br>types, no meta<br>analysis,<br>indirectness /<br>applicability) |

ADL = activities of daily living, AE = adverse event, BI = Barthel index, FIM = functional independence measure, HDU = high dependency unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, QoL = quality of life, 6MWD = six-minute walk distance

Active mobilisation therapy for patients who have undergone mechanical ventilation in ICU settings appears to have no severe adverse effects.

#### References

1. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009; 37:2499-505

2. PortaR, VitaccaM, Gile`LS, etal. Supported arm training inpatients recently weaned from mechanical ventilation. Chest 2005;128:2511-20.

3. Chiang LL, Wang LY, Wu CP, Wu HD, Wu YT. Effects of physical training on functional status in patients with prolonged mechanical ventilation. Phys Ther 2006;86:1271-81.

4. Chen S, Su CL, Wu YT, et al. Physical training is beneficial to functional status and survival in patients with prolonged mechanical ventilation. J Formos Med Assoc 2011;110:572-9.

5. Chen YH, Lin HL, Hsiao HF, et al. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation. Respir Care 2012;57:727-34.

6. Nava S. Rehabilitation of patients admitted to a respiratory intensive care unit. Arch Phys Med Rehabil 1998;79:849-54.

7. Clini EM, Crisafulli E, Antoni FD, et al. Functional recovery following physical training in tracheotomized and chronically ventilated patients. Respir Care 2011;56:306-13.

8. Morris PE, Goad A, Thompson C, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 2008;36:2238-43.

9. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373:1874-82.

10. Chang MY, Chang LY, Huang YC, Lin KM, Cheng CH. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir Care 2011; 56:1533-8.

11.. Malkoc, M, Karadibak D, Yildirim Y. The effect of physiotherapy on ventilatory dependency and the length of stay in an intensive care unit. Int J Rehabil Res 2009;32:85-8.

12. Bailey P, Thomsen GE, Spuhler VJ, et al. Early activity is feasible and safe in respiratory failure patients. Crit Care Med 2007;35: 139-45.

13. Needham DM, Korupolu R, Zanni JM, et al. Early physical medicine and rehabilitation for patients with acute respiratory failure: a quality improvement project. Arch Phys Med Rehabil 2010;91: 536-42.

14. Zafiropoulos B, Alison JA, McCarren B. Physiological responses to the early mobilisation of the intubated, ventilated abdominal surgery patient. Aust J Physiother 2004;50:95-100.

15. Zanni JM, Korupolu R, Fan E, et al. Rehabilitation therapy and outcomes in acute respiratory failure: an observational pilot project. J Crit Care 2010;25:254-62.

16. Bourdin G, Barbier J, Burle JF, et al. The feasibility of early physical activity in intensive care unit patients: a prospective observational one-center study. Respir Care 2010;55:400-7.

17. Winkelman C. Investigating activity in hospitalized patients with chronic obstructive pulmonary disease: a pilot study. Heart Lung 2010;39:319-30.

| Reference,<br>Study Type                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                       | Control          | Optimal Population                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1169<br>Simonis<br>2011<br>PMID:<br>22729756<br>DOI:<br>10.1007/s0039<br>2-012-0484-7<br>Specification<br>of study:<br>RCT | 89 patients<br>Inclusion criteria:<br>- cardiogenic shock (defined by a<br>systolic blood pressure of<90 mmHg,<br>or a cardiac index of <2.2 l/m2 and a<br>pulmonary wedge pressure > 15<br>mmHg, or the need for inotropic or<br>vasopressor support)<br>- prolonged ventilator support,<br>defined as modified oxygenation<br>index (PaO2/ FiO2) <300 torr (40 kPa)<br>after 24–30 h of ventilator therapy<br>Exclusion criteria:<br>- rhythmogenic instability requiring<br>repeated resuscitation procedures<br>- active bleeding precluding rotation<br>- body weight above the upper<br>weight limit for the KT device (i.e.,<br>more than 140 kg)<br>Per Branch<br>45 KT 44 SC | n/a                  | Kinetic therapy =<br>continuous lateral<br>rotation<br>- continuously<br>turned through an<br>arc of about<br>80° every 7 min<br>- percussion was<br>administered by<br>the automated<br>percussion mode of<br>the beds at nine<br>beats/s for 10 min<br>every 2 h | Standard<br>care | Primary outcomes:<br>- occurrence of nosocomial<br>pneumonia (defined as<br>combined occurrence of fever,<br>new radiological infiltrate<br>occurring more than 48 h after<br>admission, and growth of<br>typical microorganism in<br>tracheal aspirates)<br>Secondary outcomes:<br>- occurrence of pressure ulcer<br>- all-cause mortality during the<br>first year after hospital<br>admission | Primary outcomes:<br>- hospital-acquired pneumonia<br>occurred in 10 patients in KT<br>and 28 patients in SC (p<0.001)<br>Secondary outcomes:<br>- pressure ulcers were seen in<br>10 versus 2 patients (p<0.001)<br>- hospital mortality tended to<br>be lower in KT, and 1-year all-<br>cause mortality was 41 % in KT<br>and 66 % in SC (p = 0.028) | 2 → 3             |

KT = kinetic therapy, SC = standard care

In this study the use of kinetic therapy reduced the rate of pneumonia and pressure ulcers and decreased mortality in patients with cardiogenic shock.

| Reference,<br>Study Type                                                                                                              | (Participant #, | l Controls<br>Characteristics)<br>tal                                                 | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                   | Control             | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1173<br>Staudinger<br>2010<br>PMID:<br>19789440<br>DOI:<br>10.1097/CCM<br>.0b013e3181<br>bc8218<br>Specification<br>of study:<br>RCT |                 | nonia, ALI, ARDS<br>OS > 48h<br>or rotation<br>cured rib<br>ht > 150kg, height<br>//V |                      | CLRT<br>- rotation started<br>with 60° angle<br>and escalated to<br>max. angle over<br>2-6 h<br>- performed<br>continuously,<br>aiming for a<br>rotation time of<br>>18hrs/day | Standard of<br>care | Primary endpoint:<br>- 28-day prevalence of<br>VAP<br>Secondary outcomes:<br>- hospital LOS<br>- duration of MV<br>- ventilator-free days<br>during the first 28 days<br>after intubation<br>- ICU and Hospital<br>Mortality<br>- number and duration of<br>atelectasis<br>- prevalence of ALI/ARDS<br>- changes in oxygenation<br>and Lung injury score<br>- complications (Pressure<br>sores or Intolerance) | Primary endpoint:<br>- prevalence of VAP was 11% in the<br>rotation group and 23% in the control<br>group (p = 0.048)<br>Secondary outcomes:<br>- hospital LOS shorter in CLRT group<br>(p=0.01)<br>- duration of ventilation (8 ± 5 vs. 14 ±<br>23 days, p = 0.02)<br>- ventilator free days more in rotation<br>group (p=0.04)<br>- ICU und hospital Mortality (n.s.)<br>- number and duration of atelectasis<br>lower in rotation group (p=0.001)<br>- prevalence of ALI/ARDS not stated<br>- changes in oxygenation and lung<br>injury score not stated<br>- complications (pressure sores or | 2                 |
|                                                                                                                                       | 75              | 75                                                                                    |                      |                                                                                                                                                                                |                     | sores or incolerance)                                                                                                                                                                                                                                                                                                                                                                                          | intolerance) not stated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |

ALI = acute lung injury, ARDS = acute respiratory distress syndrome, LOS = length of stay, MV = mechanical ventilation, n.s. = not significant, pts = patients, VAP = ventilator associated pneumonia

# Application of CLRT led to a reduction of the prevalence of VAP, a shorter ventilation time and length of stay. The results were not statistically significant after adjusting for disease severity.

| Reference,<br>Study Type                                                                                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-<br>out<br>Rate | Intervention                                                                                    | Control                               | Optimal Population                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1177<br>Swadener-<br>Culpepper<br>2008<br>PMID:<br>18574374<br>DOI:<br>10.1097/01.C<br>NQ.00003250<br>51.91473.42<br>Specification<br>of study:<br>retrospective<br>case control<br>study |                                                                 |                      | <b>CRLT</b><br><u>1. Early:</u> begin<br>within 48h<br><u>2.Late:</u> begin<br>more than<br>48h | Without CLRT<br>(comparison<br>group) | Primary endpoints:<br>- hospital LOS<br>- number of ventilation<br>days<br>- overall treatment costs<br>Secondary outcomes:<br>- pts rates of<br>readmission into ICU<br>- rate of reintubation | Primary endpoints:<br>- mean LOS in the ICU, early intervention<br>group: 13.1 days, compared to late<br>intervention group: 18.9 days (p=0.02)<br>compared to comparison group: 18.4<br>days (p<0.05)<br>- cost to treat for early intervention group<br>was less than for late intervention group<br>(p=0.01), compared with comparison<br>group (p=0.056)<br>- hospital LOS, ventilation days (n.s.)<br>Secondary outcomes:<br>- reintubation rate, readmission to ICU<br>(n.s.) | 4                 |

CCU = critical care unit, CLRT = continuous lateral rotation therapy, LOS = length of stay, PEEP = positive end expiratory pressure, pts = patients; n.s.= not significant

#### CLRT reduced critical care LOS as well as treatment costs.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                        | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention                              | Control             | Optimal Population                                                                                                                       | Primary Results | Evidence<br>Grade                                                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------|
| 1178 Thomas<br>2007<br>PMID: 17444315<br>https://doi.org/1<br>0.1177/0310057<br>X0703500214<br><b>Specification of</b><br><b>study:</b><br>systematic<br>review | 12 publications between 1951 and 2007 (1<br>review and 11 empiric articles) <sup>1-12</sup><br>Inclusion criteria:<br>- age > 16 years<br>- RCTs<br>- ICU MV pts<br>- lateral positioning<br>Exclusion criteria:<br>- positioning during surgery or anaesthesia<br>- pts with one-lung ventilation<br>- pts with lung transplant or lung resection<br>- several interventions<br>- exclusively investigation of<br>validity/repeatability of measurements from<br>clinical monitoring after intervention |                      | Lateral positioning<br>in MV ICU patients | Standard of<br>Care | Endpoints:<br>- oxygenation<br>- compliance<br>- haemondynamics<br>- incidence of<br>pneumonia<br>- mortality<br>- long-term<br>outcomes |                 | 1 → 4<br>(downgraded<br>due to quality<br>of evidence of<br>included<br>articles and<br>indirectness/<br>applicability) |

Pts = patients, ICU = intensive care unit, MV = mechanically ventilated

#### The effectiveness of lateral positioning on clinical outcomes in critically ill patients is unclear due to limited evidence. No detailed assessment was carried out because higher-quality evidence is available on this topic.

#### **References:**

- 1. Wong W. Use of body positioning in the mechanically ventilated patient with acute respiratory failure: application of Sackett's rules of evidence. Physiother Theory Pract 1999; 15:25-41.
- 2. Banasik JL et al., Effect of position on arterial oxygenation in postoperative coronary revascularization patients. Heart Lung 1987; 16:652-657.
- 3. Banasik JL et al., Effect of lateral position on arterial and venous blood gases in postoperative cardiac surgery patients. Am J Crit Care 1996; 5:121-126.
- 4. Banasik JL et al., Effect of lateral positions on tissue oxygenation in the critically ill patients. Heart Lung 2001; 30:269-276.
- 5. Bein T et al., Effects of extreme lateral posture on hemodynamics and plasma atrial natriuretic peptide levels in critically ill patients. Intensive Care Med 1996; 22:651-665.
- 6. Chan M et al., Positioning effects on arterial oxygen and relative pulmonary shunt in patients receiving mechanical ventilation after CABG. Heart Lung 1992; 21:448-456.
- 7. Davis K et al., The acute effects of body position strategies and respiratory therapy in paralyzed patients with acute lung injury. Critical Care 2001; 5:81-87.
- 8. Gavigan M et al., The effect of regular turning on CABG patients. Crit Care Nurs Q 1990; 12:69-76.
- 9. Ibanez J et al., The effect of lateral positions on gas exchange in patients with unilateral lung disease during mechanical ventilation. Intensive Care Med 1981; 7:231-234.
- 10. Kim M et al., A randomized trial on the effects of body positions on lung function with acute respiratory failure patients. Int J Nur Stud 2002; 39:549-555.
- 11. Nelons LD et al., Physiologic effects of steep positions in the surgical intensive care unit. Arch Surg 1989; 124:352-355.

| Reference,<br>Study Type                                                                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention                                                                   | Control                                                                                                                                                                                                      | Optimal<br>Population                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1182<br>Thomas<br>2006<br>PMID: 17628197<br>DOI:<br>10.1016/j.hrtIng.2<br>006.10.008<br>Specification of<br>study:<br>A prospective,<br>within-subjects,<br>randomized<br>cross-over study | N=34 patients<br>Inclusion criteria:<br>presence on chest radiograph of:<br>a) bilateral lung pathology consistent with ALI or ARDS<br>criteria<br>b) or unilateral lung pathology<br>c) or no lung pathology<br>intubated and mechanically ventilated<br>hemodynamically stable with:<br>a) heart rate 60–130 beats/min<br>b) mean arterial blood pressure 70–120 mm Hg<br>c) no compromising arrhythmias<br>d) ICP<20 mm Hg (if measured)<br>e) mean pulmonary arterial pressure<30 mm Hg,<br>pulmonary capillary wedge pressure 8-17 mm Hg (if<br>measured via pulmonary arterial (PA) catheter.<br>- no, unilateral, or bilateral pulmonary infiltrates on chest<br>radiograph<br>Exclusion criteria:<br>- age < 18 years<br>- preexisting severe chronic respiratory disease (FEV1less<br>than 40%)<br>- burn injuries<br>- chest wall abnormalities<br>- pulmonary barotrauma (eg, pneumothorax)<br>- paralysing medications<br>- nitric oxide<br>- contraindications to lateral positioning (eg, unstable<br>spinal fractures).<br>Per Branch |                      | 90 degree<br>lateral<br>position at<br>the supine<br>starting<br>position (TO) | Same<br>population but<br>data at<br>different time<br>stamps<br>- 30 min in<br>lateral turn<br>(T30)<br>- 2 hours into<br>lateral turn<br>(T120)<br>- 30 min post<br>return to<br>supine position<br>(T150) | Primary<br>endpoints:<br>- arterial blood<br>gas<br>- respiratory<br>mechanic<br>- hemodynamic<br>data<br>Secondary<br>endpoints:<br>- AE | Primary outcomes:<br>No significant differences<br>between the groups in:<br>- PaO2/FiO2 p=0.15<br>- RR p>0.05<br>- heart rate p>0.05<br>Significant differences<br>between the groups in:<br>- dynamic compliance<br>(T0=56±18.6>(T30=49.9±18<br>; T120=49.2±17)<br>L/cmH20,P=0.01)<br>- cardiac index increased at<br>T30 (T0=3.7±1.2,<br>T30=4.8±1.3 L/min/m2,<br>P<0.01)<br>Secondary outcomes:<br>- 21% AEs but primarily<br>minor and transient | 2→3               |
|                                                                                                                                                                                             | 34 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                |                                                                                                                                                                                                              |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |

AE = adverse event, ALI = acute lung injury, ARDS = acute respiratory distress syndrome, ICP = intracranial pressure

In this heterogeneous population, lateral positioning had no beneficial effect on gas exchange. However, in ventilated patients who were hemodynamically stable, it was well tolerated and not associated with significant serious adverse events.

| Reference,<br>Study Type                                                                                                                       | Cases and Co<br>(Participant #, Cha<br>Total                                                                                                                                                                                                                                                                                                                                                                                                    | aracteristics)                                                                                                                                                 | Drop-<br>out<br>Rate | Intervention                                                                                                                          | Control | Optimal<br>Population                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1184<br>Clark<br>2012<br>PMID:<br>22879442<br>DOI:<br>10.2522/ptj.20<br>110417<br>Specification<br>of study:<br>Retrospective<br>Cohort Study | 2.176 pts<br>Inclusion criteria:<br>- patients admitted<br>Exclusion criteria:<br>- cardiovascular, pr<br>and musculoskelet<br>- vascular access re<br>femoral or dorsal p<br>line<br>- nasotracheal intu<br>to high extubation<br>- use of pressor or<br>medications to ma<br>hemodynamic stat<br>- conditions requiri<br>continuous sedatic<br>paralytic medicatic<br>open abdominal w<br>(fascia visible)<br>Per Bran<br>Group 1<br>n = 1044 | ulmonary<br>tal instability<br>equiring<br>pedis arterial<br>ubation due<br>trisk<br>inotropic<br>sintain<br>bility<br>ring<br>on or<br>ons, such as<br>younds |                      | Early mobilisation<br>- group 1: Prior to<br>implementation of EMP<br>- group 2: After implementation<br>of EMP<br>EMP:<br>- Level 1: |         | Primary<br>outcome:<br>- safety<br>(related to<br>nosocomial<br>complication<br>s and<br>adverse<br>events)<br>Secondary<br>outcome:<br>- TBICU LOS<br>- hospital<br>LOS | Group differences (group 1 vs. group 2):<br>- age [mean (SD]]: 44.1 (18.5) vs. 46.6 (19.6), p ≤ 0.01<br>- gender male (%): 75.1% vs. 70.5%, p ≤ 0.02<br>- ISS score [median (SD]]: 23.6 (12.8) vs. 22.2 (12.8), p = 0.01<br>- prevalence of arthrits (%): 5.5 vs. 9.7, p ≤ 0.001<br>- prevalence of cardiovascular disorder (%): 31.8 vs. 37, p = 0.01<br>- prevalence of neurologic disorder (%): 8.2 vs. 10.9, p = 0.03<br>- prevalence of obstructive sleep apnea (%): 1.6 vs. 3.0, p = 0.04<br>- prevalence of pulmonary disorder (%): 7.7 vs. 10.5, p = 0.03<br>Primary outcome (group 1 vs. group 2):<br>- safety: ( <i>RRs adjusted for age and injury severity</i> )<br>○ Nosocomial complications (%):<br>- airway: 7.1 vs. 3.5, p < 0.001; Crude RR: 0.5 (95% CI: 0.34-0.73), p <<br>0.05; Adjusted RR: 0.52 (95% CI: 0.35-0.76), p < 0.05<br>- cardiovascular: 12.2 vs. 15.2, p = 0.04; Crude RR: 1.33 (95% CI: 1.06-<br>1.68), p < 0.05; Adjusted RR: 1.26 (95% CI: 0.99-1.59), p > 0.05<br>- psychiatric: 3.4 vs. 1.7, p = 0.02; Crude RR: 0.60 (95% CI: 0.35-1.04),<br>p > 0.05; Adjusted RR: 0.60 (95% CI: 0.35-1.03), p > 0.05<br>- pulmonary (excluding pneumonia): 49.2 vs. 42.2, p ≤ 0.001; Crude<br>RR: 0.81 (95% CI: 0.72-0.92), p < 0.05; Adjusted RR: 0.84 (95% CI:<br>0.74-0.95), p < 0.05<br>- renal/genitourinary: 18.3 vs. 15.0, p = 0.04; crude RR: 0.86 (95% CI:<br>0.74-0.95), p < 0.05<br>- vascular: 15.3 vs. 8.5, p ≤ 0.001; crude RR: 0.83 (95% CI: 0.67-1.02), p > 0.05<br>- vascular: 15.3 vs. 8.5, p ≤ 0.001; crude RR: 0.57 (95% CI: 0.40-0.73),<br>p < 0.05; adjusted RR: 0.58 (95% CI: 0.45-0.75), p < 0.05<br>- vascular: 15.3 vs. 8.5, p ≤ 0.001; crude RR: 0.74 (95% CI:<br>0.48-0.85), p < 0.05; adjusted RR: 0.79 (95% CI: 0.50-0.90), p <<br>0.05<br>- pneumonia: 27.9 vs. 22.4, p ≤ 0.01; crude RR: 0.78 (95% CI: 0.66-<br>0.92), p < 0.05; adjusted RR: 0.79 (95% CI: 0.66-0.93), p < 0.05<br>- pneumonia: 27.9 vs. 22.4, p ≤ 0.01; crude RR: 0.78 (95% CI: 0.66-<br>0.92), p < 0.05; adjusted RR: 0.79 (95% CI: 0.66-0.93), p < 0.05<br>- Do.5<br>- TBICU LOS [mean (SD]]: 11.0 (16.2) vs. 10.4 (14.0), p = 0.33<br>- hospital LOS [mean (SD]]: 19.2 (28 | 4                 |

EMP = early mobilisation protocol, LOS = length of stay, pts = patients, TBICU = trauma and burn intensive care unit

Implementation of an early mobilization program with daily screening and assistance in mobilization seems safe and feasible, as it reduces nosocomial complications (with exception of cardiovascular complications) and decreases hospital length of stay in critically ill patients admitted to trauma and burn ICU.

| Iteration       Rate         18 patients<br>(intervention and control group)       18 patients<br>(intervention and control group)       Inclusion criteria:<br>- ratio of partial pressure of arterial<br>oxygen (FiO2) of or less than 200 while<br>receiving positive end expiratory pressure<br>(PEEP)of at least 5 cm of water<br>- radiographic evidence of bilateral<br>pulmonary infiltrates<br>- absence of clinical evidence of left atrial<br>hypertension or a pulmonary capillary<br>wedge pressure of less than 18 mmHg       Lateral<br>position       Supine<br>position       Endpoints:<br>comparing supine,<br>right, left lateral<br>positions (>60<br>degree) in:<br>- PaO2<br>- arterial blood gas parameters<br>- respiratory<br>mechanics<br>- hemodynamic<br>parameters       Outcomes:<br>no significant differences between<br>the groups in: (supine vs decubitus)<br>- mecan PaO2 (84.6 vs 03.9) p=0.23<br>- arterial blood gas parameters<br>p=0.05<br>- respiratory<br>mechanics<br>- hemodynamic<br>parameters       3 -         Specification<br>of study:<br>A pilot study       - othest X-ray showed pleural effusion,<br>pneumothorax or atelectasis<br>- contraindication to using the lateral<br>position, such as fracture of the spine<br>(within 2 weeks), thoracoabdominal<br>surgery or severe hemodynamic<br>instability       A       A | Reference,<br>Study Type                                                                              | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drop-<br>out | Intervention | Control | Optimal Population                                                                                                                                                       | Primary Results                                                                                                                                                                                | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | # 1186<br>Tongyoo<br>2006<br>PMID:<br>17718246<br>DOI: not<br>available<br>Specification<br>of study: | <pre>(intervention and control group) Inclusion criteria: - ratio of partial pressure of arterial oxygen (PaO2) to the fraction of inspired oxygen (FiO2) of or less than 200 while receiving positive end expiratory pressure (PEEP)of at least 5 cm of water - radiographic evidence of bilateral pulmonary infiltrates - absence of clinical evidence of left atrial hypertension or a pulmonary capillary wedge pressure of less than 18 mmHg Exclusion criteria: - aged &lt; 14 years - evidence of cerebral edema - chest X-ray showed pleural effusion, pneumothorax or atelectasis - contraindication to using the lateral position, such as fracture of the spine (within 2 weeks), thoracoabdominal surgery or severe hemodynamic instability Per Branch</pre> | Rate         |              | •       | comparing supine,<br>right, left lateral<br>positions (>60<br>degree) in:<br>- PaO2<br>- arterial blood gas<br>parameters<br>- respiratory<br>mechanics<br>- hemodynamic | no significant differences between<br>the groups in: (supine vs decubitus)<br>- mean PaO2 (84.6 vs 90.3) p=0.23<br>- arterial blood gas parameters<br>p>0.05<br>- respiratory mechanics p>0.05 | 3 → 4             |

The PaO2 increased while in the right lateral position in patients with predominant left pulmonary infiltration or bilateral infiltration. This effect may be due to the small sample size. A larger randomized controlled study is needed.

| Reference,<br>Study Type                                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention          | Control               | Optimal<br>Population                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade            |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|-----------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| #1198,<br>Muscedere<br>2008<br>PMID:<br>18359430<br>DOI:<br>10.1016/j.jcrc.<br>2007.11.014<br>Specification<br>of study:<br>Practice<br>guidelines | 109 trials<br>Inclusion criteria:<br>database search from 1980 to<br>October 1, 2006 for:<br>- randomized controlled trials<br>- systematic reviews<br>- meta-analysis<br>-> topic prevention of VAP<br>Exclusion criteria:<br>- RCTs of stress ulcer<br>prophylaxis<br>Per Branch |                      | Depending<br>on trial | Depending<br>on trial | Endpoints:<br>- physical<br>strategies<br>- positional<br>strategies<br>- pharmacologic<br>strategy | Physical outcomes:<br>recommendation to reduced VAP risk:<br>- orotracheal intubation (1 level 2 trial, 4 level 2<br>trials)<br>- new circuits for each patient (2 level 2 trials)<br>- change airway humidifier every 5-7 days (2 level 2<br>trials)<br>- closed endotracheal suctioning system (6 level 2<br>trials)<br>- change of suctioning system for every patient (1<br>level 2 trial)<br>- use of subglottic secretion drainage for patients<br>MV > 72h<br>no recommendation to reduce VAP risk:<br>- Systematic search for maxillary sinusitis (1<br>level 2 trial)<br>- Use of airway humidifier (12 level 2 trials<br>- Use of bacterial filters (1 level 2 trial) Positional outcomes:<br>positional strategies:<br>recommendation to reduce VAP risk:<br>- kinetic bed therapy (7 level 2 trials)<br>- semi recumbent positioning (1 level 1 trial, 1 level<br>2 trial) no recommendation to reduce VAP risk:<br>- prone positioning (2 level 2 trials) | $1 \rightarrow 3$ (outdated) |

MV = mechanical ventilation, VAP = ventilator-associated pneumonia

There are a growing number of evidence-based strategies for VAP prevention, which, if applied in practice, may reduce the incidence of this serious nosocomial infection.

| Reference,<br>Study Type                                                                                                                                                          | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Drop-<br>out Rate                                                 | Intervention               | Control                     | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1214<br>Wang<br>2016<br>PMID: 26743945<br>DOI:<br>10.1002/146518<br>58.CD009946.pu<br>b2<br><b>Specification of</b><br><b>study:</b><br>Systematic<br>Review and<br>Meta-Analysis | 10 publications from<br>1999-2012 (10 RCTs, n<br>= 878 pts) <sup>1-10</sup><br>Inclusion criteria:<br>- RCTs<br>- population:<br>endotracheal<br>intubated and<br>mechanically<br>ventilated adult pts<br>- Studies comparing<br>SRP vs. SP or<br>different degrees of<br>body positioning<br>Exclusion criteria:<br>- cluster<br>randomisation (due<br>to "herd effect")<br>- cross-over design<br>due to ("carry-over<br>effect")<br>- quasi-RCTs (due to<br>potential problems<br>with imbalanced<br>prognosis and<br>failure to conceal<br>the treatment<br>allocation)<br>- >15% of pts.<br>Ineligible for SRP<br>Per Branch | 24 pts<br>(due to<br>lost to<br>follow-<br>up in<br>one<br>trial) | SRP<br>(30°-60°) or<br>45° | SP (0°-10°)<br>or (25°-30°) | <ul> <li>Primary outcomes: <ul> <li>clinically suspected</li> <li>VAP (according to the definition of CDC 1997)</li> <li>microbiologically confirmed VAP,</li> <li>composite of clinically suspected and clinically confirmed VAP</li> <li>ICU mortality</li> <li>hospital mortality</li> </ul> </li> <li>Secondary outcomes: <ul> <li>ICU LOS</li> <li>hospital LOS</li> <li>duration of ventilation</li> <li>use of antibiotics</li> <li>adverse events (device-related, dysphagia, laryngospasm, aspiration, venous thromboembolism, pressure ulcers, haemodynamic instability)</li> </ul> </li> </ul> | <ul> <li>Significant differences between groups in:</li> <li>clinically suspected VAP [8 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 759 pts]</li> <li>14.3% vs. 40.2%, no p-value reported</li> <li>R R 0.36 (95% CI 0.25-0.5)</li> <li>heterogeneity: p= 0.2, l<sup>2</sup> = 29%</li> <li>R D 25.7% (95% CI 20.1%-30.1%)</li> <li>GRADE: moderate confidence in the estimate</li> </ul> <b>Non-significant differences between groups in:</b> <ul> <li>clinically suspected VAP [2 trials comparing SRP 45° vs. SRP 25° or 30°; n = 91 pts]</li> <li>22.2% vs. 26.1%, no p-value reported</li> <li>R R 0.74 (95% CI 0.35-1.56)</li> <li>GRADE: wery low confidence in estimates</li> </ul> microbiologically confirmed VAP <ul> <li>3 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 419 pts</li> <li>12.6% vs. 31.6%, no p-value reported</li> <li>R R 0.44 (95% CI 0.11-1.77),</li> <li>heterogeneity: p = 0.0006, l<sup>2</sup> = 87%</li> <li>GRADE: very low confidence in the estimate</li> <li>1 trial comparing SRP 45° vs. SP 25°; n = 30 pts</li> <li>23.5% vs. 38.5%, no p-value reported</li> <li>R 0.61 (95% CI 0.2-1.84)</li> <li>GRADE: very low confidence in estimates</li> </ul> composite of clinically suspected and clinically confirmed VAP: none of the included studies reported this outcome ICU mortality <ul> <li>2 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 307 pts</li> <li>29.8% vs. 34.3%, no p-value reported</li> <li>R R 0.57 (95% CI 0.59-1.27)</li> <li>heterogeneity: p = 0.43, l<sup>2</sup> = 0%</li> <li>GRADE: low confidence in the estimate</li> <li>1 trial comparing SRP (30°-60°) vs. SP (0°-10°); n = 346 pts</li> <li>23.5% vs. 30.8%</li> <li>R R 0.57 (95% CI 0.59-1.20)</li> <li>heterogeneity: p = 0.32, l<sup>2</sup> = 12%</li> <li>GRADE: low confidence in the estimates</li> </ul> | 1                 |

| · · · · · · · · · · · · · · · · · · · | 1 | T |                                                                                                                      |
|---------------------------------------|---|---|----------------------------------------------------------------------------------------------------------------------|
|                                       |   |   | <ul> <li>RR 1.00 (95% CI 0.38 vs. 2.65)</li> </ul>                                                                   |
|                                       |   |   | <ul> <li>GRADE: very low confidence in estimates</li> </ul>                                                          |
|                                       |   |   | - ICU LOS                                                                                                            |
|                                       |   |   | $\circ$ 3 trials comparing SRP (30°-60°) vs. SP (0°-10°);                                                            |
|                                       |   |   | n = 346 pts                                                                                                          |
|                                       |   |   | <ul> <li>MD = -1.64 days (95% CI -4.41 to 1.14), no p-value reported</li> </ul>                                      |
|                                       |   |   | heterogeneity: p = 0.21, l <sup>2</sup> = 35%                                                                        |
|                                       |   |   | <ul> <li>GRADE: moderate confidence in the estimate</li> </ul>                                                       |
|                                       |   |   | <ul> <li>1 trial comparing SRP 45° vs. SP 30°; n = 30 pts</li> </ul>                                                 |
|                                       |   |   | <ul> <li>MD = -1.6 days (95% Cl -0.88 to 4.08), p = 0.21</li> </ul>                                                  |
|                                       |   |   | <ul> <li>GRADE: very low confidence in the estimate</li> </ul>                                                       |
|                                       |   |   | <ul> <li>hospital LOS [2 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 458 pts]:</li> </ul>                    |
|                                       |   |   | <ul> <li>MD = -3.35 days (95% CI -7.8 to 1.09), no p-value reported</li> </ul>                                       |
|                                       |   |   |                                                                                                                      |
|                                       |   |   | • heterogeneity: $p < 0.00001$ , $l^2 = 93\%$                                                                        |
|                                       |   |   | <ul> <li>GRADE: very low confidence in the estimate</li> </ul>                                                       |
|                                       |   |   | - duration of ventilation                                                                                            |
|                                       |   |   | <ul> <li>4 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 458 pts</li> </ul>                                    |
|                                       |   |   | <ul> <li>MD -3.35 days (95% CI -7.80 to 1.09), no p-value reported</li> </ul>                                        |
|                                       |   |   | <ul> <li>heterogeneity: p = &lt; 0.00001, l<sup>2</sup> = 93%</li> </ul>                                             |
|                                       |   |   | <ul> <li>1 trial comparing SRP 45° vs. SP 25°; n = not reported</li> </ul>                                           |
|                                       |   |   | <ul> <li>Pts without VAP: mean ventilated hours 61.5 vs. 63.1 (45° and 25° respectively); SD not reported</li> </ul> |
|                                       |   |   | Pts with VAP: mean ventilated hours 160 vs. 172.5 hours (45° and                                                     |
|                                       |   |   | 25° respectively); SD not reported                                                                                   |
|                                       |   |   | <ul> <li>use of antibiotics [3 trials comparing SRP (30°-60°) vs. SP (0°-10°); n = 284</li> </ul>                    |
|                                       |   |   | pts]:                                                                                                                |
|                                       |   |   | <ul> <li>84.8% vs. 84.2%, no p-value reported</li> </ul>                                                             |
|                                       |   |   | <ul> <li>RR 1.00 (95% Cl 0.97-1.03)</li> </ul>                                                                       |
|                                       |   |   | <ul> <li>adverse events [1 trial comparing SRP (30°-60°) vs. SP (0°-10°); n = 221</li> </ul>                         |
|                                       |   |   |                                                                                                                      |
|                                       |   |   | pts]:                                                                                                                |
|                                       |   |   | • pressure ulcers                                                                                                    |
|                                       |   |   | <ul> <li>28% vs. 30%, no p-value reported</li> </ul>                                                                 |
|                                       |   |   | <ul> <li>RR 0.91, 95% CI 0.6-1.38</li> </ul>                                                                         |
|                                       |   |   | <ul> <li>GRADE: low confidence in the estimate</li> </ul>                                                            |
|                                       |   |   | <ul> <li>No other events across all studies reported</li> </ul>                                                      |

CDC = Center for Disease Control and Prevention, CI = confidence interval, GRADE = quality of evidence according to study limitations, consistency of effect, imprecision, indirectness and publication bias, ICU = intensive care unit,  $I^2 = I^2$ -statistic testing for heterogeneity across studies, MD = mean difference, pts = patients, RCTs = randomized controlled trials, RD = risk difference, RR = risk ratio, SRP = semi-recumbent position, SP = supine position; VAP= ventilator associated pneumonia; LOS=Length of stay;

Semi-recumbent positioning (30°-60°) might reduce clinically suspected VAP compared to supine position (0°-10°), but there is high risk of bias and under-reporting of adverse events.

#### References

- 1. Fen C. EMect of diMerent body position on ventilation-related pneumonia [不同体位对呼吸机相关性肺炎的影响]. Journal of Nursing 2006;12(04A):606-7.
- 2. Drakulovic MB, Torres A, Bauer TT, Nicolas JM, Nogue S, Ferrer M. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomized trial. Lancet 1999;354(9193):1851-8.
- 3. Hang H, Gu R. Semirecumbent position for the prevention of ventilator-associated pneumonia [半坐卧位在预防呼吸机相关性肺炎中的应用]. Hu Li Shi Jian Yu Yan Jiu [Nursing Practice and Research] 2012;9(4):48-9.
- 4. Hu H. Posture management for the prevention of ventilatorassociated pneumonia [体位护理预防机械通气相关性肺炎的影响]. Yi Xue Qian Yan [Medical Frontier] 2012;8(24):240-1.
- 5. Keeley L. Reducing the risk of ventilator-acquired pneumonia through head of bed elevation. Nursing in Critical Care 2007;12(6):287-94.
- 6. Leng Y, Yi M, Nie C. 30 degree is more appropriate for the critically ill patients receiving mechanical ventilation. Unpublished but part of results presented in a meta-analysis 2012.
- 7. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, Joore HC, van Schijndel RJ, van der Tweel I, et al. Feasibility and eMects of the semirecumbent position to prevent ventilatorassociated pneumonia: a randomized study. Critical Care Medicine 2006;34(2):396-402.
- 8. Wu H, Wei M, Wang J. EMect of diMerent body position on ventilator-associated pneumonia [两种体位对呼吸机相关性肺炎的影响]. Chinese Journal of General Practice 2009;7(2):148-9.
- 9. Xue F, Lin M. The eMects of diMerent positions for the prevention of ventilator-associated pneumonia [不同体位在预防呼吸机相关性肺炎的效果评价]. Journal of Qiqihar University of Medicine 2012;33(16):2261-2.
- 10. Yu C, Wang W. The body position management in ICU for reducing ventilator-associated pneumonia incidence [ICU体位护理对减少机械通气相关性肺炎发病率的效果评价]. Chinese Journal of Practical Nursing 2012;28(11):21-2.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                              | Drop<br>-out<br>Rate | Intervention                                                                             | Control                                      | Optimal Population                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1226<br>McBeth,<br>2007<br>PMID:<br>17434374<br>DOI:<br>10.1016/j.am<br>jsurg.2007.01<br>.013<br>Specification<br>of study:<br>prospective<br>cohort study | 37 non-consecutive patients<br>with 300 observations<br>Inclusion criteria:<br>- a 3-way bladder catheter had<br>been placed because of<br>concerns regarding IAH or ACS<br>Exclusion criteria:<br>- could not be flexed at the<br>waist because of concerns<br>about spinal or hemodynamic<br>stability<br>Per Branch<br>37 |                      | HOB positions:<br>0° (supine) and<br>at HOB<br>increases of<br>10°, 20°, 30°,<br>and 45° | patients<br>acted as<br>their own<br>control | <b>Endpoints:</b><br>- IAP at each HOB<br>angle<br>-BMI, PEEP,<br>temperature,<br>diagnosis, Riker<br>sedation score in<br>correlation with IAP<br>difference | Endpoint:<br>- HOB increase associated with IAP, with stronger<br>correlations at 30° and 45° (10° : p=0.04; 20°: p =<br>0.001, 30°: p < 0.001, 40°: p< 0.001)<br>-BMI significant (p=0.01); PEEP (p=0.001), Temperature<br>(p=0.02), Neurologic (non-trauma) diagnostic category<br>(p <0.001)<br>- Riker sedation score n.s. (no p-value) | 3                 |

ACS = abdominal compartment syndrome, BMI = body mass index, HOB = head-of-bed, IAP = intra-abdominal pressure, IAH = intra-abdominal hypertension, n.s. = not significant, PEEP = positive end-expiratory pressure, pts = patients

There is a significant, positive association between IAP and HOB positioning in critically ill patients.

| Reference,<br>Study Type                                | Cases and Controls<br>(Participant #,<br>characteristics) | Drop<br>-out<br>Rate | Intervention | Control | Optimal Population | Primary Results | Evidence<br>Grade |
|---------------------------------------------------------|-----------------------------------------------------------|----------------------|--------------|---------|--------------------|-----------------|-------------------|
|                                                         | Total                                                     | Nate                 |              |         |                    |                 |                   |
| 1242<br>Gosselink 2008                                  |                                                           |                      |              |         |                    |                 |                   |
| PMID: 18283429                                          |                                                           |                      |              |         |                    |                 | 1→5               |
| https://doi.org/10.1007<br>/s00134-008-1026-7           |                                                           |                      |              |         |                    |                 | (out of<br>date)  |
| <b>Specification of study:</b><br>ERS / ESICM guideline | Per Branch                                                |                      |              |         |                    |                 |                   |

ERS = European Respiratory Society, ESICM = European Society of Intensive Care Medicine

Appropriately prescribed physiotherapy may improve clinical outcomes of critically ill patients and reduce risks and arising costs associated with intensive care.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                          | (Participant #                                                                | nd Controls<br>, characteristics)<br>otal                 | Drop-<br>out<br>Rate | Intervention                                                                                                                             | Control             | Optimal<br>Population                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1251<br>Hanekom<br>2012<br>PMID:<br>23232109<br>DOI:<br>10.1186/cc118<br>94<br>Specification<br>of study:<br>Prospective<br>study | Inclusion criteria:<br>- not stated<br>Exclusion criteria:<br>- age <16 years | ICU in a tertiary<br>rica → 193 patients<br><b>Branch</b> |                      | Protocol Care:<br>allocated<br>Physiotherapist<br>providing<br>evidence-<br>based/protocol<br>care based on<br>the ICU<br>admission date | standard of<br>care | Endpoints:<br>- Ventilation<br>- Mortality<br>- LOS/ time to<br>discharge<br>- TISS-28<br>- BI | <ul> <li>Results: <ul> <li>pts admitted to ICU during protocol care were less likely to be intubated after admission (p = 0.005) or to fail an extubation (p = 0.04)</li> <li>protocol care pts were discharged from the hospital 4 days earlier than usual-care patients (p = 0.05), which did not reach statistical significance</li> <li>tendency noted for more pts to reach independence in transfers (p = 0.07) and mobility (p = 0.09) categories of the BI</li> <li>no difference in mortality (p = 0.52)</li> <li>mean difference in the cumulative daily unit TISS-28 score during the two intervention periods was 1.99 TISS-28 units (P = 0.04).</li> </ul> </li> </ul> | 3                 |
|                                                                                                                                   | 96                                                                            | 97                                                        |                      |                                                                                                                                          |                     |                                                                                                | (r - 0.04).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |

ICU = intensive care unit, LOS = length of stay, pts = patients, BI = Barthel Index, TISS = Therapeutic Intervention Scoring System

A physiotherapy service approach that includes an exclusively allocated physiotherapist providing evidence-based/protocol care that addresses pulmonary dysfunction and promotes early mobility improves patient outcome.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                   | Control                                            | Optimal Population                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1254,<br>Vasquez,<br>2007<br>PMID:<br>17161433<br>DOI:<br>10.1016/j.jss.2<br>006.10.023<br>Specification<br>of study:<br>Prospective<br>observational<br>cohort study | n = 45 pts<br>Inclusion criteria:<br>- trauma patients aged 18<br>or older<br>- admitted to the ICU with<br>indwelling bladder<br>catheter<br>Exclusion criteria:<br>- pregnancy<br>- unstable pelvis fracture<br>with pelvic hematoma<br>- previous cystectomy<br>- traumatic bladder<br>ruptures<br>- contraindications to<br>supine<br>- semi-recumbent, or tilt<br>positioning<br>- hemodynamic instability<br>- massive infusion protocol<br>- supra-pubic catheter<br>Per Branch |                      | bladder pressures<br>measures in:<br>(1) supine position,<br>or 0° from<br>horizontal;<br>(2) 15° above<br>horizontal;<br>(3) 30° above<br>horizontal;<br>(4) semi-recumbent<br>defined as 45°<br>above horizontal;<br>(5) 30° above<br>horizontal with a<br>15° above-<br>horizontal bed tilt | patients<br>served as<br>his/her<br>own<br>control | <ul> <li>Primary outcome:</li> <li>effect of HOB<br/>elevation on bladder<br/>pressure<br/>measurements</li> <li>effect of BMI Status<br/>on bladder pressure<br/>measurements</li> <li>BMI status as a<br/>covariate</li> </ul> | <ul> <li>Primary outcome: <ul> <li>effect of HOB elevation on bladder pressure measurements: HOB elevation (within-subjects effect) demonstrated statistically significant differences, F(4) = 114.478, P = 0.001; significant differences at the P = 0.001 level between all body positions</li> <li>effect of BMI status on bladder pressure measurements supine position, F(2) = 11.404, P = 0.001; between "normal" and "overweight" as well as and "obese,"</li> <li>15° HOB elevation, F (2) = 10.873, P = 0.001 between "normal" and "obese,"</li> <li>30° HOB elevation, F(2) = 6.473, P = 0.004 between "normal" and "obese"</li> <li>45° HOB position, F(2) = 7.112, P = 0.002 between "normal" and "obese"</li> <li>30° with 15° tilt HOB position, F(2) = 7.112, P = 0.001 between "normal" and "obese"</li> </ul> </li> </ul> | 3                 |

BMI = body mass index, HOB = head-of-bed, ICU = intensive care unit, pts = patients

Elevating HOB significantly increases bladder pressure measurement and bladder pressure measurements in non-supine positions may not provide valid interpretation for IAP, and more so in cases of increased body mass index.

| Reference,<br>Study Type                                                                                                                       | Cases and Con<br>(Participant #, Chara<br>Total                                                                                                                                                                                                                                                                                                                                                 | acteristics)                                                                                          | Drop<br>-out<br>Rate | Intervention                                    | Control                                      | Optimal Population                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1260,<br>Yi,<br>2012<br>PMID: 22033056<br>DOI:<br>10.1016/j.jcrc.2011.<br>08.010<br>Specification of<br>study:<br>prospective cohort<br>study | 88 pts.<br>Inclusion criteria:<br>- 18 years or older<br>- sedated<br>- mechanical ventila<br>- demonstrated at lef<br>factor for IAH or ACS<br>Exclusion criteria:<br>- unable to tolerate<br>body position (becars<br>spinal precautions,<br>intracranial hyperter<br>hemodynamic instal<br>- IAP measurements<br>contraindicated (suc<br>recent bladder surge<br>or pregnancy)<br>Per Brance | east 1 risk<br>S<br>changes in<br>use of<br>nsion,<br>bility, etc)<br>s were<br>ch as<br>ery, injury, |                      | HOB elevation:<br>supine, 10°,<br>20°, 30°, 45° | patients<br>acted as<br>their own<br>control | Endpoints:<br>- comparison of IAP,<br>APP, and FG among<br>body position (HOB<br>angle elevated)<br>- APACHE II<br>- SOFA<br>- IAH and ACS | Endpoints:<br>- head of bed increase was found to be significantly<br>associated with IAP, with stronger correlations at<br>HOB increases of 30° and 45° (p < 0.05)<br>- head of bed elevation was associated with clinically<br>significant decreases in APP and FG (p< 0.05)<br>- APACHE II: IAH group 17.36 ± 11.99, non-IAH: 13.12<br>± 7.26 p = 0.05<br>- SOFA n.s.<br>-prevalence of IAH and ACS were 28.4% and 2.3% | 3                 |
|                                                                                                                                                | 88                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                       |                      |                                                 |                                              |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |

ACS = abdominal compartment syndrome, APACHE = acute physiology and chronic health evaluation, APP = abdominal perfusion pressure, FG = filtration gradient, HOB = head-of-bed, IAH = intraabdominal hypertension, IAP = intra-abdominal pressure, pts = patients, SOFA = sequential organ failure assessment

There is a significant and independent relationship between IAP and HOB positioning in critically ill patients, with the HOB of 30° and 45° showing significant difference.

| Reference,<br>Study Type                                                                                                                                                         | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1262,<br>Kasotakis,<br>2012<br>PMID:<br>22067629<br>DOI:<br>10.1097/CCM<br>.0b013e3182<br>376e6d<br>Specification<br>of study:<br>Prospective<br>single-center<br>cohort study. | 113 pts<br>Inclusion criteria:<br>- older than 18 years<br>- expected to stay in the SICU<br>for at least 24 hours<br>- met criteria for baseline<br>functional independence<br>(defined as a Barthel Index<br>score > 70 obtained from a<br>proxy describing patient<br>function 2 weeks before<br>admission)<br>Exclusion criteria:<br>- enrolled in another clinical<br>trial<br>Per Branch | N=11<br>(Death)      |              |         | Primary endpoint:<br>- SOMS taken on the<br>morning after SICU<br>admission explains<br>variance of SICU LOS.<br>Secondary endpoint:<br>- SOMS explains<br>variance of hospital LOS<br>and in-hospital<br>mortality | <ul> <li>Primary endpoint:</li> <li>SOMS taken on the morning after SICU admission explains variance of SICU LOS.</li> <li>SOMS values of 0, 1, 2, 3, and 4 were associated with 8 (4–12), 7 (5–9), 6 (2.5–9), 3 (2–4), and 2 (1.5–3) days (means and confidence intervals [CI] in parentheses) of SICU LOS</li> <li>SOMS (coefficient,2651817; 95% CI –0.3508765 to –0.1794869; p = .0001) predicted SICU LOS</li> <li>Secondary endpoint:</li> <li>SOMS explains variance of hospital LOS and inhospital mortality:</li> <li>SOMS was the only variable that correlated with inhospital mortality (p = .001).</li> <li>SOMS (coefficient,1359776; CI –0.1747335 to – 0.0972217]; p = .0001) as independent predictor of overall hospital LOS</li> </ul> | 3                 |

LOS = length of stay, pts = patients, SICU = surgical intensive care unit, SOMS= SICU optimal mobility score

In surgical critically ill patients presenting without preexisting impairment of functional mobility, the surgical intensive care unit optimal mobility score is a reliable and valid tool to predict mortality and intensive care unit and hospital length of stay.

| Reference,                                                                                                                                                             | (Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | Intervention                                                                                                                                    | Control                                                          | Optimal<br>Population                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Study Type                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rate |                                                                                                                                                 |                                                                  | ropulation                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grade                                                                                                                 |
| #1263,<br>Kayambu,<br>2013<br>PMID: 23528802<br>DOI:<br>10.1097/CCM.0b0<br>13e31827ca637<br>Specification of<br>study:<br>A systematic<br>review and meta-<br>analysis | <ul> <li>10 studies included in meta-<br/>analysis<br/>(10 RCTs, n=790 pts)<sup>1-10</sup></li> <li>Inclusion criteria: <ul> <li>RCTs, systematic reviews or<br/>meta-analyses from 1992 to<br/>2012</li> <li>published in English, French,<br/>Chinese, and Tamil.</li> <li>investigating physical<br/>intervention in ICU patients<br/>(defined as activities such as<br/>positioning, stretching, EMS,<br/>ROM exercise, resistive<br/>exercise, ergometry, walking,<br/>splinting, mobilization activities<br/>and aerobic train)</li> </ul> </li> <li>Exclusion criteria: <ul> <li>unoriginal studies, such as case<br/>reports, reviews</li> <li>pre-post-designs, observational,<br/>retrospective designs</li> <li>only chest physical therapy</li> <li>non-randomized controlled<br/>trials</li> </ul> </li> </ul> |      | Physical<br>intervention<br>- passive or<br>active limb<br>mobilization<br>- ambulation<br>- electrical<br>muscle<br>stimulation<br>- ergometry | standard<br>of Care<br>(no or<br>minimal<br>physical<br>therapy) | <ul> <li>peripheral<br/>muscle<br/>strength <ul> <li>MRC score</li> <li>handgrip<br/>strength</li></ul> </li> <li>respiratory<br/>muscle<br/>strength</li><li>physical<br/>function</li><li>QoL</li><li>ventilator-free<br/>days</li><li>hospital LOS</li><li>ICU LOS</li><li>incidence of<br/>mortality</li></ul> | <ul> <li>Significant effect in pooled analysis:</li> <li>peripheral muscle strength (MRC): positive effect following physical intervention (pooled hedges g = 0.27; 95% CI: 0.02-0.52; n = 244 [127,117], p = 0.03)</li> <li>respiratory muscle strength: moderate effect following physical intervention (pooled hedges g = 0.51; 95% CI 0.12-0.89; n = 105 [53, 52], p = 0.01)</li> <li>physical function: small effect following physical intervention (pooled hedges g = 0.46; 95% CI 0.13, 0.78; n = 143 [74, 69], p = 0.01)</li> <li>QoL: Small effect following physical intervention (pooled hedges g = 0.40; 95% CI 0.08-0.71; n = 154 [78, 76], p = 0.01)</li> <li>ventilator-free days: small effect following physical intervention (pooled hedges g = 0.38; 95% CI 0.16-0.59; n = 334 [172, 162], p &lt; 0.01</li> <li>hospital LOS: small reduction following physical intervention (pooled hedges g = -0.34; 95% CI -0.53 - 0.15; n = 441), p &lt; 0.01)</li> <li>ICU LOS: small reduction following physical intervention (pooled hedges g = -0.34; 95% CI -0.53 - 0.15; n = 441), p &lt; 0.01)</li> <li>Non-significant effect in pooled analysis:</li> <li>peripheral muscle strength (handgrip strength): no effect following physical intervention (pooled hedges g = -0.34; 95% CI -0.51 - 0.18; n = 597 [285, 312], p &lt; 0.01)</li> <li>Non-significant effect in pooled analysis:</li> <li>peripheral muscle strength (handgrip strength): no effect following physical intervention: pooled hedges g = 0.07; 95% CI: -0.23-0.38; n = 194 [100,94], p = 0.03</li> <li>mortality: no effect following physical intervention (Odds ratio, 1.0; 95% CI 0.54, 1.85; n = 274 [120, 154], p = 1.0)</li> </ul> | $1 \rightarrow 3$<br>(downgraded<br>as not only<br>RCTs<br>included and<br>for<br>indirectness<br>/<br>applicability) |

EMS = electric muscle stimulation, ICU = intensive care unit, LOS = length of stay, pts = patients, QoL = quality of life, ROM = range of motion

Physical intervention in critically ill ICU patients improves peripheral and respiratory muscle strength, physical function, quality of life, increases ventilator-free days and shortens ICU as well as hospital length of stay.

