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Abstract—As a further development of the method of discrete modeling of packings, the uniqueness of the
division of the packing spaces into homometric (isovector) polyominoes is studied on the basis of the relation
between the basic and vector systems of points. The particular criterion of the packing-space division based on
the concept of the isovector nature of polyominoes with different numbers of points is formulated. © 2003
MAIK “Nauka/Interperiodica”.
Earlier, we suggested a criterion of division of a
two-dimensional space into arbitrarily shaped polyomi-
noes within the framework of the method of discrete
modeling of molecules–polyominoes in the periodic
space of a crystal lattice [1]. The criterion based on the
concept of a packing multispace (PMS) of the Nth order
represented as a superposition of the sublattices with
the sublattice index N is formulated as follows. A poly-
omino consisting of N points of the basic system does
not divide the space translationally if, upon the super-
position of the vector system of this polyomino onto the
corresponding PMS, the points of the vector system
occupy the sites at which the lines from the complete
set of the packing spaces with the sublattice index N are
intersected. Accordingly, if at least one line not occu-
pied by the points of the vector system of polyominoes
is among the lines passing through the PMS sites, then
the space can be divided translationally. Obviously, the
number of various variants of the space division into
specifically shaped polyominoes depends on the num-
ber of straight lines of the PMS having no common
points with the vector system of polyominoes.

Below, we present the results of the study of the
uniqueness of the division of packing spaces into
homometric (isovector) polyominoes based on the
analysis of the relation between the basic and vector
systems of the points. A particular criterion of the divi-
sion is formulated on the basis of the concept of isovec-
tor polyominoes with different numbers of points.

As is well known from the theory of X-ray structure
analysis (see, e.g., [2]), the basic system of points is
understood as a set of points fixed by the ends of the
radius-vectors (r1, …, ri , …, rN) for each ith nucleus
of the structure atoms set either in an arbitrary coordi-
nate system (nonperiodic basic system) or in a coordi-
nate system determined by the basis vectors of the lat-
tice of translations whose unit cell contains these atoms
1063-7745/03/4802- $24.00 © 0167
(periodic basic system). In comparison with the nonpe-
riodic basic system, the periodic basic system has some
additional interpoint distances associated with the
translation vectors. The complete set of the interpoint
distances rij = rj – ri = rk transforms the vector system
of points in both nonperiodic and periodic basic sys-
tems constructed on the lattice with the same basis vec-
tors.

To the points of real crystal structures there corre-
spond certain physical quantities. If each point of the
basic and the vector systems is brought into correspon-
dence with the “electron” density ρ(ri) and the Patter-
son density P(rk), then the unit-cell content of the peri-
odic lattices can be written as

(1)

(2)

where

Single-crystal X-ray diffraction data allow one to
construct a continuous function of the Patterson density
that is a self-convolution of the electron-density func-
tion. This can be demonstrated on the above models of
functions (1) and (2) by determining the inverted solu-
tion for the electron-density function by replacing each

ρ r( ) ρiδ r ri–( ),
i 1=

N
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Fig. 1. Vector point system (b) as a self-convolution of the fragments of (a) the basic point system related by the center of inversion.
vector rj by the vector –rj:

(3)

Expression (3) is a particular case of the operation
of convolution of two functions ρ(r) and ϕ(r), ρ ⊗ ϕ  =

(u)ϕ(r – u)du, where integration is taken over the

domain of definition of functions Ω . The geometric
sense of the convolution in the case of a discrete set of
points can readily be understood from Fig. 1, where the
basic system of points is represented by the function ρ
and the inversion-related function , in the shape of a
tetrahedron (Fig. 1a), whereas the vector system is con-
structed in accordance with the equality

(4)

The result of the division of the vector system into
four fragments is shown in Fig. 1b, where centrosym-
metric fragments (I) and (IV) coincide and form a Gali-
ulin cuboctahedron (for clarity, some points are identi-
fied).

The solution of the inverse problem of the construc-
tion of the basic system from the vector one was
obtained by searching for the fragment that single out
the image: triads of peaks, multiple peaks and frag-
ments, “imaginary crosses,” Wrinch hexagons, etc. In
this case, the approach of the geometric simplex sug-
gested by Galiulin encounters two serious difficulties
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C

characteristic of all the geometric methods [3]. The first
one is associated with the fact that even at the initial
stage of the search for the solution by constructing, e.g.,
a Wrinch hexagon, not any arbitrary six points can form
the star of a two-dimensional simplex (triangle of the
basic system). The point is that the operation of differ-
ence, which acts onto a pair of vectors of the basic sys-
tem, is an element of the sixth-order cyclic group with
the generating matrix denoted by R1 and called here a
Wrinch matrix:

Then,

(5)

The corresponding characteristic matrix and equa-
tion allow one to calculate the eigenvalues λ1, 2. Indeed,
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(a) (b) (c)

ρ ϕ ρ # ϕ = σ

ρ # ϕ = ω ω # ω–  = σ # σ–

Fig. 2. Construction of homometric polyominoes by the convolution method: (a) initial polyominoes and their basic point systems,
(b) convolution of the basic point systems and the corresponding homometric polyominoes, and (c) common vector point system
of homometric polyominoes.
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Fig. 3. Division (on the left) and packing (on the right) of the packing space P 12 19 into homometric polyominoes.

–

we have

(6)

The above equation has the following solutions:

(7)

The rotation angles obtained determine a sixth-
order cyclic group. Combining all the above operations
into a sixfold axis, we finally obtain

(8)
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The second difficulty encountered in the decipher-
ing is associated with homometry, i.e., the existence of
various basic systems having the same vector systems
or with the existence of the same sets of interpoint dis-
tances in different structures. Ignoring the multiplicities
of the same vectors, which, in the general case, can be
different, these structures can be called isovector struc-
tures [2]. In real structures solved based on diffraction
data, isovector structures are very rare, but the possible
existence of homometry deteriorates the suggested
methods of finding the unique solution.

Isovector structures are more often encountered in
the method of discrete modeling of packings. Indeed, at
the packing coefficient k ≥ 0.5 , all the polyominoes are
isovector ones. Moreover, the coordinates of the polyo-
minoes and polycubes expressed in fractions of the unit
cell are integral, whereas the figures themselves form a
connected set of points. However, since the use of dis-
crete modeling is aimed not at the deciphering vector
systems but at the generation of new structures, the
isovector nature of the structures does not hinder the
method development. Moreover, in some instances, the
use of the homometry concept allows one to simplify
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the check of the ability of the structure to divide,
because it is sufficient to choose for the test only one
representative from the set of isovector figures. In order
to construct a set of homometric polyominoes, we use
the method suggested for the basic point system by
Hoseman and Bagchi [4]: the convolutions of the point
structures ρ, ϕ, δ, etc., are homometric if at least one of
these structures is inverted. In other words, the follow-
ing relationship is valid:

(9)

If the convolution is composed of two basic sys-
tems, then it represents a trivial homometric pair if at
least one of the systems has a center of inversion,
because, as a result, we obtain only the direct structure
of points and the structure of points inverted with
respect to the first one.

Now consider an example of the construction of a
nontrivial homometric pair in the form of a convolution
of two individual fragments.

With this aim, substitute each cell of the chosen
polyominoes by a point, and, thus, transform these
polyominoes into the basic point systems ρ and ϕ
shown in Fig. 2a. The convolutions ρ ⊗ ϕ and ρ ⊗ 
constructed by (9) form a homometric pair σ and ω
(Fig. 2b) with the common vector point system
(Fig. 2c). The corresponding σ- and ω-polyominoes
constructed from the set of points of the basic systems
σ and ω without allowance for their multiplicities
(which transform them from homometric polyominoes
into isovector ones) tile the packing space ê12 19 with
the packing coefficients k = 1 for σ-polyominoes and
k = 11/12 for ω-polyominoes (Fig. 3).

In the general case, the homometric basic systems
obtained using the convolution operation have different
numbers of the occupied points of the space, which

ρ ϕ δ… ρ ϕ δ… ρ ϕ δ… ….∼⊗ ⊗∼⊗ ⊗∼⊗ ⊗

ϕ

C

allows us to formulate the particular criterion of the
space division into polyominoes: if the basic point sys-
tem of polyominoes consisting of N cells belongs to the
nontrivial set of the isovector structures and if this set
has at least one representative with the number of cells
exceeding N, then the initial polyomino cannot transla-
tionally divide any of the packing spaces of the Nth
order.

Indeed, if the initial polyomino divided at least one
such space, then another representative of the isovector
set should have also divided the same space, which is
impossible, because the area of the latter representative
exceeds the area of the cell. This discrepancy proves the
validity of the suggested criterion.

All the above considered is also valid for the three-
dimensional case of isovector polycubes (three-dimen-
sional polyominoes). It is easy to perform the auto-
mated recalculation of the homometric polyominoes
and, thus, create a database of isovector point sets that
can be used for generation of various packings of the
structures in the periodic space.
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Abstract—The coordinate spectra of the cationic motifs for 132 structural types in hexagonal and cubic crystal
systems are analyzed. The homologous classes—polysome series of structural minals (modules)—are revealed.
It is established that structural types of different compositions are characterized by similar structural cationic
motifs and, hence, the growth and structure formation occur through the mechanism of ordered isomorphism.
© 2003 MAIK “Nauka/Interperiodica”.
Investigations into cationic motifs of different com-
pounds date back to the advent of X-ray structure anal-
ysis. Even early experiments demonstrated that cations
in structures of the sphalerite, halite, fluorite, cuprite,
and other types are located at positions corresponding
to the closest packings. The concept of the closest
anionic packings whose holes are occupied by cations
was developed by N.V. Belov [1]. Ordered isomorphs,
i.e., superstructures of the closest packings, were
revealed even in the first structures of chemical com-
pounds, which were determined using X-ray diffraction
analysis. A large number of superstructures were
described in detail in [1].

In 1950–1964, superstructures of the closest pack-
ings revealed in chemical compounds of 90 structural
types were modeled on the basis of the polarity and par-
simony principles and a comparative crystal chemical
analysis. The results obtained in this modeling allowed
the conclusion that cationic–anionic, anionic, and cat-
ionic motifs involve a number of the simplest variants
of the atomic arrangement in positions of the closest
packing, body-centered cubic lattices, primitive cubic
or hexagonal lattices, and their superstructures [2]. It
was assumed that real structures represent a set of
atomic partial structures that can also involve super-
structures; in this case, atoms either can be displaced
from their ideal positions or can be absent altogether,
which corresponds to the formation of vacancies h. The
structures of intermetallic and inorganic compounds
and, especially, the cationic sublattices are composed of
the same partial structures with identical superstruc-
tures. As is known, the positive charge in intermetallic
compounds is compensated for by electrons. It seems
likely that, in intermetallic compounds, the positive
charge is compensated for by excess ions. Moreover, it
was established that the frameworks characteristic of
intermetallic structures can also exist in structures of
inorganic compounds. In 1972–2000, the above infer-
ences were confirmed by S.V. Borisov and other
1063-7745/03/4802- $24.00 © 20171
researchers, who investigated the cationic motifs (see,
for example, [3]). It was demonstrated that, among the
studied structures (belonging to more than one hundred
structural types), almost half the structures are charac-
terized by the distribution of cations over the F-type
sublattices (the closest cubic packing) and approxi-
mately one-third of the structures have an I-type cat-
ionic sublattice (a body-centered cubic lattice). It
turned out that there exist a large number of structures
with a modified single-layer hexagonal packing of
heavy atoms (a primitive hexagonal lattice). Variants
with vacancies (h) make a particular contribution to the
atomic motifs. In the 1980s, M. O’Keefe and
B.G. Hyde [4] proposed an alternative approach to the
interpretation of the cationic motifs. This approach was
quite the opposite of that used traditionally; more pre-
cisely, they considered the cationic motifs with holes
occupied by anions and confirmed the similarity
between the structural motifs of intermetallic com-
pounds and cationic sublattices of inorganic materials.
Earlier, Belov [1] also noted that the cationic partial
motifs represented by oxygen-centered tetrahedra (i.e.,
oxygen atoms in tetrahedra formed by cations) are
observed in the La2O3 structure. Subsequent investiga-
tions of minerals, specifically with the use of combina-
torial analysis, revealed a large number of similar struc-
tures with cationic partial motifs characterized by com-
binations of anion-centered tetrahedra [5].

From the foregoing, it is obvious that the formation
of structures and, especially, cationic motifs due to
zero-, one-, two-, or three-dimensional ordered isomor-
phism (combinatorics) has been the particular concern
of many researchers engaged in crystallography.

A layer-by-layer representation of the structures
under investigation is a widely accepted method. The
structure image obtained by this method is referred to
as the structural diagram. This diagram consist of a
sequence of identical or different layers of polyhedra,
projections, letters, chemical formulas, and planar nets.
003 MAIK “Nauka/Interperiodica”
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All crystal structures, orbits, and lattice complexes can
be represented as composed of 11 different Kepler–
Shubnikov planar nets: 36, 63, 3636, 346, 3464, 3.122,
46.12, 44, 43243, 482, and 3342. The Kepler nets consist
of regular polygons, whereas the Shubnikov nets are
combinatorial topological Kepler nets and can be dis-
torted [6].

Since the advent of structural analysis, the represen-
tation of solved structures in the form of nets, along
with polyhedral and other representations, has been
extensively used in crystallography. The net representa-
tion of structures has also found use in fundamental
works. In [1], the majority of structures were described
in terms of the closest anionic packings (i.e., the 36

nets), the spinel cationic motif was represented by the
3636 net, the corundum cationic motif was treated as
the 63 net, and so on. According to Bokiœ [7], most of
existing structural motifs can be considered as the clos-
est packings consisting of 36 nets and some structures
are composed of 63 + 3636 nets. In 1956, we began to
investigate the closest packings and to model the possi-
ble superstructures. In 1959, the results of these inves-
tigations were summarized in [2]. It was demonstrated
that the superstructures of the closest packings and sim-
ple cubic structures are formed by sets of 36, 3636, 63,
346, 3262, 44, and 43243 nets and also by their combina-
tions. Particular sets of these nets were used to model
almost 90 structural types of intermetallic and inor-
ganic compounds and their cationic, anionic, and cat-
ionic–anionic (one-, two-, and three-dimensional)
motifs. Moreover, the cationic motifs were systemati-
cally studied in terms of Kepler–Shubnikov nets for the
first time. In 1966, we developed a new technique for
layer-by-layer analysis of the structures, which was
referred to as the line diagram method [9]. With this
method, all structural types in hexagonal, tetragonal,
and cubic (hexagonal and tetragonal variants) crystal
systems can be represented along the [001] axis as sets
of Kepler–Shubnikov nets. Consideration was given to
the structural types formed by the following nets: 36

[10]; 3636, 63, and 36 [11]; 3464, 3636, 63, and 36 [12];
and others. These nets make it possible to describe the
majority of structural types and their cationic and
anionic motifs. Cationic motifs of numerous structural
types were systematically studied in [13] (1974) and
[14] (1976). In particular, we considered a number of
cationic motifs represented by the nets 36, 63, 44, and
others (as well as by their more complicated combina-
tions). The cationic motifs under consideration were
described by different methods. The classification was
performed with the use of particular nets, their sets
(structural minals, i.e., units or modules), and compos-
ite structural minals with filling of all the possible posi-
tions and the separation of the invariant and variant
parts. The number of different composite structural
minals was found to be very small.

The Kepler–Shubnikov nets were widely used for
describing the structural types in a number of mono-
C

graphs published in the 1970s. For example, in the
monographs by Belov (1976) [15], Pearson (1972)
[16], and Kripyakevich (1977) [17], the structural types
of intermetallic and inorganic compounds were repre-
sented as projections of sets of the following nets: 36,
3636, 63, 346, 3262, 44, 43243, 482, and 3342. A number
of structural types presented in these monographs were
not considered in the form of projections or line dia-
grams in our earlier works. For many structural types,
the cationic motifs represented as nets were studied by
Borisov and other researchers (see, for example, [18]).
Analysis of the structural motifs with the use of soft-
ware packages proved that planar densely filled cat-
ionic nets form the basis of many crystal structures. The
advantage of the Borisov computer method resides in
the fact that structures in any crystal systems can be
analyzed along any directions. The advantage of the
line diagram method is that the structures under inves-
tigation can be represented as spectra of atomic coordi-
nates, which, in turn, makes it possible to use symmetry
elements and to compare structures and their modules
at any accuracy in the determination of the coordinates.
Without description, structural motifs can be compared
in much the same manner as X-ray powder diffraction
patterns. The proposed method can be easily computer-
ized. In recent years, our method of layer-by-layer
modeling with the use of structural diagrams, specifi-
cally of the line diagrams in combination with nets, has
been applied, together with the known techniques, to
simulate crystal structures [19]. Thus, the representa-
tion of structures and their cationic motifs in the form
of sequences of nets is an important problem.

We established that the hexagonal and cubic struc-
tures with threefold axes consist of seven nets, namely,
36, 63, 3636, 346, 3464, 3.122, and 46.12. Among them,
three nets correspond to well-known motifs. These are
the close-packed (36), corundum (63), and spinel (3636)
nets composed of cations located in octahedra formed
by anions [1]. The first net (a close-packed motif) is
composed of edge-shared triangles. The corundum net
consists of edge-shared hexagons. This net is also
called the graphite or honeycomb net. The spinel net is
composed of hexagons, but they are connected by cor-
ners. The centers of hexagons are not occupied. Recall
that, according to [2], empty sites are treated as atoms
(E) of a special type, which are commonly designated
by an open square h. On this basis, the corundum and
spinel nets can be considered superstructures with
respect to the close-packed layer 36. The parameter of
the close-packed layer is equal to 3 Å, and the parame-
ters of the corundum and spinel nets are 5.2 and 6 Å,
respectively. In our earlier work [9], we demonstrated
that all structures with hexagonal basis parameters of
5–6 Å are built up only of these three nets and their
combinations. All structural types with a basis parame-
ter of 5 Å that consist of the 36 and 63 nets are assigned
to the corundum homologous class [11]. Structural
types with a basis parameter of 6 Å that involve the 36
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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and 3636 nets are attributed to the spinel homologous
class. Structural types with a basis parameter of 5–6 Å
that consist of nets of all three types belong to the ames-
ite homologous class. The last class also includes all
micas of different symmetries (for example, with
orthorhombic basis parameters of 5.5 and 9.5 Å). Their
silicon–oxygen layers (structural minals) consist of 63

and 3636 nets, and the corundum layers composed of
octahedra (structural minals) are built up of 63 nets.
Layers of both types form combined structural minals
(joined as genes in genomes), which are encountered in
many minerals.

