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ABSTRACT: Myoclonus-dystonia is a clinical syndrome
characterized by a typical childhood onset of myoclonic jerks
and dystonia involving the neck, trunk, and upper limbs. Psy-
chiatric symptomatology, namely, alcohol dependence and
phobic and obsessive-compulsive disorder, is also part of
the clinical picture. Zonisamide has demonstrated effective-
ness at reducing both myoclonus and dystonia, and deep
brain stimulation seems to be an effective and long-lasting
therapeutic option for medication-refractory cases. In a sub-
set of patients, myoclonus-dystonia is associated with path-
ogenic variants in the epsilon-sarcoglycan gene, located on
chromosome 7q21, and up to now, more than 100 different
pathogenic variants of the epsilon-sarcoglycan gene have
been described. In a few families with a clinical phenotype
resemblingmyoclonus-dystonia associatedwith distinct clini-
cal features, variants have been identified in genes involved in
novel pathways such as calcium channel regulation and
neurodevelopment. Because of phenotypic similarities with

epsilon-sarcoglycan gene–related myoclonus-dystonia,
these conditions can be collectively classified as “myoclonus-
dystonia syndromes.” In the present article, we present
myoclonus-dystonia caused by epsilon-sarcoglycan gene
mutations, with a focus on genetics and underlying
disease mechanisms. Second, we review those conditions
falling within the spectrum of myoclonus-dystonia syn-
dromes, highlighting their genetic background and
involved pathways. Finally, we critically discuss the normal
and pathological function of the epsilon-sarcoglycan gene
and its product, suggesting a role in the stabilization of the
dopaminergic membrane via regulation of calcium homeo-
stasis and in the neurodevelopmental process involving
the cerebello-thalamo-pallido-cortical network. © 2019
International Parkinson and Movement Disorder Society
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In 1983 the first description of a clinical syndrome
characterized by myoclonus as the most prominent sign
and dystonia was provided, subsequently identified as

“inherited myoclonus-dystonia.”1-3 Myoclonus-dystonia is
a rare condition, with an estimated prevalence of about
2 per 1.000.000 in Europe.4 Usually presenting in early
childhood and following a benign course, it was described
to follow an autosomal-dominant pattern with variable
penetrance and expression.2 Twenty years ago, the first
locus for myoclonus-dystonia was mapped to chromo-
somal region 7q21-q31.5-8 Two years later, heterozygous
pathogenic variants in the epsilon-sarcoglycan (SGCE) gene
were reported to be causative for myoclonus-dystonia,9

implicating a member of the sarcoglycan family generally
associated with muscular dystrophies was involved in the
pathogenesis of a central nervous system (CNS) disorder.9

From then, mutational screenings for SGCE in cohorts of
patients presenting with myoclonus-dystonia have revealed
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that SGCE is the main causative gene for this syn-
drome.10,11 As a consequence, the designation DYT-SGCE
(OMIM 604149) now replaces the classic locus symbol
DYT11.12,13

Over the years, patients presenting with a combination
of features typical of SGCE-related-myoclonus-dystonia
and additional distinct aspects have been reported to
carry pathogenic or likely pathogenic variants in genes
involved in neurodevelopment, channel, and signaling
pathways. As these genetic conditions share a number of
clinical features with SGCE-related-myoclonus-dystonia,
they can collectively be included in the phenotypic spec-
trum of myoclonus-dystonia syndromes.
The aim of the present article is to provide an overview of

the clinical syndrome of myoclonus-dystonia because of
SGCE mutations, hereafter referred to as SGCE-myoclo-
nus-dystonia (SGCE-MD), discussing the clinical and elec-
trophysiological features and the current therapeutic
options, and highlighting the genetic background and
underlying disease mechanisms. We then describe the con-
ditions within the spectrum of myoclonus-dystonia syn-
dromes, focusing on their genetic basis and involved
pathways. Finally, as identifying different genetic causes
associated with similar phenotypes may provide new clues
to pathophysiology,14 we discuss and compare the patho-
physiological mechanisms of SGCE-MD in light of the
pathways unraveled by genetic determinants of myoclonus-
dystonia syndromes.

