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The tumor lysis syndrome is the most common disease-related 
emergency encountered by physicians caring for children or adults with 
hematologic cancers.1-4 Although it develops most often in patients with 

non-Hodgkin’s lymphoma or acute leukemia, its frequency is increasing among 
patients who have tumors that used to be only rarely associated with this compli-
cation.5-8 The tumor lysis syndrome occurs when tumor cells release their contents 
into the bloodstream, either spontaneously or in response to therapy, leading to 
the characteristic findings of hyperuricemia, hyperkalemia, hyperphosphatemia, 
and hypocalcemia.1-3 These electrolyte and metabolic disturbances can progress to 
clinical toxic effects, including renal insufficiency, cardiac arrhythmias, seizures, 
and death due to multiorgan failure.

Although optimal methods of risk classification and treatment have been dif-
ficult to define, uniform standards for management of the tumor lysis syndrome 
are beginning to evolve. Indeed, several groups have advocated guidelines for risk 
stratification and made recommendations for evaluating risk and for prophylactic 
therapy for the tumor lysis syndrome.2,9 This review of the tumor lysis syndrome 
summarizes current strategies for risk assessment, prophylaxis, and therapy. The 
following case illustrates the clinical challenges.

C a se r eport

An 8-year-old boy was referred to an otolaryngologist for tonsillectomy after several 
months of increased snoring, fatigue, sore throat, enlarged tonsils, and gradually 
increasing painless and nontender cervical lymphadenopathy. Two days before the 
scheduled procedure, his parents took him to the local emergency department after 
he had been unable to sleep because of congestion, sore throat, and difficulty breath-
ing. The physician in the emergency department documented nasal congestion, 
enlarged tonsils that touched in the midline, and significant anterior and posterior 
cervical adenopathy. Dexamethasone (4 mg) was administered intramuscularly, and 
loratadine was prescribed. During the next 36 hours, the patient’s congestion and 
breathing improved somewhat, but malaise developed and he vomited repeatedly. 
He returned to the emergency department, where he appeared ill and was found to 
be moderately dehydrated. Evaluation showed a white-cell count of 84,600 per cubic 
millimeter, with circulating lymphoblasts; a sodium level of 133 mmol per liter; 
potassium, 5.9 mmol per liter; bicarbonate, 16 mmol per liter; creatinine, 1.0 mg per 
deciliter (88.4 μmol per liter); phosphorus, 8.5 mg per deciliter (2.7 mmol per liter); 
calcium, 6.7 mg per deciliter (1.7 mmol per liter); uric acid, 12.3 mg per deciliter 
(732 μmol per liter); and lactate dehydrogenase, 4233 IU per liter. Chest radiography 
revealed a small mediastinal mass, and an electrocardiogram was normal. The pa-
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tient was given two boluses of normal saline 
(20 ml per kilogram of body weight), rasburicase 
(0.15 mg per kilogram), and 800 mg of aluminum 
hydroxide; intravenous fluids (2500 ml per square 
meter of body-surface area per day) were adminis-
tered, and he was transferred by ambulance to a 
tertiary care center, where he was admitted to the 
intensive care unit and T-cell acute lymphoblastic 
leukemia was diagnosed. His course was compli-
cated by oliguria, hyperphosphatemia (a peak of 
11.2 mg per deciliter [3.6 mmol per liter] of phos-
phorus, on day 3), an increased creatinine level (a 
peak of 3.8 mg per deciliter [318.2 μmol per liter], 
on day 5), and hypertension that resolved after 
2 months. He did not require dialysis, and more 
than 5 years after diagnosis, he remains in re-
mission.

Defini tion of the t umor lysis 
s y ndrome

In the current classification system of Cairo and 
Bishop,10 the tumor lysis syndrome can be classi-
fied as laboratory or clinical (Table 1). Laboratory 
tumor lysis syndrome requires that two or more of 
the following metabolic abnormalities occur with-
in 3 days before or up to 7 days after the initiation 
of therapy: hyperuricemia, hyperkalemia, hyper-
phosphatemia, and hypocalcemia. Clinical tumor 
lysis syndrome is present when laboratory tumor 
lysis syndrome is accompanied by an increased 
creatinine level, seizures, cardiac dysrhythmia, or 
death. A few refinements could improve this clas-
sification. First, it should be stipulated that two or 
more metabolic abnormalities be present simulta-
neously, because some patients may present with 
one abnormality, but later another one may devel-
op that is unrelated to the tumor lysis syndrome 
(e.g., hypocalcemia associated with sepsis). Sec-
ond, in contrast to Cairo and Bishop’s definition, 
a 25% change from baseline should not be consid-
ered a criterion, since such increases are rarely 
clinically important unless the value is already out-
side the normal range. Third, any symptomatic 
hypocalcemia should constitute clinical tumor lysis 
syndrome. Our patient met the criteria for labora-
tory tumor lysis syndrome when he returned to the 
emergency department, and he met the criteria for 
clinical tumor lysis syndrome the next day, when 
his creatinine level increased from 1.0 mg per deci-
liter to 2.1 mg per deciliter (185.6 μmol per liter).

