

Exploring and Manipulating the GAC Page 1 http://renouncedthoughts.wordpress.com

Exploring and Manipulating the GAC

Marudhamaran Gunasekaran

Contents
Introduction

Why would you care about GAC?

Settings Things Straight

Structure of the GAC

Stripping the GAC Naked?

Deploying Assemblies to the GAC

GAC changes in .Net framework 4.0

What now?

References and Further Reading

Introduction

 The Global Assembly Cache (GAC) is a repository that contains assemblies intended to be shared

across multiple applications on the running on the machine. This article focuses on the underlying

structure of the GAC, managing assemblies in the GAC, ways to dissect the GAC, the changes GAC went

through with .Net framework 4.0 and a bit of interesting things. The title might sound like the article’s

content is confined only to GAC; but to understand and work with the GAC we’d need a couple of other

relative concepts of the CLR, assembly, etc., and I will try to discuss them as and when required. Some of

the content is intended to provide an overview of the .Net framework intricacies and facts and basic

understanding of the .Net framework is required.

Why would you care about GAC?

 “Why would you care about GAC?” – You can ask yourself. The answer would be ‘I don’t really

care’ if you are writing a tool or library that does not want to expose its functionalities (types or

methods or...) to other applications or if you care about ‘simple application deployment’ via xcopy or

simple file copying via explorer. While having all referenced assemblies on the application’s base

directory (Privately deployed Assemblies) is a convenient way of deployment, when you build a class

library that’d be consumed across applications on a machine (Shared Assemblies), GAC is what you

Exploring and Manipulating the GAC Page 2 http://renouncedthoughts.wordpress.com

should be after. These two deployment types have their own pros and cons. So GAC is a special folder

(?) and a well known location to the CLR where you can install assemblies when you want it to be shared

by other applications on the machine. That’s when you should care about GAC. Otherwise, private

deployment is the way to go.

Setting Things Straight

 If there are any misconceptions (perhaps more!) about the .Net framework versions, the CLR

versions that shipped with it, the Base Class Library (BCL) versions, and the Visual Studio versions, lets

get’s things straight. This section briefs the key points that’d serve as a basis for the subsequent

sections. The below table summarizes the entities that we’d need to know before we move on. It’s not

required that you have to memorize it, pay attention to the .Net framework complete version and the

CLR version shipped with it. This could be your ready-reckoner throughout the article.

.Net fw Public
Version / Complete
Version Number

CLR Public Version
/ Complete
Version Number

Release Date Visual Studio
Version

Default in
Windows

1.0 / 1.0.3705.0 v1.0 / v1.0.3705 2002-02-13 Visual Studio .Net Windows XP
Tablet and Media
Center Editions

1.1 / 1.1.4322.573 v1.1 / v1.1.4322 2003-04-24 Visual Studio .Net
2003

Windows Server
2003

2.0 / 2.0.50727.42 v2.0 / v2.0.50727 2005-11-07 Visual Studio .Net
2005

Windows Server
2003 R2

3.0 / 3.0.4506.30 v2.0 / v2.0.50727 2006-11-06 - Windows Vista,
Windows Server
2008

3.5 / 3.5.21022.8 v2.0 / v2.0.50727 2007-11-19 Visual Studio .Net
2008

Windows 7,
Windows Server
2008 R2

4.0 / 4.0.30319.1 v4.0 / v4.0.30319 2010-04-12 Visual Studio .Net
2010

(May be Windows 8?)

 If someone needs more clarity on the beta version or the service pack versions, these links might

suffice the need.

List of .Net Framework Versions

What version of .Net framework is included in what version of the OS?

http://en.wikipedia.org/wiki/List_of_.NET_Framework_versions
http://blogs.msdn.com/b/astebner/archive/2007/03/14/mailbag-what-version-of-the-net-framework-is-included-in-what-version-of-the-os.aspx

Exploring and Manipulating the GAC Page 3 http://renouncedthoughts.wordpress.com

A few more:

 The CLR version shipped with the .Net framework might be the same or different compared to

the .Net framework version number (.Net fw v2.0, 3.0, 3.5  CLR v2.0; .Net fw v4.0  CLR

v4.0)

 The Base Class Library assembly version does not necessarily have to be same as the Net

framework version. While most of the BCLs are kept with their version numbers consistent with

the .Net framework version, some BCLs have a different version in comparison to the framework

version they shipped with.