SGCE-MD: A Clinical Overview
Clinical Spectrum:

Motor and Neuropsychiatric Features
SGCE-MD usually manifests in childhood, with a mean

age of onset of 6 years,15 and earlier onset is associated
with female sex.16 Although rare, very early onset
(before 1 year)17-20 and onset in early adulthood (21 to
41 years)18,21-24 or after 40 years25,26 have also been
reported. The predominant motor sign in SGCE-MD is
myoclonus, presenting with very brief, “lightning-like” or
“tic-tac” jerks, typically involving the upper part of the
body (neck, trunk, limb), more in the proximal than distal
muscles.27,28 Less frequently, other body parts, such as the
face,7,29-31 larynx,30-33 and lower limbs,16,20,22,23,31,34-38

can be affected. The myoclonic jerks may be present at rest
but are typically aggravated or elicited by action, posture,
and psychological stress.15,20,31 It is important to note that
a subset of patients can present with postural tremor of the
upper limbs,39,40 which is often clinically indistinguishable
from high-frequencymyoclonic jerks.41

Dystonia is associated with myoclonus in more than
half of patients, usually as torticollis or writing difficulty.28

However, dystonia can involve other body parts such as
the cranial region,17 larynx,31,36,42,43 and often lower
limbs,17,21,23,32,33,35,39,40,44-48 the latter being predominantly

in pediatric cases, in whom it may be the sole presenting
feature.35,36 Although isolated writer’s cramp presenting
as the first manifestation of SGCE-MD in early adult-
hood has been reported,36 a screening of 43 patients with
simple or complex writer’s cramp failed to identify any
association with SGCE mutations.49 Other studies also
failed to identify SGCEmutations in patients with differ-
ent subtypes of focal, segmental, or generalized dysto-
nia50,51; hence, except for pediatric writer’s cramp,52

SGCEmutation analysis is not recommended in sporadic
isolated dystonia in the absence of myoclonic jerks, or
additional nonmotor features (see below).51

Amelioration of motor signs with alcohol is a classic fea-
ture of SGCE-MD,53,54 likely because of the GABAergic
deficit caused by Purkinje cell dysfunction secondary to
SGCEmutations (see below), which alcohol might improve
by increasing GABAergic transmission.55 The disease
course of SGCE-MD is generally benign, with variable pro-
gression.20,56 Spontaneous remission has been found at a
rate of 5%of patients for myoclonus and in 22% for dysto-
nia, especially during childhood and adolescence,31 but also
in early adulthood.57 Therefore, this variability should be
taken into account when invasive therapeutic options are
considered.31

Psychiatric symptomatology is part of the clinical
spectrum of SGCE-MD.54,58-63 A recent multicenter study
investigated psychiatric symptomatology in a large cohort
of SGCE-MD patients, showing that 65% of manifesting
carriers had at least 1 psychiatric diagnosis, one and a half
times more than population estimates.64 Among them,
specific phobias and social phobia were the most common
diagnoses, followed by alcohol dependence and obsessive-
compulsive disorder.64 Anxiety and depression have also
been frequently reported.62,63,65 As few studies failed to
detect any psychiatric symptoms assessing patients by
clinical scales rather than comprehensive diagnostic
interviews,58,62 we would discourage the use of these tools
in the clinical practice. Whether psychiatric symptomatol-
ogy represents the expression of a pleiotropic function of
the SGCE gene in the CNS or is secondary to motor signs
is still debated.59,60,64 Some studies have shown an excess
of psychiatric symptoms in manifesting SGCE carriers ver-
sus asymptomatic subjects, including nonmanifesting car-
riers and normal controls,59,64 and others did not report
any difference between SGCE carriers and noncarriers.66

Positive and Negative Predictors for SGCE-MD
Although SGCE is the main causative gene for

myoclonus-dystonia,11 SGCE mutations have been found
in a variable proportion from 21% to 80% of patients dis-
playing this phenotype,10 probably because of the lack of
standardized diagnostic criteria.65 SGCE-negative patients
can display a very similar phenotype11 and many studies
have tried to define clinical features predicting SGCEmuta-
tional status.10,17,67 The main clinical features predicting
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the presence of pathogenic variants in the SGCE gene, thus
supporting a diagnosis of SGCE-MD, and conversely the
atypical signs suggesting a negative carrier status, are listed
in Table 1. Overall, the weighted sum of age at onset and
presence of psychiatric symptoms in patients presenting
with a typical motor phenotype, seems to better discrimi-
natemutation carriers from noncarriers.65

So far, in many of the SGCE-negative carriers the caus-
ative genes remain undetermined.11 A locus has been
mapped to chromosomal region 18p11 (OMIM 607488;
DYT15) in a large Canadian family with myoclonus-
dystonia,68 but the underlying causative gene has not yet
been identified.69