As a rule, the data on the relation between the stud-
ied structures are represented by traditional methods of
comparative crystal chemistry. These are projections in
the form of points, polygons, polyhedra, sections, and
axonometry. Moreover, it is possible to use the Schlegel
and connectivity diagrams, sequences of letters, formu-
las, etc.

Since real structures are distorted to some extent, the
atoms in a particular structure deviate from their ideal
positions, specifically from the positions corresponding
to the closest packing. The traditional methods of com-
parative crystal chemistry have failed to determine
these deviations to sufficient accuracy. The line dia-
gram method [9–14] turned out to be very convenient
for revealing subtle differences between the related
structures. The method is based on the representation of
the studied structures in the form of spectra of lines cor-
responding to the coordinates of points in planar nets
parallel to the basal plane of the unit cell. This method
provides a layer-by-layer representation of the crystal
structures with due regard for the symmetry and unit
cell parameters.

Let us now consider a hexagonal or cubic (hexago-
nal variant) crystal system with threefold axes, in which
an independent region is separated in the basal plane of
the unit cell (Fig. 1). This region is divided into two
equal parts. For each of these two parts, we introduce a
particular coordinate system: (i) one coordinate system
with the axes x, y, and u and the origin at the point 000
[initially, the point with the coordinates (1/3, 1/3)] and
(ii) the other coordinate system with the axes , , and

 and the origin at the point  [initially, the point
with the coordinates (–1/3, –1/3)]. In the new coordi-
nate systems, we choose pairs of significant coordi-

nates, for example, (xy0, x0u, 0yu) and ( , ,

). The maximum sum of the coordinates is equal to
1/3. In the constructed spectra (Figs. 2–5), the net coor-
dinates x, y, and u are depicted by crosses (×), dashes (–),
and circles (s), respectively, in the vertical segment and
at the end of this segment, which represents the spectral
line (see, for example, spectrum 2.1 in Fig. 2). For each
net (corresponding to a particular vertical segment), the
distance along the z axis, which is equal to zc/a, is laid
off on the horizontal axis, which makes it possible to

x̂ ŷ

û 0̂0̂0̂

x̂ ŷ0̂ x̂0̂û

0̂ ŷû
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compare all the structures on the same scale. The linear
segments along the z axis are related by the symmetry
elements. The atomic coordinates are specified accurate
to within 0.01 along the x, y, and u axes and 0.001 along
the z axis. Therefore, the line diagram is a spectrum in
which the linear segments are determined by the coor-
dinates of the points in nets perpendicular to the z axis.
The coordinate equal to zero is presented only in the
case when all three coordinates are equal to zero and is
depicted by a circle (net 36) or a circle with a hat (net
36). In the spectra, the segments corresponding to coor-
dinate 1/3 have a break (see, for example, spectrum 1.8
in Fig. 2) for the benefit of clarity. These segments end
with a cross (coordinate 1/3 in the x axis), a dash (coor-
dinate 1/3 in the y axis), or a circle (coordinate 1/3 in
the u axis). A spinel perfect net is depicted by a segment
ending with a cross and a dash, a circle and a dash, or a
circle and a cross (Figs. 1, 3). These spinel nets are cen-
tered at atoms that are located along the threefold axes
and whose coordinates are designated by a circle, a
dash, and a cross, respectively. Earlier, it was shown
that structural types and their spectra are characterized
by structural minals with invariant (retained) lines and
variant (appearing and disappearing) lines (i.e., the
ordered implantation and subtraction). Two lines can
correspond to either identical or different atoms
(ordered substitution). The coordinates can deviate
from their ideal values, and the separation between the
lines can either decrease or increase (ordered deforma-
tion). The advantage of the spectral structural method
over other techniques resides in its universality, accu-
racy, simplicity, and visualization. A comparison of the
structures with the use of these spectra is performed in
the same manner as X-ray diffraction patterns and IR,
NMR, and NQR spectra. It is believed that the struc-
tural spectra correlate with other spectra.

In 1966–1986, we obtained the structural spectra of
compounds and lattice complexes in more than ten

Fig. 1. Coordinate system used for constructing the spectra
of structural types. Thin solid lines indicate the independent
region.

x

u

ŷ
x̂

y

û

000^ ^ ^

000
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Fig. 2. Spectra of the cationic motifs in structural types of the corundum homologous class (each spectrum is denoted by the number
of the column and the row): (1.1) Ni3C, (1.2) Fe3N, (1.3) HoD3, (1.4) LaF3, (1.5) Ti3O, (1.6) LuMnO3, (1.7) Ta2FeN2.5,
(1.8) Li8SnO6, (1.9) Li7SbO6, (1.10) Fe3(Fe1,Si1)O5(OH)4, (1.11) (Mg2,Al1)(Si1,Al1)O5(OH)4, and (1.12) Ca(ClO)2 ⋅ 2Ca(OH)2;
and (2.1) BaTiSi3O9, (2.2) Na2ZrSi3O9 ⋅ 9H2O, (2.3) K2ZrSi3O9, (2.4) CaLn2(CO3)3, (2.5) LnCO3F, (2.6) Na2O2, (2.7) Yb(BO3),
(2.8) Ca3Mn(OH)6SO4CO3 ⋅ 12H2O, (2.9) NaZr2(PO4)3, (2.10) Fe2(CO)9, (2.11) K2S2O6, (2.12) Cs3Tl2Cl9, (2.13) β-Si3N4,
(2.11a) Ag3NSeO3, (2.12a) Ca3(BO3)2, and (2.13a) α-Si3N4.
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Fig. 3. Spectra of the cationic motifs in structural types of the spinel homologous class: (1.1) CO2, (1.2) Sb4O6, (1.3) U4S3,
(1.4) Fe4N, (1.5) Cu2O, (1.6) Bi2O3, (1.7) Zr3Se4, (1.8) Sr(CN)2, (1.9) FeS2, (1.10) M8C5 (M = T), (1.11) Ba4OCl6, and
(1.12) Cu3(Fe,Ge)S4; (2.1) Ba2xCd2Cl6.3 · H2O, (2.2) R2Q2O7, (2.3) Li(Li1,Ti1)O3, (2.4) Ca3SiO5, (2.5) Na6(SO4)2ClF,
(2.6) Cr(NH3)6CuCl5, (2.7) Nd(BrO3)3, (2.8) PbCu6O8, (2.9) NbO, (2.10) Rb3Se8, and (2.11) Mg3NF3; (3.1) 8É.48H2O (É = E),
(3.2) In(OH)3, (3.3) LiCH4, (3.4) CaSn(OH)6, (3.5) FeSn(OH)6, (3.6) Cr(NH3)6CuCl5, (3.7) Mg(H2O)6TeI6, (3.8) MnSnO6,
(3.9) KPF6, (3.10) [(NH4)2,h1]SrCl4, (3.11) Tl3VS4, and (3.12) Pt3O4; and (4.1) KSbF6, (4.2) K2NaAlF6, (4.3) NaAl(SO4)2 · 12H2O,
(4.4) (NH4)3GaF6, (4.5) Ca3Al2O6, (4.6) Zn(BrO3)2 ⋅ 6H2O, (4.7) Na2CaSiO4, (4.8) NaAlSiO4, (4.9) RbNO3,
(4.10) NH4Al(SO4)2 · 12H2O, and (4.11) CaCu3Ti4O12.
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Fig. 4. Spectra of the cationic motifs in structural types of the amesite homologous class: (1.1) Nb3Br8, (1.2) CaCO3, (1.3) TuBO3,
(1.4) M8C5, (1.5) Co2(OH)3Cl, (1.6) Al[F,(OH)3][h,(H2O)6], (1.7) H2O, (1.8) Ag3Co(CN)6, (1.9) K2PbCu(NO2)6,
(1.10) KPbCo(NO2)6, (1.11) Cu3VS4, (1.12) (K0.27,h0.06)WO3, and (1.13) CrNb2Se4; (2.1) KAg(CN)2, (2.2) KAu(CN)2,
(2.3) Cu2 – xSe, (2.4) Ag5Pb2O6, (2.5) NaAl11O17, (2.6) Zn5(OH)8Cl2 ⋅ H2O, (2.7) [(NH4)1 – x(H3O)x]Zn3Mo2O3OH,
(2.8) BaFe12O19, (2.9) BaFe6ZnO11, (2.10) Co9S8, (2.10a) Cu3Cd(OH)6(NO3)2, (2.11) Co3S4, (2.12) MgAl2O4, and
(2.13) Rb(Ni1,Cr1)F6; and (3.1) SrAl3(SO4,PO4)(OH)6, (3.2) H3OGa3(SO4)2(OH)6 ⋅ H2O, (3.3) K2Zn(CN)4, (3.4) Cr4LiInO8,
(3.5) BeMgAl4O8, (3.6) NaSbBr4O7, (3.7) Zn2Mo3O8, (3.8) K4Ni(NO2)6, (3.9) NHg2Br, (3.10) Hg2NOH ⋅ H2O, (3.11) NHHg2Br2,
(3.12) Cu2S, and (3.13) (Zn,Fe)2(TeO3)3NaxH2 – x · yH2O.
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Fig. 5. Spectra of the cationic motifs in structural types of the gagarinite and pyrite homologous classes: (1.1) Ba3NiO4,
(1.2) NiU2O6, (1.3) K3V5O14, (1.4) K2ReH9, (1.5) LiNaSO4, (1.6) Th(Th1,h1)S12, (1.7) Pr3WO6Cl3, (1.8) Ba3Si4Ta6O26,
(1.9) Ba3Si4Ta6O23, (1.10) (Mn,W)1x(Mn,W,Mg)3ySi(O,OH)7, (1.11) La6(Mn1,h1)Si2S14, (1.12) Ce6(Al3.33,h0.67)S14, and
(1.13) (Na1,Li2)Li4Th6F31; (2.1) Mg3BO3(F,OH)3, (2.2) Ca2IrO4, (2.3) K3NaU(CO3)3, (2.4) Ce2(SO4)3 ⋅ 9H2O, (2.5) RbUO2(NO3)3,
(2.6) Rb4O6, (2.7) Al6B5O15(OH)3, (2.8) Ba(NO3)2, (2.9) ZrP2O7, (2.10) NiSbS, and (2.11) Na(Na2,K1)Al4Si4O16; (3.1) 8Γ ⋅
46H2O (Γ = Cl), (3.2) NaPt3O4, (3.3) Ag3PO4, (3.4) K4CdCl6, (3.5) NaClO3, (3.6) Ni(CO)4, (3.7) SnI4, (3.8) Ce2Mg3(NO3)12 ⋅
24H2O, (3.9) K3Cu(CN)4, and (3.10) Nb3Te4; and (4.1) FeS, (4.2) Ni3S2, (4.3) SrSi2, (4.4) ZrOS, (4.5) CO, and (4.6) NH3.
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homologous structural classes and developed the sym-
metry aspect of the problem. Moreover, the spectra of
cationic motifs were described in [13, 14]. However,
the structural diagrams of a large number of cationic
motifs in corundum, spinel, and amesite structural
classes were represented only in the form of letters and
minal formulas. The purpose of the present work was to
describe these cationic motifs in the form of spectra
(Figs. 2–5). Note that the spectra shown in Figs. 2–5
also include cations of radical anions (N of NO3, S of
SO4, etc.). Furthermore, we constructed the spectra of
carbides free of C and nitrides free of N.

Cationic motifs of 132 structural types and the cor-
responding chemical compounds are represented in the
form of spectra in Figs. 2–5. By analogy with X-ray dif-
fraction patterns, our spectra are characterized by the
separation between the lines; however, the role of their
intensity is played by the coordinates of the vectors in
the basal plane. In this case, we obtain not a variety of
polyhedra and their combinations but nets of two types
and, correspondingly, lines of two types: (i) lines I are
associated with the atoms lying along the threefold axis
(see, for example, spectrum 2.1 in Fig. 3), and (ii) lines
X are attributed to the atoms lying off the threefold axis.
There exist three types of lines I, namely, the lines I1,
I2, and I3, which correspond to the atoms lying along
the axes x (31, cross), y (32, dash), and u (33, circle).
Each net I and all the three nets taken together are
close-packed nets (Fig. 1). Lines X can correspond to
the two extreme coordinates (0, 0) (a circle in the hori-
zontal line of the spectrum) and (1/6, 1/6). The coordi-
nate symbols (0, 0) and circles in the horizontal line can
be both hatted and unhatted. The close-packed nets cor-
respond to these coordinates. There are three types of
(1/6, 1/6) coordinates: (1/6, 1/6, 0) (dash with a cross),
(1/6, 0, 1/6) (cross with a circle), and (0, 1/6, 1/6) (dash
with a circle). These coordinates indicate the spinel
nets. The centers of their hexagons connected by cor-
ners are situated at the 33 (circle), 32 (dash), and 31
(cross) axes, respectively (Figs. 1, 3). The nets and lines
X have intermediate coordinates. The sum of the coor-
dinates does not exceed 1/3. The similarity and differ-
ence between the spectra are determined by the atomic
coordinates and interatomic distances. A detailed anal-
ysis of the similarities and differences in all the spectra
does not enter into the scope of this paper. Here, we
only present a number of spectra and, as an example,
consider the properties of particular spectra and their
similarities to the spectra of the simplest structures of
intermetallic compounds. The second stage of our
investigation is aimed at revealing a correlation
between the spectra and interatomic distances. The
spectra consisting of lines I were described earlier in
[14] and are not discussed in the present work.

Figures 2–5 show the spectra containing lines X in
combination with lines I. Hereafter, the spectra in the
text will be denoted by the numbers involving the
respective numbers of the figure, the column, and the
C

row. Spectrum 21.1 (Fig. 2) corresponds to a structural
minal in the form of a layer bounded by two close-
packed nets. Spectra 21.2–21.5 differ from spectrum
21.1 by small distortions. A set of lines I associated
with the close-packed net is observed between lines X
in spectrum 21.6. As a result, we have two structural
minals or one combined structural minal composed of
two structural minals. Consequently, the possibility
exists of forming superstructures. Three lines are attrib-
uted to atoms of two sorts (spectra 21.7, 21.8). Vacan-
cies can be in place of atoms of a particular sort. In the
spectra, the vacancies are described by an imaginary
line (spectra 21.10–21.12). The lines in spectrum 21.9
correspond to atoms of two different sorts and a
vacancy. The decrease in the separation between the
lines in spectra 21.8 and 21.9 is caused by the formation
of flattened structural minals in a simple cubic struc-
ture. The deviation of the spectra in column 22. from an
ideal spectrum is associated with the appearance of the
structures with cations forming radical anions and the
corresponding distortions of the nets and lines X.

In Fig. 3, we first consider an ideal spectrum of the
spinel perfect centered (close-packed) nets 3636. In the
closest packing, two nets form the structural minal rep-
resented by spectrum 31.1. The variety of the spectra
presented in columns 31. and 32. stems from the line
splitting, which is well known in the solution of crystal
structures. Two networks corresponding to lines I and X
can be filled with different atoms. However, no spectra
involving four lines attributed to four different atoms
are observed. In the spectra in columns 33. and 34., the
separation between the lines and, consequently,
between the nets is equal to the distance between the
close-packed nets in the simple cubic and body-cen-
tered cubic structures along the threefold axis, respec-
tively. Column 33. contains no spectra with four differ-
ent atoms. The spectra in column 34. vary more signif-
icantly. Spectrum 34.8 exhibits four different lines
corresponding to Na, Si, Al, and h (vacancy with an
imaginary line). Moreover, spectrum 34.11 in this col-
umn is similar to the spectra of the loparite cationic
motifs Ca1Na3Ti2(Ti,Nb)2O3 [12], (Ca1Na3Ti4 ·
Ca1Na3(Ti,Nb)4) [20] Bi2O3 (h1O3Bi4 · h1O3h4) [2],
Cu2O (O1h3Cu4 · O1h3h4) [2], and LnAlO3(Ln4Al4)
[21].

The spectra depicted in Fig. 4 can be obtained from
spectrum 31.1 by removing a number of lines: line I
(spectrum 41.11) or lines I and X (spectrum 41.1).
Spectra 41.2–41.8 are similar to spectrum 41.1. Among
spectra 41.9–41.12, the last spectrum corresponds to
tungsten bronze. Spectrum 42.12 represents the spinel
structural type and the Laves–Friauf phase MgCu2.
Recall that, in a spinel structure, the cations occupy a
number of tetrahedral holes (with an occupancy of 1/7)
and octahedral holes (with an occupancy of 1/2) in an
ordered manner. Therefore, the cationic component of
the spinel structure is nothing more than an ordered
subtraction isomorph. Spectrum 41.12 contains three
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



CATIONIC MOTIFS IN CORUNDUM, SPINEL, AND AMESITE 179
lines I between the lines of the X-type nets. Spectrum
42.12 is similar to many spectra, for example, spectra
42.11, 42.13, and 43.1–43.6. Furthermore, spectrum
42.12 is a constituent of the combined spectra of two
structural minals (spectra 42.5, 42.8, and 42.9). It is
also easy to trace the similarities and differences
between other spectra.

In the spectra shown in Fig. 2, the lines of the I-type
nets are located between the lines of the X-type nets. At
the same time, the lines of the I-type nets in the spectra
depicted in columns 51. and 52. (Fig. 5) coincide with
those of the X-type nets. Although the spectra in Fig. 5
exhibit a wide variety of shapes, the spectra with a sim-
ilar structure can be distinguished in this case, too. For
example, spectra 53.1, 53.2, and 53.3 are similar to the
spectrum of V3Si; moreover, spectra 52.9, 51.2, 51.3,
and 51.1 are similar to the spectra of FeS2, Fe2P,
Th3Pd5, and Y(OH)3, respectively.