Pathoph ysiol o gy

When cancer cells lyse, they release potassium, 
phosphorus, and nucleic acids, which are metab-
olized into hypoxanthine, then xanthine, and fi-
nally uric acid, an end product in humans (Fig. 1).12 
Hyperkalemia can cause serious — and occasion-
ally fatal — dysrhythmias. Hyperphosphatemia can 
cause secondary hypocalcemia, leading to neuro-
muscular irritability (tetany), dysrhythmia, and 
seizure, and can also precipitate as calcium phos-
phate crystals in various organs (e.g., the kidneys, 
where these crystals can cause acute kidney inju-
ry).13 Uric acid can induce acute kidney injury not 
only by intrarenal crystallization but also by crys-
tal-independent mechanisms, such as renal vaso-
constriction, impaired autoregulation, decreased 
renal blood flow, oxidation, and inflammation.14-16 
Tumor lysis also releases cytokines that cause a 
systemic inflammatory response syndrome and 
often multiorgan failure.17-19

The tumor lysis syndrome occurs when more 
potassium, phosphorus, nucleic acids, and cyto-
kines are released during cell lysis than the body’s 
homeostatic mechanisms can deal with. Renal ex-
cretion is the primary means of clearing urate, 
xanthine, and phosphate, which can precipitate 
in any part of the renal collecting system. The 
ability of kidneys to excrete these solutes makes 
clinical tumor lysis syndrome unlikely without the 
previous development of nephropathy and a con-
sequent inability to excrete solutes quickly enough 
to cope with the metabolic load.

Crystal-induced tissue injury occurs in the tu-
mor lysis syndrome when calcium phosphate, uric 
acid, and xanthine precipitate in renal tubules and 
cause inflammation and obstruction (Fig. 2).20,23 
A high level of solutes, low solubility, slow urine 
flow, and high levels of cocrystallizing substanc-
es favor crystal formation and increase the sever-
ity of the tumor lysis syndrome.24-26 High levels 
of both uric acid and phosphate render patients 
with the tumor lysis syndrome at particularly high 
risk for crystal-associated acute kidney injury, 
because uric acid precipitates readily in the pres-
ence of calcium phosphate, and calcium phosphate 
precipitates readily in the presence of uric acid. 
Also, higher urine pH increases the solubility of 
uric acid but decreases that of calcium phosphate. 
In patients treated with allopurinol, the accumu-
lation of xanthine, which is a precursor of uric 
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acid and has low solubility regardless of urine pH, 
can lead to xanthine nephropathy or urolithiasis 
(Fig. 1).20,27

Calcium phosphate can precipitate throughout 
the body (Fig. 2). The risk of ectopic calcification 
is particularly high among patients who receive 
intravenous calcium.13 When calcium phosphate 
precipitates in the cardiac conducting system, 
serious, possibly fatal, dysrhythmias can occur. 
Acute kidney injury developed in our patient as 
a result of the precipitation of uric acid crystals 
and calcium phosphate crystals and was exacer-
bated by dehydration and acidosis that developed 
because the tumor lysis syndrome had not been 
suspected and no supportive care was provided.