 The physical location of the GAC in the file system is C:\Windows\assembly for .Net framework

versions 2.0, 3.0, and 3.5 (CLR v2.0)

 The physical location of the GAC in the file system is C:\Windows\Microsoft.NET\assembly for

.Net framework version 4.0 (CLR v4.0)

 GAC Viewer (shfusion.dll) which adorns the assembly folder and enables the drag and drop

installation of an assembly to the GAC is obsolete starting with .Net framework version 4.0.

 GacUtil.exe is the recommended tool to be used to install/uninstall assemblies to the GAC.

 Normally, an assembly file (foo.dll for instance) contains only one assembly in it, but you might

have multiple assemblies (and resource files) packed together in a single assembly file.

 The version information shown by Windows Explorer Properties dialog might not be the version

of the assembly.

Identify the versions of .Net framework installed on the machine:

 As we know that there could me multiple versions of the framework installed, here how you can

find the versions of the .Net framework installed on a machine.

1. Navigate to the folder C:\Windows\Microsoft.NET\Framework and get the list of frameworks

installed.

2. Alternatively, Navigate to the registry key HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET

Framework Setup\NDP and examine the sub keys under it.

Exploring and Manipulating the GAC Page 4 http://renouncedthoughts.wordpress.com

Here’s a snapshot of the .Net frameworks installed on a Windows Vista Enterprise sp2 and a Windows

Server 2008 R2.

Identify the versions of .Net framework installed on the machine:

 So, different versions of the .Net framework ship with same/different version of the CLR.

Targeting your assembly to the right framework version in Visual Studio (or using the right version of

csc.exe) is important, and that takes care of emitting the right CLR version for the target framework. We

will discuss how to examine the CLR version targeted by an assembly in the later part of the article.

 Now to view the versions of the CLR installed on a machine, launch a VS 2010 Command Prompt

Exploring and Manipulating the GAC Page 5 http://renouncedthoughts.wordpress.com

and type in clrver. Here’s a snapshot of the CLR versions installed on my Windows Vista Enterprise sp2.

Note: If you are using clrver in VS 2008 command prompt, then you won’t be able to see no later
versions of CLR than CLR v2.0. Using the right version of the VS tools and setting the right environment
variables (which the VS command prompt automatically takes care of) is important. Some of the VS tools
behave in a way that they shadow the newer versions (or they are incapable of being resilient to the
newer versions of the framework)

Structure of the GAC

 “GAC is a special folder” – Well, technically that’s a statement you’d probably disagree if you

understand the structure of the GAC. We’ve seen before that the physical path of the GAC is

C:\windows\assembly (for .Net fw 2.0, 3.0, and 3.5). Open a Command prompt and change the working

directory to C:\windows\assembly and try a dir. Here’s a screenshot of that.

 Looking at the screenshot above, it does not look like any special folder (like the windows

Exploring and Manipulating the GAC Page 6 http://renouncedthoughts.wordpress.com

explorer displays – when you navigate to C:\windows\assembly). Windows explorer has a special view

applied to this folder via the GAC viewer of the shfusion.dll. We will examine a couple of these

subdirectories.

 GAC – contains the .Net 1.x assemblies.

 GAC_32 – contains the assemblies built specifically for 32 bit Windows environment.

 GAC_64 – contains the assemblies built specifically for 64 bit Windows environment. (not in the

screenshot, you’d have to be in an x64 environment to see this folder)

 GAC_MSIL – contains the assemblies built CPU agnostic (they can run of both 32 & 64 bit

Windows environment.

 NativeImages__V#### - contains the native assemblies (Ngen-ed assemblies) targeting the

specific CLR version represented by ####.

That’s a bird’s eye view of how the assembly is compartmentalized. If you try to drill down a folder,

you’d see a folder with the <<assemblyname>>, further drilling down a folder, you’d see a folder with

the <<assemblyversion_publickeytoken>>, and then finally the assembly file. Here’s an example to view

the System.Data.dll assembly.

cd C:\windows\assembly\GAC_32\System.Data\2.0.0.0__b77a5c561934e089

dir

These folder structures are created for you dynamically when you use gacutil or msi (and of course

during the .Net framework installation). Creating a folder structure like this manually to install an

assembly is strictly not recommended. Instead you should use the dedicated tools. We will discuss this

in later sections.