#### References

- 1. Routsi C, Gerovasili V, Vasileiadis I, et al: Electrical muscle stimulation prevents critical illness polyneuromyopathy: A randomized parallel intervention trial. Crit Care 2010; 14:R74
- 2. Schweickert WD, Pohlman MC, Pohlman AS, et al: Early physical and occupational therapy in mechanically ventilated, critically ill patients: A randomised controlled trial. Lancet 2009; 373:1874–1882
- 3. Burtin C, Clerckx B, Robbeets C, et al: Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009; 37:2499–2505
- 4. Muehling BM, Halter G, Lang G, et al: Prospective randomized controlled trial to evaluate "fast-track" elective open infrarenal aneurysm repair. Langenbecks Arch Surg 2008; 393:281–287
- 5. Muehling B, Schelzig H, Steffen P, et al: A prospective randomized trial comparing traditional and fast-track patient care in elective open infrarenal aneurysm repair. World J Surg 2009; 33:577–585
- 6. Chiang LL, Wang LY, Wu CP, et al: Effects of physical training on functional status in patients with prolonged mechanical ventilation. Phys Ther 2006; 86:1271– 1281
- 7. Porta R, Vitacca M, Gilè LS, et al: Supported arm training in patients recently weaned from mechanical ventilation. Chest 2005; 128:2511–2520
- 8. Zanotti E, Felicetti G, Maini M, et al: Peripheral muscle strength training in bed-bound patients with COPD receiving mechanical ventilation: Effect of electrical stimulation. Chest 2003; 124:292–296
- 9. Delaney CP, Zutshi M, Senagore AJ, et al: Prospective, randomized, controlled trial between a pathway of controlled rehabilitation with early ambulation and diet and traditional postoperative care after laparotomy and intestinal resection. Dis Colon Rectum 2003; 46:851–859
- 10. Nava S: Rehabilitation of patients admitted to a respiratory intensive care unit. Arch Phys Med Rehabil 1998; 79:849-854

| Reference,<br>Study Type                                                                                                                                           | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                     | Characteristics)                                                                                                 | Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                           | Control                     | Optimal Population                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1272,<br>Malkoc,<br>2009<br>PMID: 19011583<br>DOI:<br>10.1097/MRR.0b<br>013e3282fc0fce<br>Specification of<br>study:<br>Retrospective<br>and prospective<br>study | 568 patients who were<br>in the ICU at Dokuz Eylu<br>Inclusion criteria<br>- MV<br>- admitted to a six-bed,<br>internal medicine ICU<br>Exclusion criteria<br>- ARDS<br>- acute pulmonary eder<br>- acute head injury, MA<br>peak inspiratory airway<br>H2O (as recorded from<br>-acute bronchospasm, o<br>patients had sustained<br>developed any complication<br>Per Br | na<br>P less than 60 mmHg,<br>pressure over 40 cm<br>the ventilator)<br>or whether the<br>any injury or<br>ation |                      | <b>Chest physiotherapy</b><br><b>program</b><br>(consisted of modifying<br>postural drainage,<br>percussion, vibration,<br>coughing, and<br>stimulation techniques,<br>deep breathing<br>exercises, suctioning,<br>bed exercises, and<br>mobilization) | Standard<br>nursing<br>care | outcome<br>measurements<br>- blood gas analysis<br>- number of days when<br>mechanical ventilation<br>was provided<br>- ventilation<br>dependence<br>- LOS ICU | Outcome (not subdivided<br>in primary / secondary)<br>- ventilation dependence<br>(days) mean SD:<br>intervention= 14.0 ± 5.9,<br>control= 20.0 ± 6.1;<br>p<0.05<br>- LOS ICU (days) mean SD:<br>intervention= 15.8 ± 8.5,<br>control= 25.5 ± 4.5;<br>p<0.05<br>No statistical differences:<br>- between the groups in<br>the analysis of blood gas<br>values<br>- the length of time when<br>mechanical ventilation<br>was provided (mean 6.1<br>days physiotherapy group<br>5.2 days control group), | 4                 |
|                                                                                                                                                                    | N=277                                                                                                                                                                                                                                                                                                                                                                     | N=233                                                                                                            |                      |                                                                                                                                                                                                                                                        |                             |                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

ARDS = acute respiratory distress syndrome, ICU = intensive care unit, LOS = length of stay, MAP = mean arterial pressure, MV = mechanical ventilation, SD = standard deviation

In conclusion, this study shows that the use of physiotherapy can result in reducing the period of treatment required in the ICU.

| Reference,<br>Study Type                                                                                                                          | Cases and Co<br>(Participant #, Cha<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | aracteristics)                                                                                                                                                                                                                                                                                                       | Drop-<br>out<br>Rate | Intervention                                   | Control    | Optimal Population                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1274,<br>Morris,<br>2008<br>PMID: 18596631<br>DOI:<br>10.1097/CCM.0b013e<br>318180b90e<br>Specification of study:<br>Prospective cohort<br>study | 330 ICU patients with acute<br>requiring mechanical ventila<br>inclusion criteria<br>- age >18 years<br>- mechanically ventilated via<br>tube<br>Exclusion criteria<br>- inability to walk without as<br>ICU illness<br>- cognitive impairment befo<br>(nonverbal)<br>- preadmission immunocom<br>(prednisone 20 mg/d for 2 w<br>- neuromuscular disease tha<br>weaning (myasthenia gravis,<br>sclerosis, Guillian-Barre), acu<br>- body mass index (BMI)>45<br>- hip fracture, unstable cerv<br>fracture<br>- mechanical ventilation 48<br>from an outside facility, curr<br>transferring hospital stay 72<br>- CPR at admission, DNR at<br>hospitalization within 30 day<br>- cancer therapy within last<br>- readmission to ICU within a<br>hospitalization<br>N= 165 | ation<br>a an endotracheal<br>ssistance before acute<br>re acute ICU illness<br>upromised status<br>veeks)<br>at could impair<br>, amyotrophic lateral<br>ute stroke<br>vical spine/ pathologic<br>hrs before transfer<br>rent hospitalization or<br>hrs<br>admission,<br>ys before admission<br>6 months<br>current |                      | Mobility protocol<br>( daily mobility therapy) | Usual care | Primary outcome<br>- proportion of patients<br>receiving physical<br>therapy in patients<br>surviving to hospital<br>discharge<br>Secondary outcome<br>- days until first out of<br>bed<br>- ventilator days<br>- ICU LOS<br>- hospital LOS | Primary outcome<br>- in-hospital mortality control=<br>18.2%(: 30 of 165) vs.<br>intervention=12.1%( 20 of 165<br>); (p = 0.125); received<br>physical therapy(with in-<br>hospital death) : n=5 of<br>(control, n=2; intervention,<br>n=3)<br>Secondary outcome<br>- days to first out of bed:<br>control= 13.7 (11.7–15.7) vs.<br>intervention = 8.5 (6.6–10.5);<br>p<0.0001<br>- ventilation days:<br>control= 9.0 (7.5–10.4)vs.<br>Intervention=7.9 (6.4–9.3);<br>p=0.298<br>- ICU LOS:<br>control= 8.1 (7.0–9.3) vs.<br>Intervention=7.6 (6.3–8.8);<br>p=0.084<br>- hospital LOS:<br>control= 17.2 (14.2–20.2) vs.<br>intervention= 14.9 (12.6–<br>17.1); p=0.048 | 3                 |
|                                                                                                                                                   | COT -N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | COT-NI                                                                                                                                                                                                                                                                                                               |                      |                                                |            |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

CPR = cardiopulmonary resuscitation, DNR = do not resuscitate, hrs = hours, ICU= intensive care unit

A mobility team using a mobility protocol initiated earlier physical therapy that was feasible, safe, did not increase costs, and was associated with decreased intensive care unit and hospital length of stay in survivors who received physical therapy during intensive care unit treatment compared with patients who received usual care.

|                                                                                                                                                    | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -out<br>Rate | Intervention                                                                                                                                                                                                                                           | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1280 Olkwoski<br>2012<br>PMID:<br>22652987<br>https://doi.org<br>/10.2522/ptj.2<br>0110334<br>Specification<br>of study:<br>Retrospective<br>study | 25 pts. In 1 American ICU from<br>01.2011 to 05.2011<br>Inclusion criteria:<br>-ICU admission<br>-Age > 18y<br>-SAH-diagnosis through lumbar<br>puncture or brain CT<br>-Ability to open eyes to voice and<br>move one extremity on command<br>-Lindegaard ratio $\leq 3,0$ or MCA<br>MFV $\leq 120$ cm/s<br>-110 $\geq$ MAP $\geq 80$ mmHg<br>-ICP $\leq 15$ mmHg<br>-No AEs criterion present at<br>inclusion<br>Exclusion criteria:<br>-Age < 18y<br>-ICU-admission > 14 days<br>-Withdraw of care<br>-Trauma or AV-malformation as<br>SAH cause<br>-Seizure<br>Per Branch<br>25 | n/a          | Early<br>mobilization<br>30-60<br>min/day:<br>positioning,<br>education,<br>functional<br>training and<br>exercise in<br>supine,<br>sitting,<br>standing and<br>walking<br>position as<br>long as the pt<br>remained<br>stable / no<br>AEs<br>happened |         | No sample size calculation<br>due to study design<br><b>Primary Endpoint:</b><br>-Feasibility: number of<br>sessions attempted, or<br>failed due to unmet<br>participation criteria,<br>reasons why criteria were<br>not met<br>-Safety: 30-day mortality<br>rate, quantity and types of<br>AEs<br><b>Secondary outcome</b> :<br>-Type of mobilization<br>-Number of out-of-bed<br>sessions and with walking ≥<br>15,24m,<br>-Time to out-of-bed and<br>walking ≥ 15,24 m<br>-Barthel at discharge<br>-Post-discharge destination | Primary Endpoint:-Attempted sessions = 332-failed sessions = 46 (Lindegaard ratio ≥ 3.0 orMCA MFV ≤ 120 cm/s = 27, MAP ≤ 80 mm Hg = 6,ICP ≥ 15 = 6, unable to open eyes in response tovoice = 3, respiratory rate ≥ 40 = 2, MAP ≥ 110mm Hg = 1 and heart rate ≥ 40 = 1)-30-day mortality rate = 0%-AEs in 17/ 286 sessions (MAP < 70 mm Hg = 9, | 4                 |

Pts = patients, SAH = subarachnoid hemorrhage, ICU=intensive care unit; MAP = mean arterial pressure, ICP = intracranial pressure, HR = heart rate, RR = respiratory rate, MCA MFV = mean flow velocity in the middle cerebral artery, AEs = adverse events; BI = Barthel index; AV = arterio-venous; m=meters

An early mobilization program for patients with SAF is safe and feasible.

| Reference,<br>Study Type                                                                                                                               | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                     | Characteristics)                                                                                                                                       | Drop-<br>out<br>Rate | Intervention | Control    | Optimal Population                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| #1288,<br>Bezbaruah,<br>2022<br>PMID: not available<br>DOI:<br>http://dx.doi.org/10<br>.4103/2278-<br>344X.105081<br>Specification of<br>study:<br>RCT | 15 patients who were<br>May 25, 2011 and Oc<br>the medical ICU, Fath<br>College Hospital<br>inclusion criteria<br>patients :<br>- on MV with respirat<br>- in age group 30-60 y<br>- out of sedation with<br>Scale (GCS) of 14/15<br>- with stable vitals<br>Exclusion criteria<br>patients with:<br>- any neurological im<br>- unstable fractures, s<br>and fractures of the I<br>Per Br | e on MV between<br>stober 30, 2011 at<br>her Muller Medical<br>tory pathology<br>years<br>n Glasgow Coma<br>pairment<br>spinal fractures,<br>ower limb |                      | EM           | Usual care | Outcome (not more<br>defined)<br>- days first out of<br>bed<br>- days of weaning<br>- LOS ICU | Outcome<br>- first out of bed (mean<br>days): intervention= 2.88<br>(min 2-max 4) (SD: 0.641) vs.<br>control= 7.71 (min 7-max 9)<br>(SD: 0.756), p=0.001<br>- mean days of weaning:<br>intervention=5.38(min 5-<br>max 6) (SD: 0.518) vs.<br>control= 7.43 (min 7-max 9)<br>(SD:0.787); p=0.001<br>- mean LOS ICU (days):<br>intervention= 5.63(min 5 -<br>max 6) (SD:0.518) vs.<br>control= 8 (min 7 - max 9)<br>(SD: 0.577); p=0.001 | 2 → 4<br>(downgraded<br>for high risk<br>of bias and<br>pilot trial<br>only) |
|                                                                                                                                                        | N=8                                                                                                                                                                                                                                                                                                                                                                                       | N=7                                                                                                                                                    |                      |              |            |                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |

EM = early mobilization, ICU = intensive care unit, LOS = length of stay, max = maximum, min = minimum, MV = mechanical ventilation, SD = standard deviation

Early mobilisation showed better outcome compared to routine physiotherapy in reducing the length of ICU stay in mechanically ventilated patients.

| Reference,<br>Study Type                                                                                                                                      | (Participant #, | d Controls<br>characteristics)<br>ıtal | Drop-<br>out<br>Rate | Intervention             | Control       | Optimal Population                                                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------|----------------------|--------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1290<br>Abrams 2014<br>PMID: 24571627<br>https://doi.org/10.1<br>186/cc13746<br><b>Specification of the</b><br><b>study:</b><br>Retrospective<br>cohort study | BTR and BTT)    | ry respiratory or                      |                      | Active PT<br>during ECMO | Without<br>PT | No sample size<br>calculation due to<br>study design<br>No primary endpoint<br>defined<br>Extracted Endpoints:<br>- Intention for ECMO<br>therapy<br>- survival to<br>transplant or<br>discharge<br>- discharge<br>disposition among<br>survivors<br>- safety<br>No power calculation. | <ul> <li>Results: <ul> <li>intention for ECMO therapy (n [%]):</li> <li>a. BTT: 26 pts (26%)</li> <li>b. BTR: 74 (74%)</li> </ul> </li> <li>survival to transplant or discharge: <ul> <li>a. survival to transplant of BTT pts (n [%]): 10 (53%)</li> <li>b. survival to discharge of BTR pts (n [%]): 14 (88%)</li> </ul> </li> <li>discharge disposition (n [%]): <ul> <li>a. home 13 (57%)</li> <li>b. acute rehabilitation 8 (35%)</li> <li>c. subacute rehabilitation 2 (9%)</li> </ul> </li> <li>safety: no patient-related or circuit-related complications as a result of physical therapy treatment sessions.</li> </ul> | 4                 |

Pts = patients, ICU = intensive care unit, ECMO = extracorporeal membrane oxygenation, BTR = bridge to recovery, BTT = bridge to transplant; PT=physical therapy

Active physiotherapy in patients treated with ECMO due to respiratory or cardiac failure seems safe. No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                           | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-<br>out<br>Rate | Intervention                                                                                                        | Control                                                              | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1292,<br>Schweickert,<br>2009<br>PMID: 19446324<br>DOI:<br>10.1016/S0140-<br>6736(09)60658-9<br>Spezification of<br>study:<br>RCT | <ul> <li>104 pts</li> <li>Inclusion criteria</li> <li>≥18 years</li> <li>MV for less than 72 h</li> <li>expected to continue for at least 24 h</li> <li>baseline functional independence</li> <li>Exclusion criteria</li> <li>rapidly developing neuromuscular disease, cardiopulmonary arrest, irreversible disorders wit 6-month mortality estimated at &gt; 50%, raised intracranial pressure, absent limbs, o enrolment in another triated</li> <li>Per Branch</li> <li>49 55</li> </ul> | 0                    | daily<br>sedation<br>interruption<br>+ exercise<br>and<br>mobilisation<br>(physical and<br>occupational<br>therapy) | standard<br>care with<br>physical<br>and<br>occupation<br>al therapy | Primary Outcome<br>- number of patients<br>returning to independent<br>functional status at hospital<br>discharge<br>Secondary Outcomes<br>- number of hospital days<br>with delirium<br>- MV free days within 28 days<br>- ICU and hospital LOS<br>- Barthel Index<br>-number of functionally<br>independent ADLs<br>-distance walked without<br>assistance<br>-ICU-acquired paresis<br>- hand-grip strength | Primary Outcome<br>- return to independent functional status at hospital<br>discharge 29 (59%) 19 (35%) p=0.02<br>Secondary Outcomes<br>- ICU delirium (days) 2.0 (0.0–6.0) 4.0 (2.0–7.0) p=0.03<br>- time in ICU with delirium (%) 33% (0–58) 57% (33–69)<br>p=0.02<br>- hospital delirium (days) 2.0 (0.0–6.0) 4.0 (2.0–8.0)<br>p=0.02<br>- hospital days with delirium (%) 28% (26) 41% (27)<br>p=0.01<br>- Barthel Index score at hospital discharge 75 (7,5–95)<br>55 (0–85) p=0.05<br>- ICU-acquired paresis at hospital discharge 15 (31%) 27<br>(49%) p=0.09<br>- ventilator-free days 23,5 (7,4–25,6) 21,1 (0,0–23,8)<br>p=0.05<br>- duration of mechanical ventilation (days) 3.4 (2.3–7.3)<br>6.1 (4.0–9.6) p=0.02<br>- LOS in ICU (days) 5.9 (4.5–13.2) 7.9 (6.1–12.9) p=0.08<br>- greatest walking distance at hospital discharge (m)<br>33.4 (0–91.4) 0 (0–30.4) p = 0.004<br>- independent ADLs total at ICU and hospital discharge<br>n.s.<br>- MRC score n.s.<br>- hand-grip strength n.s.<br>- hospital LOS n.s.<br>- mortality n.s. | 2                 |

ADL = activity of daily living, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, n.s. = not significant, pts = patients

The combination of daily interruption of sedation with physical and occupational therapy was safe and resulted in better functional outcomes at hospital discharge, a shorter duration of delirium and more ventilator-free days.

| Reference,<br>Study Type                                                                                                                                                 | (Participant #,                                                                                                                                                                                       | d Controls<br>Characteristics)<br>otal | Drop-out Rate                                                                                                                                                                                                                                                                                                                                   | Intervention                                                                                                                                                  | Control                                           | Optimal<br>Population                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #1301,<br><b>Titsworth</b><br><b>2012</b><br>PMID:<br>22462507<br>DOI:<br>10.3171/2012.<br>2.JNS111881<br><b>Specification</b><br><b>of study:</b><br>pre-post-<br>study | all consecutive pa<br>to NICU from Apr<br>through July 31, 2<br><b>Exclusion criteria</b><br>- < 18 years old<br>- hemodynamicly<br>- end of life care<br><b>Per B</b><br>10 month<br>preintervention | il 1, 2010,<br>2011 (n = 3291)<br>::   | 10.6% $\pm$ 4.7% of<br>patients had to<br>discontinue the<br>PUMP plus<br>program for<br>clinical<br>contraindications.<br>Additionally, 2.2%<br>$\pm$ 0.2% of patients<br>per day refused to<br>participate and<br>only 1.4% $\pm$ 0.2%<br>of patients had<br>the protocol<br>discontinued for<br>inappropriate or<br>indiscernible<br>reasons | comprehensi<br>ve mobility<br>initiative<br>utilizing the<br><b>Progressive</b><br><b>Upright</b><br><b>Mobility</b><br><b>Protocol</b><br><b>(PUMP) Plus</b> | Patients in the<br>pre-<br>intervention<br>period | no sample size<br>calculation<br>Endpoints:<br>- NCU LOS<br>- hospital LOS<br>- mobility level<br>assessed with<br>the I-MOVE<br>tool<br>- occurrence of<br>pressure ulcers<br>- AEs<br>- hospital<br>acquired<br>infections<br>- occurrence of<br>VAP | <ul> <li>93.8% ± 4% of patients who had no contraindication to the protocol were participating</li> <li>Significant results: <ul> <li>overall mobility among neurointensive care patients increased by 300% (p&lt;0.0001)</li> <li>reduction in NCU LOS (p&lt;0.004), Hospital LOS (p&lt;0.001), hospital-acquired infections (p &lt; 0.05), and ventilator-associated pneumonias (p &lt; 0.001), and decreased the number of patient days in restraints (p &lt; 0.05)</li> </ul> </li> </ul> | 3                 |
|                                                                                                                                                                          | (8025 patient<br>days)                                                                                                                                                                                | (4455 patient<br>days)                 |                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                               |                                                   |                                                                                                                                                                                                                                                        | no increase in AEs was observed                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |

AE = adverse events, LOS = length of stay, NCU = neurointensive care unit, VAP = ventilator associated pneumonia

Among neurointensive care unit patients, increased mobility can be achieved quickly and safely with associated reductions in LOS and hospital-acquired infections using a structured mobilization program.

| Reference,<br>Study Type                                                                                                                                                               | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Intervention                                                        | Control             | Optimal<br>Population                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1303 Alexiou<br>2009<br>PMID:<br>19327314<br>https://doi.or<br>g/10.1016/j.j<br>crc.2008.09.0<br>03<br><b>Specification</b><br>of study:<br>systematic<br>review with<br>meta-analysis | 7 publications until<br>December 2007 (7<br>randomized with 1355<br>pts) <sup>1-7</sup><br>Inclusion criteria:<br>- MV<br>- treatment in ICU<br>Exclusion criteria:<br>- age < 18 years<br>- examination of the<br>effect of the<br>position on<br>oxygenation<br>- intervention during<br>surgical or<br>radiographic<br>procedure<br>Per Branch |                      | Prone- and<br>semi-<br>recumbent<br>45°<br>positional<br>strategies | Standard<br>of Care | Endpoints:<br>-incidence<br>of VAP<br>-all-cause<br>mortality<br>until ICU<br>discharge<br>-ICU LOS<br>-duration of<br>MV until<br>death or<br>extubation | <ul> <li>Significant differences between groups: <ul> <li>incidence of VAP: Comparison of 45° semirecumbent position vs. supine position on the development of <i>clinically</i> diagnosed VAP resulted in an effect favouring intervention (OR 0.47, 95% CI 0.27-0.82; n = 3 articles with 337 pts<sup>1-3</sup>)</li> </ul> </li> <li>Non-significant differences between groups: <ul> <li>incidence of VAP:</li> <li>a. comparison of prone position vs. supine position on the development of <i>clinically</i> diagnosed VAP resulted in a trend favouring intervention (OR 0.80, 95% CI 0.60-1.08; n = 4 articles with 1018 pts<sup>4-7</sup>)</li> <li>b. comparison of 45° semirecumbent position vs. supine position on the development of <i>microbiologically</i> diagnosed VAP resulted in a trend favouring intervention (OR 0.59, 95% CI 0.15-2.35; n = 3 articles with 337 pts<sup>1-3</sup>)</li> <li>all-cause mortality: inconsistent data <ul> <li>a. comparison of 45° semirecumbent position vs. supine position on the incidence of death resulted in a trend favouring intervention (OR 0.59, 95% CI 0.15-2.35; n = 3 articles with 337 pts<sup>1-3</sup>)</li> <li>comparison of 45° semirecumbent position vs. supine position on the incidence of death resulted in a trend favouring intervention (OR 0.86, 95% CI 0.54-1.37; n = 3 articles<sup>1-3</sup>)</li> <li>b. comparison of prone position vs. supine position on the incidence of death resulted in a trend favouring intervention (OR 0.92, 95% CI 0.72-1.18; n = 4 articles<sup>4-7</sup>)</li> <li>ICU LOS: No difference between prone and supine groups (WMDs: 1.54 days of ICU stay; 95% CI -1.54 to 4.62; n = 2 RCTs with 978 pts<sup>4.7</sup>)</li> <li>duration of MV: No difference between prone and supine groups (WMDs: -0.45 days of MV; 95% CI -1.58 to 0.68; n = 3 RCTs with 882 pts<sup>4.6,7</sup>)</li> </ul> </li> </ul></li></ul> | 1 → 2<br>(indirect<br>ness) |

Pts = patients, ICU = intensive care unit, MV = mechanical ventilation, VAP = ventilator-associated pneumonia, LOS = length of stay, OR = odd's ratio, WMDs = weighted mean differences

45° semirecumbent positioning reduces the development of clinically diagnosed VAP in critically ill mechanically ventilated patients.

- 1. van Nieuwenhoven CA et al., Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study Crit Care Med 2006;34:396-402
- 2. Drakulovic MB et al., Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 1999;354:1851-8.
- 3. Keeley L et al., Reducing the risk of ventilator-acquired pneumonia through head of bed elevation. Nurs Crit Care 2007;12:287-94.
- 4. Voggenreiter G et al., Prone positioning improves oxygenation in post-traumatic lung-injury a prospective randomized trial. J Trauma 2005;59:333-41 discussion 341-3.
- 5. Mancebo J et al., A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233-9.
- 6. Beuret P et al., Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med 2002;28:564-9.
- 7. Guerin C et al., Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379-87.

| Reference,<br>Study Type                                                                                                                                                   | (Participant #,                                                                                                                                                                                                                                                          | d Controls<br>, characteristics)<br>otal                                                        | Drop-<br>out<br>Rate | Intervention                    | Control | Optimal Population  | Primary Results                                                                                                                                                                                                | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------|---------------------------------|---------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1305 van Delft<br>2021<br>PMID: 23801900<br>DOI:10.1097/01823<br>246-201324020-<br>00003<br><b>Specification of</b><br><b>study:</b><br>Prospective<br>Observational Study | Inclusion criteria:<br>- 18 years of age of<br>least one femoral of<br>central venous cath<br>catheters, and arter<br>catheters for hemo<br>monitoring)<br>-met criteria for a l<br>(awake, able to fol<br>and hemodynamic<br>Exclusion criteria:<br>- pts. femoral shea | heters, dialysis<br>erial<br>odynamic<br>PT intervention<br>low most directions<br>ally stable) |                      | PT with<br>femoral<br>catheters |         | Extracted Endpoint: | <b>Results:</b><br>- no catheter related mechanical or<br>thrombotic complications either<br>during or immediately following a<br>mobility session, which was usually 15<br>to 20 minutes after the activities | 3                 |

Pts. = patients; PT = Physical therapy; AE = Adverse events

Physical therapy sessions, including standing and walking were feasible and safe in cardiovascular ICU patients with femoral catheters.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                            | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                                                                         | Characteristics)                                                                      | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                  | Control                                              | Optimal Population                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2002<br>Alhazzani<br>2022<br>PMID:<br>35569448<br>DOI:<br>10.1001/jam<br>a.2022.7993<br>Specification<br>of study:<br>Multicenter,<br>non-blinded,<br>randomized<br>clinical trial | 400 pts with COV<br>Inclusion criteria:<br>- adults<br>- not intubated<br>- requiring oxyger<br>invasive ventilation<br>Exclusion criteria<br>- invasive MV<br>- contraindication<br>positioning<br>- risk of complicat<br>positioning<br>- self-Prone Positi<br>enrollment<br>Per Bi<br>205 | :<br>(≥ 40%) or non-<br>on<br>:<br>is to prone<br>tions from prone<br>foning prior to |                      | Awake prone<br>positioning<br>(until relative<br>improvement<br>in FiO <sub>2</sub><br>requirement<br>by 40% from<br>the baseline<br>value that<br>was<br>sustained for<br>24 hours;<br>endotracheal<br>intubation;<br>discharge<br>from ICU) | <b>Usual care</b><br>without<br>prone<br>positioning | Primary endpoint:<br>endotracheal intubation<br>within 30 days of<br>randomization<br>Secondary outcomes:<br>- mortality at 60 days<br>- days free from invasive<br>MV or noninvasive<br>ventilation at 30 days<br>- days free from the ICU<br>or hospital at 60 days<br>- adverse events<br>- serious adverse events | Awake prone positioning group: median duration of<br>prone positioning 4 days after randomization 4.8<br>hours/day (IQR 1.8-8.0 hours/days)<br><b>Primary endpoint:</b> by day 30, 70 of 205 pts(34.1%) in<br>the prone positioning group were intubated vs. 79 of<br>195 patients (40.5%) in the control group [hazard ratio:<br>0.81 (95% Cl, 0.59 to 1.12), p = 0.2; absolute difference:<br>-6,37% (95% Cl, -15.83% to 3.1%)]<br><b>Secondary outcomes:</b><br>- mortality: Prone positioning did not significantly<br>reduce mortality at 60 days [hazard ratio: 0.93 (95% Cl,<br>0.62 to 1.40), p = 0.54; absolute difference: -1.15%<br>(95% Cl, -9.40% to 7.10%)]<br>- days free from invasive MV or noninvasive ventilation<br>at 30 days: n.s<br>- days free from the ICU or hospital at 60 days: n.s<br>- adverse events: 21 pts (10%) , most frequently<br>reported musculoskeletal pain or discomfort from<br>prone positioning [13 of 205 pts(6.34%)] and<br>desaturation [2 of 205 pts(0.98%)]<br>- serious adverse events: n>>one in either group | 2                 |

FiO<sub>2</sub> = inspired fraction of oxygen, ICU = intensive care unit, IQR = interquartile range, MV = mechanical ventilation, pts = patients

Awake prone positioning in patients with acute hypoxemic respiratory failure from COVID-19 does not significantly reduce endotracheal intubation within 30 days compared with usual care.

| Reference,<br>Study Type                    | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                 | Drop-<br>out<br>Rate | Inter-<br>vention | Control                             | Optimal Population                                                                   | Primary Results | Evidence<br>Grade |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------------------------|--------------------------------------------------------------------------------------|-----------------|-------------------|
| #2003<br>Protti                             | 15 patients<br>Inclusion criteria:<br>- a diagnosis of ARDS                                                                                                                     |                      |                   |                                     |                                                                                      |                 |                   |
| <b>2022</b><br>PMID:                        | <ul> <li>ongoing invasive mechanical ventilation with deep<br/>sedation and neuromuscular blockade</li> <li>prone positioning prescribed by the attending</li> </ul>            |                      |                   |                                     | Endpoints:<br>- lung morphological                                                   |                 |                   |
| 35526009<br>DOI:                            | physician within 3 days of endotracheal intubation<br>Exclusion criteria:                                                                                                       |                      | РР                | Patients acted as their own control | response<br>- global inflation<br>- regional inflation<br>- lung functional response |                 | 4                 |
| 10.1186/s1305<br>4-022-03996-0              | <ul> <li>already undergone a lung CT after endotracheal<br/>intubation</li> <li>too unstable for transfer to the radiology unit</li> <li>body weight exceeded 100 kg</li> </ul> |                      |                   |                                     | - association between<br>morphological and<br>functional responses                   |                 |                   |
| Specification<br>of study:<br>institutional | - none of the authors was available for collecting<br>data, due to the exceptional clinical workload at<br>that time                                                            |                      |                   |                                     |                                                                                      |                 |                   |
| review                                      | Per Branch                                                                                                                                                                      |                      |                   |                                     |                                                                                      |                 |                   |

ARDS = acute respiratory distress syndrome, CT = computer tomography, PP = prone position

In fifteen patients with COVID-19, prone positioning decreased alveolar collapse, hyperinflation, and homogenized lung aeration. A similar response has been observed in other ARDS, where prone positioning improves outcome.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                   | Cases and<br>(Participant #, Cl<br>Tota                                                                                                                                                                                                                                                                                                                                                                                                                             | haracteristics)                                                                                                           | Drop<br>-out<br>Rate | Intervention | Control | Optimal Population                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2008<br>Liu<br>2022<br>PMID:<br>35400079<br>DOI:<br>10.1155/2022<br>/4579030<br>Specification<br>of the study:<br>single center<br>retrospective<br>study | 238 pts<br>study duration:<br>3 consecutive days<br>Inclusion criteria:<br>- ARDS pts with PaO2/Fi<br>mmHg<br>- age 16-75 years<br>Exclusion criteria:<br>- non-invasive ventilation<br>intubation<br>- previous lung diseases<br>- pelvic, cervical, or spin<br>requiring a fixed positio<br>- uncontrolled increase<br>- multiple traumas with<br>- pregnancy<br>- severe hemodynamic i<br>arterial blood pressure<br>- < 60 mmHg or systolic<br>mmHg)<br>Per Bra | on before orotracheal<br>nal fracture or<br>n<br>in ICP<br>unstable fractures<br>instability (mean<br>blood pressure >200 |                      | РР           | No PP   | <b>Primary outcomes:</b><br>- P/F<br>- compliance of<br>respiratory system | Significant differences between<br>groups in:<br>- improvement of P/F and Crs in the<br>PP group over 3 consecutive days (p<br>< 0.05)<br>- shorter total mechanical ventilation<br>time ( $5.1 \pm 1.4$ vs. $9.3 \pm 3.1$ days, P <<br>0.05)<br>- shorter invasive ventilation time<br>( $4.9 \pm 1.2$ vs. $8.7 \pm 2.7$ days, P < 0.05)<br>- shorter ICU stay ( $7.4 \pm 1.8$ vs. $11.5 \pm 3.6$ days, P < 0.05)<br>- higher extubation rate ( $95.6\%$ vs.<br>84.4%, P < 0.05)<br>- less atelectasis ( $15$ vs. 74, P < 0.05)<br>and pneumothorax ( $17$ vs. $24$ , P ><br>0.05)<br>- more 28-day ventilator-free days<br>( $21.6 \pm 5.2$ vs. $16.2 \pm 7.2$ days, P <<br>0.05)<br>- lower mortality ( $4.4\%$ vs. $13.3\%$ , P <<br>0.05). | 4                 |

ICP = intracranial pressure, PP = prone position, pts = patients

Among PC cases with moderate to severe ARDS, PP can correct hypoxemia more quickly, improve Crs, reduce atelectasis, increase the extubation rate, shorten mechanical ventilation time and length of ICU stay, and reduce mortality.

| Reference,<br>Study Type                                                                                                                                                       | (Participant #,                                                                                                                                                                                                    | d Controls<br>Characteristics)<br>otal                                                                                                                          | Drop-out<br>Rate                                                                                           | Intervention                                                                                                          | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2010<br>Fralick<br>2022<br>PMID:<br>35321918<br>DOI:<br>10.1136/bmj-<br>2021-068585<br>Specification<br>of study:<br>Multicenter<br>pragmatic<br>randomized<br>clinical trial | with verbal instr<br>Exclusion criteri<br>- ineligible or de<br>- FiO2 >50%<br>- unable to obtai<br>- could not pror<br>- > 48 hours afte<br>- discharged befor-<br>transferred to be<br>consent<br>- tracheostoma | suspected<br>id-19<br>mental oxygen<br>ion of inspired<br>ndently lie prone<br>uction<br><b>a:</b><br>clined<br>in consent<br>ne<br>or admission<br>ore consent | 13<br>(n = 4<br>withdrawal<br>of consent,<br>n = 7 no<br>consent,<br>n = 2<br>determined<br>as ineligible) | <b>Prone positioning:</b><br>median time spent<br>in prone position<br>up to the first 72<br>hours: 6h (1.5-<br>12.8) |         | Primary endpoint:<br>- composite outcome of<br>in-hospital death,<br>mechanical ventilation,<br>or worsening<br>respiratory failure<br>defined as needing at<br>least 60% fraction of<br>inspired oxygen for at<br>least 24 hours<br>Secondary endpoints:<br>- time spent in prone<br>position<br>- change in the ratio of<br>oxygen saturation to<br>fraction of inspired<br>oxygen<br>- time to discharge from<br>hospital<br>- rate of serious events | Primary endpoint:<br>- no differences between both<br>groups (FiO <sub>2</sub> > 60%: Prone<br>(18(14)) Control (17(14)) OR 0.92<br>(0.44 – 1.92))<br>Secondary outcome:<br>- median (IQR) time spent in<br>prone: 6 (1.5 -12.8) vs. 0 (0-2)<br>- median (IQR) S/F ratio after 72<br>hours: 336 (216-438) vs. 336<br>(232-443)<br>- median (IQR) change in S/F ratio<br>in first 72 hours 14 (-52-94) vs.<br>49 (-32-102)<br>- median (IQR) days to discharge<br>5 (3-9) vs. 4 (3 -8)<br>- discharged 115 (91) vs. 118 (97)<br>- serious adverse events 5 pts<br>(4%) vs. 3 pts (2%) | 2                 |

ICU = intensive care unit, IQR = interquartile range, pts = patients, S/F = saturation of inspired oxygen/fraction of inspired oxygen

Awake prone positioning in patients with hypoxemia and laboratory confirmed or highly suspected of COVID-19 did not lead to significant differences in mortality, rate of mechanical ventilation or respiratory failure, compared with standard of care.

| Reference,<br>Study Type                                                                                                                                       | Cases and Controls<br>(Participant #, Characteristics)<br>Total | Drop-out<br>Rate | Intervention                                | Control               | Optimal Population                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                        | Evidence<br>Grade                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------|---------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| #2011<br>Li<br>2022<br>PMID: 35305308<br>DOI:<br>10.1016/S2213-<br>2600(22)00043-1<br>Specification of<br>study:<br>Systematic<br>review with<br>meta analysis | with the supine position for non-intubated                      |                  | Awake prone<br>positioning<br>for 1h to 16h | Supine<br>positioning | <b>Primary endpoint</b> :<br>- requirement of intubation<br><b>Secondary outcomes</b> :<br>- all-cause mortality<br>- escalated respiratory<br>support<br>- ICU-LOS<br>- hospital-LOS<br>- safety | Primary endpoint (for ICU pts<br>only):<br>- intubation: RR 0.83 (0.71- 0.97)<br>Secondary outcomes (for ICU<br>pts only):<br>- mortality: n.s.<br>- escalation of respiratory<br>support: n.s<br>- ICU-LOS: n.s.<br>- hospital LOS: n.s.<br>- safety: no calculations | 1 → 2<br>(not only RCTs<br>included) |

COVID-19 = corona virus disease 2019, ICU = intensive care unit, LOS = length of stay, n.s. = not significant, pts = patients, RCT = randomised controlled trial, RR = risk ratio

Awake prone positioning reduces the risk of intubation in non-intubated ICU patients with COVID-19.

1. Alsharif H, Belkhouja K. Feasibility and efficacy of prone position combined with cpap in COVID-19 patients with AHRF. Critical Care Medicine 2021; 49(1 SUPPL 1): 120.

2. Altinay M, Sayan I, Turk HS, Cinar AS, Sayin P, Yucel T, Islamoglu S, Ozkan MT, Cetiner I. Effect of early awake prone positioning application on prognosis in patients with acute respiratory failure due to COVID-19 pneumonia: a retrospective observational study. Braz J Anesthesiol 2021; Aug 16:S0104- 0014(21)00318-3.

3. Barker J, Pan D, Koeckerling D, Baldwin AJ, West R. Effect of serial awake prone positioning on oxygenation in patients admitted to intensive care with COVID-19. Postgraduate Medical Journal 2021.

4. Fazzini B, Fowler AJ, Zolfaghari P. Effectiveness of prone position in spontaneously breathing patients with COVID-19: A prospective cohort study. Journal of the Intensive Care Society 2021.

5. Ferrando C, Mellado-Artigas R, Gea A, et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: A multicenter, adjusted cohort study. Critical Care 2020; 24:597.

Jagan N, Morrow LE, Walters RW, et al. The POSITIONED Study: Prone Positioning in Nonventilated Coronavirus Disease 2019 Patients-A Retrospective Analysis. Crit Care Explor 2020; 2: e0229.
 Padrao EMH, Valente FS, Besen B, et al. Awake Prone Positioning in COVID-19 Hypoxemic Respiratory Failure: Exploratory Findings in a Single-center Retrospective Cohort Study. Academic Emergency Medicine 2020; 27: 1249-59.

8. Jouffroy R, Darmon M, Isnard F, et al. Impact of prone position in non-intubated spontaneously breathing patients admitted to the ICU for severe acute respiratory failure due to COVID-19. Journal of Critical Care 2021; 64: 199-204.

9. Loureiro-Amigo J, Suárez-Carantoña C, Oriol I, et al. Prone Position in COVID-19 Patients With Severe Acute Respiratory Distress Syndrome Receiving Conventional Oxygen Therapy: A Retrospective Study. Archivos de Bronconeumologia 2021.

10. Meredith S, Bhat P, Ahmed MA, Singh K. A retrospective analysis of the effect of self proning on disease progression in COVID-19 patients. American Journal of Respiratory and Critical Care Medicine 2021; 203. 7 11. Ni Z, Wang K, Wang T, et al. Efficacy of early prone or lateral positioning in patients with severe COVID-19: A single-center prospective cohort. Precision Clinical Medicine 2020; 3: 260-71.

12. Pierucci P, Ambrosino N, Di Lecce V, et al. Prolonged Active Prone Positioning in Spontaneously Breathing Non-intubated Patients With COVID-19-Associated Hypoxemic Acute Respiratory Failure With PaO2/FiO2 >150. Frontiers in Medicine 2021; 8.

13. Perez-Nieto OR, Escarraman-Martinez D, Guerrero-Gutierrez MA, et al. Awake prone positioning and oxygen therapy in patients with COVID-19: The APRONOX study. The European respiratory journal 2021. 14. Sryma PB, Mittal S, Mohan A, et al. Effect of proning in patients with COVID-19 acute hypoxemic respiratory failure receiving noninvasive oxygen therapy. Lung India 2021; 38(Supplement): S6-10.

15. Vianello A, Turrin M, Guarnieri G, et al. Prone positioning is safe and may reduce the rate of intubation in selected covid-19 patients receiving high-flow nasal oxygen therapy. Journal of Clinical Medicine 2021; 10.

16. Prud'homme E, Trigui Y, Elharrar X, et al. Effect of Prone Positioning on the Respiratory Support of Nonintubated Patients With COVID-19 and Acute Hypoxemic Respiratory Failure: A Retrospective Matching Cohort Study. Chest 2021; 16: 85-8.

17. Simioli F, Annunziata A, Langella G, Martino M, Musella S, Fiorentino G. Early prone positioning and non-invasive ventilation in a critical covid-19 subset. A single centre experience in southern italy. Turkish Thoracic Journal 2021; 22: 57-61.

18. Tonelli R, Pisani L, Tabbì L, et al. Early awake proning in critical and severe COVID-19 patients undergoing noninvasive respiratory support: A retrospective multicenter cohort study. Pulmonology 2021. 19. Zang X, Wang Q, Zhou H, Liu S, Xue X. COVID-19 Early Prone Position Study Group. Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med 2020; 46(10):1927-29.

20. Ehrmann S, Li J, Ibarra-Estrada M, et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, open-label meta-trial. *Lancet Respir Med.* 2021;9:1387–1395.

21. Taylor SP, Bundy H, Smith WM, Skavroneck S, Taylor B, Kowalkowski MA. Awake-prone positioning strategy for non-intubated hypoxic patients with COVID-19: a pilot trial with embedded implementation evaluation. *Ann Am Thorac Soc.* 2021;18:1360–1368.

22. Johnson SA, Horton DJ, Fuller MJ, et al. Patient-directed prone positioning in awake patients with COVID-19 requiring hospitalization (PAPR) Ann Am Thorac Soc. 2021;18:1424–1426.

23. Rosén J, von Oelreich E, Fors D, et al. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: the PROFLO multicenter randomized clinical trial. Crit Care. 2021;25:209.

24. Kharat A, Dupuis-Lozeron E, Cantero C, et al. Self-proning in COVID-19 patients on low-flow oxygen therapy: a cluster randomised controlled trial. ERJ Open Res. 2021;7:00692–02020.

25. Jayakumar D, Ramachandran Dnb P, Rabindrarajan Dnb E, Vijayaraghavan Md BKT, Ramakrishnan Ab N, Venkataraman Ab R. Standard care versus awake prone position in adult nonintubated patients with acute hypoxemic respiratory failure secondary to COVID-19 infection—a multicenter feasibility randomized controlled trial. *J Intensive Care Med.* 2021;36:918–924.

26. Gad S. Awake prone positioning versus non invasive ventilation for COVID-19 patients with acute hypoxemic respiratory failure. Egypt J Anaesth. 2021;37:85–90.

27. Fralick M, Colacci M, Munshi L, et al. Prone positioning of patients with moderate hypoxia due to COVID-19: a multicenter pragmatic randomized trial [COVID PRONE] *medRxiv*. 2021 doi: 10.1101/2021.11.05.21264590. published online Nov 8, 2021. (preprint).

28. Garcia MA, Rampon GL, Doros G, et al. Rationale and design of the awake prone position for early hypoxemia in COVID-19 (APPEX-19) study protocol. Ann Am Thorac Soc. 2021;18:1560–1566.

| Reference,<br>Study Type                                                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                | Drop-<br>out<br>Rate | Interventio<br>n                                                                       | Control             | Optimal<br>Population                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2015<br>PozueloCarras<br>cosa 2022<br>(PMID:<br>35193688<br>DOI:<br>10.1186/s405<br>60-022-00600-<br>z)<br>Specification<br>of study:<br>systematic<br>review<br>and network<br>meta-analysis | <ul> <li>20 publications (RCTs)</li> <li>Inclusion criteria:         <ul> <li>RCTs comparing different<br/>body positions or alternative<br/>degrees of positioning of MV<br/>pts</li> <li>reported data on VAP<br/>incidence</li> <li>mechanical ventilation for at<br/>least 48 hours</li> </ul> </li> </ul> |                      | Different<br>body<br>positions:<br>supine,<br>semi-<br>recumbent,<br>lateral,<br>prone | Standard<br>of care | Primary<br>endpoint:<br>- incidence<br>of VAP<br>Secondary<br>outcomes:<br>- ICU LOS<br>- hospital<br>LOS<br>- duration<br>of MV<br>- mortality | <ul> <li>Primary endpoint: <ul> <li>protective effect of the semi-recumbent versus supine position (RR: 0.38, 95% CI: 0.25–0.52)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>mortality:</li> <li>prone position had a positive effect compared to the supine position (RR: 0.71, 95% CI: 0.50–0.91)</li> <li>ICU LOS:</li> <li>pts positioned in the lateral Trendelenburg position spent less time (1.25 days) in the ICU than pts positioned in the semi-recumbent position (MD: – 1.25, 95% CI: – 1.60 to – 0.90)</li> <li>hospital LOS:</li> <li>lateral–Trendelenburg position achieved a reduction in the hospital LOS compared to the semi-recumbent position (MD: – 1.25, 95% CI: – 1.92 to – 0.58)</li> <li>duration of MV:</li> <li>higher in pts positioned in the lateral Trendelenburg position than in those positioned in the semi-recumbent position (MD: 0.50, 95% CI: 0.27 to 0.73)</li> <li>lower duration of MV in pts positioning in the semi-recumbent position than in those in the supine position (raw MD: – 3.26, 95% CI: – 6.31 to – 0.20)</li> </ul> </li> </ul> | 1                 |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, RCT = randomized controlled trials, RR = risk ratio, VAP = ventilator acquired pneumonia

# The semi-recumbent positioning seems to have a protective effect in comparison to supine position in relation to the incidence of VAP (RR: 0.38).

- 1. Ayzac L, Girard R, Baboi L, et al. Ventilator-associated pneumonia in ARDS patients: the impact of prone positioning. A secondary analysis of the PROSEVA trial. Intensive Care Med. 2016;42:871–8.
- 2. Beuret P, Carton MJ, Nourdine K, et al. Prone position as prevention of lung injury in comatose patients: a prospective, randomized, controlled study. Intensive Care Med. 2002;28:564–9.
- 3. Fernandez R, Trenchs X, Klamburg J, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med. 2008;34:1487–91.
- 4. Mancebo J, Fernandez R, Blanch L, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173:1233–
- 5. Voggenreiter G, Aufmkolk M, Stiletto RJ, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma Acute Care Surg. 2005;59:333–43.
- 6. Watanabe I, Fujihara H, Sato K, et al. Beneficial effect of a prone position for patients with hypoxemia after transthoracic esophagectomy. Crit Care Med. 2002;30:1799–802.
- 7. Drakulovic MB, Torres A, Bauer TT, et al. Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. The Lancet. 1999;354:1851–8.
- 8. Hang HGR. Semirecumbent position for the prevention of ventilatorassociated pneumonia [半坐卧位在预防呼吸机相关性肺炎中 的应]. Hu Li Shi Jian Yu Yan Jiu [Nursing Practice and Research]. 2012;9(4):48–9.
- 9. Hu H. Posture management for the prevention of ventilator associated pneumonia. Yi Xue Qian Yan [Medical Frontier]. 2012;8(24):240-1.
- 10. Keeley L. Reducing the risk of ventilator-acquired pneumonia through head of bed elevation. Nurs Crit Care. 2007;12:287–94.
- 11. Najafi Ghezeljeh T, Kalhor L, et al. The comparison of the effect of the head of bed elevation to 30 and 45 degrees on the incidence of ventilator associated pneumonia and the risk for pressure ulcers: a controlled randomized clinical trial. Iranian Red Crescent Med J. 2017;19.
- 12. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, et al. Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med. 2006;34:396–402.
- 13. Wu HWM, Wang J. Effect of different body position on ventilatorassociated pneumonia [两种体位对呼吸机相关性肺炎的影响]. Chin J General Pract. 2009;7(2):1489.
- 14. Xue FLM. The effects of different positions for the prevention of ventilator-associated pneumonia [不同体位在预防呼吸 机相关性肺 炎的效果评]. J Qiqihar Univ Med. 2012;33(16):2261–2.
- 15. Yu CWW. The body position management in ICU for reducing ventilator- associated pneumonia incidence [ICU体位护理对减少机械通相关性肺炎发病率的效果评价]. Chin J Pract Nurs. 2012;28(11):21-2.
- 16. Guerin C, Gaillard S, Lemasson S, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA. 2004;292:2379–87.
- 17. Hadi Hassankhani SA, Lakdizaji S, Najafi A, et al. Effects of 60° semirecumbent position on preventing ventilator-associated pneumonia: a single-blind prospective randomised clinical trial. J Clin Diag Res. 2017;11:OC36–9.
- 18. Li Bassi G, Marti JD, Saucedo L, et al. Gravity predominates over ventilatory pattern in the prevention of ventilator-associated pneumonia. Crit Care Med. 2014;42:e6207.
- 19. No citation.
- 20. No citation.

| Reference,<br>Study Type                                                                                                                                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                                       | Control             | Optimal<br>Population                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2018<br>Laghlam<br>2021<br>PMID:<br>35111786<br>DOI:<br>10.3389/fmed.<br>2021.810393<br>Specification<br>of study:<br>Prospective<br>single cohort<br>study | 24 patients<br>Included were all consecutive patients<br>fulfilling the <b>Inclusion criteria</b> :<br>- ARDS according to Berlin criteria<br>- Vv-ECMO implantation<br>- COV-19 positive by PCR<br><b>Exclusion criteria</b> :<br>- <18 years old<br>- pregnancy<br>- patients under legal protection<br><b>Per Branch</b> |                      | PP under vv-<br>ECMO therapy<br>in patients<br>with severe<br>ARDS | vv-ECMO<br>patients | Endpoints:<br>- number of PP<br>sessions<br>- ICU LOS<br>- duration of<br>ventilation<br>- 28- and 60-<br>day mortality<br>- respiratory<br>and<br>hemodynamic<br>parameters | <ul> <li>- a total of 38 PP sessions was performed in 10 patients (42%) with a mean duration of 17.4 ± 2.1 h</li> <li>- duration of VV-ECMO was significantly longer (20 (13–31) vs. 9 (4–17) days, p = 0.01) in patients on whom PP was performed</li> <li>- duration of mechanical ventilation, ICU length of stay, and Day-28 and Day-60 mortality rates were not different between the two groups of patients</li> <li>Respiratory mechanics:</li> <li>- under VV-ECMO, PP significantly increased the PaO2/FiO2 ratio by 14 ± 21% and compliance by 8 ± 15% and compliance by 8 ± 15%, and significantly decreased the oxygenation index by 13 ± 18% and driving pressure by 8 ± 12%</li> </ul> | 3                 |
|                                                                                                                                                              | 14 10                                                                                                                                                                                                                                                                                                                       |                      |                                                                    |                     |                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |

ARDS = acute respiratory distress syndrome, COV-19 = Corona virus disease 2019, ICU = intensive care unit, LOS = length of stay, PCR = polymerase chain reaction, PP = prone positioning, vv-ECMO = venovenous extracorporeal membrane oxygenation

In patients with COVID-19 and severe ARDS, PP under vv-ECMO improved the respiratory mechanical and oxygenation parameters, and the effects of PP on respiratory mechanics persisted after supine repositioning.

| Reference,<br>Study Type                                                                                                                                            | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention                   | Control                                              | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| 2021<br>Schmid<br>2022<br>(PMID: 35054084<br>DOI:<br>10.3390/jcm11020<br>391)<br><b>Specification of</b><br><b>study:</b><br>Systematic review<br>and meta-analysis | 5 RCTs, 2 RCTs with APP as<br>intervention (n= 1196) <sup>1,2,</sup> 3 RCTs<br>comparing NIV and HFNC<br>Inclusion criteria: adult pts with<br>severe respiratory failure due to<br>COVID-19 receiving HFNC, NIV or<br>invasive MV<br>Exclusion criteria:<br>- studies comparing HFNC or<br>NIV to oxygen insufflation or<br>invasive MV<br>- studies comparing ventilator<br>settings<br>Per Branch |                      | <b>Full APP</b><br>or 135° APP | Standard of<br>care: 90° or<br>supine<br>positioning | Primary endpoints:<br>- all-cause mortality (D28 and D60)<br>- clinical status at D28, D60 an FU<br>(deterioration/ death, discharged<br>alive, QoL)<br>- SAE<br>- AE<br>Secondary outcomes:<br>- clinical status at D28, D60 and FU<br>(intubation, weaning, liberation from<br>supplemental oxygen, ventilator-free<br>days, duration of MV and oxygen<br>therapy)<br>- admission to ICU at D28<br>- hospital LOS<br>- skin lesions from prone positioning | Primary endpoints (only APP):<br>- mortality D28 (n= 1196): RR 1.08,<br>95% CI 0.51- 2.31<br>- clinical deterioration/ death<br>(n=1121): RR 0.86, 95% CI 0.75- 0.98<br>- SAE and AE not reported on<br>Secondary outcomes (only APP):<br>- weaning n.s.<br>- hospital LOS: n.s.<br>- ventilator-free days: n.s.<br>- skin lesions: n.s. | 1 → 2<br>(not only RCTs<br>included) |

AE = adverse event; APP = awake prone positioning, COVID-19 = corona virus disease 2019, D = day, FU = follow up, HFNC = high flow nasal cannula, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, NIV = non-invasive ventilation, n.s.= not significant, QoL = quality of life, RCT = randomised controlled trial, pts= patients, SAE = serious adverse event

# Prone positioning did not reduce the mortality on day 28 but reduced the combined risk of intubation or death within 28 days.

#### References

1. Ehrmann, S.; Li, J.; Ibarra-Estrada, M.; Perez, Y.; Pavlov, I.; McNicholas, B.; Roca, O.; Mirza, S.; Vines, D.; Garcia-Salcido, R.; et al. Awake Prone Positioning for COVID-19 Acute Hypoxaemic Respiratory Failure: A Randomised, Controlled, Multinational,Open-Label Meta-Trial. Lancet Respir. Med.2021,9, 1387–1395.

2. Rosén, J.; von Oelreich, E.; Fors, D.; Fagerlund, M.J.; Taxbro, K.; Skorup, P.; Eby, L.; Jalde, F.C.; Johansson, N.; Bergström, G.; et al. Awake Prone Positioning in Patients with Hypoxemic Respiratory Failure Due to COVID-19: The PROFLO Multicenter Randomized Clinical Trial.Crit. Care2021,25, 209

| Reference,<br>Study Type                                                                                                                                                | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                    | Drop<br>-out<br>Rate | Intervention | Control          | Optimal<br>Population                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| #2022<br>Papazian<br>2022<br>PMID:<br>35037993<br>DOI:<br>10.1007/s001<br>34-021-<br>06604-x<br>Specification<br>of study:<br>systematic<br>review and<br>meta analysis | 13 publications from 2018-2021(12x<br>observational, 1x RCT, 1836 pts) <sup>1-13</sup><br>Inclusion criteria:<br>- cohort studies and rRCTs<br>- adult ARDS pts receiving vvECMO<br>- comparisons of pts under ECMO<br>submitted to PP and ECMO pts not<br>turned prone during ECMO<br>Exclusion criteria:<br>- vaECMO<br>- extracorporeal O <sub>2</sub> -removal |                      | РР           | Standard<br>care | Primary endpoint:<br>-28 days survival<br>Secondary<br>outcomes:<br>- survival: 60-<br>days/90-days/6-<br>months<br>- ICU/hospital<br>mortality<br>- duration of MV | Significant differences between groups in:<br>- 28-day survival (503 survivors among 681<br>pts in the PP group [74%; 95% CI 71–77] vs.<br>450 survivors among 770 pts in the control<br>group [58%, 95% CI 55–62]; RR 1.31 [95% CI<br>1.21–1.41]; /2 22% [95% CI 0–62%];<br>p < 0.0001)<br>- survival was also improved in terms of 60-<br>day survival, 90-day survival, ICU survival,<br>and hospital survival<br>- duration of MV increased in vvECMO pts<br>with PP (mean difference 11.4 days [95% CI<br>9.2–13.5]; 0.64 [95% CI 0.50–0.78]; /2 8%;<br>p < 0.0001) | 1 → 2<br>(not only<br>RCTs<br>included) |

ICU = intensive care unit, MV = mechanical ventilation, PP = prone position, pts = patients, RCT = randomised controlled trial

According to this meta-analysis, survival was improved when prone positioning was used in ARDS patients receiving vvECMO. The impact of this combination on survival should be investigated in prospective randomized controlled trials.

1. Combes A, Hajage D, Capellier G, Demoule A, Lavoue S, Guervilly C, Da Silva D, Zafrani L, Tirot P, Veber B, Maury E, Levy B, Cohen Y, Richard C, Kalfon P, Bouadma L, Mehdaoui H, Beduneau G, Lebreton G, Brochard L, Ferguson ND, Fan E, Slutsky AS, Brodie D, Mercat A, Eolia Trial Group R, Ecmonet Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. *N Engl J Med.* 2018;378:1965–1975.

2. Giani M, Martucci G, Madotto F, Belliato M, Fanelli V, Garofalo E, Forlini C, Lucchini A, Panarello G, Bottino N, Zanella A, Fossi F, Lissoni A, Peroni N, Brazzi L, Bellani G, Navalesi P, Arcadipane A, Pesenti A, Foti G, Grasselli G. Prone positioning during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome. A multicenter cohort study and propensity-matched analysis. *Ann Am Thorac Soc.* 2021;18:495–501. D

3. Guervilly C, Prud'homme E, Pauly V, Bourenne J, Hraiech S, Daviet F, Adda M, Coiffard B, Forel JM, Roch A, Persico N, Papazian L. Prone positioning and extracorporeal membrane oxygenation for severe acute respiratory distress syndrome: time for a randomized trial? *Intensive Care Med.* 2019;45:1040–1042.

4.Petit M, Fetita C, Gaudemer A, Treluyer L, Lebreton G, Franchineau G, Hekimian G, Chommeloux J, Pineton de Chambrun M, Brechot N, Luyt CE, Combes A, Schmidt M. Prone-positioning for severe acute respiratory distress syndrome requiring extracorporeal membrane oxygenation. *Crit Care Med.* 2021

5. Chaplin H, McGuinness S, Parke R. A single-centre study of safety and efficacy of prone positioning for critically ill patients on veno-venous extracorporeal membrane oxygenation. *Aust Crit Care.* 2021;34:446–451.

6. Garcia B, Cousin N, Bourel C, Jourdain M, Poissy J, Duburcq T, C-g LIC. Prone positioning under VV-ECMO in SARS-CoV-2-induced acute respiratory distress syndrome. *Crit Care.* 2020;24:428.

7. Rilinger J, Zotzmann V, Bemtgen X, Schumacher C, Biever PM, Duerschmied D, Kaier K, Stachon P, von Zur MC, Zehender M, Bode C, Staudacher DL, Wengenmayer T. Prone positioning in severe ARDS requiring extracorporeal membrane oxygenation. *Crit Care.* 2020;24:397.

8. Yang X, Hu M, Yu Y, Zhang X, Fang M, Lian Y, Peng Y, Wu L, Wu Y, Yi J, Zhang L, Wang B, Xu Z, Liu B, Yang Y, Xiang X, Qu X, Xu W, Li H, Shen Z, Yang C, Cao F, Liu J, Zhang Z, Li L, Liu X, Li R, Zou X, Shu H, Ouyang Y, Xu D, Xu J, Zhang J, Liu H, Qi H, Fan X, Huang C, Yu Z, Yuan S, Zhang D, Shang Y. Extracorporeal membrane oxygenation for SARS-CoV-2 acute respiratory distress syndrome: a retrospective study from Hubei, China. *Front Med (Lausanne)* 2020;7:611460.

9. Jozwiak M, Chiche JD, Charpentier J, Ait Hamou Z, Jaubert P, Benghanem S, Dupland P, Gavaud A, Pene F, Cariou A, Mira JP, Nguyen LS. Use of venovenous extracorporeal membrane oxygenation in critically-ill patients with COVID-19. *Front Med (Lausanne)* 2020;7:614569.

10 Network C-IGobotR Clinical characteristics and day-90 outcomes of 4244 critically ill adults with COVID-19: a prospective cohort study. *Intensive Care Med.* 2021;47:60–73.

11. Le Breton C, Besset S, Freita-Ramos S, Amouretti M, Billiet PA, Dao M, Dumont LM, Federici L, Gaborieau B, Longrois D, Postel-Vinay P, Vuillard C, Zucman N, Lebreton G, Combes A, Dreyfuss D, Ricard JD, Roux D. Extracorporeal membrane oxygenation for refractory COVID-19 acute respiratory distress syndrome. *J Crit Care.* 2020;60:10–12.

12. Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, Baron E, Beurton A, Chommeloux J, Meng P, Nemlaghi S, Bay P, Leprince P, Demoule A, Guidet B, Constantin JM, Fartoukh M, Dres M, Combes A, Groupe de Recherche Clinique en ReSidPeIRaSU, Paris-Sorbonne E-Ci Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. *Lancet Respir Med.* 2020;8:1121–1131.

13. Lebreton G, Schmidt M, Ponnaiah M, Folliguet T, Para M, Guihaire J, Lansac E, Sage E, Cholley B, Megarbane B, Cronier P, Zarka J, Da Silva D, Besset S, Morichau-Beauchant T, Lacombat I, Mongardon N, Richard C, Duranteau J, Cerf C, Saiydoun G, Sonneville R, Chiche JD, Nataf P, Longrois D, Combes A, Leprince P, Paris E-C-i Extracorporeal membrane oxygenation network organisation and clinical outcomes during the COVID-19 pandemic in Greater Paris, France: a multicentre cohort study. *Lancet Respir Med.* 2021;9:851–862.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention                                   | Control                                                       | Optimal Population                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| #2024<br>Giani<br>2022<br>PMID: 34986895<br>DOI:<br>10.1186/s13054-<br>021-03879-w<br>Specification of<br>study:<br>A pooled<br>individual<br>patient data<br>analysis | Five publications (monocentric<br>prospective cohort studies);<br>889 pts <sup>1-5</sup><br>Inclusion criteria:<br>- patients femoro-jugular<br>approach (66%), followed by<br>femoro-femoral (18%) and<br>jugular dual-lumen (16%)<br>ECMO-cannulation<br>Per Branch<br>315 575 | missing              | <b>Prone</b><br><b>position</b><br>during ECMO | Standard<br>of care<br>(supine<br>position<br>during<br>ECMO) | Primary endpoint:<br>ICU mortality<br>Secondary outcomes:<br>- hospital mortality<br>- successful ECMO<br>weaning<br>- ICU length of stay | <ul> <li>median ECMO duration before prone position was 5 days</li> <li>Significant differences between groups in: <ul> <li>ECMO duration was significantly lower in the supine group (p&lt;0.001)</li> <li>higher successful ECMO weaning in prone group (p=0.003)</li> </ul> </li> <li>No significant differences between groups in: <ul> <li>association with reduced mortality between supine or prone position.</li> </ul> </li> <li>propensity score matching identified 227 patients in each group. ICU mortality of the matched samples was 48.0% and 39.6% for patients in the supine and prone group, respectively (p=0.072)</li> <li>ICU and hospital survival rates were 8.4% higher in the prone group (p=0.072 and 0.073)</li> </ul> | 1 → 2<br>(data not<br>only from<br>RCTs) |

ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit, pts = patients

# In a large population of ARDS patients receiving veno-venous extracorporeal support, the use of prone positioning during ECMO was not significantly associated with reduced ICU mortality. The impact of this procedure will have to be definitively assessed by prospective randomized controlled trials.

### References

1. Guérin C, Reignier J, Richard J-C, Beuret P, Gacouin A, Boulain T, et al. Prone positioning in severe acute respiratory distress syndrome. *N Engl J Med.* 2013;**368**:2159–2168. doi: 10.1056/NEJMoa1214103.

2. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. *JAMA*. 2009;**302**:1977–1984. doi: 10.1001/jama.2009.1614.

3. Giani M, Martucci G, Madotto F, Belliato M, Fanelli V, Garofalo E, et al. Prone Positioning during Venovenous Extracorporeal Membrane Oxygenation in Acute Respiratory Distress Syndrome. A Multicenter Cohort Study and Propensity-matched Analysis. Ann Am Thorac Soc. 2021;18:495–501.

4. Petit M, Fetita C, Gaudemer A, Treluyer L, Lebreton G, Franchineau G, et al. Prone-Positioning for Severe Acute Respiratory Distress Syndrome Requiring Extracorporeal Membrane Oxygenation. Crit Care Med. 2021;

5. Garcia B, Cousin N, Bourel C, Jourdain M, Poissy J, Duburcq T, et al. Prone positioning under VV-ECMO in SARS-CoV-2-induced acute respiratory distress syndrome. *Crit Care.* 2020;**24**:428. doi: 10.1186/s13054-020-03162-4.

| Reference,<br>Study Type                                                                                                            | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drop-<br>out<br>Rate | Intervention         | Control                | Optimal Population                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2025<br>Patton<br>2021<br>PMID:<br>34916149<br>DOI:<br>10.1016/j.aucc.<br>2021.10.003<br>Specification<br>of study:<br>Meta-Review | Total10 systematic reviews published from<br>2008 to 2017 including 15.979 pts1-10Inclusion criteria:<br>- systematic reviews, published in English<br>since 2005<br>- patients > 16 years<br>- inpatient in an ICU, with no restrictions<br>on the length of stay, diagnosis,<br>comorbidities, or concurrent treatmentsExclusion criteria:<br>- published systematic reviews focused<br>on only pediatric ICU patients<br>- coronary care units, step-down or high-<br>dependency unitsPer Branch | Kate                 | Prone<br>positioning | All other<br>positions | Primary endpoints:<br>- incidence of PI<br>(cumulative and/or rate/<br>density)<br>- prevalence (point<br>and/or period)<br>Secondary outcome:<br>- PI stage<br>- PI location<br>- time to PI | Primary outcome:         the cumulative incidence of PIs in PP         ranged from 25.7% to 48.5%         Secondary outcomes:         PI stage (using AMSTAR-2):         -       three reviews high quality         -       six as moderate quality         -       one low quality         PI location (only one review): PIs were identified in 13 locations | 1→2               |
|                                                                                                                                     | (included 5<br>reviews)<br>Supine position<br>n=2.140<br>(included 5 reviews)                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                      |                        |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                |                   |

ICU = intensive care unit, PI = pressure injuries, pts = patients

This meta-analysis found 25% to almost 50% of adult ICU patients placed in the prone position developed a PI. The high incidence of PI in the prone position highlights the need for targeted preventative strategies.