Epidemiol o gy

The incidence and severity of the tumor lysis syn-
drome depend on the cancer mass, the potential 
for lysis of tumor cells, the characteristics of the 
patient, and supportive care (Table 2). The vari-

ability of patient cohorts and lack of standard cri-
teria have contributed to a wide range of reported 
incidences (see Table 1 in the Supplementary Ap-
pendix, available with the full text of this article 
at NEJM.org).28 The greater the cancer mass, the 
greater the quantity of cellular contents released 
after the administration of effective anticancer 
therapy. Cancers with a high potential for cell lysis 
include high-grade lymphomas, acute leukemias, 
and other rapidly proliferating tumors. However, 
the potential for cell lysis must be considered 
along with the effectiveness of therapy, as high-
lighted by a case of tumor lysis syndrome in an 
adult who died after treatment with cetuximab for 
metastatic colon carcinoma, a cancer in which the 
tumor lysis syndrome had not been previously re-
ported.5 Indeed, the tumor lysis syndrome in-
creasingly has been reported in patients with can-
cers that previously had been rarely associated 
with this complication, such as endometrial can-
cer, hepatocellular carcinoma, chronic lympho-
cytic leukemia, and chronic myelogenous leuke-

Table 1. Definitions of Laboratory and Clinical Tumor Lysis Syndrome.*

Metabolic
Abnormality

Criteria for Classification of Laboratory  
Tumor Lysis Syndrome

Criteria for Classification of Clinical  
Tumor Lysis Syndrome

Hyperuricemia Uric acid >8.0 mg/dl (475.8 μmol/liter)  
in adults or above the upper limit of the  
normal range for age in children

Hyperphosphatemia Phosphorus >4.5 mg/dl (1.5 mmol/liter)  
in adults or >6.5 mg/dl (2.1 mmol/liter)  
in children

Hyperkalemia Potassium >6.0 mmol/liter Cardiac dysrhythmia or sudden death probably 
or definitely caused by hyperkalemia

Hypocalcemia Corrected calcium <7.0 mg/dl (1.75 mmol/liter) 
or ionized calcium <1.12 (0.3 mmol/liter)†

Cardiac dysrhythmia, sudden death, seizure, 
neuromuscular irritability (tetany, pares-
thesias, muscle twitching, carpopedal 
spasm, Trousseau’s sign, Chvostek’s sign, 
laryngospasm, or bronchospasm), hypo-
tension, or heart failure probably or defi-
nitely caused by hypocalcemia

Acute kidney injury‡ Not applicable Increase in the serum creatinine level of  
0.3 mg/dl (26.5 μmol/liter) (or a single val-
ue >1.5 times the upper limit of the age-
appropriate normal range if no baseline 
creatinine measurement is available) or 
the presence of oliguria, defined as an  
average urine output of <0.5 ml/kg/hr  
for 6 hr

*	In laboratory tumor lysis syndrome, two or more metabolic abnormalities must be present during the same 24-hour  
period within 3 days before the start of therapy or up to 7 days afterward. Clinical tumor lysis syndrome requires the 
presence of laboratory tumor lysis syndrome plus an increased creatinine level, seizures, cardiac dysrhythmia, or death.

†	The corrected calcium level in milligrams per deciliter = measured calcium level in milligrams per deciliter + 0.8 × (4 − albumin 
in grams per deciliter).

‡	Acute kidney injury is defined as an increase in the creatinine level of at least 0.3 mg per deciliter (26.5 μmol per liter) 
or a period of oliguria lasting 6 hours or more. By definition, if acute kidney injury is present, the patient has clinical  
tumor lysis syndrome. Data about acute kidney injury are from Levin et al.11
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mia.5-8,29-32 Characteristics of patients that confer 
high risk include preexisting chronic renal insuf-
ficiency, oliguria, dehydration, hypotension, and 
acidic urine.

The adequacy of f luid management affects 
both the development and the severity of the tu-
mor lysis syndrome. Thus, disastrous cases of the 
tumor lysis syndrome occurred in patients with 
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Figure 1. Lysis of Tumor Cells and the Release of DNA, Phosphate, Potassium, and Cytokines.