Though the GAC is mapped to standard aforementioned folders, you have the flexibility to change the

default GAC location, if you that is requirement (and if you really want to do that).

Exploring and Manipulating the GAC Page 7 http://renouncedthoughts.wordpress.com

Note: If you have two companies developing different versions of foo.dll, obviously, they both can’t

reside on the same folder, one might get replaced by the other, breaking the application. Since

dedicated structures are created in the GAC for each assemblies, no two assemblies with same name

gets replaced (as long as they have different assembly name, version, culture, public key token

combination)

Stripping the GAC Naked?

 Now that we know that the GAC is just like any other folder in the file system, let’s look at the

techniques through which we can view it naked (just like a normal file/folder in windows explorer).

Sometimes we might want to copy an assembly from the GAC, or we might want to add a direct

reference to a GAC assembly for your project in VS (there are times at which you’d end up with an

assembly with no source code, and the only location you can find it is the GAC, and the VS ‘Add

Reference’ dialog box is not guaranteed to display all the assemblies deployed to the GAC either). That’s

why we might want to do this step (apart from a learning perspective).

 As I have mentioned earlier shfusion.dll is responsible for the GAC’s pretty face in explorer and that is

taken care by the desktop.ini file located at the same folder. Ok! That’s that, time to go to the flipside.

Rename the Desktop.ini file:

 Open a command prompt and type the following commands in order.

Now Navigate to C:\Windows\assembly via Windows Explorer and see if for yourself. Here’s a

screenshot.

cd C:\Windows\assembly

attrib desktop.ini -s -h –r

ren desktop.ini desktop.ini.bak

Exploring and Manipulating the GAC Page 8 http://renouncedthoughts.wordpress.com

To revert the changes, type the following commands in order

cd c:\windows\assembly

ren desktop.ini.bak desktop.ini

attrib desktop.ini +s +h +r

Use substitute command:

This is perhaps the easy way. Run the following commands in order and open my computer to view

another drive that’s been created (that’s reference the GAC folder).

Open a command prompt. Type in

subst z: c:\windows\assembly

 *Note: ‘z:’ should be a driver letter that is not currently used by any network shares or other

Drives/partitions. You can use any available drive letter]

To revert, type in

Exploring and Manipulating the GAC Page 9 http://renouncedthoughts.wordpress.com

subst /d z:

 This deletes the driver letter z: mapped to c:\windows\assembly

Unregister shfusion.dll

Unregister the shfusion.dll using regsvr32.

Start  Run  regsvr32 –u “C:\Windows\Microsoft.NET\Framework\v2.0.50727\

shfusion.dll”

To revert,

Start  run  regsvr32 –I “C:\Windows\Microsoft.NET\Framework\v2.0.50727\

shfusion.dll”

Edit registry:

Navigate to the registry (startRunregedit) key at

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Fusion and add a new DWORD named

DisableCacheViewer with the value set to 1

Note: Take a look at How to display an assembly in the "Add Reference" dialog box

Deploying Assemblies to the GAC

 Well, having understood the concepts above, we should be able to deploy an assembly to the

GAC. There are various techniques to achieve this. I’d discuss the two widely used and simple techniques

and leave the rest of them in the hyperlinks.

http://support.microsoft.com/default.aspx?scid=kb;en-us;306149

Exploring and Manipulating the GAC Page 10 http://renouncedthoughts.wordpress.com

Is your assembly Strongly named?

 Before we move on; “All assemblies that are meant for GAC deployment or assemblies that you

are building for a product should be strongly named which helps the CLR to uniquely identify an

assembly besides a couple of other verifications like checksum for tamper-resistance”.

 Strong naming an assembly means, you sign the assembly with a ‘public-private key pair’. There

are a couple of algorithms to generate this public-private key pair and the hash for ‘public key token’. All

you have to know at this point of time is that when you sign an assembly, the assembly gets embedded

with a ‘public-private key pair’, and then obtains a 64 bit hash of the public key which becomes the

public key token for that assembly. This process makes an assembly strong named. And the Assembly

Name, the Assembly Version, Assembly Culture, Assembly Public Key Token together uniquely

identifies the assembly.