- 1. Bloomfield R, Noble DW, Sudlow A. Prone position for acute respiratory failurein adults. Cochrane Database Syst Rev 2015;2015. <u>https://doi.org/10.1002/</u>14651858.CD008095.pub2. Cd008095. 2015/11/13.
- 2. Munshi L, Del Sorbo L, Adhikari NKJ, et al. Prone position for acute respiratory distress syndrome. A systematic review and meta-analysis. Annals of the American Thoracic Society 2017;14:S280e8. <u>https://doi.org/10.1513/Annal-</u> sATS.201704-343OT. 2017/10/27.
- 3. Sud S, Friedrich JO, Adhikari NK, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ 2014;186: E381e90. https://doi.org/10.1503/cmaj.140081. Canadian Medical Association journal ¼ journal de l'Association medicale canadienne 2014/05/28.
- 4. Sud S, Friedrich JO, Taccone P, et al. Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and meta-analysis. Intensive Care Med 2010;36:585e99. https:// doi.org/10.1007/s00134-009-1748-1. 2010/02/05.
- 5. Sud S, Sud M, Friedrich JO, et al. Effect of mechanical ventilation in the prone position on clinical outcomes in patients with acute hypoxemic respiratory failure: a systematic review and meta-analysis. CMAJ 2008;178:1153e61. https://doi.org/10.1503/cmaj.071802. Canadian Medical Association journal ¼ journal de l'Association medicale canadienne 2008/04/23.
- 6. Suegnet N, Elsabe N, Nolte A. Evidence-based nursing interventions and guidelines for prone positioning of adult, ventilated patients: a systematic review. Health SA Gesondheid 2008;13. <u>https://doi.org/10.4102/</u> hsag.v13i2.280. Journal of Interdisciplinary Health Sciences.
- 7. Abroug F, Ouanes-Besbes L, Elatrous S, et al. The effect of prone positioning in acute respiratory distress syndrome or acute lung injury: a meta-analysis. Areas of uncertainty and recommendations for research. Intensive Care Med 2008;34:1002e11. https://doi.org/10.1007/s00134-008-1062-3.
- 8. Tiruvoipati R, Bangash M, Manktelow B, et al. Efficacy of prone ventilation in adult patients with acute respiratory failure: a meta-analysis. J Crit Care 2008;23:101e10. https://doi.org/10.1016/j.jcrc.2007.09.003. 2008/03/25.
- 9. Kopterides P, Siempos II, Armaganidis A. Prone positioning in hypoxemic respiratory failure: meta-analysis of randomized controlled trials. J Crit Care 2009;24:89e100. https://doi.org/10.1016/j.jcrc.2007.12.014. 2009/03/11.
- 10. Lee JM, Bae W, Lee YJ, et al. The efficacy and safety of prone positional ventilation in acute respiratory distress syndrome: updated study-level meta- analysis of 11 randomized controlled trials. Crit Care Med 2014;42:1252e62. https://doi.org/10.1097/ccm.0000000000122. 2013/12/26.

| Reference,<br>Study Type                                                                      | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention               | Control                    | Optimal Population                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2026 Lucchini<br>2022<br>PMID:<br>34895799<br>10.1016/j.iccn.<br>2021.103158<br>Specification | 1 center between February<br>2020 and January 2021 → 96<br>pts.<br>Inclusion criteria:<br>-diagnosis of COVID-19<br>pneumonia<br>-under invasive MV and PP<br>Exclusion criteria:<br>-not stated<br>Per Branch<br>59 37 |                      | standard (≤24<br>hours) PP | extended (>24<br>hours) PP | No sample size calculation<br>(retrospective study)<br>No primary endpoint defined<br><b>Extracted Endpoints:</b><br>- duration of PP, number of<br>proning cycles<br>-prevalence with pressure sore<br>-MRC grade distribution and<br>handgrip strength at 3 months<br>follow up | <b>Results:</b><br>- extended PP had a median of 34 (30–41) hours vs.<br>16 (15–18) ( $p < 0.0001$ ) of patient receiving standard<br>PP, a higher total time spent in PP [85 (43–136) vs. 33<br>(18–64) hours – $p < 0.0001$ ] during ICU stay, a higher<br>number of proning cycles [3 (2–4) versus 2 (1–4) – $p =$<br>0.017]<br>-prevalence of patients with pressure sore was 51%<br>( $n = 19$ ) for patient with extended pronation and 32%<br>( $n = 19$ ) in patient with standard pronation ( $p =$<br>0.032).<br>-MRC grade distribution, between patients with and<br>without extended pronation only for the right Elbow<br>flexors test ( $p = 0.028$ ) at 3 months follow up<br>-not observe any difference between standard and<br>extended pronation groups in handgrip<br>dynamometry results [33 (25.0–37) vs. 29 (20–39) kg-<br>force - $p = 0.679$ ] | 4                 |

pts. = patients; COVID= coronavirus disease; MV=mechanical ventilation; PP= prone position; MRC= Medical Research Council; ICU=Intensive Care unit

Extended PP is feasible and might reduce the workload on healthcare workers without significant increase of major PP related complications.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                                              | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                         | Drop-out<br>Rate                                                                                                                                                                     | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Contro<br>I | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2028<br>Nakano<br>2021<br>PMID:<br>34863251<br>https://doi.<br>org/10.118<br>6/s13054-<br>021-03827-<br>8<br><b>Specificatio</b><br>n of study:<br>Single<br>center<br>historical<br>control<br>study | 111 pts of which 61Intervention pts admitted toHitachi General Hospital ICUbetween 09.2020 and 12.202and 50 control pts admitted tothe same ICU between 11.2019and 02.2020Exclusion criteria:-Age < 20y | -5 control<br>and 4<br>interventi<br>on pts<br>due to<br>inappropr<br>iate CT<br>measure<br>ments<br>-1 more in<br>the<br>interventi<br>on group,<br>but the<br>reason<br>not stated | IGREEN Protocol:<br>-20 min daily rehabilitation<br>with intensity based on the<br>IMS on the previous day,<br>aiming at a higher IMS than<br>the previous day, plus 20 min<br>EMS when pts could not<br>reach the standing position<br>or if IMS on previous day < 3<br>-nutrition protocol: if EN not<br>contraindicated, EN initial<br>target at 20 kcal/kg/day if<br>MUST < 4 and at 30<br>kcal/kg/day at day 4 if MUST<br>≥ 4. For all pts target at 30<br>kcal/kg/day after day 7.<br>Protein target at 1,8 or 1<br>g/kg/day if protein restriction<br>indicated. Correction of any<br>shortage through PN. | SC          | Primary Endpoint:<br>-FVM loss on femoral CT in<br>the first 10 days<br>Secondary outcome:<br>-achievement of IMS 3 or 4<br>-MRC scores, Grip strength,<br>FSS-ICU at ICU discharge<br>-BI at hospital discharge<br>-mean calorie and protein<br>delivery<br>-Nitrogen balance<br>-Number of EN failure<br>-Mean values and change<br>of N-tinin/Cre from days 1<br>to 7<br>-BUN, creatinine, Albumin,<br>TLC and CRP at day 10<br>-Proportion of survival<br>discharge<br>-ICU length of stay<br>-Hospital length of stay<br>-Use of adjunctive therapy | Primary Endpoint:<br>-FMV loss significantly lower in the IG (11,5<br>vs 14,5%, p=0,03)<br>Secondary endpoints:<br>-IG reached IMS 3 significantly earlier than<br>SG (p = 0,03).<br>-No significant difference for time to IMS 4,<br>MRC, FSS-ICU, BI, survival discharge, length<br>of hospital and ICU stay, adjunctive therapy<br>-Mean calorie and protein delivery in the<br>first 10 days higher in IG (20,1 vs 16,8<br>kcal/kg/day, p = 0,01 and 1,4 vs 0,8<br>g/kg/day, p < 0,01)<br>-N-tinin/cre higher in the IG both as mean<br>value and for decrease from days 1 to 7<br>(96,3 vs 46,2 pmol/mgCre and – 27,2 vs 4,5<br>pmol/mgCre, p < 0,01)<br>-BUN on day 10 higher in the IG (36,6 vs<br>27,6 mg/dl, p = 0,02),<br>-No significant difference for the other lab<br>markers | 4                 |

IMS = ICU mobility score, EMS = Electrical Muscle Stimulation, EN = Enteral Nutrition, MUST = Malnutrition Universal Screening Tool, PN = parenteral nutrition, FVM = Femoral Muscle Volume, MRC = Medical Research Council, FSS-ICU = Functional Status Scores for the ICU, BI = Barthel Index, CRP = C reactive protein, TLC = Total Lymphocyte Count, IG = Intervention group, SC = standard of care, BUN = Bloor Urea Nitrogen

The IGREEN protocol reduced FMV loss in the first 10 days after ICU admission.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                              | Control                                                   | Optimal Population                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2033<br>Zhuo<br>2021<br>PMID: 34763512<br>DOI:<br>10.21037/apm-<br>21-2359<br>Specification of<br>study:<br>Systematic<br>review and<br>meta-analysis | 7 RCTs including 740 adult critically ill mechanically ventilated pts. 1-7         Inclusion criteria:         - aged > 18 years and treated in the ICU with MV to support respiration         - intervention group of patients given MV in the 45° bed head elevation angle, with adjustments not greater than 5°, and a control group treated at the 30° bed head elevation angle         - the duration of bed head elevation must be identical for both the intervention group and the control group         - the outcome indicators included VAP incidence rate, gastric reflux incidence rate, pressure sores incidence rate, ventilation indicators, ventilation time, mortality, length of hospital stay, and other indicators.         Exclusion criteria:         - non-randomized studies, studies or observational studies, investigations, case analysis, reviews, guidelines, systematic review, etd         - literatures with repeated study contents with others; and (III) literatures with missing data, or data that could not be transformed and/or used         Per Branch         Intervention: 372 |                      | Mechanical<br>ventilation in<br>45° bed head<br>elevation | Mechanical<br>ventilation in 30°<br>bed head<br>elevation | Derived outcomes:<br>- incidence of VAP<br>- incidence of gastric<br>reflux<br>- incidence of pressure<br>sores<br>- ventilation indicators<br>- ventilation time<br>- mortality<br>- hospital- LOS | Significant differences<br>between groups in:<br>- incidence of VAP: (OR<br>=0.48; 95% CI: 0.28 to 0.84;<br>Z=2.59; P=0.009<br>- incidence of gastric reflux:<br>OR =0.50; 95% CI: 0.27 to<br>0.96; Z=2.09; P=0.04<br>- incidence of pressure<br>sores (OR =1.88; 95% CI:<br>1.05 to 3.36; Z=2.11;<br>P=0.03)<br>no meta-analysis for<br>ventilation indicators,<br>ventilation time, mortality,<br>and hospital LOS. | 1                 |

CI = confidence interval, LOS = length of stay, pts = patients, RCT = randomised controlled trial, VAP = ventilator-associated pneumonia

### The 45° semi-recumbent position reduces the incidence of ventilator-associated pneumonia, gastric reflux and pressure sores.

- 1. Ghezeljeh TN, Kalhor L, Moghadam OM, et al. The comparison of the effect of the head of bed elevation to 30 and 45 degreess on the incidence of ventilator associated pneumonia and the risk for pressure ulcers: a controlled randomized clinical trial. Iran Red Crescent Med J 2017;19:e14224 [Crossref]
- Schallom M, Dykeman B, Metheny N, et al. Head-of-bed elevation and early outcomes of gastric reflux, aspiration and pressure ulcers: a feasibility study. Am J Crit Care 2015;24:57-66. [Crossref] [PubMed]
- 3. Güner CK, Kutlutürkan S. Role of head-of-bed elevation in preventing ventilator-associated pneumonia bed elevation and pneumonia. Nurs Crit Care 2021; Epub ahead of print. [Crossref] [PubMed]
- 4. Göcze I, Strenge F, Zeman F, et al. The effects of the semirecumbent position on hemodynamic status in patients on invasive mechanical ventilation: prospective randomized multivariable analysis. Crit Care 2013;17:R80. [Crossref] [PubMed]
- 5. van Nieuwenhoven CA, Vandenbroucke-Grauls C, van Tiel FH, et al. Feasibility and effects of the semirecumbent position to prevent ventilator-associated pneumonia: a randomized study. Crit Care Med 2006;34:396-402. [Crossref] [PubMed]
- 6. Li FQ, Gao S, Yang Y, et al. Effects of different mechanical angles of semirecumbent positions on critically ill patients undergoing ventilation. Chinese Journal of Nosocomiology 2015;25:4911-3.
- 7. Jiang QX, Liu J, Liu YX, et al. Effects of semirecumbent positions of different degrees on mechanical ventilation and prevention of complications for ventilated patients. Journal of Medical Postgraduates 2016;29:1083-8.

| Reference,<br>Study Type                                                                                                                                     | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                                                        | Characteristics)                                                                                                                                                                                                  | Drop<br>-out<br>Rate | Intervention | Control             | Optimal Population                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| #2034<br>Beran<br>2022<br>PMID:<br>34753813<br>DOI:<br>10.4187/respcar<br>e.09362<br>Specification of<br>study:<br>Systematic<br>review and<br>meta-analysis | 14 publications (5 RG<br>retrospective cohort<br>cohort; n = 3.324 pts<br>Inclusion criteria:<br>- published studies<br>- RCTs and observati<br>-compared APP vs c<br>- in non-intubated CG<br>- reported one of the<br>outcomes: endotrac<br>mortality, or hospita<br>Exclusion criteria:<br>- did not report endot<br>intubation or mortal<br>- single-arm studies,<br>reviews, commentar<br>peer reviewed), and<br>Per Br | , 3 prospective)<br>s) <sup>1-14</sup><br>onal studies<br>ontrol group<br>OVID-19 pts<br>e following<br>heal intubation,<br>I LOS<br>otracheal<br>ity rates<br>case reports,<br>ies, preprints (not<br>abstracts. |                      | АРР          | Standard<br>of care | <b>Primary endpoint:</b><br>- need for endotracheal<br>intubation<br>- mortality<br><b>Secondary Outcomes</b> :<br>- hospital LOS | No significant differences           between groups in:           - need for endotracheal<br>intubation (27% vs. 29.8%; RR<br>0.85 [95% CI: 0.66-1.08]; p =<br>0.17)           - mortality (17.9 % vs 25.7%;<br>RR 0.68 [95% CI 0.51-0.90]; p<br>= 0.08; l <sup>2</sup> = 52%)           - hospital LOS (MD -3.09d [95%<br>CI: -10.14-3.96]; p = 0.39, l <sup>2</sup> =<br>97%)           Significant differences<br>between groups in:           - subgroup analysis of RCTs:<br>need for endotracheal<br>intubation: (RR 0.83 [95% CI:<br>0.72-0.97; p = 0.02; l <sup>2</sup> = 0%) | 1 → 2<br>(downgrade<br>since not all<br>RCTs) |

APP = awake prone positioning, CI = confidence interval, LOS = length of stay, RCT = randomized controlled trial, RR = risk ratio

APP reduced mortality in non-intubated COVID-19 subjects without a significant difference in the need for endotracheal intubation and length of hospital stay.

- 1. Ferrando C, Mellado-Artigas R, Gea A, Arruti E, Aldecoa C, Adalia R, et al; COVID-19 Spanish ICU Network. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with highflow nasal oxygen therapy: a multi-center, adjusted cohort study. Crit Care 2020;24(1):597.
- 2. Johnson SA, Horton DJ, Fuller MJ, Yee J, Aliyev N, Boltax JP, et al. Patient-directed prone positioning in awake patients with COVID-19 requiring hospitalization (PAPR). Ann Am Thorac Soc 2021.
- 3. Kharat A, Dupuis-Lozeron E, Cantero C, Marti C, Grosgurin O, Lolachi S, et al. Self-proning in COVID-19 patients on low-flow oxygen therapy. A cluster randomized controlled trial. ERJ Open Res 2021;7(1):00692-2020.
- 4. Prud'homme E, Trigui Y, Elharrar X, Gaune M, Loundou A, Lehingue S, et al. Effect of prone positioning on the respiratory support of non-intubated patients with coronavirus disease 2019 and acute hypoxemic respiratory failure: a retrospective matching cohort study. Chest 2021;160(1):85-88.
- 5. Jagan N, Morrow LE, Walters RW, Klein LP, Wallen TJ, Chung J, et al. The POSITIONED Study: Prone Positioning in Nonventilated Coronavirus Disease 2019 Patients-A retrospective analysis. Crit Care Explor 2020;2(10):e0229.
- 6. Mansueto G, Gatti FL, Boninsegna E, Conci S, Guglielmi A, Contro A. Biliary leakage after hepatobiliary and pancreatic surgery: a classification system to guide the proper percutaneous treatment. Cardiovasc Intervent Radiol 2020;43(2):302-310.
- 7. Tonelli R, Pisani L, Tabbi`L, Comellini V, Prediletto I, Fantini R, et al. Early awake proning in critical and severe COVID-19 patients undergoing noninvasive respiratory support: a retrospective multicenter cohort study. Pulmoe 2021.
- 8. Taylor SP, Bundy H, Smith WM, Skavroneck S, Taylor B, Kowalkowski MA. Awake prone positioning strategy for non-intubated hypoxic patients with COVID-19: a pilot trial with embedded implementation evaluation. Ann Am Thorac Soc 2020.
- 9. Zang X, Wang Q, Zhou H, Liu S, Xue X, Group C-E, COVID-19 Early Prone Position Study Group. Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med 2020;46(10):1927-1929.
- 10. Jayakumar D, Ramachandran Dnb P, Rabindrarajan Dnb E, Vijayaraghavan Md BKT, Ramakrishnan Ab N, Venkataraman Ab R. Standard care versus awake prone position in adult non-intubated patients with acute hypoxemic respiratory failure secondary to COVID-19 infection-a multi-center feasibility randomized controlled trial. J Intensive Care Med 2021;36(8):918-924.
- 11. Jouffroy R, Darmon M, Isnard F, Geri G, Beurton A, Fartoukh M, et al. Impact of prone position in non-intubated spontaneously breathing patients admitted to the ICU for severe acute respiratory failure due to COVID-19. J Crit Care 2021;64:199-204.
- 12. Rosén J, von Oelreich E, Fors D, Jonsson Fagerlund M, Taxbro K, Skorup P, et al; PROFLO Study Group. Awake prone positioning in patients with hypoxemic respiratory failure due to COVID-19: the PROFLO multi-center randomized clinical trial. Crit Care 2021;25 (1):209.
- 13. Ehrmann S, Li J, Ibarra-Estrada M, Perez Y, Pavlov I, McNicholas B, et al. Awake prone positioning for COVID-19 acute hypoxemic respiratory failure: a randomized, controlled, multinational, open-label meta-trial. Lancet Respir Med 2021S2213-2600(2221)00356-00358.
- 14. Perez-Nieto OR, Escarraman-Martinez D, Guerrero-Gutierrez MA, Zamarron-Lopez EI, Mancilla-Galindo J, Kammar-Garcı´aA, etal. Awake prone positioning and oxygen therapy in patients with COVID-19: the APRONOXstudy.Eur RespirJ 2021:2100265.

| Reference,<br>Study Type                                                                                                                | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                                                                                             | Control          | Optimal<br>Population                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2040<br>Zaaqoq<br>2019<br>PMID: 34582415<br>DOI:<br>10.1097/CCM.000000<br>0000005296<br>Specification of study:<br>Observational study | 232 pts with COVID-19 who were supported by venovenous extracorporeal membrane oxygenation         Inclusion criteria: $- \ge 18$ years         - confirmed COVID-19         - need for invasive mechanical ventilation and venovenous ECMO support         Prone position:         n= 67 |                      | Prone<br>positioning:<br>- pts were<br>allowed to<br>move<br>between the<br>prone and<br>supine<br>positions<br>during their<br>ECMO run | Standard<br>care | Primary<br>endpoints:<br>- survival to<br>hospital<br>discharge<br>- mortality<br>through 90<br>days from<br>ECMO<br>initiation | <ul> <li>Significant differences between groups:</li> <li>PP associated with lower mortality in the cumulative outcome model: HR 0.31 (95% CI 0.14-0.68; p &lt; 0.05)</li> <li>PP associated with reduced discharge: HR 0.03 (95% CI 0.00 – 0.21; p &lt; 0.05)</li> <li>Non-significant differences between groups: <ul> <li>discharged from hospital alive</li> <li>a) all pts (n=232): 59 (25%)</li> <li>b) PP (n=67): 22 (33%)</li> <li>c) control (n=165): 37 (22%)</li> </ul> </li> <li>discharged to other facilities <ul> <li>a) all pts (n=232):: 40 (17%)</li> <li>b) PP (n=67): 12 (18%)</li> <li>c) control (n=165): 28 (17%)</li> </ul> </li> <li>remain in the hospital <ul> <li>a) all pts (n=232): 9 (4%)</li> <li>b) PP (n=67): 4 (6%)</li> <li>c) control (n=165): 5 (3%)</li> </ul> </li> <li>in-hospital death <ul> <li>a) all pts (n=232): 90 (39%)</li> <li>b) PP (n=67): 23 (34%)</li> <li>c) control (n=165): 67 (41%)</li> </ul> </li> <li>PP not associated with reduced mortality in Weibull survival model (HR 0,85; 95% credible interval 0.34-1.95)</li> <li>after inclusion of the interaction between cumulative prone and the day of ECMO run: <ul> <li>a) gradual decrease in the probability of death associated with the duration of PP (No data)</li> <li>b) PP continued to be associated with lower mortality: HR 0.95 (95% CI 0.92-0.98)</li> </ul> </li> </ul> | 3                 |

CI = confidence interval, ECMO = extracorporeal membrane oxygenation, HR = hazard ratio, ICU = intensive care unit, pts = patients

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                | Cases and C<br>(Participant #, ch<br>Tota                                                                                                            | haracteristics)                                                                                                                                                                                                                          | Drop-out<br>Rate                                                                       | Intervention | Control          | Optimal Population                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| ane.2021.07.<br>029<br>Specification<br>of study:<br>a<br>retrospective | Exclusion criteria:<br>- supported with noninvasive<br>respiratory acidosis (pH <7.3<br>mmHg), PaO2/FiO2 ratio <15<br>a b b a d una pic in atchilite | the ICU for acute<br>DVID-19 pneumonia<br>gen therapy with<br>a upon admission<br>e or invasive MV due to<br>30 and PaCO2 >50<br>50, GCS score <12 points,<br>from the moment of<br>athologies (lung cancer,<br>ad Kartagener's<br>monia | N=24 in the<br>APP group:<br>PP less than<br>12 h a day<br>due to<br>noncomplian<br>ce | APP group    | Non APP<br>group | No sample size calculation<br>(retrospective study)<br>No primary endpoint defined<br><b>Extracted Endpoints:</b><br>- PaCO2, PaO2, pH, SpO2<br>values and PaO2/FiO2 ratios at<br>the beginning and 24th hour<br>- intubation requirements<br>- ventilator-free days<br>- ICU LOS | Results:<br>- At the 24th hour, the<br>median SpO2 value of the<br>APP group was 95%, the<br>median PaO2 value was 82<br>mmHg, SpO2 value of the<br>non-APP group 90% and the<br>PaO2 value 66 mmHg. (p =<br>0.001, p = 0.002)<br>- no difference between the<br>groups in ICU LOS and<br>ventilator-free days (n.s.)<br>- short-term mortality and<br>intubation requirements was<br>lower in the APP group (p =<br>0.020, p = 0.001) | 4                 |
|                                                                         | 23                                                                                                                                                   | 25                                                                                                                                                                                                                                       |                                                                                        |              |                  |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |

pts. = patients; COVID= coronavirus disease; ICU=intensive care unit; APP=awake prone position; MV=mechanical ventilation; GCS= Glasgow Coma Scale; PP=prone position; LOS= Length of stay

APP application in patients receiving non-rebreather mask oxygen therapy for respiratory failure due to COVID-19 pneumonia improves oxygenation and decreases the intubation requirements and mortality.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                   | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention      | Control                 | Optimal<br>Population                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| #2045<br>Poon<br>2021<br>PMID: 34384475<br>DOI:<br>10.1186/s13054-<br>021-03723-1<br>Specification of<br>study: systematic<br>review and meta-<br>analysis | 12 studies, pts 640 (n = 6 single arm<br>observational studies, n = 6 two-armed<br>comparative studies) <sup>1-12</sup><br>Inclusion criteria:<br>- keywords: "Extracorporeal Membrane<br>Oxygenation" from 1 March 2021<br>- written in English<br>- pts aged >18 years<br>- undergoing ECMO for ARDS in which<br>PP was explicitly described,<br>- outcomes of PP therapy such as pts<br>survival<br>Exclusion criteria:<br>- population < 10 pts<br>- non-human studies<br>- review articles and case reports<br>- reviews of Extracorporeal<br>Life Support Organization (ELSO) registry<br>data<br>- in studies taking place at the same<br>institution across overlapping time<br>periods the study with the larger<br>number of pts was included, and all<br>others were excluded |                      | PP during<br>ECMO | No PP<br>during<br>ECMO | Primary<br>endpoint:<br>- cumulative<br>survival<br>Secondary<br>outcomes:<br>- ICU length of<br>stay<br>- ECMO duration<br>- changes in ABG<br>values<br>- ventilator<br>mechanics<br>- complication<br>rates | Significant differences between groups:<br>patients undergoing PP had longer ICU LOS (+ 14.5 days, 95% CI 3.4–<br>25.7, $p = 0.01$ ; 3 studies)<br>patients undergoing PP had longer ECMO duration (+ 9.6 days, 95% CI<br>5.5–13.7, $p < 0.0001$ ; 6 studies).<br>pre-PP-PaCO2 vs. Post-PP-PaCO2 44.7 [42.2-47.2] vs. 43.7 [41.2-46.2];<br>MD = -1.5 [-2.9 to -0.2]; $p = 0.03$ )<br>Pre-PP-aCO2/FiO2 vs. Post-PP- PaCO2/FiO2 112.2 [92.2-132.3] vs.<br>147.7 [131.4-164.0]; MD = +24.9 [+6.5 to + 43.2]; $p = 0.01$ )<br>pre-PP-driving pressure vs. Post-PP-driving pressure 11.5 [9.9-13.1]<br>vs. 10.7 [9.2-12.1]; MD = -0.8 [-1.5 to -0.2]; $p = 0.01$ )<br><b>Non-significant differences between groups:</b><br>cumulative survival in patients that underwent PP was 57% (95% CI<br>41.9–71.4, high certainty; 11 studies)<br>cumulative survival PP vs. No PP: RR = 1.1.9 (95% CI 0.92-1.55, $p = 0.19$ )<br>pooled proportion of survival to hospital discharge in patients that<br>underwent PP was 58% (95% CI 37.6-77.9; 7 studies)<br>chance of survival to discharge (4 studies, RR = 1.18, 95% CI 0.96-<br>1.46, $p = 0.11$ )<br>pooled survival to 30-days post-discharge was 50% (95% CI 21.4 –<br>79.1; 3 studies)<br>pooled survival to 60-days post-discharge was 72% (95% CI 63.6-80.5;<br>2 studies)<br>survival to 90-days post-discharge was 64% vs. 42% (1 study)<br>after sensitivity analysis (exclusion of studies with JBI score < 8]<br>pooled cumulative survival for patients undergoing PP was 56% (95%<br>CI 36.9-73.9; 8 studies) and chance for cumulative survival was 1.23<br>(95% CI 0.9-1.68, $p = 0.19$ ; 6 studies)<br>pooled ICU LOS 42.5 days (95% CI 28.4-56.7; 7 studies)<br>survival to ECMO weaning between groups: RR = 0.92 (95% CI 0.49-<br>1.71, $p = 0.78$ ; 3 studies)<br>no major complications were reported. | 1 → 3<br>(inclusion of<br>mainly<br>retrospective<br>studies) |

ABG = arterial blood gas, ECMO = extracorporeal membrane oxygenation, FiO2 = Fraction of inspired oxygen, ICU = intensive care unit, JBI = Johanna Briggs institute, MD = Mean Difference, PaCO2 = Partial pressure of carbon-dioxide, PaO2 = Partial pressure of oxygen, PP = prone positioning, pts = patients, RCT = randomized controlled trial, VV ECMO = veno-venous extracorporeal membrane oxygenation

PP during VV ECMO appears safe with a cumulative survival of 57% and may result in longer ECMO runs and ICU LOS. However, evidence from appropriately designed randomized trials is needed prior to widespread adoption of PP on VV ECMO.

1. Kimmoun A, Roche S, Bridey C, Vanhuyse F, Fay R, Girerd N, Mandry D, Levy B. Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance. Ann Intensive Care. 2015;5(1):1–7.

2. Franchineau G, Bréchot N, Hekimian G, Lebreton G, Bourcier S, Demondion P, Le Guennec L, Nieszkowska A, Luyt CE, Combes A, et al. Prone positioning monitored by electrical impedance tomography in patients with severe acute respiratory distress syndrome on veno-venous ECMO. Ann Intensive Care. 2020;10(1):66.

3. Garcia B, Cousin N, Bourel C, Jourdain M, Poissy J, Duburcq T. Prone positioning under VV-ECMO in SARS-CoV-2-induced acute respiratory distress syndrome. Crit Care. 2020;24(1):428.

4. Giani M, Martucci G, Madotto F, Belliato M, Fanelli V, Garofalo E, Forlini C, Lucchini A, Panarello G, Bottino N, et al. Prone positioning during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome: a multicentre cohort study and propensity-matched analysis. Ann Am Thorac Soc. 2020;6:66.

5. Guervilly C, Hraiech S, Gariboldi V, Xeridat F, Dizier S, Toesca R, Forel JM, Adda M, Grisoli D, Collart F, et al. Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults. Minerva Anestesiol. 2014;80(3):307–13.

6. Guervilly C, Prud'homme E, Pauly V, Bourenne J, Hraiech S, Daviet F, Adda M, Coiffard B, Forel JM, Roch A, et al. Prone positioning and extracorporeal membrane oxygenation for severe acute respiratory distress syndrome: time for a randomized trial? Intensive Care Med. 2019;45(7):1040–2.

7. Kipping V, Weber-Carstens S, Lojewski C, Feldmann P, Rydlewski A, Boemke W, Spies C, Kastrup M, Kaisers UX, Wernecke KD, et al. Prone position during ECMO is safe and improves oxygenation. Int J Artif Organs. 2013;36(11):821–32.

8. Lucchini A, De Felippis C, Pelucchi G, Grasselli G, Patroniti N, Castagna L, Foti G, Pesenti A, Fumagalli R. Application of prone position in hypoxaemic patients supported by veno-venous ECMO. Intensive Crit Care Nurs. 2018;48:61–8.

9. Rilinger J, Zotzmann V, Bemtgen X, Schumacher C, Biever PM, Duerschmied D, Kaier K, Stachon P, von Zur MC, Zehender M, et al. Prone positioning in severe ARDS requiring extracorporeal membrane oxygenation. Crit Care. 2020;24(1):397.

10. Schmidt M, Hajage D, Lebreton G, Monsel A, Voiriot G, Levy D, Baron E, Beurton A, Chommeloux J, Meng P, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med. 2020;8(11):1121–31.

11. Yang X, Hu M, Yu Y, Zhang X, Fang M, Lian Y, Peng Y, Wu L, Wu Y, Yi J, et al. Extracorporeal membrane oxygenation for SARS-CoV-2 acute respiratory distress syndrome: a retrospective study from Hubei, China. Front Med. 2021;7(927):66.

12. Chaplin H, McGuinness S, Parke R. A single-centre study of safety and efficacy of prone positioning for critically ill patients on veno-venous extracorporeal membrane oxygenation. Aust Crit Care. 2020;6:66.

| Reference,<br>Study Type                                                                                                                 | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention                                                                                                 | Control          | Optimal Population | Primary Results                                                                                    | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------|------------------|--------------------|----------------------------------------------------------------------------------------------------|-------------------|
| 2047 Bahloul<br>2021<br>PMID:<br>34380290<br>https://doi.or<br>g/10.4266/ac<br>c.2021.00500<br>Specification<br>of study:<br>prospective | 1 university hospital between September 1 and<br>December 4,<br>2020→ 21 pts. included in PP group<br>Inclusion criteria:<br>-severe, critically ill adult COVID-19 patients, a<br>confirmed SARS-CoV-2 infection, admitted into the ICU<br>-spontaneous breathing, whose hypoxemia (oxygen<br>saturation measured by pulse oximetry [SPO2] < 92%)<br>did not resolve despite supplemental oxygen delivered<br>via facial mask or HFNO cannula<br>-accepted the PP<br>Exclusion criteria:<br>-admitted in cardiac arrest<br>-required non-invasive and/or invasive MV on ICU<br>admission<br>-hemodynamic instability (shock)<br>-neurological disorders (agitation and/or coma) |                      | <b>PP group</b><br>(2-4h,<br>followed by 2<br>h of SP<br>during the<br>day, to sleep<br>in a PP at<br>night) | PP-free<br>group |                    | (P<0.001) 1 hour later.<br>-PP associated with reduction in<br>respiratory rate from 31±10 to 21±4 | 3                 |
|                                                                                                                                          | 21 1/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                                                              |                  |                    |                                                                                                    |                   |

pts. = patients; COVID-19= coronavirus disease 2019; SARS-CoV-2= severe acute respiratory syndrome coronavirus 2; ICU=intensive care unit; HFNO= high-flow nasal oxygen; PP=prone position; MV=mechanical ventilation; RR=Riva Rocci

Early application of PP can improve hypoxemia and tachypnea in COVID-19 patients with spontaneous breathing. No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,    | Cases and Controls<br>(Participant #, characteristics) |      | Intervention Contro |          | Optimal Population                              | Primary Results                                               | Evidence |
|---------------|--------------------------------------------------------|------|---------------------|----------|-------------------------------------------------|---------------------------------------------------------------|----------|
| Study Type    | Total                                                  | Rate |                     |          |                                                 |                                                               | Grade    |
|               | 2 University hospitals from February                   |      |                     |          |                                                 |                                                               |          |
|               | 2012 to September 2015 $\rightarrow$ 23 pts.           |      |                     |          |                                                 |                                                               |          |
|               |                                                        |      | HUP                 |          |                                                 | Significant differences between groups:                       |          |
|               | Inclusion criteria:                                    |      | Intervention        |          |                                                 | -exp1, lowering the head from 30° to 15° and                  |          |
|               | - adults admitted to the ICU for acute                 |      | 30° HUP             |          |                                                 | 0° was associated with a gradual elevation in                 |          |
|               | brain injury, i.e., traumatic, vascular, or            |      | 10 Min              |          | sample size calculation:                        | ICP, with a mean increase of 2.6 mm Hg (1.4–                  |          |
| 2052 Burnol   | other injury                                           |      | stabilization       |          | 20 pts. needed to detect a 25%                  | 3.7; P<0.001) from 30° to 15° and of 7.4 mm                   |          |
| 2021          | - ICP was monitored with an                            |      | Subsequently        |          | posture-induced change from                     | Hg (6.3–8.6 mm Hg; P<0.001) from 30° to 0°                    |          |
|               | intraparenchymal ICP device                            |      | lowered to 15°      |          | baseline in PbtO2 values with a                 | - PbtO2 and FVm improved from 30° to 0° by                    |          |
| PMID:         |                                                        |      | and 0°              |          | two-sided $lpha$ risk of 0.05 and a             | 1.2 mm Hg (0.2–2.3 mm Hg) and 4.1 cm/s                        |          |
| 34312789      | Exclusion criteria:                                    |      | positions           | Pts.     | power of 90%                                    | (0.0–                                                         |          |
|               | - persistence of hemodynamic or                        |      |                     | acted as |                                                 | 8.2 cm/s), respectively (both P<0.05)                         |          |
| 10.1007/s1202 | respiratory instability despite                        | n/a  | In 3                | their    | no primary endpoints defined                    | -PbtO2 and FVm were significantly higher                      | 3        |
| 8-021-01240-1 | Treatments                                             |      | experiments:        | own      |                                                 | during exp2 than exp1 (no p-value stated)                     |          |
|               | - severe brain hypoxia (defined as                     |      |                     |          | Extracted Endpoints:                            |                                                               |          |
| Specification | PbtO2 less than 15 mm Hg)                              |      | during first 24h    |          | <ul> <li>brain parameters (mean ICP,</li> </ul> | No significant differences between groups                     |          |
| of study:     | - refractory intracranial hypertension                 |      | after ICU           |          | CPP, and PbtO2)                                 | in:                                                           |          |
|               | (defined as ICP more than 30 mm Hg)                    |      | admission           |          | <ul> <li>systemic variables (FVm,</li> </ul>    | -CPP, arterial blood gases, hemoglobin content,               |          |
| Cohort Study  | at baseline                                            |      | Exp2                |          |                                                 | and body temperature remained unchanged                       |          |
|               | - development of cerebral vasospasm                    |      | repeated 24 h       |          | content, and body temperature)                  |                                                               |          |
|               | <ul> <li>no cerebral monitoring of ICP and</li> </ul>  |      | later               |          |                                                 | <ul> <li>decompressive craniotomy nor the order in</li> </ul> |          |
|               | PbtO2                                                  |      | Exp3                |          |                                                 | which the head position was changed affected                  |          |
|               | Per Branch                                             |      | 96 h later          |          |                                                 | brain parameters                                              |          |
|               | 23                                                     |      |                     |          |                                                 |                                                               |          |

pts. = patients; ICU=Intensive Care Unit; ICP= intracranial pressure; PbtO2= brain tissue oxygenation pressure; HUP= head-up posture; CPP= cerebral perfusion pressure; FVm= mean blood fow velocity;

Changing the positioning of stable patients with acute brain injury resulted in opposite changes of ICP versus brain oxygenation and circulation.

| Reference,<br>Study Type                                                                                                                                  | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                      | Drop-<br>out Rate | Intervention                                                                                                                                                        | Control              | Optimal<br>Population                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| #2054<br>Liu<br>2021<br>PMID: 34308257<br>DOI:<br>10.1007/s42399-021-<br>01008-w<br>Specification of<br>study:<br>Systematic review<br>with meta-analysis | 465 pts (n = 6 retrospective studies) <sup>1-6</sup> Inclusion criteria:         - PP applied during VV-ECMO for respiratory failure in critical adult pts         Exclusion criteria:         - pts less than 18 years old         - received VA-ECMO or VAV-ECMO         ECMO         - reviews or case reports         212       253 |                   | VV-ECMO<br>therapy and PP:<br>between 8 and 24<br>hours (6 studies):<br>1: 8 hours, 1: 12<br>hours, 1: 15<br>hours, 1 24 hours<br>and 2: time was<br>not mentioned) | VV-ECMO<br>and no PP | Derived<br>outcomes:<br>- Survival<br>- ECMO duration<br>- ICU LOS<br>- complications | <ul> <li>Significant differences between groups in:</li> <li>ECMO duration (longer in intervention group): MD 5.37, 95% CI 4.19–<br/>6.54, I2= 67%,<br/>p &lt; .00001</li> <li>ICU LOS (longer in intervention group): MD 7.29, 95% CI 4.06–10.52,<br/>I2= 64%,<br/>p &lt; .00001)</li> <li>survival (<i>Rillinger et al.</i><sup>2</sup>): Earlier PP (&lt; 17h) vs. Later or no PP: 82% vs.<br/>33%, p &lt; 0.05</li> <li>Non-significant differences between groups in:</li> <li>improvement in PaO2/FiO2 ratio: higher in intervention group (higher<br/>with longer duration of PP)</li> <li>comparison of survival at discharge (<i>Giani et al.</i><sup>3</sup> and <i>Rilinger et al.</i><sup>2</sup>):<br/>OR 1.42, 95% CI 0.92-2.18; p = 0.11</li> <li>overall survival rate of all six studies: Intervention group= 61.8% vs.<br/>control group= 45.8%</li> <li>complications: <ul> <li>a) no dislodgement of ECMO cannules when applying PP</li> <li>b) no displacement of vascular lines, ECMO cannula,<br/>endotracheal tube, or chest tubes</li> <li>c) reversible complications (<i>Giani et al.</i><sup>3</sup>): desaturation (2.5%),<br/>bleeding (1.2%), decrease of blood flow (1.2%), hemodynamic<br/>instability (0.6%), increased PaCO2 (0.3%), thigh swelling<br/>(0.3%), face swelling (0.3%) and vomiting (0.3%).</li> <li>d) n = 1 membrane thrombosis, n = 1 drop in ECMO blood flow<br/>(<i>Kimmoun et al.</i><sup>1</sup>)</li> <li>e) n = Pneumothorax during PP (<i>Guervilly et al.</i><sup>6</sup>)</li> </ul> </li> </ul> | 1 → 3<br>(retrospective<br>studies and<br>high risk of<br>bias) |

CI = confidence interval, FiO2 = fraction of inspired oxygen, ICU = intensive care unit, LOS = length of stay, MD = mean difference, OR = odds risk, PaCO2 = partial pressure of carbon-dioxide, PaO2 = partial pressure of oxygen, PP = prone positioning, pts = patients, VA-ECMO = veno-arterial extracorporeal membrane oxygenation, VAV-ECMO = veno-arterial-venous ECMO, VV-ECMO = veno-venous ECMO

Performance of PP during ECMO for refractory respiratory failure is safe, reduces ECMO duration, ICU LOS, might increase survival and improve PaO2/FiO2 ratio.

- 1. Kimmoun A, Roche S, Bridey C, Vanhuyse F, Fay R, Girerd N, et al. Prolonged prone positioning under VV-ECMO is safe and improves oxygenation and respiratory compliance. Ann Intensive Care. 2015;5(1):35. https://doi.org/10.1186/s13613-015-0078-4 Epub 2015 Nov 4.
- 2. Rilinger J, Zotzmann V, Bemtgen X, Schumacher C, Biever PM, Duerschmied D, et al. Prone positioning in severe ARDS requiring extracorporeal membrane oxygenation. Crit Care. 2020;24(1):397. <u>https://doi.org/10.1186/s13054-020-03110-2</u>.
- 3. Giani M,Martucci G,Madotto F, Belliato M, Fanelli V, Garofalo E, et al. Prone positioning during venovenous extracorporeal membrane oxygenation in acute respiratory distress syndrome: a multicentre cohort Study and Propensity-matched Analysis. Ann Am Thorac Soc. 2020;18:495–501. <a href="https://doi.org/10.1513/">https://doi.org/10.1513/</a> AnnalsATS.202006-6250C.
- 4. Lucchini A, De Felippis C, Pelucchi G, Grasselli G, Patroniti N, Castagna L, et al. Application of prone position in hypoxaemic patients supported by veno-venous ECMO. Intensive Crit Care Nurs. 2018;48:61–8. <a href="https://doi.org/10.1016/j.iccn.2018.04.002">https://doi.org/10.1016/j.iccn.2018.04.002</a>.
- 5. Franchineau G, Bréchot N, Hekimian G, Lebreton G, Bourcier S, Demondion P, et al. Prone positioning monitored by electrical impedance tomography in patients with severe acute respiratory distress syndrome on veno-venous ECMO. Ann Intensive Care. 2020;10(1):12. <u>https://doi.org/10.1186/s13613-020-0633-5</u>.
- Guervilly C, Hraiech S, Gariboldi V, Xeridat F, Dizier S, Toesca R, et al. Prone positioning during veno-venous extracorporeal membrane oxygenation for severe acute respiratory distress syndrome in adults. Minerva Anestesiol. 2014;80(3):307–13 <u>https://www.minervamedica.it/en/journals/minervaanestesiologica/article.php?cod=R02Y2014N03A0307</u>.

| Reference,<br>Study Type                                                                                                                 | Cases and Controls<br>(Participant #,<br>Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Intervention         | Control                                                            | Optimal<br>Population                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                          | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                    |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| #2055<br>Gonzalez-Seguel<br>2021<br>PMID: 34301802<br>DOI:<br>10.4187/respcare.09<br>194<br>Specification of<br>study:<br>Scoping review | <ul> <li>41 publications <ul> <li>n = 15 retrospective</li> <li>observational study</li> <li>n = 8 case report</li> <li>n = 4 prospective</li> <li>observational study,</li> <li>n = 1 RCT</li> <li>n = 5 clinical practice</li> <li>guideline</li> <li>n = 3 national</li> <li>guideline</li> <li>n = 2 clinical</li> <li>commentary</li> <li>n = 2 care protocol</li> <li>n = 1 checklist</li> </ul> </li> <li>Inclusion criteria: <ul> <li>mechanically</li> <li>ventilated pts in prone</li> <li>position due to ARDS</li> </ul> </li> <li>Exclusion criteria: <ul> <li>reporting on awake</li> <li>prone positioning</li> <li>pediatric population</li> <li>animal or</li> <li>experimental studies.</li> </ul> </li> </ul> | Prone<br>positioning | No<br>control<br>required<br>Supine<br>position<br>in 3<br>studies | Primary<br>Endpoint:<br>AEs related to:<br>- pressure sores/<br>skin injuries<br>- invasive devices<br>- respiratory<br>system<br>- cardiovascular<br>system<br>- musculoskeletal<br>system<br>- visual system<br>- gastrointestinal<br>system<br>- nervous system | Outcomes (number of studies reporting on the AE):<br>pressure sores/ skin injuries (n=7): 29.7% 95% CI 26.2-33.2<br>invasive devices:<br>- removal of lines (n=7): 0.9% 95% CI 0 – 1.7<br>- unscheduled extubation (n=5): 7.7% 95% CI 5.2 – 10.3<br>- displacement of endotracheal tubes (n= 4): 1.9% 95% CI 0.7 – 3.2<br>- airway obstruction (n=2): 4% 1.7 – 6.4<br>respiratory system:<br>- severe desaturation (n=3): 37.9% 95% CI 33.3 – 42.4<br>- VAP (n=2): 28.2 95% CI 23.5 – 33.0<br>- pneumothorax (n=2): 2.9% 95% CI 0 – 6.1<br>- barotrauma (n=1): 30.6% 95% CI 15.5 – 45.6<br>cardiovascular system:<br>- cardiac arrest (n=5): 3.4% 95% CI 1.9 – 4.9<br>- hypotension (n=3): 10.2% 95% CI 7.2 – 13.2<br>- arrhythmia (n=2): 15.4% 95% CI 11.1 – 19.7<br>peripheral nerve injuries (n=4): 8.1% 95% CI 4.2 – 12.0<br>visual system: eye hemorrhage or edema (n=3): 3.5% 95% CI 1.1 – 5.9<br>gastrointestinal system:<br>- vomit (n=1): 1.5% 95% CI 0 – 4.5<br>- hemoptysis (n=1): 2.5% 95% CI 0.5 – 4.5<br>nervous system:<br>- transient intracranial pressure (n=2): 2% 95% CI 0 – 4.7 | 5                 |

AE = adverse event, ARDS = acute respiratory distress syndrome, CI = confidence interval, pts = patients, RCT = randomized controlled trial, VAP = ventilator-associated pneumonia

The most common adverse events associated with prone positioning are in the domain of the respiratory system and pressure sores.

| Reference,<br>Study Type                                                                                                                                           | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                               | Drop-<br>out<br>Rate | Intervention | Control        | Optimal Population                                                                                                                                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2056<br>Petit<br>2022<br>PMID: 34259655<br>10.1097/CCM.000<br>000000005145<br><b>Specification of</b><br><b>study:</b><br>Retrospective,<br>single-center<br>study | 1 center from January 2012–<br>2020 → 298 pts.<br>Inclusion criteria:<br>-severe ARDS patients given VV-<br>ECMO support<br>Exclusion criteria:<br>-venoarterial-ECMO<br>Per Branch<br>64 234 | n/a                  | PP - ECMO    | No-PP-<br>ECMO | No sample size<br>calculation due to study<br>design (retrospective)<br><b>Primary Endpoint:</b><br>-time to successful<br>ECMO-weaning within<br>the 90-day post-<br>randomization<br><b>Secondary Endpoints:</b><br>-90-day survival status<br>-ECMO and PP-related<br>complications<br>-respiratory system<br>static<br>compliance gain post-<br>PP<br>-quantitative lung CT<br>profile | Primary Results:<br>-PP-ECMO patients' 90-day probability of being weaned-<br>off ECMO and alive higher (0.75 vs 0.54; sHR [95% CI],<br>1.54 [1.05–2.58])<br>Secondary Results:<br>-PP-ECMO patients' lower 90-day mortality (20% vs 42%)<br>(p<0.01)<br>-PP- and no-PP-ECMO groups' complication rates were<br>comparable (n.s.)<br>-Respiratory system static compliance increased greater<br>than or equal to 3mL/cm H2O after 16 hours of PP for 34<br>patients (53%), whose static compliance rose by 6mL/cm<br>H2O (3.5–10.3mL/cm H2O) post-PP, whereas static<br>compliance changed by 0mL/cm H2O (–0.85 to<br>0.82mL/cm H2O) for the 30 other PP patients, already<br>observed after 4 hours of PP (p < 0.01)<br>-PP nonresponders had higher percentages of<br>nonaerated or poorly aerated lung than PP responders<br>(57% [15–76%] vs 29% [10–46%], respectively, p =<br>0.047), in ventral and medial-ventral regions. | 4                 |

pts. = patients; ARDS= acute respiratory distress syndrome; ECMO= extracorporeal membrane oxygenation; VV-ECMO= venovenous-ECMO; PP=prone positioning; CT=computer tomography; CI=confidence interval; sHR= Subdistribution hazard ratio; n.s.= not significant;

PP during VV-ECMO was safe and effective and was associated with a higher probability of surviving and being weaned-off ECMO at 90 days.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2057 Binda<br>2021<br>PMID: 34244027<br>https://doi.org/10.<br>1016/j.iccn.2021.1<br>03088<br><b>Specification of</b><br><b>study:</b><br>A cross-sectional<br>study | 63 pts., 219 proning cycles,<br>from March to June 2020<br>Inclusion criteria:<br>-laboratory-confirmed SARS-<br>CoV-2 infection<br>-admitted to ICU<br>-on invasive MV<br>-treated with PP<br>Exclusion criteria:<br>-noninvasive ventilation<br>-intubated but not treated with<br>PP<br>Per Branch<br>63 | n/a                  | PP           | n/a     | No sample size calculation<br>No primary endpoint<br>defined<br><b>Extracted Endpoints:</b><br>-prevalence of<br>complications<br>- development of pressure<br>ulcers | Results:-32 pts. had at least one complication-15 PP cycles were interrupted (6.8%,15/219)-Episodes of bleeding 25.4% (16/63)-Rate of displacement of medical devices duringPP 12.7% (8/63)-no unplanned extubation nor chest drainagetube accidental removal-prevalence of pts. with PU: 42.9% (95% CI: 30.6–55.1) whereas 30.2% (95%CI: 18.8–41.5) wereprone related $\circ$ With PU higher level of correlation (q =0.47, P = 0.042) between days of MV andPP-time, compared to pts. without PU (q $= 0.29, P = 0.052$ ) $\circ$ PP-time, predictor for prone related PU(P = 0.039) $\circ$ effect of increasing mean PP-time from24 to 48 hours was to increase the oddsby a factor of 1.4 (95%CI: 1.02 to 1.91) $\circ$ increasing weight from 22 to 28 kg/m2increased the odds by a factor of 1.3(95%CI 0.6–2.8, P = 0.498) | 3 → 4             |

pts. = patients; SARS-CoV-2= severe acute respiratory syndrome coronavirus 2; ICU=intensive care unit; MV=mechanical ventilation; PP=prone position; PU=pressure ulcers; CI=confidence intervall

The use of PP in patients with COVID-19 was a safe and feasible treatment.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                               | Control             | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2059<br>Rosén<br>2021<br>PMID:<br>34127046<br>DOI:<br>10.1186/s130<br>54-021-<br>03602-9<br>Specification<br>of study:<br>multicenter<br>randomized<br>clinical trial | 75 pts in 2 tertiary and 1 county hospital in         Sweden         Inclusion criteria:         - adults ≥ 18 years of age         - COVID-19 infection with SARS-CoV-2 and         hypoxemic respiratory failure         - HFNO or NIV respiratory support and a         PaO2/FiO2-ratio ≤ 20 kPa or corresponding         values of SpO2 and FiO2 for > 1 hour         Exclusion criteria:         - oxygen supplementation with a device         other than HFNO or NIV         - inability to assume prone or semi-prone         position         - immediate need for endotracheal         intubation         - severe hemodynamic instability         - pregnancy         - terminal illness with less than one year life         expectancy         - do-not-intubate order         - inability to understand oral or written         study information |                      | <ul> <li>APP:</li> <li>at least 16 h APP per day</li> <li>prone and semi-prone positioning was allowed</li> <li>flat supine positioning was discouraged and patients were instructed to place themselves in the semi-recumbent or lateral position in between proning sessions.</li> </ul> | Standard<br>of care | <ul> <li>Primary endpoint: <ul> <li>intubation within 30 days</li> </ul> </li> <li>Secondary outcomes: <ul> <li>duration of APP</li> <li>30-day mortality</li> <li>NIV</li> <li>ventilator-free days</li> <li>ICU and hospital LOS</li> <li>organ support</li> </ul> </li> <li>Sample size calculation: <ul> <li>estimated based on previous studies with 240 pts to detect a decrease in intubation rate of 20%</li> </ul> </li> </ul> | <ul> <li>Primary outcome: <ul> <li>intubation within 30 days: 13 pts (33%)</li> <li>in the control group and 12 pts (33%) in the prone group were intubated [HR 1.01 (95% CI 0.46–2.21), P = 0.99]</li> </ul> </li> <li>Secondary outcomes: <ul> <li>duration of early APP and total APP was longer in the prone group compared with the control group (P = 0.0001; P = 0.014, respectively).</li> <li>3 pts (8%) died in the control group compared with 6 pts (17%) in the prone group [HR 2.29 (95% CI 0.57–9.14), P = 0.30]</li> <li>no significant differences between groups in ventilator-free days for intubated pts, days free of NIV/HFNO for not intubated pts, hospital or ICU LOS, use of organ support between groups</li> <li>9 pts in control and 2 pts in intervention group had pressure sores</li> <li>3 cardiac arrests not related to APP (n = 1 control, n = 2 intervention)</li> </ul> </li> </ul> | 2                 |

APP = awake prone positioning, FiO2 = fraction of inspired oxygen, HFNO = high-flow nasal oxygenation, HR = hazard ratio, ICU = intensive care unit, LOS = length of stay, NIV = non-Invasive ventilation, PaO2 = partial pressure of oxygen, pts = patients, SpO2 = oxygen saturation

# Awake prone positioning did not reduce rate of intubation in patients with hypoxemic respiratory failure but seemed to increase mortality, whilst not increasing prevalence of pressure sores.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                         | Drop-<br>out<br>Rate | Intervention         | Control          | Optimal Population                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2088<br>Longobardo<br>2021<br>PMID: 33594874<br>DOI:<br>10.23736/S0375-<br>9393.21.15254-X<br>Specification of<br>study:<br>Systematic<br>review and<br>meta-analysis | <ul> <li>8 RCTs including 2235 add<br/>ARDS pts<sup>1-8</sup></li> <li>Inclusion criteria: <ul> <li>RCTs</li> <li>studies with prone positioning as intervention</li> </ul> </li> <li>Exclusion criteria: <ul> <li>studies involving ARDS therapies requiring transfer to a tertiary level referral center</li> <li>patients outside the IC</li> <li>pediatric patients</li> </ul> </li> <li>Per Branch <ul> <li>1144</li> </ul></li></ul> |                      | Prone<br>positioning | Standard<br>care | Primary endpoint:<br>- mortality (28-day or 30-day)<br>Secondary outcome:<br>- improvement in<br>oxygenation measured by<br>the P:F ratio at 24h | Significant differences between groups in:<br>- prone positioning duration >12h<br>improves mortality: (33.1% vs. 44.4%; RR<br>0.75 [0.59-0.95]; P=0.02; I <sup>2</sup> =49%)<br>No significant differences between groups<br>in:<br>-improvement in mortality: (39.3% vs.<br>44.5%; RR 0.83 [0.68-1.01]; P=0.06;<br>I <sup>2</sup> =67%)<br>- improvement in P:F ratio(n=3): MD 26.81<br>[-5.93-59.54]; P=0.11; I <sup>2</sup> =86% | 1                 |

ARDS = acute respiratory distress syndrome,  $P:F = PaO_2/FiO_2$ , pts = patients

Prone positioning only improves mortality when it is performed for 12 hours or more.

#### References

- 1. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, Beuret P, et al. Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 2004;292:2379–87.
- 2. Fernandez R, Trenchs X, Klamburg J, Castedo J, Serrano JM, Besso G, et al. Prone positioning in acute respiratory distress syndrome: a multicenter randomized clinical trial. Intensive Care Med 2008;34:1487–91.
- 3. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, Labarta V, et al.; Prone-Supine Study Group. Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 2001;345:568–73.
- 4. Guérin C, Reignier J, Richard JC, Beuret P, Gacouin A, Boulain T, et al.; PROSEVA Study Group. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 2013;368:2159–68.
- 5. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, Ferrer M, et al. A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 2006;173:1233–9.
- 6. Taccone P, Pesenti A, Latini R, Polli F, Vagginelli F, Mietto C, et al.; Prone-Supine II Study Group. Prone positioning in patients with moderate and severe acute respiratory distress syndrome: a randomized controlled trial. JAMA 2009;302:1977–84.
- 7. Voggenreiter G, Aufmkolk M, Stiletto RJ, Baacke MG, Waydhas C, Ose C, et al. Prone positioning improves oxygenation in post-traumatic lung injury—a prospective randomized trial. J Trauma 2005;59:333–41.
- 8. Zhou X, Liu D, Long Y, Zhang Q, Cui N, He H, et al. [The effects of prone position ventilation combined with recruitment maneuvers on outcomes in patients with severe acute respiratory distress syndrome]. Zhonghua Nei Ke Za Zhi 2014;53:437–41.

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                    | Drop<br>-out<br>Rate | Intervention      | Control            | Optimal Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| #2094<br>Wright<br>2021<br>PMID: 33481406<br>DOI:<br>10.1097/CCM.00000<br>00000004820<br>Specification of<br>study:<br>Systematic review<br>and Proposed<br>Protocol | 10 publications (1 RCT, 4 cohort<br>studies, 1 case series, 4 case<br>reports)<br>Inclusion criteria:<br>- neurologically ill patients with<br>ARDS<br>Exclusion criteria:<br>- nonhuman studies<br>- basic science research<br>- pediatric patients<br>Per Branch |                      | Prone<br>Position | Supine<br>Position | No primary endpoint<br>defined<br>Extracted endpoints:<br>- protocols for prone<br>positioning<br>- safety<br>- ICP<br>- CPP<br>- MAP<br>- PbtO2<br>- PaO2 | no meta-analysis<br><b>Significant differences between groups in:</b><br>- ICP increase: 3 studies p<0.05<br>- CPP increase: 1 study p<0.05,<br>- CPP decrease: 1 study p<0.05<br>- MAP increase: 1 study p<0.05<br>- MAP decrease: 1 study p<0.05<br>- PbtO2 increase: 1 study p<0.05<br>- PaO2 increase: 1 study p<0.05 | 1 → 3<br>(not only<br>RCTs, no<br>MA) |

ARD = acute respiratory distress syndrome, CPP = cerebral perfusion pressure, ICP = intracranial pressure, MA = meta-analysis; MAP = mean arterial pressure, PbtO2 = brain tissue oxygen tension, RCT = randomised controlled trial

#### Prone position is safe and feasible in neurologically ill patients with acute respiratory distress syndrome. Increased intracranial pressure and compromised cerebral perfusion pressure may occur with prone positioning.

#### References

- 1. Reinprecht A, Greher M, Wolfsberger S, et al: Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: Effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med 2003; 31:1831–1838
- 2. Nekludov M, Bellander BM, Mure M: Oxygenation and cerebral perfusion pressure improved in the prone position. Acta Anaesthesiol Scand 2006; 50:932–936
- 3. Roth C, Ferbert A, Deinsberger W, et al: Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care 2014; 21:186–191
- 4. Thelandersson A, Cider A, Nellgård B: Prone position in mechanically ventilated patients with reduced intracranial compliance. Acta Anaesthesiol Scand 2006; 50:937–94
- 5. Beuret P, Carton MJ, Nourdine K, et al: Prone position as prevention of lung injury in comatose patients: A prospective, randomized, controlled study. Intensive Care Med 2002; 28:564–569
- 6. Bein T, Kuhr LP, Metz C, et al: ARDS und schweres Schädelhirntrauma. Therapiestrategien im Konflikt [ARDS and severe brain injury. Therapeutic strategies in conflict]. Anaesthesist 2002; 51:552–556
- 7. Dominguez-Berrot AM: Decúbito prono en pacientes con hipertensión endocraneal e insuficiencia respiratoria aguda grave [prone positioning in patients with intracranial hypertension and severe acute respiratory failure]. Med Intensiva 2009; 33:403–406
- 8. Gritti P, Lanterna LA, Re M, et al: The use of inhaled nitric oxide and prone position in an ARDS patient with severe traumatic brain injury during spine stabilization. J Anesth 2013; 27:293–297
- 9. Beuret P, Ghesquieres H, Fol S, et al: Décubitus ventral et pneumopathie sévère chez un patient traumatisé crânien avec hypertension intracrânienne [prone position and severe pneumopathy in a patient with head injuries and intracranial hypertension]. Ann Fr Anesth Reanim 2000; 19:617–619
- 10. Kayani AS, Feldman JP. Prone ventilation in a patient with traumatic brain injury, bifrontal craniectomy and intracranial hypertension. Trauma 2015; 17:224–228

| Reference,<br>Study Type                                                                                                  | (Participant #,                                                                                                                                                                                                                                                                                              | nd Controls<br>, Characteristics)<br>otal                                                                                            | Drop-<br>out<br>Rate | Intervention                                                                                                              | Control                                                                                                                                                                                                        | Optimal Population                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2105<br>Akbiyik<br>2021<br>PMID: 33230628<br>DOI:<br>10.1007/s10096-<br>019-03789-4<br>Specification of<br>study:<br>RCT | <ul> <li>relatives approved to particulation of the particulation of the particulation of the particulation of the presence of the first 48 h following M</li> <li>positive sputum culture</li> <li>MV support or within the support</li> <li>diabetes mellitus</li> <li>contraindications for ro</li> </ul> | cracheal tube<br>cted to mechanical<br>ged every 4 h in a day<br>articipate in the study<br>prior to MV support within<br>IV support |                      | Oropharyngeal<br>aspiration<br>- using a<br>pressure of 100–<br>120mmHg for<br>10s<br>- prior to each<br>position changes | Routine<br>nursing care<br>in the ICU<br>-<br>endotracheal<br>aspiration and<br>oropharyngea<br>l aspiration<br>- oral care<br>- routine<br>(every 4 h in a<br>day) and non-<br>routine<br>position<br>changes | <b>Primary endpoints:</b><br>- ICU LOS<br>- mechanical<br>ventilation support<br>- VAP mortality | Primary endpoints:<br>- median ICU LOS 27.28 $\pm$ 30.69 and 18.00<br>(min 4 days; max 168 days) days- median of mechanical ventilation<br>support 26.72 $\pm$ 30.65 and 18.00 (min 4<br>days; max 168 days) days- VAP development significantly different<br>with respect to OA before the change of<br>position ( $\chi$ 2 = 11.905; p = 0.001)- mean age of the pts who developed VAP<br>66.2 $\pm$ 17.71 (min 22; max 89)- no significant difference in the<br>development of VAP according to the<br>mean of age (t = 0.843; p = 0.405)- VAP development increased the death<br>rate ( $\chi$ 2 = 13.112; p = 0.002) | 2 → 3             |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, OA = oropharyngeal aspiration, pts = patients, RCT = randomized controlled trial, VAP = ventilated associated pneumonia

Oropharyngeal aspiration prior to each position change reduced the incidence of VAP significantly.

| Reference,<br>Study Type                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention                           | Control                                | Optimal Population                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2112<br>Monsees<br>2022<br>PMID: 35649531<br>DOI:<br>10.1111/nicc.12785<br>Specification of<br>study:<br>Systematic review +<br>MA | 10 RCTs including 1291<br>adult ICU pts <sup>1-10</sup><br>Inclusion criteria:<br>- RCT<br>- language English<br>- critically ill adult patients<br>- inclusion within 4 days<br>of admission or<br>intubation<br>- utilization of EM<br>- report of ICU LOS<br>Exclusion criteria:<br>- utilization of Passive<br>exercise only<br>- utilization of cycle<br>ergometry as only<br>intervention<br>Per Branch |                      | EM that<br>promotes active<br>exercise | Usual care or<br>no EM<br>intervention | Primary endpoint:<br>- ICU LOS<br>Secondary outcomes:<br>- duration of MV<br>- mortality<br>- hospital LOS<br>- FI | <ul> <li>Significant differences between groups in: <ul> <li>reduction in duration of MV: p= 0.0002, l<sup>2</sup>= 82%</li> </ul> </li> <li>No significant difference between groups in: <ul> <li>ICU LOS (n=4 studies): Study MD -0.18 (95% CI -0.53 - 0.18)</li> <li>mortality: No significance. Risk Ratio of 1.01 (95% CI 0.2-1.26), l<sup>2</sup> = 0%.</li> <li>hospital LOS: Results favored intervention treatment, except for one study. Results were not significant, except for one study reporting a reduction of 6.5 median days (p = 0.011).</li> <li>FI: no meta-analysis possible</li> </ul> </li> </ul> | 1                 |

EM = early mobilization, FI = functional independence, ICU = intensive care unit, LOS = length of stay, MD = mean difference, MV = mechanical ventilation, pts = patients, RCT = randomised controlled trial

### Early mobilisation shortens the duration of mechanical ventilation and shows a trend towards reduced ICU LOS and hospital LOS.