The graduated cylinders shown in Panel A contain leukemic cells removed by leukapheresis from a patient with T-cell 
acute lymphoblastic leukemia and hyperleukocytosis (white-cell count, 365,000 per cubic millimeter). Each cylinder con-
tains straw-colored clear plasma at the top, a thick layer of white leukemic cells in the middle, and a thin layer of red 
cells at the bottom. The highly cellular nature of Burkitt’s lymphoma is evident in Panel B (Burkitt’s lymphoma of the 
appendix, hematoxylin and eosin). Lysis of cancer cells (Panel C) releases DNA, phosphate, potassium, and cytokines. 
DNA released from the lysed cells is metabolized into adenosine and guanosine, both of which are converted into xan-
thine. Xanthine is then oxidized by xanthine oxidase, leading to the production of uric acid, which is excreted by the kid-
neys. When the accumulation of phosphate, potassium, xanthine, or uric acid is more rapid than excretion, the tumor 
 lysis syndrome develops. Cytokines cause hypotension, inflammation, and acute kidney injury, which increase the risk 
for the tumor lysis syndrome. The bidirectional dashed line between acute kidney injury and tumor lysis syndrome indi-
cates that acute kidney injury increases the risk of the tumor lysis syndrome by reducing the ability of the kidneys to 
 excrete uric acid, xanthine, phosphate, and potassium. By the same token, development of the tumor lysis syndrome 
can cause acute kidney injury by renal precipitation of uric acid, xanthine, and calcium phosphate crystals and by crystal-
independent mechanisms. Allopurinol inhibits xanthine oxidase (Panel D) and prevents the conversion of hypoxanthine 
and xanthine into uric acid but does not remove existing uric acid. In contrast, rasburicase removes uric acid by enzymati-
cally degrading it into allantoin, a highly soluble product that has no known adverse effects on health.
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nonhematologic cancer who received effective 
anticancer treatment but no intravenous fluids 
or monitoring because the tumor lysis syndrome 
was not anticipated.5,32 In contrast, in many coun-
tries, patients with a bulky Burkitt’s lymphoma 
who have a high potential for lysis have a low risk 
of clinical tumor lysis syndrome because they 
routinely receive aggressive treatment with hydra-
tion and rasburicase, a recombinant urate oxidase 
enzyme that is a highly effective uricolytic agent 
(Table 1 in the Supplementary Appendix). Chil-
dren with Burkitt’s lymphoma who received ras-
buricase were a fifth as likely to undergo dialysis 
as those who received allopurinol, illustrating the 

dramatic difference that supportive care can 
make, even when other risk factors for the tumor 
lysis syndrome are the same.33 This was seen in 
the 8-year-old boy in the vignette.

R isk a ssessmen t

Acute kidney injury is associated with high mor-
bidity and mortality,34 and its prevention requires 
an awareness of the patient’s a priori risk of the 
tumor lysis syndrome and careful monitoring for 
early signs of it. Models that predict the risk of 
the tumor lysis syndrome have been developed for 
adults with acute myeloid leukemia35,36 and chil-

A B C

ED

2µm 100 µm

Figure 2. Crystals of Uric Acid, Calcium Phosphate, and Calcium Oxalate.

Crystallization of uric acid and calcium phosphate are the primary means of renal damage in the tumor lysis syndrome. 
The presence of crystals of one solute can promote crystallization of the other solutes. A scanning electron micrograph 
(Panel A) shows large uric acid crystals (arrowhead), which served as seeds for the formation of calcium oxalate crystals 
(arrows). Reprinted from Bouropoulos et al.21 with the permission of the publisher. In Panel B, a scanning electron micro-
graph shows numerous small calcium oxalate crystals (arrows) formed on larger uric acid crystals (arrowheads). Reprinted 
from Grases et al.22 with the permission of the publisher. The kidney shown in Panel C was examined at the autopsy of 
a 4-year-old boy who had high-grade non-Hodgkin’s lymphoma and died of acute tumor lysis syndrome. Linear yellow 
streaks of precipitated uric acid in the renal medulla are shown in the left panel (arrows); a single tubule containing a 
uric acid crystal (arrowhead) is shown in the right panel. Reprinted from Howard et al.13 with the permission of the 
publisher. In Panel D, in the normal kidney on the left, the medullary pyramids are visible deep in the kidney (arrow-
heads) and are surrounded by the renal cortex (arrows), which is darker than the collecting system and adjacent liver. 
The ultrasonographic image on the right shows a kidney from a patient with the tumor lysis syndrome, in which there 
is loss of the normal corticomedullary differentiation (arrowheads) and poor visualization of the renal pyramids. The 
brightness is similar to that of the adjacent liver (arrows), and the kidney is abnormally enlarged. Soft-tissue calcification 
of the dorsum of the distal forearm (Panel E) occurred in a 15-year-old boy with acute lymphoblastic leukemia and an 
initial white-cell count of 283,000 per cubic millimeter in whom tumor lysis syndrome, hyperphosphatemia, and symp-
tomatic hypocalcemia developed. Several weeks after the treatment of hypocalcemia with multiple doses of intravenous 
calcium carbonate administered by means of a peripheral intravenous catheter in the dorsum of the hand, ectopic calci-
fication was confirmed radiographically (arrows). Reprinted from Howard et al.13 with the permission of the publisher.
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dren with acute lymphoblastic leukemia37 treated 
with hydration and allopurinol (but not rasburi-
case). These models lack a standard definition of 
the tumor lysis syndrome, use different primary 
end points (i.e., either clinical tumor lysis syn-
drome or any type of the tumor lysis syndrome), 
lack standardized supportive care guidelines, and 
have complex scoring systems. Experts have is-
sued management guidelines for the tumor lysis 
syndrome,2,9,38 but further guidance awaits sim-
ple risk-prediction models that have a standard-
ized definition of the tumor lysis syndrome and 
uniform supportive care guidelines for each can-
cer type.28 We present a practical approach for 
clinicians (Fig. 3, and Table 2 in the Supplemen-
tary Appendix).