Neurophysiological Features
The main question that several electrophysiological

studies have tried to address is what is the generator of
myoclonus in SGCE-MD. Results have shown both
short and long duration of electromyographic (EMG)
bursts, with a mean duration of 95 milliseconds (range,
25 to 256 milliseconds), occurring synchronously in antag-
onist muscles or erratically in various segments of the body,
either arrhythmicly or less frequently rhythmicly.31 No
C-reflex, no electroencephalographic (EEG) activity at jerk-
locked back-averaging, and normal somatosensory-evoked
potentials were found.1,31,70 Negative myoclonus was
recorded just in a few patients.31 Thus, although definite
criteria for the classification of myoclonus are still lacking,
the absence of primary and secondary neurophysiological
features consistent with cortical myoclonus in SGCE-MD
supports a subcortical origin.71 Further hints of the pre-
sumed subcortical source of myoclonus are provided by
EEG-EMG coherence frequency analysis.72 In fact, in
SGCE-MD there is little evidence for any coherence
between cortical and muscular activity,73 in contrast with
the clear coherence seen over a range of frequencies in corti-
cal myoclonus.74-78

Cortical function has been explored in SGCE-MD by
using noninvasive brain stimulation techniques, such as
transcranial magnetic stimulation (TMS).79 Motor cortical
excitability measured by the active motor threshold was

found normal when using single-pulse TMS,80 higher,81 or
higher when using biphasic but not monophasic TMS
pulses.82 Intracortical inhibition of the motor cortex, which
is mediated by GABAa interneurons and is commonly
reduced in dystonia,79,83 was found either normal80,81 or
subtly reduced.70 Overall, even though the enhanced excit-
ability to TMS was suggested to reflect a mild abnormality
of axon membranes,81,82 there is no strong evidence for
abnormalities of cortical function in SGCE-MD.
Having established that the source of myoclonus is

not cortical, the next question is from which subcortical
region it originates. Unfortunately, neurophysiological
studies have not answered this question yet, and the
mechanisms underlying myoclonus are not fully under-
stood. The evidence to date seems to suggest that the
cerebellum is involved in myoclonus. In fact, the abnor-
mal response to cerebellar conditioning,55,82 as tested
by eyeblink classical conditioning,84 and the reduced
levels of saccadic adaptation,85 as tested by the saccadic
adaptation task,86-88 suggest cerebellar dysfunction. In
a [18F]-fluorodeoxyglucose positron emission tomogra-
phy (PET) study a metabolic increase in the parasagittal
cerebellum was found in SGCE-MD patients, similar to
posthypoxic myoclonus, but not in nonmanifesting car-
riers, suggesting a direct link between cerebellum and
myoclonus89; however, it is worth remembering that PET
data are a measurement of static, and not dynamic, con-
nectivity.90 Few studies have reported that lesions in the
ventral intermediate nucleus of the thalamus (VIM) were
associated with myoclonus and dystonia91 and that deep
brain stimulation (DBS) targeting the VIMwas effective in
reducing myoclonus in SGCE-MD.92 Overall, these data
on VIM suggest that this structure can be involved in
myoclonus, too,93 but this does not necessarily mean that
the VIM is the generator of myoclonus. In addition,
although myoclonus is not classically reported in associa-
tion with basal ganglia dysfunction in both clinical and
experimental studies,94,95 myoclonus severity has been
associated with a higher-frequency bursting pattern in the
neurons of the internal globus pallidus (GPi) of SGCE-
MD patients, thus suggesting that pallidal activity some-
how correlates with myoclonic activity.96 Moreover, that
GPi DBS can reduce myoclonus again confirms pallidal
involvement,96 even though this does not represent proof
of myoclonus generation. Finally, there is evidence of
increased brain stem excitability investigated by the blink
reflex recovery cycle test in SGCE-MD patients,70 similar
to what has been described in patients with isolated
dystonia.97

Treatment
Oral medications such as benzodiazepines that reduce

neuronal excitability via GABAergic mechanisms have
been reported to show mild or no improvement in
SGCE-MD.20,29,46,93,98-100 Other therapies such as

TABLE 1. Clinical features predicting SGCE mutational
status (carrier versus noncarrier) in patients with

myoclonus-dystonia

Positive predictors Negative predictors

Myoclonus as prominent motor sign,
associated or not with dystonia

Truncal dystonia

Predominant upper body involvement Coexistence of action
myoclonus and dystonia
in the same body region