#### References

- 1. Eggmann S, Verra ML, Luder G, Takala J, Jakob SM. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: a randomised controlled trial. PLoS ONE. 2018;13(11):e0207428.
- 2. Hodgson CL, Bailey M, Bellomo R, et al. A binational multicenter pilot feasibility randomized controlled trial of early goal-directed mobilization in the ICU\*. Crit Care Med. 2016;44(6):1145-1152.
- 3. Hua DZ, Xu YB, Bo SY, Fang W, Li L. Effects of early rehabilitation therapy on patients with mechanical ventilation. World. J Emerg Med. 2014;5(1):48-52.
- 4. Maffei P, Wiramus S, Bensoussan L, et al. Intensive early rehabilitation in the intensive care unit for liver transplant recipients: a randomized controlled trial. Arch Phys Med Rehabil. 2017;98(8): 1518-1525.
- 5. Morris PE, Berry MJ, Files CD, et al. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA. 2016;315(24):2694-2702.
- 6. Patman S, Sanderson D, Blackmore M. Physiotherapy following cardiac surgery: is it necessary during the intubation period? Aust J Physiother. 2001;47(1):7-16.
- 7. Santos FV dos GC Jr, Vieira L, Chiappa AMG, Cipriano GBF, Vieira P, et al. Neuromuscular electrical stimulation combined with exercise decreases duration of mechanical ventilation in ICU patients: a randomized controlled trial. Physiother Theory Pract. 2018;36(5): 580-588.
- 8. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet. 2016;388(10052):1377-1388.
- 9. Schujmann DS, Teixeira Gomes T, Lunardi AC, et al. Impact of a progressive mobility program on the functional status, respiratory, and muscular systems of ICU patients: a randomized and controlled trial\*. Crit Care Med. 2020;48(4):491-497.
- 10. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874-1882.

| Reference,<br>Study Type                                                                                                                                          | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention | Control                                                                  | Optimal Population                                                                                                                                                                                                                                                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2114<br>Cartotto<br>2022<br>PMID: 35639543<br>DOI:<br>10.1093/jbcr/irac00<br>8<br>Specification of<br>study:<br>Comprehensive<br>Literature Search<br>and Review | 3 case-control studies <sup>1-3</sup><br>Inclusion criteria:<br>- burn pts in ICU<br>- EMR intervention<br>- with a control group<br>- at least one outcome of<br>predefined PICO outcomes<br>- MV<br>- publications in English<br>- from the inception of the<br>database to April 29, 2021<br>Exclusion criteria:<br>- abstracts<br>- surveys<br>- case reports<br>- unrelated articles |                      | EMR          | Non-<br>standardized or<br>late<br>mobilization<br>and<br>rehabilitation | <ul> <li>Primary endpoints:</li> <li>1. Does EMR (a)<br/>shorten the duration<br/>of MV and (b)<br/>reduce the<br/>development of<br/>ICUAW?</li> <li>2. Does EMR result in<br/>fewer hospital-<br/>acquired pressure<br/>injuries?</li> <li>3. Does EMR result in<br/>loss of skin grafts or<br/>skin substitutes?</li> <li>4. Does EMR reduce<br/>the prevalence of<br/>delirium?</li> </ul> | <ol> <li>Does EMR (a) shorten the duration of MV and (b) reduce the development of ICUAW?         <ul> <li>recommendation:</li> <li>(a): none. insufficient evidence.</li> <li>(b): conditional recommendation (based on low- to very low quality evidence) for implementation of EMR to reduce ICUAW with open dialogue between medical, nursing, and rehabilitation staff to identify any specific safety concerns or medical/surgical limitations.</li> </ul> </li> <li>Does EMR result in fewer hospital-acquired pressure injuries?         <ul> <li>recommendation: none. no evidence identified.</li> </ul> </li> <li>Does EMR result in loss of skin grafts or skin substitutes?         <ul> <li>recommendation: none. no evidence identified. suggestion that surgeons and rehabilitation therapists consider whether EM is feasible and warranted in a critically ill burn pts with recent grafting.</li> </ul> </li> <li>Does EMR reduce the prevalence of delirium?         <ul> <li>recommendation: no evidence identified</li> <li>conditional recommendation for implementation of EMR to reduce delirium recommended, based on literature that was not included in the search results of this database search.</li> </ul> </li> </ol> | 1                 |

BI = Barthel index, EMR = early mobilization and rehabilitation, FIM = functional independence measure, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

Underlying evidence is not sufficient to recommend EMR to reduce the duration of MV in the burn ICU or development of hospital-acquired pressure injuries. Conditional recommendation for the use of EMR to reduce development of ICUAW and delirium in critically ill burn patients in the ICU.

#### References

1. Deng H, Chen J, Li F et al. Effects of mobility training on severe burn patients in the BICU: a retrospective cohort study. Burns 2016;42:1404–12.

2. Baytieh L, Li F. Physiotherapeutic and dietetic parameters in burns patients modelling a multidisciplinary approach to burns practice: a bi-disciplinary illustration of interrelated factors. Burns 2020;26:S0305–4179.

3. Gille J, Bauer N, Malcharek MJ et al. Reducing the indication for ventilatory support in the severely burned patient: results of a new protocol approach at a regional burn center. J Burn Care Res 2016;37:e205–12.

| 2780 - multicomponent non-pharmacological intervention (i.e. Assessment of SP, CS, EM, PC, and CTS interventions of SP, CS, EM, PC, and PC, an | Reference,<br>Study Type                                                                                                            | Cases and Cases | naracteristics)                                                                                                                                             | Drop-<br>out<br>Rate | Intervention                                                                            | Control | Optimal<br>Population                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Matsuura<br>2022<br>PMID:<br>35624556<br>DOI:<br>10.1111/nicc.1<br>2780<br>Specification of<br>study:<br>A systematic<br>review and | randomized, 8 controlled<br>studies, n = 2.549 pts) <sup>1-11</sup><br>Inclusion criteria:<br>- ICU pts aged 18 year or<br>- occurrence of delirium<br>valid tools<br>- RCTs, CCTs, CBAs<br>- evaluated the effects of<br>pharmacological interve<br>delirium<br>- multicomponent non-p<br>interventions<br>- delirium occurrence as<br>- published in English.<br>Exclusion criteria:<br>- unoriginal studies<br>- not an ICU setting<br>- pediatric participants<br>- pharmacological interve<br>Per Bra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d before and after<br><sup>1</sup><br>r older<br>via reliable and<br>of non-<br>entions to prevent<br>oharmacological<br>primary outcome<br><u>rentions</u> |                      | pharmacological<br>multicomponent<br>intervention<br>(i.e. Assessment<br>of SP, CS, EM, |         | endpoints:<br>- the efficacy of<br>non-<br>pharmacological<br>interventions,<br>- combination of<br>care<br>- effectiveness of<br>combinations of<br>non-<br>pharmacological<br>interventions in<br>preventing | <ul> <li>rate of delirium occurrence in non-<br/>pharmacological multicomponent<br/>interventions performed to prevent<br/>delirium (OR 0.58, 95% CI 0.44-0.76, p<br/>&lt;0.001)</li> <li>two effective bundles compared to<br/>control for the incidence of delirium:<br/>a) the combination of SP, CS, EM, PC, and<br/>AS (OR 0.47, 95% CI 0.35–0.64, p &lt; 0.002)<br/>b) the combination of SP and CS (OR<br/>0.46, 95% CI 0.28–0.75, p &lt; 0.001)</li> <li>SUCRA analysis suggests with 76.8%<br/>that SP-CS was the highest among<br/>multicomponent interventions for</li> </ul> | (not only         |

AS = assessment, CBA = controlled before and after trial, CCT = controlled clinical trial, CS = cognitive stimulation, EM = early mobilization, PC = pain control, pts = patients, RCT= randomized controlled trial, SP = sleep promotion, SUCRA = surface under the cumulative ranking

This study revealed that non-pharmacological interventions, particularly multicomponent interventions, helped to prevent delirium in critically ill patients. In the network meta-analysis, the most effective care combination for reducing incidence of delirium was found to be multicomponent intervention, which comprises SP-CS-EM-PC-AS, and SP-CS.

#### References

- Martínez F, Donoso AM, Marquez C. Implementing a multicomponent intervention to prevent delirium among critically ill patients. Crit Care Nurse. 2017;37(6):36-47.
- 2. Patel J, Baldwin J, Bunting P, Laha S. The effect of a multicomponent multidisciplinary bundle of interventions on sleep and delirium in medical and surgical intensive care patients. Anaesthesia. 2014;69(6):540-549.
- 3. Foster J, Kelly M. A pilot study to test the feasibility of a non pharmacologic intervention for the prevention of delirium in the med ical intensive care unit. Clin Nurse Specialist: J Adv Nurs Pract. 2013; 27(5):231-238.
- 4. Larsen LK, Møller K, Petersen M, Egerod I. Delirium prevalence and prevention in patients with acute brain injury: a prospective beforeand-after intervention study. Intensive Crit Care Nurs. 2020;59:102816.
- 5. Bryant EA, Tulebaev S, Castillo-Angeles M, et al. Frailty identification and care pathway: an interdisciplinary approach to Care for Older Trauma Patients. J Am Coll Surg. 2019;228(6):852-859.e1.
- 6. Rivosecchi RM, Kane-Gill SL, Svec S, Campbell S, Smithburger PL. The implementation of a nonpharmacologic protocol to prevent intensive care delirium. J Crit Care. 2016;31(1):206-211.
- 7. Rice KL, Bennett MJ, Berger L, et al. A pilot randomized controlled trial of the feasibility of a multicomponent delirium prevention intervention versus usual care in acute stroke. J Cardiovasc Nurs. 2017;32(1):E1-E10.
- 8. Guo Y, Sun L, Li L, et al. Impact of multicomponent, nonpharmacologic interventions on perioperative cortisol and melatonin levels and postoperative delirium in elderly oral cancer patients. Arch Gerontol Geriatr. 2016;62:112-117.
- 9. Moon KJ, Lee SM. The effects of a tailored intensive care unit delirium prevention protocol: a randomized controlled trial. Int J Nurs Stud. 2015;52(9):1423-1432.
- 10. Bryczkowski SB, Lopreiato MC, Yonclas PP, Sacca JJ, Mosenthal AC. Delirium prevention program in the surgical intensive care unit improved the outcomes of older adults. J Surg Res. 2014;190(1):280-288.
- 11. Balas MC, Vasilevskis EE, Olsen KM, et al. Effectiveness and safety of the awakening and breathing coordination, delirium monitoring/management, and early exercise/mobility bundle. Crit Care Med. 2014;42(5):1024-1036

| Reference,<br>Study Type                                                                                                                                                                         | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Drop-out Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Intervention                                                                                                        | Control                     | Optimal<br>Population                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2116<br>Rahiminezhad<br>2022<br>PMID:<br>35619171<br>DOI:<br>10.1186/s1310<br>2-022-00489-z<br>Specification<br>of study:<br>a single-<br>blinded<br>randomized<br>controlled<br>clinical trial | 90 pts<br>Inclusion criteria:<br>- above 18 years<br>- 1st day of ICU admission<br>(pts under invasive MV,<br>non-invasive MV, and not<br>MV pts)<br>- FOUR score ≥ 14<br>- no amputation<br>- no fractures in the lower<br>or upper extremities<br>- no neuromuscular<br>diseases (myasthenia<br>gravis, Guillain–Barre<br>syndrome, botulism and<br>pesticide poisoning<br>- no deep vein thrombosis<br>- no metabolic disorders<br>(including hypokalemia,<br>hypophosphatemia,<br>hypomagnesemia)<br>- no allergy to olive oil in<br>the massage group<br>Exclusion criteria:<br>- transferred to the ward<br>during the intervention<br>Per Branch<br>n = 38 n = 36 n = 35<br>massage ROM control | <ul> <li>Control n=5 <ul> <li>a. ICU LOS &lt; 7</li> <li>days n = 3,</li> <li>b. inadequate</li> <li>loc n = 2</li> </ul> </li> <li>Massage n=8 <ul> <li>a. decline to</li> <li>participate n = 5</li> <li>b. ICU LOS &lt; 7</li> <li>days n = 2</li> <li>c. inadequate</li> <li>loc n = 1</li> </ul> </li> <li>ROM n=6 <ul> <li>a. decline to</li> <li>participate n = 3</li> <li>b. ICU LOS &lt; 7</li> <li>days n = 2</li> <li>c. inadequate</li> <li>loc n = 1</li> </ul> </li> </ul> | Group 1: ROM<br>exercises (on<br>pts extremities<br>once a day for<br>7 consecutive<br>days)<br>Group 2:<br>Massage | Routine<br>care as<br>usual | Primary<br>endpoint:<br>- muscle<br>strength<br>measured with<br>a hand-held<br>dynamometer<br>before, before<br>the<br>intervention<br>(T1), on the 4 <sup>th</sup><br>(T2) and 7 <sup>th</sup><br>(T3) day of<br>intervention at<br>8 p.m. | Primary endpoints:<br>- muscle strength of the right arm<br>- before intervention lower strength in massage group than that of the control ( $p < 0.001$ ,<br>mean difference = -2.4)<br>- mean difference of increase of muscle strength T3-T1 (mean+SD):<br>a) ROM: 0.63 ± 0.17<br>b) massage: 0.29 ± 0.23<br>c) control: -0.55 ± 0.28<br>significant difference between the three groups (ANOVA, $p < 0.001$ , $F = 205.54$ )<br>Bonferroni post hoc test for mean difference between:<br>a) massage and Rom (-0.34): $p < 0.001$ )<br>b) massage and control (0.84): $p < 0.001$<br>c) ROM and control (1.18): $p < 0.001$<br>c) ROM and control (1.18): $p < 0.001$<br>c) ROM and control (1.18): $p < 0.001$<br>c) and difference $= -2.45$<br>rean difference $= -2.45$<br>reand difference $= -2.45$<br>reand difference $= -2.45$<br>control: -0.56 ± 0.28<br>c) control: -0.56 ± 0.28<br>c) control: -0.56 ± 0.29<br>c) control: -0.56 ± 0.29<br>c) control: -0.56 ± 0.28<br>c) control: -0.56 ± 0.28<br>control: -0.76 ± 0.33<br>control: -0.76 ± 0.33<br>control: -0.76 ± 0.33<br>control: -0.75 ± 0.21<br>b) massage and ROM (-0.33): $p < 0.001$<br>c) ROM and control (1.18): $p < 0.001$<br>c) ROM and control (1.18): $p < 0.001$<br>c) ROM: -0.51 ± 0.21<br>b) massage 0.27 ± 0.18<br>c) control: -0.70 ± 0.33<br>c) control: -0.70 ± 0.33<br>c) control: -0.70 ± 0.33<br>c) control: -0.70 ± 0.33<br>c) control: -0.71 ± 0.29: $p < 0.001$<br>b) massage and ROM (-0.25): $p < 0.001$<br>c) ROM and control (0.27): $p < 0.001$<br>c) ROM and con | 2                 |

ICU = intensive care unit, loc = level of consciousness, LOS = length of stay, pts = patients, ROM = range of motion, T = timepoint

# The results of the present study showed that ROM exercises and massage were effective interventions in increasing muscle strength of the critically ill patients admitted to intensive care units.

| Reference,<br>Study Type                                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                           | Control         | Optimal Population                                                                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| #2118<br>Zhou<br>2022<br>PMID:<br>35617287<br>DOI:<br>10.1371/journa<br>I.pone.0268599<br>Specification<br>of study:<br>a prospective<br>dual-center<br>randomized<br>controlled trial | 150 pts<br>Inclusion criteria:<br>->18 years of age<br>- admitted to the ICU for the 1st time<br>- expected ICU stay >72 h<br>- conscious within the subsequent 24 h to respond<br>to at least three of the following orders: "open<br>and/or close your eyes," "look at me," "put out<br>your<br>tongue," "nod your head," and "raise your<br>eyebrows"<br>- BI >70 at 2 weeks before ICU admission<br>Exclusion criteria:<br>- pregnancy<br>- deformity, paralysis, fracture, or surgery of limbs<br>- pre-existing primary systemic neuromuscular<br>disease that affects muscle strength<br>- intracranial or spinal processes affecting motor<br>function;<br>- gastrointestinal surgery within 1 month<br>- no expectation of any nutritional intake within the<br>subsequent 48 h<br>- terminal cancer, expected death, or extremely<br>poor prognosis.<br>Per Branch<br>EM Group = 50<br>EMN Group = 50<br>EMN Group = 50 |                      | EM Group: early,<br>individualized,<br>progressive<br>mobilization<br>within 24 h of ICU<br>admission<br>EMN Group: early<br>mobilization +<br>guideline-based<br>early nutrition<br>(within 48 h of ICU<br>admission) | Routine<br>care | Primary endpoint:<br>- occurrence of ICU-<br>AW at discharge from<br>the ICU<br>Secondary<br>outcomes:<br>- muscle strength<br>- functional<br>independence<br>- organ failure (SOFA)<br>- nutritional status<br>- duration of MV<br>- ICU LOS<br>- ICU mortality at ICU<br>discharge. | Primary endpoint:<br>- control had more incidents of<br>ICU-AW at discharge than EM or<br>EMN groups (16% vs. 2%; p = 0.014<br>for both)<br>-ICU-AW (EM vs. control: p =<br>0.027, OR [95% CI] = 0.066 [0.006–<br>0.739], EMN vs. control: p = 0.016,<br>OR [95% CI] = 0.065 [0.007–<br>0.607]).<br>Secondary outcomes:<br>-Barthel Index (control vs.<br>EM/EMN: 57.5 vs 70.0; p = 0.022)<br>- muscle strength, EMN vs control<br>(p = 0.028)<br>- nutritional status EMN vs control<br>(p = 0.031)<br>- organ failure EMN vs control 0 vs<br>0 (p = 0.614)<br>- duration of MV control vs<br>EM/EMN 0 vs 0 vs 0 (p = 0.753)<br>- ICU LOS control vs EM/EMN 4.1<br>vs 4.5 vs 3.4 (p = 0.040)<br>- ICU mortality control vs EM/EMN<br>2 vs 3 vs 2 (p = 1) | 2→3<br>(high risk of<br>bias) |

EM = early mobilisation, EMN = early mobilisation with early nutrition, ICU-AW = ICU-acquired weakness, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients

### EM and EMN had positive effects. There was little difference between the effects of EM and EMN, except for muscle strength improvement. Both EM and EMN may lead to a lower occurrence of ICU-AW and better functional independence than standard care. EMN might benefit nutritional status more than usual care and promote improvement in muscle strength.

| Reference,<br>Study Type                                                                                                                | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-<br>out | Intervention | Control              | Optimal Population                                                                                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Study Type                                                                                                                              | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rate         |              |                      |                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                             |
| #2119<br>Balke<br>2022<br>PMID: 35615672<br>DOI:<br>10.3389/fphys.2<br>022.865437<br>Specification of<br>study:<br>systematic<br>review | 26 RCTs <sup>1-26</sup><br>Inclusion criteria:<br>- full text articles<br>- RCTs<br>- pts aged >18 years<br>Exclusion criteria:<br>- focused on histological and<br>morphological<br>changes only<br>- investigated the acute effects of<br>EMS<br>- not written in English<br>- grey literature or website<br>articles<br>- did not clearly report on<br>included subjects, type of<br>intervention or applied<br>treatment, outcome measures,<br>and statistical analysis<br>- included healthy subjects<br>- focused on other conditions<br>- did not include humans<br>- not original research<br>Per Branch |              | EMS          | Conventional<br>care | Endpoints:<br>- stimulated<br>muscles/muscle area<br>(quadriceps muscle<br>only; two to four leg<br>muscle groups; legs and<br>arms; chest and<br>abdomen)<br>- treatment duration<br>(<10 days, >10 days).<br>-stimulation parameters<br>(impulse frequency,<br>pulse width, intensity,<br>duty cycle)<br>- the net EMS treatment<br>time | No meta-analysis or comparative statistical<br>analysis was performed<br>- isolated stimulation of quadriceps<br>muscles(n=10), 60% reported significantly larger<br>improvement in the EMS group<br>- combined stimulation of two to four leg muscle<br>groups(n=8)<br>All eight studies reported on muscle parameters<br>and three<br>(37.5%) detected significant positive EMS effects<br>compared to control.<br>- combined stimulation of legs and arms(n=3),<br>Three studies of this group reported on muscle<br>parameters, of which two reported significantly<br>greater improvements compared to control, with<br>one study applying EMS for ≤10 days, and two<br>studies applying EMS for >10 days.<br>- 2–4 Leg muscle groups and abdomen (n= 1)<br>Improved muscle volume and functional<br>independence without any significant differences<br>in ICU LOS<br>- abdomen and chest (n=2)<br>significant reduction of ICU LOS. | 1 → 3<br>(qualitative<br>approach,<br>no meta-<br>analysis) |

EMS = electrical muscle stimulation, LOS = length of stay, pts = patients

The overall efficacy of EMS was inconclusive and neither treatment duration, stimulation site nor net EMS treatment time had clear effects on study outcomes.

#### References

- 1. Abu-Khaber, H. A., Abouelela, A. M. Z., and Abdelkarim, E. M. (2013). Effect of Electrical Muscle Stimulation on Prevention of ICU Acquired Muscle Weakness and Facilitating Weaning from Mechanical Ventilation. Alexandria J. Med. 49 (4), 309–315. doi:10.1016/j.ajme.2013.03.011
- 2. Akar, O., Günay, E., Sarinc Ulasli, S., Ulasli, A. M., Kacar, E., Sariaydin, M., et al. (2017). Efficacy of Neuromuscular Electrical Stimulation in Patients with COPD Followed in Intensive Care Unit. Clin. Respir. J. 11 (6), 743–750. doi:10.1111/crj.12411
- 3. Berney, S., Hopkins, R. O., Rose, J. W., Koopman, R., Puthucheary, Z., Pastva, A., et al. (2020). Functional Electrical Stimulation In-Bed Cycle Ergometry in Mechanically Ventilated Patients: a Multicentre Randomised Controlled Trial. Thorax 76, 656–663. thoraxjnl-2020-215093. doi:10.1136/thoraxjnl-2020-215093
- 4. Chen, Y.-H., Hsiao, H.-F., Li, L.-F., Chen, N.-H., and Huang, C.-C. (2019). Effects of Electrical Muscle Stimulation in Subjects Undergoing Prolonged Mechanical Ventilation. Respir. Care 64 (3), 262–271. doi:10.4187/respcare.05921
- 5. Dall' Acqua, A., Sachetti, A., Santos, L., Lemos, F., Bianchi, T., Naue, W., et al. (2017). Use of Neuromuscular Electrical Stimulation to Preserve the Thickness of Abdominal and Chest Muscles of Critically III Patients: A Randomized Clinical Trial. J. Rehabil. Med. 49 (1), 40–48. doi:10.2340/16501977-2168
- 6. Dirks, M. L., Hansen, D., Van Assche, A., Dendale, P., and Van Loon, L. J. C. (2015). Neuromuscular Electrical Stimulation Prevents Muscle Wasting in Critically III Comatose Patients. Clin. Sci. (Lond) 128 (6), 357–365. doi:10. 1042/CS20140447
- 7. Falavigna, L. F., Silva, M. G., de Almeida Freitas, A. L., Silva, P. F. d. S., Paiva Júnior, M. D. S., de Castro, C. M. M. B., et al. (2014). Effects of Electrical Muscle Stimulation Early in the Quadriceps and Tibialis Anterior Muscle of Critically III Patients. Physiother. Theor. Pract. 30 (4), 223–228. doi:10.3109/09593985. 2013.869773
- 8. Fischer, A., Spiegl, M., Altmann, K., Winkler, A., Salamon, A., Themessl-Huber, M., et al. (2016). Muscle Mass, Strength and Functional Outcomes in Critically III Patients after Cardiothoracic Surgery: Does Neuromuscular Electrical Stimulation Help? the Catastim 2 Randomized Controlled Trial. Crit. Care 20, 30. doi:10.1186/s13054-016-1199-3
- 9. Fontes Cerqueira, T. C., Cerqueira Neto, M. L. d., Cacau, L. d. A. P., Oliveira, G. U., Silva Júnior, W. M. d., Carvalho, V. O., et al. (2018). Ambulation Capacity and Functional Outcome in Patients Undergoing Neuromuscular Electrical Stimulation after Cardiac Valve Surgery. Medicine (Baltimore) 97 (46), e13012. doi:10.1097/MD.00000000013012
- 10. Fossat, G., Baudin, F., Courtes, L., Bobet, S., Dupont, A., Bretagnol, A., et al. (2018). Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically III Adults. JAMA 320 (4), 368– 378. doi:10. 1001/jama.2018.9592
- 11. Gerovasili, V., Stefanidis, K., Vitzilaios, K., Karatzanos, E., Politis, P., Koroneos, A., et al. (2009). Electrical Muscle Stimulation Preserves the Muscle Mass of Critically III Patients: a Randomized Study. Crit. Care 13 (5), R161. doi:10. 1186/cc8123
- 12. Gruther, W., Zorn, C., Paternostro-Sluga, T., Quittan, M., Spiss, C., Kainberger, F., et al. (2010). Effects of Neuromuscular Electrical Stimulation on Muscle Layer Thickness of Knee Extensor Muscles in Intensive Care Unit Patients: a Pilot Study. J. Rehabil. Med. 42 (6), 593–597. doi:10.2340/16501977-0564
- 13. Kho, M. E., Truong, A. D., Zanni, J. M., Ciesla, N. D., Brower, R. G., Palmer, J. B., et al. (2015). Neuromuscular Electrical Stimulation in Mechanically Ventilated Patients: a Randomized, Sham-Controlled Pilot Trial with Blinded Outcome Assessment. J. Crit. Care 30 (1), 32–39. doi:10.1016/j.jcrc.2014.09.014
- 14. Koutsioumpa, E., Makris, D., Theochari, A., Bagka, D., Stathakis, S., Manoulakas, E., et al. (2018). Effect of Transcutaneous Electrical Neuromuscular Stimulation on Myopathy in Intensive Care Patients. Am. J. Crit. Care 27 (6), 495–503. doi:10.4037/ajcc2018311
- 15. McCaughey, E. J., Jonkman, A. H., Boswell-Ruys, C. L., McBain, R. A., Bye, E. A., Hudson, A. L., et al. (2019). Abdominal Functional Electrical Stimulation to Assist Ventilator Weaning in Critical Illness: a Double-Blinded, Randomised, Sham-Controlled Pilot Study. Crit. Care 23 (1), 261. doi:10.1186/s13054-019- 2544-0
- 16. Meesen, R. L. J., Dendale, P., Cuypers, K., Berger, J., Hermans, A., Thijs, H., et al. (2010). Neuromuscular Electrical Stimulation as a Possible Means to Prevent Muscle Tissue Wasting in Artificially Ventilated and Sedated Patients in the Intensive Care Unit: A Pilot Study. Neuromodulation: Technology Neural Interf. 13 (4), 315–321. discussion 321. doi:10.1111/j.1525-1403.2010.00294.x
- 17. Nakamura, K., Kihata, A., Naraba, H., Kanda, N., Takahashi, Y., Sonoo, T., et al. (2019). Efficacy of belt Electrode Skeletal Muscle Electrical Stimulation on Reducing the Rate of Muscle Volume Loss in Critically III Patients: A Randomized Controlled Trial. J. Rehabil. Med. 51 (9), 705–711. doi:10.2340/ 16501977-2594
- 18. Nakanishi, N., Oto, J., Tsutsumi, R., Yamamoto, T., Ueno, Y., Nakataki, E., et al. (2020). Effect of Electrical Muscle Stimulation on Upper and Lower Limb Muscles in Critically III Patients: A Two-Center Randomized Controlled Trial. Crit. Care Med. 48 (11), e997–e1003. doi:10.1097/CCM.00000000004522
- 19. Parry, S. M., Berney, S., Warrillow, S., El-Ansary, D., Bryant, A. L., Hart, N., et al. (2014). Functional Electrical Stimulation with Cycling in the Critically III: a Pilot Case-Matched Control Study. J. Crit. Care 29 (4), e1e691–695. doi:10. 1016/j.jcrc.2014.03.017
- 20. Poulsen, J. B., Møller, K., Jensen, C. V., Weisdorf, S., Kehlet, H., and Perner, A. (2011). Effect of Transcutaneous Electrical Muscle Stimulation on Muscle Volume in Patients with Septic Shock\*. Crit. Care Med. 39 (3), 456–461. doi:10.1097/CCM.0b013e318205c7bc
- 21. Rodriguez, P. O., Setten, M., Maskin, L. P., Bonelli, I., Vidomlansky, S. R., Attie, S., et al. (2012). Muscle Weakness in Septic Patients Requiring Mechanical Ventilation: Protective Effect of Transcutaneous Neuromuscular Electrical Stimulation. J. Crit. Care 27 (3), e1e311–319. doi:10.1016/j.jcrc.2011.04.010
- 22. Routsi, C., Gerovasili, V., Vasileiadis, I., Karatzanos, E., Pitsolis, T., Tripodaki, E. S., et al. (2010). Electrical Muscle Stimulation Prevents Critical Illness Polyneuromyopathy: a Randomized Parallel Intervention Trial. Crit. Care 14 (2), R74. doi:10.1186/cc8987
- 23. Strasser, E. M., Stättner, S., Karner, J., Klimpfinger, M., Freynhofer, M., Zaller, V., et al. (2009). Neuromuscular Electrical Stimulation Reduces Skeletal Muscle Protein Degradation and Stimulates Insulin-like Growth Factors in an Age- and Current-dependent Manner. Ann. Surg. 249 (5), 738–743. doi:10.1097/SLA. 0b013e3181a38e71
- 24. Dos Santos, C., Hussain, S. N. A., Mathur, S., Picard, M., Herridge, M., Correa, J., et al. (2016). Mechanisms of Chronic Muscle Wasting and Dysfunction after an Intensive Care Unit Stay. A Pilot Study. Am. J. Respir. Crit. Care Med. 194 (7), 821–830. doi:10.1164/rccm.201512-23440C
- 25. Waldauf, P., Hrušková, N., Blahutova, B., Gojda, J., Urban, T., Krajčová, A., et al. (2021). Functional Electrical Stimulation-assisted Cycle Ergometry-Based Progressive Mobility Programme for Mechanically Ventilated Patients: Randomised Controlled Trial with 6 Months Follow-Up. Thorax 76, 664–671. doi:10.1136/thoraxjnl-2020-215755
- 26. Zanotti, E., Felicetti, G., Maini, M., and Fracchia, C. (2003). Peripheral Muscle Strength Training in Bed-Bound Patients with COPD Receiving Mechanical Ventilation. Chest 124 (1), 292–296. doi:10.1378/chest.124.1.292

| 103 pts                                                                                                                                                                                                                             |                                                                                                                             | Control                                     | Optimal Population                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| -> 18y         -> submitted to myocardial         #2120         Cordeiro         2022         PMID:         Exclusion criteria:         - previous cardiac surgery         - physical limitations         DOI: not         avilable | s that achieved<br>d to chair <b>NM</b><br>nsfer on first (par<br>y post-op and kine<br>ibulation on in b<br>cond day post- | <b>MG</b><br>assive<br>nesiotherapy<br>bed) | <b>Outcomes:</b><br>- duration of MV<br>- ICU LOS<br>- mortality<br>- MRC (admission<br>vs. discharge)<br>- FIM (admission vs.<br>discharge)<br>- 6-MWT | Significant differences between the groups:<br>- duration of MV (hours): MG: $6 \pm 2$ vs. NMG<br>$10 \pm 3$ ; $p = 0.02$<br>- ICU-LOS (days): MG: $2 \pm 2$ vs. NMG: $4 \pm 3$ ;<br>p < 0.001<br>- $6$ -MWT (admission vs. discharge) ( $\Delta$ ): MG:<br>- $37 \pm 10$ vs. NMG: $-78 \pm 11$ ; $p < 0.001$<br>No significant differences between the<br>groups:<br>- mortality: n.s.<br>- MRC (admission vs. discharge): n.s.<br>- FIM (admission vs. discharge): n.s. | 3                 |

ALS = amylotrophe lateral sclerosis, COPD = chronic obstructive pulmonary disease, FIM = functional independence measurement, LOS = length of stay, MG = mobilisation group, MRC = medical research council, MV = mechanical ventilation, NMG = non-mobilization group; pts = patients; 6MWT = 6-minute walking test

Cardiac surgery patients in the early mobilization group had a reduced duration of MV and length of stay, better physical function, and had a lower decrease in distance walked during 6-MWT.

| Reference,<br>Study Type                                                                                                                                          | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop-out<br>Rate                                                                                                                                     | Intervention | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2123<br>Wanabe<br>2022<br>PMID:<br>35566716<br>DOI:<br>10.3390/jcm<br>11092587<br>Specification<br>of study:<br>A Multi-<br>Center<br>Prospective<br>Cohort Study | N = 192<br>Inclusion criteria:<br>- ICU stay for more than 48<br>h<br>Exclusion criteria:<br>- less than 18 years of age<br>- unable to walk<br>independently before<br>admission<br>- neurological complication<br>- lacking communication<br>skills due to pre-existing<br>mental diseases<br>- terminal state<br>- history of psychiatric<br>disorders<br>- died or did not complete<br>the assessment at 3 month<br>follow-up after hospital<br>discharge<br>Per Branch<br>107 85 | N=47 in<br>Non EM<br>(death,<br>lost to<br>follow-up<br>after ICU<br>discharge)<br>N=47 in<br>Non-EM<br>(death,<br>lost to<br>follow-up<br>after ICU | EM           | Non-EM  | Primary Endpoint:<br>- incidence of psychiatric<br>symptoms at 3 months after<br>hospital discharge (using HADS,<br>IES-R)<br>Secondary Endpoints:<br>- HADS subsets (depression,<br>anxiety) and IES-R score (PTSD)<br>at hospital discharge and 3<br>months after and changes<br>between 3 months and hospital<br>discharge<br>- EQ-5D-5L at 3 months follow-<br>up and at hospital discharge<br>- walking independence<br>at discharge<br>- duration of MV<br>- LOS ICU and hospital<br>- incidence of delirium during<br>ICU stay<br>- incidence of ICU-AW at ICU<br>discharge | <ul> <li>Primary Endpoint: <ul> <li>incidence of psychiatric symptoms: significantly lower in the EM group (odds ratio (OR): 0.27, adjusted p = 0.032]</li> <li>significantly lower incidence of PTSD (OR: 0.06, adjusted p = 0.026) and significantly lower HADS subset score for anxiety (adjusted p = 0.004) and IES-R (adjusted p = 0.009) in EM-group</li> <li>risk for developing psychiatric symptoms [RR: 0.49, confidence interval (CI): 0.29–0.83, p = 0.010], depression (RR: 0.52, CI: 0.27–0.99, p = 0.006), anxiety (RR: 0.27, CI: 0.10–0.71, p &lt; 0.001), and PTSD (RR: 0.07, CI: 0.01–0.54, p &lt; 0.001) at 3 months follow-up</li> </ul> </li> <li>Secondary Endpoints: <ul> <li>3 months follow-up, EM group lower incidence of PTSD (OR: 0.06, adjusted p = 0.026) and IES-R (adjusted p = 0.009)</li> <li>incidence of depression, anxiety, and PTSD, the HADS subset scores for depression and anxiety, and the IES-R score at the time of hospital discharge (n.s)</li> <li>comparing hospital discharge and at 3 months follow-up, changes in the HADS subset scores for anxiety in the EM group were significantly higher (adjusted p = 0.032)</li> <li>EQ-5D-5L 3 months follow-up (p=0.235) hospital discharge (p=0.384)</li> <li>walking independence at discharge higher in EM (p=0.032)</li> <li>duration of MV shorter in EM (p&lt;0.001)</li> <li>LOS ICU and hospital shorter in EM (ICU: p &lt;0.001 and hospital: p= 0.004)</li> <li>incidence of delirium during ICU stay lower in EM (p=0.013)</li> <li>incidence of ICU-acquired weakness (ICU-AW) at ICU discharge lower in EM (p= 0.006)</li> </ul> </li> </ul> | 3                 |

ICU = Intensive Care Unit, EM = Early Mobilization, HADS = Hospital anxiety and depression scale, IES-R = Impact of event scale-revised, PTSD = posttraumatic stress disorder, MV = Mechanical ventilation, LOS = Length of stay, ICUAW = Intensive Care Unit acquired weakness; OR= Odds ratio

EM in the ICU is significantly associated with lower rates of psychiatric symptoms, including depression, anxiety, and PTSD, at 3 months follow-up after hospital discharge.

| Reference,<br>Study Type                                                                                                                                         | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Drop<br>-out<br>Rate | Intervention                             | Control                                                                                   | Optimal Population                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 2124<br>Vollenweider<br>2022<br>PMID:<br>35552550<br>DOI:<br>10.1371/jour<br>nal.pone.026<br>7255<br><b>Specification</b><br>of study:<br>a systematic<br>review | 5 publications<br>(1x within-patient randomized<br>trial, 1x controlled randomized<br>open clinical trial, 1x within-<br>patient randomized trial, 1x<br>randomized controlled cross-over<br>trial, 1x controlled randomized<br>pilot study)<br>Inclusion criteria:<br>-RCTs<br>-in English or German language<br>- mechanically and invasively<br>ventilated and sedated critically ill<br>pts > 18 years<br>- evaluated the effect of passive<br>motion of the lower extremities<br>carried out in bed, either manually<br>or through a therapy device, on<br>musculature, inflammation, the<br>immune system<br>-development of ICUAW<br>-included a comparison |                      | Passive early<br>motion<br>interventions | Standard<br>therapy<br>-respiratory<br>therapy<br>-nursing<br>measures and<br>positioning | <b>Outcomes:</b><br>Effects of early passive<br>motion<br>-on musculature<br>-on inflammation and<br>immune system<br>-on development of<br>ICUAW | No p-values stated<br>No significant difference between groups in:<br>-muscle degradation<br>-development of ICUAW<br>Significant difference between groups in:<br>- effect on musculature by passive bed<br>cycling<br>o preservation of muscle thickness<br>o increase of microcirculation<br>- application of a cuff with additional passive<br>exercise and the high-dose passive exercise<br>on a CPM splint led to significantly lesser<br>muscle loss<br>- Significant reduction of TNF-α<br>Unclear effects on inflammation and<br>immune system:<br>- unclear effects on cytokines<br>- Increase of pro-inflammatory IFN- γ | 1 → 3<br>(no<br>meta-<br>analysis) |

Pts = patients, ICU-AW = intensive care unit acquired weakness

Multicomponent strategy was the most effective non-pharmacological intervention in reducing the incidence of ICU delirium. Early mobilization and family participation involvement in non-pharmacological interventions seemed to be more effective in reducing the incidence of ICU delirium.

#### References

Medrinal C, Combret Y, Prieur G, Robledo Quesada A, Bonnevie T, Gravier FE, et al. Comparison of exercise intensity during four early rehabilitation techniques in sedated and ventilated patients in ICU: a randomised cross-over trial. Crit Care. 2018; 22(1):110. https://doi.org/10.1186/s13054-018-2030-0 PMID: 29703223.
 Griffiths RD, Palmer TE, Helliwell T, MacLennan P, MacMillan RR. Effect of passive stretching on the wasting of muscle in the critically ill. Nutrition. 1995; 11(5):428–32. PMID: 8748193.

3. Barbalho M, Rocha AC, Seus TL, Raiol R, Del Vecchio FB, Coswig VS. Addition of blood flow restriction to passive mobilization reduces the rate of muscle wasting in elderly patients in the intensive care unit: a within-patient randomized trial. Clin Rehabil. 2019; 33(2):233–40. https://doi.org/10.1177/0269215518801440 PMID: 30246555.

4. Franca EET, Gomes JPV, De Lira JMB, Amaral TCN, Vilaca AF, Paiva Junior MDS, et al. Acute effect of passive cycle-ergometry and functional electrical stimulation on nitrosative stress and inflammatory cytokines in mechanically ventilated critically ill patients: a randomized controlled trial. Braz J Med Biol Res. 2020; 53(4):e8770. https://doi.org/10.1590/1414-431X20208770 PMID: 32294698.

5. Ximenes Carvalho MT, Ludke E, Cardoso DM, Paiva DN, Soares JC, de Albuquerque IM. Effects of early passive cycling exercise on quadriceps femoris thickness in critically ill patients: a controlled randomized pilot study. Fisioterapia e Pesquisa. 2019; 26(3):227–34. https://doi.org/10.1590/1809-2950/ 17025126032019 PMID: 139166522. Language: English. Entry Date: 20191031. Revision Date: 20191111. Publication Type: Article.

| Reference,<br>Study Type                                                                                                                               | Cases and C<br>(Participant #, Ch<br>Tota                                                                                                                                                                                                                                                   | naracteristics)                                                                                                          | Drop-<br>out<br>Rate | Intervention                                                             | Control                        | Optimal<br>Population                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2126<br>Bordas-Martinez<br>2022<br>PMID: 35479948<br>DOI:<br>10.3389/fmed.2022.8660<br>55<br>Specification of study:<br>retrospective cohort<br>study | 159 patients admitted<br>the intermediate respin<br>(IMCU) from March 13<br>of 2020<br>Inclusion criteria<br>- survival of severe COV<br>- requirement of high of<br>required [inspired oxyg<br>>0.5] with HFNC , and/<br>(IOT-MV) or NIV-MV<br>no exclusion criteria m<br>Per Bra<br>N=108 | ratory care unit<br>th until May 15th<br>VID-19 pneumonia<br>oxygen support<br>gen fraction (FiO2)<br>or either invasive |                      | Physiotherapy<br>group<br>With : n=32 early<br>PT, n=76 non-<br>early PT | Non-<br>physiotherapy<br>group | Primary outcome<br>- hospital LOS<br>- subject and<br>therapist safety<br>Secondary<br>outcome<br>- multivariate<br>analysis of MV<br>obesity | Primary outcome<br>- hospital LOS: 19 [ IQR 36.25] and<br>34 days (IQR 27.25) (p = 0.001) for<br>early and non-early PT groups<br>- no physiotherapist was infected,<br>no subject adverse effect was<br>identified<br>- early-PT group: identified<br>obesity [OR 3.21; p-value 0.028],<br>invasive mechanical ventilation<br>(OR 6.25; p-value<0.001)<br>- non-early-PT-group:(OR 3.54; p-<br>value 0.017) as independent<br>factors associated with a higher<br>risk of prolonged hospital stay | 4                 |

HFNC = high-flow nasal cannula, IQR = interquartile range, MV = mechanical ventilation, NIV = non-invasive, OR = odds ratio, PT = physio therapy

Rehabilitation in acute severe COVID-19 pneumonia is safe for subjects and healthcare workers and could reduce the length of hospitalization stay, especially in those that start early.

| Reference,<br>Study Type                                                                                                                  | Cases and<br>(Participant #, (<br>To                                                                                                                                      | Characteristics)                                                                                    | Drop-<br>out<br>Rate | Intervention                                                                                                                                                    | Control         | Optimal Population                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2127<br>Liu<br>2022<br>PMID: 35468868<br>DOI: 10.1186/s40560-<br>022-00613-8<br>Specification of study:<br>retrospective cohort<br>study | <ul> <li>progressive neurom</li> <li>post-cardiac arrest s</li> <li>unstable pelvic fract</li> <li>spinal injury with fractor</li> <li>or multiple absent ling</li> </ul> | ased on the Sepsis-3<br>lar disease<br>nuscular disease<br>syndrome<br>ture<br>acture of the spine, |                      | <b>EM group</b><br>(rehabilitation at<br>the level of<br>sitting on the<br>edge of the bed<br>or more within<br>the frst 3 days of<br>the patients' ICU<br>stay | Non-EM<br>group | Primary outcome<br>- in-hospital mortality<br>- ambulatory<br>dependence at the<br>hospital discharge<br>Secondary outcome<br>- ICU-LOS<br>- hospital stay<br>- total hospital costs | Primary outcome<br>- mortality : 7 (n=96) vs. 48 (n=200),<br>OR= 0.22 [95% Cl 0.06–0.88]; p<0.01<br>- dependence at discharge: 26<br>(n=96) vs. 113 (n=200), OR=0.24<br>[95% Cl 0.09–0.61]; p<0.01<br>Secondary outcome<br>- ICU-LOS (days) :<br>Intervention= 5.3 [4.2–6.8] vs.<br>control= 6.5 [5.0–10.7];p<0.01<br>- LOS hospital (days): intervention=<br>28.3 [16.8–46.1] vs. control= 34.0<br>[19.5–61.1]; p=0.10<br>- total costs: intervention= 24,823<br>[14,778– 39,703], control= 32,515<br>[20,060– 51,854]; p<0.01 | 4                 |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, OR = odds ratio

Achieving mobilisation within the first 3 days of ICU stay was significantly associated with better outcomes. Patients with sepsis might benefit most from achieving mobilization within 2–4 days.

| Reference,<br>Study Type                                                                                                                                                             | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention                             | Control         | Optimal<br>Population                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|-----------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2128<br>Chen 2022<br>PMID: 35468538<br>DOI:<br>10.1016/j.ijnurstu.<br>2022.104239<br><b>Specification of</b><br><b>study:</b> a<br>systematic review<br>and network<br>meta-analysis | 29 RCTs, 7005 pts <sup>1-29</sup><br>Inclusion criteria:<br>-pts (age >18 years) in ICU<br>-non-pharmacological interventions as<br>the intervention group<br>- non-pharmacological interventions or<br>routine care as the control group<br>- reporting delirium incidence assessed<br>by valid assessment tools<br>-delirium duration<br>-adopting RCT design<br>Exclusion criteria:<br>-subacute critical care unit<br>Per Branch |                      | non-<br>pharmacological<br>interventions | routine<br>care | <b>Outcomes:</b><br>- incidence of<br>delirium<br>- duration of<br>delirium | Results:<br>-multicomponent strategy was the<br>most effective non-pharmacological<br>intervention compared to usual care in<br>reducing incidence of ICU delirium<br>(OR=0.43, 95% CI= 0.22–0.84) but not<br>ICU delirium duration<br>- specific multi-treatment interventions<br>reduced the ICU delirium incidence and<br>duration, particularly involvement of<br>EM and family participation (OR = 0.12<br>with 95% CI = 0.02 to 0.83; mean<br>difference = - 1.34 with 95% CI = -2.52<br>to -0.16) | 1                 |

Pts = patients, RCT = randomized controlled trial, ICU = intensive care unit, OR = Odds Ratio, CI = Confidence interval, EM = early mobilization

The study suggests that the multicomponent strategy was the most effective nonpharmacological intervention in reducing the incidence of ICU delirium. Early mobilization and family participation involvement in non-pharmacological interventions seemed to be more effective in reducing the incidence of ICU delirium.

#### References

1. Álvarez, E.A., Garrido, M.A., Tobar, E.A., Prieto, S.A., Vergara, S.O., Briceño, C.D., González, F.J., 2017. Occupational therapy for delirium management in elderly patients without mechanical ventilation in an intensive care unit: a pilot ran- domized clinical trial. J. Crit. Care 37, 85–90.

Demoule, A., Carreira, S., Lavault, S., Pallanca, O., Morawiec, E., Mayaux, J., Arnulf, I., Similowski, T., 2017. Impact of earplugs and eye mask on sleep in critically ill patients: a prospective randomized study. Crit. Care 21, 284.
 Dessap, A.M., Roche-Campo, F., Launay, J.M., Charles-Nelson, A., Katsahian, S., Brun-Buisson, C., Brochard, L., 2015. Delirium and circadian rhythm of melatonin during weaning from mechanical ventilation: an ancillary study of a weaning trial. Chest 148, 1231–1241.

4. Eghbali-Babadi, M., Shokrollahi, N., Mehrabi, T., 2017. Effect of family-patient com- munication on the incidence of delirium in hospitalized patients in cardiovas- cular surgery ICU. Iran. J. Nurs. Midwifery Res. 22, 327–331.

5. Foreman, B., Westwood, A.J., Claassen, J., Bazil, C.W., 2015. Sleep in the neurological intensive care unit: feasibility of quantifying sleep after melatonin supplemen- tation with environmental light and noise reduction. J. Clin. Neurophysiol. 32, 66–74.

6. Fossat, G., Baudin, F., Courtes, L., Bobet, S., Dupont, A., Bretagnol, A., Benzekri-Le- fèvre, D., Kamel, T., Muller, G., Bercault, N., Barbier, F., Runge, I., Nay, M.A., Skarzynski, M., Mathonnet, A., Boulain, T., 2018. Effect of in-bed leg cycling and electrical stimulation of the quadriceps on global muscle strength in critically ill adults: a randomized clinical trial. JAMA 320, 368–378.

7. Moon, K.J., Lee, S.M., 2015. The effects of a tailored intensive care unit delir- ium prevention protocol: a randomized controlled trial. Int. J. Nurs. Stud. 52, 1423–1432.

8. Nydahl, P., Günther, U., Diers, A., Hesse, S., Kerschensteiner, C., Klarmann, S., Borzikowsky, C., Köpke, S., 2020. PROtocol-based MObilizaTION on intensive care units: stepped-wedge, cluster-randomized pilot study (Pro-Motion). Nurs. Crit. Care 25, 368–375.

9. Nydahl, P., McWilliams, D., Weiler, N., Borzikowsky, C., Howroyd, F., Brobeil, A., Lind- ner, M., von Haken, R., 2021. Mobilization in the evening to prevent delirium: a pilot randomized trial. Nurs. Crit. Care.

10. Ono, H., Taguchi, T., Kido, Y., Fujino, Y., Doki, Y., 2011. The usefulness of bright light therapy for patients after oesophagectomy. Intensive Crit. Care Nurs. 27, 158–166.

11. Potharajaroen, S., Tangwongchai, S., Tayjasanant, T., Thawitsri, T., Anderson, G., Maes, M., 2018. Bright light and oxygen therapies decrease delirium risk in crit- ically ill surgical patients by targeting sleep and acid-base disturbances. Psychi- atry Res. 261, 21–27

12. Rosa, R.G., Falavigna, M., da Silva, D.B., Sganzerla, D., Santos, M.M.S., Kochhann, R., de Moura, R.M., Eugênio, C.S., Haack, T., Barbosa, M.G., Robinson, C.C., Schnei- der, D., de Oliveira, D.M., Jeffman, R.W., Cavalcanti, A.B., Machado, F.R., Azevedo, L.C.P., Salluh, J.I.F., Pellegrini, J.A.S., Moraes, R.B., Foernges, R.B., Torelly, A.P., Ayres, L.O., Duarte, P.A.D., Lovato, W.J., Sampaio, P.H.S., de Oliveira Júnior, L.C., Paranhos, J., Dantas, A.D.S., Brito, P., Paulo, E.A.P., Gallindo, M.A.C., Pilau, J., Valentim, H.M., Meira Teles, J.M., Nobre, V., Birriel, D.C., Castro L. Cor- rêa, E., Specht, A.M., Medeiros, G.S., Tonietto, T.F., Mesquita, E.C., da Silva, N.B., Korte, J.E., Hammes, L.S., Giannini, A., Bozza, F.A., Teixeira, C., 2019. Effect of flexible family visitation on delirium among patients in the intensive care unit: the ICU Visits randomized clinical trial. JAMA 322, 216–228.

13. Taguchi, T., Yano, M., Kido, Y., 2007. Influence of bright light therapy on postopera- tive patients: a pilot study. Intensive Crit. Care Nurs. 23, 289–297.

14. Van Rompaey, B., Elseviers, M.M., Van Drom, W., Fromont, V., Jorens, P.G., 2012. The effect of earplugs during the night on the onset of delirium and sleep percep- tion: a randomized controlled trial in intensive care patients. Crit. Care 16, R73.

15. Contreras, C.C.T., Esteban, A.N.P., Parra, M.D., Romero, M.K.R., Silva, C.G.D., Buitrago, N.P.D., 2021. Multicomponent nursing program to prevent delirium in critically ill patients: a randomized clinical trial. Rev. Gaucha Enferm. 42, e20200278.

16. Obanor, O.O., McBroom, M.M., Elia, J.M., Ahmed, F., Sasaki, J.D., Murphy, K.M., Chalk, S., Menard, G.A., Pratt, N.V., Venkatachalam, A.M., Romito, B.T., 2021. The impact of earplugs and eye masks on sleep quality in surgical ICU patients at risk for frequent awakenings. Crit. Care Med. 49, E822–E823.

17. Kim, J., Choi, D., Yeo, M.S., Yoo, G.E., Kim, S.J., Na, S., 2020. Effects of patient-directed interactive music therapy on sleep quality in postoperative elderly patients: a randomized-controlled trial. Nat. Sci. Sleep 12, 791–800. 18. Arttawejkul, P., Reutrakul, S., Muntham, D., Chirakalwasan, N., 2020. Effect of night- time earplugs and eye masks on sleep quality in intensive care unit patients. Indian J. Crit. Care Med. 24, 5–10.

19. Lisann-Goldman, L.R., Pagnini, F., Deiner, S.G., Langer, E.J., 2019. Reducing delirium and improving patient satisfaction with a perioperative mindfulness interven- tion: a mixed-methods pilot study. Holist. Nurs. Pract. 33, 163–176. 20. Morris, P.E., Berry, M.J., Clark Files, D., Clifton Thompson, J., Hauser, J., Flores, L., Dhar, S., Chmelo, E., Lovato, J., Douglas Case, L., Bakhru, R.N., Sarwal, A., Parry, S.M., Campbell, P., Mote, A., Winkelman, C., Hite, R.D., Nicklas, B., Chatterjee, A., Young, M.P., 2016. Standardized rehabilitation and hospital length of stay among patients with acute respiratory failure: a randomized clinical trial. JAMA 315, 2694–2702.

21. Munro, C.L., Cairns, P., Ji, M., Calero, K., McDowell Anderson, W., Liang, Z., 2017. Delirium prevention in critically ill adults through an automated reorientation intervention – a pilot randomized controlled trial'. Heart Lung 46, 234–238.

22. Giraud, K., Pontin, M., Sharples, L.D., Fletcher, P., Dalgleish, T., Eden, A., Jenkins, D.P., Vuylsteke, A., 2016. Use of a structured mirrors intervention does not reduce delirium incidence but may improve factual memory encoding in cardiac surgi- cal ICU patients aged over 70 years: a pilot time-cluster randomized controlled trial. Front. Aging Neurosci. 8, 228.

23. Guo, Y., Sun, L., Li, L., Jia, P., Zhang, J., Jiang, H., Jiang, W., 2016. Impact of multicom- ponent, nonpharmacologic interventions on perioperative cortisol and mela- tonin levels and postoperative delirium in elderly oral cancer patients. Arch. Gerontol. Geriatr. 62, 112–117

24. Simons, K.S., Laheij, R.J.F., van den Boogaard, M., Moviat, M.A.M., Paling, A.J., Pold- erman, F.N., Rozendaal, F.W., Salet, G.A.M., van der Hoeven, J.G., Pickkers, P., de Jager, C.P.C., 2016. Dynamic light application therapy to reduce the incidence and duration of delirium in intensive-care patients: a randomised controlled trial. Lancet Respir. Med. 4, 194–202.

25. Chevillon, C., Hellyar, M., Madani, C., Kerr, K., Kim, S.C., 2015. Preoperative education on postoperative delirium, anxiety, and knowledge in pulmonary thromboen- darterectomy patients. Am. J. Crit. Care. 24, 164–171. 26. Karadas, C., Ozdemir, L., 2016. The effect of range of motion exercises on delirium prevention among patients aged 65 and over in intensive care units. Geriatr. Nurs. 37, 180–185.

27. Rood, P.J.T., Zegers, M., Ramnarain, D., Koopmans, M., Klarenbeek, T., Ewalds, E., van der Steen, M.S., Oldenbeuving, A.W., Kuiper, M.A., Teerenstra, S., Adang, E., van Loon, L.M., Wassenaar, A., Vermeulen, H., Pickkers, P., van den Boogaard, M., 2021. The impact of nursing delirium preventive interventions in the ICU: a multicenter cluster-randomized controlled clinical trial. Am. J. Respir. Crit. Care Med. 204, 682–691.

28. Nickels, M.R., Aitken, L.M., Barnett, A.G., Walsham, J., King, S., Gale, N.E., Bowen, A.C., Peel, B.M., Donaldson, S.L., Mealing, S.T.J., McPhail, S.M., 2020. Effect of in-bed cycling on acute muscle wasting in critically ill adults: a randomised clinical trial. J. Crit. Care 59, 86–93.