 In VS, Right click on the Project properties, Hit signing  Sign the Assembly and select a key file

or generate a new key file. And when you build the project, the assembly in the project gets signed and

thus becomes strongly named.

 Sn.exe is responsible for generating the public-private key pair. You can manually generate an

public-private key pair and then sign the assembly using csc.exe.

Using GacUtil.exe

 First things first, Here’s how you use gacutil.

Gacutil –i “C:\Projects\Foo\bar.dll”

Gacutil –u “bar, Version=1.0.0.0, Culture=neutral, PublicKeyToken=b4567au8a2hu223”

Gacutil –L

As the above command line usage might sound obvious, let’s discuss it.

Gacutil –i “C:\Projects\Foo\bar.dll”  installs assembly named bar located at C:\Projects\Foo

Gacutil –u “bar, Version=1.0.0.0, Culture=neutral, PublicKeyToken=b4567au8a2hu223” 

uninstalls an assembly named bar having Version=1.0.0.0, Culture=neutral, and

PublicKeyToken=b4567au8a2hu223.

This is the way to uninstall an assembly from the GAC. If you just pass a partial name of the assembly

like gacutil –u bar, then that would uninstall all the assemblies matching the name bar irrespective of

the Version, Culture and PublicKeyToken. You don’t want that happening especially if you have multiple

versions of an assembly installed to the GAC.

 That’s the warm up. The above ways of deploying an assembly to the GAC would work

Exploring and Manipulating the GAC Page 11 http://renouncedthoughts.wordpress.com

beautifully if you have VS or the Windows SDK installed on the machine. Most of the times, the

production severs would not have VS, neither the Windows SDK. A couple of ways to handle this

scenario would be to provide an MSI that would install the assembly to GAC (perhaps doing other things

that you programmed the msi for) or you can copy the gacutil.exe from the Windows SDK’s/VS’s physical

location to the target production environment and use a batch file to invoke it. The important thing if

you resort to the later technique is to identify the right version of the gacutil.exe to use. We will discuss

that shortly.

One more guideline when you use gacutil in production environment is to specify the /r switch like

below

Gacutil -i -r bar.dll UNINSTALL_KEY FooBarApp "This is a FooBar Application"

The above statement associates the assembly ‘bar’ to the Windows Install and Uninstall Engine. It tells
the computer that ‘FooBarApp’ requires the assembly bar.dll.

Gacutil -i -r bar.dll FILEPATH “C:\Projects\Foo\barapp.exe” BarApp

Gacutil –i –r bar.dll FILEPATH “C:\Projects\GreeT\greet.exe” Greet

The above two commands associates the assembly ‘bar’ with the two applications named ‘BarApp’ And
‘Greet’ located at their respective locations.

Gacutil –u –r bar.dll FILEPATH “C:\Projects\GreeT\greet.exe” Greet

The above command removes the installer reference of Greet from bar.dll assembly. If there are
installer references for bar.dll assembly, then gacutil is faithful enough to not uninstall bar.dll from the
GAC, ensuring the other application that consume this bar.dll are not left broken. (If the above uninstall
command is executed and if that Greet was the last reference for that assembly bar.dll, then the
assembly is uninstalled from the GAC). More? Here Gacutil.exe

Using MSI:

 Let’s open up VS 2010. Create a new set up project, let’s name it GacInstaller. Right click the
GacInstaller project in the Solution Explorer and select View  File System.

 Right click on File System on Target Machine and select Add Special Folder  Global
Assembly Cache Folder.

 Right click on Global Assembly Cache Folder and select Add  Assembly.

 Here’s you are free to add any .Net assemblies (as long as they are strong named) targeted for
any version of .Net framework. The msi built eventually takes care of deploying them in the GAC (in their
respective folders – C:\Windows\assembly\GAC for CLR v1.1; C:\Windows\assembly\GAC_32 for CLR
v2.0 x86; C:\Windows\Microsoft.Net\assembly for CLR V4.0).

http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx

Exploring and Manipulating the GAC Page 12 http://renouncedthoughts.wordpress.com

 Once you are done adding the assemblies, build the GacInstaller project, fetch the MSI and try
installing it in any machine. If you want to check if the assemblies are successfully placed in the GAC,
open VS 2010 command prompt and run

gacutil –l

 (Or you can navigate to the above mentioned folders in command prompt or windows
explorer to view them)

 Remember, if you had to do this deployment of multiple assemblies targeting different CLR

versions via a batch file, then you have to identify the respective gacutil.exe from the file system and

then use the appropriate gacutil.exe against the appropriate assemblies. Or if you have the latest

version of VS (2010) or Windows SDK (7.5) then you can pick that gacutil.exe and use it across all

Exploring and Manipulating the GAC Page 13 http://renouncedthoughts.wordpress.com

assemblies built for different CLR versions.