Onset in the first 2 decades, especially in
the first one

Positive family history
Psychiatric comorbidities (phobia, OCD,
alcohol dependence)
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levetiracetam,20,93 valproate,20,32,46,93,98,101 gabapentin,46

pimozide,32 trihexiphenidyl,26,57 and botulinum toxin
injections26,32,102 have also been tried with variable results.
Anecdotally, dopaminergic drugs, either levodopa33 or
dopamine-blocking agents like tetrabenazine,103 have been
reported to improve motor signs in patients with SGCE
deletions. Few clinical trials have been conducted, namely,
an open-label trial of sodium oxybate, which demonstrated
improvement in myoclonus with satisfactory tolerance,104

and a randomized, controlled, double-blind crossover trial
of zonisamide, which revealed improvement in both myoc-
lonus and dystoniawith good tolerance.105

DBS has been reported to be effective in several medical-
refractory cases,39,92,93,106-118 but no controlled trials have
been conducted so far. The preferred reported targets were
the GPi, the VIM, or a combination of them, both good at
improving myoclonus, with the GPi better than the VIM at
improving dystonia.119 Mean amelioration of 72.6% in
myoclonus scores in all patients and of 52.6% in dystonia
scores in approximately 88% of patients has been
reported.120 Only a few studies have quantified motor
improvement after DBS by neurophysiological measure-
ment.92,113 Regarding stimulation programming, variable
parameters have been used, most frequently pulse width of
60 microseconds and frequency of 130 Hz.106,109 Satisfy-
ing response to high pulse width (180–210 microseconds)
and lower frequency (60 Hz) has also been reported.93,121

No deterioration of psychiatric symptoms has been
found,93,112 except for a small group of patients who
underwent GPi DBS.109 Hence, DBS seems to be a rela-
tively safe and long-lasting treatment112,117 that should be
offered to patients refractory tomedical treatment.106,112

SGCE-MD: Genetics and
Pathophysiology

The SGCE Gene (DYT-SGCE, DYT11)
In SGCE-MD, SGCE mutations are inherited in an

autosomal-dominant pattern with reduced penetrance
of maternally transmitted mutations.40 This is because
of maternal imprinting of the SGCE gene,122 resulting
in selective methylation of the maternal allele and con-
sequent expression of the paternal allele only.123 Thus,
although most patients carrying SGCE mutations have
a positive family history, a genetic screening is also rec-
ommended in the presence of a sporadic presentation of
myoclonus-dystonia.124 Until now,more than 100 different
pathogenic variants in the SGCE gene have been described,
including nonsensemutations,missensemutations,125 small
insertions/deletions,23 and whole-exon deletions, often
resulting in the introduction of premature termination
codons.39 Gene dosage analyses such as multiple ligation-
dependent probe amplification have therefore become part
of the SGCE testing strategy.65 Patients with large genomic
deletions usually exhibit a complex phenotype resulting

from the concurrent deletion of neighboring genes (“con-
tiguous gene syndrome”).65 For instance, deletion of
COL1A2 can cause variable collagen abnormalities such
as blue sclerae, hypodontia, recurrent subluxations,
ligamentous laxity, and short stature, whereas KRIT1
haploinsufficiency has been related to the presence of
cavernous cerebral malformations type I.126 An updated
list of known pathogenic variants of the SGCE gene is
summarized in Supplementary Table 1 (missense, non-
sense, and splice-site pathogenic variants)127-130 and
Supplementary Table 2 (deletions, insertions, and com-
plex rearrangements).127,131-138

Curiously, in Silver-Russel syndrome (SRS, OMIM
180860), a growth disorder caused by maternal unipa-
rental disomy of chromosome 7 (mUPD7) in 5%–10%
of cases,139,140 children do not express the SGCE gene;
nevertheless, only a few cases have been described with
myoclonic and dystonic features.141-144 Affected chil-
dren show intrauterine growth restriction and postnatal
growth retardation with proportionate short stature, rela-
tive macrocephaly, triangular facial appearance, fifth finger
clinodactyly, body asymmetry, and feeding difficul-
ties.139,140 Testing for mUPD7 should therefore be consid-
ered in any patient with myoclonus, dystonia, and such
additional features, and the recognition of hyperkinetic
movement disorders should be mandatory in patients with
SRS to address the specific multidisciplinary management
(endocrinologists for monitoring of growth and consider-
ation of growth hormone treatment, dieticians for advice
regarding food intake, and orthopedists for limb asymme-
try surgery).140,141

The Epsilon-Sarcoglycan Protein
The SGCE gene has 12 exons, whose product consists of