29. Schweickert, W.D., Pohlman, M.C., Pohlman, A.S., Nigos, C., Pawlik, A.J., Esbrook, C.L., Spears, L., Miller, M., Franczyk, M., Deprizio, D., Schmidt, G.A., Bowman, A., Barr, R., McCallister, K.E., Hall, J.B., Kress, J.P., 2009. Early physical and occu- pational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet N. Am. Ed. 373, 1874–1882.

| +2129<br>Kagan<br>2022<br>PMID:<br>35458151<br>DOI:<br>10.3390/nu140<br>81589<br>Kagan<br>- age 1<br>- MV f<br>- expe<br>Exclus<br>- cond<br>- traur<br>lumba<br>- open<br>compa<br>- antic<br>- artic<br>- artic | <b>lusion criteria:</b><br>ge 18–90 years<br>V for at least 48 h<br>spected period of venti<br><b>lusion criteria:</b><br>onditions that impaired                                  | lation ≥ 7d<br>the cycling movement<br>ery of the leg, pelvis, or                                                           | Group 1: Cycle<br>ergometry with                                                                                                                                          |                                                                                                                                  | Primary                                                                                                                          |                                                                                                            |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---|
| of study: function<br>RCT severe                                                                                                                                                                                  | oen abdominal wounds<br>npartment syndrome<br>nticipated fatal outcom<br>e-existing diagnosis of<br>akness, acute stroke, o<br>rdiorespiratory instabi<br>ontra-indication for EN, | e of ICU<br>neuromuscular<br>r status epilepticus<br>lity<br>including mechanical or<br>ion, high output fistula,<br>atitis | standard EN<br>(Jevity®, Abbott,<br>Chicago, IL, USA)<br>Group 2: Cycle<br>ergometry with<br>protein-enriched<br>EN (veryhigh-<br>protein formula<br>Promote®,<br>Abbott) | Conventional PT<br>with EN:<br>- (MOTOmed<br>viva2,<br>Medimotion,<br>Carmarthenshire,<br>Wales, United<br>Kingdom, SA39<br>9AZ) | endpoint:<br>- MV duration<br>Secondary<br>outcomes:<br>- ICU mortality<br>- ICU LOS<br>- hospital LOS<br>- reintubation<br>rate | Primary<br>endpoint:<br>- MV duration<br>n.s.<br>Secondary<br>outcomes:<br>- no significant<br>differences | 2 |

EN = enteral nutrition, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, n.s. = not significant, PT = physiotherapy, pts = patients

Cycle ergometry combined with either standard enteral nutrition or with protein-enriched enteral nutrition seems to have no effect on MV duration.

| Reference,<br>Study Type                                                                                                                              | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                                                                                                                     | Characteristics)                                                                                                                      | Drop-<br>out<br>Rate | Intervention | Control              | Optimal Population                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2130<br>Watanabe<br>2022<br>PMID: 35415279<br>DOI:<br>10.2490/prm.20220<br>013<br>Specification of<br>study:<br>Retrospective<br>single-center study | 177 patients admitte<br>January 2016 to Mar<br>Inclusion criteria<br>- pts > 18 years<br>Exclusion criteria<br>- ICU discharge withi<br>- unable to walk inde<br>hospitalization, were<br>impaired<br>- difficulty communi<br>- mobility-limiting co<br>unstable pelvic fract<br>- considered termina<br>life/ died during the<br>Per Br | rch 2019<br>in 48h<br>ependently before<br>e neurologically<br>cating<br>onditions (e.g.,<br>ures)<br>al or at the end of<br>ICU stay | -                    | EM           | Late<br>mobilisation | Primary outcome<br>- independent gait at<br>discharge<br>Secondary outcome<br>- medical costs<br>- 90-day survival and<br>durations of ICU<br>- hospital stays | Primary outcome         - independent gait at         discharge:         (OR: 4.47, 95% CI: 1.39–         17.43, P=0.011)         Secondary outcome         - medical costs:         Intervention= 19,210         [11,107– 26,620], control=         28,789 [20,969– 41,853];         p>0.0001         - 90-day survival(%):         intervention=80 (94),         control= 70 (76) ; p<0.0001 | 4                 |

CI = confidence interval, EM = early mobilization, ICU = intensive care unit, LOS = length of stay, OR = odds ratio, pts = patients

EM, which refers to achieving the strength to sit on the edge of the bed within the first 5 days of the ICU stay, might be an adequate target to improve clinical outcomes.

| Reference,<br>Study Type                                                                                                         | (Participant #,                                                                                                                                                                      | d Controls<br>Characteristics)<br>otal                                     | Drop-out Rate                                                                                                                                                                        | Intervention                                                                                                            | Control | Optimal<br>Population                                                                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2131<br>Campos<br>2022<br>PMID:<br>35412472<br>DOI:<br>10.1097/CCM<br>.000000000<br>005557<br>Specification<br>of study:<br>RCT | ventilated for >4<br>Exclusion criteri<br>- inability to wal<br>admission -neur<br>disease<br>- spinal cord inju<br>- epilepsy<br>- risk of death w<br>- musculoskelet<br>conditions | ay mechanically<br>48h<br>i <b>a:</b><br>ik prior to<br>omuscular<br>uries | 92 drop-outs:<br>(49 I, 43 C)<br>reasons:<br>- death<br>- transferred<br>to other<br>hospital<br>- palliative care<br>- could not be<br>assessed with<br>FSS-ICU at ICU<br>discharge | EM+ NMES<br>- on<br>quadriceps<br>and tibialis<br>anterior<br>- once a day<br>60 min,<br>5d/week until<br>ICU discharge | EM      | Primary<br>endpoint:<br>FSS-ICU at ICU-<br>discharge,<br>hospital<br>discharge and<br>day of<br>awakening<br>Secondary<br>outcomes:<br>- MRC-SS<br>- PFIT<br>- Bathel index | Primary endpoint:<br>- FSS-ICU<br>at ICU discharge: I: 28 vs C: 18 p=0.004<br>on the first day awake: I: 22 vs C: 12 p=0.019<br>at hospital discharge: I: 33 vs C: 25 p=0.014<br>Secondary outcomes:<br>at ICU discharge:<br>- MRC-SS: 58.5 vs 50 p=0.001<br>- PFIT: 11 vs 7 p=0.001<br>- Barthel index: n.s.<br>at first day awake:<br>- MRC-SS: 54 vs 42 p=0.011<br>- PFIT: 9 vs 5 p=0.025<br>at hospital discharge:<br>- MRC-SS: 59 vs 52 p=0.010<br>- PFIT: 11 vs 9 p=0.005<br>- Barthel index: n.s. | 2                 |

C = control, EM = early mobilisation, FSS-ICU = functional status score for ICU, I = intervention, ICU = intensive care unit, MRC-SS = medical research council sum-score, NMES = neuro-muscular electrical stimulation, PFIT = the physical function test in the ICU, pts = patients

Early neuromuscular electrical stimulation in addition to early mobilisation improves functional status and improves muscle strength in ICU patients.

| Reference,<br>Study Type                                                                                                                  | (Participant #,                                                                                                                                                                                                                                                                                                              | d Controls<br>Characteristics)<br>otal                                                                                            | Drop-<br>out<br>Rate | Intervention                                                            | Control                                                                 | Optimal Population                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2032<br>Sumin<br>2022<br>PMID:<br>35410009<br>DOI:<br>10.3390/ijerp<br>h19074329<br>Specification<br>of study:<br>Observational<br>study | 60 pts<br>Inclusion criteri<br>- elective heart of<br>vessel surgery w<br>complications (i<br>stay by 3 d or pr<br>Exclusion criteri<br>- patient refusal<br>- severe comorb<br>(neurological or<br>- cognitive dysfu<br>- post-op deliriu<br>- agonizing patie<br>- fatal post-op co<br>(hospital death)<br>Per B<br>n = 31 | or intrathoracic<br>vith<br>ncreasing ICU<br>rolonged MV)<br>ia:<br>bidity<br>orthopedic)<br>unction<br>m<br>ents<br>omplications |                      | <b>Group 1:</b><br>achieved ><br>300m in<br>6MWT<br>before<br>discharge | <b>Group 2:</b><br>achieved <<br>300m in<br>6MWT<br>before<br>discharge | <b>Outcome:</b><br>factors determining<br>functional status at<br>discharge | Factors that determined functional<br>status:<br>- lower-extremity muscle strength 3d<br>post-op: G1: 16.7 [13.2; 25.1] vs. G2:<br>12.6 [9.1; 14.9]; p = 0.001<br>- lower handgrip strength 3d post-op:<br>G1: 28.0 [24.0; 35.0] vs. G2: 18.0 [15.0;<br>27.0]; p = 0.002<br>- foot extensor strength (MD 0.308; p=<br>0.019)<br>- longer aortic clamping time (MD<br>-0.401; p= 0.001)<br>- longer ICU-LOS: G1: 5.5 [3.0; 6.0] vs.<br>G2: 7.5 [3.0; 12.0]; p <0.001 | 3                 |

ICU = intensive care unit, MV = mechanical ventilation, 6MWT = 6-minute walking test

Lower muscle strength, longer aortic clamping time and longer ICU stay are independent factors for reduced functional status after cardiac surgery.

| Reference,<br>Study Type                                                                                                                                   | (Participant #,                                                                                                                                                                                                                                                                             | d Controls<br>Characteristics)<br>otal | Drop-<br>out<br>Rate | Intervention                                                 | Control                                                       | Optimal Population                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------|--------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2134<br>Sakai<br>2022<br>PMID:<br>35358285<br>DOI:<br>10.1371/jour<br>nal.pone.026<br>6348<br>Specification<br>of study:<br>Retrospective<br>cohort study | 257 pts<br>Inclusion criteria:<br>- <18 years<br>- received intens<br>- sepsis diagnose<br>- Bl score > 69<br>Exclusion criteria:<br>- head injuries<br>- burns<br>- spinal injuries<br>- lower limps with<br>fractures<br>- septic shock<br>- unresponsive to<br>- expected morta<br>Per E | h multiple<br>treatment                |                      | After<br>assigning a<br>specialized<br>physical<br>therapist | Before<br>assigning a<br>specialized<br>physical<br>therapist | Primary outcome:<br>ADL recovery<br>(BI ≥ 70 considered as<br>ADL independence)<br>Secondary Outcome:<br>- hospital LOS<br>- discharge Outcome<br>Sample size<br>calculation: 64 per<br>group with an effect<br>size of 0.5 and 80%<br>power | Primary outcome:<br>- independence in ADLs: BI ≥ 70:<br>39 (45%) vs. 39 (66%), p = 0.022<br>Secondary outcome:<br>- hospital LOS: 28 (16-46) days vs. 18<br>(10-39); p = 0.016<br>- discharge to home: 41 (48%) vs. 32<br>( 54%) p = 0.44) | 4                 |

ADL = activities of daily living, BI = Barthel index

Assigning a physical therapist to a patient with sepsis shortened the number of days until begin of rehabilitation.

| Reference,<br>Study Type                                                                                                    | Cases and<br>(Participant #, (<br>To                                                                                                                                                                                                                                                                                              | Characteristics)                                                                                                 | Drop-out<br>Rate                                                | Intervention                                                                                                                             | Control       | Optimal Population                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade               |
|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| #2135<br>Han<br>2022<br>PMID:<br>35301878<br>DOI:<br>10.1177/030<br>00605221087<br>031<br>Specification<br>of study:<br>RCT | 140 pts<br>Inclusion criteria:<br>- 50 years or older<br>- elective CABG for t<br>between January 20<br>Exclusion criteria:<br>- exercise-induced sy<br>ventricular arrhythm<br>- inability to exercise<br>and walk owing to co<br>- MV > 24h<br>- fraction of inspired<br>- new ischemic elect<br>changes<br>Per Ba<br>SGR-Group | he first time<br>19 and June 2018<br>yncope or<br>nias<br>e<br>omorbidities<br>I oxygen >55%<br>crocardiographic | 16 pts (9<br>due to pain,<br>7 due to<br>lack of<br>motivation) | SGR (+UC) =<br>respiratory<br>exercises and<br>daily walking<br>exercises<br>IGR (+UC) =<br>early CR +<br>general ward<br>rehabilitation | Usual<br>care | Primary outcome:<br>- activities of daily living<br>(Barthel Index score)<br>Secondary outcomes:<br>- post-operative LOS<br>- PPC<br>- atrial fibrillation during<br>hospitalization<br>- complications within<br>30 days of discharge<br>(i.e., death, need for<br>reoperation, atrial<br>fibrillation, deep sternal<br>infection, stroke, and<br>re-admission to the<br>hospital) | Secondary outcomes:<br>- ICU and post-operative hospital LOS for<br>IGR group statistically shorter compared<br>with UC group and SGR group (p<0.05)<br>- PPC (p1 = 0.740, p2 = 0.740, p3 = 1.000)<br>and atrial fibrillation (p1 = 0.538, p2 =<br>0.682, p3 = 0.437): n.s.<br>- complications higher in UC than SGR | 2 → 3<br>(high risk<br>of bias) |
|                                                                                                                             | (n = 47)<br>IGR group (n =47)                                                                                                                                                                                                                                                                                                     | UC group ( n = 46)                                                                                               |                                                                 |                                                                                                                                          |               |                                                                                                                                                                                                                                                                                                                                                                                     | and IGR (p1 = 0.011, p2 = 0.011, p3 = 1.000)                                                                                                                                                                                                                                                                         |                                 |

CABG = coronary artery bypass grafting, CR = cardiac rehabilitation, IGR = intensive care unit group rehabilitation, LOS = length of stay; post-operative pulmonary complications, MV = mechanical ventilation, n.s. = not significant, pts = patients, p1 = p-value of the SGR group vs. the UC group, p2 = p-value of the IGR group vs. the UC group, p3 = p-value of the IGR group vs. the SGR group vs. the SGR group vs. the SGR group vs. the SGR group, SGR = single general ward rehabilitation, UC = usual care

Early rehabilitation during the ICU stay and on the general ward results in significant improvements in functional independence.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                               | Control                                                                                                                          | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2136<br>van den Oever<br>2022<br>PMID: 35285178<br>DOI:<br>10.14814/phy2.1<br>5213<br>Specification of<br>study:<br>prospective,<br>observational<br>study | 10 pts.<br>Inclusion criteria:<br>- > 18y<br>- mechanically ventilate<br>- capable of active in-becycling<br>Exclusion criteria:<br>- contra indications for<br>physical exercise<br>Per Branch<br>2 8 |                      | Motorized cycling<br>ergometer<br>(MOTOmed<br>Letto2)<br>5 min rest, 1min<br>passive cycling, 2<br>min unloaded<br>cycling | Non-<br>motorized<br>cycle<br>ergometer<br>(Lode)<br>no passive<br>cycling,<br>resistance<br>increased by 2<br>W every<br>minute | Outcomes:<br>- VO <sub>2</sub> , VCO <sub>2</sub> and workload versus<br>time<br>- HR, SpO <sub>2</sub><br>- VCO <sub>2</sub> removal and workload<br>versus time<br>- VCO <sub>2</sub> and heart rate versus VO <sub>2</sub><br>- EqO <sub>2</sub> and EqCO <sub>2</sub> versus time<br>- VE versus time<br>- VE versus VCO <sub>2</sub><br>- PaO <sub>2</sub> and PaCO <sub>2</sub> vs time<br>- respiratory exchange ratio vs<br>time<br>- tidal volume versus expiratory<br>minute volume | <ul> <li>- VO₂ max was not<br/>achieved by any<br/>patients</li> <li>- all remaining<br/>parameters increased<br/>during exercise, but no<br/>statistical analysis was<br/>performed</li> </ul> | 3 → 4             |

EqCO<sub>2</sub> = ventilatory equivalents for CO2, EqO<sub>2</sub> = ventilatory equivalents for O2, VE = expiratory minute volume, W = watt

### Exercise by motorized and non-motorized cycle ergometer was feasible even though it did not reach maximal exercise capacity.

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                 | Drop-<br>out<br>Rate | Intervention                                                                                               | Control             | Optimal Population                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence Grade                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| #2139<br>Borges<br>2022<br>PMID: 35244377<br>DOI:<br>10.21470/1678-<br>9741-2021-0140<br>Specification of<br>study:<br>Systematic<br>review without<br>meta analysis | 14 RCTs from 2020 (n = 1170 pts) <sup>1-14</sup> Inclusion criteria: - RCTs describing EM protocols - Pts following cardiac surgery  Per Branch |                      | <b>Early mobilisation:</b><br>immediate<br>postoperative<br>period or 1 <sup>st</sup><br>postoperative day | Standard of<br>care | Prescription of early<br>mobilization | <ul> <li>Prescription of early<br/>mobilization: <ul> <li>n = 14 studies prescribed<br/>early mobilization in<br/>patients undergoing<br/>cardiac surgery</li> <li>EM is performed once or<br/>twice daily</li> <li>EM duration 10-30<br/>minutes</li> <li>intensity of mobilization: <ul> <li>a) n = 2 studies aim for<br/>a low value using the<br/>borg scale</li> <li>b) n = 2 studies aim for<br/>a maximal increase<br/>in heart rate of 20<br/>bpm</li> <li>c) n = 1 study aims for<br/>the highest possible<br/>intensity</li> <li>d) n = 9 studies did not<br/>report intensity</li> </ul> </li> </ul></li></ul> | 1 → 3<br>(qualitative<br>analysis only<br>without meta-<br>analysis) |

EM = early mobilisation, pts = patients, RCT = randomized controlled trial

Early mobilisation in patients undergoing cardiac surgery is performed with different intensities up to twice daily for a maximum of 30 min.

#### References

- 1. Ximenes NN, Borges DL, Lima RO, Barbosa e Silva MG, Silva LN, Costa Mde A, et al. Effects of resistance exercise applied early after coronary artery bypass grafting: a randomized controlled trial. Braz J Cardiovasc Surg. 2015;30(6):620-5. doi:10.5935/16789741.20150077.
- 2. Cacau Lde A, Oliveira GU, Maynard LG, Araújo Filho AA, Silva WM Jr, Cerqueria Neto ML, et al. The use of the virtual reality as intervention tool in the postoperative of cardiac surgery. Rev Bras Cir Cardiovasc. 2013;28(2):281-9. doi:10.5935/1678-9741.20130039.
- 3. Gama Lordello GG, Gonçalves Gama GG, Lago Rosier G, Viana PADC, Correia LC, Fonteles Ritt LE. Effects of cycle ergometer use in early mobilization following cardiac surgery: a randomized controlled trial. Clin Rehabil. 2020;34(4):450-9. doi:10.1177/0269215520901763.
- 4. Pantoni CB, Di Thommazo-Luporini L, Mendes RG, Caruso FC, Mezzalira D, Arena R, et al. Continuous positive airway pressure during exercise improves walking time in patients undergoing inpatient cardiac rehabilitation after coronary artery bypass graft surgery: a RANDOMIZED CONTROLLED TRIAL. J Cardiopulm Rehabil Prev. 2016;36(1):20-7. doi:10.1097/HCR.00000000000144.
- 5. Silva LN, Marques MJS, Lima RS, Fortes JVS, Silva MGB, Baldez TEP, et al. Retirada precoce do leito no pós operatório de cirurgia cardíaca: Repercussões cardiorrespiratórias e efeitos na força muscular respiratória e periférica, na capacidade funcional e função pulmonar. ASSOBRAFIR Ciênc. 2017;8(2):25-39. doi:10.47066/21779333/ac.27867.
- 6. Stein R, Maia CP, Silveira AD, Chiappa GR, Myers J, Ribeiro JP. Inspiratory muscle strength as a determinant of functional capacity early after coronary artery bypass graft surgery. Arch Phys Med Rehabil. 2009;90(10):1685-91. doi:10.1016/j.apmr.2009.05.010.
- 7. Tariq MI, Khan AA, Khalid Z, Farheen H, Siddiqi FA, Amjad I. Effect of early ≤ 3 mets (metabolic equivalent of tasks) of physical activity on patient's outcome after cardiac surgery. J Coll Physicians Surg Pak. 2017;27(8):490-4.
- 8. Hirschhorn AD, Richards D, Mungovan SF, Morris NR, Adams L. Supervised moderate intensity exercise improves distance walked at hospital discharge following coronary artery bypass graft surgery--a randomised controlled trial. Heart Lung Circ. 2008;17(2):129-38. doi:10.1016/j.hlc.2007.09.004.
- 9. Højskov IE, Moons P, Egerod I, Olsen PS, Thygesen LC, Hansen NV, et al. Early physical and psycho-educational rehabilitation in patients with coronary artery bypass grafting: a randomized controlled trial. J Rehabil Med. 2019;51(2):136-43. doi:10.2340/16501977-2499.
- 10. Zanini M, Nery R, Lima J, Buhler R, Silveira R, Stein R. Effects of different rehabilitation protocols in inpatient cardiac rehabilitation after coronary artery bypass graft surgery: a randomized clinical trial. J Cardiopulm Rehabil Prev. 2019;39(6):19-25. http://doi: 10.1097/ HCR.00000000000431.
- 11. Windmöller P, Bodnar ET, Casagrande J, Dallazen F, Schneider J, Berwanger SA, et al. Physical exercise combined with CPAP in subjects who underwent surgical myocardial revascularization: a randomized clinical trial. Respir Care. 2020;65(2):150-7. doi:10.4187/ respcare.06919.
- 12. Herdy AH, Marcchi PLB, Vila A, Tavares C, Collaco J, Niebauer J, Ribeiro JP: Pre- and postoperative cardiopulmonary rehabilitation in hospitalized patients undergoing coronary artery bypass surgery: a randomized controlled trial. Am J Phys Med Rehabil. 2008;87(9):714719. https://doi: 10.1097/PHM.0b013e3181839152.
- 13. Mendes RG, Simões RP, De Souza Melo Costa F, Pantoni CB, Di Thommazo L, Luzzi S, et al. Short-term supervised inpatient physiotherapy exercise protocol improves cardiac autonomic function after coronary artery bypass graft surgery--a randomised controlled trial. Disabil Rehabil. 2010;32(16):1320-7. doi:10.3109/09638280903483893.
- 14. Borges DL, Silva MG, Silva LN, Fortes JV, Costa ET, Assunção RP, et al. Effects of aerobic exercise applied early after coronary artery bypass grafting on pulmonary function, respiratory muscle strength, and functional capacity: a randomized controlled trial. J Phys Act Health. 2016;13(9):946-51. doi:10.1123/jpah.2015-0614.

| Reference,<br>Study Type                                                                                                                             | (Participant #,   | d Controls<br>Characteristics)<br>tal   | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                        | Control    | Optimal Population                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                            | Evidenco<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2142<br>Nakamura<br>2022<br>PMID: 35182302<br>DOI:<br>10.1007/s11748-<br>022-01786-7<br>Specification of<br>study:<br>Retrospective<br>cohort study | of aortic surgery | aortic surgery and<br>le ICU<br>surgery |                      | <b>Early rehabilitation</b><br>(rehabilitation program<br>prescribed by<br>physicians, physical<br>therapists, or<br>occupational therapists<br>within 3 days of aortic<br>surgery) | Usual care | Primary outcome<br>- physical function at<br>discharge measured<br>by the Barthel index<br>score<br>Secondary outcome<br>- in-hospital mortality,<br>-ICU LOS<br>- hospital LOS<br>- total hospitalization<br>costs | Primary outcome<br>- Barthel index score:<br>difference= $4.0 (95\%Cl: 2.8$<br>to $5.2$ ), p<0.001<br>Secondary outcome<br>- in-hospital mortality (%):<br>difference= $-2.5 (95\% Cl:$<br>-3.0 to $-2.0$ ); p<0.001<br>- ICU LOS (days):<br>difference= $-1.7 (95\%$<br>Cl-2.0 to $-1.4$ ); p<0.001<br>- hospital LOS (days):<br>difference= $-5.2 (95\% Cl:$<br>-6.8 to $-3.7$ ) <0.001<br>- total hospitalization costs | 4                 |
| conort study                                                                                                                                         | N=44746           | N=76278                                 |                      |                                                                                                                                                                                     |            |                                                                                                                                                                                                                     | (x100000 yen) :<br>difference= -4.9 (95% CI:<br>-6.6 to -3.1); p<0.001                                                                                                                                                                                                                                                                                                                                                     |                   |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay

Early rehabilitation within 3 days of aortic surgery was associated with improved physical functions at discharge, shorter ICU and hospital stays, and lower hospitalization costs without increased mortality.

| #2145Inclusion criteria:<br>- age > 18 years<br>- ARDS pts in ICU<br>- MV > 24 hoursEarly physiotherapy<br>(including respiratory and<br>rehabilitation activities;<br>not further described):<br>- in ICU/IMCU:<br>o twice a day, ≥ 40Primary outcome:<br>- number and type of<br>physiotherapy treatments<br>performed during hospitalization<br>- number of physiotherapy-related<br>AEsPrimary outcome:<br>- number and type of<br>physiotherapy treatments<br>performed during hospitalization:<br>- number of physiotherapy-related<br>AEsPrimary outcome:<br>- number of physiotherapy reatments<br>performed during hospitalization<br>- number of physiotherapy treatments<br>performed during hospitalization<br>- in ICU/IMCU:<br>o twice a day, ≥ 40Primary outcome:<br>- number of physiotherapy<br>- number of physiotherapy<br>- number of physiotherapy<br>- in ICU/IMCU:<br>o twice a day, ≥ 40Primary outcome:<br>- number of physiotherapy<br>- number of physiotherapy<br>- number of physiotherapy<br>- in ICU/IMCU:<br>o twice a day, ≥ 40Primary outcome:<br>- number of physiotherapy<br>- number of physiotherapy<br>- inticuring hospitalization<br>- first time sitting out of head standPrimary outcome:<br>- number of physiotherapy<br>- inticuring hospitalization<br>- inticuring hospitalizatio | Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                              | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                       | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| DOI:       10.1011/2       Exclusion criteria:       - cognitive impairment       - orgitive impairment       - orgitive impairment       - neuromuscular, orthopaedic, or any other disease hindering ambulation       - ostarting as soon as sedation was reduced and clinical conditions were stable ( <i>not further described</i> )       - functional independence in ADL assessed by Barthel Index       - number of AEs (n [%]): 32 (0.58%)       - number of AEs (n [%]): 32 (0.58%)       - n = 5 in ICU       - n = 5 in ICU       - n = 0 in general ward         Yudy       Per Branch       - in-hospital deaths for any cause       - in-hospital deaths for any cause       - MMS       - No detailed assessment was carried out because higher-quality evidence is available on this topic.       - n = 0 in general ward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Rossi<br>2022<br>PMID:<br>35086328<br>DOI:<br>10.4081/mon<br>aldi.2022.208<br>7<br>Specification<br>of study:<br>Retrospective<br>observational | Inclusion criteria:<br>- age > 18 years<br>- ARDS pts in ICU<br>- MV > 24 hours<br>- laboratory-confirmed COVID-19 diagnosis<br>- treatment by respiratory physiotherapist<br>during ICU stay<br>Exclusion criteria:<br>- cognitive impairment<br>- neuromuscular, orthopaedic, or any other<br>disease hindering ambulation |                      | <ul> <li>(including respiratory and rehabilitation activities; not further described):</li> <li>in ICU/IMCU: <ul> <li>twice a day, ≥ 40</li> <li>minutes per session</li> <li>starting as soon as sedation was reduced and clinical conditions were stable (not further described)</li> <li>in general wards: <ul> <li>one session per day</li> <li>assignment of</li> </ul> </li> </ul></li></ul> |         | <ul> <li>number and type of<br/>physiotherapy treatments<br/>performed during hospitalization</li> <li>number of physiotherapy-related<br/>AEs</li> <li>Secondary outcomes: <ul> <li>physiotherapy treatments</li> <li>performed during hospitalization</li> <li>first time sitting out of bed, stand<br/>and walking</li> <li>6MWT</li> <li>1m-STST</li> <li>MRC-SS of upper and lower<br/>extremities</li> <li>functional independence in ADL<br/>assessed by Barthel Index</li> <li>ICU LOS</li> <li>hospital LOS</li> <li>duration of MV</li> <li>discharges at home, to in-patient<br/>rehabilitation or transferred to<br/>other hospital</li> <li>in-hospital deaths for any cause</li> </ul> </li> </ul> | <ul> <li>number and type of<br/>physiotherapy treatments<br/>performed during<br/>hospitalization:         <ul> <li>number of physiotherapy<br/>entries registered during the<br/>hospital stay (Median [IQR]):<br/>60.5 [36-93]</li> <li>type of physiotherapy<br/>treatments at first<br/>assessment:                 <ul> <li>12% sitting on the edge<br/>of bed</li> <li>88% In-bed<br/>interventions</li></ul></li></ul></li></ul> |                   |

ADL = activities of daily living, AE = adverse events, ARDS = acute respiratory distress syndrome, ICU = intensive care unit, IMCU = intermediate care unit, LOS = length of stay, MMS = Manchester mobility score, MRC = medical research council sum score, MV = mechanical ventilation, pts = patients, 1m-STST = 1-minute sit-to-stand test, 6MWT = 6minute walking test

Early physiotherapy is feasible and might be safe in critically ill COVID-19 patients.

| Reference,<br>Study Type                                                                                                                                           | Cases and Controls<br>(Participant #,<br>characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                           | Drop<br>-out<br>Rate | Intervention                                                                      | Control                                                                      | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Watanabe<br>2021<br>DOI:<br>10.2490/prm.2<br>0210054<br>PMID:<br>35083381<br><b>Specification</b><br>of study:<br>Single-Center,<br>retrospective,<br>cohort study | patients at ICU between<br>April 2019 and March<br>2020 → 54 pts<br>Inclusion criteria:<br>- age > 18 years<br>- mechanical ventilation in<br>ICU >48 hours<br>Exclusion criteria:<br>- BI <70 before admission<br>- unable to walk<br>independently before<br>hospitalization<br>- neurological<br>complications<br>- Lack of communication<br>skills because of diseases<br>- Terminal / end of life<br>care<br>Per Branch |                      | High doses of<br>rehabilitation<br>via the<br>median of<br>the daily<br>mean RATs | Low dose of<br>rehabilitation<br>via the median<br>of the daily<br>mean RATs | No sample size<br>calculation<br>(retrospective study)<br><b>Primary Outcome:</b><br>- rate of ADL<br>dependence at<br>discharge (BI < 70)<br><b>Secondary</b><br><b>Outcomes:</b><br>- medicals costs<br>duration of MV<br>- lengths of ICU and<br>hospital stay<br>- rate of discharge to<br>home<br>- hospital survival<br>rate<br>- incidence of<br>delirium during ICU<br>- incidence of ICU-<br>AW at ICU discharge | <ul> <li>Baseline Characteristics: <ul> <li>median of daily mean RATs during entire ICU</li> <li>admission period was 3.6 (IQR 1.4 – 9.6) -&gt; pts were</li> <li>divided into high-dose (&gt;3.6) and low-dose (&lt;3.6)</li> <li>rehabilitation group</li> </ul> </li> <li>Primary Outcomes: <ul> <li>rate of ADL dependence at discharge was significantly</li> <li>lower in the high-dose rehabilitation group (81%) than in the low-dose rehabilitation group (22%), p &lt; 0.001</li> </ul> </li> <li>Secondary Outcomes: <ul> <li>incidence of ICU-AW at ICU discharge was significantly lower in high-dose rehabilitation group (70%) in low-dose rehabilitation group (37%), adjusted p = 0.016</li> <li>no significant differences in other secondary outcomes</li> </ul> </li> <li>Post-hoc Sensitivity Analysis <ul> <li>increased RATs during entire ICU admission period and ICU admission after meeting criteria for physiological stability was significantly associated with lower ADL dependence at discharge (p &lt; 0.001)</li> <li>higher RATs from low-level activity before meeting the criteria for physiological stability showed significant association with lower ADL dependence at discharge (p &lt; 0.001)</li> </ul> </li> </ul> | 4                 |

ICU = intensive care unit, pts = patients, BI = Barthel Index, RATs = Rehabilitation Activity Time score, MV = mechanical ventilation, ICU-AW = intensive care unit-acquired weakness, IQR = interquartile range; ADL= activities of daily living

ADL dependence was lower among those who underwent high-dose rehabilitation.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                                                                  |                                                                                                                                                                                                                     | ses and Contr<br>pant #, Charac<br>Total                                                                                                                                                                                                            |                                                                                               | Drop-<br>out<br>Rate | Intervention                                                                    | Control                | Optimal<br>Population                                                          | Primary Results                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2148<br>Dos Santos<br>Moraes<br>2021<br>PMID: 35076492<br>DOI:<br>10.3390/clinpract1<br>2010002<br>Specification of<br>study:<br>retrospective<br>observational<br>study | mobility leve<br>Inclusion crit<br>- aged ≥18 ye<br>the ICU for m<br>reason<br>Exclusion crit<br>patients with<br>- neurodeger<br>- spine and/c<br>amputation c<br>- diagnosis of<br>in the acute c<br>which any co | at ICU with di<br>at ICU with di<br>arears who were<br>bedical or elect<br>teria<br>teria<br>transitive diseas<br>for lower limb f<br>of one or both<br>for one or both<br>for cerebrovascu<br>or chronic pha<br>onditions that<br>te or make it in | e admitted to<br>tive surgical<br>se<br>ractures,<br>lower limbs<br>ilar accident<br>se or in | Kate                 | - low mobility (n=28)<br>- moderate<br>mobility(n=33)<br>- high mobility (n=60) | No<br>control<br>group | Endpoints (not<br>more precisely<br>defined)<br>- ICU discharge<br>- mortality | Outcomes<br>- low mobility (n=28):<br>45 times more likely to die (OR =<br>45.3; 95% CI = 3.23–636.3) and 88<br>times less likely to be discharged<br>from the ICU (OR = 0.22; 95% CI =<br>0.002–0.30); both p<0.05<br>- moderate and high mobility levels<br>were not associated with the<br>investigated outcomes | 4                 |
|                                                                                                                                                                           | N=28                                                                                                                                                                                                                | N=33                                                                                                                                                                                                                                                | N=60                                                                                          |                      |                                                                                 |                        |                                                                                |                                                                                                                                                                                                                                                                                                                     |                   |

CI = confidence interval, ICU = intensive care unit, OR = odds ratio

Patients with low mobility had a higher chance of death and a lower chance of discharge from the ICU. Moderate and high mobility were not associated with the investigated outcomes.

| Reference,<br>Study Type                                                                                                                       | (Part                                                                                                                                           | icipant #,                                                                                                                                      | d Controls<br>Characteri<br>tal | stics)                     | Drop-<br>out Rate    | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control                | Optimal Population                                                                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2150<br>Kinoshita<br>2022<br>PMID: 35054051<br>DOI:<br>10.3390/jcm110<br>20357<br>Specification of<br>study:<br>retrospective<br>cohort study | (COVID-1<br>university<br>rehabilita<br>until 31 M<br>Inclusion<br>- patients<br>- received<br>Exclusion<br>- age< 18<br>- low ADL<br>before ad | 9) in the IC<br>v hospital v<br>tion under<br>lay 2021<br>criteria<br>admitted<br>l rehabilita<br>vears<br>independen<br>mission<br>iving venti |                                 | IV from a<br>ed<br>control | 3 (non-<br>survivor) | Early rehabilitation<br>A: from the third day of<br>admission under deep<br>sedation, ROM training,<br>20 min of sitting on the<br>edge of the bed<br>B: next day after<br>admission, ROM<br>training, 20 min of<br>sitting on the edge of<br>the bed<br>C: next day after<br>admission, ROM, 20 min<br>of sitting on the edge of<br>the bed<br>D: with a 6-L reservoir<br>mask on admission day,<br>ROM, 20 min of sitting<br>on the edge of the bed | No<br>control<br>group | Endpoints (not more<br>precisely defined)<br>- period from<br>intubation to<br>extubation<br>- ICU LOS<br>- the extent of ADL<br>improvement during<br>ICU admission<br>- mortality rate<br>- the number of severe<br>adverse events during<br>rehabilitation | Outcome<br>- time from intubation to<br>extubation (days): 4.9 ± 1.1<br>- ICU stay (days): 11.8 ± 5.0<br>- ADL: was severely impaired<br>(FIM=36.5 (28.0–40.5),<br>BI=22.5 (3.75–40.0))<br>- mortality: 42.8% (3 non-<br>survivor)<br>- no serious adverse events<br>during rehabilitation | 4                 |

ADL = activities of daily living, BI = Barthels index, CI = confidence interval, FIM = functional independence measure, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, OR = odds ratio, ROM = range of motion

Early rehabilitation in the acute disease stage is essential for improving physical functions.

| Reference,<br>Study Type                                                                                                                              | Cases and<br>(Participant #, C                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                  | Drop-out<br>Rate                                       | Intervention                                                                                                                                                       | Control                                                                                                                                                                       | Optimal<br>Population                                                                                                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                       | Tot                                                                                                                                                                                                                                                                                                                                                                                             | tal                                                                                              |                                                        |                                                                                                                                                                    |                                                                                                                                                                               |                                                                                                                                                                                         | Primary outcome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| #2152<br>Elkbuli<br>2022<br>PMID: 35026443<br>DOI:<br>10.1016/j.jss.2021.11.<br>011<br>Specification of<br>study:<br>retrospective cohort<br>analysis | <ul> <li>11.937 patients</li> <li>Inclusion criteria <ul> <li>adult patients (age</li> <li>suffered traumatic</li> <li>evaluated/treated</li> <li>centre</li> <li>received PT service</li> <li>hospital stay</li> </ul> </li> <li>Exclusion criteria <ul> <li>paediatric patients</li> <li>patients who were</li> <li>another facility or di</li> <li>hospital discharge</li> </ul> </li> </ul> | injury<br>in our trauma<br>es during their<br>(aged <18 years)<br>transferred to<br>ied prior to | N=138<br>(did not<br>meet the<br>inclusion<br>criteria | TBI trauma<br>patients<br>Early PT : n=311<br>- early-<br>intermediate(24-<br>48h) : n=280<br>- late<br>intermediate(48-<br>72h): n=133<br>- late (>72h):<br>n=411 | Non-TBI trauma<br>patients<br>early PT : n=4782<br>- early-<br>intermediate<br>(24-48h) :<br>n=2416<br>- late<br>intermediate<br>(48-72h): n=1035<br>- late (>72h):<br>n=2431 | Primary<br>outcome<br>- hospital<br>discharge<br>disposition<br>Secondary<br>outcome<br>- hospital LOS<br>- ICU LOS<br>Tertiary<br>outcome<br>measures<br>were<br>complication<br>rates | - intervention: (n=1035) 60% lower<br>odds of being discharged home<br>without services (P < 0.05), significantly<br>increased hospital and ICU length of<br>stay (Hospital LOS, ICU-LOS) (P < 0.05),<br>significantly higher odds of<br>complications (VTE, pneumonia,<br>pressure ulcers, ARDS) (P < 0.001). –<br>control: (n=411) 76% lower odds of<br>being discharged home without<br>services (P < 0.05), significantly longer<br>Hospital LOS /ICU-LOS (P < 0.05)<br><b>Secondary outcome</b><br>- hospital LOS (days): $3.6 \pm 4.3$<br>(n=4782), $4.7 \pm 4.9$ (n=2416), $5.9 \pm 4.7*$<br>$18.6 \pm 28.7* < 0.001$<br>- ICU-LOS (days): $0.79 \pm 2.71$ (n=4782),<br>$1.2 \pm 3.3$ (n=2416), $1.4 \pm 3.2$ (n=1035),<br>$8.16 \pm 18.33$ (n=2431); p<0.001<br><b>Tertiary outcome</b> | 4                 |
|                                                                                                                                                       | N=10.664                                                                                                                                                                                                                                                                                                                                                                                        | N=1.135                                                                                          |                                                        |                                                                                                                                                                    |                                                                                                                                                                               | rates                                                                                                                                                                                   | - delayed PT initiation: higher<br>complication rates of DVT (P < 0.001),<br>pneumonia (P < 0.001), pressure ulcers<br>(P < 0.001), PE (P < 0.001), ARDS (P <<br>0.001), and VAP (P < 0.001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |

ARDS = acute respiratory distress syndrome, DVT = deep vein thrombosis, ICU = intensive care unit, LOS = length of stay, PE = pulmonary embolism, PT = physical therapy, TBI = traumatic brain injury

Among traumatically injured patients, early PT is associated with decreased odds of complications, shorter H-LOS and ICU-LOS, and a favourable discharge disposition to home without services

| Reference,<br>Study Type                                                                                                                             | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                           | Characteristics)                                                                                                                                              | Drop-<br>out<br>Rate | Intervention                                                                                                    | Control                | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2153<br>Sasano<br>2022<br>PMID: 35018344<br>DOI:<br>10.1097/CCE.0000000<br>000000604<br>Specification of<br>study:<br>retrospective cohort<br>study | 99 adult patients ad<br>the Nagoya City Univ<br>Medical Center from<br>to December 31, 202<br>Inclusion criteria<br>- Pts expected to sta<br>least several days<br>Exclusion criteria<br>- elevated intracrani<br>instability, neuromu<br>- active bleeding, be<br>- score on the Richm<br>Sedation Scale of +2 | versity West<br>n January 1, 2015,<br>20<br>ny in the ICU for at<br>al pressure, spinal<br>scular paralytics<br>rd-rest order<br>nond Agitation-<br>or higher |                      | out-of-the-ICU<br>activities include<br>visiting indoor<br>area, visiting our<br>outdoor garden,<br>and bathing | No<br>control<br>group | <ul> <li>primary outcome         <ul> <li>the occurrence rate of physical safety events, (unintentional removal of medical devices, patient agitation requiring the discontinuance of the session, falling, and injury requiring medical treatment)</li> </ul> </li> <li>secondary outcome         <ul> <li>the occurrence rate of adverse physiologic change(defined as the occurrence of the following after the mobility session)</li> </ul> </li> </ul> | Primary outcome<br>- rate of physical events:<br>27 potential safety events<br>detected in 24 sessions across 14<br>patients<br>- one event (0.2%; 95% Cl,<br>0.006–1.3%) of dislodgement of<br>a tracheostomy tube occurred<br>when the patient transitioned to<br>sitting on the edge of bed<br>Secondary outcome<br>- in 23 sessions (5.7%; 95% Cl,<br>3.6–8.4%) out of the 406<br>sessions: 26 adverse physiologic<br>changes occurred among 13<br>patients | 4                 |

CI = confidence interval, ICU = intensive care unit, LOS = length of stay, OR = odds ratio, pts = patients

An out-of-the-ICU program can be provided safely to adult ICU patients, provided that it is supervised by a dedicated intensivist with an appropriately trained multiprofessional staff and equipment on-site.

| Cases and Controls<br>(Participant #,<br>characteristics)                                                                                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Intervention                                                                                | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Eviden<br>ce<br>Grade                                                                                                                                               |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Total                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                     |  |
| 80 ICUs were screened in<br>Spain -> 668 pts were<br>included<br>Inclusion criteria:<br>- IMV >48 hours<br>Exclusion criteria:<br>- pregnant women<br>- those referred to the<br>ICU from other<br>Hospitals<br>- primary neurologic or<br>neuromuscular pathology<br>- unable to walk (mobility<br>aids allowed)<br>- recent limb amputees<br>- users of orthopaedic<br>devices<br>- BMI > 35<br>Per Branch | n = 63<br>(lost to<br>follow<br>up)                                                                                                                                                                                                                                                                                                                                                                                                                                   | ABCDE-Bundle                                                                                | standard<br>of care                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Size Calculation: 531<br>pts<br>Primary Outcomes:<br>- pain level<br>- Level of cooperation via<br>Hermans' five commands<br>- patient days with delirium<br>- Patient days with delirium<br>- Patient days with physical<br>restraint<br>- Level of mobility via IMS<br>- implementation of bundle<br>components ABC, D and E<br>Secondary Outcome:<br>- cumulative drug dosing by<br>IMV<br>Tertiary Outcomes:<br>- need for reintubation /<br>tracheostomy<br>- ICU LOS<br>- IMV days<br>- bed rest days<br>- ICU mortality<br>- development of ICUAW via<br>MRC-score base at first<br>awakening<br>Independent variables<br>- Protocols with<br>analgosedation algorithms<br>(ABC in the bundle)<br>- Delirium prevention and<br>management protocols (D in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>- 605 patients were studied from 80 ICUs resulting in 5214 days with IMV.</li> <li>Primary Outcomes: <ul> <li>pain level: not assessed on 83.6% of days (95% CI 81.1-86.1), found to be zero on 11.1% days (95% CI 8.1-3.1), mild to moderate on 3.2% (95% CI 2.1-4.2), moderate to severe 1.9% (95% CI 0.8-2.8) and very intense on 0.2% days (95% CI 0.08-0.5)</li> <li>level of cooperation: sufficient to make the MRC feasible on 20.7days (95% CI 17.9-23.4)</li> <li>pts days with delirium: 4.2% of days (95% CI 2.8-5.5)</li> <li>physical restraint applied on 25.2% of days (95% CI 2.2-28.1)</li> <li>immobility (IMS of 0) on 69.6% of days (95% CI 2.2-28.1)</li> <li>133 (22.0%) were admitted to an ICU that implemented a protocol with analgosedation algorithms</li> <li>delirium prevention and management protocol (D) was applied in 68 (11.2%) patients, and these patients had more pain assessments, a higher level of cooperation, and more MRC assessments; they had</li> <li>no lower incidence of delirium or greater mobility</li> <li>early mobilization protocol (E) was applied in 51 (8.4%) pts. These patients received more pain assessments, registering no differences in level of cooperation, but more days of mobility with an IMS score of 1 to 2</li> </ul> </li> <li>Seconday Outcome: <ul> <li>patients who were admitted to an ICU that implemented a protocol with analgosedation algorithms for dose management and adjustment (ABC) received more opioids (remifentanil IVI, and fentanyl bolus and tramadol in divided doses) and more metamizole as a bolus and divided dose alike. Likewise, they received more dexmedetomidine IVI, more midazolam boluses, and also cisatracurium IVI and rocuronium boluses</li> <li>pts admitted to an ICU that implemented a elirium prevention and management protocol received more propofol and dexmedetomidine IVI</li> <li>pts admitted to an ICU that implemented early mobilization protocol received more remifentanil, propofol and dexmedetomidine IVI</li> <li>pts admitted to an ICU that implemented early mobi</li></ul></li></ul> | 4                                                                                                                                                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                              | characteristics)<br>Total<br>80 ICUs were screened in<br>Spain -> 668 pts were<br>included<br>Inclusion criteria:<br>- IMV >48 hours<br>Exclusion criteria:<br>- IMV >48 hours<br>Exclusion criteria:<br>- pregnant women<br>- those referred to the<br>ICU from other<br>Hospitals<br>- primary neurologic or<br>neuromuscular pathology<br>- unable to walk (mobility<br>aids allowed)<br>- recent limb amputees<br>- users of orthopaedic<br>devices<br>- BMI > 35 | (Participant *, characteristics)     out Rate       Total     Out Rate       Total     Rate | (Participant #,<br>characteristics)out<br>RateInterventionTotalInterventionB0 ICUs were screened in<br>Spain -> 668 pts were<br>includedInterventionB0 ICUs were screened in<br>Spain -> 668 pts were<br>includedInterventionInclusion criteria:<br>- IMV >48 hoursInterventionExclusion criteria:<br>- pregnant women<br>- those referred to the<br>ICU from other<br>Hospitals<br>- primary neurologic or<br>neuromuscular pathology<br>- unable to walk (mobility<br>aids allowed)n = 63<br>(lost to<br>follow<br>up)recent limb amputees<br>- users of orthopaedic<br>devices<br>- BMI > 35ABCDE-Bundle | (Participant #,<br>characteristics)out<br>RateInterventionControlTotalInterventionControl80 ICUs were screened in<br>Spain -> 668 pts were<br>includedInclusion criteria:<br>- IMV >48 hoursInclusion criteria:<br>- IMV >48 hoursInclusion criteria:<br>- pregnant women<br>- those referred to the<br>ICU from other<br>Hospitals<br>- primary neurologic or<br>neuromuscular pathology<br>- unable to walk (mobility<br>aids allowed)n = 63<br>(lost to<br>follow<br>up)ABCDE-Bundlestandard<br>of careMathematical Section Sect | Characteristics)out<br>RateInterventionControlOptimal PopulationTotalTotalPrimary Dutcomes:<br>- pain level<br>- Level of cooperation via<br>Hermans' five commands<br>- patient days with delirium<br>- restraint<br>- Level of mobility via IMS<br>- implementation of bundle<br>components ABC, D and EExclusion criteria:<br>- primary neurologic or<br>neuromuscular pathology<br>- unable to walk (mobility<br>aids allowed)<br>- recent limb amputes<br>- users of orthopaedic<br>devices<br>- BMI > 35n = 63<br>(lost to<br>follow<br>up)ABCDE-Bundlestandard<br>of careTertiary Outcomes:<br>- need for reintubation /<br>tracheostomy<br>- ICU LOS<br>- IMV days<br>- bed rest days<br>- ICU mortality<br>- development of ICUAW via<br>MRC-score base at first<br>awakeningPer BranchIndependent variables<br>- Protocols with<br>analgosedation algorithms<br>(ABC in the bundle)Independent variables<br>- Protocols with<br>analgosedation algorithms                                                                                                                                                                                                                                                                                                                                                                                                                                                | Intervention<br>characteristics         out<br>Rate         Intervention<br>Rate         Control         Optimal Population         Primary Results           Total |  |

Pts = patients, ICU = intensive care unit, IMV = invasive mechanical ventilation, BMI = Body Mass Index, MRC = Medical Research Council, IMS = ICU mobility scale, LOS = length of stay, ICUAW = intensive care unit acquired weakness, BI = Barthel Index, SOFA = Sequential Organ Failure Assessment, APACHE II = Acute Physiology and Chronic Health Evaluation II, IVI = intravenous injection

# The implementation rate of ABCDE bundle components was very low, but when implemented, patients had a shorter ICU stay, more analgesia dosing, and lighter sedation.

| Reference,<br>Study Type                                                                                                             | (Partic<br>Charact                                                                                                         | d Controls<br>ipant #,<br>eristics)<br>tal                                                    | Drop-<br>out<br>Rate | Intervention                                                                  | Control                                        | Optimal Population                                                                                                                                   | Primary Results                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2155<br>Cordeiro<br>2021<br>(PMID: 34988326)<br>DOI: not available<br>Specification of the<br>study:<br>Prospective cohort<br>study | and/or mitral<br><b>Exclusion crit</b><br>- patients with<br>impairment th<br>functional eva<br>- death<br>- > 4 p.o. days | eria:<br>rs<br>e<br>surgery (aortic<br>)<br>eria:<br>n cognitive<br>nat prevented<br>aluation |                      | <b>Cohort A:</b><br>walking at<br>least 15 m in<br>the ICU until<br>discharge | <b>Cohort B:</b><br>not able to<br>walk ≥ 15 m | Primary outcome:<br>- functionality<br>assessed with FMI<br>scale and Perme<br>scale<br>Secondary<br>outcomes:<br>- adverse events<br>during walking | Primary outcome:         - cohort A showed a smaller decrease in FIM scale         than cohort B (27 ± 3 vs. 36 ± 5, p < 0.001) | 3                 |

FIM = functional independence measurement, ICU = intensive care unit, Perme = Perme intensive care unit mobility score, p.o. = post-operative

Early ambulation in patients undergoing elective valve replacement surgery might be associated with greater functionality at ICU and hospital discharge.

| Reference,<br>Study Type                                                                                                                        | (Partic<br>Charact                                                                                                                                                | d Controls<br>ipant #,<br>ceristics)<br>ital                                                     | Drop-<br>out<br>Rate | Intervention                                             | Control                                                               | Optimal Population                                                         | Primary Results                                                                                                                                                                                                 | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2158<br>O'Neil<br>2022<br>PMID:<br>34978322<br>DOI:<br>10.1093/jbcr<br>/irab248<br>Specification<br>of study:<br>retrospective<br>cohort study | 127 pts from 24<br>a burn ICU whi<br>early mobilizat<br>Inclusion criter<br>- mechanically<br>Exclusion crite<br>- extubation or<br>therapy evalua<br>Per B<br>95 | le using an<br>ion algorithm<br>r <b>ia:</b><br>ventilated pts.<br><b>ria:</b><br>r death before |                      | Active group<br>(sitting on<br>edge of bed<br>or higher) | Inactive<br>group (in<br>bed<br>mobility or<br>dependent<br>transfer) | <b>Outcomes:</b><br>- %TBSA<br>- tracheostomy rate<br>- LOS<br>- mortality | <b>Outcomes (no significance level given):</b><br>- %TBSA burnt: AG: 14.11 vs IG: 25.31<br>- tracheostomy rate: AG: 25% vs. IG:<br>26%<br>- LOS (d): AG: 20.95 vs. IG: 27.58<br>- mortality: AG: 9% vs. IG: 23% | 4                 |

AG = active group, ICU = intensive care unit, IG = inactive group, LOS = length of stay, %TBSA = percentage of total body surface area

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                       | Cases and Co<br>(Participant #, Cha<br>Total                                                                                                                                                                                                           | aracteristics) | Drop-<br>out<br>Rate | Intervention                                                                    | Control              | Optimal<br>Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|---------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2159<br>Mayer<br>2021<br>DOI:<br>10.1093/ptj/<br>pzab301<br><b>Specification</b><br>of study:<br>Retrospective<br>cohort study | 315 pts from 2010 to 2<br>Inclusion criteria:<br>- >18y<br>- requiring ECMO > 72<br>Exclusion criteria:<br>-pediatric pts.<br>-pregnant individuals<br>-prisoners<br>-requiring ECMO < 72 h<br>Per Bran<br>during<br>ECMO:<br>218<br>after<br>ECMO: 70 | h<br>our       |                      | Rehabilitation<br>during ECMO<br>OR<br>Rehabilitation<br>received after<br>ECMO | No<br>rehabilitation | Primary<br>outcome:<br>in-hospital<br>mortality<br>Secondary<br>endpoint:<br>- hospital LOS<br>- discharge<br>destination<br>- 30-day<br>readmission<br>rates | Primary outcome:<br>- in-hospital mortality:<br>during ECMO: 103/218 (47%) vs.<br>after ECMO: 26/70 (37%) vs. no<br>rehabilitation: 27/27 (100%); p <<br>0.001<br>Secondary outcomes:<br>-hospital LOS: rehabilitation<br>during ECMO (44.8/SD 49.4) vs.<br>rehabilitation after ECMO (40/SD<br>39) vs. no rehabilitation (10/SD<br>8.3), p<0.001<br>- no significant differences at<br>discharge destination and 30-<br>day-readmission rates | 4                 |

ECMO = extracorporeal membrane oxygenation; LOS=Length of stay

The patient functional response during physical rehabilitation is an important indicator of illness and potential recovery.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Reference,<br>Study Type                                                                                                          | (Participant #,                                                                                                                                 | d Controls<br>Characteristics)<br>otal                                                     | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                              | Control                                                                                            | Optimal Population                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2163<br>Afxonidis<br>2021<br>PMID:<br>34946461<br>DOI:<br>10.3390/heal<br>thcare91217<br>35<br>Specification<br>of study:<br>RCT | <ul> <li>hemodynamic ins</li> <li>dyspnea/invasive</li> <li>support/oxygen sa</li> <li>neurological diso</li> <li>mobile disabilitie</li> </ul> | e perform<br>s<br>elective surgery<br>stability<br>e ventilator<br>aturation <90%<br>rders |                      | Early and enhanced<br>physiotherapy care:<br>1 early PT session on<br>the day of the<br>operation<br>+<br>3 daily PT sessions<br>during the first 3<br>days of ICU or until<br>discharge. | Standard of<br>care (twice<br>per day, from<br>first post-<br>operative day<br>until<br>discharge) | Primary endpoints:<br>- ICU-LOS<br>- hospital LOS<br>Secondary outcomes:<br>- hemodynamic<br>measurements<br>- laboratory<br>measurements | Primary endpoints:<br>- ICU- LOS: 23.2d intervention group vs<br>25.4d control(MD: 2.2h, 95% CI 1.3- 3.2<br>h, p<0.001)<br>- hospital LOS: 8.1d intervention groups<br>vs 8.9d control (MD: 0.8d, 95% CI 0.6-<br>1d, p<0.001)<br>Secondary outcomes:<br>- hemodynamic measurements: n.s.<br>- laboratory measurements: n.s. | 2                 |

CABG = coronary artery bypass grafting, GCS = Glasgow coma scale, LOS = length of stay, PT = physio therapy, pts = patients, RCT = randomized controlled trial

#### Early and enhanced physiotherapy care decreases the length of ICU stay and hospital stay.

| Reference,<br>Study Type                     | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                               |            | Drop-<br>out<br>Rate | Intervention                                                                                                                                          | Control    | Optimal<br>Population | Primary Results                                                       | Evidence<br>Grade |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------|-----------------------------------------------------------------------|-------------------|
| #2164<br>Thiolliere<br>2021                  | 276 patients                                                                                                                                                                                  |            |                      |                                                                                                                                                       |            |                       |                                                                       |                   |
| PMID: 34844035<br>DOI:                       | Inclusion criteria:<br>- patients >70 years<br>- admitted to the ICU for more than 48h<br>Exclusion criteria:<br>- death before day 180<br>- lost to follow-up<br>- ADL - score not available |            |                      | Out-of-bed<br>mobilisation       No out-of-<br>bed<br>mobilisation       mobilization<br>on the<br>decreased 6-<br>month       OoB 4.5 [3-6]) p=0.001 | No out-of- | impact of OoB         | - 6-month ADL score: (OoB 6 [4.5-6] vs. no-                           |                   |
| 10.1016/j.jcrc.202<br>1.11.007               |                                                                                                                                                                                               |            |                      |                                                                                                                                                       | 3          |                       |                                                                       |                   |
| Specification of<br>study:<br>a cohort study |                                                                                                                                                                                               |            | -                    |                                                                                                                                                       |            | autonomy              | greater risk of 6-month decreased autonomy<br>(aOR 2.43 [1.18; 4.98]) |                   |
| (ancillary study of<br>RCT)                  | Per Bra<br>226 intervention                                                                                                                                                                   | 50 control |                      |                                                                                                                                                       |            |                       |                                                                       |                   |

ADL- Score = activities of daily living score, OoB = out-of-bed

Conclusions: Mobilisation during the ICU stay of elderly ICU patient survivors was associated with a lower decreased autonomy at 6 months.

| Reference,<br>Study Type                           | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                     | d Controls<br>Characteristics)<br>otal                                                              | Drop-out Rate                                     | Intervention                                                                             | Control                                     | Optimal<br>Population                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2167<br>De Azevedo 2021<br>(PMID: 34773985<br>DOI: | 211 pts<br>Inclusion criteria:<br>- expected ICU stay<br>Exclusion criteria:<br>- pregnant<br>- moribund<br>- under ventilation :<br>enrolment<br>- unable to walk wit<br>before the acute illr<br>- severe cognitive ir<br>hospitalization<br>- neuromuscular dis<br>- acute pelvic fractu<br>- unstable spinal tra<br>- severe liver diseas<br>- death <48h<br>- early extubation<br>- fiO2 > 60%<br>- cannot provide nu<br>- physical limitation | 4 days<br>> 96h before<br>hout assistance<br>hess<br>npairment before<br>seases<br>ire<br>huma<br>e | physical<br>limitation,<br>protocol<br>violation) | -2 daily sessions<br>of cycle<br>ergometry<br>exercise (15 min<br>each)<br>- immediately | physiotherapy +<br>Protein<br>1.19g/kg/day: | Primary<br>endpoint:<br>- PCS score at 3<br>and 6 months | Primary endpoint:<br>- PCS was higher in the<br>intervention group at 3<br>months (p = 0.01) and 6<br>months (p = 0.01)<br>Secondary outcome:<br>- ICU-acquired weakness was<br>identified in 16 (28,5%) and 26<br>(46,4%) pts in intervention and<br>control groups (p=0.05)<br>- ICU mortality rates in<br>intervention and control<br>groups were 23 (26.4%) and 41<br>(43,6%) (p = 0.01)<br>- hospital mortality rates were<br>31.2% and 53.4% (p=0.002)<br>- 6-months mortality rates<br>were 33.3% and 54.2 %<br>(p=0.005) in intervention and<br>control group<br>- no difference in LOS/ | 2                 |
|                                                    | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 112                                                                                                 |                                                   |                                                                                          |                                             |                                                          | duration of MV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |

h = hours, LOS = length of stay, MV = mechanical ventilation, PCS = physical component summary, pts = patients

#### This study showed that a high-protein intake and resistance exercise improved the physical quality of life and survival of critically ill patients.

| Reference,<br>Study Type                                                                                                                              | Cases and Controls<br>(Participant #, Characteristic<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5) Drop<br>-out<br>Rate | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Control | Optimal<br>Population                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2171<br>Prasobh<br>2021<br>PMID:<br>34535456<br>DOI:<br>10.1136/bmjo<br>q-2020-<br>001256<br>Specification<br>of study:<br>Retrospective<br>analysis | <ul> <li>1.320 pts from 2015 to 2019</li> <li>Inclusion criteria: <ul> <li>&gt; 14y</li> <li>undergoing CABG, valve repa</li> <li>replacement, or aortic dissections</li> <li>surgery</li> <li>admitted to the CTICU</li> </ul> </li> <li>Exclusion criteria: <ul> <li>requiring mechanical or</li> <li>circulatory devices to maintain</li> <li>haemodynamic stability</li> <li>GCS &lt; 13</li> <li>complications that limited</li> <li>mobility (stroke, open sternum)</li> <li>limited preoperative mobility</li> </ul> </li> <li>Per Branch <ul> <li>1320</li> </ul> </li> </ul> | on<br>I                 | <ul> <li>mobility-level checklist</li> <li>initiating PT referrals</li> <li>patient and family</li> <li>engagement (booklet</li> <li>with mobilisation advice)</li> <li>enhancing the</li> <li>mobilisation experience</li> <li>(pain control)</li> <li>color-coded risk</li> <li>categories</li> <li>adopting technology</li> <li>(telemonitoring)</li> <li>protocol for initiation</li> <li>and termination of</li> <li>mobilisation</li> <li>visual reminders</li> <li>communication of</li> <li>mobility level (during</li> <li>multidisciplinary rounds)</li> </ul> |         | <b>Outcomes:</b><br>- patients who<br>progressed (%)<br>- time to out-of-<br>bed-mobilisation<br>- IMS<br>- FIM | <b>Outcomes:</b><br>- patients who progressed (%):<br>initially 55%, after 1 year 95%<br>- time to out-of-bed-mobilisation:<br>postintervention 11.74h vs.<br>preintervention: 22.77h (p<0.05)<br>- IMS: postintervention: 7.23 vs.<br>Preintervention: 3.96 (p = 0.00)<br>- FIM: postintervention: 58.62 vs.<br>Preintervention: 54.23 (p = 0.00) | 4                 |

CABG = coronary artery bypass graft, CTICU = cardiothoracic intensive care unit, FIM = functional independence measure, GCS = Glasgow coma scale, IMS = ICU mobility scale

The implementation of an early mobiliastion protocol reduces the time to out-of-bed mobilisation and increases the IMS level reached and functional independence.

| Reference,<br>Study Type                                                                                                                                                  | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention               | Control          | Optimal<br>Population                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2172<br>Wang 2021<br>(PMID:<br>34406169<br>DOI:<br>10.1097/CC<br>M.00000000<br>00005285 )<br>Specification<br>of study:<br>systematic<br>review with<br>meta-<br>analysis | 60 publications (57 RCTs, 3<br>controlled clinical trials) <sup>1-60</sup><br>5352 pts<br>Inclusion criteria<br>- RCTs and CCTs<br>- adults ≥18y admitted to an<br>ICU<br>- English language<br>Exclusion criteria<br>- pts with head injuries,<br>cerebrovascular accidents,<br>burns, and spinal injuries |                      | Physical<br>rehabilitation | Standard<br>care | Outcomes:<br>- muscle<br>strength<br>- physical<br>function<br>- mortality<br>- health-related<br>quality<br>- duration of MV<br>- MV free days at<br>day 28<br>- ICU and<br>Hospital LOS | Significant outcomes:         1) MV (46 studies)         - overall: MD -0.18d (95% Cl: -0.37 to 0.02)         - low dose CG: MD -1.6d (95% Cl: -2.49 to -0.71) for         - functional intervention: MD -1.15d (95% Cl: -1.99 to -0.30)         2) ICU LOS (47 studies)         - overall: MD -0.80d (95% Cl: -1.37 to -0.23)         - low dose CG: MD -1.87d (95% Cl: -3.16 to -0.58)         - functional intervention: MD -1.31d (95% Cl: -2.46 to -0.16)         3) hospital LOS         - overall: MD -1.75d (95% Cl: -3.03 to -0.48)         - low dose CG: MD -2.45d (95% Cl: -4.05 to -0.84)         - functional intervention: MD -1.90d (95% Cl: -3.74 to -0.06)         Non-significant outcomes:         4) mortality n.s.         5) muscle strength n.s.         6) physical function         - at ICU discharge n.s.         - at G months n.s.         7) MV free days n.s.         8) HRQL at 6 months n.s.         9) HRQL at 6 months n.s.         5) muscies by dosage was not possible | 1                 |

CCT = controlled clinical trial, d = days, ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, pts = patients, RCT = randomized controlled trial, y = years

Physical rehabilitation seems to have a benefit in relation to ICU LOS, hospital LOS and physical function.