The above analysis of the spectra has demonstrated
that structural types of different compositions can
exhibit similar structural cationic motifs. In [13], the
cationic motifs were described by the diagram method
using the appropriate letters and formulas. In the
present work, the structural diagrams were represented
in the form of spectra. Both methods offer a number of
advantages and disadvantages. Additional information
on the manifestation of ordered isomorphism can be
extracted from the representation of the obtained results
in the form of point projections, polyhedra, etc. The
cationic spectra can be used in the identification of the
structures of interest, because the cationic spectrum of
the structure under investigation can be compared with
the spectra presented in this work.
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Abstract—The angular dependence of the intensities of X-ray specular reflection has been rigorously analyzed
under conditions of noncoplanar grazing Bragg diffraction in a crystal coated with a crystalline film (bicrystal).
It is shown that the anomalous angular dependence of the specular-reflection intensity is extremely sensitive to
the thickness (from fractions of a nanometer up to several nanometers), deformation, and the amorphization
degree of the crystalline films. The optimum conditions for recording intensities are attained at grazing angles
equal to 1.5–4.0 of the critical angle of the total external reflection. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, extremely asymmetric X-ray diffraction
has been widely used in the diagnostics of the subsur-
face layers of semiconductor crystals [1–3]. For the first
time, an extremely asymmetric diffraction scheme was
used in the case where the reflecting atomic planes
formed with the crystal surface an angle approximately
equal to the Bragg angle, whereas an incident or a dif-
fracted beam forms with the surface a small angle close
to the angle of the total external reflection [4, 5]. In this
case, X-ray specular reflection starts playing an impor-
tant role, which considerably reduces the penetration
depth of the field in the crystal and allows one to study
ultrathin layers with thicknesses of the order of 10 nm.
The shortcoming of the extremely asymmetric coplanar
system is the requirement that the specimen surface
have a special orientation, which hinders the use of
these schemes in surface diagnostics.

In [6], a new scheme of noncoplanar diffraction
from the reflecting planes normal to the crystal surface
was suggested (the tilt angle with respect to the normal
is ψ = 0). In this case, both incident and diffracted
beams may simultaneously form small angles ϕ0 and ϕh

with the surface and experience strong specular reflec-
tion. Experimentally, this diffraction geometry was
used in [7] for studying 7.5 to 200.0-nm-thick crystal-
line aluminum films grown on a GaAs substrate.

Unlike the conventionally used two-wave approxi-
mation [1–3], the analysis of diffraction in the grazing
geometry requires a rigorous solution of the equations
of the dynamical theory. This theory (in the case ψ = 0,
based on the solution of a biquadratic dispersion equa-
tion) has been constructed for both ideal single crystals
[8, 9] and crystals coated with an amorphous [10] or
crystalline [11] film. It was shown that the diffraction
reflection (rocking) curves are very sensitive to the
1063-7745/03/4802- $24.00 © 20180
degree of perfection of the subsurface layers with the
thicknesses of several nanometers or higher. The results
of the corresponding experiments are considered else-
where [1, 3].

In practice, cutting and the subsequent treatment of
crystals do not allow one to obtain surfaces that are
strictly parallel to the atomic planes. Therefore, the the-
ory of the grazing X-ray diffraction from an ideal crys-
tal whose planes form a small tilt angle ψ ≠ 0 with the
surface normal was developed [12, 13], and it was
shown that even small tilt angles (several angular min-
utes) can considerably change the shape of the diffrac-
tion reflection curves.

In the most general case ψ ≠ 0, one has to solve the
fourth-degree dispersion equation, which can be solved
only numerically. The problem is simplified at the graz-
ing angles ϕ0 or ϕh exceeding the critical angle of total
external reflection, where the effect of the specularly
reflected wave on diffraction drastically decreases. In
this connection, the approximate modified dynamical
theory of diffraction was developed [14–16], which
allows one to solve the problem analytically in the
whole range of the angles ϕ0 and ϕh except for a narrow
interval in the vicinity of the critical angle of the total
external reflection for both ideal crystals [14, 15] and
crystals coated with homogeneous amorphous films
[16], and also for crystals with imperfect crystal struc-
tures in thin subsurface layers [14].

The theory of grazing diffraction was further devel-
oped in [17, 18], where the method for studying the
curves of grazing X-ray diffraction from multilayer
crystal structures and superlattices was considered on
the basis of the solution of the problem of the dynami-
cal diffraction in each layer. It was shown that the
curves of the diffraction reflection are very sensitive to
deformation ∆a/a ~ 10–3 of the 10-nm-thick layer of
003 MAIK “Nauka/Interperiodica”
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crystalline germanium on the surface of a perfect Ge
crystal [18].

In all the above studies, attention was focused on the
analysis of the diffraction reflection, whereas the angu-
lar dependence of the intensities of specular reflection
was ignored. At the same time, as was first indicated in
[3] and then considered in detail theoretically in [19]
and observed experimentally in [20], the angular
behavior of grazing reflection in the diffraction region
at fixed grazing angles is essentially dependent on the
presence of ultrathin amorphous films on the surface
and their thicknesses.

This study continues the investigation of the specu-
lar reflection of X-rays under the simultaneous fulfill-
ment of the conditions of extremely asymmetric nonco-
planar Bragg diffraction begun in [19]. Based on a rig-
orous solution of the fourth-degree dispersion equation,
we performed a detailed analysis of the angular depen-
dences of the specular and diffraction reflection from a
bicrystal in the whole range of the grazing and tilt
angles of the reflecting planes. It is shown that the spec-
ular-reflection curves are extremely sensitive to the
parameters of homogeneous crystalline films on the
crystal surface.

THEORY OF SPECULAR REFLECTION 
FROM A BICRYSTAL

Consider the formation of the curves of diffraction
and specular reflection from a homogeneous plane-par-
allel film of arbitrary thickness d with interplanar spac-
ings a = a0 + ∆a, the Fourier components of polarizabil-
ity χ01 and χh1, and the reciprocal-lattice vector h1. The
substrate is a single crystal with the reflecting planes
forming an angle ψ ! 1 with the surface normal n
directed into the crystal along the z axis and character-
ized by the Fourier components of polarizability χ0 and
χh, the reciprocal-lattice vector h, and the interplanar
spacings a0. The rigorous solution of the problem of
dynamical diffraction can be obtained under the condi-
tion of equality of the tangential (along the crystal sur-
face) components of the reciprocal-lattice vector, h1t =
ht. In this case, the tilt angles of the film ψ1 are deter-
mined from the condition cosψ1 = (1 + δ)cosψ, where
δ = ∆a/a0 is deformation. In the opposite case, one has
to analyze the interference of the multiply scattered
radiation which, in the film, consists of an infinite set of
plane waves [21].

A plane monochromatic X-ray wave E0exp(ik0r) is
incident from vacuum onto a bicrystal at a grazing
angle ϕ0 to the surface, so that, simultaneously, the dif-
fraction reflection from the atomic planes of the sub-
strate takes place. The fields in vacuum above the bic-
rystal surface and in the substrate have the form

(1)
Evac r( ) E0 ik0r( )exp Es iksr( )exp+=

+ Eh ikhr( ),exp
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
(2)

where E0, Es, and Eh are the amplitudes of the incident,
specularly reflected, and diffracted waves, respectively;
|k0 | = |ks | = |kh | = k0 = 2π/λ is the length of the wave
vector in vacuum and λ is the wavelength; ksz = –k0z;
q0j = k0 + k0εcrjn and qhj = q0j + h are the wave vectors;
and D0j  and Dhj are the amplitudes of the transmitted
and diffracted waves in the substrate (j = 1, 2). The val-
ues of εcrj are determined from the solution of the gen-
eral dispersion equation of the dynamical theory [1, 3]

(3)

where γ0 = cos(k0, n) and γh0 = cos(k0 + h, n) are the
directional cosines of the incident and diffracted waves,
respectively; C = 1 and C = cos2θ for the σ- and π-states
of the radiation polarization and θ is the angle formed
by the incident radiation and the reflecting planes of the
substrate; and the parameter α = 2(θ – θB)sin2θB char-
acterizes the deviation of the diffraction angle ∆θ = θ –
θB from the exact Bragg angle of the substrate θB,
which is determined by the relationship h = 2k0sinθB. If
ϕ0 is the grazing incidence angle, then

(4)

where ψB = 2sinψsinθB is the effective parameter of
the tilt angle of the reflecting planes in the substrate.
The diffraction reflection into the region z < 0 (Bragg
geometry) is observed at such grazing angles ϕ0 that
γ0 < ψB, i.e., γh0 < 0 in (4).

In the general case, Eq. (3) is a fourth-degree equa-
tion with respect to ε and, therefore, has four roots εj. If
the substrate is thick, the solutions should be chosen
based on the condition Imεj > 0. In the Bragg geometry,
this condition is met only by two roots (see [12])
denoted here as εcr1 and εcr2.

In the case of a crystalline film of a finite thickness,
one has to take into account four roots in dispersion
equation (3); therefore, the field in the film consists of
four transmitted and four diffracted waves,

(5)

where A0j and Ahj are the amplitudes and a0j = k0 + k0εfjn
and ahj = a0j + h1 are the wave vectors of the transmitted
and diffracted waves in the crystal film (j = 1, 2, 3, 4).
The εfj values are determined from the solution of dis-
persion equations (3) in which the following replace-
ments are made:

χ0  χ01, χh  χh1,   ,

α  α1 = 2(θ – θB – ∆θf )sin2θB,

γh0  γh01 = γ0 – ψB1,

Ecr r( ) D0 j iq0 jr( )exp
j

∑ Dhj iqhjr( ),exp
j

∑+=

ε2
2γ0ε χ0–+( ) ε2

2γh0ε χ0– α–+( ) C
2χhχh–  = 0,

γ0 ϕ0, γh0sin γ0 ψB,–= =

E f r( ) A0 j ia0 jr( )exp
j

∑ Ahj iahjr( ),exp
j

∑+=

χh χh1
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where ∆θf = –  + δsinϕ0/(sinψcosθB) is the
displacement of the maximum of the diffraction reflec-
tion curve of the film from the maximum of the diffrac-
tion reflection curve of the substrate, ψB1 =
2sinψ1sinθB1 is the effective parameter of the tilt angle
of the reflecting planes of the film, and θB1 is the Bragg
angle of the film.

It follows from the basic system of dynamical equa-
tions [1] that the amplitudes of the diffracted and trans-
mitted waves in the film and the substrate are related as
Ahj = RajA0j , Dhl = R0lD0l ( j = 1–4, l = 1, 2) where

(6)

In order to determine the field amplitudes in
Eqs. (1), (2), and (5), we write the continuity condition
for the tangential components of the electric and mag-
netic fields at the upper and lower boundaries of the
film. We also have to take into account that at grazing
angles, the continuity of the magnetic field is equivalent
to the continuity of the first derivative of the electric
field with respect to the coordinate z. As a result, we
arrive at the following system of eight equations. At the
vacuum–film boundary, we have

(7.1)

At the film–substrate boundary, we have

(7.2)

where j = 1–4, l = 1, 2, γh = sinϕh (ϕh > 0), and ϕh is
the angle of the diffracted-radiation exit into vacuum
with respect to the surface; at the given angles ϕ0 and ψ,

the exit angle ϕh is determined by equation γh = (  +

α)1/2 [12] and the condition α > –  sets the admissi-
ble deviations ∆θ from the Bragg angles; and gfj =
exp(ik0εfjd), gcrl = exp(ik0εcrld), τf = exp(–ik0ψB1d), and
τcr = exp(–ik0ψBd) are the coefficients that take into
account the change in the phases of the waves and their
absorption during their propagation in the film. We
used the following notation:

(8)

2δ θBtan

Raj ε fj
2

2γ0ε fj χ01–+( )/Cχh1,=

R0l εcrl
2

2γ0εcrl χ0–+( )/Cχh.=

E0 Es+ A0 j, γ0 E0 Es–( )
j

∑ Γ f 0 j A0 j,
j

∑= =

Eh Raj A0 j, –γhEh

j

∑ Γ fhjRaj A0 j.
j

∑= =

Γ f 0 j A0 jg fj

j

∑ Γ cr0lD0lgcrl,
l

∑=

Raj A0 jg fjτ f

j

∑ R0lD0lgcrlτcr,
l

∑=

Γ fhjRaj A0 jg fjτ f

j

∑ Γ crhlR0lD0lgcrlτcr,
l

∑=

γh0
2

γh0
2

Γ f 0 j γ0 ε fj, Γ fhj+ Γ f 0 j ψB1,–= =

Γ cr0l γ0 εcrl, Γ cr0l ψB.–+=
C

The solution of system (7) for the amplitude coeffi-
cients RS = Es/E0 of the specular reflection and Rh =
Eh/E0 of the Bragg reflection have the following form:

(9)

Here, Qj are the coefficients relating the amplitudes of
the transmitted waves in the field: A0j = QjA01. For a
crystalline film, the coefficients take the form

(10)

where the following notation was used

(11)

Relationships (9)–(11) are the rigorous solution of
the problem of the specular and diffraction reflection of
X-rays from single crystals coated with homogeneous
crystalline films. These relationships are valid for all
the grazing angles ϕ0 and the exit angles ϕh at γ0 < ψB
and any admissible deviations ∆θ from the exact Bragg
angle.

Consider some limiting cases. If d = 0 (there is no
film), then gfj = gcrl = τf = τcr = 1 (j = 1–4, l = 1, 2), and
general formulas (9) are reduced to the formulas that
describe the specular and diffraction reflection from an
ideal single crystal [19]. For a thick film, one has to
select the solutions of the diffraction equation in the
film proceeding from the condition Imεfj > 0. The
absorption factor gfj  0 and gcrj  0 and formulas
(9) coincide with the corresponding formulas for a
medium that has film parameters.

Now, consider a homogeneous amorphous film on
the surface of a single crystal. Two waves (transmitted
and specularly reflected) excited by the incident radia-
tion, A01 and A02, and two waves excited by the Bragg
wave that enter the film from the crystal, Ah2 and Ah1,

propagate in the film. In this case, Γf 01 = –Γf 02 = (  +

χ01)1/2 and Γfh1 = –Γfh2 = (  + χ01)1/2, Q3, 4 = 0, Ra3, 4 =
0, and Ra1, 2 are the coefficients relating the amplitudes
of the waves in the film; i.e., Ah1, 2 = Ra1, 2A01, 2. The
coefficients Ra1, 2 are not determined by Eqs. (6) but
from the solution of the system of the boundary equa-
tions. Thus, formulas (9) are reduced to the expressions

RS γ0 Γ f 0 j–( )Q j/ γ0 Γ f 0 j+( )Q j,
j

∑
j

∑=

Rh γ0/γh( ) Raj γh Γ fhj–( )Q j/ γ0 Γ f 0 j+( )Q j.
j

∑
j

∑=

Q1 1,=

Q2 = Raj γh Γ fhj+( )U1 j/ Raj γh Γ fhj+( )U2 j,
j

∑
j

∑–

Qk 1–( )k 1+
U1k U2kQ2+( ) k = 3 4,( ),=

U j3 j4, g fj/g f 3 f 4,( ) T1 jT24 23,(=

– T2 jT14 13, )/ T14T23 T24T13–( ),

T1 j 2 j, R02 01, Γ cr01 2, Γ f 0 j–( )τcr=

– Raj Γ crh1 2, Γ fhj–( )τ f .

γ0
2

γh
2

RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



X-RAY SPECULAR REFLECTION UNDER CONDITIONS 183
that describe the specular and diffraction reflection
from a single crystal coated with an amorphous film
[19].

In the range where the grazing angle ϕ0 is much
larger than the critical angle of the total external reflec-

tion ϕc = , the roots of the dispersion
equation (3) have considerably different values. With
due regard for the smallness of polarizabilities χh and

χh1, one can show that εf1, f 2 ≈ –γ0 ± (  + χ01)1/2 and

εf 3, f 4 ≈ |γh0 | ± (  + α1 + χ01)1/2, and εcr1 ≈ χ0/2γ0,
εcr2 ≈ 2|γh0 | + (α + χ0)/2|γh0 |. A rigorous numerical solu-
tion of Eq. (3) gives the same results, whence it follows
that Ra1, 2 ! Ra3, 4 and R01 ! R02, i.e.,

U13 ≈ 0, Q2 ≈ 0, Q3 ≈ 0,

Q4 ≈ –U14 ≈ –(Ra1τf – R01τcr)gf 1/(Ra4τf – R01τcr)gf 4.

Since εf 1, εf 4, εcr1 ! γ0, then RS ! 1; therefore, one can
ignore the effect of specular reflection on the diffraction
process. At the same time, the specific behavior of the
total wave field in a crystal in the region of strong dif-
fraction reflection from the substrate dramatically
affects the angular dependence of the specular reflec-
tion. As a result, Eqs. (9) for the amplitude coefficients
of the diffraction and specular reflection yield the fol-
lowing expressions:

(12)

which coincide with the corresponding expression
obtained for a bicrystal in the two-wave approximation
of large grazing angles in [22].

RESULTS AND DISCUSSION

Figure 1 and 2 show the curves of the diffraction
Ph = (γh/γ0)|Rh |2 and specular IS = |RS |2I0 reflection,
where I0 is the intensity of the X-ray beam incident onto
a silicon single crystal coated with a film of crystalline
silicon at different film thicknesses and grazing angles.
As is seen from Fig. 1, the diffraction reflection curves
are sensitive to the thicknesses of coating crystalline
films, which is seen from the thickness oscillations. At
large grazing angles and deviations from the exact
Bragg condition, it follows from Eq. (12) that the oscil-
lation period is determined by the expression ∆θ =
−4πγh01/(k0dsin2ϑB); for the parameters that were used
in the calculation of curve 5 in Fig. 2c, ∆θ ≈ 600′′ . With
an increase in the grazing angle, the oscillation period
and the intensity of the reflected signal drastically
decrease (cf. Figs. 1a, 1c). At the same time, the situa-
tion for the specular reflection curves (Fig. 2) is quite
different. The angular dependences of specular reflec-
tion have extremely high sensitivity to the presence and

χ0
1/2( )arcsin

γ0
2

γh0
2

Rh

Ra1 Q4Ra4+
1 Q4+

-----------------------------,=

RS

γ0 Γ f 01–( ) Q4 γ0 Γ f 04–( )+
γ0 Γ f 01+( ) Q4 γ0 Γ f 04+( )+

-----------------------------------------------------------------,=
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the thicknesses of the crystalline films: with an increase
in the grazing angle, the sensitivity increases (cf.
Figs. 2a, 2c), whereas the intensity of the useful signal
increases by two to three orders of magnitude.