3 isoforms, encoding 437–, 451–, and 462–amino acid–
long fragments depending on alternative splicing.15 SGCE
encodes a single-pass transmembrane protein named
epsilon-sarcoglycan. The sarcoglycans are a family of trans-
membrane glycoproteins with 6 different isoforms (α-, β-,
γ-, δ-, ε-, and ζ-sarcoglycan). Epsilon-sarcoglycan is highly
homologous to α-sarcoglycan: they both have a cadherin-
like domain and calcium-binding pockets, which are
present close to a signal sequence.145 In contrast to
α-sarcoglycan, ε-sarcoglycan is widely expressed in mul-
tiple human tissues, either muscular or nonmuscular such
as brain and lung,146 of both embryos and adults,
suggesting an important role for embryonic development
and integrity of nonmuscular tissues.147 Then, although
ε-sarcoglycan mRNA expression dramatically declines
during development in rats’ striated muscle, it is preserved
in neurons, with high levels in the cerebellum.148 In mice,
ε-sarcoglycan mRNA transcripts are highly expressed in
neurons of the substantia nigra, ventral tegmental area, dor-
sal raphe nucleus, locus coeruleus, cerebellar Purkinje cells,
and olfactory bulb mitral cell layer,149 and because of the
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alternative splicing, 2 major SGCE isoforms can be
found.150 The form including exon 8 is broadly expressed
in various tissues, whereas the transcript including exon
11b is exclusively expressed in brain; these 2 isoforms are
respectively enriched in postsynaptic and presynaptic mem-
brane fractions, suggesting different roles in the synaptic
function of the CNS.150 In human brain, up to 23 alterna-
tively spliced exons have been detected, although only 4 of
them (exons 1c, 2, 8, and 11b) at frequencies above 1%,
and among them exon 11b has shown a high brain-specific
expression pattern, especially in the cerebellum (namely, in
the Purkinje cells and neurons of the dentate nucleus), mak-
ing it themajor brain-specific isoform.151

SGCE-MD Animal Models
Little is known about the role of ε-sarcoglycan in the

brain. To tackle the issue, several animal models of
SGCE-MD have been developed. Paternally inherited
SGCE heterozygous knockout (Sgce-KO) mice, which
do not express maternally inherited wild-type SGCE in the
brain,152 showed myoclonus, psychiatric alterations, and
positive correlation between compulsive-checking behav-
iors and striatal dopaminergic levels, suggesting that the
loss of ε-sarcoglycan could cause “hyperdopaminergic stri-
atum.”153 Sgce-KO mice also exhibited abnormal nuclear
envelopes in the striatal medium spiny neurons154 and
reduced pre- and postsynaptic striatal dopamine D2
receptor (D2R) levels,155 supporting a possible role of
ε-sarcoglycan in stabilizing the membrane of dopaminergic

neurons.153,155 To better clarify the role of ε-sarcoglycan in
different brain structures, paternally inherited striatum- and
cerebellum-specific SGCE-conditional knockout mice were
raised, neither of them exhibiting myoclonus or abnormal
nuclear envelopes.154,156 Taken together, these findings
suggest that in SGCE-MD animal models, the loss of
ε-sarcoglycan function in the striatum and the cerebellar
Purkinje cells per se does not contribute either tomyoclonus
or to nuclear envelope abnormalities.157

The Dystrophin-Associated Glycoprotein
Complex in Muscle and Brain: Different or

Same Role?
In striated muscles the 4 sarcoglycan proteins, α, β, γ,

and δ, form the heterotetrameric subcomplex called the
sarcoglycan complex (SGC),145 which together with the
α- and β-dystroglycans and the cytoplasmic subcomplex
of dystrophin, dystrobrevins, and the syntrophin protein
family,158 composes the dystrophin-associated glycopro-
tein complex (DGC),145 whose function is to protect mus-
cle from mechanical damage and maintain physiological
calcium homeostasis (Fig. 1A).159 The sarcoglycanopathy
hypothesis in striated muscles is that the loss of a member
of the SGC should reduce the amount of the other mem-
bers and affect the stability of the whole complex.160

Thus, the SGC members are functional only when they
exist as a tetramer,161 and based on this hypothesis, muta-
tions in genes encoding for one of the SGC members lead

FIG. 1. Models depicting DGC in skeletal muscles and prototypical DGC-like complex in brian. Legend – This figure shows the structural similarities
between DGC in skeletal muscles and brain. (A) Skeletal muscles: the SGC, composed by the tetramer αβγδ, reinforces the bolt composed by dystro-
phin, ß-DG, and α-DG. These components connect actin filaments in the subsarcolemmal cytoskeletal network and lamininin the basal lamina.
(B) Brain: ε-sarcoglycan, other members of the sarcoglycan proteins family (βδζ) and dystrophin Dp71, copurify in the brain, where they may compose
a specific neuronal DGC-like complex. Hypothetical additional components of the neuronal DGC-like complex, such as dystrobrevins, syntrophins and
the α-dystroglycan-neurexin complex, are represented with dashed lines or chequered fills. Despite the structural similarities, the DGC complexes in
skeletal muscles and brain seem to function in a different way, and SGCE-MD represents an interesting disease model to gain further insight about nor-
mal and pathological function of DGC in brain. DG: dystroglycan; DGC: dystrophin-associated glycoprotein complex. [Color figure can be viewed at
wileyonlinelibrary.com]