#### References

1. Abu-Khaber HA, Abouelela AMZ, Abdelkarim EM. Effect of electrical muscle stimulation on prevention of ICU acquired muscle weakness and facilitating weaning from mechanical ventilation. Alexandria Journal of Medicine 2019;49(4):309-315.

2. Akar O, Gunay E, Sarinc Ulasli S, et al. Efficacy of neuromuscular electrical stimulation in patients with COPD followed in intensive care unit. Clin Respir J 2017;11(6):743-750.

3. Amundadottir O, Jonasdottir R, Sigvaldason K, et al. Effects of intensive upright mobilisation on outcomes of mechanically ventilated patients in the intensive care unit: a randomised controlled trial with 12months follow-up. In: European journal of physiotherapy; 2019.

4. Bianchi T, dos Santos L, Aguiar Lemos F, et al. The Effect of Passive Cycle Ergometry Exercise on Dia-Phragmatic Motion of Invasive Mechanically Ventilated Critically III Patients in Intensive Care Unit: A Randomized Clinical Trial. Int J Phys Med Rehabil 2018;6(499):2.

5. Bissett BM, Leditschke IA, Neeman T, et al. Inspiratory muscle training to enhance recovery from mechanical ventilation: a randomised trial. Thorax 2016;71(9):812-819.

6. Brummel NE, Girard TD, Ely EW, et al. Feasibility and safety of early combined cognitive and physical therapy for critically ill medical and surgical patients: the Activity and Cognitive Therapy in ICU (ACT-ICU) trial. Intensive Care Med 2014;40(3):370-379.

7. Burtin C, Clerckx B, Robbeets C, et al. Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med 2009;37(9):2499-2505.

8. Cader SA, Vale RG, Castro JC, et al. Inspiratory muscle training improves maximal inspiratory pressure and may assist weaning in older intubated patients: a randomised trial. Journal of Physiotherapy (Australian Physiotherapy Association) 2010;56(3):171-177.

9. Caruso P, Denari SD, Ruiz SA, et al. Inspiratory muscle training is ineffective in mechanically ventilated critically ill patients. Clinics (sao paulo, brazil) 2005;60(6):479-484.

10. Chang MY, Chang LY, Huang YC, et al. Chair-sitting exercise intervention does not improve respiratory muscle function in mechanically ventilated intensive care unit patients. Respir Care 2011;56(10):1533-1538. 11. Condessa RL, Brauner JS, Saul AL, et al. Inspiratory muscle training did not accelerate weaning from mechanical ventilation but did improve tidal volume and maximal respiratory pressures: a randomised trial. J Physiother 2013;59(2):101-107.

12. Coutinho WM, Santos LJd, Fernandes J, et al. Efeito agudo da utilização do cicloergômetro durante atendimento fisioterapêutico em pacientes críticos ventilados mecanicamente. Fisioterapia e Pesquisa 2016;23(3):278-283.

13. Dall' Acqua AM, Sachetti A, Santos LJ, et al. Use of neuromuscular electrical stimulation to preserve the thickness of abdominal and chest muscles of critically ill patients: A randomized clinical trial. J Rehabil Med 2017;49(1):40-48.

14. Dantas CM, Silva PF, Siqueira FH, et al. Influence of early mobilization on respiratory and peripheral muscle strength in critically ill patients. Rev Bras Ter Intensiva 2012;24(2):173-178.

15. Denehy L, Skinner EH, Edbrooke L, et al. Exercise rehabilitation for patients with critical illness: a randomized controlled trial with 12 months of follow-up. Crit Care 2013;17(4):R156.

16. Dong ZH, Yu BX, Sun YB, et al. Effects of early rehabilitation therapy on patients with mechanical ventilation. World J Emerg Med 2014;5(1):48-52.

17. Dong Z, Yu B, Zhang Q, et al. Early Rehabilitation Therapy Is Beneficial for Patients With Prolonged Mechanical Ventilation After Coronary Artery Bypass Surgery. Int Heart J 2016;57(2):241-246.

18. dos Santos FV, Cipriano Jr G, Vieira L, et al. Neuromuscular electrical stimulation combined with exercise decreases duration of mechanical ventilation in ICU patients: a randomized controlled trial

19. Eggmann S, Verra ML, Luder G, et al. Effects of early, combined endurance and resistance training in mechanically ventilated, critically ill patients: A randomised controlled trial. PLoS One 2018;13(11):e0207428.

20. Elbouhy MS, AbdelHalim HA, Hashem AMA. Effect of respiratory muscles training in weaning of mechanically ventilated COPD patients. Egyptian Journal of Chest Diseases and Tuberculosis 2014;63(3):679-687. 21. Fischer A, Spiegl M, Altmann K, et al. Muscle mass, strength and functional outcomes in critically ill patients after cardiothoracic surgery: does neuromuscular electrical stimulation help? The Catastim 2 randomized controlled trial. Crit Care 2016;20:30.

22. Fontes Cerqueira TC, Cerqueira Neto ML, Cacau LAP, et al. Ambulation capacity and functional outcome in patients undergoing neuromuscular electrical stimulation after cardiac valve surgery: A randomised clinical trial. Medicine (Baltimore) 2018;97(46):e13012.

23. Fossat G, Baudin F, Courtes L, et al. Effect of In-Bed Leg Cycling and Electrical Stimulation of the Quadriceps on Global Muscle Strength in Critically III Adults: A Randomized Clinical Trial. JAMA 2018;320(4):368-378.

24. Gama Lordello GG, Goncalves Gama GG, Lago Rosier G, et al. Effects of cycle ergometer use in early mobilization following cardiac surgery: a randomized controlled trial. Clin Rehabil 2020;34(4):450-459. 25. Hanekom SD, Louw Q, Coetzee A. The way in which a physiotherapy service is structured can improve patient outcome from a surgical intensive care: a controlled clinical trial. Crit Care 2012;16(6):R230.

26. Hickmann CE, Castanares-Zapatero D, Deldicque L, et al. Impact of Very Early Physical Therapy During Septic Shock on Skeletal Muscle: A Randomized Controlled Trial. Crit Care Med 2018;46(9):1436-1443.

Hodgson CL, Bailey M, Bellomo R, et al. A Binational Multicenter Pilot Feasibility Randomized Controlled Trial of Early Goal-Directed Mobilization in the ICU. Crit Care Med 2016;44(6):1145-1152.
 Hodgson CL, Hayes K, Linnane M, et al. Early mobilisation during extracorporeal membrane oxygenation was safe and feasible: a pilot randomised controlled trial. Intensive Care Med 2020;46(5):1057-1059.
 Karatzanos E, Gerovasili V, Zervakis D, et al. Electrical muscle stimulation: an effective form of exercise and early mobilization to preserve muscle strength in critically ill patients. Crit Care Res Pract 2012;2012:432752.

30. Routsi C, Gerovasili V, Vasileiadis I, et al. Electrical muscle stimulation prevents critical illness polyneuromyopathy: a randomized parallel intervention trial. Crit Care 2010;14(2):R74.

31. Kayambu G, Boots R, Paratz J. Early physical rehabilitation in intensive care patients with sepsis syndromes: a pilot randomised controlled trial. Intensive Care Med 2015;41(5):865-874.

32. Kho ME, Truong AD, Zanni JM, et al. Neuromuscular electrical stimulation in mechanically ventilated patients: a randomized, sham-controlled pilot trial with blinded outcome assessment. J Crit Care 2015;30(1):32-39.

33. Kho ME, Molloy AJ, Clarke FJ, et al. Multicentre pilot randomised clinical trial of early in-bed cycle ergometry with ventilated patients. BMJ Open Respir Res 2019;6(1):e000383.

34. Koutsioumpa E, Makris D, Theochari A, et al. Effect of Transcutaneous Electrical Neuromuscular Stimulation on Myopathy in Intensive Care Patients. Am J Crit Care 2018;27(6):495-503.

35. Kurtoğlu DK, Taştekin N, Birtane M, et al. Effectiveness of Neuromuscular Electrical Stimulation on Auxiliary Respiratory Muscles in Patients with Chronic Obstructive Pulmonary Disease Treated in the Intensive Care Unit. Turkish Journal of Physical Medicine & Rehabilitation/Turkiye Fiziksel Tip ve Rehabilitasyon Dergisi 2015;61(1).

36. Leite MA, Osaku EF, Albert J, et al. Effects of Neuromuscular Electrical Stimulation of the Quadriceps and Diaphragm in Critically III Patients: A Pilot Study. Crit Care Res Pract 2018;2018:4298583.

37. Machado ADS, Pires-Neto RC, Carvalho MTX, et al. Effects that passive cycling exercise have on muscle strength, duration of mechanical ventilation, and length of hospital stay in critically ill patients: a randomized clinical trial. J Bras Pneumol 2017;43(2):134-139.

38. Maffei P, Wiramus S, Bensoussan L, et al. Intensive Early Rehabilitation in the Intensive Care Unit for Liver Transplant Recipients: A Randomized Controlled Trial. Arch Phys Med Rehabil 2017;98(8):1518-1525. 39. Martin AD, Smith BK, Davenport PD, et al. Inspiratory muscle strength training improves weaning outcome in failure to wean patients: a randomized trial. Crit Care 2011;15(2):R84.

40. McCaughey EJ, Jonkman AH, Boswell-Ruys CL, et al. Abdominal functional electrical stimulation to assist ventilator weaning in critical illness: a double-blinded, randomised, sham-controlled pilot study. Crit Care 2019;23(1):261.

41. McWilliams D, Jones C, Atkins G, et al. Earlier and enhanced rehabilitation of mechanically ventilated patients in critical care: A feasibility randomised controlled trial. J Crit Care 2018;44:407-412.

42. Morris PE, Goad A, Thompson C, et al. Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Crit Care Med 2008;36(8):2238-2243.

43. Morris PE, Berry MJ, Files DC, et al. Standardized Rehabilitation and Hospital Length of Stay Among Patients With Acute Respiratory Failure: A Randomized Clinical Trial. JAMA 2016;315(24):2694-2702.

44. Moss M, Nordon-Craft A, Malone D, et al. A Randomized Trial of an Intensive Physical Therapy Program for Patients with Acute Respiratory Failure. Am J Respir Crit Care Med 2016;193(10):1101-1110. 45. Nakamura K, Kihata A, Naraba H, et al. Efficacy of belt electrode skeletal muscle electrical stimulation on reducing the rate of muscle volume loss in critically ill patients: A randomized controlled trial. J Rehabil Med 2019;51(9):705-711.

46. Nickels MR, Aitken LM, Barnett AG, et al. Effect of in-bed cycling on acute muscle wasting in critically ill adults: A randomised clinical trial. J Crit Care 2020;59:86-93.

47. Nydahl P, Gunther U, Diers A, et al. PROtocol-based MObilizaTION on intensive care units: stepped-wedge, cluster-randomized pilot study (Pro-Motion). Nurs Crit Care 2019.

48. Pandey DP, Babu R, Sharma US. Electrical Muscle Stimulation (EMS) Preserve Muscle Strength in Critically ill Patients- A Pilot Study. Indian Journal of Physiotherapy and Occupational Therapy - An International Journal 2013;7(3):71-75.

49. Patman S, Sanderson D, Blackmore M. Physiotherapy following cardiac surgery: is it necessary during the intubation period? Australian journal of physiotherapy 2001;47(1):7-16.

50. Sarfati C, Moore A, Pilorge C, et al. Efficacy of early passive tilting in minimizing ICU-acquired weakness: A randomized controlled trial. Journal of Critical Care 2018;46:37-43.

51. Savci S, Degirmenci B, Saglam M, et al. Short-term effects of inspiratory muscle training in coronary artery bypass graft surgery: a randomized controlled trial. Scand Cardiovasc J 2011;45(5):286-293.

52. Schaller SJ, Anstey M, Blobner M, et al. Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial. Lancet 2016;388(10052):1377-1388.

53. Schweickert WD, Pohlman MC, Pohlman AS, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet 2009;373(9678):1874-1882.

54. Seo B, Shin W-S. Effects of functional training on strength, function level, and quality of life of persons in intensive care units. Physical Therapy Rehabilitation Science 2019;8(3):134-140.

55. Shen S-Y, Lee C-H, Lin R-L, et al. Electric Muscle Stimulation for Weaning from Mechanical Ventilation in Elder Patients with Severe Sepsis and Acute Respiratory Failure–A Pilot Study. International Journal of Gerontology 2017;11(1):41-45.

56. Tonella RM, Ratti L, Delazari LEB, et al. Inspiratory Muscle Training in the Intensive Care Unit: A New Perspective. J Clin Med Res 2017;9(11):929-934.

57. Winkelman C, Johnson KD, Hejal R, et al. Examining the positive effects of exercise in intubated adults in ICU: a prospective repeated measures clinical study. Intensive Crit Care Nurs 2012;28(6):307-318. 58. Winkelman C, Sattar A, Momotaz H, et al. Dose of Early Therapeutic Mobility: Does Frequency or Intensity Matter? Biol Res Nurs 2018;20(5):522-530.

59. Wolfe KS, Wendlandt BN, Patel SB, et al. Long-term survival and health care utilization of mechanically ventilated patients in a randomized controlled trial of early mobilization. American journal of respiratory and critical care medicine 2013;187.

60. Wollersheim T, Grunow J, Carbon N, et al. Muscle wasting and function after muscle activation and early protocol-based physiotherapy: an explorative trial. In: Journal of cachexia, sarcopenia and muscle; 2019

| Reference,<br>Study Type                                                                                                                                               | (Partici<br>Charact                                                                                   | d Controls<br>ipant #,<br>ceristics)<br>tal | Drop-<br>out<br>Rate | Intervention                                                           | Control                            | Optimal Population                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2173<br>Iwai<br>2021<br>PMID: 34395932<br>DOI:<br>10.2490/prm.202<br>10030)<br>Specification of<br>study: single-<br>center<br>retrospective<br>before/after<br>study | 713 consecu<br>admitted to<br>Exclusion cri<br>- <18y<br>- LOS < 48h<br>- cardiac sur<br>Per B<br>330 | ICU<br>iteria:                              |                      | Phase II:<br>dedicated PT<br>allocated to<br>ICU (1x/day<br>20-60 min) | <b>Phase I:</b> no<br>dedicated PT | <ul> <li>days to first</li> <li>rehabilitation</li> <li>number of</li> <li>Interventions</li> <li>duration of MV</li> <li>LOS</li> <li>extubation</li> </ul> | Significant differences between the groups:<br>days to first rehabilitation: phase I: 4.0 (2.5–<br>8.0) vs. phase II: 1.0 (1.0–1.0); p <0.001<br>number of interventions: phase I: 29 (25.4%) vs.<br>phase II: 90 (67.2%); p <0.001<br>No significant differences between the groups:<br>- duration of MV<br>- ICU-LOS<br>- hospital LOS<br>- extubation | 4                 |

LOS = length of stay, MV = mechanical ventilation, PT = physical therapy

#### No detailed assessment was carried out because higher-quality evidence is available on this topic

| Reference,<br>Study Type                                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                          | Drop-out Rate                                                                                                                                                                                                                                                                                  | Intervention                                                                                                                                                                   | Control                                                                                                                                                                                           | Optimal<br>Populatio<br>n                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2174<br>Koyuncu<br>2022<br>PMID: 34346134<br>DOI:<br>10.1111/jocn.15986<br>Specification of<br>study:<br>a quasi-<br>experimental non-<br>randomized study<br>with historic control | 51 patients<br>Inclusion criteria:<br>- adults >18 years<br>- underwent major abdominal surgery<br>- had an American Society of<br>Anesthesiologists score of less than 4<br>- did not have a communication<br>disorder<br>- had no diagnosis to limit<br>mobilization<br>Exclusion criteria:<br>- emergency surgery<br>- postoperative complications<br>- no toleration of mobilization | N = 9<br>(excluded in<br>control group<br>2x emergency<br>surgery, 2x<br>post-surgical<br>complications)<br>(excluded in<br>intervention<br>group<br>2x emergency<br>surgery, 2x<br>post-surgical<br>complications,<br>1x receiving<br>inotropic<br>support in the<br>postoperative<br>period) | Mobilisation<br>training by<br>research<br>nurse the<br>evening<br>before<br>operation +<br>application of<br>a mobilization<br>protocol on<br>the 0th<br>postoperative<br>day | Mobilisation<br>postoperative<br>ly by the<br>nurses<br>according to<br>the decision<br>of the nurse<br>and physician<br>in the<br>intensive care<br>unit (ICU) on<br>the day of<br>the operation | Endpoints:<br>- time to<br>mobilizati<br>on after<br>ICU<br>admission<br>- ICU LOS<br>- hospital<br>LOS<br>- higher<br>sleep<br>quality | Significant differences between the groups<br>in:<br>- time to mobilization after ICU admission<br>(6.22 ± 1.95 hours vs 12.21 ± 3.76 hours)<br>p<0.05<br>- ICU LOS (2(1-2) vs 4(1-7)) p<0.001<br>- hospital LOS (7 (5-11) vs 12 (7-24)) p<0.001<br>- higher sleep quality (8 (5 – 10) vs 4 (1 – 8)<br>p<0.001 | 4                 |
|                                                                                                                                                                                      | 21 intervention 25 control                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                                                   |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                |                   |

LOS = length of stay

Conclusions: The structured mobilization protocol is effective in the management of early mobilization and improvement of patient care outcomes.

| Reference,<br>Study Type                                                                                                              | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                  | Drop-<br>out<br>Rate | Intervention                                           | Control    | Optimal<br>Population         | Primary Results                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------|------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2175<br>Patrick<br>2021<br>PMID: 34333616<br>DOI:<br>10.4037/ccn20216<br>89<br>Specification of<br>study:<br>Retrospective<br>review | 9 patients<br>242 therapy sessions<br>Inclusion criteria:<br>- mobilized patients (agitation sedation<br>scale of -1 to 0)<br>- no fluctuation ECMO flow from 3- 5<br>L/min<br>- stable hemoglobin levels for the<br>previous 12 hours<br>Exclusion criteria:<br>- patients receiving ≥ 2 vasopressors<br>- significant bleeding<br>Per Branch<br>9 intervention |                      | Implementation<br>of standardized<br>mobility protocol | No control | <b>Endpoints:</b><br>- safety | Outcome:<br>patients experienced the following<br>complications:<br>- chugging (1 patient)<br>- decrease in flow rate (2 patients)<br>- bleeding at the cannula site (2 patients)<br>- neck hyperextension (1 patient)<br>- fear/anxiety (1 patient)<br>- shortness of breath (2 patients) | 4                 |

ECMO = extracorporal membrane oxygenation

Conclusions: Patients receiving extracorporeal membrane oxygenation before lung transplant, including those with femoral cannulation, can be mobilized safely with the use of an interprofessional ambulation protocol. Further evaluation is indicated, including research on clinical outcomes.

| Reference,<br>Study Type                                                                                                                                    | (Participant #,                                                                                                                                                                                           | d Controls<br>Characteristics)<br>otal           | Drop-<br>out<br>Rate | Intervention            | Control             | Optimal<br>Population                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------|-------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| #2178<br>Nakamura<br>2021<br>PMID: 34229920<br>DOI:<br>10.1016/j.jjcc.20<br>21.06.004<br>Specification of<br>study:<br>retrospective<br>nationwide<br>study | units<br>- admitted for AMI<br>- received PCI on th<br>- admitted to the IC<br>admission<br><b>Exclusion criteria:</b><br>- younger than 18 y<br>- received cardiopur<br>resuscitation<br>- received ECMO | ne day of admission<br>CU on the day of<br>years |                      | Early<br>rehabilitation | Standard of<br>care | Primary<br>endpoints:<br>- ADL at<br>discharge<br>(Barthel index)<br>Secondary<br>endpoints:<br>- in Hospital<br>mortality<br>- ICU LOS<br>- Hospital LOS<br>- total<br>hospialization<br>cost | Primary outcome:<br>no significant differences between the<br>groups in:<br>- ADL at discharge (control 78.9±37 vs<br>intervention 83.2±33) p=0.3<br>Secondary outcomes:<br>significant differences between the groups<br>in: (control vs intervention)<br>-in Hospital mortality (9.4 vs 5.5) p<0.001<br>-hospital LOS (27.2±24 22.5±20) p<0.001<br>-hospital LOS (7.7±6 vs 6.7±6) p=0.001<br>-hospitalization cost (31.5±20 26.9±15)<br>p=0.001 | 4 → 3<br>(large<br>cohort –<br>national<br>database) |

ADL = activities of daily living, AMI = acute myocardial infarction, LOS = length of stay, PCI = percutaneous coronary intervention

Conclusions: No correlations were observed between early rehabilitation and ADL at discharge. However, the present results suggest that early rehabilitation is safe and associated with lower hospital costs and shorter hospital stays after AMI.

| Reference,<br>Study Type                                                                                                                                            | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                   | Drop-out Rate                                                                                                       | Intervention           | Control | Optimal<br>Population                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------|---------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2180<br>Katsukawa 2021<br>(PMID: 34199207<br>DOI:<br>10.3390/jcm10122607)<br><b>Specification of study:</b><br>Multi-center<br>retrospective<br>observational study | 390 pts<br>Inclusion criteria:<br>- adult tracheal intubated<br>pts<br>- on MV on ICU<br>Exclusion criteria:<br>- MV <48h<br>- <18 year<br>- no activity of daily living<br>independence before<br>hospitalization<br>- receiving end-of-life care<br>- neurological pts<br>- bed rest<br>Per Branch | n = 251<br>(discharge from<br>ICU with in-bed<br>exercise only),<br>n = 52<br>(extubated<br>before<br>mobilization) | Active<br>mobilisation |         | Sample size<br>calculation:<br>No power<br>calculation<br>reported.<br>Endpoint:<br>-occurrence<br>of PSE | Primary endpoint:<br>- PSE occurred in 11,5% of<br>cases (62% systolic blood pressure<br>instability, 23% heart rate<br>instability, 15% desaturation)<br>- occurrence of PSE was higher if<br>mobilization was carried out on 1 <sup>st</sup><br>day of ICU admission (p <0.05)<br>- more pts with PSE were<br>administered vasopressors before<br>mobilization (p<0.05).<br>- rate of participation of a physical<br>therapist in mobilization was lower<br>in group with PSE (p <0.05)<br>- highest occurrence rate of PSE was<br>for standing (event rate = 205.1 per<br>1000 sessions).<br>- adverse events: no accidents,<br>such as line/ tube removal or falls or<br>any severe, life-threatening event | 4                 |

ICU = intensive care unit, MV = mechanical ventilation, PSE = patient-related safety event, pts= patients

The highest activity level was identified as a risk factor for PSE occurrence, and close vigilance is required during mobilization in the standing position regarding circulatory dynamics.

| Reference,<br>Study Type                                                                                                  | (Participant #,                                                                                                                                                                                                                                                                              | d Controls<br>Characteristics)<br>ttal               | Drop-<br>out<br>Rate | Intervention                                                                                                                                   | Control            | Optimal<br>Population                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2181<br>Jin<br>2021<br>PMID:<br>34150113<br>DOI: not<br>available<br>Specification<br>of study:<br>prospective<br>cohort | 172 pts<br>Inclusion criteria<br>- pts with RF req<br>- > 18y<br>- MV duration ><br>- no treatment a<br>Exclusion criteri<br>- inability to com<br>- unstable hemo<br>- elevated ICP<br>- fractures<br>- contraindicatio<br>mobilization<br>- instable pulmo<br>function<br>Per B<br>RG = 92 | 24h<br>offecting ERN<br>a:<br>nmunicate<br>odynamics |                      | Early<br>rehabilitation<br>nursing<br>(exercise<br>plan, in-bed<br>mobilization,<br>respiratory<br>care,<br>respiratory<br>muscle<br>training) | Routine<br>nursing | Outcomes:<br>- vital signs 1 week<br>after intervention<br>- ABG<br>- spirometry<br>- ICU-LOS<br>- duration of MV<br>- hospital LOS<br>- complications<br>- SAS and SDS<br>- QoL (SGRQ<br>negatively<br>correlated) | Outcomes:- vital signs 1 week after intervention: temp.: $37.38\pm 0.63$ vs. $38.05\pm 0.6$ ; $p < 0.001$ RR: $24.12\pm 2.86$ vs. $28.05\pm 2.23$ ; $p < 0.001$ HR: $90.75\pm 8.61$ vs. $103.12\pm 8.15$ ; $p < 0.001$ - ABG: PaO <sub>2</sub> (mmHg): $94.15\pm 3.78$ vs. $88.62\pm 3.45$ ; $p < 0.001$ - PaCO <sub>2</sub> (mmHg): $39.15\pm 4.05$ vs. $43.75\pm 3.18$ ; $p < 0.001$ - SpO <sub>2</sub> (%): $97.56\pm 4.85$ vs. $85.63\pm 2.72$ ; $p < 0.001$ - spirometry: increased FEV1, FEV1/FVC and FEV1% in intervention ( $p < 0.05$ ), values only in graph ICU-LOS (d): $6.52\pm 1.66$ vs. $8.76\pm 1.45$ ; $p < 0.001$ - duration of MV (d): $4.35\pm 1.85$ vs. $5.88\pm 2.17$ ; $p < 0.001$ - hospital LOS (d): $11.78\pm 2.89$ vs. $14.96\pm 3.53$ ; $p < 0.001$ - SGRQ: $69.39\pm 7.15$ vs. $80.18\pm 4.85$ ; $p < 0.001$ - complications: n.s SAS and SDS: n.s. | 3                 |

ABG = arterial blood gas analysis, ERN = early rehabilitation nursing, GG = general group, HR = heart rate, ICP = intracranial pressure, MV = mechanical ventilation, QoL = quality of life, RF = respiratory failure, RG= recovery group, RR = respiratory rate, SAS = self-rating anxiety scale, self-rating depression scale; SGRQ = St. George's respiratory questionnaire

Early rehabilitation nursing improves physiological values as well as hospital and ICU length of stay and reduces duration of mechanical ventilation.

| Reference,<br>Study Type                                                                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drop-<br>out<br>Rate | Intervention        | Control    | Optimal<br>Population                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2182<br>Abrams<br>2021<br>PMID:<br>34077700<br>DOI:<br>10.1513/Annal<br>sATS.202102-<br>1510C<br>Specification<br>of study:<br>single-center,<br>retrospective<br>study | <ul> <li>177 patients</li> <li>2.706 active physical therapy sessions</li> <li>Inclusion criteria: <ul> <li>patients &gt; 18 years</li> <li>active physical therapy</li> <li>receiving ECMO for cardiopulmonary failure</li> </ul> </li> <li>Exclusion criteria: <ul> <li>significant hemorrhaging</li> <li>unstable arrhythmia</li> <li>hemodynamic instability despite high-dose vasopressors</li> <li>severe hypoxemia</li> <li>sedation precluding active patient participation</li> <li>use of neuromuscular blockade</li> </ul> </li> <li>177 intervention</li> </ul> |                      | Physical<br>therapy | No control | Endpoints:<br>- factors<br>predicting<br>possible<br>intensity of<br>physical<br>therapy<br>- safety<br>- feasibility | Outcomes:<br>- 138 (78%) achieving out-of-bed activity<br>Increased odds of achieving OoB associated<br>with:<br>- bridge-to-transplant (odds ratio [OR], 17.2;<br>95%confidence interval [CI], 4.12–72.1)<br>- venovenous ECMO (OR, 2.83;95% CI, 1.29–<br>6.22)<br>- later cannulation year (OR, 1.65; 95%<br>CI,1.37–1.98)<br>- higher Charlson comorbidity index (OR,<br>1.53; 95% CI,1.07–2.19)<br>Decreased odds of OoB activities:<br>- invasive mechanical ventilation (OR, 0.11;<br>95% CI, 0.05–0.25)<br>- femoral cannulation (OR, 0.19; 95%CI,<br>0.04–0.92)<br>- AEs in 2% of sessions | 4                 |

AE = adverse event, MV = mechanical ventilation, OoB = out-of-bed

Several patient- and ECMO-related factors were associated with achieving higher intensity of early mobilization inpatients participating in rehabilitation. Physical therapy with femoral cannulation was safe and feasible, and complications related to mobilization were uncommon.

| Reference,<br>Study Type          | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Drop-<br>out<br>Rate | Interve<br>ntion | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Evidence<br>Grade                                     |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 2021<br>PMID:<br>33260011<br>DOI: | 18 articles <sup>1-18</sup> up to 5 November 2020 (13 RQ1,<br>5 RQ2)<br>Inclusion criteria:<br>-concerned family participation on the ICU<br>-one or more physiotherapy-related tasks (i.e.,<br>passive/active exercises such as range of<br>motion, foot flexion, limb<br>exercises, positioning,<br>mobilization/transfer/ambulation, or<br>respiratory techniques/breathing training) as<br>part of their family participation intervention<br>-reported results on relative involvement in<br>physiotherapist-related tasks<br>Exclusion criteria:<br>-Studies solely focusing on family involvement<br>in conversations, medical decisions, ICU<br>rounds, nursing tasks (e.g., washing, bathing,<br>feeding), occupational tasks, or studies on<br>family visiting hours<br>Per Branch |                      |                  |         | No sample size calculation due to<br>study design<br>No endpoints defined<br><b>Defined RQ:</b><br>-RQ 1:<br>What are the perceptions of<br>patients, their relatives and staff<br>on family participation in<br>physiotherapy-related tasks of<br>critically ill patients?<br>-RQ 2:<br>What are the effects of<br>interventions involving ICU family<br>participation in physiotherapy-<br>related tasks on patient<br>outcomes, their relatives and/or<br>staff? | <b>Results:</b><br>- Passive tasks like massage and passive<br>exercises were acceptable for family<br>participation, active tasks less positively<br>received.<br>-Quantitative evidence: majority of patients,<br>relatives, and staff value family participation<br>in physiotherapy care, with 77% of patients<br>in favor of it.<br>- involving ICU family members in<br>physiotherapy-related tasks can lead to<br>positive outcomes for the family, such as<br>improved psychological well-being, but did<br>not show significant effects on patient<br>physical functioning. | 1 → 5<br>(no<br>quantitative<br>analysis, no<br>RCTs) |

RQ = research question; ICU = Intensive Care unit

Patients, relatives, and staff had positive attitudes towards family participation in physiotherapy-related tasks for critically ill patients.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

#### References

<sup>1</sup>Garrouste-OrgeasM, Willems V, Timsit JF, Diaw F, Brochon S, Vesin A, et al. Opinions of families, staff, and patients about family participation in care in intensive care units. J Crit Care 2010;25(4):634–40.

<sup>2</sup>Kean S,Mitchell M. Howdo intensive care nurses perceive families in intensive care? Insights from the United Kingdom and Australia. J Clin Nurs 2014;23(5–6):663–72. <sup>3</sup>Hammond F. Involving families in care within the intensive care environment: a descriptive survey. Intensive Crit Care Nurs 1995 Oct;11(5):256–64.

<sup>4</sup>McAdam JL, Arai S, Puntillo KA. Unrecognized contributions of families in the intensive care unit. Intensive Care Med 2008;34(6):1097–101.

<sup>5</sup>Hetland B, Hickman R, McAndrew N, Daly B. Factors influencing active family engagement in care among critical care nurses. AACN Adv Crit Care 2017;28(2): 160–70. <sup>6</sup>Hetland B,McAndrew N, Perazzo J, Hickman R. A qualitative study of factors that influence active family involvement with patient care in the ICU: survey of critical care nurses. Intensive Crit Care Nurs 2018;44:67–75.

<sup>7</sup>de Beer J, Brysiewicz P. The conceptualization of family care during critical illness in KwaZulu-Natal. South Africa Health SA Gesondheid 2017;22:20–7.

<sup>8</sup>Engström B, Uusitalo A. Engström. Relatives' involvement in nursing care: a qualitative study describing critical care nurses' experiences. Intensive Crit Care Nurs 2011; 27(1):1–9.

<sup>9</sup>Agård AS, Maindal HT. Interacting with relatives in intensive care unit. Nurses' perceptions of a challenging task. Nurs Crit Care 2009;14(5):264–72.

<sup>10</sup>Wong P, Redley B, Digby R, Correya A, Bucknall T. Families' perspectives of participation in patient care in an adult intensive care unit: a qualitative study. Aust Crit Care 2020;33(4):317 25.

<sup>11</sup>Kydonaki K, Kean S, Tocher J. Family INvolvement in inTensive care: a qualitative exploration of critically ill patients, their families and critical care nurses (INpuT study). J Clin Nurs 2019;29(7–8):1115–28.

<sup>12</sup>Jafarpoor H, Vasli P, Manoochehri H. How is family involved in clinical care and decision-making in intensive care units? A qualitative study. Contemp Nurse 2020:1–15. <sup>13</sup>Hamilton R, Kleinpell R, Lipman J, Davidson JE. International facilitators and barriers to family engagement in the ICU: results of a qualitative analysis. J Crit Care 2020;58: 72–7. Rukstele CD, <sup>14</sup>Gagnon MM. Making strides in preventing ICU-acquired weakness: involving family in early progressive mobility. Crit Care Nurs Q 2013;36(1):141–7. <sup>15</sup>Mitchell M, Chaboyer W, Burmeister E, Foster M. Positive effects of a nursing intervention on family-centered care in adult critical care. Am J Crit Care 2009;18(6): 543–52 [quiz 53].

<sup>16</sup>Davidson JE, Daly BJ, Agan D, Brady NR, Higgins PA. Facilitated sensemaking: a feasibility study for the provision of a family support program in the intensive care unit. Crit Care Nurs Q 2010 Apr-Jun;33(2):177–89.

<sup>17</sup>Skoog M, Milner KA, Gatti-Petito J, Dintyala K. The impact of family engagement on anxiety levels in a cardiothoracic intensive care unit. Crit Care Nurse 2016;36(2): 84–9. <sup>18</sup>Amass TH, Villa G, Omahony S, Badger JM, McFadden R, Walsh T, et al. Family care rituals in the ICU to reduce symptoms of post-traumatic stress disorder in family members—a multicenter, multinational, before-and-after intervention trial\*. Crit Care Med 2020;48(2):176–84.

| Reference,<br>Study Type                                                                                                                                            | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                    | Characteristics)                                                                                                             | Drop-out<br>Rate                                                                                                                                                                                 | Intervention                             | Control               | Optimal<br>Population                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2215<br>Amundadottir<br>2019<br>PMID: not available<br>DOI:<br>10.1080/21679169.<br>2019.1645880<br>Specification of<br>study:<br>a randomized<br>controlled trial | 50 patients<br>Inclusion criteria:<br>- ICU patients 18-80 y<br>- requiring MV >48 hd<br>- ambulate independ<br>onset of acute illness<br>- cooperate and com<br>assessment and inter<br>year after the ICU dis<br>Exclusion criteria:<br>- poor survival outcor<br>- admission to the ho<br>two weeks prior to IC<br>- contraindication for<br>mobilsation<br>Per Br<br>29 intervention | ours<br>lently before the<br>ply with<br>rvention for one<br>scharge<br>me<br>ospital more than<br>CU admission<br>r upright | At 12<br>months<br>after ICU<br>discharge 5<br>pts in<br>interventio<br>n (3<br>deceased, 2<br>lost to<br>follow up),<br>3 pts in<br>control<br>group (2<br>deceased, 1<br>lost to<br>follow up) | Intensive<br>twice-daily<br>mobilization | Daily<br>mobilisation | Endpoints:<br>- duration<br>of MV<br>- ICU LOS<br>- hospital<br>LOS<br>Secondary<br>endpoints:<br>- health-<br>related<br>quality of<br>life<br>- physical<br>function | Primary outcomes:<br>no significant differences between the<br>groups in: (intervention vs control)<br>- duration of MV (8.8 vs 7.8) (p=0.89<br>- ICU LOS (12.4 vs 11) p=0.86<br>- hospital LOS (36.9 vs 24.6) p=0.29<br>Secondary outcomes:<br>no significant differences between the<br>groups in: (intervention vs control) ICU<br>discharge, 3, 6, 12 months<br>- health-related quality of life (SF-36v2 score)<br>4 weeks before ICU: (44.1 vs 46.1) p=1<br>3 months: (36.3 vs 37.4) p=1<br>6 months: (38.5 vs 37.3) p=1<br>12 months: (38.3 vs 40.2) p=1<br>- physical function (MRC-SS)<br>ICU discharge: (40.2 vs 42.4) p=0.99<br>3 months: (52.9 vs 54.5) p=1<br>6 months: (55 vs 54.4) p=1<br>12 months: (56.9 vs 55.9) p=1 | 2                 |

LOS = length of stay, MRC-SS = medical research council sum-score, MV = mechanical ventilation, SF-36v2 = short form-36 health survey version 2

The intensive twice-daily mobilisation group neither started upright mobilization early nor yielded superior short- or long-term outcomes compared to the daily mobilisation group. Both groups showed poor physical health-related quality of life and exercise capacity one year after ICU discharge.

| Study Type                                                                                                                                 | (Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drop-out Rate                         | Intervention                                                                    | Control | Optimal Population                                                      | Primary Results                                                                                                                                                                                                                                                                                            | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| #2239<br>Wappel<br>2021<br>PMID: 32817444<br>DOI:<br>10.4187/respcare.<br>07840<br>Specification of<br>study:<br>retrospective<br>analysis | 32 patients<br>Inclusion criteria:<br>- age >50 years<br>- tracheostomy on PMV for at least 14 d<br>during acute hospitalization<br>- requiring PMV for >6 h/d<br>- able to participate in MRP activities<br>- preadmission Barthel Index>70<br>- all extremities intact and mobile<br>- meeting clinical criteria for ICU-acquired<br>weakness<br>Exclusion criteria:<br>- acute superimposed cardiopulmonary<br>disease<br>- cognitive impairment<br>- severe functional impairment related to<br>neuromuscular dysfunction<br>Per Branch | 1 withdrew<br>before<br>randomization | MRP+HPRO<br>(n=10)<br>MRP+LPRO<br>(n=5)<br>UC+HPRO<br>(n=8)<br>UC+LPRO<br>(n=8) |         | <b>Endpoints:</b><br>effects of MRP on<br>- weaning<br>- discharge home | Outcome:<br>significant differences between the<br>groups in:<br>MRP+HPRO vs UC+LPRO<br>- weaning (90% vs 38%) p=0.045<br>- discharge home rate (70% vs 13%)<br>p=0.037<br>No significant differences between<br>the groups in:<br>MRP+HPRO vs MRP+LPRO<br>- rate of discharge home (70% vs<br>20%) p=0.10 | 4 → 5             |

HPRO = high protein, LPRO = low protein, MRP = mobility-based rehabilitation programs, PMV = prolonged mechanical ventilation, UC = usual care

Combining high protein with mobility-based rehabilitation was associated with increased rates of discharge home and ventilator weaning success in survivors of critical illness. Further studies are needed to evaluate the role of combined exercise and nutrition interventions in this population.

| Reference,<br>Study Type                                                                                                                                      | (Participant #,                  | d Controls<br>Characteristics)<br>otal | Drop-out<br>Rate   | Intervention | Control | Optimal Population                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|--------------------|--------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3000<br>Reinprecht, 2003<br>(PMID: 12794427<br>DOI:<br>10.1097/01.CCM.00<br>00063453.93855.0A<br>)<br>Specification of<br>study:<br>Retrospective<br>analysis | Exclusion crite<br>Not specified | is<br>prone position                   | 1: missing<br>data | PP           | SP      | Outcomes:<br>measured during PP<br>and SP on the same<br>patient:<br>- hemodynamics<br>- arterial<br>oxygenation<br>measured in torr<br>- ventilatory setting<br>- ICP + CPP<br>- brain tissue oxygen<br>partial pressure | Significant differences between groups<br>in:<br>- increase in PaO2 from 97.3 $\pm 20.7$ torr<br>(mean $\pm$ SD) in the SP to 126.6 $\pm$ 31.7 torr<br>in the PP (p < .0001)<br>-increase in brain tissue oxygen partial<br>pressure from 26.8 $\pm$ 10.9 torr to 31.6 $\pm$<br>12.2 torr (p < 0.0001)<br>- ICP increased from 9.3 $\pm$ 5.2 mm Hg to<br>14.8 $\pm$ 6.7 mm Hg (p < 0.0001)<br>-CPP decreased from 73.0 $\pm$ 10.5 mm Hg to<br>67.7 $\pm$ 10.7 mm Hg (p < 0.0001) | 4                 |

ARDS = acute respiratory distress syndrome, CPP = cerebral perfusion pressure, ICP = intracranial pressure, PP = prone position, pts = patients, SAH = subarachnoid hemorrhage, SP = supine position

Prone positioning in patients with SAH and ARDS led to improved arterial oxygenation and brain tissue oxygen partial pressure, but also increased ICP and decreased CPP.

| Reference,<br>Study Type                                                                                                                                                       | (Partic<br>Charac                                                                                            | d Controls<br>ipant #,<br>teristics)<br>otal                                                                | Drop-<br>out<br>Rate            | Intervention                                                     | Control                                                    | Optimal Population                                                                                                                                                                                                                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------|------------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3001<br>Beuret 2002<br>(PMID:<br>12029403<br>DOI:<br>10.1007/s0013<br>4-002-1266-x)<br><b>Specification</b><br>of study:<br>prospective,<br>randomized,<br>controlled<br>study | 150)<br>- hemodynami<br>- anterior flail<br>- vertebral or l<br>fracture<br>- orthopedic tr<br>- ICP ≥ 20mm⊢ | ria:<br>h<br>ing<br>kia (PaO <sub>2</sub> /FIO <sub>2</sub> <<br>ic failure<br>chest<br>ong bone<br>raction | SP: 2<br>death<br>within<br>24h | <b>PP:</b><br>4h/day<br>beginning<br>within 24h of<br>intubation | <b>SP:</b><br>continuously<br>with head<br>elevated at 20° | <ul> <li>Primary endpoint: <ul> <li>incidence of lung worsening</li> <li>defined by increase of lung Injury</li> <li>Score of at least 1 point</li> </ul> </li> <li>Secondary Outcome: <ul> <li>incidence of VAP</li> </ul> </li> <li>Sample size calculation: <ul> <li>reduction in incidence from 60 to</li> <li>25% with 66 pts. per arm (alpha= 5%, power= 80%)</li> </ul> </li> </ul> | Primary endpoint:<br>- incidence of deterioration of<br>pulmonary funciton was lower<br>in the PP group (12%) than in<br>the SP group (50%) (p=0.003)<br>Secondary outcome:<br>- incidence of VAP was 20% in<br>the PP group and 38.4% in the<br>SP group (p=0.14) | 2                 |

GCS = Glasgow coma scale, ICU-LOS = intensive care unit length of stay, ICP = intracranial pressure, MV = mechanical ventilation, PP = prone positioning, pts = patients, SP = supine positioning, VAP = ventilator-associated pneumonia

#### Prone positioning reduced the incidence of deterioration of pulmonary functionand showed a reduction of VAP.

| Study Type         | · · ·                                                                                                                                                                                                                                                  | Characteristics) | Drop-out Rate                                     | Intervention                  | Control                  | Optimal Population                                                                                                       | Primary Results                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| (PMID:<br>15372177 | 52 pts<br>Inclusion criteria:<br>- > 18 years<br>- ARDS (paO2/FIO2 r<br>- Bilateral infiltration<br>Exclusion criteria:<br>- cardiac pulmonary<br>- acute brain injury<br>- acute shock syndro<br>- contraindication PF<br>Per E<br>27 pts. in 135° PP | oedema           | 7 (5 IPP, 2 CPP)<br>due to acute<br>complications | Incomplete<br>PP<br>(135° PP) | Complete PP<br>(180° PP) | Primary endpoint:<br>- oxygenation (after 6h)<br>Secondary outcomes:<br>- AE<br>- PaCO2<br>No sample size<br>calculation | Significant differences<br>between groups in:<br>- significant increase of<br>PaO2/FiO2 ration in<br>complete PP 139±54mmHg<br>to 206±75mmHg incomplete<br>PP) vs (142±46mmHg to<br>253±107mmHg CPP), p< 0.05<br>No significant difference<br>between groups in:<br>- PaCO2<br>- safety: the incidence of side<br>effects tended to be<br>increased during the CPP | 2                 |

ARDS = acute respiratory distress syndrome, ICP = intra cranial pressure, IPP = incomplete prone position, MAP = mean arterial pressure, PEEP = positive end expiratory pressure, PP = prone position, pts = patients

#### Incomplete prone positioning improves oxygenation but is inferior to complete prone positioning.

| Reference,<br>Study Type                      | (Participant #,                                                                               | d Controls<br>Characteristics)<br>otal | Drop-out<br>Rate | Intervention                    | Control                   | Optimal Population                            | Primary Results                                                                                                      | Evidence Grade                                                                                      |   |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------|------------------|---------------------------------|---------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---|
| 3003<br>Hering 2001,                          | 16 pts on MV wi<br>within 24h. Ever<br>and SP<br><b>Exclusion criteri</b><br>- unstable cardi | y pt. received PP                      |                  |                                 |                           |                                               | <b>Outcomes:</b><br>intraabdominal pressure: PP:<br>14 ± 5 mmHg vs SP: 12 ± 4<br>mmHg (p < 0.05)                     |                                                                                                     |   |
| (PMID:<br>11323351<br>DOI:                    | function<br>- diuretics<br>- renal transplar<br>replacement the                               |                                        |                  | Prone                           | Supine<br>positioning for | <b>Outcomes:</b><br>- intraabdominal pressure | cardiovascular function:<br>- Cl: 4.4 vs. 4.1 L/min⋅m <sup>2</sup><br>(p < 0.05)<br>- MAP: 82 vs. 77 (p < 0.01)      |                                                                                                     |   |
| 10.1097/000<br>00539-<br>200105000-<br>00027) | - cerebral injury<br>-unstable spine<br>- peritonitis                                         |                                        |                  | <b>positioning</b> for 180 min. |                           | <b>positioning</b> for 180 min.               | - cardiovascular function<br>- renal function                                                                        | - PaO <sub>2</sub> /FiO <sub>2</sub> : 267 vs 220<br>(p < 0.05)<br>- HR, ITBVI, CVP, SVRI, pH: n.s. | 3 |
| Specification                                 | Per B                                                                                         | Franch                                 |                  |                                 |                           | renal function:                               |                                                                                                                      |                                                                                                     |   |
| <b>of study:</b><br>Cross-over<br>study       | 16                                                                                            | 16                                     |                  |                                 |                           |                                               | - RF: 15.5 vs 19.1 (p < 0.05)<br>- RVRI: 15078 vs 11762<br>(p < 0.05)<br>U <sub>vol</sub> , ERPFI, ERBFI, GFRI: n.s. |                                                                                                     |   |

ALI = acute lung injury, CI = cardiac index, CVP = central venous pressure, ERPFI = effective renal plasma flow Index, HR = heart rate, ITBVI = intrathoracic blood volume index, MAP = mean arterial pressure, PP = prone positioning, RF = renal function, RVRI = renal vascular resistance index, SP = supine positioning, SVRI = systemic vascular resistance index, U<sub>vol</sub> = urine volume,

Prone positioning increases intraabdominal pressure, cardiac index, mean arterial pressure and oxygenation while reducing renal function.

| Reference,<br>Study Type                                                                                                                                | Cases and Controls<br>(Participant #,<br>Characteristics)                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                         | Total                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| #3004<br>Kirkpatrick<br>2013<br>PMID: 23673399<br>DOI:<br>10.1007/s00134-<br>013-2906-z<br>Specification of<br>study:<br>Clinical Practice<br>Guideline | n = 5 publications <sup>1-5</sup><br>Inclusion criteria:<br>- patients with abdominal<br>compartments syndrome<br>(No data available)<br>Definition of EM<br>No data available | <ul> <li>Recommendations <ul> <li>no recommendations regarding mobilization</li> </ul> </li> <li>Suggestions regarding mobilisation: <ul> <li>3. potential contribution of body position to elevated IAP to be considered among patients with, or at risk of, IAH or ACS suggested [GRADE 2D]</li> </ul> </li> <li>Grading of quality level of evidence following GRADE recommendations (1 = high recommendation, 2 = weak recommendation; A to D = Quality level of evidence)</li> </ul> | 1                 |

ACS = abdominal compartment syndrome, EM = early mobilisation, GRADE = grading of recommendations, assessment, development and evaluations, IAH = intraabdominal hypertension, IAP = intraabdominal pressure, pts = patients

#### References

- 1. Cheatham ML, De Waele JJ, De Laet I, De Keulenaer B, Widder S, Kirkpatrick AW, Cresswell AB, Malbrain M, Bodnar Z, Mejia-Mantilla JH, Reis R, Parr M, Schulze R, Puig S, (2009) The impact of body position on intra-abdominal pressure measurement: a multicenter analysis. Crit Care Med 37: 2187-2190
- 2. McBeth PB, Zygun DA, Widder S, Cheatham M, Zengerink I, Glowa J, Kirkpatrick AW, (2007) Effect of patient positioning on intra-abdominal pressure monitoring. Am J Surg 193: 644-647
- 3. De Waele JJ, De Laet I, De Keulenaer B, Widder S, Kirkpatrick AW, Cresswell AB, Malbrain M, Bodnar Z, Mejia-Mantilla JH, Reis R, Parr M, Schulze R, Compano S, Cheatham M, (2008) The effect of different reference transducer positions on intra-abdominal pressure measurement: a multicenter analysis. Intensive Care Med 34: 1299-1303
- 4. Kirkpatrick AW, Pelosi P, De Waele JJ, Malbrain ML, Ball CG, Meade MO, Stelfox HT, Laupland KB, (2010) Clinical review: Intra-abdominal hypertension: does it influence the physiology of prone ventilation? Crit Care 14: 232
- 5. Yi M, Leng Y, Bai Y, Yao G, Zhu X, (2012) The evaluation of the effect of body positioning on intra-abdominal pressure measurement and the effect of intra-abdominal pressure at different body positioning on organ function and prognosis in critically ill patients. Journal of critical care 27: 222 e221-226

| Reference,<br>Study Type                                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                        | Drop-<br>out<br>Rate | Intervention                                                                                                                                                                | Control                                                                                                                      | Optimal<br>Population                             | Primary Results                                                                                                                                                                                                               | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3005<br>Cheatham<br>2009<br>(PMID:<br>19487946<br>DOI:<br>10.1097/CCM.<br>0b013e3181a0<br>21fa]<br>Specification<br>of study:<br>A prospective,<br>cohort study | <ul> <li>- unable to tolerate changes in body<br/>position (because of spinal precautions,<br/>intracranial hypertension, hemodynamic<br/>instability, etc)</li> <li>- intravesicular pressure measurements</li> </ul> |                      | Triplicate<br>intravesicular<br>pressure<br>measurments<br>at least 4h<br>apart with<br>patients in:<br>- 15° degree<br>- 30° degree<br>head of bed<br>elevated<br>position | Triplicate<br>intravesicular<br>pressure<br>measurments<br>at least 4h<br>apart with<br>patients in:<br>- supine<br>position | Primary<br>endpoints:<br>- measured<br>IAP values | Primary outcome:<br>significant differences between the groups<br>in: (control vs intervention)<br>- IAPsupine and IAP15° was 1.5 mm Hg (1.3–<br>1.7) p<0.0001<br>- APsupine and IAP30° was 3.7 mm Hg (3.4 –<br>4.0) p<0.0001 | 3                 |

ACS = abdominal compartment syndrome, APP = abdominal perfusion pressure, IAH = intra-abdominal hypertension, IAP = intra-abdominal pressure, ICU = intensive care units, VAP = ventilator-associated pneumonia

Conclusions: Head of bed elevation results in clinically significant increases in measured IAP. Consistent body positioning from one IAP measurement to the next is necessary to allow consistent trending of IAP for accurate clinical decision making. Studies that involve IAP measurements should describe the patient's body position so that these values may be properly interpreted.

| Reference,<br>Study Type                                                                                                                                                                                    | Cases and C<br>(Participant #, Ch<br>Tota                                                                                                                                                                                                              | aracteristics)                        | Drop-out Rate                | Intervention                                                                                                                                                                                                                                                                                    | Control             | Optimal Population                                                                                                                                                                                                                                                                                                                                                                   | Primary Results                                                                                                                                                                         | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3006<br>Ehrmann 2021<br>(PMID: 34425070<br>DOI:<br>10.1016/S2213-<br>2600(21)00356-8)<br><b>Specification of</b><br><b>study:</b><br>randomised,<br>controlled,<br>multinational, open-<br>label meta-trial | 1126 pts<br>Inclusion criteria:<br>- > 18 years<br>- acute hypoxaemic<br>failure due to prove<br>pneumonia<br>Exclusion criteria<br>- consent<br>- haemodynamica u<br>- BMI > 40<br>- pregnancy<br>- contraindication for<br>Per Brain<br>567 awake PP | n COVID-19-<br>nstable<br>or awake PP | n=5<br>(withdrew<br>consent) | Awake prone<br>position<br>- (patients in the<br>awake prone<br>positioning group<br>were instructed and<br>assisted to lie in the<br>prone position for as<br>long and as frequently<br>as possible each day.<br>The duration of each<br>proning session was<br>recorded by bedside<br>nurses) | Standard<br>of care | <ul> <li>Primary endpoint: <ul> <li>treatment failure (defined as intubation or death)</li> </ul> </li> <li>Secondary outcome: <ul> <li>mortality</li> </ul> </li> <li>Sample Size calculation: <ul> <li>based on previews reports primary outcome incidence was estimated between 60-70% in standard care group, 90% power</li> <li>Sample size was 1000 pts</li> </ul> </li> </ul> | Primary endpoint:<br>treatment failure<br>within 28 days:<br>- awake proning:<br>223 (40%) vs SOC:<br>257 (46%);<br>p=0.025<br>Secondary<br>outcome:<br>- no difference in<br>mortality | 2                 |

BMI = body mass index, h = hours, PP = prone position, Pts = patients, SOC = standard of care

# Awake prone positioning of patients with hypoxemic respiratory failure due to COVID-19 reduces the incidence of treatment failure and the need for intubation without any sign of harm.

| Reference,                            | Cases and<br>(Participant #, cl                                                     |                                | Drop-out Rate              | Intervention | Control | Optimal Population                                                                         | Primary Results                                                                                                                       | Evidence<br>Grade                    |
|---------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|----------------------------|--------------|---------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Study Type                            | Tota                                                                                | al                             |                            |              |         |                                                                                            |                                                                                                                                       | erude                                |
|                                       | 40 patients at 1 quaterna                                                           | ary referral center            |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | Inclusion criteria:                                                                 |                                |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | <ul> <li>adult patients</li> </ul>                                                  |                                |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | - submitted to ICU by on                                                            | e of the study teams           |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | - positive SARS-CoV-2 tes                                                           | st within 7 days               |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
| 3007 Taylor 2021                      | <ul> <li>suspected COVID-19 pn<br/>experienced:</li> </ul>                          | neumonia and                   |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
| PMID: 33356977                        | 1) room air oxygen satu                                                             | iration <93%                   |                            |              |         | <b>- .</b>                                                                                 | Results:                                                                                                                              |                                      |
| DOI:<br>10.1513/AnnalsA<br>TS.202009- | <ol> <li>oxygen requirement<br/>greater without the need<br/>ventilation</li> </ol> | •                              | 1 intervention patient did | APPS + UC    | Usual   | Endpoints:<br>Clinical outcomes:<br>- S/F ratio<br>- S/F ratio below 315<br>- hospital LOS | Differences in (no p value<br>given):<br>(Control vs intervention)<br>-S/F ratio (216 vs 253)<br>-S/F ratio below 315 (42h<br>vs 20h) | 2 → 3<br>(pilot trial,<br>bias risk) |
| 1164OC                                | Exclusion criteria:                                                                 |                                | leave the study hospital   |              | care    |                                                                                            |                                                                                                                                       |                                      |
|                                       | - unable to self-turn                                                               |                                |                            |              |         | Safety:                                                                                    | -Hospital LOS (5 vs 6)                                                                                                                |                                      |
| Specification of                      | - spinal instability                                                                |                                |                            |              |         | - AEs                                                                                      | -AE (0 vs 1)                                                                                                                          |                                      |
| study:                                | - facial or pelvic fractures                                                        | S                              |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
| A cluster                             | - open chest or abdomer                                                             | า                              |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
| randomized pilot<br>trial             | - altered mental status                                                             |                                |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
| that                                  | - anticipated difficult airv                                                        | - anticipated difficult airway |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | - signs of respiratory fati                                                         | gue                            |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | - receiving end-of-life car                                                         | re                             |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | Per Bra                                                                             | anch                           |                            |              |         |                                                                                            |                                                                                                                                       |                                      |
|                                       | 28 APPS + UC                                                                        | 13 UC                          |                            |              |         |                                                                                            |                                                                                                                                       |                                      |

PP = prone position, UC = usual care, APPS = awake prone positioning strategy, LOS = length of stay

A definitive trial evaluating the effect of prone positioning in non-intubated patients with COVID-19 is warranted, but several barriers must be addressed to ensure that the results of such a trial are informative and readily translated into practice.

| (10.1080/1110)       -<200, respiratory rate > 24 b/m       3 days of critical care admission (arterial blood gas at admission (arterial blood gas at admission (arterial blood gas at admission then daily after the procedure for frequent 3 days)       mmHg PP group       - mean arterial pCO2 was decreased significantly in NIV group 239.34 ± 5.12       2 → 3         Specification of study:       Exclusion criteria:       - need invasive and immediate ventilation       - RR>40b/m       - systolic pressure <100 mmHg, -unable or unwilling trail of PP and NIV       Secondary outcomes:       - reducing in hospital stay       - regarding ICU or hospital duration of stay (n.s)       Secondary outcomes:       - regarding ICU or hospital duration of stay (n.s)       - regarding ICU or hospital duration of stay (n.s) | Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Interven<br>tion | Control | Optimal Population                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Gad 2021<br>https://doi.org<br>/10.1080/1110<br>1849.2021.188<br>9944<br>Specification<br>of study:<br>prospective<br>randomized<br>comparative | Inclusion criteria:<br>- positive nasopharyngeal/oropharyngeal<br>covid-19 swab is confirmed,<br>- >18 years old<br>- SaO2 <90% (5–10O2l/min simple face<br>mask)<br>- PaO2/FiO2 <200<br>- <200, respiratory rate > 24 b/m<br>- bilateral lung infiltration in CT chest<br>- not explained by cardiac failure<br>- ready to co-operate pp or NIV<br>Exclusion criteria:<br>- need invasive and immediate ventilation<br>- RR>40b/m<br>- use accessory muscle<br>- systolic pressure <100 mmHg,<br>-unable or unwilling trail of PP and NIV |                      | PP               | NIV     | <ul> <li>- improved in<br/>oxygenation and avoiding<br/>intubation within the first<br/>3 days of critical care<br/>admission (arterial blood<br/>gas at admission then<br/>daily after the procedure<br/>for frequent 3 days)</li> <li>Secondary outcomes:<br/>- reducing in ICU stay</li> </ul> | <ul> <li>mean SaO<sub>2</sub> (on simple face mask 5–10<br/>l/min) at admission 79 ± 8.47%in PP group,<br/>82 ± 7.05% in NIV group</li> <li>-SaO<sub>2</sub> and tension was significantly increased<br/>mean SaO2 93 ± 5.9%, mean PaO2 107 ± 12<br/>mmHg PP group</li> <li>mean arterial pCO<sub>2</sub> was decreased<br/>significantly in NIV group 239.34 ± 5.12<br/>mmHg compare to PP group 43.41 ± 3.2<br/>mmHg (day3) p-value &lt;0.001</li> <li>-PH (n.s)</li> </ul> | 2 → 3             |

CT = computer tomography, ICU = intensive care unit, NIV = non-invasive ventilation, n.s. = not significant, PP = prone position, pts =patients

Awake prone positioning and non-invasive ventilation showed marked improvement in SaO2 and PaO2 in COVID-19 patients with improvement in clinical symptoms with reduced rate of intubation and superiority of NIV in hypercapnic patients.