M a nagemen t

Optimal management of the tumor lysis syndrome 
should involve preservation of renal function. Man-
agement should also include prevention of dys-
rhythmias and neuromuscular irritability (Fig. 3).

Prevention of acute kidney injury

All patients who are at risk for the tumor lysis 
syndrome should receive intravenous hydration 
to rapidly improve renal perfusion and glomeru-
lar filtration and to minimize acidosis (which 
lowers urine pH and promotes the precipitation 
of uric acid crystals) and oliguria (an ominous 
sign). This is usually accomplished with hyper-
hydration by means of intravenous fluids (2500 
to 3000 ml per square meter per day in the pa-
tients at highest risk). Hydration is the preferred 
method of increasing urine output, but diuretics 
may also be necessary. In a study involving a rat 
model of urate nephropathy with elevated serum 
uric acid levels induced by continuous intrave-
nous infusion of high doses of uric acid, high 
urine output due to treatment with high-dose fu-
rosemide or congenital diabetes insipidus (in the 
group of mice with this genetic modification) 
protected the kidneys equally well, whereas acet-
azolamide (mild diuresis) and bicarbonate pro-
vided only moderate renal protection (no more 
than a low dose of furosemide without bicarbon-
ate).39 Hence, in patients whose urine output re-
mains low after achieving an optimal state of 
hydration, we recommend the use of a loop di-
uretic agent (e.g., furosemide) to promote diure-
sis, with a target urine output of at least 2 ml per 
kilogram per hour.

Reducing the level of uric acid, with the use 
of allopurinol and particularly with the use of 
rasburicase, can preserve or improve renal func-
tion and reduce serum phosphorus levels as a 
secondary beneficial effect.40 Although allopuri-
nol prevents the formation of uric acid, existing 
uric acid must still be excreted. The level of uric 
acid may take 2 days or more to decrease, a delay 
that allows urate nephropathy to develop (Fig. 1b 
in the Supplementary Appendix). Moreover, despite 
treatment with allopurinol, xanthine may accu-
mulate, resulting in xanthine nephropathy.13,20,27 
Since the serum xanthine level is not routinely 
measured, its effect on the development of acute 
kidney injury is uncertain. By preventing xanthine 
accumulation and by directly breaking down uric 
acid, rasburicase is more effective than allopuri-
nol for the prevention and treatment of the tu-
mor lysis syndrome. In a randomized study of 
the use of allopurinol versus rasburicase for pa-
tients at risk for the tumor lysis syndrome, the 
mean serum phosphorus level peaked at 7.1 mg 
per deciliter (2.3 mmol per liter) in the rasburi-
case group (and mean uric acid levels decreased 
by 86%, to 1 mg per deciliter [59.5 μmol per liter] 
at 4 hours) as compared with 10.3 mg per decili-

Figure 3 (facing page). Assessment and Initial 
Management of the Tumor Lysis Syndrome.