Movement Disorders, 2019 5

M Y O C L O N U S - D Y S T O N I A A N D Ε- S A R C O G L Y C A N



to different forms of recessively inherited limb-girdle mus-
cular dystrophies (LGMDs).162

The existence of DGC-like complexes in the brain has
been demonstrated by immunochemical approaches.159,163

Furthermore, a prototypical DGC-like complex has been
recently purified from brain tissue by immunoaffinity chro-
matography and mass spectrometry164: ubiquitous and
brain-specific exon 11b ε-sarcoglycan isoforms seem to
form a canonical DGC-associated sarcoglycan complex in
brain because they copurify with other components of
DGC, such as β-, δ-, and ζ-sarcoglycan, β-dystroglycan,
and dystrophin Dp71, which is the most abundant prod-
uct of the Duchenne muscular dystrophy (DMD) gene
expressed in brain, found in both neurons and glia.165 In
hypothetical models, additional components such as the
dystrobrevins, syntrophins, α-dystroglycan, and the synap-
tic adhesion molecule neurexin, might be part of the
DGC-like complex in neurons (Fig. 1B).159 Thus, SGCE-MD
could be the expression of DGC dysfunction in brain,164

the same as LGMDs are the result of DGC dysfunction in
skeletal muscle. However, the role of ε-sarcoglycan pro-
tein is crucially different in the brain and in peripheral tis-
sues, as (1) ε-sarcoglycan seems to traffic and function
independently of the core sarcoglycan complex (the βγ) in
brain,164 contrary to skeletal muscles,166 and (2) the loss
of ε-sarcoglycan did not affect other sarcoglycans’ levels
in the striatum of Sgce-KO mice, suggesting that the clas-
sic sarcoglycanopathy hypothesis is not valid for DGC in
brain.154 Therefore, the current evidence seems to sug-
gest that whatever structure exists in the brain is funda-
mentally different from that seen in muscular tissues, and
further significant work is required to fully elucidate the
structure of DGC in the brain.

Beyond SGCE-Myoclonus Dystonia
Distinct Movement Disorders Occasionally

Mimicking Myoclonus-Dystonia
Clinical features mimicking myoclonus-dystonia have

been occasionally reported in genetic conditions that
are usually characterized by different, well-defined clinical
presentations. These include, for instance, some primary
dystonia syndromes such as those associated with GNAL
or ANO3 mutations or the pediatric hyperkinetic disor-
ders caused by NKX2-1 or ADCY5 mutations. Albeit
rare, it is important to be aware of these potential pheno-
typic overlaps, as a genetic diagnosis may have relevant
implications for counseling and treatment.
A similar situation may occur with dopa-responsive

dystonia syndromes. Heterozygous mutations in the GTP
cyclohydrolase I gene (DYT/PARK-GCH1, DYT5a;OMIM
128230), the commonest cause of autosomal-dominant
dopa-responsive dystonia,167 have been reported with
early onset of myoclonic jerks and dystonia responsive to
levodopa.168Mutations in the tyrosine hydroxylase gene,

a rare cause of autosomal-recessive dopa-responsive dys-
tonia (DYT/PARK-TH, DYT5b; OMIM 191290),169

have also been related to an unusual phenotype of early
onset of hypotonia, followed by the development of
severe myoclonus and dystonia.170 Despite being rarely
reported, we would recommend including dopamine syn-
thesis pathway disorders in the differential diagnosis of
early-onset myoclonus and dystonia, considering that
these disorders are treatable.
A summary of distinct conditions occasionally mim-

icking SGCE-MD168,170-176 is reported in Table 2.