| Reference,<br>Study Type                                                                                                                  | (Parti<br>chara                                                                                                                                                                           | nd Controls<br>icipant #,<br>cteristics)<br>Fotal                                                                     | Drop-out Rate                                                                                          | Intervention                            | Control                      | Optimal Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3019<br>Drakulovic 1999<br>PMID: 10584721<br>DOI:<br>10.1016/S0140-<br>6736(98)12251-1<br><b>Specification of</b><br><b>study:</b><br>RCT | 90 pts from J<br>until May 31,<br>Inclusion crit<br>- mechanicall<br>Exclusion crit<br>- abdominal<br>- neurosurgio<br>(<7d)<br>- shock refrac<br>vasoactive dr<br>- endotrache<br>(<30d) | une 1, 1997,<br>, 1998<br><b>eeria</b> :<br>ly ventilated pts.<br><b>teria</b> :<br>surgery (<7d)<br>cal intervention | 4 (intervention<br>group):<br>1 died, 3<br>withdrawn due<br>to reintubation<br>(protocol<br>violation) | Semirecumbent<br>body position<br>(45°) | Supine body<br>position (0°) | Primary Endpoint:<br>- frequency of clinically<br>suspected pneumonia<br>Secondary outcomes:<br>- frequency of<br>microbiologically<br>confirmed pneumonia | Primary Endpoint:         - frequency of clinically<br>suspected pneumonia:<br>Intervention 8% vs control 34%<br>(95% Cl for difference 10-4,<br>p=0.003)         Secondary outcome:         - frequency of<br>microbiologically confirmed<br>pneumonia: Intervention 5% vs<br>control 23% (95% Cl for<br>difference 4-33, p=0.018) | 2                 |

Pts = patients, RCT = randomized controlled trial, d = days, CI = confidence interval

The semirecumbent body position reduces the risk of pneumonia in mechanically ventilated patients.

| Reference,<br>Study Type                                                                                          | (Participant #,                                                                  | l Controls<br>characteristics)<br>tal                | Drop-<br>out<br>Rate | Intervention                                                                      | Control                       | Optimal Population                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3020<br>Borges, 2016<br>PMID:<br>27170538<br>DOI:<br>10.1123/jpah.2<br>015-0614<br>Specification of<br>study: RCT | pump or other ir<br>devices<br>- surgical reinter<br>- death<br>- prolonged hosp | a:<br>3G<br>a:<br>dominal balloon<br>tvasive femoral |                      | Conventional<br>physiotherapy<br>+ aerobic<br>exercise with<br>cycle<br>ergometer | Conventional<br>physiotherapy | Primary Endpoint:<br>- mortality risk (InsCor score)<br>Secondary Endpoints:<br>- Spirometry /pulmonary<br>function (FVC, FEV1, PEF)<br>- respiratory muscle strength<br>/ manovacuometry (MIP,<br>MEP)<br>- 6-MWT<br>- MV duration (hours)<br>- ICU stay (days)<br>- Hospital discharge (days) | Primary Endpoints:<br>- mortality risk n.s. (P=0.49)<br>Secondary Endpoints:<br>-pulmonary function from<br>preoperative to hospital discharge<br>(FVC P=0.001; FEV1 P=0.001; PEF<br>P=0.02 for Intervention and P=0.01<br>for Control)<br>- MEP decreased (P=0.006 for<br>intervention and P=0.004 for<br>Control)<br>- 6-MWT decreased in control group<br>(P = 0.01)<br>- difference in intergroup at hospital<br>discharge (P = 0.03)<br>-difference in MIP, MV duration and<br>ICU stay(n.s.) | 2                 |

CABG = coronary artery bypass grafting, RCT = randomized controlled trial, pts = patients, 6-MWT = 6-Minute Walk Test, FVC = forced vital capacity, FEV1 = forced exspiratory volume, PEF = Peak Expiratory Flow, MIP = maximal inspiratory pressure, MEP = maximal expiratory pressure, ICU = Intensive Care Unit, MV = mechanical ventilation,

Aerobic exercise after CABG may help maintain functional capacity but had no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.

| Reference,<br>Study Type                                                                                                                        | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                 | Drop-<br>out<br>Rate | Intervention                                                                                                        | Control       | Optimal Population                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3032<br>Kimmoun 2015<br>(PMID: 26538308<br>DOI: 10.1186/s13613-<br>015-0078-4 <u>)</u><br><b>Specification of study:</b><br>Retrospective study | 17 patients who received PP during<br>VV-ECMO between January 2012<br>and January 2014<br>Inclusion criteria<br>- patients with severe ARDS as<br>defined by the BERLIN consensus<br>Exclusion criteria<br>- patients under vasopressor<br>treatment<br>- pts after open chest cardiac<br>surgery<br>Per Branch |                      | Pre-PP parameters<br>compared with post-<br>PP<br>(27 sessions were<br>performed,<br>identical duration of<br>24 h) | no<br>control | Endpoints<br>(not defined in detail)<br>- PaO2/FiO2 ratio<br>(Horowitz-Index)<br>- respiratory system<br>compliance<br>- tidal volume | Endpoints<br>- PaO2/FiO2 :<br>significantly increased from 111<br>(84–128) to 173 (120– 203) mmHg ;<br>(p < 0.0001)<br>- PaO2/FiO2 ratio increased by over<br>20 % in 14/14 sessions for late<br>sessions (≥7 days) and in 7/13<br>sessions for early sessions (< 7days);<br>p=0.01<br>- respiratory system compliance:<br>increased from 18 (12–36) to 32<br>(15–36) ml/cmH2O; (p < 0.0001)<br>- tidal volume:<br>increased from 3.0 (2.2–4.0) to 3.7<br>(2.8–5.0) ml/kg; (p < 0.005) | 4                 |

ARDS = acute respiratory distress syndrome, FiO2 = inspiratory oxygen concentration, ICU = intensive care unit, pts = patients, PP = prone position, PaO2 = partial oxygen content, VV-ECMO = veno-venous extra-corporal membrane oxygenation

When used in combination with VV-ECMO, 24 h of prone positioning improves both oxygenation and respiratory system compliance.

| Reference,<br>Study Type                                                                                                                                                         | (Participant #, (                                                                                                                                                                                           | l Controls<br>Characteristics)<br>tal                                                                   | Drop-out<br>Rate | Intervention                                                                                                                                                  | Control      | Optimal Population                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3035<br>Giani 2021<br>(PMID: 32941739<br>DOI:<br>10.1513/AnnalsATS.2<br>02006-625OC)<br><b>Specification of</b><br><b>study:</b><br>Multicenter<br>retrospective cohort<br>study | 240 patients treated<br>ECMO referral center<br>January 2014 and D<br>Inclusion criteria<br>- adult patients with<br>ARDS according to t<br>- treated with VV- E<br>no exclusion criteria<br>Per B<br>N=107 | ers between<br>ecember 2018<br>n a diagnosis of<br>the Berlin definition<br>ECMO support<br>a mentioned |                  | <b>Prone group</b><br>(start of first PP<br>session = 4 (2–<br>7) days; 326 PP<br>maneuvers,<br>mean duration<br>of pronation<br>cycles = 15<br>(12–18) hours | Supine group | Primary outcome<br>- efficacy and safety of<br>the application of PP in<br>patients with ARDS<br>supported with V-V<br>ECMO (duration of<br>ECMO support, length<br>of stay in the ICU, ICU<br>mortality)<br>Secondary outcome<br>- association of PP and<br>hospital mortality | Primary outcome<br>- ECMO duration (days):<br>intervention = 16 vs. control = 10;<br>p=0.0344)<br>- ICU LOS (days): intervention=35<br>(21–50), control=26 (15–51);<br>p=0.0102<br>- alive at ICU discharge:<br>intervention= 33 (21–48),<br>control=30 (19–57); p=0.4352<br>Secondary outcome<br>- hospital mortality:<br>intervention= 36 (34%) vs.<br>control= 61 (49.6%); P = 0.017)<br>- PP during ECMO: Odds ratio<br>(95% CI) = 0.499 (0.285–0.872);<br>p=0.0147 | 4                 |

ARDS = acute respiratory distress syndrome, CI = confidence intervall, ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit, PP = prone positioning, VV-ECMO= veno-venous ECMO

PP during ECMO improved oxygenation and was associated with a reduction of hospital mortality.

| Reference,<br>Study Type                                                                                                 | Cases and<br>(Participant #, C<br>Tot                                                                                                                                     | Characteristics)                                                                      | Drop-out<br>Rate | Intervention   | Control         | Optimal<br>Population                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------|----------------|-----------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3039<br>Rilinger 2020<br>(PMID: 32641155<br>DOI: 10.1186/s13054-                                                         | 158 patients with se<br>requiring VV ECMO<br>October 2010 and M<br>Interdisciplinary Me<br>Care Unit at the Me<br>University of Freibur<br>No inclusion/exclus<br>defined | support between<br>Aay 2018 at the<br>dical Intensive<br>dical Centre,<br>rg, Germany |                  |                |                 | Primary outcome<br>- successful ECMO<br>weaning (defined<br>as being free from                | Primary outcome<br>- weaning successful: 74 (46.8%,<br>n=158) , intervention= 18 (47.4%)<br>and control= 56 (46.7%); p= 0.940<br>- ICU survival: 58 (n=158, 36.7%),<br>intervention= 14 (36.8%) and<br>control= 44 (36.7%); p=0.984<br>- hospital survival: 58 (n=158,<br>36.7%), intervention=14 (36.8%)<br>and control= 44 (36.7%); p=0.984 |                   |
| 020-03110-2)<br><b>Specification of</b><br><b>study:</b><br>retrospective data<br>report of a single-<br>centre registry | N=38                                                                                                                                                                      | N= 120                                                                                |                  | Prone position | Supine position | ECMO and alive for<br>at least 48 h after<br>decannulation)<br>- ICU and hospital<br>survival | <ul> <li>no significant differences in VV<br/>ECMO weaning rate (pp= 47.4%<br/>vs. sp= 46.7%, p = 0.94) and<br/>hospital survival (pp= 36.8% vs.<br/>sp=36.7%, p = 0.98)</li> <li>no difference in hospital survival<br/>(pp=36.8% vs. sp=36.8%, p = 1.0)<br/>or VV ECMO weaning rate<br/>(pp=47.4% vs. sp=44.7%, p = 0.82)</li> </ul>        | 4                 |

ICU = intensive care unit, PP = prone position, SP = supine position, VV-ECMO = veno-venous extracorporal-membrane oxygenation

In this propensity score matched cohort of severe ARDS patients requiring VV ECMO support, prone positioning at any time was not associated with improved weaning or survival.

| Reference,<br>Study Type                                                                            | Cases and<br>(Participant #, C                                                                                                                                                                      |                                                                    | Drop-out<br>Rate | Intervention                    | Control      | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                | Primary Results                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|---------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                                                                                                     | Tot                                                                                                                                                                                                 | al                                                                 |                  |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                 |                   |
| 3041 Jagan 2020<br>(PMID: 33063033<br>DOI:<br>10.1097/CCE.0000000<br>000000229)                     | 105 non-intubated, o<br>disease-infected pat<br>March 24, 2020, and<br>CHI Health St. Franci<br>Nebraska<br>Inclusion criteria<br>- ≥19 years<br>- COVID-infeo<br>Exclusion criteria<br>- Pregnancy | ients 9 between<br>I May 5, 2020, to<br>s in Grand Island,<br>cted |                  | Prone group<br>(tolerated awake | Supine group | <ul> <li>primary outcome         <ul> <li>need for intubation<br/>during the hospital<br/>stay</li> </ul> </li> <li>secondary outcome         <ul> <li>serial peripheral<br/>capillary oxygen<br/>saturation measured<br/>by pulse oximetry to<br/>the Fio2 ratios             <ul>                      in-hospital<br/>mortality</ul></li>                     hospital discharge<br/>disposition(home,<br/>died, nursing home)</ul></li> </ul> | <pre>primary outcome<br/>- risk of intubation: lower in<br/>proned group after adjusting for<br/>disease severity using SOFA scores<br/>(adjusted hazard ratio, 0.30; 95%<br/>CI, 0.09–0.96; p = 0.043) or<br/>APACHE II scores (adjusted hazard<br/>ratio, 0.30; 95% CI, 0.10–0.91; p =<br/>0.034)<br/>secondary outcome</pre> | 4                 |
| ,                                                                                                   | Per Br                                                                                                                                                                                              | ubation/ventilation                                                |                  | self-proning)                   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - <u>discharge disposition(%)</u><br>home: supine = 41.5, proned=                                                                                                                                                                                                                                                               |                   |
| Specification of<br>study:<br>Retrospective analysis<br>of prospectively<br>collected clinical data | N=40                                                                                                                                                                                                | N=65                                                               |                  |                                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 72.5; p < 0.001<br>died: supine= 24.6, proned=0.0<br>nursing home: supine=9.2,<br>proned=5.0<br>- pulse oximetry to the Fio2 ratios<br>were statistically similar for both<br>groups<br>- mortality: intervention=0% vs<br>control= 24.6% (p < 0.001; NNT =<br>5; 95% Cl, 3–8)                                                  |                   |

APACHE = acute physiology and chronic health evaluation, CI = confidence interval, FiO2 = inspiratory oxygen concentration, NNT = number needed to treat, SOFA = sequential organ failure assessment

#### Awake self-proning was associated with lower mortality and intubation rates in coronavirus disease 2019-infected patients.

| Reference,<br>Study Type                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | es and Controls<br>ant #, Characteristics)                                                                                                                           | Drop<br>-out<br>Rate | Intervention   | Control         | Optimal<br>Population                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3043 Perez-Nieto<br>2022<br>( PMID: 34266942<br>DOI:<br>10.1183/13993003.0<br>0265-2021)<br>Specification of<br>study:<br>retrospective,<br>multicentre<br>observational study | 827 non-intubated par<br>27 hospitals in Mexico<br>2020 and 12 June 2020<br>Inclusion criteria<br>- age over 18 years<br>- positive test for SARS<br>compatible with COVII<br>- clinical record availal<br>Mexican standard or e<br>- room air SpO2 <94%<br>- two or more of the for<br>cough, fever, dyspnoe<br>or odynophagia<br>Exclusion criteria<br>- voluntarily discharge<br>- pts referred to anoth<br>ascertainment<br>- those with incomplet<br>information to calcula | S-CoV-2 or imaging study<br>D-19<br>ble in accordance with the official<br>equivalent in Ecuador<br>ollowing symptoms: eye pain,<br>a, headache, myalgia, arthralgia |                      | Prone position | Supine position | <pre>primary outcome - successful orotracheal intubation for invasive mechanical ventilation secondary outcome - death during in- hospital follow-up</pre> | Primary outcome<br>- intubation: control=130<br>(40.4%), intervention= 119<br>(23.6%); p<0.0001<br>- pp= protective factor for<br>intubation even after<br>multivariable adjustment (OR<br>0.35, 95% CI 0.24–0.52;<br>p<0.0001)<br>Secondary outcome<br>- control=120 (37.3%),<br>intervention= 100 (19.8%);<br>p<0.0001 (adjusted OR 0.38,<br>95% CI 0.26–0.55) | 4                 |
|                                                                                                                                                                                | Per Branch                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                    |                      |                |                 |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                   |
|                                                                                                                                                                                | N=505                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N=322                                                                                                                                                                |                      |                |                 |                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                  |                   |

CI = confidence interval, OR = odds ratio, pp = prone position, pts = patients, SARS-CoV-2 = severe acute respiratory syndrome coronavirus 2

# Awake prone positioning in hospitalized non-intubated patients with COVID-19 is associated with a lower risk of intubation and mortality.

| Reference,<br>Study Type                                                                                                                 | Cases and C<br>(Participant #, Ch<br>Total                                                                                                                                                                                                                                                                                                                    | aracteristics)                                                                                                                                                                 | Drop-out Rate                                                                                                                                                                              | Intervention                                                          | Control                                          | Optimal Population                                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3048<br>Patman<br>2001<br>(PMID:<br>11552858<br>DOI:<br>10.1016/s00<br>04-<br>9514(14)602<br>94-4)<br>Specificatio<br>n of study:<br>RCT | 236 pts<br>Inclusion criteria:<br>- elective or semi-urgent<br>Exclusion criteria:<br>- severe asthma, chronic<br>bronchiectasis or ankylos<br>- post-operatively: unsta<br>status (systolic blood pre<br>180mmHg or MAP < 60 c<br>- arrhythmias that compr<br>cardiovascular function,<br>loss from subcostal cathe<br>- perioperative neurologi<br>Per Bran | airflow limitation,<br>sing spondylitis<br>ble cardiovascular<br>ssure < 100 or ><br>or > 110mmHg)<br>romised<br>or excessive blood<br>eters (> 100mL/hr)<br>ical complication | 26 pts<br>treatment<br>group:<br>7<br>control group:<br>19<br>(Reason:<br>18 prolonged<br>ventilation for<br>more than 24<br>hours; 3 died<br>in ICU; 5 slow<br>awake from<br>anaesthesia) | Physiothe-<br>rapy<br>during<br>intubation<br>and after<br>extubation | <b>Physiotherapy</b><br>only after<br>extubation | Primary endpoints:<br>- length of<br>intubation period<br>- ICU LOS<br>- hospital LOS<br>- maximal daily<br>incentive spirometry<br>values<br>- incidence of post-<br>operative<br>pulmonary<br>complications | Primary endpoints:<br>- no significant difference in<br>any outcome parameter<br>- Intubation (hours): 13.0<br>(SD:4.8) vs. 12.7 (SD:4.7)<br>p=0.85<br>- ICU stay (hours): 42.7<br>(SD:42.4) vs. 36.7 (SD:26.8)<br>p=0.56<br>- Hospital stay (days): 9.2<br>(SD:4.5) vs. 9.6 (SD:4.7)<br>p=0.25 | 2                 |
|                                                                                                                                          | 101                                                                                                                                                                                                                                                                                                                                                           | 109                                                                                                                                                                            |                                                                                                                                                                                            |                                                                       |                                                  |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                 |                   |

ICU = intensive care unit, LOS = length of stay, MAP = median arterial pressure, pts = patients

In this study physiotherapy interventions during the intubation period did not improve outcomes in patients after cardiac surgery.

| Reference,<br>Study Type                                                                                                                       | Cases and Cont<br>(Participant a<br>Characteristic<br>Total | #, Dron-out Pate                                                                                                                                                                                                                                                                      | Intervention                                                                                                          | Control                                                                                                                                                                                   | Optimal Population                                                                                                                                                                                                                                                                                                                    | Primary Results                                                                                                                                                                                                                                                                                            | Evidence<br>Grade                   |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| 3050<br>Van der<br>Peijl 2004<br>(PMID:<br>15111138<br>DOI:<br>10.1016/j.a<br>thoracsur.2<br>003.10.091)<br>Specificatio<br>n of study:<br>RCT | Per Branch                                                  | zedthoracotomy, 1 death, 9, nothemodynamic instability, 3serious rhythmicdisturbances, 2 combinationswith other surgery, 1cerebrovascular accident)LFE: 31 (2 pulmonarycomplications, 8 othercardiac surgery, 1 re-thoracotomy, 3 death, 12hemodynamic instability, 1serious rhythmic | coordination,<br>walking and<br>stair climbing.<br>-2x/day incl.<br>weekend,<br>starting on<br>day 1 post-<br>surgery | Low frequency<br>exercise:<br>- RoM, muscle<br>strength and<br>coordination,<br>walking and<br>stair climbing.<br>-1x/day excl.<br>weekend,<br>starting on 1.<br>Weekday after<br>surgery | Primary outcomes:<br>- functional milestones:<br>sitting, walking, group<br>exercise therapy,<br>climbing stairs<br>- fatigue and dyspnoe<br>(RPE scale)<br>- semistructured<br>interview day before<br>surgery (selfcare,<br>locomotion, FIM)<br>- quantity of physical<br>activity (portable activity<br>monitor)<br>- satisfaction | Primary outcomes:<br>- functional milestones: sitting,<br>walking and group exercise were<br>achieved faster by HFE (p =<br>0.0048, p = 0.0072, p<0.00005),<br>stairs: n.s.<br>- RPE: n.s.<br>- FIM: n.s.<br>- quantity of physical activity: n.s.<br>- pts satisfaction: HFE more<br>satisfied (p < 0.05) | $2 \rightarrow 3$<br>(indirectness) |

CABG = coronary artery bypass graft, FIM = functional independence measure, HFE = high frequency exercise, LFE = low frequency exercise, pts = patients, RoM = range of motion, RPE = rating of perceived exertion

High frequency exercise programs lead to a faster achievement of functional milestones while not increasing the perceived exertion.

| Reference,<br>Study Type                                                                       | (Participant #                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd Controls<br>#, Characteristics)<br>Total                                                                                                                                       | Drop-out Rate                                                                                                                                                                                                      | Intervention          | Control   | Optimal Population                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3053<br>Routsi 2010<br>DOI:<br>10.1186/cc89<br>87)<br><b>Specification</b><br>of study:<br>RCT | and June 2009<br>Inclusion criteria:<br>- all pts admitted to ICU<br>- APACHE II at admission<br>Exclusion criteria:<br>- <18 years<br>- pregnancy<br>- obesity (BMI >35 kg/r<br>- preexisting neuromus<br>myasthenia Gravis, Gui<br>- diseases with systemi<br>such as systemic lupus<br>- technical obstacles th<br>implementation of EMI<br>skin lesions (e.g., burns<br>- end-stage malignancy<br>- cardiac pacemakers<br>- brain death<br>Per<br>EMS group (n=70) | $n \ge 13$ n2) scular disease (e.g., illain-Barré disease) c vascular involvement erythematosus at did not allow the S such as bone fractures or s) T Branch control group (n=72) | 90pts/63.3%<br>EMS group:<br>2 withdrew<br>their consent,<br>28 died, 3<br>prolonged<br>neuromusclular<br>blocking agents,<br>2 no EMS<br>sessions<br>Control group:<br>22 died, 22<br>impaired<br>cognitive state | daily EMS<br>sessions | No<br>EMS | Primary outcome:<br>- diagnosis of CIPNM<br>as assessed with the<br>MRC scale for<br>muscle strength<br>Secondary<br>outcomes:<br>- duration of<br>weaning from MV<br>- ICU LOS | <ul> <li>Primary outcome: <ul> <li>CIPNM was diagnosed in 3 patients</li> <li>in EMS group compared to 11 patients</li> <li>in control group (OR = 0.22; CI: 0.05 to 0.92, p=0.04)</li> <li>MRC score was significantly higher in patients of EMS group compared to control group [58 (33 to 60) vs. 52 (2 to 60) respectively, median (range), p=0.04)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>weaning period shorter in pts of EMS group vs. control group [1 (0 to 10) days vs. 3 (0 to 44) days, respectively, median (range), p=0.003]</li> <li>ICU LOS not significantly different (mean (range), 14 (4 to 62) vs. 22 (2 to 92), days, respectively, log rank test, p=0.11)</li> </ul></li></ul> | 2                 |
|                                                                                                | (24 analyzed)                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (28 analyzed)                                                                                                                                                                     |                                                                                                                                                                                                                    |                       |           |                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |

ICU=intensive care unit; APACHE II= Acute Physiology and Chronic Health Disease Classification System II, BMI = body mass index, CI = confidence interval, CIPNM= Critical illness polyneuromyopathy, EMS = electrical muscle stimulation, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, OR = odds ratio, pts = patients

#### EMS prevents the development of CIPNM and results in shorter MV duration.

| Reference,<br>Study Type                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-out Rate                                                                                                                                                                                                                                                                                  | Intervention                                          | Control | Optimal<br>Population                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3060<br>Gerovasili, 2009<br>(PMID: 19814793<br>DOI:<br>10.1186/cc8123)<br><b>Specification of</b><br><b>study:</b><br>randomized study | 49 pts         Inclusion criteria:         - all pts admitted to ICU during study period         Exclusion criteria:         - age under 18 years         - pregnancy         - obesity (BMI >35 kg/m2)         brain death         - preexisting neuromuscular disease (e.g. myasthenia gravis)         - diseases with systemic vascular involvement such as lupus erythematosus         - technical obstacles that did not allow the implementation of EMS such as bone fractures or skin lesions (e.g. skin burns)         - end- stage malignancy         - pacemakers         - ICU stay of less than 48 hours         EMS group (n=24)       Control group (n=25) | EMS: 5 pts<br>excluded due to<br>oedema, 6 pts died<br>or were discharged<br>before 2nd<br>measurement<br>Control: 6 pts<br>excluded due to<br>oedema, 5 pts died<br>or were discharged<br>before 2nd<br>measurement and<br>1 patient could not<br>be measured due<br>to technical<br>problems | daily EMS<br>sessions of<br>both lower<br>extremities | No EMS  | Primary outcome:<br>- muscle mass<br>(evaluated with<br>US, by measuring<br>the CSD of vastus<br>intermedius and<br>the rectus femoris<br>of the quadriceps<br>muscle) | Primary outcome:<br>- 26 pts evaluated<br>- CSD of the right rectus<br>femoris decreased<br>significantly less in EMS<br>group (-0.11 ± 0.06 cm, -8 ±<br>3.9%) compared to control<br>group (-0.21 ± 0.10 cm, -13.9<br>± 6.4%; p<0.05)<br>- CSD of the right vastus<br>intermedius decreased<br>significantly less in EMS<br>group (-0.10 ± 0.05 cm, -12.5<br>± 7.4%) compared to control<br>group (-0.29 ± 0.28 cm, -21.5<br>± 15.3%; p<0.05) | 2                 |

CSD = cross sectional diameter, EMS = electrical muscle stimulation, pts = patients, US = ultrasonography

EMS was able to preserve muscle mass in critically ill patients.

| Reference,<br>Study Type                                                                                                                                   | (Partic<br>Charact     | d Controls<br>ipant #,<br>teristics)<br>otal                    | Drop-out Rate                                                 | Interventi<br>on                                      | Contr<br>ol | Optimal Population                                                                                                                                                                                                                                          | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Evidence<br>Grade       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3065<br>Karic 2016<br>(PMID:<br>27058204<br>DOI:<br>10.3171/2015.<br>12.JNS151744)<br>Specification<br>of study:<br>Prospective<br>interventional<br>study | -neurodege<br>disorder | o-<br>te ward<br><b>riteria:</b><br>ears<br>SAH<br>brain injury | 2 pts:<br>(1 thrombo-<br>embolic<br>complication, 1<br>death) | EM and<br>rehabilita<br>tion in<br>addition<br>to SOC | SOC         | Endpoints:<br>- treatment variables<br>- frequency and severity<br>of cerebral vasospasm<br>- cerebral infarction<br>acquired in conjunction<br>with the aSAH<br>- acute and chronic<br>hydrocephalus<br>- pulmonary and<br>thromboembolic<br>complications | Significant Outcomes:<br>treatment variables<br>the intervention group had a significantly<br>- earlier mobilization for days 1-7 (p < 0.01)<br>- higher mobilization level at discharge (Step 5 vs. Step<br>4, p = 0.004)<br>- significantly less clinical vasospasm in the early rehab<br>group (p=0.03) Not significant outcomes:<br>- cerebral vasospasm: 5 in control, 10 in intervention<br>- time from ictus to vasospasm (median 8 days (range<br>3-18) vs. 7 (range 4-22))<br>- cerebral infarction acquired after the ictus (40% vs.<br>29%)<br>- LOS (13.9 (3-37) vs. 14.5 (2-61))<br>- no unintended removal of lines/tubes<br>- clinical status at discharge (GCS score 13.9 ± 1.9 vs.<br>14.1 ± 1.5)) | 3 → 4<br>(indirectness) |

aSAH = after aneurysmal subarachnoid hemorrhage, EM = early mobilization, LOS = length of stay, pts = patients, SOC = standard of care

Early rehabilitation of patients after aSAH is safe and feasible in intermediate care patients.

| Reference,<br>Study Type                                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention                                                           | Control             | Optimal<br>Population                                                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 3066<br>Karic 2016<br>(PMID:<br>27494170<br>DOI:<br>10.2340/1650<br>1977-2121)<br><b>Specification</b><br>of study:<br>Prospective,<br>controlled,<br>interventional<br>study | 168 aSAH pts in the neuro-intermediate ward<br>being poor-grade WFNS (3-5)Inclusion criteria:- adults (>18 years)- South-East health region- with aSAH- admitted to the NIW at Oslo University<br>Hospital after aneurysm repairExclusion criteria:- history of SAH- traumatic brain injury- neurodegenerative disorder that could<br>interfere with aSAH-aquired disabilityPer Branch9477 |                      | EM and<br>rehabilitation:<br>- in addition<br>to standard<br>treatment | Standard<br>of care | Primary<br>endpoints:<br>- global functional<br>outcome (Rankin<br>Scale, Glasgow<br>Outcome Scale<br>Extended)<br>Secondary<br>endpoints:<br>- clinical data<br>- LOS<br>- intervention data | Significant differences between<br>groups:<br>- initiation of early rehabilitation<br>(WFNS 3-5 median 7.4 days (range 1-<br>23), WFNS 1-2 0.9 (0-20)<br>- application of early rehabilitation<br>(WFNS 1-2 median 9 days (range 1-<br>36), WFNS 3-5 10 (1-26))<br>No significant differences between<br>groups in:<br>- mRS and GOSE (univariate: 0.982<br>(0.69-1.39), p=0.922 multivariate 1.30<br>(0.836-2.037), p=2.42)<br>- LOS (control 14.5 (range 2-61) vs.<br>intervention 14.4 (3-37)) | 3 → 4<br>(indirectness) |

aSAH = after aneurysmal subarachnoid hemorrhage, EM = early mobilization, GOSE = Glasgow outcome scale extended, LOS = length of stay, mRS = modified ranking scale, pts = patients, WFNS = World Federation of Neurosurgery Scale

# Early mobilisation and rehabilitation probably increase the chance of a good functional outcome in poor-grade aneurysmal subarachnoid hemorrhage patients admitted to intermediate care.

| Reference,<br>Study Type                                                                                                                                             | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                | Drop-out<br>Rate                        | Intervention                                                                                                              | Control                                                                                                            | Optimal<br>Population                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence<br>Grade |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3067<br>Pun 2019<br>(PMID:<br>30339549<br>DOI:<br>10.1097/CCM.<br>00000000000<br>3482)<br>Specification<br>of study:<br>Prospective,<br>multicenter,<br>cohort study | 17.228 pts<br>Inclusion criteria:<br>- > 18 years<br>- admitted to participating medical,<br>surgical, cardiac, or neurologic ICU<br>Exclusion criteria:<br>- death or discharge from the ICU<br>within 24 hours of ICU admission<br>- undergoing active life support<br>withdrawal and/or "comfort care-<br>only" within 24 hours of ICU<br>admission<br>Per Branch<br>17.228 | 2002 (no<br>full 24<br>hours in<br>ICU) | Complete<br>performance of<br>ABCDEF Bundle:<br>- pts receive<br>every eligible<br>bundle element<br>on any given<br>day) | Proportional<br>performance:<br>- percentage<br>of eligible<br>bundle<br>elements<br>performed on<br>any given day | Endpoints:<br>- mortality<br>- ICU discharge<br>- hospital<br>discharge<br>- mechanical<br>ventilation<br>- coma<br>- delirium<br>- pain<br>- restraint use<br>- ICU readmission<br>- ICU discharge<br>destination | Significant differences between groups<br>in:<br>complete ABCDEF Bundle performance<br>was associated with lower likelihood of:<br>- hospital death within 7 days (AOR, 0.32;<br>Cl0.17-0.62)<br>- next-day MV (AOR, 0.28; Cl, 0.22-0.36)<br>- coma (AOR, 0.35; Cl, 0.22-0.56)<br>- delirium (AOR, 0.60; Cl, 0.49-0.72)<br>- physical restraint use (AOR, 0.37; Cl,<br>0.30-0.46)<br>- ICU readmission (AOR, 0.54; Cl, 0.37-<br>0.79)<br>- discharge to a facility other than home<br>(AOR, 0.64; Cl, 0.51-0.80)<br>=> all p < 0.002<br>- significant pain was more frequently<br>reported as bundle performance<br>proportionally increased (p = 0.0001) | 3                 |

AOR = adjusted hazard ratio, CI = confidence interval, ICU = intensive care unit, MV = mechanical ventilation, pts = patients

ABCDEF bundle performance showed significant and clinically meaningful improvements in outcomes including survival, mechanical ventilation use, coma, delirium, restraint-free care, ICU readmissions, and post-ICU discharge disposition.

| Reference,<br>Study Type                                                                                                             |                                                                                                                                                                                                                                                                                                                                                          | es and Controls<br>int #, Characteristics)<br>Total                                                                                                                                                                                | Drop-<br>out<br>Rate | Interventio<br>n                                                                               | Control                                       | Optimal<br>Population                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3069<br>Zeckey 2015<br>(PMID:<br>25391530<br>DOI:<br>10.3233/THC-<br>140869)<br>Specification of<br>study:<br>Retrospective<br>study | 2009, 283 pts<br>Inclusion criteria:<br>- multiple trauma<br>associated severe<br>- primary admissic<br>- plain radiographs<br>and 24 h thereafte<br>chest, abdomen, a<br>Exclusion criteria:<br>- penetrating thor<br>- AIS <sub>Head</sub> > 2<br>- steroidal and nor<br>medication<br>- hormone replace<br>- chronic diseases<br>- liver or kidneys a | pts (ISS ≥ 16, age > 16y) with<br>chest trauma (AIS <sub>Chest</sub> ≥ 3)<br>on within 6 h after trauma<br>s of the chest at admission<br>er, CT of the head, spine,<br>and pelvis<br>acic trauma<br>n-steroidal anti-inflammatory |                      | <b>CLRT:</b><br>-5 to 7 days<br>therapy<br>with 62°<br>rotation to<br>each side<br>was applied | Lung<br>protective<br>ventilation<br>strategy | Endpoints:<br>- mortality<br>- ARDS<br>- MODS<br>- ALI<br>- SIRS<br>- Sepsis<br>No sample<br>size<br>calculation<br>(retrospective<br>study) | Significant differences between groups in:<br>Pts with CLRT had significantly increased<br>- MV time (532.1 ± 320.7; 135.8 ± 245.8 hours,<br>p < 0.0001)<br>- ICU LOS (25.7 ± 13.4; 9.1 ± 11.0 days, p < 0.0001)<br>- hospital LOS (38.4 ± 21.1, 24.4 ± 17.6 days,<br>p < 0.0001)<br>- blood replacement (PRBC 22.9 ± 26.6 vs. 10.5 ±<br>14.1, p < 0.01; FFP 16.6 ± 20.9 vs. 7.0 ± 11.4,<br>p = 0.01; PRP 2.6 ± 5.7 vs. 0.9 ± 2.1 p = 0.01<br>Higher incidence of<br>- SIRS (65% vs. 34% p = 0.001)<br>- sepsis (53.1% vs. 19.5% p = 0.001)<br>- mortality (12.5% vs. 5.7% p = 0.001)<br>- mortality (12.5% vs. 5.7% p = 0.044)<br>In CLRT group<br>After multivariate logistic regression analysis for<br>mortality revealed:<br>- CLRT OR 0.96 [0.34; 2.74], p > 0.05<br>- age ( ≥ 40y): OR 2.71 [0.88; 8.41], p 0.05<br>- TTS OR 4.47 [1.68; 11.91], p = 0.0027)<br>- PRP requirement OR 9.86 [3.04; 31.94]<br>p = 0.0001) | 4                 |

AIS = abbreviated injury scale, CLRT = continuous lateral rotation therapy, FFP = fresh frozen plasma, ICU = intensive care unit, ISS = injury severity score, MV = mechanical ventilation, LOS = length of stay, PRP = platelet-rich plasma, PRBC = packed red blood cells, pts = patients, TTS = thoracic trauma severity score

#### CLRT shows signal of harm in several clinical endpoints.

| Reference,<br>Study Type                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                    | Drop-out Rate                                                                      | Intervention              | Control | Optimal<br>Population                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3071<br>Altinay, 2022<br>(PMID:<br>34411633<br>DOI:<br>10.1016/j.bjan<br>e.2021.07.029]<br>Specification<br>of study:<br>retrospective<br>cohort study | 72 pts         Inclusion criteria:         ->18 years of age         - monitored and treated in the ICU for acute respiratory failure due to COVID-19 pneumonia         - received conventional oxygen therapy with nonrebreather mask oxygen         Exclusion criteria:         - supported with noninvasive or invasive MV to respiratory acidosis (pH <7.30 and PaCO2 >50 mmHg)         - PaO2/FiO2 ratio <150 | APP: 24 (PP<br>performed less<br>than 12 hours a<br>day due to non-<br>compliance) | <b>APP</b> 12-18<br>hours | Non-APP | Endpoints:<br>- SpO2,<br>PaO2/FiO2, pH,<br>PaCO2, and PaO2<br>(initial and at 24 <sup>th</sup><br>hour)<br>- ICU stay period<br>- ventilator free<br>period (day)<br>- mortality rate<br>- Intubation<br>requirements | Endpoints:<br>- initial SpO2, pH, PaO2, and<br>PaO2/FiO2 (n.s.); initial PaCO2<br>values in APP group higher (p <<br>0.001); APP group higher 24th-<br>hour SpO2 and PaO2 values (p =<br>0.001 and p = 0.002); decrease in<br>pH value higher in non-APP<br>group (p = 0.002); PaO2<br>increased in APP and decreased<br>in non-APP (p < 0.001); PaCO2<br>decreased in APP and increased<br>in non-APP (p = 0.007); SpO2<br>increased in APP higher (p =<br>0.016)<br>- ICU stay period (n.s.)<br>- ventilator free period (day)<br>(n.s.)<br>- mortality rate lower in APP<br>group (p = 0.020)<br>- intubation requirements lower<br>in APP group (p = 0.001) | 4                 |

APP = awake prone position, GCS = Glasgow coma scale, ICU = intensive care unit, n.s. = not significant, PP = prone position, pts = patients

Awake prone position application in patients receiving non-rebreather mask oxygen therapy for respiratory failure due to COVID-19 pneumonia improves oxygenation and decreases the intubation requirements and mortality.

| Reference,<br>Study Type                                                                                              | Cases and Cor<br>(Participant #, Char<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           | Drop-out<br>Rate                                                                                        | Intervention                                                                                                                                                    | Control       | Optimal Population                                                                                                                                                                                                                                                                                                                                                                  | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3074 Morris<br>2016<br>(PMID:<br>27367766<br>DOI:<br>10.1001/jam<br>a.2016.7201)<br>Specification<br>of study:<br>RCT | <ul> <li>- 300 pts</li> <li>Inclusion criteria: <ul> <li>admission to a medical ICU</li> <li>18 years or older</li> <li>MV or NIV and an arterial o pressure to fractional inspire</li> </ul> </li> <li>Exclusion criteria: <ul> <li>inability to walk without assimpairment prior to the acut</li> <li>acute stroke</li> <li>BMI &gt;50</li> <li>neuromuscular disease imp</li> <li>acute hip Fracture</li> <li>unstable cervical spine or p</li> <li>MV &gt; 80h or current hospitation of the study</li> </ul> </li> <li>Per Brance</li> <li>150</li> </ul> | ed oxygen < 300<br>sistance, cognitive<br>te ICU illness<br>pairing weaning<br>pathologic fracture<br>alization >7 days<br>other research | - 0 for<br>primary<br>analysis<br>- 135 for 6<br>month<br>follow up (66<br>intervention:<br>69 control) | Standardized<br>rehabilitation<br>therapy:<br>- PROM<br>- PT<br>- progressive<br>resistance<br>exercise<br>- 3x/d for<br>7d/week until<br>hospital<br>discharge | Usual<br>care | <ul> <li>Primary endpoint: <ul> <li>hospital LOS</li> </ul> </li> <li>Secondary outcomes: <ul> <li>physical function</li> <li>health related QoL</li> </ul> </li> <li>Power analysis: 326 pts to provide 80% power for 30% decrease in median hospital LOS using twosided 5% significance, 20% in-hospital mortality + 5% withdrawal lower mortality stopped at 300 pts.</li> </ul> | Primary endpoint:<br>- hospital LOS n.s. (p=0.41)<br>Secondary outcomes:<br>- short physical performance battery<br>score at 6 months (9.0 (8.3 to 9.7);<br>8.0 (7.2 to 8.7); p=0.04)<br>- SF-36 physical functioning scale<br>score at 6 months (55.9 (50.0 to<br>61.7); 43.6 (37.5 to 49.7); p=0.001)<br>- functional performance inventory<br>score (2.2 (2.1 to 2.4); 2.0 (1.9 to<br>2.2); p=0.02)<br>- ventilator free days n.s.<br>- ICU LOS n.s.<br>- discharge destination n.s. | 2                 |

ICU = intensive care unit, LOS = length of stay, MV = mechanical ventilation, NIV = noninvasive ventilation, n.s. = not significant, PROM= passive range of motion, PT = physical therapy, pts = patients, RCT = randomized clinical trial

#### Standardized rehabilitation therapy seems to have a benefit in relation to physical functioning at 6 months.

| Reference,<br>Study Type                                                                                                                                                              | Cases and Co<br>(Participan<br>Characterist<br>Total                                                                                                                                                                                       | t #, Drop                                 | Intervention                                                                                                                        | Control                                                                                                                             | Optimal<br>Population                                                                                                                         | Primary Results                                                                                                                                                                                                                      | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3079 Cunha<br>2022<br>(PMID:<br>35475866<br>DOI:<br>10.36416/1806-<br>3756/e2021037<br>4)<br><b>Specification of</b><br><b>study:</b><br>Retrospective<br>Multicenter<br>cohort study | 574 pts<br>Inclusion criteri<br>- 18 years<br>- suspected or<br>confirmed dia<br>of COVID-19<br>- invasive MV<br>- PaO2/FIO2 ra<br>150 mmHg<br>- PP<br>Exclusion criter<br>- awake PP wit<br>mechanical<br>ventilation<br>Per Branc<br>412 | agnosis<br>atio <<br><b>'ia:</b><br>thout | Positive<br>response to<br>prone<br>positioning<br>(> 20 mmHg<br>improvemen<br>t in<br>PaO <sub>2</sub> /FiO <sub>2</sub><br>ratio) | Negative<br>response to<br>prone<br>positioning<br>(< 20 mmHg<br>improvemen<br>t in<br>PaO <sub>2</sub> /FiO <sub>2</sub><br>ratio) | Primary<br>outcome:<br>variables<br>associated<br>to a positive<br>response<br>Secondary<br>outcome:<br>predictive<br>factors of<br>mortality | Primary outcome:-SAPS III 63 [52-75] vs. 68 [56-79]; p = 0.01-SOFA score 9 [6-12] vs. 10 [7-13]; p = 0.04-D-dimer (ng/ml) 9.224 [891-4.452] vs. 10.534 [1.146 –6.376]; p = 0.04-RR (breaths/min) 28 [24-32] vs. 30 [25-34];p < 0.001 | 4                 |

 $FiO_2$  = inspired fraction of oxygen, OR = odds ratio, PaO\_2 = partial pressure of arterial oxygen, PP = prone positioning, RR = respiratory rate, SAPS = simplified acute physiology score, SOFA = sepsis-related organ failure assessment

A positive response to prone positioning is predicted by SAPS III, SOFA score and initial PaO2/FiO2 ratio; mortality might be predicted by age, time to first PP session, number of sessions, proportion of pulmonary impairment and immunosuppression.

| Reference,<br>Study Type                                                                                            | (Participant #                                                                                                                                                                                                                                                      | nd Controls<br>t, Characteristics)<br>Fotal                                                                                                                                                                     | Drop<br>-out<br>Rate | Intervention | Control     | Optimal<br>Population                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Evidence Grade                             |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|-------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 3080 Abu-<br>Khaber 2013<br>https://doi.org<br>/10.1016/j.ajm<br>e.2013.03.011<br>Specification<br>of study:<br>RCT | <ul> <li>receiving muscle</li> <li>diseases with sy<br/>involvement</li> <li>technical obstact<br/>the implementa<br/>bone fractures of<br/>burns)</li> <li>end-stage malig</li> <li>cardiac pacemal</li> <li>cervical spine fra<br/>quadriplegia of fra</li> </ul> | tilation > 24h<br>romuscular disease<br>e relaxant<br>stemic vascular<br>cles that do not allow<br>tion of EMS such as<br>or skin lesions (e.g.<br>nancy<br>kers<br>actures, hemiplegia,<br>neurological origin | 2                    | NMES         | No-<br>NMES | Outcomes:<br>- MRC<br>- MV<br>duration<br>- ventilator<br>free<br>survival<br>until day 28<br>- mortality<br>Day 28 | <ul> <li>MRC (mean ± SD; control vs. intervention): <ul> <li>a. day 2: 50.23 ± 5.51 vs. 49.28 ± 6.88, p = 0.465</li> <li>b. day 3: 46.43 ± 7.21 vs. 45.25 ± 9.64, p = 0.094</li> <li>c. day 4: 43.70 ± 9.32 vs. 46.86 ± 10.88, p = 0.041</li> <li>d. day 5: 40.69 ± 10.48 vs. 45.83 ± 11.39, p = 0.044</li> <li>e. day 6: 39.63 ± 10.30 vs. 43.00 ± 12.07, p = 0.046</li> <li>f. day 7: 37.27 ± 13.43 vs. 43.37 ± 9.85, p = 0.049</li> <li>g. day 14: 32.89 ± 16.89 vs. 37.91 ± 11.14, p = 0.047</li> <li>h. day 21: 19.60 ± 4.34 vs. 29.67 ± 8.87, p = 0.037</li> <li>i. day 28: 21.00 ± 9.76 vs. 20.60 ± 5.68, p = 0.091</li> </ul> </li> <li>Duration of MV (mean ± SD; control vs. intervention): 11.97 ± 8.07 vs 9.01 ± 8.01, p = 0.048</li> <li>Ventilator free survival until day 28 (mean ± SD; control vs. intervention): 14.73 ± 9.70 vs. 15.18 ± 9.65, p = 0.421</li> <li>Mortality Day 28, n (%) (control vs. intervention): 6 (15) vs. 4 (10), p-value not stated</li> </ul> | 3 (downgraded<br>for high risk of<br>bias) |

MRC = medical research council, MV = mechanical ventilation, NMES = neuromuscular electrical stimulation, pts = patients, RCT = randomized controlled trial

NMES increased muscle strength in critically ill patients.

| Reference,<br>Study Type                                                                                                                                            |                                                                                                                                                                                       | ses and Controls<br>ant #, Characteristics)<br>Total                                                                                                                                         | Drop-<br>out<br>Rate | Interventio<br>n             | Contro<br>I | Optimal<br>Population                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                  | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------|-------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3082<br>Esperatti 2022<br>(PMID:<br>34996496<br>DOI:<br>10.1186/s13054<br>-021-03881-2)<br>Specification of<br>study:<br>prospective<br>multicenter<br>cohort study | Inclusion criteria<br>- ≥ 18 years with co<br>- requiring HFNO<br>Exclusion criteria<br>- respiratory failu<br>etiology<br>- decreased level<br>- presence of sho<br>- immediate need | onfirmed COVID-19-related ARF<br>for at least 4h<br>::<br>ure secondary to a different<br>of consciousness<br>ck requiring vasopressors<br>d for intubation<br>pressure ventilation prior to |                      | <b>AW-PP:</b><br>- ≥ 6 h/day | No PP       | Primary<br>endpoint:<br>- endotracheal<br>intubation<br>- hospital<br>mortality | Significant differences<br>between groups in :<br>- endotracheal Intubation:<br>44 (23%) of AW-PP vs 79<br>(53%) of no-PP were<br>intubated OR 0,27 (95% CI<br>0.14-0.47) adjusted OR 0.36<br>(95% CI 0.2-0.7)<br>- hospital mortality: 21<br>(11%) of AW-PP vs 47 (32%)<br>No-PP died in hospital OR<br>0.58 (0.19-1.77) adjusted OR<br>0.50 (95% CI 0.19-1.31) | 3                 |

AW-PP = awake prone position, ICU = intensive care unit, PP = prone position, pts = patients

In the study population, AW-PP for  $\geq$  6 h/day reduced the risk of endotracheal intubation, and exposure  $\geq$  8 h/d reduced the risk of hospital mortality.

| Reference,<br>Study Type                                                                                                                                               | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                      | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 3083 Fazzini<br>2022<br>(PMID:<br>34774295<br>DOI:<br>10.1016/j.bja.<br>2021.09.031)<br><b>Specification</b><br>of study:<br>Systematic<br>review and<br>meta-analysis | 14 publications (2.352 pts), 8<br>prospective cohort studies, 4<br>retrospective cohort studies, 2 RCTs<br>Inclusion criteria:<br>- at least 20 adult pts with<br>hypoxaemic respiratory failure<br>secondary to ARDS or coronavirus<br>- received PP with any oxygen<br>delivery<br>Exclusion criteria:<br>- PP in intubated pts<br>- PP combined or mixed to lateral<br>positioning<br>- follow-up < 7 days<br>Per Branch<br>1041 (44%) 1311 (56%) |                      | АРР          | SP      | Primary endpoint:<br>- change in oxygenation<br>pre and post PP<br>reported as PaO2/FiO2<br>(P/F) ratio or<br>SpO2/FiO2 (S/ F) ratio<br>Secondary outcomes:<br>- rate of tracheal<br>intubation<br>- mortality<br>- adverse events | Significant differences between groups<br>in:<br>- improvements of PaO2/FiO2 ratio:<br>MD -23.10; 95% CI: -34.80 to 11.39; p=<br>0.0001; I <sup>2</sup> =26%) after PP<br>- mortality: OR 0.57 (95% CI: 0.36-0.93;<br>P=0.02 I <sup>2</sup> =51%)<br>No significant differences between<br>groups in:<br>- intubation rates<br>- adverse events | 1 → 2<br>(not only<br>RCTs<br>included) |

ARDS = acute respiratory distress syndrome, PP = prone position, pts = patients, RCT = randomised controlled study

Prone positioning can improve oxygenation amongst non-intubated patients with acute hypoxaemic respiratory failure when applied for at least 4 h over repeated daily episodes. Awake proning appears safe, but the effect on tracheal intubation rate and survival remains uncertain.

#### References

1. Coppo A., Bellani G., Winterton D., et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. *Lancet Respir Med.* 2020;8:765–774.

2. Thompson A.E., Ranard B.L., Wei Y., Jelic S. Prone positioning in awake, nonintubated patients with COVID-19 hypoxemic respiratory failure. *JAMA Intern Med.* 2020;180:1537.

3. Zang X., Wang Q., Zhou H., Liu S., Xue X. COVID-19 Early Prone Position Study Group. Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. *Intensive Care Med.* 2020;46:1927–1929.

4. Padrao E.M.H., Valente F.S., Besen B.A.M.P., et al. Awake prone positioning in COVID-19 hypoxemic respiratory failure: Exploratory findings in a single-center retrospective cohort study. *Acad Emerg Med.* 2020;27:1249–1259. doi: 10.1111/acem.14160.

5. Elharrar X., Trigui Y., Dols A.-M., et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxemic acute respiratory failure. *JAMA*. 2020;323:2336. 6. Ferrando C., Mellado-Artigas R., Gea A., et al. Awake prone positioning does not reduce the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. *Crit Care*. 2020;24:597.

Dubosh N.M., Wong M.L., Grossestreuer A.V., et al. Early, awake proning in emergency department patients with COVID-19. *Am J Emerg Med.* 2021;46:640–645.
 Ding L., Wang L., Ma W., He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. *Crit Care.* 2020;24:28.

9. Fazzini B., Fowler A.J., Zolfaghari P. Effectiveness of prone position in spontaneously breathing patients with COVID-19: a prospective cohort study. *J Intensive Care Soc.* 2021 Advance Access published on February 18. 1751143721996542.

10. Ehrmann S., Li J., Ibarra-Estrada M., et al. Awake prone positioning for COVID-19 acute hypoxaemic respiratory failure: a randomised, controlled, multinational, openlabel meta-trial. *Lancet Respir Med.* 2021;21:2213–2600. doi: 10.1016/S2213-2600(21)00356-8.

11. Dubosh N.M., Wong M.L., Grossestreuer A.V., et al. Early, awake proning in emergency department patients with COVID-19. Am J Emerg Med. 2021;46:640–645.

12. Tonelli R., Pisani L., Tabbì L., et al. Early awake proning in critical and severe COVID-19 patients undergoing noninvasive respiratory support: a retrospective multicenter cohort study. *Pulmonology*. 2021 doi: 10.1016/j.pulmoe.2021.03.002. Advance Access published on March 22.

13. Jones J.R.A., Attard Z., Bellomo R., et al. Repeated proning in non-intubated patients with COVID-19. Respirology. 2021;26:279–280.