The most interesting situation is observed at the
grazing angles ϕ0, h > ϕc for silicon ϕc = 13.38′. In this
case, the specular reflection curves show very high sen-
sitivity to the presence of a very thin disturbed layer on
the surface, whose thickness can be of several nanome-
ters (Figs. 2b, 2c).

As was first noted in [3] and then considered in
detail for an ideal crystal and a crystal coated with an
amorphous film in [19], the characteristic feature of
specular reflection under the diffraction conditions is a
pronounced anomaly in the angular dependence IS(∆θ),
which is of the dispersion type with the minimum and
maximum in the vicinity of the diffraction angles
∆θ1, 2 = ∆θ0  ∆θB corresponding to the boundaries of
the region of the total diffraction reflection:

where b = –γ0/γh0 is the asymmetry coefficient of the
Bragg reflection (b > 0).

It should be noted that the curves of the secondary-
radiation yield ISP ~ 1 + |Rh |2 + 2σReRh with a yield
depth that is small in comparison with the extinction
length Lex = λ(γ0 |γh0 |)1/2/πC |χh |, where σ = C |χhi |/χ0i ,
χgi = Imχg [1, 3, 23], have approximately the same
shape. The analogy becomes more obvious if the quan-
tity Q4 in (12) is expressed in terms of the amplitude
coefficient of the diffraction reflection Rh. Then the
amplitude of the specular reflection is

(13)

where σs = (χh1 )1/2/χ01. Similar to the method
of X-ray standing waves (XRSW) [1, 23], the second
factor in (13) characterizes the amplitude of the total
field on the bicrystal surface. However, the value of σs

in (13) is not determined by the relative ratio of the
imaginary parts of the Fourier components of the polar-
izabilities χh and χ0 any more. Despite the fact that, at
the grazing angles ϕ0 > ϕc, the coefficient of specular
reflections is very small, the intensity of this reflection
can considerably (by several orders of magnitude, all
other conditions being the same [20]) exceed the pho-
toelectron or fluorescent quantum yield in the XRSW
method.

The presence of the minimum and maximum on the
specular-reflection curve IS(∆θ) (13) is explained by the
fact that, in the region of diffraction reflection, Ph ≈ 1,
and the phase Rh changes almost linearly from π at ∆θ =

∆θ1 to zero at ∆θ = ∆θ2. In this case, Rh(∆θ1, 2) ≈ ,
i.e., has different signs, which results in the formation

+−

∆θ0 χ0 1 b+( )/ 2b 2θBsin( ),–=

∆θB C χh / b
1/2

2θBsin( ),=

RS χ0/4γ0
2( ) 1 σsRh+( ),–≈

Cb f
1/2 χh1

b f
1/2

+−
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of the minimum and maximum on the specular-reflec-
tion curve IS. At small grazing angles (γ0 ! ψB), the
asymmetry coefficient of reflection bf ! 1. With an
increase in the angle ϕ0, at γ0 ≈ ψB, we have bf @ 1, and
the contrast of the specular-reflection curve IS

increases.

The penetration depth of the field under conditions
of specular reflection and large grazing angles obeys
the inequality Ls @ Lex, where Ls = λ/(2πImγs), and γs =

(  + χ0)1/2. Therefore, the formation of the refracted
wave is determined by the coherent superposition of the
transmitted and diffracted waves. Unlike this situation,
in the region of small angles ϕ0 ≤ ϕc, the penetration
depth of the field Ls ≤ Lex; i.e., it is determined mainly
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Fig. 1. Effect of the thickness of the surface crystalline sili-
con film on the shape of the diffraction-reflection curves
depending on the angular deviation ∆θ from the Bragg
angle of the substrate (Si) at the grazing angles ϕ0 = (a) 13′,
(b) 25′, and (c) 45′. The film thickness d (nm) is (1) 0 (ideal
crystal), (2) 1, (3) 2, (4) 3, (5) 5. CuKα radiation, Si(220)
reflection, ψ = 3°, the amorphization factor Fam = 1, defor-

mation δ = –4 × 10–4.
C

by the total external reflection. Diffraction reflection
occurs in a thinner layer, which results in a decrease in
the amplitude of the maximum of the diffraction-reflec-
tion curve and, simultaneously, in its broadening
(Fig. 1a). The specular-reflection curve in this case is
pronouncedly smoothened and acquires the shape of a
shallow minimum (Fig. 2a). For the parameters used in
the calculation of the curves in Figs. 1 and 2, the pene-
tration depths Ls = 1.9 µm, Lex = 0.5 µm, and bf = 0.69;
Ls = 0.6 µm, Lex = 0.2 µm, and bf  = 0.19; and Ls =
0.03 µm, Lex = 0.13 µm, and bf = 0.12 at the grazing
angles ϕ0 = 50′′ , 20′′ , and 13′′ , respectively.

At large grazing angles and pronounced angular
deviation from the exact Bragg condition for the crys-
talline film, the amplitude coefficient of specular reflec-
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Fig. 2. Effect of the thickness of the surface crystalline sili-
con film on the shape of the angular curves of the specular-
reflection intensities depending on the angular deviation ∆θ
from the Bragg angle at the grazing angles ϕ0 = (a) 13′,
(b) 25′, and (c) 45′. The film thickness d (nm): (1) 0 (ideal
crystal), (2) 1, (3) 2, (4) 3, (5) 5, amorphization factor Fam = 1,

deformation δ = –4 × 10–4. The intensity of incident radia-

tion  pulse/s.I0
5
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tion given by Eqs. (12) can be written in the convenient
form

(14)

where, in accordance to [23], the following notation is

RS χ01/4γ0
2( ) 1 R01C f τcr/τ f( ) iω( )/χ01exp–{ } ,–≈
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IS × 10–3, pulse/s

10 20 30 40
∆θ, arcsec
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4

1
2

Fig. 3. Effect of deformation of the crystal film on the shape
of the angular dependences of the intensities of specular
reflection. Deformation δ × 10–4; (1) 0 (ideal crystal), (2) 2,
(3) 4, (4) 6. Grazing angle ϕ0 = 20′. Thickness of the Si film
d = 5 nm. Amorphization factor Fam = 1.
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Fig. 4. Effect of the amorphization factor of the crystalline
film on the shape of the angular dependences of the specu-
lar-reflection intensity. Amorphization factor Fam: (1) 1
(ideal crystal, (2) 0.8, (3) 0.6, (4) 0.2, (5) 0 (amorphous
film). Grazing angle ϕ0 = 50′. Thickness of the Si film
d = 2 nm. Deformation δ = 0.
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introduced:

The quantity y1 characterizes the deviation from the
exact Bragg condition for the crystalline film.

The first term in (14) describes the behavior of the
specular-reflection curve from the film far from the dif-
fraction condition. The second term describes the dis-
persion behavior and the thickness oscillations (caused
by the presence of the film) on the angular dependence
of the specular reflection. A further increase in the film
thickness results in a lower contrast of the specular-
reflection curve in the region of diffraction reflection
from the substrate and an increase in the contrast in the
region of diffraction reflection from the film.

Figures 3 and 4 show the angular dependences of
specular reflection from a bicrystal with various defor-
mations δ and amorphization factors Fam of the film
(χh1 = Famχh), respectively. As was indicated above, the
diffraction-reflection curves of thin films are almost the
same as those of the substrate. At the same time, even
insignificant changes in the deformation and amor-
phization factor of the film lead to considerable
changes in the shape of the specular-reflection curves in
the region of diffraction reflection from the substrate.

Figure 5 shows the specular-reflection curves from a
bicrystal at various tilt angles ψ of the reflecting planes
of the substrate. It is seen that the sensitivity of the

y1 α1b f χ01 1 b f+( )+[ ] /2C f ,= y12 y1
2

1–( )
1/2

,=

C f Cb f
1/2 χh1χh1( )1/2

, ω k0C f dy12/γ0.= =

–10 0
1

IS × 10–3, pulse/s

∆θ, arcsec

2

3

10 20 30 40 50

1

2

Fig. 5. Effect of the tilt angle of the atomic planes ψ on the
angular dependence of the specular-reflection intensity
from a bicrystal (dash lines) and an ideal crystal (solid
lines). The tilt angle (1) ψ = 3° and (2) ψ = 5°. Grazing
angles ϕ0 = 20′. Thickness of the Si film d = 4 nm. Amor-

phization factor Fam = 1, deformation δ = 4 × 10–4.
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angular dependence of specular reflection increases
with a decrease in the tilt angle.

CONCLUSIONS

The rigorous dynamical theory of specular reflec-
tion of X-rays from a bicrystal under conditions of
extremely asymmetric diffraction and specular reflec-
tion are solved in the general form so that the results
obtained are valid in the whole range of grazing angles
of an incident beam and exit angles of diffracted radia-
tion.

It is shown that the angular dependence of the spec-
ular-reflection intensity is very sensitive to the pres-
ence, thickness, deformation, and degree of amorphiza-
tion of a thin (from fractions of a nanometer to several
nanometers) crystalline film in the crystal surface. The
problem can readily be generalized to the case of graz-
ing and diffraction reflection from an arbitrary multi-
layer structure with any profiles of the variations in
polarizability, deformation, and the amorphization fac-
tor.

The intensity of the specular reflection is sufficiently
high and allows one to perform rapid analysis of thin
subsurface and transient layers. The sensitivity of the
method to the film thickness is about 0.5 nm and
increases with an increase in the grazing angle; how-
ever, the intensity of the reflected signal simultaneously
decreases. The optimum grazing angles range from one
and a half to three to four critical angles of the total
external reflection. At smaller grazing angles, the inten-
sity of specular reflection increases; however, the sensi-
tivity considerably decreases.

Thus, the results obtained show that it is possible to
perform rapid nondestructive analysis of the structure
of superthin subsurface layers and the interfaces using
the specular-reflection data obtained under conditions
of grazing Bragg diffraction.
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Abstract—The influence of photoexcitation on the formation of the defect structure in GaAs crystals implanted
with 200 keV Ar+ ions at doses of 1 × 1013, 3 × 1013, and 5 × 1013 cm–2 has been studied by high-resolution X-
ray diffractometry. It was found that photoexcitation gives rise to annihilation of radiation-induced Frenkel
pairs, and, thus, decreases the residual concentration of radiation-induced point defects. It is established that
amorphization of the damaged layer proceeds via the formation and growth of clusters of radiation-induced
point defects. The vacancy- and interstitial-type clusters are spatially separated—the former are located closer
to the crystal surface than the latter. Photoexcitation hinders cluster growth and stimulates diffusion of intersti-
tial defects into the substrate depth. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The process of ion implantation into semiconduc-
tors is accompanied by the penetration of radiation-
induced point defects into a semiconductor substrate.
A cascade of collisions caused by an impinging ion
forms within ~10–12 s a disordered region that is highly
supersaturated with vacancies and intrinsic interstitial
atoms [1]. This disordered region is unstable. Immedi-
ately after its formation, the processes of spatial sepa-
ration of the vacancies and interstitial atoms begins,
which is accompanied by the quasi-chemical reactions
of these defects with one another and also with other
imperfections of the crystal lattice. Since both vacan-
cies and interstitial atoms can be in different charge
states [2], photoexcitation of the electron subsystem of
the target during ion bombardment accompanied by
generation of nonequilibrium electrons and holes may
influence the ensemble of the radiation-induced defects
formed [3]. The influence of in situ photoexcitation on
the shape of the X-ray rocking curve in GaAs crystals
implanted with 200 keV Ar+ ions at doses of (1–5) ×
1013 cm–2 was revealed and described in [4]. Below, we
describe the analysis of the strain profiles and static
mean-square displacements constructed from the rock-
ing curves [4].

OBJECTS AND EXPERIMENTAL METHODS

Semi-insulating GaAs (100) plates were implanted
with 200 keV Ar3+ ions at doses of (1–5) × 1013 cm–2 on
an HVEE-500 setup. The current density was 0.15 µA,
1063-7745/03/4802- $24.00 © 0187
which excluded the heating of the substrate; the
implantation temperature was ~298 K. To eliminate
channeling, the angle formed by the beam with the sur-
face normal was 7°. The implantation accompanied by
photoexcitation was performed under the same condi-
tions (simultaneous illumination of samples with a
25 mW cm–2 mercury lamp). Hereafter, the samples
obtained under conditions of photoexcitation are
referred to as “illuminated samples,” while samples
implanted without illumination are called “nonillumi-
nated.”

The imperfection of the implanted layers was stud-
ied by X-ray diffractometry in the dispersion-free tri-
ple-crystal scheme (n, –n, n) with symmetric Bragg
reflections. The slit monochromator and analyzer were
perfect germanium crystals with a triple (400) reflec-
tion. In the triple-crystal scheme, the intensity distribu-
tion was measured in the vicinity of the [400] reciprocal
lattice point. To separate the contributions that come
from the coherent and noncoherent scattering compo-
nents, the intensity was measured along the sections
perpendicular to the diffraction vector which are
located at different distances from the [400] reciprocal
lattice point [5].

The rocking curves were modeled on the basis of the
theory of dynamical diffraction using the formalism
suggested in [6]. The strain profile ε(z) was given by the
set of basis points [7]. The curve corresponding to this
profile was drawn by connecting the basis points using
the cubic spline interpolation. The profile thus obtained
was divided into 200 1 to 2-nm-thick lamellae. The
2003 MAIK “Nauka/Interperiodica”
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lamella thicknesses depend on the total thickness of the
damaged layer. The rocking curves were simulated
using the optimization program based on the genetic
algorithm [7]. The positions of the basis points of the
strain profile were varied to attain the best fit of the cal-
culated and experimental curves, which was evaluated
based on the χ2 criterion [8].

The dependence of the shape of the rocking curves
on the implantation dose observed in [4] was assumed
to be caused by an increase in the amorphization degree
of the layer at higher implantation doses. At low amor-
phization (low doses), the shape of the rocking curves
is determined by the distribution of the vacancy and
interstitial components of the Frenkel pairs in the depth
of the damaged layer. To take into account amorphiza-
tion, we introduced the static Debye–Waller factor into
the description of the damaged-layer model. The amor-
phization degree (imperfection of the crystal lattice)
was characterized by the distribution of the static
Debye–Waller factor, exp(–LH), over the layer depth,
where LH depends on the mean-square displacements
〈u2〉  of atoms from their sites in the deformed crystal
lattice: LH = 8(πsinθB/λ)2〈u2〉 (θB is the Bragg angle).
Then the Fourier components of polarizability in a dis-
torted crystal can be written as  = χhexp(–LH) [9].
Since 0 < exp(–LH) ≤ 1, the introduction of the static
Debye–Waller factor into the computations leads to a
decrease in the scattering power of the layer and, hence,
to a decrease in the amplitude of the diffracted wave
proportional to | |. The profile of the Debye–Waller
factor was also given by the set of the basis points con-
nected by a spline. For the symmetric reflection, only
the εzz(z) and 〈u2〉1/2(z) components (the z axis is
directed along the surface normal into the substrate)
can be determined from the experiment. Knowing their
values and taking into account that the value of the
static mean-square displacements depends on the num-
ber of clusters and their dimensions, one can evaluate
the concentration and clusters and their dimensions
(volume) using the following expressions [9]:

(1)

where h is the diffraction vector, V is the unit-cell vol-
ume, ν is the Poisson ratio, ccl is the cluster concentra-
tion, ∆V is the variation of the unit-cell volume caused
by the introduction of one cluster into the crystal lattice
of the substrate. Equations (1) are written for spherical
clusters; the formula for calculating LH for dislocation
loops is given in [10]. According to [11], dislocation
loops are formed only after thermal treatment, because
their formation requires overcoming a certain activa-
tion barrier. Since our samples were not subjected to
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thermal treatment and the substrate was not heated dur-
ing implantation, we consider here the spherical cluster
model. Using the values of all the constants, we arrive
at convenient expressions for profile analysis:

(2)

Thus, the value of the mean-square displacements (the
LH parameter) can be considered as the characteristic of
the degree of point defect agglomeration and cluster
(microdefect) formation.

RESULTS AND DISCUSSION

The experimental rocking curves [4] are shown in
Fig. 1. The initial analysis of these curves allowed us to
draw the following conclusions. For illuminated sam-
ples, the maximum of the rocking curves corresponding
to the average strain of the damaged layer is closer to
the peak from the substrate than for nonilluminated
samples. This means that illumination with a mercury
lamp during implantation decreases the average strain
in the damaged layer. Evaluation of the damaged-layer
thickness (t) from the period (∆θ) of the intensity oscil-
lations on the rocking curves showed that the t value
increases from 230 to 270 nm at higher doses. The
thickness was evaluated using the formula of kinemati-
cal theory of scattering (see, for example, [19])

(3)

(where λ is the wavelength of radiation used, ψ is the
exit angle, and θB is the Bragg angle). No influence of
photoexcitation on the damaged-layer thickness was
revealed [4].

For a nonilluminated sample implanted at a dose of
5 × 1013 cm–2, the shape of the rocking curve changed
qualitatively (Fig. 1c, solid line): now the pronounced
maximum that characterized the average strain in the
damaged layer is absent. One can assume that the scat-
tering power of a certain part of the damaged layer
changed, most probably, because of its partial amor-
phization. These results required a more detailed anal-
ysis of the shape of rocking curves in order to better
understand the processes taking place in the damaged
layer under ion implantation.