Novel Genes Associated With
Myoclonus-Dystonia Syndromes

The quest for novel genes causative of myoclonus-
dystonia phenotypes in SGCE-negative patients has been
going on for a long time, yet only a few candidate genes
have been reported to date, with confirmation in addi-
tional families often lacking. Here, we have reviewed the
available evidence regarding clinical and genetic features
of novel myoclonus-dystonia syndromes and discuss the
underlying disease mechanisms and involved pathways.
The main features of these conditions are summarised in
Supplementary Table 3.
Mutations in the KCTD17 gene (potassium channel

tetramerization domain-containing 17, OMIM 616386)
have been detected in SGCE-negative myoclonus-dystonia
patients, with predominant craniocervical and speech
involvement.177 A dominantly inherited missense variant
(c.434G>A, p.R145H) was identified in a British and then
unrelated German family. Treatment with bilateral GPi
DBS resulted in marked improvement in cervical dystonia
and upper limb myoclonus in 1 patient. KCDT17 encodes
for 1 of the 26 members of a family of highly conserved
proteins with different functions such as transcriptional
repression, cytoskeleton regulation, gating of ion channels,
protein degradation via the ubiquitin-proteasome system,
and regulation of G protein–coupled receptors.178 In the
normal adult brain, KCDT17 expression is highest in the
putamen, where it is probably involved in the regulation of
dopaminergic transmission.177 Functional studies on fibro-
blasts bearing the p.R145H variant showed that KCDT17
might have a significant impact on intracellular endoplas-
mic reticulum (ER) calcium homeostasis, suggesting that
defective ER calcium signaling might represent the patho-
genic mechanism involved.177

A heterozygous missense variant (c.4166G>A;
p.R1389H) in the CACNA1B gene (calcium channel,
voltage-dependent, N-type, alpha-1B subunit, OMIM
601012), transmitted in an autosomal-dominant manner,
has been reported in a Dutch pedigree presenting with
myoclonus, dystonia and some atypical characteristics such
as high-frequency orthostatic myoclonus, cardiac arrhyth-
mias, and attacks of painful cramps in the 4 limbs.179,180

Because the clinical presentation pointed to a possible
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channelopathy, the p.R1389H variant was initially consid-
ered as likely pathogenic.180 However, this variant was
not identified in a large European multicenter cohort of
SGCE-negative familial cases of myoclonus-dystonia, and
its overall frequency was comparable between myoclonus-
dystonia cases and controls181; therefore, the pathogenic
role of this variant is questionable. The CACNA1B gene
encodes for themain pore-forming alpha-1 subunit of a pre-
synaptic neuronal voltage-gated calcium channel complex,
Cav2.2, which underlies N-type current in neurons.182 Pref-
erentially located at nerve terminals, the N-type channel
plays a critical role in controlling transmitter release,183 like
dopamine in particular in the neostriatum.184 The missense
variant found byGroen and colleagues is located in a region
essential for calcium conductivity, and cells expressing the
mutated channel showed increased calcium current through
Cav2.2.

180 This increased calcium influx is likely to affect
synaptic activity and release of neurotransmitters.185

Heterozygousmissense variants inRELN (reelin, OMIM
600514) have been detected in 3 families with a autosomal-
dominant pattern of inheritance and 2 sporadic patients,

presenting with a phenotype very similar to SGCE-MD.186

Reelin is a critical extracellular matrix glycoprotein,
encoded by theRELN gene on chromosome 7q22.1.187,188

In the prenatal period, reelin is mainly secreted by the Cajal-
Retzius cells in the telencephalic marginal zone and granule
cells of the external granular layer of the cerebellum,189,190

in which it plays a key regulator role in laminar formation,
neuronal migration, cell aggregation (by controlling cell
adhesion molecules such as N-cadherin), dendrite develop-
ment, and synaptic plasticity,191 and reelin-deficient mice
show largely inverted cortical layers and cerebellar hypopla-
sia.187,191 The distribution and expression of reelin dramati-
cally change in the postnatal period, when the main source
of reelin becomes a subpopulation of inhibitory GABAergic
interneurons,192 suggesting a different role of reelin in the
adult brain likemodulation of synaptic function.191,193

In summary, the adoption of techniques such as large
next-generation sequencing-based genetic panels and
whole-exome sequencing has widely expanded the list
of genetic causes of myoclonus-dystonia syndromes
beyond SGCE. Although the value of these new

FIG. 2. A clinical-approached algorithm to differentiate the clinical spectrum of myoclonus-dystonia. Legend – In the era of genetic panels, addressing the
genetic testing to a single gene has become less essential, and gene panels or WES are recommended if applicable. However, the explosive growth in the num-
ber of WES studies has led to the discovery of thousands of genetic variants and verifying the consistency between a genetic variant and a specific phenotype is
necessary. The proposed algorithm can be a guide to differentiate the clinical spectrum of myoclonus-dystonia and focus on the most relevant genes in case of
identified variants in multiple genes, thus leading the clinicians in the correct interpretation of genetic results.ULs: upper limbs; ID: intellectual disability; #: uncer-
tain pathogenicity: *: no specific test corresponding tot his locus (WES is recommended). [Color figure can be viewed at wileyonlinelibrary.com]
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techniques sometimes reduces the need to prioritize
genetic testing, we believe that having a kind of prioriti-
zation in mind can be extremely useful to ease the inter-
pretation of the many variants that often emerge from
these studies. For this purpose, we propose a clinically
oriented algorithm that may help clinicians to differen-
tiate the wide clinical spectrum of myoclonus-dystonia
and myoclonus-dystonia syndromes and to help the
interpretation of genetic results (Fig. 2).