 Still if you prefer the use this GacInstaller.msi on a batch file, make use of the /quiet or /passive

switches provided by msiexec.exe.

Other ways to deploy assemblies to the GAC. (Just a couple of them below, not a complete list.)

Installing Assemblies for Runtime and Design-time Use

How can I install a file to the GAC and the local file system using WiX syntax?

Sample Managed GAC API Wrappers

GAC changes in .Net framework 4.0

 We have seen before that .Net framework 4.0 shipped with CLR v4.0. What this means is that, if

you build assemblies for .Net fw 4.0, they are eventually targeted to be run by CLR v4.0. If you want to

install this assembly targeting the .Net fw 4.0, you should be better off using the gacutil in VS 2010

command prompt.

 Now, GAC has its new location for assemblies targeted for .Net framework 4.0. The new GAC

location is C:\Windows\Microsoft.Net\Assembly. And the GAC Viewer (shfusion.dll) is obsolete starting

with .Net framework 4.0.

What about Drag and Drop?

 Gone! The drop and drop assembly installation was facilitated by shfusion.dll, which should be

considered obsolete now. And it is pretty easy to install an assembly to the GAC by simply dragging and

dropping to the assembly folder. (I know of a couple of bugs that shfusion.dll has, may be that is the

reason why shfusion.dll is discontinued). So there is no drag and drop assembly installation for .Net 4.0

assemblies. If you try to drop a .Net 4.0 assembly in to the GAC, you won’t be shown an error; you won’t

be able to see the assembly in the GAC either. It just won’t go there and get installed! If you try to drag

and drop a .Net 4.0 assembly assembly to the new GAC at C:\windows\Microsoft.Net\assembly, the

assembly will be copied but that makes no difference (the assembly is not installed to the new GAC,

because the GAC structure expects the subdirectories with version numbers and public key token – we

have seen this before in the Structure of the GAC section)

Why do we need another GAC anyway?

 If you consider the way GAC organized structurally, and the way an assembly is differentiated

from another assembly by the Assembly Name, Version, Culture, public key token - (to avoid DllHell) -

you would not need another GAC. But the information from communities and MSDN outlines a problem.

http://blogs.msdn.com/b/heaths/archive/2006/09/20/installing-assemblies-for-runtime-and-design_2d00_time-use.aspx
http://blogs.msdn.com/b/astebner/archive/2007/06/21/3450539.aspx
http://blogs.msdn.com/b/junfeng/archive/2004/09/14/229649.aspx

Exploring and Manipulating the GAC Page 14 http://renouncedthoughts.wordpress.com

 In GAC, if you have Foo.dll (assembly version 1.0.0.0) targeted for CLR v.2.0, and another Foo.dll

(assembly version 2.0.0.0) targeted for CLR v.4.0, there exists a scenario when an application expecting

the Foo.dll V 1.0.0.0 might load the newer version available Foo.dll v 2.0.0.0 and thus might result in

unexpected behavior. So the assembly is split for each runtime. [3]

 You can view the CLR version of an assembly, using corflags.exe.

 Or you can use ildasm.exe and view the Version in the manifest tables. Or examine the CLR
Header using dumpbin.exe. What CLR Version?

Finding the right gacutil:

(The information in this section is useful when VS or Windows SDK is not available in the production

environment or you don’t choose to use the VS command prompt for some reason or you choose to

install assemblies to the GAC using a batch file)

With various .Net framework installations and VS installations side-by-side, you’d have to get a

clear idea of the CLR version that you are targeting. Microsoft stopped shipping gacutil.exe as a part of

the .Net framework (.net framework 1.1 shipped with gacutil). Now gacutil is a part of VS and Windows

SDK.