Using the procedure described in [7], we determined
the strain profiles (εzz(z)) and the LH(z) profiles for the
samples (Fig. 2). The estimates of some characteristics
of the strain profiles at the doses used are listed in the
table. It is seen (Fig. 2a) that at a dose of 1 × 1013 cm–2,
the sample strain and the area below the curve of static
displacements are somewhat less for the illuminated
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samples, which indicates that these samples are less
imperfect. The most damaged layer is located at a depth
of ~30 nm in both samples at a projective range of Ar3+

ions equal to about 145 nm.
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Fig. 1. Rocking curves of GaAs crystals implanted with
200-keV-Ar+ ions under conditions of in situ photoexcita-
tion (dashed line) and without photoexcitation (solid line) at
different implantation doses D, cm–2. (a) 1 × 1013; (b) 3 ×
1013; (c) 5 × 1013.
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It is well known that the part of the damaged layer
located close to the surface is enriched with vacancies
[13] because of the high mobility of interstitial defects
and their sink onto the surface. In this case, the
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Fig. 2. Strain profiles εzz(z) (filled squares and circles) and
the exponents of statistical Debye–Waller factor LH(z)
(open squares and circles) along the depth z for GaAs sam-
ples implanted with Ar+ ions at different implantation doses
D, cm–2. (a) 1 × 1013; (b) 3 × 1013; (c) 5 × 1013. j and h

indicate implantation in darkness; d and s indicate implan-
tation under conditions of in situ photoexcitation.
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Quantitative characteristics of the strain profiles in the damaged layers of the GaAs (100) substrates implanted with Ar+ ions
under different conditions

Parameters

Irradiated in darkness Irradiated under conditions
of in situ photoexcitation

dose × 10–13, cm–2

1 3 5 1 3 5

Strain maximum 4.19 × 10–3 4.84 × 10–3 5.60 × 10–3 3.97 × 10–3 4.30 × 10–3 4.16 × 10–3

Position of center of gravity, nm 128 147 164 126 151 192

Width, nm 237 251 262 229 259 305

Area 0.932 1.199 1.346 0.863 1.093 1.231
vacancy-type defects are located closer to the surface
[14]. This should result in the enrichment of the part of
the damaged layer located close to the surface with
vacancies. The asymmetric shape of the strain profile
indicates that the vacancies and the interstitial atoms
are located at different depths. Therefore, the maximum
of static mean-square displacements in the layers
enriched with vacancies allows one to assume that the
amorphization process proceeds via the formation of
vacancy-type clusters (i.e., the clusters with a negative
change of the specific volume ∆V/V). In the illuminated
samples, the structure distortion caused by such clus-
ters is low, because the area of the peak of the static dis-
placements is less. This allows one to assume that the
total volume of the clusters in this sample at least does
not have a lower value. The difference in the strain val-
ues is, evidently, associated with the fact that photoex-
citation accelerates annihilation of vacancy-type and
interstitial defects. It is difficult to evaluate the concen-
tration and dimensions of the clusters of vacancy
defects at this dose, because this requires the appropri-
ate separation of the contributions that come to the total

8
1

D, 1013 cm–2

Iε

2 3 4 5

9

10
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14

Fig. 3. Dependence of the integrated strain Iε on the dose D
of implanted ions in the samples. Implantation in darkness
is shown by filled squares; implantation under conditions of
in situ photoexcitation is shown by open squares.
C

strain profile from the vacancies and interstitial defects.
The latter defects are slightly associated and the degree
of this association is lower in the illuminated samples.

Consider the influence of the implantation dose on
the structure of the damaged layer. It follows from the
table and Fig. 2b that the maximum strain increases by
approximately 10% with an increase in the dose by a
factor of 3. The profile width at the half height also
increases. The center of gravity of the strain profile is
also displaced into the depth. For the illuminated sam-
ple, the strain profile varies in a similar way. However,
the amorphized layer in the nonilluminated sample is
located deeper; the layer is wider and more amor-
phized. This difference increases in the samples
implanted at a lower dose. In other words, an increase
in the implantation dose results in an increase in the
degree of association of vacancies into clusters and the
degree of layer amorphization.

With an increase in the dose of implanted ions up to
5 × 1013 cm–2, the rocking curve changes (Fig. 1c). For
illuminated samples, the maximum strain is lower than
for nonilluminated ones; however, the strain profile is
noticeably broadened, and its center of gravity is dis-
placed into the layer depth (Fig. 2c). For the nonillumi-
nated sample, the evaluations by formulae (2) gave the
following results: the concentration of vacancy clusters
(300–500 vacancies per cluster) is 3 × 10–5; the intersti-
tial clusters are much smaller (~10–20 atoms), and their
concentration is 2 × 10–3. The vacancy clusters in the
illuminated sample consist of ~500–1000 vacancies
with their relative concentration being 4 × 10–6,
whereas interstitial defects form no clusters at all. Thus,
photoexcitation affects the association of vacancies and
interstitial defects differently.

The change in the profile shapes points to a further
separation of the vacancies and interstitial defects in the
depth and diffusion of the latter defects into the crystal
bulk. Qualitatively, the profile shape has, in addition to
the amorphization peak in the vacancy-enriched region,
also a second peak in the region enriched with intersti-
tial atoms. This is explained by the formation of clus-
ters of interstitial defects in nonilluminated samples. In
the illuminated sample, the layer containing slightly
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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associated interstitial defects is smeared over a wide
range of thicknesses. Apparently, photoexcitation pre-
vents the formation of interstitial clusters at the given
dose. Note that the layer amorphized by vacancy-type
clusters at a dose of 5 × 1013 cm–2 is displaced toward
the surface. With an increase in the dose, the integrated
strain Iε increases (Fig. 3). The absolute values of inte-
grated strain are lower in the illuminated samples,
which indicates a higher efficiency of annihilation of
interstitial and vacancy defects in the samples
implanted under conditions of in situ photoexcitation.

CONCLUSIONS
Thus, photoexcitation influences the secondary pro-

cesses occurring with the participation of radiation-
induced point defects in ion-implanted GaAs crystals.
In particular, photoexcitation promotes annihilation of
radiation-induced Frenkel pairs, thus increasing the
residual concentration of the radiation-induced point
defects. Since the degree of the structure distortion
characterized by the Debye–Waller factor depends on
the concentration of clusters of the radiation-induced
point defects (of interstitial- and/or vacancy-type) and
their dimensions, the amorphization of the damaged
layer proceeds via the formation and growth of these
clusters. It is established that the interstitial- and
vacancy-type clusters are spatially separated, i.e., the
vacancy-type clusters are located closer to the surface
than the interstitial-type clusters. The clusters have
smaller dimensions in the substrates implanted under
conditions of in situ photoexcitation. Photoexcitation
stimulates diffusion of interstitial defects into the sub-
strate depth.
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Abstract—A layer Cu1.75 – xTe single crystal in which some Cu atoms were replaced by Cd and Zn atoms
(x = 0.05) was studied by high-temperature X-ray diffractometry. It was established that this replacement sub-
stantially affects the number and temperature of polymorphous transformations. © 2003 MAIK “Nauka/Inter-
periodica”.
The structure of the hexagonal Cu1.75Te phase was
repeatedly studied by electron diffraction [1–3]. In [2],
the crystal structure of the βI-phase of the composition
Cu1.75Te was determined, and it was shown that at room
temperature it has a hexagonal structure with the lattice
parameters a = 8.28 Å ≈ 2a0 and c = 7.22 Å ≈ c0 , sp. gr.

P3m1–  (where a0 = 4.237 Å and c0 =7.274 Å are the
parameters of the hexagonal phase Cu2Te established in
[4]). The second, βII, phase was first found in the elec-
tron diffraction study of a Cu7Te4 thin film; it is hexag-
onal at room temperature and has the lattice parameters

a = 4.17 Å ~ a0, c = 21.65 Å ~ 3c0, sp. gr. P6m2–  [3]. 

We studied the influence of partial replacement of
copper by zinc and cadmium atoms on the mechanism
and temperature of structural transformations in a
Cu1.75Te crystal. With this aim, single crystals of the com-
positions Cu1.75Te, Cu1.70Zn0.05Te, and Cu1.70Cd0.05Te
were grown by the Bridgman method.

Cu1.75Te. Earlier [5, 6], we studied the structural
phase transitions in layer Cu1.75Te single crystals. In the
angular range 0° < 2θ < 100°, we managed to record at
room temperature 12 diffraction reflections of the (00l)
type from layer Cu1.75Te single crystals, i.e., (002),
(003), (004), (006, 100), (008), (009), (00.10), (00.12,
200), (00.14), (00.16) (00.18, 300), and (00.19). The
parameters of the hexagonal unit cell calculated from
these reflections are a = 4.1753 Å, c = 21.6954 Å and
correspond to the parameters of the βII-phase [3]. The
number of reflections and their intensities are constant
in the temperature range 290–593 K. As is seen from
Fig. 1, the temperature dependences a(T) and c(T) of
the hexagonal phase increase monotonically in this
temperature range. At 593 K, of the above 12 diffrac-
tion reflections of the (00l) type only the reflections
with even l were recorded in this angular range, i.e.,
(002), (004), (006), (008), (00.12), (00.16), and

c3ν
1

D3h
1
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(00.18). Since the l indices are multiples of two, then,
dividing into two, we obtain the following lattice
parameters: a = 8.4076 Å, c = 10.9216 Å, which coin-
cide with the lattice parameters indicated for the com-
position with 35 mol % Te [7]. At 653 K, the appear-
ance of the reflection from the (III) plane of the fcc
modification is accompanied by the appearance of only
three reflections from the matrix crystal in the same
angular range, these reflections have the indices (006,
100), (00.12, 200) and (00.18, 300). Dividing the
reflection indices into three, we obtain the (002.100),
(004.200), and (006.300) reflections. The lattice param-
eters calculated from these reflections are a = 4.2402 Å,
c = 7.3440 Å and correspond to the lattice parameters
of the hexagonal Cu2Te phase [4]. In the temperature
range 653–723 K, a Cu1.75Te crystal consists of the hex-
agonal and fcc phases. As is shown in Fig. 1, the hexag-
onal phase is transformed into the fcc phase at 723 K.
The change of the lattice parameters of the hexagonal
phase with temperature and its transformation into the
fcc phase occur both on heating and cooling.

Cu1.70Zn0.05Te. In the angular range 10° < 2θ < 80°,
we recorded nine diffraction reflections from the natu-
ral (00l) surface of a layer Cu1.70Zn0.05Te single crystal
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Fig. 1. Temperature dependence of the lattice parameters of
a Cu1.75Te crystal; f and d are the a and c parameters of the
hexagonal modification, respectively; ( is the a parameter
of the fcc modification. 
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at room temperature. Five of these reflections, (008),
(009), (00.10), (00, 12.200), and (00.15), are due to the
hexagonal phase with the lattice parameters a = 4.1558 Å,
c = 21.5926 Å. All nine reflections are unambiguously
indexed within the orthorhombic lattice (superstructure
with respect to the hexagonal phase) with the parame-
ters a = 7.3383 Å, b = 22.1948 Å, c = 35.9863 Å [8]. As
is seen from Fig. 2, the lattice parameters of the hexag-
onal and orthorhombic phases increase monotonically
with temperature up to 634 K. The (009) and (0015)
reflections of the hexagonal phase disappear at 634 K.
Similar to the case of Cu1.75Te, the l indices of the
remaining (008), (00.10), (00.12) reflections are multi-
ples of two. Upon division by two, we obtain the reflec-
tions (004), (005), and (006,400), respectively. The
parameters of the hexagonal lattice calculated from
these reflections are a = 8.357 Å, c = 10.852 Å. The b
and c parameters of the orthorhombic phase change in
a jumpwise manner. At 873 K, all the diffraction reflec-
tions of the hexagonal and orthorhombic phases disap-
pear, and the (311) reflection appears in the same angu-
lar range that is attributed to the high-temperature fcc
phase with the lattice parameter a = 6.0658 Å.

Cu1.70Cd0.05Te. Indexing the diffraction pattern
from the Cu1.70Cd0.05Te sample confirmed the existence
of three phases—the orthorhombic phase with the lat-
tice parameters a = 7.318 Å, b = 22.184 Å, c = 36.515 Å;
the hexagonal phase with the parameters a = 8.290 Å,
c = 21.655 Å; and the metastable (at room temperature)
primitive cubic phase with the lattice parameter a =
5.978 Å. The Cu1.70Cd0.05Te single crystal showed ten
diffraction reflections in the angular range 20° < 2θ <
70° in a 10–3 Pa vacuum at room temperature. These
reflections confirm the results obtained on a powder
sample. It is important that in the temperature range
290–573 K, the number and intensities of reflections do
not change, whereas the lattice parameters of the hex-
agonal, orthorhombic, and cubic phases increase mono-
tonically (Fig. 3). Several (00l) reflections, namely,
(008), (00.10), and (00.14), observed at room tempera-
ture disappear at 535 K, whereas the (009), (00.12), and
(00, 15) reflections with l values that are multiples of
three are observed. Dividing the l indices into three, we
obtain from these reflections c = 7.256 Å, which corre-
sponds to the c parameter of the hexagonal phase
βI-Cu1.75Te. The a parameter calculated from the (203)
and (321) reflections equals 8.280 Å [2]. As is seen
from Fig. 3, the c parameter of the orthorhombic phase
changes in a jumpwise manner at this temperature. At
673 K, all the reflections observed at room temperature
are restored. At T = 723 K, the (009) and (00.15) reflec-
tions of the hexagonal phase disappear but (008),
(00.10), (00.12) and (00.14) with odd l are preserved.
Dividing their indices into two, we obtain (004), (005),
(006), and (007) reflections; the lattice parameters cal-
culated from these reflections are a = 8.378 Å, c =
10.877 Å [7]. It follows from Fig. 3, that at 723 K, the
b and c parameters of the orthorhombic phase also
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
change in a jumpwise manner. At 801 K, the hexagonal
and orthorhombic phases are transformed into a high-
temperature primitive cubic phase. As is seen from
Fig. 3, at 801 K, the monotonically increasing lattice
parameter of the cubic phase a(T) changes in a jump-
wise manner. Note that a deficit in copper is character-
istic of copper chalcogenides Cu2 – xS(Se, Te). In sto-
ichiometric and nonstoichiometric compounds, S2–,
Se2–, and Te2– anions form the lattice framework,
whereas Cu1+ and Cu2+ cations are statistically distrib-
uted over the tetrahedral and octahedral voids between
two close-packed chalcogen layers irrespective of the
crystal system. The lattice parameters of various crys-
talline modifications of the Cu1.75 − xMx crystals (M =
Zn, Cd; X = 0 and 0.05) are listed in the table.
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Crystalline modifications of the Cu1.75 – xMxTe compound (M = Zn, Cd)

Composition Modification T, K
Lattice parameters, Å

Z ρx,
g cm–3 Sp. gr. References

a b c

Cu1.75Te Hexagonal 290 4.175 21.695 6 7.259 –P6m2 [3]

Hexagonal 593 8.408 10.922 12 7.112 [7]

Hexagonal 653 4.240 7.344 2 6.929 –P6/mmm [4]

Fcc 723 6.097 4 6.993 Fm3m

Cu1.70Zn0.05Te Hexagonal 290 4.156 22.195 21.593 6 7.364 –P6m2

Orthorhombic 7.338 35.986 108 7.304 [3]

Hexagonal 634 4.1704 22.364 10.852 12 7.247 [8]

Orthorhombic 7.362 36.184 108 7.186 [7]

Fcc 873 6.066 4 7.104 Fm3m [8]

Cu1.70Cd0.05Te Hexagonal 290 8.335 22.305 21.654 24 7.374 –P3m1

Orthorhombic 7.315 36.202 108 7.319

Cubic 5.978 4 7.494 [3]

Hexagonal 535 8.280 22.417 7.256 8 7.433

Orthorhombic 7.366 36.358 108 7.201 [2]

Cubic 6.011 4 7.373 [8]

Hexagonal 673 8.405 22.434 21.809 24 7.200 –P3m1
[3]

Orthorhombic 7.384 36.279 108 7.194

Cubic 6.029 4 7.306

Hexagonal 723 8.378 22.518 10.877 24 7.265 [7]

Orthorhombic 7.372 37.012 108 7.036 [8]

Cubic 6.039 4 7.270

Cubic 801 6.092 4 7.082

D3h
1

D6h
1

D3h
1

C3ν
1

C3ν
1

It is seen that at room temperature the Cu1.75Te com-
pound has only one hexagonal phase. Copper atoms are
in uni- (Cu+–0.98) and divalent (Cu2+–0.80) states. The
Cu+ ions are located in tetrahedral voids between two
close-packed Te layers and the Cu2+ ions are located in
octahedral voids. The structure type does not depend on
temperature, the lattice parameters change at 593 and
653 K. At 723 K, the hexagonal modification is trans-
formed into an fcc one. One can conclude that Zn2+ ions
(0.83) isomorphously replace Cu2+ ions (0.80) in a
Cu1.70Zn0.05Te single crystal, whereas Cd2+ ions (0.99)
replace Cu+ ions (0.98) in Cu1.70Cd0.05Te. Naturally, the
Zn–Te and Cd–Te chemical bonds differ from Cu–Te
bonds, which seems to explain the fact that at room
temperature the Cu1.70Zn0.05Te compound consists of
two phases, while the Cu1.70Cd0.05Te compound con-
sists of three phases. This also underlies the fact that the
temperature and number of phase transformations in
these compounds differ from the temperature and num-
ber of phase transformations in Cu1.75Te.
CR
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Abstract—The combined effect of the changes in the number and type of vacancies and dislocation density on
selenium and sulfur diffusion in single crystals of undoped semi-insulating gallium arsenide has been studied.
The differences in the diffusion mechanisms in the subsurface region of samples with an initial deficiency in
gallium or arsenic are established as well as the dependence of the effective radius of arsenic trapping by dis-
locations on the ratio of the concentrations of gallium and arsenic vacancies. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

Gallium arsenide-based integral circuits have a
higher operating speed in comparison with silicon-
based ones. However, because of instability in repro-
ducing their parameters, these circuits have certain lim-
itations that hinder their widespread use. A decrease in
the size of the working elements enhances the role of
structural inhomogeneities during material doping and,
thus, leads to a lower quality of the circuits. Despite the
extensive fundamental studies of diffusion in GaAs
[1−6], the character and mechanisms of the combined
effect of different defects in the crystal lattice on the
diffusion processes are still not quite clear.