Novel Pathogenic Hypotheses
in SGCE-MD

SGCE-MD: a Neurodevelopment Disorder?
The view of SGCE-MD as a neurodevelopment disorder

is supported by the nature of the SGCE gene itself. In fact,
SGCE is a maternally imprinted gene,122 whose product is
highly expressed in embryonic tissues.147 Imprinted genes
are vulnerable loci, widely and highly expressed during pre-
natal stages when they are involved in multiple develop-
mental and growth processes194 and whose mutations lead
to severe development defects.195 Thus, the hypothesis of
imprinting defects of SGCE during neurodevelopment as
a cause of SGCE-MD might be captivating. In addition,
for some types of inherited dystonia, it has been proposed
that abnormalities in resting brain function, pathway
microstructure, sensorimotor network activity, and mod-
ulation of abnormal network activity by treatment such
as DBS, overall create a paradigm for interpreting dysto-
nia as a potential neurodevelopmental circuit disor-
der.196 In the past years, convincing evidence supporting
an abnormal neural network mainly involving the

cerebellum, brain stem, and basal ganglia has accumulated
for SGCE-MD,55,73,82,85,89,96,110,197-199 thus suggesting
that SGCE-MDmight be considered a neurodevelopmental
circuit disorder, too. The main results of the studies
supporting this hypothesis are shown in Figure 3.

SGCE-MD: Abnormal Signaling and Calcium
Homeostasis Dysfunction?

As the presence of a prototypical DGC has been dem-
onstrated in the brain,164 it is plausible to assume that
SGCE-MD may be related to DGC dysfunction. It is well
known that in DMD the absence of dystrophin leads to
increased activity of calcium channels in neurons.200 As
ε-sarcoglycan copurifies with dystrophin in brain,164 we
might speculate that the loss of ε-sarcoglycan could
induce neuronal membrane damage via secondary dystro-
phin dysfunction, leading to calcium accumulation. This
hypothesis is further supported by the evidence that cal-
cium signaling is crucial in regulating D2R responses
induced by high-dopaminergic states,201,202 and increased
striatal dopamine level and reduced D2R expression have
been found in SGCE-MD animal models153,155 and in a
group of SGCE carriers, mostly affected.203 Hence,
impaired dopaminergic metabolism because of abnormal
calcium homeostasis might represent a possible patho-
genic mechanism in SGCE-MD.

Conclusions and Outlook

In the present review, we have given a comprehensive
update on SGCE-MD and then presented the range of
genetic causes associated with myoclonus-dystonia

FIG. 3. The abnormal neural network in SGCE-MD. Legend – This figure summarizes the amount of evidence supporting the presence of an abnormal
neural network involving different and interconnected brain regions in SGCE-MD. Overall, functional imaging and neurophysiological studies, together
with the good response of motor signs (both myoclonus and dystonia) to DBS, suggest the presence of cerebellar, thalamic and pallidal abnormalities.
This multilevel dysfunction can support the view of SGCE-MD as a neurodevelopmental circuit disorder. LFP: local field potential; WM: white matter.
[Color figure can be viewed at wileyonlinelibrary.com]
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syndromes; different mechanisms ranging from abnormal-
ity in calcium signaling, dopamine regulation, to neuro-
development are involved in the pathophysiology of these
syndromes. Despite these findings requiring further confir-
mation in additional families and some of the reported
variants having a questionable pathogenic role, we think
that they represent an interesting clue toward understand-
ing SGCE pathophysiology. There is evidence that SGCE
pathogenic variants might affect dopaminergic transmis-
sion because of defective calcium signaling and that
SGCE may be crucial for neurodevelopment in different
brain structures. However, key questions remain, such as:
(1) what differentiates the functioning of ε-sarcoglycan in
the CNS and other tissues; (2) if SGCE has a pleiotropic
function in the CNS beyond the motor system and is
therefore directly responsible for psychiatric symptomatol-
ogy; and (3) if there is a CNS brain region that is primar-
ily involved in the pathogenesis of SGCE-MD. Future
studies may address these questions, thus identifying spe-
cific therapeutic targets and paving the way for better
future therapies.
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