For assemblies targeting .Net fw 2.0, 3.0, and 3.5 (CLR v2.0), use the gacutil at

C:\Program Files\Microsoft Visual Studio 8\SDK\v2.0\Bin\gacutil.exe

Or

C:\Program Files\Microsoft SDKs\Windows\v6.0A\bin\gacutil.exe

For assemblies targeting .Net fw 4.0 (CLR v4.0) or earlier versions (1.0, 1.1, 3.0, 3.5) use the gacutil at

C:\Program Files\Microsoft SDKs\Windows\v7.0A\bin\gacutil.exe

http://www.devfish.net/articles/clrver/article_CLRVer.htm

Exploring and Manipulating the GAC Page 15 http://renouncedthoughts.wordpress.com

Search for an assembly in the GAC:

 So with the GACViewer (shfusion.dll) obsolete, if you are looking for ways to quickly find if an
assembly is installed to the GAC, you can use the gacutil –l switch and filter the output by a find
(with ignore case switch)

Here’s how to do that. gacutil –l | find “<<assemblyname>> /I

Important:

If you use gacutil with the VS2005 (which internally uses C:\Program Files\Microsoft Visual Studio

8\SDK\v2.0\Bin\gacutil.exe) or VS2008 (which internally uses C:\Program Files\Microsoft

SDKs\Windows\v6.0A\bin\gacutil.exe) command prompt, then you won’t be able to see the assemblies

that are targeted for the .Net fw 4.0 (the assemblies installed at the location

C:\windows\Micrsoft.Net\assembly). The reason being… <<identify yourself>>.

So if you are writing apps targeting .Net framework 4.0, then you should (must) use VS 2010 command

prompt. For deployment, you should pick the gacutil under the folder C:\Program Files\Microsoft

SDKs\Windows\v7.0A\bin\gacutil.exe.

[If you are still wondering the reason, the gacutil.exe shipped before .Net fw 4.0 knows GAC as a folder

located at C:\Windows\assembly and it can’t look/search/traverse any other folders. But the gacutil

shipped with .Net fw 4.0 knows C:\windows\Microsoft.Net as well as C:\Windows\assembly and thus

handles the assembly installation process appropriately].

What now?

 That’s pretty much it. Those are some of the phenomena of GAC, .Net framework and its

associated tools. Try to apply them at work. Some of the topics are left intentionally vague due to lack of

time and space. If you find any deviation in the content, please bring it to my attention. I can be reached

at http://renouncedthoughts.wordpress.com/contact/.

References and Further Reading

1. CLR via C# 2rd edition and 3rd edition, by Jeffrey Richter

2. Inside C# 2nd edition, by Tom Archer, Andrew Whitechapel

3. Understanding the CLR Binder, by Aarthi Ramamurthy and Mark Miller -

http://msdn.microsoft.com/en-us/magazine/dd727509.aspx

http://renouncedthoughts.wordpress.com/contact/
http://msdn.microsoft.com/en-us/magazine/dd727509.aspx
http://msdn.microsoft.com/en-us/magazine/dd727509.aspx

Exploring and Manipulating the GAC Page 16 http://renouncedthoughts.wordpress.com

4. Global Assembly Cache - http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx

5. Global Assembly Cache Tool - http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx

6. Assembly Cache Viewer - http://msdn.microsoft.com/en-us/library/34149zk3.aspx

7. Assembly.LoadWithPartialName Method - http://msdn.microsoft.com/en-

us/library/system.reflection.assembly.loadwithpartialname.aspx

8. Strong Name Tool - http://msdn.microsoft.com/en-us/library/k5b5tt23(v=VS.100).aspx

http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/en-us/library/yf1d93sz.aspx
http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx
http://msdn.microsoft.com/en-us/library/ex0ss12c.aspx
http://msdn.microsoft.com/en-us/library/34149zk3.aspx
http://msdn.microsoft.com/en-us/library/34149zk3.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.assembly.loadwithpartialname.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.assembly.loadwithpartialname.aspx
http://msdn.microsoft.com/en-us/library/system.reflection.assembly.loadwithpartialname.aspx
http://msdn.microsoft.com/en-us/library/k5b5tt23(v=VS.100).aspx
http://msdn.microsoft.com/en-us/library/k5b5tt23(v=VS.100).aspx