It is well known that the elements of group VI sub-
stitute mainly arsenic in GaAs crystals and behave like
donors [1–3]. Diffusion occurs by the dissociation
mechanism [1–6]. At the impurity content N < 1020 cm–3,
the diffusion zone is described by the Gaussian error
function [1, 5]

(1)

where N(x) is the impurity concentration at the distance
x from the sample surface, N0 is the surface impurity
concentration, t is the process duration, and D is the dif-
fusion coefficient. In the framework of the mechanism
under discussion, the effective diffusion coefficient for
an n-fold donor impurity with due regard for the effect
of electric field directed along the concentration gradi-
ent is determined by the following expression [1]:

(2)

where Di is the diffusion coefficient of interstitial
atoms, NS is the concentration of substitutional atoms,
Ki is the parameter characterizing the mean lifetime of

N x( ) N0 erfc
x

2 Dt
--------------,=

D n 1+( )DiNSKiPAs
1/α

,=
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interstitial atoms, and  is the vapor pressure of the
volatile component.

If the surface of the planar sample is a sink of
arsenic atoms, we have

Ki1 = (π/L)2Di , (3)

where L is the length of the diffusion region. In the case
where dislocations play the role of a sink, the following
equations are valid:

(4)

(5)

is the mean distance between the dislocations with the
density Nd, and r is the effective radius of particle trap-
ping by dislocations.

However, these relationships do not take into
account the initial vacancy composition in GaAs crys-
tals and its influence on the efficiency of the sinks of
arsenic. In the present paper, we demonstrate the exist-
ence of such an influence and discuss the mechanisms
underlying this phenomenon by considering the diffu-
sion of selenium and sulfur atoms in GaAs.

EXPERIMENTAL TECHNIQUE

The starting material was Czochralski-grown
undoped semi-insulating gallium arsenide single crys-
tal, which allowed us to ignore the effect of impurity
interactions on diffusion (the concentration of uncon-
trolled impurities in the material did not exceed
1016 cm–3 [2]) and to use the luminescence technique to
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evaluate the vacancy concentration in the initial crys-
tals.

We studied diffusion in ~4-mm-thick samples (with
a dislocation density of Nd = 3 × 104–9 × 105 cm–2 and an
electrical resistivity ρ = 8 × 107–2 × 108 Ω cm) cut out
normally to the growth axis from the (100)-oriented n-
type single crystal. The chosen crystals had different
initial concentration ratios of gallium [VGa] and arsenic
[VAs] vacancies. Type-1 and type-2 crystals can be
defined as those with [VGa] > [VAs] and [VGa] < [VAs],
respectively. The diffusion process proceeded for six
hours in quartz ampules evacuated to a pressure lower
than 10–3 Pa at 850°C. Sulfur atoms diffused from the
vapor phase obtained by vaporization of a piece of sul-
fur placed into a ~4-cm3 ampule. Selenium diffused
from a 1-µm-thick layer obtained by thermal deposition
of Se onto the sample surface. This ensured the condi-
tions necessary for diffusion from a stable source. After
the diffusion of S and Se, the Ga2S3 and Ga2Se3 surface
layers formed were etched away by acid.

In the course of sulfur and selenium diffusion, the
impurity distribution at the plate surface was studied
using the layer-by-layer etching and the anode oxida-
tion technique with the additional illumination of the
samples [7]. The charge-carrier density (at n > 1016 cm–3)
was determined from the half-width of the photolumi-
nescence edge band at 300 K [8]. At high impurity con-
centrations, a certain deviation of the charge-carrier
concentration from the impurity concentration was
observed. Therefore, we had to introduce the corre-
sponding corrections to the NSe and NS values [2, 5].
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Fig. 1. Concentration profile of diffusion of Se atoms in
GaAs in the cases (a) [VGa] > [VAs] and (b) [VGa] < [VAs].
In the inset: the corresponding distributions for Nrel =
N(x)/N0 on the logarithmic scale in the cases (a) [VGa] >
[VAs] and (b) [VGa] < [VAs].
C

In the initial GaAs samples, the [VAs]/[VGa] ratio was
determined from the intensity ratio of the photolumi-
nescence edge band (T = 77 K) and of the band origi-
nating from the radiative transition from the conduction
band to the acceptor level . This corresponding
technique and the method of recording the photolumi-
nescence spectra at 300 K and 77 K are described in
[9, 10] and [8], respectively. The density of growth dis-
locations was determined from the etching pits using a
MIM-7 microscope.

EXPERIMENTAL
The selenium and sulfur diffusion profiles in the

subsurface region of the samples differed for crystals
with different values of the [VAs]/[VGa] ratio. For type-1
samples, the concentration dependence has two regions
(denoted as I and II) (see Figs. 1a, 2a). Region II is fit-
ted by the erfc function, whereas region I significantly
deviates from it and is better fitted by another function
of the form

N(x) = N0exp(–x/L), (6)

where x is the distance from the sample surface and L is
the length of the diffusion region. In curve  ver-
sus x2, these regions correspond to straight lines I and II
(see insets in Figs. 1 and 2). The diffusion coefficients
are determined by the slope of these lines as

(7)

The diffusion coefficients D1 (region I) and D2 (region
II) determined in such a way are indicated in the table.
In the samples with the same initial vacancy concentra-
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Fig. 2. Concentration profile of diffusion of S atoms in
GaAs in the cases (a) [VGa] > [VAs] and (b) [VGa] < [VAs].
In the inset: the corresponding distributions for Nrel =
N(x)/N0 on the logarithmic scale for the cases (a) [VGa] >
[VAs] and (b) [VGa] < [VAs].
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tion, D1 for both elements increased with the disloca-
tion density (Fig. 3).

The type-2 samples exhibited the same behavior of
N (Figs. 1b, 2b) with a profile close to the erfc function.
The diffusion coefficients for S and Se atoms found
from the plots  versus (x2) (see insets in Figs. 1
and 2) are equal to the values of D2Se and D2S and agree,
by an order of magnitude, with the values reported in
the literature (DSe = (1.6–6.3) × 10–15 cm2 s–1 and DS =
1.1 × 10–14– 2.5 × 10–13 cm2 s–1 [1–6]).

Figure 4 demonstrates the dependence of D1/D10 on
the ratio of vacancy concentration z for gallium and
arsenic (z = [VAs]/[VGa]) in undoped crystals. The plots
in Fig. 4 correspond to type-1 samples with close dislo-
cation densities (Nd = (4.3 ± 0.5) × 105 cm–2). As
D10(Se) and D10(S) values, we chose the lowest values
of the diffusion coefficient found in region I at z  1.

DISCUSSION

Region I in Figs. 1a and 2a, whose existence in the
diffusion zone of group-VI elements was not reported
earlier [1, 3–6], is explained by the lower diffusion rate
than that in region II. The deviation of the selenium and
sulfur diffusion profiles from the erfc function in type-
1 samples ([VGa] > [VAs]) indicates that the vacancy
concentration influences diffusion, in contrast to type-2
samples ([VAs] > [VGa]), where no such a deviation was
observed (see Figs. 1b, 2b). Moreover, the curve D1 ver-
sus Nd (Fig. 3) proves the participation of dislocations
in the diffusion process. Thus, the formation of the dif-
fusion profiles of impurities in region I seems to be the
result of the joint effect of vacancies and dislocations.

It should be assumed that in the crystals with gal-
lium deficiency, where the arsenic flow to the surface
sink is limited by the Ga2S3 or Ga2Se3 surface layers,
the dislocations start playing a significant role (in
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Fig. 3. Diffusion coefficient in region I versus dislocation
density in type-1 samples: (a) GaAs (Se) and (b) GaAs (S).
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accordance with Eqs. (2)–(4)). As a result, the second-
ary diffusion of impurities from the surface to the
vacancies occurs due to dislocations. Such a process
can take place if the diffusion coefficient of vacancies
is much lower than the coefficient of impurity diffusion.

The self-diffusion coefficient for VAs (T = 1123 ä)
can be written as [1]

 = 7.9 × 103exp(–4.0/kT) (8)

and equals 1 × 10–15 cm2 s–1. This value is lower by two
orders of magnitude than D2S and is of the same order
of magnitude as D2Se (see table). However, the diffusion
coefficient that describes the arsenic flow to the sinks
such as dislocations is determined not by the density
gradient for defects but rather by the nature of their
interactions with dislocations. This is confirmed by the
dependence of D1/D10 on the type of the vacancies in
the crystals (Fig. 4). Therefore, in the case under dis-
cussion,  seems to be lower than 10–15 cm2 s–1 and,
proceeding from the values of D1Se and D1S, is equal to
about 10–16 cm2 s–1.

The As flow to the dislocation sinks affects the S and
Se diffusion in the crystals with the initial deficiency in
gallium but does not affect it in the crystals with the ini-
tial deficiency in arsenic. This also stems from the
dependence of the efficiency of the dislocation sinks on
the defect structure in the initial samples. In the atmo-
spheres around dislocations (Cottrell atmospheres), the
gallium vacancies are dominant in unannealed type-1
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Fig. 4. Diffusion coefficient in type-1 samples in region I
versus ratio z = [VAs]/[VGa]: (a) GaAs (Se) and (b) GaAs (S).

Diffusion coefficients (cm2 s–1)

Element D1 × 1016 D2 × 1014

Se 0.61–3.12 0.34–0.46

S 0.92–2.68 61–64
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crystals, whereas in type-2 crystals, the arsenic vacan-
cies are dominant. It is well known [1] that VGa have a
negative charge at high temperatures, whereas VAs and
interstitial arsenic atoms Asi have a positive charge.
The electric field along the concentration gradient

favors the motion of  toward dislocations (Asi is the
dominant point defect in the crystals where [VGa] >

[VAs] [11]) if  is the dominant constituent of the dis-

location atmospheres and hinders this motion if 
dominates there. Hence, the effective radius character-
izing the trapping of arsenic atoms by dislocations [see
Eq. (4)] depends on the type of vacancies in the crystal.
A formula for evaluating this dependence can be
obtained in the following way.

The D1/D10(z) profiles determined for selenium and
sulfur in type-1 samples with close values of the dislo-
cation density in the z range under study are approxi-
mated quite well (see solid curves in Fig. 4) by the rela-
tionship in the form

D1/D10 = 1/z. (9)

If we assume that the existence of region II is deter-
mined by the dislocation sinks (parameter Ki2), it fol-
lows from Eqs. (2), (4), and (9) that

(10)

where r is the effective radius of trapping of As by dis-
locations and r0 is the same radius of trapping for the
case where z  1 (i.e., [VGa] = [VAs]).

1

Using Eqs. (5) and (10), we find the dependence of
the effective radius of trapping of As by dislocations on
the concentration ratio of gallium and arsenic in an
undoped gallium arsenide crystal

(11)

Thus, we obtained the exponential r(z) function with

the base 0 < ( ) < 1. At Nd = const, this function is

1 The variation in the other parameters in Eq. (2), in particular in
Di , resulting from the changes in the efficiency of the dislocation
sinks, is assumed to be a secondary effect with respect to r and,
therefore, is not taken into account in the approximation under
study.

Asi
+

VGa
–

VAs
+

D1/D10K1/K10
2

rd/r0( )/ rd/r( )loglog 1/z,= =

r πNd( ) z 1–( )/2
r0

z
.=

Nd
1/2

r0

2 3 4 510 z

1 Nd⁄

r0

 r(z) 

Fig. 5. The plot of the function r(z) at Nd = const.
C

shown in Fig. 5. We see that the effective radius of trap-
ping of arsenic by dislocations steeply grows with the
gallium deficiency in the crystals where [VGa] > [VAs]
and only slightly depends on the vacancy composition
if [VGa] < [VAs].

CONCLUSIONS

Selenium and sulfur diffusion in undoped gallium
arsenide single crystals depends on the joint effect of
the vacancy composition and dislocation structure of
the initial crystals.

In crystals with a deficiency in gallium, the diffusion
profiles deviate from the erfc function. This deviation is
caused by the secondary diffusion of an impurity from
the surface to the vacancies formed due to the sink of
arsenic to the dislocations.

The effective radius of the trapping of As by the dis-
location sinks has a maximum value in crystals where
the concentration of gallium vacancies is higher than
the concentration of arsenic vacancies and decreases
with an increase in arsenic deficiency. This is explained
by the charge states of Ga and As vacancies and inter-
stitial As atoms.
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Abstract—With the aim of studying the characteristic features of chemical interactions between atoms in the
α (red tetragonal) and β (black monoclinic) modifications of zinc diphosphide, the maps of deformation elec-
tron-density distribution at the P–P and P–Zn bonds were constructed from precision X-ray diffraction data.
The P–P bonds were demonstrated to be of a pronounced covalent nature. The maxima in the Zn–P bonds are
shifted to the electronegative phosphorus atom, which is indicative of a mixed ionic–covalent nature of the
bond, with the ionicity being higher in the α than in the β modification. Based on the dependence of the con-
tribution of the metallic component on the delocalized electron density, it was concluded that the contribution
of the metallic component is more pronounced in the black than in the red modification. An increase in the bond
ionicity and the absence of delocalized electrons result in an increase in the forbidden gap in the red modifica-
tion compared to its increase in the black modification. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The formation of the tetragonal (α) [1] and mono-
clinic (β) modifications [2] of zinc diphosphide follows
the rule of four electrons [3] implying the predomi-
nantly covalent character of chemical bonding. Accord-
ing to the bond scheme (Fig. 1), each zinc atom is sur-
rounded by four phosphorus atoms, and each phospho-
rus atom is bound to two zinc and two phosphorus
atoms. The atomic structures of both modifications of
the ZnP2 crystals are in complete agreement with this
bond scheme. The atoms have a distorted tetrahedral
coordination.

Both modifications have substantially different
physical properties but have the same type of chemical
bonding. The tetragonal modification is a high energy-
gap semiconductor (∆E = 2.25 eV) characterized by a
low carrier mobility, which allows one to use this mod-
ification as a dielectric in the MIS (metal-insulation–
semiconductor) structures. In the monoclinic modifica-
tion, the forbidden gap (∆E = 1.33 eV) is almost half as
large as that in the tetragonal modification. It is com-
monly assumed that chemical bonding in complex
semiconductors has a mixed ionic–covalent–metallic
nature [4]. The predominance of the ionic component
leads to a shift of the covalent bridge of the bond to the
electronegative atom and an increase in the forbidden
gap in comparison with the gap in isoelectron elemental
semiconductors. An increase in the metallic component
of the bond results in the “diffusion” of the covalent
bridge, the appearance of delocalized electrons, and a
decrease in the forbidden gap.
1063-7745/03/4802- $24.00 © 0199
The construction of deformation electron-density
(DED) maps based on precision X-ray diffraction data
is the only direct way of obtaining information on the
distribution of valence electrons and the nature of
chemical bonding in crystals.

Our study was aimed at investigating the character
of chemical bonding in two modifications of zinc
diphosphide using DED maps constructed from preci-
sion X-ray diffraction data.

EXPERIMENTAL

Prismatic crystals of the α (I) and β (II) modifica-
tions of zinc diphosphide were prepared by deposition
from the gas phase and then rolled into spheres 0.3–
0.4 mm in diameter. The X-ray diffraction study of the
α modification was performed on a Hilger–Watts dif-
fractometer (λMoKα radiation, graphite monochroma-
tor, θ/2θ can, θ < 72°). The X-ray diffraction study of
the β modification was carried out on a Siemens P3 dif-

P

Zn

P

Fig. 1. Scheme of the bonds in the α and β modifications of
ZnP2.
2003 MAIK “Nauka/Interperiodica”
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fractometer (λMoKα radiation, graphite monochroma-
tor, θ/2θ scan, θ < 75°). The X-ray data for both modi-
fications were collected within the full sphere of the
reciprocal space at room temperature. The unit-cell
parameters were refined using 24 reflections in the 2θ
angular range from 22° to 25°.

The structures were solved by the heavy-atom
method and refined anisotropically by the full-matrix
least-squares method (based on F0) using the
SHELXTL PLUS 4.2 program package [5]. The Ψ-scan
empirical absorption corrections were applied to the
X-ray data sets collected from both modifications. The

Table 1.  Crystallographic characteristics, parameters of
X-ray diffraction experiment, and details of structure refine-
ment for modifications I and II

Structure, sp. gr. α-ZnP2 (I) 
P43212

β-ZnP2 (II)
P21/c

T, K 293 293

a, Å 5.0661(5) 8.8632(7)

b, Å 5.0661(5) 7.2883(6)

c, Å 18.532(4) 7.5600(6)

β, deg 90 102.31(5)

V, Å3 475.61(10) 477.10(80)

Number of observed
reflections

7152 4312

Number of independent 
reflections with
F > 4σ(F)

1958 2131

R 2.24 3.16

Rw 3.31 3.74

GOOF 1.13 1.3

Table 2.  Atomic coordinates and equivalent isotropic ther-
mal parameters (Å2) in the crystal of modification I

Atom x y z Ueq

Zn 0.13554(4) –0.34668(4) 0.05028(1) 0.00880(5)

P(1) –0.19956(8) 0.31763(9) 0.05983(2) 0.00686(7)

P(2) –0.01810(8) 0.00941(8) 0.12401(3) 0.00696(6)

Table 3.  Atomic coordinates and equivalent isotropic ther-
mal parameters (Å2) in the crystal of modification II

Atom x y z Ueq

Zn(1) 0.0805(1) 0.7469(1) 0.3938(1) 0.003(1)

Zn(2) 0.3933(1) 0.0967(1) 0.2249(1) 0.003(1)

P(1) 0.3741(1) 0.4279(1) 0.2160(1) 0.001(1)

P(2) 0.2350(1) 0.0195(1) 0.4410(1) 0.001(1)

P(3) 0.2431(1) 0.4845(1) 0.4273(1) 0.002(1)

P(4) 0.0790(1) 0.2572(1) 0.3959(1) 0.002(1)
C

absolute structure was confirmed by the refinement of
the Flack parameter [6].

The crystallographic characteristics, parameters of
X-ray diffraction study, and details of the structure
refinement are given in Table 1. The atomic coordinates
and thermal parameters Ueq for I and II are listed in
Tables 2 and 3, respectively.