14. Telias I., Katira B.H., Brochard L. Is the prone position helpful during spontaneous breathing in patients with COVID-19? JAMA. 2020;323:2265.

| Reference,<br>Study Type                                                                                                                        | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d Controls<br>Characteristics)<br>otal                                                                                                                                                                        | Drop<br>-out<br>Rate | Intervention                         | Control                 | Optimal Population                                                                                                                                                                                                                                                                                                                              | Primary Results                                                                                                                                                                                                                                                         | Evidenc<br>e Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 3085<br>Ibarra-Estrada<br>2022<br>(PMID: 35346319<br>DOI:<br>10.1186/s13054-<br>022-03950-0)<br><b>Specifikation of</b><br><b>study:</b><br>RCT | <ul> <li>- 430 pts</li> <li>Inclusion criteria</li> <li>- aged≥18 years w</li> <li>- pulse oximetry &lt;</li> <li>receiving oxygen a</li> <li>through a non-reb</li> <li>- initiated on HFN</li> <li>Exclusion criteria:</li> <li>- severe respirato</li> <li>requiring immedia</li> <li>- do-not-intubate,</li> <li>orders</li> <li>- laparotomy with</li> <li>- pregnancy</li> <li>- vasopressor requimintain median</li> <li>&gt;65 mmHg</li> <li>Per B</li> <li>216</li> </ul> | <ul> <li>90% despite</li> <li>at 15 L/min</li> <li>breather mask</li> <li>C</li> <li>:</li> <li>ry failure</li> <li>ate intubation</li> <li>/resuscitate</li> <li>nin 2 weeks</li> <li>uirement to</li> </ul> |                      | Awake prone<br>positioning<br>+ HFNC | Usual<br>care<br>+ HFNC | Primary endpoint:<br>- intubation until day 28<br>Secondary outcomes:<br>- being alive without<br>intubation at day 28<br>- mortality at 28 days<br>- HFNC duration<br>- use of NIV<br>- time to intubation<br>- days of invasive<br>ventilation<br>- hospital LOS<br>- physiological response<br>to the 1 <sup>st</sup> prone session<br>- AEs | Primary endpoint:<br>- intubation until day 28: 65 of 216<br>(30%); 92 of 214 (43%); [CI95] 0.54–<br>0.90, p=0.006<br>Secondary outcomes:<br>- hospital LOS (11 [IQR 9–14] vs 13<br>[IQR 10–17] days, p=0.001)<br>- no significant differences in all other<br>outcomes | 2                  |

CI = confidence interval, HFNC = high-flow nasal cannula, IQR = interquartile range, LOS = length of stay, NIV = non-invasive ventilation, pts = patients, RR = risk ratio

Awake prone positioning seems to have a benefit on intubation rate and hospital length of stay.

| Reference,<br>Study Type                                                                                                         | (Participant #,                                                                                                                                                                                                                                                                                  | nd Controls<br>, Characteristics)<br>otal                                                                                                                                                                                                                                  | Drop-out<br>Rate                                                                      | Intervention                                                                                                                                                                                                                                                                                                                                         | Control                                                                                                                                                                                                                                                  | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                                                                                                                                                        | Evidence<br>Grade              |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| #3087<br>Kwakman<br>2022<br>PMID:<br>35124345<br>DOI:<br>10.1016/j.jcrc.<br>2022.154000<br>Specification<br>of the study:<br>RCT | edge of the bed<br>Exclusion criter<br>- contraindicatio<br>- inability to wa<br>prior to ICU adr<br>- ICU readmissio<br>amputations or<br>lower extremiti<br>- cognitive impa<br>imminent to de<br>- traumatic brai<br>Study duration<br>ambulate with w<br>minimal physica<br>balance assistan | ia:<br>instructions<br>riceps muscle<br>ording to the<br>upported on the<br>l<br>ia:<br>ons for pt<br>lk independently<br>mission<br>on<br>fractures in the<br>es<br>airments and<br>ath<br>n injury or stroke<br>: till pts able to<br>walking aids and<br>al support for | 6 pts(4<br>intervention<br>:1 death, 3<br>other<br>reason; 2<br>usual care:<br>death) | Bodyweight supported<br>treadmill training:<br>-daily except on<br>weekend<br>- until the pts were<br>able to ambulate with<br>walking aids<br>- duration of BWSTT<br>individually determined<br>by the performance of<br>the 1 <sup>st</sup> training session<br>- varied between<br>walking just a few steps<br>and walking for several<br>minutes | Supervised<br>physiotherapy<br>sessions:<br>- daily<br>- including<br>ambulation<br>training,<br>pulmonary<br>physiotherapy,<br>active strength<br>exercises,<br>transfer training,<br>cycling, balance<br>training, IMT and<br>mobilizing out of<br>bed | Primary endpoint:<br>- number of days to<br>independent ambulation<br>Secondary outcomes:<br>- maximum walking<br>distance reached during<br>hospital stay (2 Minutes<br>Walking Test)<br>- muscle strength 7 days<br>after inclusion<br>- functional mobility<br>- hospital LOS;<br>- symptoms of<br>posttraumatic stress<br>Sample size calculation:<br>using data from two<br>previous studies de-<br>scribing the feasibility of<br>BWSTT and usual care the<br>required sample size was<br>88 (44 + 44) pts, assuming<br>a 10% dropout rate | Primary endpoint:<br>- median (IQR) time to<br>independent<br>ambulation 4 (3 to 7)<br>days in the<br>intervention group, vs<br>8 (4 to 23) days in the<br>usual care group (p =<br>0.017), hazard ratio of<br>2,41 (95%Cl, 1.11 to<br>5.23)<br>Secondary outcomes:<br>- hospital LOS shorter<br>(24 days) in the<br>intervention group vs<br>control (42 days)<br>p=0.037<br>- all other outcomes n.s | 2→ 3<br>(high risk<br>of bias) |

BWSTT = bodyweight supported treadmill training, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, pt = physio therapy, pts = patients

BWSTT seems a promising intervention to enhance recovery of ambulation and shorten hospital length of stay of ICU patients, justifying a sufficiently powered multicenter RCT.

| Reference,<br>Study Type                                                                                                    | (Participant #,                                                                                                                                                                                                                                                                                         | d Controls<br>Characteristics)<br>otal                                                                                                                 | Drop<br>-out<br>Rate | Intervention                                                                                                               | Control                                                                                                                        | Optimal<br>Population                                                                                                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade         |
|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 3088 Seo<br>2019<br>https://doi<br>.org/10.14<br>474/ptrs.2<br>019.8.3.13<br>4<br>Specificati<br>on of the<br>study:<br>RCT | upper limb joints<br>- in the ICU for at lea<br>- able to walk indep<br>admission to the ICU<br><b>Exclusion criteria:</b><br>- chronic respiratory<br>admission to the ICU<br>- damage to the leg,<br>trauma surgery<br>- severe pressure uld<br>diseases affecting m<br>- signed a do not res<br>form | es or limitations of the<br>ast 5 days<br>endently before<br>J<br>failure before<br>J<br>pelvis, and back,<br>ceration, neurological<br>uscle strength |                      | <b>Exercise:</b><br>- postural and<br>passive or active<br>exercises<br>- 5 days a week<br>- for 30 min<br>during ICU stay | Bedside<br>ergometer<br>exercise:<br>- endurance and<br>strength training<br>- 5 days a week<br>-for 30 min during<br>ICU stay | Primary<br>endpoints:<br>- muscle<br>strength via<br>MRC<br>- FSS<br>- QoL via SF-36<br>Secondary<br>outcomes:<br>- ICU LOS<br>- duration of<br>MV<br>no power<br>analysis | Primary endpoint:<br>- MRC Score [mean (SD)] (pre and<br>post intervention), 10.87 (7.14)<br>exercise vs 5.00 (1.69) ergometer, p =<br>0.041<br>- both groups had a significant<br>increase in MRC Score (p<0.05)<br>- FSS [mean (SD)], 6.12 (2.58)<br>exercise vs 1.62 (1.06) ergometer, p =<br>0.001<br>- both groups had a significant<br>increase in FSS (p<0.05)<br>- QoL: 71.19 (7.93) exercise vs 41.11<br>(5.02) ergometer, p=0.001<br>- ICU LOS, 22.37 (8.86) exercise vs<br>24.00 (4.27) ergometer, p > 0.05<br>- duration of MV, 14.50 (7.23)<br>exercise vs 13.50 (4.10) ergometer, p<br>> 0.05 | 2 → 3<br>(pilot<br>trial) |

FSS = functional status scale, ICU = intensive care unit, LOS = length of stay, MRC = medical research council, MV = mechanical ventilation, pts = patients, QoL= quality of life, RCT = randomized controlled trial, SD = standard deviation, SF-36 = short form 36

#### Exercise seems to be more effective than bedside ergometer in loss of strength, function and HRQL.

| Reference,<br>Study Type                                                     | Cases and<br>(Participant #, c<br>Tot                                                                                                                                                                                                                                    | haracteristics)                                   | Drop-out<br>Rate                                                                                                                    | Intervention                                                                                                                                                                                                                                                  | Control                                                                                                     | Optimal<br>Population                                                                                                                | Primary Results                                                                                                                                                                                        | Evidence<br>Grade |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3090 Lago<br>2022<br>PMID:                                                   | 41 pts admitted to a Brazilian<br>divided in two sub-studies us<br>-Acute phase: septic shock <<br>-Late phase: sepsis or septic                                                                                                                                         | ing a cut-off of 72h:<br>72h                      | 4 pts in<br>group 1 (3<br>in the<br>acute<br>phase and<br>1 in the<br>late<br>phase)<br>excluded<br>due to IC-<br>related<br>issues | Group 1:<br>intervention<br>protocol followed by<br>the control protocol<br><u>-Intervention</u> : pt<br>kept in dorsal                                                                                                                                       | Group 2:                                                                                                    |                                                                                                                                      | Ouctomes:<br>- <u>Intragroup comparison:</u><br>Within the acute phase<br>group and the late phase<br>group no statistically                                                                           |                   |
| 35176099<br>https://doi.or<br>g/10.1371/jo<br>urnal.pone.0<br>264068         | <ul> <li>Inclusion criteria:</li> <li>-Sepsis or Septic shock.</li> <li>Exclusion criteria:</li> <li>-Age ≥ 85y or &lt; 18y, Pregnan</li> <li>-Neuromuscular disease or b</li> <li>-Fractures, burns, skin lesion</li> <li>diseases, severe lower extremation</li> </ul> | locker in the last 24h<br>s, vascular impairment  |                                                                                                                                     | <ul> <li>decubitus position</li> <li>with headboard</li> <li>lifted at 30° and</li> <li>lower limbs raised at</li> <li>20°, receiving a</li> <li>30min NMES on the</li> <li>gastrocnemius</li> <li>muscle to generate</li> <li>visible contraction</li> </ul> | control<br>protocol<br>followed by<br>the<br>intervention<br>protocol,<br>with a 4-6h<br>wash-out<br>period | Endpoints:<br>measurement<br>through IC<br>during<br>baseline,<br>intervention<br>and control of:<br>- VO2<br>- EE<br>- VCO2<br>- RQ | significant difference was<br>found between baseline,<br>intervention and control<br>measures of VO2, EE and<br>VCO2. The only statistically<br>significant difference was in<br>the acute phase group | 2                 |
| Specification<br>of study:<br>Analysis of<br>two<br>randomized<br>controlled | -Instability: vital parameters<br>-Presence of chest tubes<br>-Thrombocytopenia < 20.000<br>disease or deep vein thromb<br>-Agitation                                                                                                                                    |                                                   |                                                                                                                                     |                                                                                                                                                                                                                                                               |                                                                                                             |                                                                                                                                      | between RQ at baseline and<br>during intervention (0,70 vs<br>0,68, p < 0,05)<br>-Intergroup comparison: in<br>the acute phase significantly<br>higher VO2 and EE and                                  |                   |
| crossover<br>studies                                                         | Per Br<br>Acute phase: 9 pts<br>Late phase: 11 pts                                                                                                                                                                                                                       | anch<br>Acute phase: 10 pts<br>Late phase: 11 pts |                                                                                                                                     | NMES. Wash-out<br>period: 4-6h<br>between phases                                                                                                                                                                                                              |                                                                                                             |                                                                                                                                      | significantly lower RQ compared to the late phase                                                                                                                                                      |                   |

Pt = patient, SOFA = Sequential Organ Failure Assessment, MAP = Mean Arterial pressure, HR = Heart Rate, ICP = Intracranial Pressure, NMES = Neuromuscular Electric Stimulation, IC = Indirect Calorimetry, VO2 = Oxygen Consumption, EE = Energy Expenditure, VCO2 = Carbon Dioxide Production, RQ = Respiratory Quotient

# Both within and after the first 72h since diagnosis of sepsis or septic shock in the ICU, NEMS does not cause clinically relevant metabolic changes.

| Reference,<br>Study Type                                                                                                                                               | (Participant #                                                                                                                                                                                                                    | nd Controls<br>. Characteristics)<br>otal                                                           | Drop<br>-out<br>Rate | Intervention                                                                                                            | Control | Optimal Population                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                  | Eviden<br>ce<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 3092 Musso<br>2022<br>(PMID:<br>35488356<br>DOI:<br>10.1186/s13<br>054-022-<br>03937-x)<br>Specification<br>of the study:<br>controlled<br>non-<br>randomized<br>trial | Inclusion criteria:<br>- acute moderate to serespiratory<br>failure due to SARS-C<br>- with NIV and prolon<br>Exclusion criteria:<br>- consent<br>- pregnancy<br>- hemodynamically un<br>urgent endotracheal<br>- palliative care | er 2h of last PP-session<br>evere acute hypoxemic<br>oV-2 pneumonia<br>ged PP<br>nstable or need of |                      | <b>PP:</b><br>- initiated within<br>24h after ICU<br>admission<br>- at least 1 PP<br>session lasting > 8h<br>over night | SP      | Primary endpoint:<br>- occurrence of NIV<br>failure within 28 days<br>of enrolment<br>(intubation/death)<br>Secondary outcome:<br>- clinical outcomes at<br>day 28 | Primary endpoint:<br>- NIV failure occurred in 14<br>(17%) of PP pts vs 70 (43%) of<br>controls , [HR=0.32, 95% CI<br>0.21–0.50; p<0.0001]<br>Secondary outcome:<br>- PP therapy was associated<br>with improved oxygenation and<br>an earlier decline in<br>inflammatory markers and<br>D-dimer | 3                     |

NIV = non invasive ventilation, PP = prone position, pts = patients, SP = supine position

Early prolonged PP is safe and is associated with lower NIV failure, intubation and death rates in noninvasively ventilated patients with COVID-19-related moderate-to-severe hypoxemic respiratory failure. Early dead space reduction and reaeration of dorso-lateral lung regions predicted clinical outcomes in the study population.

| Reference,<br>Study Type                                                                                        | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                 | Drop-out<br>Rate                                                                                                                                                                                                    | Intervention                                                  | Control                                                                                                                                                                    | Optimal Population                                                                                                                                                                                                                                                       | Primary Results                                                                                                                         | Evidence<br>Grade                          |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 3098 Dantas<br>2012<br>DOI:<br>10.1590/S0103<br>-<br>507X20120002<br>00013<br>Specification of<br>study:<br>RCT | 59 pts between February 2009 and         February 2011         Inclusion criteria:         MV and adequate cardiovascular reserve         < 50% variation in resting HR and SBP | <ul> <li>31 out of<br/>59 pts<br/>dropped<br/>out due to<br/>death<br/>(47%)</li> <li>Intervent<br/>ion group<br/>n = 12</li> <li>Control<br/>group n =<br/>19</li> <li>Leaving 14<br/>pts per<br/>group</li> </ul> | 5-stage<br>mobilization<br>protocol:<br>- 2x a day<br>- Daily | Passive<br>mobilization:<br>- Mobilization<br>of all limbs<br>- 5x week<br>- Active-<br>assisted<br>exercises<br>according to<br>pts<br>improveme<br>nt and<br>cooperation | Sample size<br>calculation:<br>50 pts per group<br>(Study is<br>underpowered)<br>No primary<br>endpoint defined<br>Extracted<br>Outcomes:<br>- Peripheral Muscle<br>Strength<br>(assessed as<br>MRC)<br>- Respiratory<br>Muscle Strength<br>(assessed as MIP<br>and MEP) | Results:         - MRC Score (Control vs.<br>Intervention):         a) Baseline $39.21 \pm 14.63$<br>vs. $49.29 \pm 11.02$<br>(p<0.001) | 2 → 3<br>(under-<br>powered,<br>high risk) |

Pts = Patients, HR = Heart Rate, SBP = Systolic Blood Pressure, SpO<sub>2</sub> = Saturation of partial oxygen, ICU = Intensive Care Unit, BMI = Body Mass Index, MV = Mechanical Ventilation, MIP = Maximal Inspiratory Pressure, MEP = Maximal Expiratory Pressure

Early Mobilization increases inspiratory and peripheral muscle strength.

| Reference,<br>Study Type                                                                                                                                    | Cases and Controls<br>(Participant #,<br>Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Drop-<br>out<br>Rate | Intervention                                                                                                     | Control                                                                                                                         | Optimal Population                                                                                                                                                                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3099<br>KURTOĞLU,<br>2015<br><u>https://doi.org</u><br>/10.5152/tftrd.<br>2015.04378<br><b>Specification</b><br>of study:<br>observational-<br>cohort study | 30 pts         Inclusion criteria:         - COPD patients who developed         respiratory failure         - satisfying the criteria for the         need of ICU         - followed for at least 24 h in the         ICU         Exclusion criteria:         - unstable cardiovascular disease         (unstable angina, aortic valve         disease)         - uncontrolled hypertension         - malignancy         - liver and/or kidney failure         - severe systemic chronic         diseases         - orthopedic problems (fracture,         joint subluxation, etc.) that could         interfere with rehabilitation         programs         - with fever and who are under         the probable effects of acute         medication changes were not         included in the study         Per Branch         15       15 |                      | - same as<br>control<br>- additional<br>NMES to<br>auxiliary<br>respiratory<br>muscles<br>applied 20min<br>a day | - prescribed<br>upper<br>extremity ROM<br>exercises<br>- passively by a<br>physician<br>- controlled<br>breathing<br>techniques | <b>Endpoints:</b><br>- arterial blood gas<br>measurements<br>- peak heart rate per<br>minute<br>- breathing frequency per<br>minute<br>- oxygen saturation<br>- quality of Life (SGRQ<br>and SF-36)<br>- functional capacity by<br>FIM | Endpoints:<br>- arterial blood gas measurements: no<br>results stated<br>- peak heart rate per minute: different<br>between the group on the 15 <sup>th</sup> and 30 <sup>th</sup> days<br>(p<0.001, p=0.008); between the baseline<br>and 30 <sup>th</sup> day intragroup changes in both<br>groups (p=0.03, p<0.001)<br>- breathing frequency per minute: 30 <sup>th</sup> day<br>between the groups (p=0.003); between the<br>baseline and 30 <sup>th</sup> day intragroup changes in<br>both groups (p<0.001)<br>- oxygen saturation: between the groups on<br>the 8th day (p=0.01); intervention group<br>between the baseline and the end of the<br>third day (p=0.005)<br>- quality of Life (SGRQ and SF-36); SGRQ n.s.<br>different at baseline and 30 <sup>th</sup> day between<br>groups; SF-36, improved to the 30th day in<br>control and intervention groups (p=0.02,<br>p=0.021)<br>- functional capacity by FIM: all subsets and<br>overall scores improved significantly in both<br>groups from the first day to the last (no p-<br>value stated) | 3                 |

COPD = chronic obstructive pulmonary disease, FIM = functional independent measurement, ICU = intensive care unit, NMES = neuromuscular electrical stimulation, n.s. = not significant, pts = patients, ROM = range of motion, SF-36 = short form-36, SGRQ = St. George's respiratory questionnaire

# This study revealed positive effects of neuromuscular electrical stimulation in addition with therapeutic exercises on the cardiorespiratory system in the short run,

| Reference,<br>Study Type                                                                                                                                                                               | Cases and Co<br>(Participant #, Char<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                               | Drop-out<br>- Rate                                                        | Intervention                                                                                                        | Control                                                                   | Optimal<br>Population                                                                                   | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 3100<br>Shen 2017<br>( <u>https://www.sci</u><br><u>encedirect.com/</u><br><u>science/article/pi</u><br><u>i/S18739598173</u><br><u>00169</u> )<br><b>Specification of</b><br><b>study</b> : pilot RCT | 25 pts<br>Inclusion criteria:<br>- adults with sepsis (20-90 yea<br>- MV for longer than 72h<br>Exclusion criteria:<br>- skin defect or infection arour<br>- acute myocardial infarction w<br>- life-threatening cardiac arrhy<br>- pregnancy<br>- dying pts with life expectance<br>month<br>- severe encephalopathy with<br>spontaneous breath drive<br>- uncontrolled seizure<br>- patient is fully awake and has<br>power to cooperate active lim<br>- air-born contagious diseases<br>influenza)<br>- moderate to severe adult ress<br>syndrome with requirement of<br>blocker<br>- pts with ECMO<br>EMS group (n=18) | nd the thighs<br>within one week<br>/thmia<br>e shorter than 1<br>coma + no<br>s adequate muscle<br>b exercise<br>(eg. tuberculosis,<br>spiratory distress<br>f neuromuscular | 7 (6 EMS<br>group:<br>expired<br>/dropped, 1<br>control group<br>expired) | electric muscle<br>stimulation<br>(both<br>quadriceps and<br>biceps, 32 min<br>with minimal<br>voltage,<br>5x/week) | Passive<br>mobilisation<br>(arm biceps<br>or thigh<br>quadriceps<br>limb) | Primary outcome:<br>- duration of MV<br>Secondary<br>outcome:<br>- mortality<br>- hand grip<br>strength | Primary outcome:<br>- mean duration of MV<br>was 6 days (IQR 6-15) in<br>control group and 6.5<br>days (IQR 5-10) in EMS<br>group (p = 0.85): n.s.<br>Secondary outcomes:<br>- hospital mortality was<br>not different in both<br>groups (p = 1.0)<br>- 8/25 (32%) could<br>perform hand grip<br>strength test; 2-5 kg<br>hand strength were<br>measured; handgrip<br>result much lower than<br>normal reference (20-33<br>Kg for population older<br>than 70 years-old) | $2 \rightarrow 3$ (pilot RCT) |

ECMO = extracorporeal membrane oxygenation, EMS = electrical muscle stimulation, MV = mechanical ventilation, n.s. = not significant, pts = patients

EMS did not reduce duration of mechanical ventilation or mortality.

| Reference,<br>Study Type                                                                                                                  | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drop-out<br>Rate | Intervention                                                                                             | Control | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3101<br>McCaughey<br>2019<br>(PMID:<br>31340846<br>DOI:<br>10.1186/s130<br>54-019-2544-<br>0)<br><b>Specification</b><br>of study:<br>RCT | 20 pts <b>Inclusion Criteria:</b><br>- $\geq$ 18 years of age<br>- dependent on MV due to critical<br>illness <b>Exclusion Criteria:</b><br>- expected to be ventilated for < 24<br>hours<br>- already ventilated for > 72 hours<br>- pregnant<br>- non- pharmacological paralysis<br>(e.g. spinal cord injury)<br>- physical obstacles that prevent<br>abdominal FES (e.g. abdominal<br>trauma, pacemaker),<br>- diagnosed terminal illness<br>- no response to abdominal FES (e.g.<br>lower motor neuron impairment or<br>obese)<br>- abdominal surgery within 4 weeks<br>prior to potential inclusion <b>Per Branch</b> 1010 |                  | Breath<br>synchronized<br>NMES:<br>- of the<br>abdominal<br>muscles<br>-30 min 2x day<br>- 5 days a week | Sham    | Primary endpoint:<br>- feasibility<br>Secondary outcomes:<br>- change from baseline in rectus<br>abdominis thickness (mm)<br>- change from baseline in diaphragm<br>thickness (mm)<br>- change from baseline in rectus<br>abdominis thickness (mm)<br>- change from baseline in combined<br>lateral abdominal muscle thickness<br>(mm)<br>- change from baseline in external<br>oblique thickness (mm)<br>- change from baseline in internal<br>oblique thickness (mm)<br>- change from baseline in internal<br>oblique thickness (mm)<br>- change from baseline in transversus<br>abdominis thickness (mm)<br>- duration of MV (days)<br>- ICU LOS (days)<br>- mortality | Primary endpoint:<br>- feasibility (Session compliance in %,<br>median [IQR]: control 97.2 [7.4] vs<br>intervention 92.1 [5.77], p = 0.384<br>Secondary outcomes:<br>- change from baseline in rectus abdominis<br>thickness (mm): n.s<br>- change from baseline in diaphragm<br>thickness (mm): n.s<br>- change from baseline in combined lateral<br>abdominal muscle thickness (mm): n.s<br>- change from baseline in external oblique<br>thickness (mm): n.s<br>- change from baseline in internal oblique<br>thickness (mm): n.s<br>- change from baseline in transversus<br>abdominis thickness (mm): only significant<br>difference on day 3: MD (95%CI): 1.04 (.10 –<br>1.98), p = 0.032<br>- duration of MV (days), median: control not<br>estimable, intervention 11, p = 0.011<br>- mortality: values not stated, p = 0.629 | 2                 |

FES = functional electrical stimulation, MV = mechanical ventilation, NMES = neuromuscular electrostimulation, pts = patients, RCT = randomized control trail

ICU length of stay and duration of mechanical ventilation duration were shorter in the abdominal FES than the control group.

| Reference,<br>Study<br>Type                                                                                                                 | (Participant #,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l Controls<br>Characteristics)<br>tal | Drop-out<br>Rate                                                                                      | Interven<br>tion | Control       | Optimal Population                                                                     | Primary Results                                                                                                                                                                                                                                                                                                                                              | Evidence<br>Grade |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------|------------------|---------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3102<br>Abdellaoui<br>2011<br>(PMID:<br>21349913<br>DOI:<br>10.1183/0<br>9031936.0<br>0167110<br>)<br>Specificati<br>on of<br>study:<br>RCT | 15 pts<br>Inclusion criteria:<br>- acute exacerbation CC<br>expiratory volume in on<br>capacity ,70%)<br>- ICU admission<br>- < 75 years of age<br>- BMI < 30 kg/m <sup>2</sup><br>- no locomotor or neurodisability that could limit<br>- no pacemaker<br>Per Batter B | e second/forced vital                 | 17 pts<br>included -> 2<br>dropouts<br>due to 1<br>readmission<br>to ICU and 1<br>withdrew<br>consent | NMES             | Sham-<br>NMES | <b>Derived outcomes:</b><br>- MVC<br>- 6MWD<br>- muscle fiber size<br>- adverse events | Derived outcomes:<br>- MVC (kg), median [IQR]: control 3 $[1-5]$<br>vs intervention 10 $[4.7 - 11.5]$ , p = 0.02<br>-6MWD (meter), median [IQR]: control 58<br>[43 - 115] vs intervention 165 $[125 - 203]$ ,<br>p = 0.008<br>- muscle fiber size (Type I): p = 0.009 in<br>favor of NMES<br>- muscle fiber size (Type IIx): p = 0.16<br>- no adverse events | 2                 |

ICU = intensive care unit, MVC = maximal voluntary contraction, NMES = neuromuscular electrostimulation, pts = patients, RCT = randomized control trial, 6MWD = 6-min walking distance

Following COPD exacerbation, NMES is effective in counteracting muscle dysfunction and decreases muscle oxidative stress.

| Reference,<br>Study Type                                                                                                                            | (Participant                                                                                                                                                                                              | nd Controls<br>#, Characteristics)<br>Total                                                                                                                                     | Drop-out<br>Rate                                                                            | Intervention | Control       | Optimal<br>Population                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidence<br>Grade |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3103<br>Gerovasili<br>2009<br>(PMID:<br>19814793<br>DOI:<br>10.1186/cc8<br>123)<br><b>Specificatio</b><br><b>n of study:</b><br>Randomized<br>study | myasthenia gravis, 6<br>- diseases with syste<br>involvement such a<br>-technical obstacles<br>implementation of<br>fractures or skin les<br>- end- stage maligna<br>- pacemakers<br>- ICU stay < 48 hour | rg/m2)<br>muscular disease (e.g.<br>Guillain-Barré)<br>emic vascular<br>s lupus erythematosus<br>t that did not allow the<br>EMS such as bone<br>ions (e.g. skin burns)<br>ancy | 23pts/46.9%<br>(10 pts died,<br>12 excluded<br>due to<br>oedema, 1<br>technical<br>reasons) | NMES         | Sham-<br>NMES | <b>Derived outcomes:</b><br>- cross sectional<br>diameter change<br>between<br>randomization and<br>day7/8 via<br>ultrasound<br>- duration of MV | Significant changes between groups in:<br>- cross sectional diameter change M. rectus<br>femoris right (cm), mean $\pm$ SD: control -0.21<br>$\pm$ 0.10 vs intervention -0.11 $\pm$ 0.06, p =<br>0.009<br>- cross sectional diameter change M. rectus<br>femoris left (cm), mean $\pm$ SD: control -0.19 $\pm$<br>0.16 vs intervention -0.13 $\pm$ 0.10, p = 0.07<br>-cross sectional diameter change M. vastus<br>intermedius right (cm), mean $\pm$ SD: control -<br>0.10 $\pm$ 0.05 vs intervention -0.11 $\pm$ 0.06, p =<br>0.034<br>- cross sectional diameter change – M.<br>vastus intermedius left (cm), mean $\pm$ SD:<br>control -0.22 $\pm$ 0.26 vs intervention -0.09 $\pm$<br>0.05, p = 0.018<br>No significant differences between groups<br>in:<br>- duration of MV (days), mean $\pm$ SD control:<br>9 $\pm$ 3<br>vs intervention 9 $\pm$ 2 | 3                 |

ICU = intensive care unit, MNES = neuromuscular electrostimulation, MV = mechanical ventilation, pts = patients

#### NMES reduces muscle loss measured via ultrasound in the ICU.

| Reference,<br>Study Type                                                                                                                                   | (Participant #,                                                                                                                                                                                                                                                                                                            | nd Controls<br>, Characteristics)<br>otal                                                                                       | Drop-out Rate                                                                                                                                                | Intervention | Control       | Optimal Population                                              | Primary Results                                                                                                                                                                                                               | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3104<br>Karatzanos 2012<br>(PMID: 22545212<br>DOI:<br>10.1155/2012/4<br>32752)<br><b>Specification of</b><br><b>study:</b><br>Secondary<br>analysis of RCT | <ul> <li>brain death</li> <li>preexisting neuromus<br/>myasthenia gravis)</li> <li>diseases with systemi<br/>such as lupus erythema</li> <li>technical obstacles th<br/>implementation of EMS<br/>or skin lesions (e.g. skir</li> <li>end- stage malignance</li> <li>pacemakers</li> <li>ICU stay &lt; 48 hours</li> </ul> | n2)<br>scular disease (e.g.<br>c vascular involvement<br>atosus<br>at did not allow the<br>S such as bone fractures<br>n burns) | 90 pts/63.3%<br>EMS group<br>- 28 died<br>- 11 impaired<br>cognitive state<br>- 7 dropouts<br>Control group<br>- 22 died<br>- 22 impaired<br>cognitive state | NMES         | Sham-<br>NMES | <b>Derived outcomes:</b><br>- MRC score<br>- hand grip strength | Derived outcomes:<br>- MRC score, median<br>[IQR]: control 52 [40-58]<br>vs intervention 58 [51-<br>60], p = 0.04<br>- hand grip strength (kg),<br>mean ± SD: control 14.8<br>± 10.7 vs intervention<br>21.4 ± 10.8, p = 0.18 | 4                 |

EMS = electrical muscle stimulation, ICU = intensive care unit, MRC = Medical Research Council, NMES = neuromuscular electrostimulation

#### NMES improves muscle strength in ICU patients.

| Reference,<br>Study Type                                                                                              | Cases and Controls<br>(Participant #, Characteri<br>Total                                                                                                                                                                                                                                                                                                                                                        | Dron-                               | Intervention                                                                                                                                                                                                                                                                                  | Control                                                                                                                                  | Optimal<br>Population                                                                      | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Evidence<br>Grade          |
|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 3106<br>Gruther 2010<br>(PMID:<br>20549166<br>DOI:<br>10.2340/165<br>01977-0564)<br>Specification<br>of study:<br>RCT | <ul> <li>implantable cardioverter<br/>defibrillators</li> <li>neuromuscular disorders</li> <li>myopathy</li> <li>paresis of the stimulated m</li> <li>epilepsy</li> <li>allergic reactions to the election</li> <li>peripheral oedemas counter</li> <li>NMES</li> <li>heavy ischemia of the lowe<br/>extremities</li> <li>BMI &gt; 30</li> <li>incisions or open wounds on<br/>that might be stressed</li> </ul> | nuscles<br>ctrodes<br>eracting<br>r | <ul> <li>NMES <ul> <li>M. vastus <ul> <li>intermedius and M.</li> <li>rectus femoris</li> <li>1 session/day</li> <li>5 session/week</li> <li>Total of 4 weeks</li> </ul> </li> <li>2 groups: <ul> <li>acute patients n = 8</li> <li>long-term patients n = 8</li> </ul> </li> </ul></li></ul> | Sham-NMES<br>- low currency to<br>avoid muscle<br>contraction<br>2 groups:<br>- acute patients<br>n = 9<br>- long-term<br>patients n = 9 | <b>Outcome:</b><br>MLT<br>difference<br>between<br>baseline and<br>week 4 by<br>ultrasound | Outcome:<br>MLT at baseline (Mean, SD):<br>- acute patient group<br>a) intervention: 28.9 (6.6),<br>p-value not stated<br>b) control: 32.9 (9.7),<br>p-value not stated<br>- long-term patient group:<br>a) 18.4 (4.2),<br>p-value not stated<br>b) 18.6 (5.9),<br>p-value not stated<br>MLT after 4 weeks (Mean, SD):<br>- acute patient group<br>a) intervention: 18.3 (3.2),<br>p = 0.002<br>b) control: 20.1 (5.4),<br>p < 0.001<br>- long-term patient group<br>a) 19.3 (3.8), p = 0.036<br>within-group comparison,<br>p = 0.013 between-group<br>comparison<br>b) 18 (5.8), p-value not<br>stated | 2 → 3<br>(down-<br>graded) |

BMI = body mass index, ICU = intensive care unit, MLT = muscle layer thickness, NMES = neuromuscular electrical stimulation, pts = patients, RCT = randomized controlled trial

#### NMES has a positive effect on muscle layer thickness when started late.

| Reference,<br>Study Type                                                                                                | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                                                                                                                                                                                                           | Characteristics)                                                                                                                           | Drop-<br>out<br>Rate | Intervention                                                                                                                                                         | Control | Optimal Population                                                                                                                                                                                                                                                                                                                           | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade               |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 3107<br>Zanotti 2003<br>(PMID:<br>12853536<br>DOI:<br>10.1378/chest.<br>124.1.292)<br>Specification<br>of study:<br>RCT | <ul> <li>24 pts</li> <li>Inclusion criteria: <ul> <li>chronic hypercapnic ratio COPD</li> <li>invasive MV via a tract</li> <li>presence of severe peratrophy</li> <li>clinically stable state</li> </ul> </li> <li>Exclusion criteria: <ul> <li>treated with systemic neuromuscular blockin while in the ICU</li> <li>history of diseases oth</li> <li>neurologic disease</li> <li>need for treatment wid during the rehabilitati</li> </ul> </li> <li>Per Brance 12</li> </ul> | cheostomy<br>eripheral muscle<br>c corticosteroids and<br>ing agents for > 5 days<br>her than COPD<br>with systemic steroids<br>ion period |                      | ES + ALM<br>- surface<br>electrodes<br>positioned<br>bilaterally on<br>the quadriceps<br>femoris and<br>vastus glutei<br>muscles<br>- stimulation<br>duration 30 min | ALM     | <ul> <li>Primary outcomes: <ul> <li>peripheral muscle</li> <li>strength assessed</li> <li>with MRC score</li> </ul> </li> <li>Secondary outcomes: <ul> <li>cardiorespiratory</li> <li>function: <ul> <li>a) SpO2</li> <li>b) HR</li> <li>c) RR</li> </ul> </li> <li>number of days needed to transfer from bed to chair</li> </ul></li></ul> | <ul> <li>Primary outcome: <ul> <li>no statistically significant differences in baseline strength between groups.</li> <li>MRC increase, mean ± SD (control vs. intervention): 1.25 ± 0.75 vs. 2.16 ± 1.02; p = 0.02</li> </ul> </li> <li>Secondary outcome: <ul> <li>no statistically significant differences in SpO<sub>2</sub>, HR and RR between groups.</li> <li>number of days needed to transfer from bed to chair, mean ± SD (control vs. intervention): 14.33 ± 2.53 vs. 10.75 ± 2.41; p = 0.001</li> </ul> </li> </ul> | 2 → 3<br>(high risk<br>of bias) |
|                                                                                                                         | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                         |                      |                                                                                                                                                                      |         |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 |

ALM = standard physical rehabilitation protocol of active limb mobilization, ES = electrical stimulation, HR = heart rate, MRC = medical research council, RR = respiratory rate, SpO<sub>2</sub> = saturation of inspired oxygen

NMES improves muscle strength in ICU patients and shortens the number of days needed to enable transfer from bed to chair.

| Reference,<br>Study Type                                                                                                                                                                                           | Cases and Co<br>(Participant #, Cha<br>Total                                                                                                                                                                                                                                                                                                                                                                                        | aracteristics)                                                                                    | Drop-<br>out Rate              | Intervention                                                                                                                                   | Control | Optimal<br>Population                                                                                                                                             | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 3108<br>Meesen 2010<br>(PMID: 21992890<br>DOI:<br>10.1111/j.1525-<br>1403.2010.00294.x)<br><b>Specification of</b><br><b>study:</b><br>partially randomized<br>controlled trial with<br>intraindividual<br>element | <ul> <li>25 pts</li> <li>Inclusion criteria: <ul> <li>day after admission</li> <li>expected prolonge ventilation</li> </ul> </li> <li>Exclusion criteria: <ul> <li>still able to move t despite the sedation</li> <li>signs of recent isch infarction &lt; 7 days</li> <li>severe orthopedic damage</li> <li>augmented risks for</li> <li>open wounds, hem arterial catheter at area</li> </ul> </li> <li>Per Brantal 11</li> </ul> | heir limb actively<br>on<br>ago<br>or vascular<br>or NMES<br>nodialysis, or an<br>the stimulation | 6pts (no<br>reasons<br>stated) | NMES<br>- electrod<br>es placed<br>on m.<br>rectus<br>femoris<br>and m.<br>vastus<br>medialis<br>- duration<br>of<br>stimulati<br>on 30<br>min | No NMES | Outcomes:<br>- muscle mass<br>modeled from<br>thigh<br>circumference<br>- cardio-<br>respiratory<br>parameters<br>a) HR<br>b) RR<br>c) SpO <sub>2</sub><br>d) DBP | <ul> <li>Outcomes: <ul> <li>muscle mass, mean ± SD</li> <li>intervention group; stimulated leg:</li> <li>0.035 ± 0.015; p &lt; 0.0001</li> </ul> </li> <li>b) intervention group; non-stimulated leg: <ul> <li>-0.027 ± 0.015; p &lt; 0.0001</li> <li>c) control group:</li> <li>-0.025 ± 0.014; p &lt; 0.0001</li> </ul> </li> <li>muscle mass, type 3 test of fixed effects: <ul> <li>a) intervention group:</li> <li>stim. leg vs. non-stim. leg:</li> <li>0.062; p &lt; 0.0001</li> </ul> </li> <li>b) intervention vs. control: 0.060; p &lt; 0.0001</li> <li>cardiorespiratory parameters: no significant differences between groups</li> </ul> | 2 → 3<br>(pilot and<br>some<br>concern<br>risk) |

DBP = diastolic blood pressure, HR = heart rate, NMES = neuromuscular electrical stimulation, Non-stim. = non-stimulated, RR = respiratory rate, SpO<sub>2</sub> = saturation of inspired oxygen, Stim. = stimulated

#### NMES increases muscle mass in ICU patients.

| Reference,<br>Study Type                                                                                                                                | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                    | Drop-<br>out<br>Rate | Intervention | Control    | Optimal Population                                           | Primary Results                                                                                                                           | Evidence<br>Grade                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 3109<br>Poulsen 2011<br>(PMID: 21150583<br>DOI:<br>10.1097/CCM.0b0<br>13e318205c7bc)<br><b>Specification of</b><br><b>study:</b><br>Intraindividual RCT | 8 pts<br>Inclusion criteria:<br>- septic shock<br>- ICU pts<br>Exclusion sriteria:<br>- focus on infection in or trauma to the lower<br>extremities<br>- predicted ICU stay of < 7 days<br>- severe respiratory or circulatory instability<br>that precluded transportation to CT scan<br>- BMI > 35 kg/m <sup>2</sup><br>- diabetic complications |                      | NMES         | No<br>NMES | <b>Primary endpoint:</b><br>- muscle volume<br>change via CT | Primary endpoint:<br>- muscle volume change (%),<br>median [IQR]: control - 2.3 [-<br>0.63.1] vs intervention-2.9 [-<br>0.43.6], p = 0.12 | 2 → 3<br>(pilot and<br>some<br>concern<br>risk) |

BMI = body-mass-index, ICU = intensive care unit, IQR = interquartile range, NMES = neuromuscular electric stimulation, pts = patients, RCT = randomized controlled trial

### NMES improves muscle mass in ICU patients.

| Reference,<br>Study Type                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l Controls<br>Characteristics)<br>tal                                                                                                                     | Drop<br>-out<br>Rate | Intervention | Control    | Optimal Population                                                                                                                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Evidence<br>Grade         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 3110<br>Rodriguez<br>2012<br>(PMID:<br>21715139<br>DOI:<br>10.1016/j.jcrc.<br>2011.04.010)<br><b>Specification</b><br>of study:<br>RCT -<br>intraindividual | 16 pts<br>Inclusion criteria:<br>- 18 years or older<br>- sepsis<br>- requiring MV<br>≥ 1 organ failure othe<br>dysfunction within 44<br>according to a SOFA ≥ 3<br>Exclusion criteria:<br>- previous or ongoing<br>-orthopedic injuries t<br>with evaluation of st<br>- cardiac pacemakers<br>- metallic prosthesis<br>- previous immobiliza<br>- pregnancy<br>- need of neuromusc<br>infusion<br>- high risk of immine<br>- previous poor perfo<br>an Eastern Cooperati<br>score > 2 | 8 hours of admission<br>3 neurologic diseases<br>that could interfere<br>rength<br>ation for > 5 days<br>ular blockers<br>nt death<br>ormance status with |                      | NMES         | No<br>NMES | <b>Primary outcomes:</b><br>- MRC score<br>- arm circumference<br>change<br>- thigh circumference<br>change<br>- M. biceps brachii<br>thickness ultrasound | Primary outcomes:<br>MRC score at awakening:<br>- biceps, median [IQR]: control 3 $[1 - 4]$ vs<br>intervention 3 $[2 - 4]$ , p = 0.014<br>- quadriceps, median [IQR]: control 2 $[2 - 3]$ vs<br>intervention 3 $[2 - 3]$ , p = 0.025<br>- quadriceps + biceps, median [IQR]: control 5 $[3 - 6]$ vs intervention 6 $[6 - 7]$ , p = 0.009<br>MRC at last day of NMES:<br>-biceps, median [IQR]: control 3 $[2 - 4]$ vs<br>intervention 4 $[3 - 4]$ , p = 0.005<br>- quadriceps, median [IQR]: control 3 $[2 - 3]$ vs<br>intervention 3 $[3 - 4]$ , p = 0.034<br>- quadriceps + Biceps, median [IQR]: control 6 $[4 - 7]$ vs intervention 7 $[5 - 8]$ , p = 0.009<br>- arm circumference change (cm): control and<br>intervention values not stated, p = 0.615<br>- thigh circumference: control and intervention<br>values not stated, p = 0.979<br>- M. biceps brachii thickness: control and<br>intervention values not stated, p = 0.290 | 2 → 3<br>(pilot<br>trial) |

MV = mechanical ventilation, NMES = neuromuscular electric stimulation, pts = patients, RCT = randomized controlled trial

### NMES improves muscle strength in ICU patients.

| Reference,<br>Study Type                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                            | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                         | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Evidence<br>Grade                  |
|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 3111<br>Hirose 2013<br>(PMID:<br>23561945<br>DOI:<br>10.1016/j.jcrc.2<br>013.02.010]<br>Specification of<br>study:<br>Cohort Study | 15 ptsInclusion criteria:- coma within the first 24 hours ofhospitalization- first-time stroke or TBI- no other associated thoracic orabdominal injury- age between 16 and 75 years- paralysis of one or both lowerlimbs- ability to live independentlybefore the acute- brain insult- no known muscle diseasePer Branch96 |                      | NMES         | No NMES | <b>Primary endpoint:</b><br>- CT-CSA for the lower<br>limb | Significant differences between groups in:<br>- CT-CSA on day 14 (%)<br>- M. quadriceps femoris, mean $\pm$ SD: control 87.5<br>$\pm$ 2.8 vs intervention 98.7 $\pm$ 2.4, p < 0.00<br>- M. biceps femoris, mean $\pm$ SD: control 87.5 $\pm$<br>4.5 intervention 99.8 $\pm$ 2.7, p < 0.001<br>- M. tibialis anterior, mean $\pm$ SD: control 87.8 $\pm$<br>5.8 intervention 101.2 $\pm$ 2.7, p < 0.001<br>- M. Gastrocnemius, mean $\pm$ SD: control – 89.1 $\pm$<br>4.8 intervention 99.3 $\pm$ 2.0, p < 0.001 | 3 → 4<br>(small<br>sample<br>size) |

CS = cross sectional area, NMES = neuromuscular electric stimulation, TBI = traumatic brain injury

#### NMES improves muscle mass in ICU patients.

| Reference,<br>Study Type                                                                                                 | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study Type                                                                                                               | Total                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3113 Berry A 2017<br>https://aci.health.nsw.<br>gov.au/data/assets/pdf<br>file/0005/239783/<br>ACI17131_PAM_Guideline.pd | SR of 35 studies in 2015: (3 case series,<br>10 cohort, 2 diagnostic, 3 observational,<br>4 QA, 7 SR, 6 RCT studies)<br><b>Inclusion criteria:</b><br>- adult pts in ICU receiving MV | <ul> <li>Assessment and clinical practice <ol> <li>A dedicated physical activity and movement program should be implemented to aid in the recovery of critically ill pts.</li> <li>Early physical activity and movement is feasible and safe for critically ill pts and should be incorporated into usual practice.</li> <li>All patients admitted to the ICU should be screened on a daily basis for inclusion in a PAM program. This assessment should be documented in the patient's medical record. Where feasible this screening should occur within 24 hours of admission.</li> <li>The program, based on the patient's current activity level, should be developed in consultation with a multidisciplinary team.</li> <li>In addition to the physical benefits PAM should be implemented to support patients' psychosocial needs and reduce concerns such as anxiety, depression and sleep disorders/disturbances that may impact the patient after discharge from the ICU.</li> <li>The minimum human resources for safely ambulating the ventilated patient must be three staff members, one of whom is experienced and will act as team leader. The actual number of staff will be based on pre-mobility assessment. A Medical Officer with accreditation in advanced airway skills must be available on site.</li> <li>The equipment that may be required includes a portable ventilator and/or manual resuscitator bag, portable suction and oxygen, IV pole, monitoring equipment, a walking frame and a wheelchair to follow.</li> <li>The development of a dedicated multidisciplinary team is essential for the successful implementation and maintenance of a patient physical activity and movement plan.</li> </ol> </li> <li>Infection prevention <ol> <li>Clinicians are to undertake a risk assessment to identify the risk of contamination and mucosal or conjunctival splash injuries during PAM activities. PPE (including goggles/face shield/gloves and gown/apron) as per NSW 2007 Infection Controp Policy are to be worn according to this risk assessment.</li> <li>Clinicians must adhere to</li></ol></li></ul> |
| Specification of study:                                                                                                  |                                                                                                                                                                                       | Infection Control Policy and ASA Standard 4187 prior to and following use.<br>Work, health and safety                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Clinical guideline                                                                                                       |                                                                                                                                                                                       | 12. Clinical staff undertaking patient physical activity and movement must undertake a risk assessment of the intended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                          | Definition of EM                                                                                                                                                                      | activity/ies to protect the health and safety of the patient and all staff involved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                          | Development of a PAM program for<br>critically ill adult ICU pts from the time<br>of admission until discharge                                                                        | <ul> <li>Governance</li> <li>13. Education and training should be given to key stakeholders regarding the benefits/importance of physical activities and movement in the ICU patient.</li> <li>14. Medical, nursing or physiotherapy ownership of a patient physical activity and movement plan should be determined.</li> <li>15. Hospital executive support, in terms of management/budgetary maintenance of a patient physical activity and movement program, should be available.</li> <li>16. Evaluation of a patient physical activity and movement program should occur following implementation, with regular audits for compliance conducted as a component of the ICU's routine quality improvement program. A number of valid and reliable ICU specific outcome measures are available to assist evaluation process.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

ICU = intensive care unit, MV = mechanical ventilation, PAM = physical activity and movement, pts = patients, QA = quality assurance, RCT = randomized controlled trial, SR = systematic review

| Reference,<br>Study Type                                                                                                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                                                                                                                                                                                                                                                                                                                                                                          | Drop-<br>out<br>Rate | Intervention          | Control                    | Optimal Population                                                                                                                                                                                               | Primary Results                                                                                                                                                                                                                                                        | Evidence<br>Grade                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| 3114<br>Prasobh 2021<br>(DOI:<br>10.1097/JAT.00000<br>0000000140)<br>https://journals.lw<br>w.com/jacpt/fulltex<br>t/2021/01000/early<br>mobilization_of_p<br>atients_receiving.6.<br>aspx<br>Specification of<br>study:<br>Systematic Review | <ul> <li>5 publications (3 retrospective cohort, 2 prospective cohort, 528 pts)</li> <li>Inclusion criteria: <ul> <li>clinical trials and cohort studies</li> <li>outcome mobilization and safety of critically ill patients</li> <li>receiving vasoactive drugs (2010-2018)</li> </ul> </li> <li>Exclusion criteria: <ul> <li>did not report number of pts receiving vasoactive drugs or the number of mobilization sessions</li> </ul> </li> <li>Per Branch</li> </ul> |                      | Early<br>mobilisation | Bed rest or<br>immobilized | Primary endpoint:<br>- safety of early<br>mobilization of<br>patients on<br>vasoactive drugs<br>(adverse events)<br>- relationship<br>between dosage of<br>vasoactive drugs and<br>level of mobility<br>achieved | Primary endpoint:<br>- no severe adverse events (such as fall<br>to the ground, cardiac arrest, unplanned<br>extubation)<br>- hypotension most<br>commonly cited adverse event<br>- no evidence on specific doses of<br>vasoactive drugs allowing safe<br>mobilization | 1 → 3<br>(not only<br>RCTs, no<br>metaanalysis |

# Evidence determining specific doses of vasoactive drugs that would allow safe mobilization of patients in critical care is lacking

#### References

- 1. Rebel A, Marzano V, green M, et al. Mobilisation is feasible in intensive care patients receiving vasoactive therapy: an observational study. Aust Crit Care. 2019;32(2):139-146.
- 2. Boyd J, Paratz J, tronstad O, Caruana L, McCormack P, Walsh J. When is It safe to exercise mechanically ventilated patients in the intensive care unit? An evaluation of consensus recommendations in a cardiothoracic setting. Heart Lung. 2018;47(2):81-86
- 3. Abrams D, Javidfar J, Farrand E, et al. Early mobilization of patients receiving extracorporeal membrane oxygenation: a retrospective cohort study. Crit care. 2014; 18(1):R38. Doi:10.1186/cc13746.
- 4. Nievera RA, Fick A, Harris HK. Effects of ambulation and nondependent transfer on vital signs in patients receiving norepinephrine. Am J Crit Care. 2017;26(1):31-36.
- 5. Hickmann CE, Castanares-Zapatero D, Bialais E, et al. Teamwork enables high level of early mobilization in critically ill patients. Ann Intensive Care 2016;6(1):80.

| Reference,<br>Study Type                                                                                                           | Cases and Controls<br>(Participant #, Characteristics)<br>Total                                                    | Drop-out<br>Rate                                                                                                                                                                                               | Intervention                                                                                   | Control                                                               | Optimal Population                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Evidenc<br>e<br>Grade |
|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 3116<br>Nakamura<br>2020<br>(PMID:<br>32800385<br>DOI:<br>10.1016/j.cl<br>nu.2020.07.<br>036)<br>Specification<br>of study:<br>RCT | 117 pts         Inclusion criteria:         - admitted to the ICU         Exclusion criteria:         - < 20 years | Without<br>EMS: 9 pts.<br>excluded<br>after<br>randomizatio<br>n (death,<br>discharged<br>alive earlier)<br>With EMS: 8<br>pts. Excluded<br>after<br>randomizatio<br>n (death,<br>discharged<br>alive earlier) | Rehabilitation:<br>- with belt-type<br>EMS<br>- either high<br>protein or<br>medium<br>protein | Standard<br>rehabilitation:<br>- high protein<br>or medium<br>protein | Primary endpoint:<br>- femoral muscle<br>volume change<br>Secondary outcomes:<br>- FSS-ICU at hospital<br>discharge<br>- Barthel at ICU<br>discharge<br>- EQ-5D at hospital<br>discharge<br>- ICU and hospital LOS<br>- MV days<br>- ADL and quality of life<br>scores<br>- 28-day survival rate<br>- duration of EN, oral<br>intake restart, EN<br>failure<br>- diarrhea and vomiting<br>events<br>- PIICS criteria<br>- pneumonia during<br>stay | Primary endpoint:<br>- femoral muscle volume<br>loss 12.9 ± 8.5% in the<br>high-protein group and<br>16.9 ± 7.0% in the medium-<br>protein group (p = 0,0059)<br>- muscle volume loss was<br>significantly less in the<br>high-protein group only<br>during the EMS period (no<br>declared p-value)<br>Secondary outcomes:<br>- no significant difference<br>in ADL, FSS-ICU, Barthel-<br>Index, QOL sore, survival<br>rate, ICU and hospital LOS,<br>duration of MV, EN failure,<br>vomiting, diarrhea or<br>pneumonia occurrence<br>- proportion of PIICS lower<br>in high-protein group<br>compared to medium-<br>protein group (11.7% vs.<br>26.3%, p = 0.041)<br>(Based on protein<br>differentiation) | 2                     |

ADL = activities of daily living, DNR = do not resuscitate, ECMO= extracorporeal membrane oxygenation, EMS = electrical muscle stimulation, EN = enteral nutrition, ICU = intensive care unit, LOS = length of stay, pts = patients, QOL = quality of life

A high protein delivery target provides greater benefit for muscle volume maintenance than medium protein delivery, but only with active early rehabilitation using belt-type EMS.

| Reference,<br>Study Type                                                                             | Cases and Controls<br>(Participant #, characteristics)<br>Total                                                                                                                                                                                                     | Drop-<br>out<br>Rate | Intervention | Control | Optimal Population                                                                                                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade |
|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 2022<br>PMID: 34077700<br>https://doi.org/10.<br>1513/AnnalsATS.2<br>02102-1510C<br>Specification of | 1 center from April 2009 to<br>January 2020 → 177 pts., 2706<br>APT session<br>Inclusion criteria:<br>-≥ 18 years old<br>-APT while receiving VV- or VA<br>ECMO<br>Exclusion criteria:<br>-not perform any APT while<br>receiving ECMO support<br>Per Branch<br>177 | n/a                  | АРТ          | n/a     | activity (IMS score ≥4,<br>including standing,<br>marching on the spot or<br>walking) vs. only IBPT<br>activity during ECMO<br>support<br>Secondary Endpoints:<br>-frequency and intensity of | Primary Results:<br>- 138 patients (78%) achieving out-of-bed activity<br>Secondary Results:<br>-108 (61%) pts. ambulated (1284 sessions), 34 of<br>whom had femoral cannulae (250 sessions)<br>-Bridge-to-transplant (OR 17.2, 95% CI [4.12–72.1]),<br>VV ECMO (OR 2.83, 95% CI [1.29–6.22]), later<br>cannulation year (OR 1.65, 95% CI [1.37–1.98]) and<br>higher CCI (OR 1.53, 95% CI [1.07–2.19]) associated<br>with increased odds of achieving OOB vs. IBPT,<br>whereas invasive MV (OR 0.11, 95% CI [0.05-0.25])<br>and femoral cannulation (OR 0.19, 95% CI [0.04–0.92)<br>associated with decreased odds of<br>performing OOB activities<br>-AEs occurred in 2% of sessions | 4                 |
|                                                                                                      | 1//                                                                                                                                                                                                                                                                 |                      |              |         |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |

pts. = patients; APT = active physical therapy; VV = veno-venous; VA = veno-arterial; ECMO = extracorporeal membrane oxygenation; ICU = Intensive Care unit; IMS = ICU Mobility Scale; IBPT = in-bed physical therapy; OR = odds ratio; CCI = charlson comorbidity index; OOB = out-of-bed; MV = mechanical ventilation; AE = Adverse events

Physical therapy with femoral cannulation is safe and feasible, and complications related to mobilization are uncommon.

No detailed assessment was carried out because higher-quality evidence is available on this topic.

| Cases and Controls<br>(Participant #,<br>characteristics)<br>Total | Recommendations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| · · · · ·                                                          | <ul> <li>Key recommendations regarding rehabilitation:         <ul> <li>ensure the short-term and medium-term rehabilitation goals are reviewed, agreed and updated throughout the patient's rehabilitation care pathway.</li> <li>ensure the delivery of the structured and supported self-directed rehabilitation manual, when applicable.</li> <li>during the patient's critical care stay;</li> <li>as early as clinically possible, perform a short clinical assessment to determine the patient's risk of developing physical and non-physical morbidity, perform a comprehensive clinical assessment to identify their current rehabilitation needs. This should include assessments by healthcare professionals experienced in critical care and rehabilitation.</li> <li>for patients at risk, agree short-term and medium-term rehabilitation goals, based on the comprehensive clinical assessment. (The patient's family and/or carer should also be involved.)</li> <li>the comprehensive clinical assessment and the rehabilitation goals should be collated and documented in the patient's clinical records.</li> <li>for patients at risk, start rehabilitation as early as clinically possible, based on the comprehensive clinical assessment and the rehabilitation should include:</li></ul></li></ul> |
| No definition of EM                                                | <ul> <li>information about the rehabilitation care particular.</li> <li>information about the rehabilitation care particular.</li> <li>information about the differences between critical care and ward-based care. This should include information about the differences in the environment, and staffing and monitoring levels.</li> <li>information about the transfer of clinical responsibility to a different medical team (this includes information about the formal structured handover of care recommended in the NICE guideline on acutely ill patients in hospital.</li> <li>if applicable, emphasise the information about possible short-term and/or long-term physical and non-physical problems that may require rehabilitation.</li> <li>if applicable, information about sleeping problems, nightmares and hallucinations and the readjustment to ward-based care.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                    | (Participant #,<br>characteristics)<br>Total<br>n = 15 publications<br>Inclusion criteria:<br>- adults with<br>rehabilitation needs as<br>a result of a period of<br>critical illness that<br>required level 2 and<br>level 3 critical care<br>Exclusion criteria:<br>- adults receiving<br>palliative care<br>- clinical subgroups of<br>patients whose<br>specialist rehabilitation<br>needs are already<br>routinely assessed and<br>delivered as part of<br>their care pathway<br>Definition of EM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

EM = early mobilization

#### References

- 1. Collen FM, Wade DT, Robb GF et al. (1991) The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. International Disability Studies 13: 50-4.
- 2. Twigg E, Humphris G, Jones C et al. (2008) Use of a screening questionnaire for post-traumatic stress disorder (PTSD) on a sample of UK ICU patients. Acta Anaesthesiologica Scandinavica 52: 202-8.
- 3. Stoll C, Kapfhammer HP, Rothenhausler HB et al. (1999) Sensitivity and specificity of a screening test to document traumatic experiences and to diagnose post-traumatic stress disorder in ARDS patients after intensive care treatment. Intensive Care Medicine 25: 697-704.
- 4. Vedana L, Baiardi P, Sommaruga M et al. (2002) Clinical validation of an anxiety and depression screening test for intensive in-hospital rehabilitation. Monaldi Archives for Chest Disease 58: 101-6.
- 5. Sukantarat KT, Williamson RC, Brett SJ (2007) Psychological assessment of ICU survivors: a comparison between the Hospital Anxiety and Depression scale and the Depression, Anxiety and Stress scale. Anaesthesia 62: 239-43.
- 6. McKinley S, Madronio C (2008) Validity of the Faces Anxiety Scale for the assessment of state anxiety in intensive care patients not receiving mechanical ventilation. Journal of Psychosomatic Research 64: 503-7.
- 7. Beauchamp K, Baker S, McDaniel C et al. (2001) Reliability of nurses' neurological assessments in the cardiothoracic surgical intensive care unit. American Journal of Critical Care 10: 298-305.
- 8. Jones C, Skirrow P, Griffiths RD et al. (2003) Rehabilitation after critical illness: a randomized, controlled trial. Critical Care Medicine 31: 2456-61.
- 9. Chiang L, Wang L, Wu C et al. (2006) Effects of physical training on functional status in patients with prolonged mechanical ventilation. Physical Therapy : 81.
- 10. Galle SS, Burtin C, Clerckx B et al. (2007) Effectiveness of early exercise in critically ill patients. Acta Anaesthesiologica Belgica 58: 88.
- 11. Bailey P, Thomsen GE, Spuhler VJ et al. (2007) Early activity is feasible and safe in respiratory failure patients.[see comment]. Critical Care Medicine 35: 139-45.
- 12. Morris PE, Goad A, Thompson C et al. (2008) Early intensive care unit mobility therapy in the treatment of acute respiratory failure. Critical Care Medicine 36: 2238-43.
- 13. Strahan EH, Brown RJ (2005) A qualitative study of the experiences of patients following transfer from intensive care. Intensive & Critical Care Nursing 21: 160-71.
- 14. McKinney AA, Deeny P (2002) Leaving the intensive care unit: a phenomenological study of the patients' experience 93. Intensive & Critical Care Nursing 18: 320-31.
- 15. Paul F, Hendry C, Cabrelli L (2004) Meeting patient and relatives' information needs upon transfer from an intensive care unit: the development and evaluation of an information booklet. Journal of Clinical Nursing : -405.

| Reference,<br>Study Type                                                                                                                                            | Cases and<br>(Participant #, C<br>Tot                                                                                                                                                                                                                                                        | Characteristics)                                                                                                          | Drop<br>-out<br>Rate | Intervention                             | Control                        | Optimal Population                                                                                                                                                                                                                                                                                                                        | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Evidence<br>Grade           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 3121 ECMO-PT<br>Study<br>Investigators,<br>2020<br>(PMID:<br>32179935<br>DOI:<br>10.1007/s0013<br>4-020-05994-<br>8)<br>Specification<br>of the study:<br>Pilot RCT | 20 pts<br>Inclusion criteria<br>- ≥18 years<br>- functionally inc<br>to current admis<br>- va-ECMO or VV<br>least 24h<br>Exclusion criteria<br>- in ICU > 5 days<br>commencement<br>- received ECMO<br>- not expected to<br>physical function<br>- unable to comr<br>English<br>Per Br<br>10 | dependent prior<br>ssion<br>/-ECMO for at<br>prior to<br>to fECMO<br>0 < 72h<br>to recover<br>n in 90 days<br>municate in |                      | Early goal-<br>directed<br>physiotherapy | Standard care<br>physiotherapy | <ul> <li>Primary endpoint: <ul> <li>feasibility (increased duration of activity and higher IMS)</li> <li>safety (adverse and serious adverse events)</li> </ul> </li> <li>Secondary outcomes: <ul> <li>strength measured with MRC score</li> <li>KATZ ADL</li> <li>ICU and hospital LOS ICU and hospital mortality</li> </ul> </li> </ul> | Primary endpoint:<br>- total time of EM higher in<br>intervention (133 (82-220)<br>vs. 27.5 (20.4-31) minutes, p<br>= 0,002)<br>- no increase in medium<br>level of mobilization (IMS<br>2.67 (0 – 5.3) vs. 1.5 (1 –<br>4.7))<br>-two safety events in each<br>group<br>Secondary outcomes:<br>- no difference for ICU LOS<br>and mortality<br>- increased functional<br>independence in<br>intervention (Katz activities<br>of daily living 6 [6–6] vs. 5 [4,<br>5]) | 2 → 3<br>Small<br>pilot RCT |

ECMO = extracorporeal membrane oxygenation, ICU = intensive care unit, IMS = intensive care unit mobility scale, KATZ ADL = Katz index of independence in activities of daily living, LOS = length of stay, MRC = medical research council, pts = patients, VA = venous arterial, VV = venous venous

# Early mobilization was safe and feasible. In the intervention group, there was a signal for improved functional independence in the activities of daily living at hospital discharge

| Reference,<br>Study Type                                                                                                                                          | Cases and Controls<br>(Participant #, Characteris-<br>tics)<br>Total                                                                | Recommendations                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3122<br>Murray 2016<br>(PMID: 27755068<br>DOI:<br>10.1097/CCM.000000<br>0000002027)<br><b>Specification of</b><br><b>Study:</b><br>Clinical Practice<br>Guideline | 6 studies<br>Inclusion criteria:<br>patients receiving continuous<br>infusions of a NMBA<br>Definition of EM<br>No definition of EM | Should patients receiving continuous infusions of a NMBA receive physiotherapy to improve mortality, quality of life,<br>or exercise capacity?<br>recommendation: we suggest that patients receiving a continuous infusion of NMBA receive a structured regimen of<br>physiotherapy (weak recommendation, very low quality of evidence) |

EM = early mobilisation, NMBA = neuromuscular blocking agent

#### References

- 1. Burtin C, Clerckx B, Robbeets C, et al: Early exercise in critically ill patients enhances short-term functional recovery. Crit Care Med2009; 37:2499–2505
- 2. Kress JP: Clinical trials of early mobilization of critically ill patients. Crit Care Med 2009; 37:S442–S447
- 3. Hodgin KE, Nordon-Craft A, McFann KK, et al: Physical therapy uti-lization in intensive care units: Results from a national survey. Crit Care Med 2009; 37:561–6; quiz 566
- 4. Eikermann M, Gerwig M, Hasselmann C, et al: Impaired neuro-muscular transmission after recovery of the train-of-four ratio. Acta Anaesthesiol Scand 2007; 51:226–234Early exercise in critically ill patients enhances short-term functional recovery.
- 5. Kress JP, Hall JB: Cost considerations in sedation, analgesia, and neuromuscular blockade in the intensive care unit. Semin Respir Crit Care Med 2001; 22:199–210 6.
- 6. Pohlman MC, Schweickert WD, Pohlman AS, et al: Feasibility of physical and occupational therapy beginning from initiation of mechanical ventilation. Crit Care Med 2010; 38:2089–2094

| Reference,                                                                                                                                      | Cases and Controls<br>(Participant #, Characteristics)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Drop-<br>out | Intervention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Control                | Optimal<br>Population                                                                                            | Primary Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Evidence<br>Grade |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Study Type                                                                                                                                      | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rate         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | ropulation                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Grade             |
| Barnes-Daly<br>2016<br>(PMID: 27861180<br>DOI:<br>10.1097/CCM.0000<br>00000002149)<br>Specification of<br>study:<br>prospective cohort<br>study | 6.064 ventilated and non-<br>ventilated general medical and<br>surgical ICU patients enrolled<br>between January 1, 2014, and<br>December 31, 2014<br>Inclusion criteria (not clearly<br>defined)<br>- surgical ICU patients<br>- adults<br>Exclusion criteria<br>- active ethanol/drug<br>withdrawal<br>- open abdomen<br>- significant hemodynamic or<br>respiratory instability<br>- new coronary ischemia<br>- therapeutic neuromuscular<br>blockade<br>- intubation within the previous<br>6 hours without stabilization |              | Total and partial bundle<br>compliance<br>(daily measured)<br>- ABCDEF bundle compliance<br>accounting for total compliance<br>(all or none) or for partial<br>compliance ("dose" or number<br>of bundle elements used)<br>- A= Assess, prevent, and<br>manage pain; B= Both<br>spontaneous awakening trials<br>(SATs) and spontaneous<br>breathing trials (SBTs); C= Choice<br>of Sedation/Analgesia; D=<br>Delirium monitoring and<br>management; E= Early mobility<br>and exercise; F= Family<br>engagement and empowerment | No<br>control<br>group | <b>Outcome</b> (not<br>clearly defined)<br>- hospital<br>mortality<br>-delirium-free<br>days<br>- coma-free days | hospital mortality:<br>n = 586 [9.7%]<br>- for every 10% increase in<br>total bundle compliance:<br>7% higher odds of hospital<br>survival (odds ratio, 1.07; 95%<br>Cl, 1.04–1.11; p < 0.001)<br>- for every 10% increase in<br>partial bundle compliance:<br>15% higher hospital survival<br>(odds ratio, 1.15; 95% Cl, 1.09–<br>1.22; p < 0.001)<br>- delirium- and/or coma-free<br>days mean (95% Cl):<br>1.61 (1.55–1.67)<br>- with both total bundle<br>compliance: incident rate ratio,<br>1.02; 95% Cl, 1.01–1.04; p =<br>0.004<br>- with partial bundle<br>compliance:<br>incident rate ratio, 1.15; 95%<br>Cl, 1.09–1.22; p < 0.001 | 3                 |
|                                                                                                                                                 | N=6064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |

CI = confidence interval, ICU= intensive care unit

Higher bundle compliance was independently associated with improved survival and more days free of delirium and coma after adjusting for age, severity of illness, and presence of mechanical ventilation.

| Versionsnummer:              | 3.1     |
|------------------------------|---------|
| Erstveröffentlichung:        | 11/2007 |
| Überarbeitung von:           | 07/2023 |
| Nächste Überprüfung geplant: | 06/2027 |

Die AWMF erfasst und publiziert die Leitlinien der Fachgesellschaften mit größtmöglicher Sorgfalt - dennoch kann die AWMF für die Richtigkeit des Inhalts keine Verantwortung übernehmen. **Insbesondere bei Dosierungsangaben sind stets die Angaben der Hersteller zu beachten!** 

Autorisiert für elektronische Publikation: AWMF online