This algorithm presents a guide to care at the time of 
patient presentation. Subsequent care depends on 
how the patient progresses. The tumor lysis syndrome 
unexpectedly develops in some patients who are at low 
risk, and they require more aggressive treatment, and 
some high-risk patients have no evidence of the tumor 
lysis syndrome after a few days of treatment and need 
less intensive care after the initial period. Assessment 
of risk factors for the tumor lysis syndrome requires 
clinical judgment. It may not always be clear whether 
mild or transient dehydration should count, whether a 
cancer mass is medium or large, or whether the poten-
tial for cell lysis of a particular cancer with a particular 
treatment is medium or high. In equivocal cases, other 
criteria can be useful to clarify the degree of risk: an el-
evated lactate dehydrogenase level (>2 times the upper 
limit of the normal range) and an elevated uric acid 
level at presentation are associated with an increased 
risk of the tumor lysis syndrome and can be used to 
help classify borderline cases into a suitable risk group. 
If it is difficult to distinguish between two categories, 
treat the patient as if he or she is in the higher-risk cat-
egory. Because the algorithm presented is designed for 
use by both oncologists and non-oncologists, a con-
servative approach is presented to maximize safety. 
“Bulky tumor” includes the tumor mass from meta-
static lesions. TLS denotes tumor lysis syndrome.
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ter (3.3 mmol per liter) in the allopurinol group 
(and mean uric acid levels decreased by 12%, to 
5.7 mg per deciliter [339.0 μmol per liter] at 48 
hours).41,42 The serum creatinine level improved 
(decreased) by 31% in the rasburicase group but 
worsened (increased) by 12% in the allopurinol 
group. Pui and colleagues40 documented no in-

creases in phosphorus levels and decreases in 
creatinine levels among 131 patients who were at 
high risk for the tumor lysis syndrome and were 
treated with rasburicase. Finally, in a multicenter 
study involving pediatric patients with advanced-
stage Burkitt’s lymphoma, in which all patients 
received identical treatment with chemotherapy 

≤1 Abnormal value ≥2 Abnormal values
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and aggressive hydration, the tumor lysis syn-
drome occurred in 9% of 98 patients in France 
(who received rasburicase) as compared with 26% 
of 101 patients in the United States (who received 
allopurinol) (P = 0.002).33 Dialysis was required in 
only 3% of the French patients but 15% of the 
patients in the United States (P = 0.004). At the 
time of the study, rasburicase was not available in 
the United States.

Urinary alkalinization increases uric acid solu-
bility but decreases calcium phosphate solubil-
ity (Fig. 1a in the Supplementary Appendix). 
Because it is more difficult to correct hyper-
phosphatemia than hyperuricemia, urinary al-
kalinization should be avoided in patients with 
the tumor lysis syndrome, especially when ras-
buricase is available.13 Whether urine alkalini-
zation prevents or reduces the risk of acute kid-
ney injury in patients without access to rasburicase 
is unknown, but the animal model of urate ne-
phropathy suggested no benefit.39 If alkaliniza-
tion is used, it should be discontinued when hy-
perphosphatemia develops. In patients treated 
with rasburicase, blood samples for the measure-
ment of the uric acid level must be placed on ice 
to prevent ex vivo breakdown of uric acid by ras-
buricase and thus a spuriously low level. Patients 
with glucose-6-phosphate dehydrogenase deficien-
cy should avoid rasburicase because hydrogen per-
oxide, a breakdown product of uric acid, can cause 
methemoglobinemia and, in severe cases, hemo-
lytic anemia.43,44 Rasburicase is recommended as 
first-line treatment for patients who are at high 
risk for clinical tumor lysis syndrome.9 Because of 
cost considerations and pending pharmacoeco-
nomic studies, no consensus has been reached on 
rasburicase use in patients who are at intermediate 
risk for the tumor lysis syndrome; some have ad-
vocated use of a small dose of rasburicase in such 
patients.45,46 Patients who are at low risk can usu-
ally be treated with intravenous fluids with or 
without allopurinol, but they should be monitored 
daily for signs of the tumor lysis syndrome.

Prevention of cardiac dysrhythmias 
and neuromuscular irritability

Hyperkalemia remains the most dangerous com-
ponent of the tumor lysis syndrome because it can 
cause sudden death due to cardiac dysrhythmia. 
Patients should limit potassium and phosphorus 
intake during the risk period for the tumor lysis 
syndrome.47 Frequent measurement of potassium 

levels (every 4 to 6 hours), continuous cardiac 
monitoring, and the administration of oral sodi-
um polystyrene sulfonate are recommended in 
patients with the tumor lysis syndrome and acute 
kidney injury. Hemodialysis and hemofiltration 
effectively remove potassium. Glucose plus insu-
lin or beta-agonists can be used as temporizing 
measures, and calcium gluconate may be used to 
reduce the risk of dysrhythmia while awaiting 
hemodialysis.