RESULTS AND DISCUSSION

A high-precision X-ray diffraction study of crystals
I and II was carried out for the first time, which allowed
us to determine more accurately the unit-cell parame-
ters and interatomic distances and to compare the struc-
tures of these modifications. The refined P–P bond
lengths in α-ZnP2 (Table 4) are virtually equal to the P–
P bond lengths in pure phosphorus (2.17 and 2.21 Å)
[7]. The structure of α-ZnP2 (Fig. 2) contains three
crystallochemically independent atoms, namely, Zn,
P(1), and P(2). All the atoms occupy eightfold posi-
tions. The P–P bonds form helical chains along the a
and b axes. When projected, these chains resemble tet-
ragonal wells. Three phosphorus chains are linked by
zinc atoms. Two of these chains are extended along the
same axis (either the a axis or the equivalent b axis),
and the third chain is extended along another axis. The
zinc atom forms two bonds with one of the equally
directed chains and one bond with another chain. The
maximum and minimum bond angles at the zinc atom
are 124.17° and 99.39°, respectively. These angles sub-
stantially differ from the ideal tetrahedral value
(109.5°). Of the two crystallochemically independent
phosphorus atoms, the P(2) atom is characterized by
larger distortions of the tetrahedral angles (Table 4).

The structure of β-ZnP2 (Fig. 3) contains six inde-
pendent atoms in the fourfold positions. These are two
zinc atoms [Zn(1) and Zn(2)] and four phosphorus
atoms [P(1), P(2), P(3), and P(4)]. In the structure of II,
the bond lengths and bond angles vary over wider
ranges than the corresponding parameters in I (see
Table 4). It was of interest to compare both structures
and find the atoms in the structure of the β modification
that can be considered as analogs of the zinc atom and
both phosphorus atoms in the α modification. The bond
angles appear to be the best parameters for this analy-
sis. Thus, the maximum and minimum bond angles at
the Zn(2) atom in the β modification are 125.7° and
101.3°, respectively. These values are comparable with
the bond angles at the zinc atom in the α modification
(the maximum and minimum bond angles are 124.8°
and 99.4°, respectively). All six angles at the second
crystallochemically independent zinc atom, namely,
Zn(1) in β-ZnP2, are close to the ideal tetrahedral value.
Hence, we assumed that the Zn atoms in I are analogs
of Zn(2) in II. Similarly, it was found that the P(1) atom
in α-ZnP2 is an analog of the P(1) atom in β-ZnP2. The
latter atom forms bonds only with the Zn(2) atom,
which is an analog of the Zn atom in the
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Table  4.  Bond lengths d (Å) and bond angles ω (deg) for analogous atoms in the crystals of modifications I and II

I II

Analogous Zn and Zn(2) atoms

Bond d Bond d

Zn–P(2) 2.3931 Zn(2)–P(1) 2.420
Zn–P(1) 2.3601 Zn(2)–P(1) 2.360
Zn–P(1) 2.4064 Zn(2)–P(2) 2.435
Zn–P(2) 2.3932 Zn(2)–P(3) 2.431

Angle ω Angle ω
P(1)–Zn–P(1) 124.18 P(1)–Zn(2)–P(1) 125.4
P(1)–Zn–P(2) 112.50 P(1)–Zn(2)–P(2) 110.9
P(2)–Zn–P(1) 105.12 P(2)–Zn(2)–P(3) 106.5
P(2)–Zn–P(2) 99.40 P(3)–Zn(2)–P(1) 101.3
P(2)–Zn–P(1) 103.32 P(1)–Zn(2)–P(3) 101.7
P(1)–Zn–P(2) 109.22 P(1)–Zn(2)–P(3) 109.4

Analogous P(1) and P(1) atoms

Bond d Bond d

P(1)–Zn 2.4094 P(1)–Zn(2) 2.420
P(1)–Zn 2.3601 P(1)–Zn(2) 2.360
P(1)–P(2) 2.2080 P(1)–P(2) 2.212
P(1)–P(2) 2.1673 P(1)–P(3) 2.205

Angle ω Angle ω
Zn–P(1)–Zn 115.77 Zn(2)–P(1)–Zn(2) 117.5
P(2)–P(1)–Zn 113.85 P(2)–P(1)–P(3) 112.0
P(2)–P(1)–Zn 109.07 Zn(2)–P(1)–P(3) 112.1
P(2)–P(1)–(P2) 106.93 Zn(2)–P(1)–P(3) 109.8
P(2)–P(1)–Zn 106.00 Zn(2)–P(1)–P(3) 102.2
P(2)–P(1)–Zn 104.48 Zn(2)–P(1)–P(2) 102.7

Analogous P(2) and P(4) atoms

Bond d Bond d

P(2)–Zn 2.3932 P(4)–Zn(1) 2.342
P(2)–Zn 2.3931 P(4)–Zn(1) 2.341
P(2)–P(1) 2.2080 P(4)–P(2) 2.197
P(2)–P(1) 2.1673 P(4)–P(3) 2.184

Angle ω Angle ω
P(1)–P(2)–Zn 112.24 P(3)–P(4)–Zn(1) 114.8
P(1)–P(2)–Zn 111.58 P(3)–P(4)–Zn(1) 112.4
P(1)–P(2)–Zn 110.3 P(2)–P(4)–Zn(1) 110.8
P(1)–P(2)–P(1) 109.2 P(2)–P(4)–Zn(1) 109.6
Zn–P(2)–Zn 108.27 Zn(1)–P(4)–Zn(1) 107.7
Zn–P(2)–P(1) 105.01 P(3)–P(4)–P(2) 101.4

II

Bond d Bond d Bond d

Zn(1)–P(2) 2.396 P(3)–Zn(2) 2.431 P(2)–Zn(2) 2.435
Zn(1)–P(3) 2.376 P(3)–Zn(1) 2.376 P(2)–Zn(1) 2.396
Zn(1)–P(4) 2.342 P(3)–P(1) 2.205 P(2)–P(1) 2.212
Zn(1)–P(4) 2.341 P(3)–P(4) 2.184 P(2)–P(4) 2.197

Angle ω Angle ω Angle ω
P(2)–Zn(1)–P(3) 109.7 Zn(1)–P(3)–Zn(2) 119.7 Zn(1)–P(2)–Zn(2) 119.0
P(3)–Zn(1)–P(4) 110.9 Zn(1)–P(3)–P(1) 118.3 Zn(1)–P(2)–P(1) 118.0
P(4)–Zn(1)–P(2) 108.5 Zn(2)–P(3)–P(1) 110.9 Zn(1)–P(2)–P(4) 108.0
P(3)–Zn(1)–P(4) 110.9 Zn(1)–P(3)–P(4) 103.0 Zn(2)–P(2)–P(1) 107.8
P(2)–Zn(1)–P(4) 109.0 P(1)–P(3)–P(4) 102.8 P(4)–P(2)–P(1) 102.5
P(4)–Zn(1)–P(4) 107.7 P(4)–P(3)–Zn(2) 97.9 Zn(2)–P(2)–P(4) 98.5
Note: Errors in the bond lengths and bond angles are not higher than 0.0007 Å and 0.02°, respectively.
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202 ZANIN et al.
a

b
c

P(1) P(2) Zn

Fig. 2. Scheme of the α-ZnP2 structure; the phosphorus chains are highlighted.
α-modification. The P(2) atom in I is comparable with
the P(4) atom in II, with the latter being involved in
bonding only with the Zn(1)-type atoms. The remain-
ing two independent phosphorus atoms in II, namely,
P(2) and P(3), are bound to the Zn(1) and Zn(2) atoms.
These atoms have no analogs in the structure of I, but
they can be treated as analogs of one another (Table 4).

In spite of the fact that three of the six independent
atoms in the structure of β-ZnP2 have analogs in the
α-ZnP2 structure, they form no common structural frag-
ments. The phosphorus chains in β-ZnP2 are less dis-
tinct than those in the α modification and are extended
only along the c axis. When projected, these chains
have the shape of an open irregular pentagon. The
Zn(2) atom has three bonds with the P atoms of one
chain, including the above-mentioned bond, and one
bond with the P atom from another chain. The length of
the bond with the adjacent chain (2.360 Å) is substan-
tially shorter than the Zn–P bond length within the
chain.

The Zn(1) atom is involved in bonds with three
phosphorus chains and forms two equal bonds with the
P(4) atoms from one chain and bonds of virtually the
same lengths with the P(2) and P(3) atoms from two
other chains.

The X-ray diffraction data were used to construct
DED maps. To obtain maps that give most information
on the valence electron distribution at the bonds, we
chose the small-angle scattering empirically. In the
maps constructed with the use of the reflections with
(sinθ)/λ > 0.75 Å–1, the maxima on the bonds are seen
rather poorly but the asymmetry of the environment
around the zinc atom becomes quite clear. The reduc-
tion of (sinθ)/λ down to 0.4 Å–1 leads to a dramatic
decrease in the number of reflections and can give rise
to the maxima of the termination waves. Chemical
C

bonding was analyzed using the electron density maps
that had no asymmetry of atoms. For the structures
under consideration and experimental conditions used,
this condition was fulfilled in the (sinθ)/λ range from
0.65 to 0.7 Å–1.

The DED sections passing through the P–P bonds
involving the analogous atoms, namely, P(1) in the α-
ZnP2 phase and P(4) in β-ZnP2 phase, are shown in
Figs. 4 and 5, respectively. The sections are character-
ized by pronounced maxima located at the midpoints
between the phosphorus nuclei, which confirms the
pure covalent nature of bonding in the phosphorus

a

b

c

Zn

P

Fig. 3. Scheme of the β-ZnP2 structure; the phosphorus
chains are highlighted.
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chains. In the DED sections of α-ZnP2, the maxima on
both bonds have equal heights (0.25 e/Å3). In the DED
sections of β-ZnP2, the maxima in the P(4)–P(2) and
P(4)–P(3) bonds have different heights (0.35 and
0.25 e/Å3, respectively). The maxima are elongated in
a direction that is almost perpendicular to the bond line.
On the whole, the character of DED distribution at the
P–P bonds in α-ZnP2 is analogous to that in β-ZnP2.
The main difference comes down to the fact that the β
modification is characterized by a high delocalized
electron density, which indicates that the metallic com-
ponent of the bond in this modification is larger than
that in the α modification. An increase in the metallic
component of the bond leads to equalization of the lat-
tice potential and a decrease in the forbidden gap,
which was actually observed.

The DED distributions in the plane passing through
the bonds involving the zinc atom are shown in Figs. 6

P(1)

P(2)P(2)

Fig. 4. The DED section through the P–P–P bonds in
α-ZnP2.

Zn

P(2)

P(1)

Fig. 6. The DED section through the Zn–P–P bonds in
α-ZnP2.
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and 7. The maximum in the P(4)–P(3) bond is virtually
equal to the maximum in the DED section passing
through the P–P bonds. The difference in the heights is
0.05 e/Å3, which corresponds to the accuracy of the
experimental data and indicates the good reproducibil-
ity of the results. The DED maximum in the Zn(1)–P(3)
bond (Fig. 6) is shifted to the electronegative phospho-
rus atom, which is, apparently, evidence for the pres-
ence of the ionic component of the bond. The maxi-
mum height equals 0.25 e/Å3. In the red zinc diphos-
phide modification, the shift of the maximum on the
Zn–P bond to the phosphorus atom is somewhat larger
than that in the black modification, although the maxi-
mum heights are equal within the experimental error.
Consequently, the ionicity of the bond in I is higher
than the ionicity in II. An increase in the ionic compo-
nent of the bond always gives rise to an increase in the

P(3)P(2)

P(4)

Fig. 5. The DED section through the P–P–P bonds in
β-ZnP2.

P(4)

P(3)

Zn(1)

Fig. 7. The DED section through the Zn–P–P bonds in
β-ZnP2.
3
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forbidden gap, with the average atomic number in the
compounds being the same.

The DED section though the P(1)–P(2) bond
(Fig. 6) in α-ZnP2 differs from that shown in Fig. 4.
Like the maximum in the Zn–P(2) bond, the maximum
in the P(1)–P(2) bond is almost spherical in shape and
is localized exactly between two phosphorus atoms.
The height of this maximum is 0.25 e/Å3.

The estimation of the covalent component of the
bond from the charge on the bond bridge leads to the
conclusion that, on average, the charge on the bonds
and, consequently, the degree of covalence are higher in
the black modification than in the red one (Figs. 4–7).
Since an increase in the ionic component of the bond
leads to an increase in the forbidden gap, whereas an
increase in the metallic component leads to its
decrease, the forbidden gap in the red modification
should be more pronounced than in the black modifica-
tion. This assumption was confirmed experimentally. It
should be noted that the DED maps constructed from
the X-ray diffraction data correlate quite well with the
distributions of valence electrons calculated theoreti-
cally by the pseudopotential method [8].
C
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Abstract—This study is a continuation of research into the atomic structure and physical properties of nio-
bium-doped potassium titanyl phosphate crystals, KTiOPO4 (KTP : Nb). Crystals containing 7 and 11 at. % of
niobium were grown and studied. With an increase in niobium content, the number of vacancies and additional
potassium positions in the structure also increase. This fact accounts for an increase in both the intensities of
relaxation peaks and the conductivity of KTP : Nb crystals. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
Recently, the physical properties and atomic struc-

ture of niobium-doped potassium titanyl phosphate
crystals, KTiOPO4 (KTP : Nb), have attracted ever
increasing attention of researchers [1–7]. KTP crystals
possess a unique combination of nonlinear optical, fer-
roelectric, and superionic properties. Studies of the
physical properties of the KTP : Nb crystals have
shown that the intensity of the second harmonic gener-
ation (SHG) of laser radiation increased in the presence
of a small amount of Nb [1] and decreased at an Nb
content exceeding 3 at. % [5]. Also, an increase in the
Nb content leads to an increase by an order of magni-
tude of crystal conductivity [3, 5] and a considerable
lowering of the phase-transition temperature Tc [5].

The atomic structure of KTP : Nb single crystals
with about 3–4 at. % Nb has been studied in sufficient
detail by several research groups [1, 4, 7]. It should be
noted that the replacement of tetravalent titanium by
pentavalent niobium gives rise to the formation of addi-
tional vacancies in the K(1) and K(2) positions, with
the niobium atoms occupying only the Ti(1) positions
[1, 7]. Moorthy et al. [4] revealed niobium atoms in two
positions, Ti(1) and Ti(2). Additional potassium posi-
tions were revealed in [7].

The present study continues our research into the
atomic structure and physical properties of KTP : Nb
crystals. We grew and studied the crystals doped with 7
and 11 at. % Nb.

EXPERIMENTAL
Single crystals were grown from flux in the quater-

nary K2O–TiO2–Nb2O5–P2O5 system [5]. Crystals
doped with 7 and 11 at. % Nb (determined by chemical
1063-7745/03/4802- $24.00 © 20205
analysis) were prepared from melts in which niobium
replaced 34 and 46 at. % Ti, respectively. The niobium
content in the latter crystal appeared to be close to its
maximum content in crystals with a KTP structure,
because crystallization from systems in which more
than 50% Ti is replaced by niobium yielded monoclinic
crystals of another structure type [8, 9].

The chemical composition of the crystals was deter-
mined on a Cameca SX-50 X-ray microanalyzer. The
temperature dependences of the dielectric constant and
electrical conductivity were measured on a Tesla
BM-431E bridge at a frequency of 1 MHz in the tem-
perature range from room temperature to 800°C.

The optically homogeneous crystals chosen for
X-ray diffraction study were ground to spheres. The
samples that were most spherical in shape gave the best
X-ray diffraction patterns and therefore were selected
for the subsequent investigation. A single crystal with
7 at. % Nb was a sphere 0.10 mm in radius. A single
crystal with 11 at. % Nb had the shape of an ellipsoid
(0.25 × 0.19 × 0.19 mm). The details of X-ray data col-
lection are given in Table 1. The parameters of the
orthorhombic unit-cell (sp. gr. Pna21, Table 2) were
refined by the least-squares method based on 25 reflec-
tions. The complete sets of reflection intensities were
collected on a CAD-4F Enraf-Nonius diffractometer
equipped with a graphite monochromator.

Both structures were refined by the least-squares
method using the JANA 98 program [10]. The atomic
coordinates from [7] were used as the starting model in
the refinement, in the course of which all the extinction
models included in the JANA 98 program were tested.
The best results were obtained with the use of the
Becker–Coppens extinction correction taking into
account misorientation of blocks of mosaic (type I).
003 MAIK “Nauka/Interperiodica”
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Table 1.  Details of X-ray data collection and refinement of KTP : Nb single crystals (7 and 11 at. % Nb)

KTP : Nb (7 at. % Nb) KTP : Nb (11 at. % Nb)

Chemical composition K0.93Ti0.93Nb0.07OPO4 K0.89Ti0.89Nb0.11OPO4

Sample radius, mm 0.10 × 0.10 × 0.10 0.25 × 0.19 × 0.19

µ, cm–1 32.51 32.84

Diffractometer “Enraf-Nonius” CAD-4F

Radiation MoKα

Monochromator graphite

Scanning technique ω/2θ
θmax, deg 45

Ranges of h, k, l variation –25 ≤ h ≤ 25

–12 ≤ k ≤ 12

0 ≤ l ≤ 20

Total number of measured reflections and |F |hkl 14193 13112

Number of independent reflections with |F |hkl > 3σ|F |hkl 3467 2972

Rav(|F |hkl), % 1.09 1.80

Structure type KTiOPO4

Program for structural computations JANA 98

Weighting scheme 1/σ2

Number of parameters in the refinement 220

Reliability factors R/Rw 1.93/2.21 2.54/3.10
RESULTS AND DISCUSSION

Similar to the structure of KTP crystals containing
4 at. % Nb [7], the structures containing 7 and 11 at. %
Nb contain two crystallographically independent tita-
nium positions. All the niobium atoms occupy only one
of these positions, Ti(1). Apparently, this is associated
with the fact that the cavity occupied by the Ti(1) atom
is somewhat larger than that occupied by the Ti(2)
atom. The corresponding average distances are
(Ti(1)−O)av = 1.974 Å and (Ti(2)–O)av = 1.966 Å for the
structure with 7 at. % Nb and (Ti(1)–O)av = 1.972 Å and
(Ti(2)–O)av = 1.962 Å for the structure with 11 at. %
Nb. Since the ionic radius of Nb5+ (0.69 Å) is somewhat
larger than that of Ti4+ (0.68 Å), the niobium atoms pre-
fer to replace titanium atoms in the Ti(1)-position.