Hypocalcemia can also lead to life-threatening 
dysrhythmias and neuromuscular irritability; con-
trolling the serum phosphorus level may prevent 
hypocalcemia. Symptomatic hypocalcemia should 
be treated with calcium at the lowest dose re-
quired to relieve symptoms, since the administra-
tion of excessive calcium increases the calcium–
phosphate product and the rate of calcium 
phosphate crystallization, particularly if the prod-
uct is greater than 60 mg2 per square deciliter 
(Fig. 2D and 2E). Hypocalcemia not accompanied 
by signs or symptoms does not require treatment. 
Despite the lack of studies that show the efficacy 
of phosphate binders in patients with the tumor 
lysis syndrome, this treatment is typically given. 
The role of renal phosphate leak in renal lithiasis 
and the use of phosphate binders have recently 
been reviewed in the Journal.48,49

Management of severe acute kidney injury

Despite optimal care, severe acute kidney injury 
develops in some patients and requires renal re-
placement therapy (Table 3 in the Supplementary 
Appendix). Although the indications for renal-
replacement therapy in patients with the tumor 
lysis syndrome are similar to those in patients with 
other causes of acute kidney injury, somewhat 
lower thresholds are used for patients with the 
tumor lysis syndrome because of potentially rapid 
potassium release and accumulation, particularly 
in patients with oliguria. In patients with the tu-
mor lysis syndrome, hyperphosphatemia-induced 
symptomatic hypocalcemia may also warrant di-
alysis. Phosphate removal increases as treatment 
time increases, which has led some to advocate 
the use of continuous renal-replacement therapies 
in patients with the tumor lysis syndrome, includ-
ing continuous venovenous hemofiltration, con-
tinuous venovenous hemodialysis, or continuous 
venovenous hemodiafiltration.50 These methods 
of dialysis use filters with a larger pore size, which 
allows more rapid clearance of molecules that are 
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not efficiently removed by conventional hemodi-
alysis (Table 3 in the Supplementary Appendix). 
One study that compared phosphate levels among 
adults who had acute kidney injury that was treat-
ed with either conventional hemodialysis or con-
tinuous venovenous hemodiafiltration showed that 
continuous venovenous hemodiafiltration more ef-
fectively reduced phosphate.51 Much less is known 
about the dialytic clearance of uric acid, but in 
countries where rasburicase is available, hyperuri-
cemia is seldom an indication for dialysis.40,44,52 
In our patient, once the tumor lysis syndrome was 
identified, treatment with intravenous f luids, 
phosphate binders, and rasburicase prevented 
the need for dialysis. Despite a potassium level 
of 5.9 mmol per liter, he had no dysrhythmia or 
changes on electrocardiography, but had he pre-
sented 1 day later, the tumor lysis syndrome may 
have proved fatal.

Monitoring

Urine output is the key factor to monitor in pa-
tients who are at risk for the tumor lysis syndrome 
and in those in whom the syndrome has devel-
oped. In patients whose risk of clinical tumor lysis 
syndrome is non-negligible, urine output and fluid 
balance should be recorded and assessed frequent-
ly. Patients at high risk should also receive inten-
sive nursing care with continuous cardiac monitor-
ing and the measurement of electrolytes, creatinine, 
and uric acid every 4 to 6 hours after the start of 
therapy. Those at intermediate risk should un-
dergo laboratory monitoring every 8 to 12 hours, 

and those at low risk should undergo such moni-
toring daily. Monitoring should continue over the 
entire period during which the patient is at risk 
for the tumor lysis syndrome, which depends on 
the therapeutic regimen. In a protocol for acute 
lymphoblastic leukemia, which featured up-front, 
single-agent methotrexate treatment,53 new-onset 
tumor lysis syndrome developed in some patients 
at day 6 or day 7 of remission-induction therapy 
(after the initiation of combination chemother-
apy with prednisone, vincristine, and daunoru-
bicin on day 5 and asparaginase on day 6).

Decreasing the rate of tumor lysis  
with a treatment prephase

Patients at high risk for the tumor lysis syndrome 
may also receive low-intensity initial therapy. Slow-
er lysis of the cancer cells allows renal homeo-
static mechanisms to clear metabolites before they 
accumulate and cause organ damage. This strate-
gy, in cases of advanced B-cell non-Hodgkin’s lym-
phoma or Burkitt’s leukemia, has involved treat-
ment with low-dose cyclophosphamide, vincristine, 
and prednisone for a week before the start of in-
tensive chemotherapy. Similarly, many groups sub-
scribe to a week of prednisone monotherapy for 
childhood acute lymphoblastic leukemia.
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