The difference electron-density maps constructed
based on this structural model (Figs. 1, 2) revealed
residual electron-density peaks in the vicinity of the

Table 2.  Unit-cell parameters of the KTP and KTP : Nb (4, 7,
and 11 at. % Nb) crystals

a, Å b, Å c, Å V, Å3

KTP 12.817(1) 6.403(1) 10.589(1) 868.9(1)

4 at. % Nb 12.814(2) 6.408(1) 10.587(2) 869.5(1)

7 at. % Nb 12.816(1) 6.412(1) 10.595(1) 870.7(1)

11 at. % Nb 12.815(1) 6.415(1) 10.591(1) 870.7(1)
C

K(1) position (a peak of height 1.65 e/Å3 at a distance
of 0.83 Å and a peak of height 2.03 e/Å3 at a distance
of 0.88 Å in the structures with 7 and 11 at. % Nb,
respectively) and K(2) position (a peak of height
2.58 e/Å3 at a distance of 1.71 Å and a peak of height
3.82 e/Å3 at a distance of 1.74 Å in the structures with
7 and 11 at. % Nb, respectively). Then the structures
were refined within the framework of the models with
split K(1) and K(2) positions. The refined parameters
were used for constructing difference electron-density
maps (Fobs – Fcalcd). The sections of these maps passing
through the K(1), K(2), K(3), and K(4) atoms for the
structures with 7 and 11 at. % Nb are shown in Figs. 3
and 4, respectively. The occupancies of the potassium
positions are given in Table 3. Thus, the chemical for-
mulas of the compounds studied can be written as
K0.89Ti0.93Nb0.07OPO4 and K0.87Ti0.89Nb0.11OPO4 ,
respectively. The number of K vacancies in these for-
mulas is larger than could be expected under the condi-
tion of preservation of electroneutrality without any
changes in the valence states of other ions. The sections
of the difference electron-density maps (Fobs – Fcalcd)
show peaks of heights 1.09, 0.93, and 0.80 e/Å3 (in the
structure with 7 at. % Nb) and peaks of heights 0.95,
0.90, and 0.81 e/Å3 (in the structure with 11 at. % Nb)
in the vicinity of the potassium positions (Figs. 3, 4).
Apparently, these peaks correspond to the missing
potassium atoms necessary for the preservation of elec-
troneutrality. A higher degree of splitting with the for-
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mation of additional positions is also evidenced by the
elongation of the electron-density peaks occupied by
the K(3) and K(4) atoms (Figs. 1, 2) and their high ther-
mal parameters (Tables 4, 5). However, it was impossi-
ble to refine the structural parameters of the new addi-
tional potassium positions.

The coordinates of the basis atoms, occupancies q of
the crystallographic positions, and equivalent thermal
parameters Beq for the crystal structures are given in
Tables 4 and 5.

The temperature dependence of the dielectric con-
stant ε33 for the KTP single crystal with 11 at. % Nb is
presented in Fig. 5. For comparison, this figure also
shows the dependences for the corresponding undoped
KTP crystal and the crystal with a low (0.2 at. %) nio-
bium content. As can be seen from Fig. 5, the incorpo-
ration of a small amount of Nb leads to a shift of Tc to

0.2
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0.15

0.5 0.7 0.9 y

(a)

(b)

y = 0.695

x = 0.383

Fig. 1. Difference electron-density maps for the starting
model of the K0.93Ti0.93Nb0.07OPO4 structure; sections
passing through (a) K(1) and (b) K(2) atoms; hereinafter,
the contours are spaced by 0.163 e/Å3 .
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the low-temperature region and an increase in the relax-
ation-peak intensity, which has been observed earlier
for an undoped KTP crystal [11]. At the maximum Nb
content (~11 at. %, Fig. 5, curve 3), the ferroelectric
phase transition occurs at the temperature range of the
relaxation peak characterized by several successive
anomalies. Therefore, the temperature Tc was deter-
mined by the SHG method and is equal to 350°C [5].
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y = 0.693
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Fig. 2. Difference electron-density maps for the starting
model of the K0.89Ti0.89Nb0.11OPO4 structure; sections
passing through (a) K(1) and (b) K(2) atoms.

Table 3.  Occupancies of the potassium positions in the KTP : Nb
crystals (4, 7, and 11 at. % Nb)

Structure K(1) K(2) K(3) K(4)

4 at. % Nb 0.899(1) 0.858(2) 0.108(2) –

7 at. % Nb 0.702(2) 0.773(1) 0.148(1) 0.168(2)

11 at. % Nb 0.610(1) 0.636(1) 0.275(1) 0.228(2)
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The conductivity σ33 of KTP : Nb crystals measured
at a frequency of 1 MHz increased with the Nb content
(Fig. 6).

The crystals of potassium titanyl phosphate with 7
and 11 at. % Nb are isostructural to undoped KTP crys-
tals and potassium titanyl phosphate crystals with
4 at. % Nb [7]. The unit-cell parameters of all these
crystals are given in Table 2. It is seen that the incorpo-
ration of Nb into the KTP structure with the accompa-
nying partial replacement of Ti atoms produces no
noticeable effect on the unit-cell parameters. Appar-
ently, this is associated with the close ionic radii of
Nb5+ and Ti4+.

The above crystal structures are composed of
(Ti,Nb)O6-octahedra sharing vertices with PO4-tetrahe-
dra to form three-dimensional frameworks. The chan-

0.2

0.1

0

–0.1

–0.05 0.05 0.15 0.25
x

z

x K(4)

x K(2)

0.45

0.35

0.25

0.15

0.5 0.7 0.9 y

(a)

(b)

y = 0.698

x = 0.379

x K(1)

x K(3)

Fig. 3. Difference electron-density maps for the model of
the structure of K0.93Ti0.93Nb0.07OPO4 with the statistical
distribution of the potassium atoms over the crystallograph-
ically independent positions; sections passing through
(a) K(1) and K(4) and (b) K(2) and K(3) atoms.
C

nels in the structures are occupied by potassium ions.
As can be seen from Table 3, the change in the niobium
content in the crystals leads to substantial changes in
the occupancies of all the potassium positions. The
occupancies of the main K(1) and K(2) positions
decrease, whereas the occupancies of the additional
K(3) and K(4) positions increase; in other words, more
pronounced splitting of the potassium positions takes
place. The formation of additional potassium positions
may account for the successive anomalies of the relax-
ation peak (Fig. 5). These anomalies seem to be associ-
ated with hoppings of potassium ions. The lengths of
these hoppings were estimated from the dielectric mea-
surements on a KTP crystal with 3 at.% Nb at several
frequencies [11]. These distances ranged from 0.34 to
1.52 Å. The results obtained are consistent with data in
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Fig. 4. Difference electron-density maps for the model of
the structure of K0.89Ti0.89Nb0.11OPO4 with the statistical
distribution of the potassium atoms over independent posi-
tions; sections passing through (a) K(1) and K(4) and
(b) K(2) and K(3) atoms.
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Table 4.  Atomic coordinates, occupancies of positions (q), and equivalent thermal parameters Beq (Å2) in the structure of
K0.93Ti0.93Nb0.07OPO4 

Atom x/a y/b z/c q Beq

Ti(1) 0.37230(1) 0.49979(1) 0 0.854(1) 0.55(1)

Nb(1) 0.37230(1) 0.49979(1) 0 0.146 0.55(1)

Ti(2) 0.24764(1) 0.26539(1) 0.24996(2) 1 0.62(1)

P(1) 0.49859(1) 0.33744(2) 0.25715(3) 1 0.52(1)

P(2) 0.18179(1) 0.50138(3) 0.50914(2) 1 0.53(1)

K(1) 0.10498(3) 0.69795(7) 0.06497(4) 0.702(2) 1.64(1)

K(2) 0.37920(2) 0.78162(4) 0.30868(4) 0.773(1) 1.73(1)

K(3) 0.4026(2) 0.8441(5) 0.4434(4) 0.148(1) 5.47(9)

K(4) 0.6067(2) 0.7959(3) 0.1713(6) 0.168(2) 14.7(4)

O(1) 0.48609(6) 0.4841(1) 0.14574(6) 1 0.86(1)

O(2) 0.51020(5) 0.4685(1) 0.37921(6) 1 0.86(1)

O(3) 0.40089(4) 0.1994(1) 0.27664(7) 1 0.73(1)

O(4) 0.59431(4) 0.1956(1) 0.23923(8) 1 0.77(1)

O(5) 0.11234(5) 0.3109(1) 0.53702(7) 1 0.74(1)

O(6) 0.11249(5) 0.6910(1) 0.48371(7) 1 0.91(1)

O(7) 0.25303(6) 0.5400(1) 0.62480(7) 1 0.85(1)

O(8) 0.25343(6) 0.4612(1) 0.39549(7) 1 0.83(1)

O(9) 0.22416(5) 0.0416(1) 0.38601(7) 1 0.76(1)

O(10) 0.22444(5) –0.0359(1) 0.63911(7) 1 0.76(1)

Table 5. Atomic coordinates, occupancies of positions (q), and equivalent thermal parameters Beq (Å2) in the structure of
K0.89Ti0.89Nb0.11OPO4 

Atom x/a y/b z/c q Beq

Ti(1) 0.37184(1) 0.49964(1) 0 0.789(1) 0.55(1)

Nb(1) 0.37193(1) 0.49964(3) 0 0.211 0.55(1)

Ti(2) 0.24814(1) 0.25164(2) 0.24968(3) 1 0.72(1)

P(1) 0.49896(1) 0.33776(2) 0.25518(3) 1 0.47(1)

P(2) 0.18206(1) 0.50094(3) 0.50644(2) 1 0.48(1)

K(1) 0.10433(3) 0.69458(7) 0.06393(5) 0.610(1) 1.69(1)

K(2) 0.37969(3) 0.78198(5) 0.30693(4) 0.636(1) 1.64(1)

K(3) 0.3993(1) 0.8313(3) 0.4406(2) 0.275(1) 5.76(7)

K(4) 0.1077(2) 0.7049(3) 0.1713(6) 0.228(2) 8.9(29)

O(1) 0.48672(6) 0.4819(1) 0.14237(6) 1 0.78(1)

O(2) 0.51075(6) 0.4710(1) 0.37632(6) 1 0.88(1)

O(3) 0.40145(4) 0.1983(1) 0.27471(7) 1 0.66(1)

O(4) 0.59508(4) 0.1973(1) 0.23745(7) 1 0.71(1)

O(5) 0.11225(5) 0.31036(1) 0.53424(6) 1 0.68(1)

O(6) 0.11289(5) 0.6904(1) 0.48075(7) 1 0.85(1)

O(7) 0.25335(6) 0.5404(1) 0.62249(7) 1 0.82(1)

O(8) 0.25299(6) 0.4612(1) 0.39258(6) 1 0.77(1)

O(9) 0.22426(5) 0.0409(1) 0.38253(6) 1 0.72(1)

O(10) 0.22445(5) –0.0376(1) 0.63553(6) 1 0.74(1)
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Table 6.  Interatomic distances (Å) in the KTP : Nb crystals (4, 7, and 11 at. % Nb)

Distances K0.96Ti0.96Nb0.04OPO4 K0.93Ti0.93Nb0.07OPO4 K0.89Ti0.89Nb0.11OPO4

Ti(1)–O(9) 1.732(1) 1.750(1) 1.771(1)
O(10) 1.959(1) 1.940(1) 1.908(1)
O(1) 2.139(1) 2.127(1) 2.110(1)
O(2) 1.972(1) 1.987(1) 2.004(1)
O(5) 2.046(1) 2.044(1) 2.036(1)
O(6) 1.990(1) 1.998(1) 2.004(1)

Ti(2)–O(9) 2.077(1) 2.057(1) 2.019(1)
O(10) 1.750(1) 1.770(1) 1.801(1)
O(3) 2.036(1) 2.030(1) 2.024(1)
O(4) 1.981(1) 1.985(1) 1.983(1)
O(7) 1.959(1) 1.962(1) 1.957(1)
O(8) 1.994(1) 1.991(1) 1.985(1)

P(1)–O(1) 1.517(1) 1.518(1) 1.519(1)
O(2) 1.550(1) 1.550(1) 1.549(1)
O(3) 1.543(1) 1.548(1) 1.551(1)
O(4) 1.540(1) 1.540(1) 1.538(1)

P(2)–O(5) 1.538(1) 1.541(1) 1.543(1)
O(6) 1.532(1) 1.531(1) 1.529(1)
O(7) 1.548(1) 1.549(1) 1.552(1)
O(8) 1.537(1) 1.536(1) 1.531(1)

K(1)–O(1) 2.685(1) 2.687(1) 2.700(1)
O(2) 3.002(1) 3.012(1) 3.044(1)
O(3) 3.050(1) 3.056(1) 3.064(1)
O(4) 3.119(1) 3.131(1) 3.116(1)
O(5) 2.802(1) 2.803(1) 2.794(1)
O(7) 2.926(1) 2.922(1) 2.938(1)
O(8) 3.060(1) 3.062(1) 3.093(1)
O(9) 3.062(1) 3.066(1) 3.080(1)
O(10) 2.760(1) 2.767(1) 2.758(1)

K(2)–O(1) 2.908(1) 2.916(1) 2.937(1)
O(2) 2.733(1) 2.723(1) 2.709(1)
O(3) 2.718(1) 2.716(1) 2.707(1)
O(5) 2.874(1) 2.887(1) 2.896(1)
O(7) 3.059(1) 3.070(1) 3.078(1)
O(8) 2.759(1) 2.770(1) 2.772(1)
O(9) 2.717(1) 2.722(1) 2.715(1)
O(10) 3.009(1) 3.024(1) 3.046(1)

K(3)–O(1) 3.327(4) 3.277(2)
O(2) 2.74(1) 2.859(3) 2.801(2)
O(3) 2.73(1) 2.885(4) 2.938(2)
O(4) 3.145(4) 3.150(3)
O(6) 2.80(1) 2.734(3) 2.773(2)
O(7) – 3.344(4) 3.270(2)
O(8) 3.07(1) 3.155(3) 3.067(2)
O(9) 2.66(1) 2.686(3) 2.687(2)
O(10) 3.45(2) 3.180(4) 3.161(2)

K(4)–O(1) 2.614(4) 2.552(3)
O(2) 3.45(1) 3.229(5)
O(4) 2.72(1) 2.667(3)
O(5) 2.86(1) 3.170(4)
O(6) 3.250(6)
O(7) 2.985(4) 2.861(3)
O(8) 3.363(5)
O(9) 3.47(1) 3.439(5)
O(10) 2.655(4) 2.698(3)
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[7], which also indicate the formation of additional
potassium positions.

The replacement of titanium by niobium atoms in
potassium titanyl phosphate results in the elongation of
short Ti–O distances and the shortening of long Ti–O
distances in TiO6-octahedra, with the average length of
the remaining four bonds being unchanged (Table 6).
Thus, an increase in the niobium content gives rise to
changes in the Ti–O distances such that the TiO6-octa-
hedra become more symmetric, which may account for
the decrease in the SHG intensity in the crystals [5].

The structural studies of single crystals of potassium
titanyl phosphate with 4, 7, and 11 at. % Nb demon-
strated that the numbers of vacancies and additional
potassium positions in the structures increase with nio-
bium content. This fact accounts for the increase in both
the relaxation-peak intensities and conductivity of nio-
bium-doped KTP crystals.
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Abstract—The crystal structure of the compound Sr(AsUO6)2 · 8H2O is determined by X-ray diffraction anal-
ysis (monoclinic system, sp. gr. Pc, unit-cell parameters a = 7.154(1) Å, b = 7.101(1) Å, c = 18.901(7) Å, β =
92.67(2)°, Z = 2). The structure is built by (001)-parallel [AsUO6]– layers formed by flattened square UO6
bipyramids and AsO4 tetrahedra. The neighboring layers are connected via SrO8 square antiprisms. The cavities
of the polyhedral framework thus formed are occupied by ç2é molecules. The displacements of the anion com-
plexes by a half-translation with respect to one another along only one lattice period is a characteristic feature
of this polymorphous modification of the uran-mica group. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The relatively low content of uranium in the earth’s
crust does not correspond to the mineralogical and
geochemical importance of this chemical element,
which is present in the composition of more than 5% of
all existing minerals. The study of U–Pb decomposition
seems to be extremely important for rock dating. As a
source of energy, uranium has attracted the attention of
economists for more than sixty years. Recently, interest
in the crystal chemistry of uranium has been associated
with solving problems of the environment and the ratio-
nal use of mineral raw materials in the regions where
uranium-containing mineral resources are processed
and where industrial wastes are buried.

Among natural and synthetic uranium compounds,
uranyl-containing arsenates form a group which, at
present, comprises more than ten representatives [1].
The conditions of crystallogenesis, composition, spe-
cific structural features, and the thermodynamic prop-
erties of Sr- and uranyl-containing arsenates synthe-
sized in the Sr(AsUO6)2–nH2O system were consid-
ered elsewhere [2]. In this study, the crystal hydrates of
the composition Sr(AsUO6)2 · nH2O with different con-
tent of ç2é (n = 3, 7, 8, and 10) and the nonaqueous
phase are identified. Of all these phases, the octahy-
drate of the composition Sr(AsUO6)2 · 8H2O proved to
be stable at atmospheric humidity, whereas the compo-
sition of this hydrate indicates its possible similarity to
the U-minerals of the uran-mica family [3]. Taking into
account these facts and the importance of the structural
studies of U-minerals and their synthetic analogues, we
synthesized Sr(AsUO6)2 · 8H2O single crystals and
studied their crystal structure.
1063-7745/03/4802- $24.00 © 0212
EXPERIMENTAL

The starting materials in the synthesis of
Sr(AsUO6)2 · 8H2O single crystals were strontium
nitrate and arsenic (V) and uranium (VI) oxides mixed
in the atomic ratio As : U = 2 : 1. Nitric acid (1M aque-
ous solution) was added to the solution up to the com-
plete dissolution of the oxides; then the solution was
heated to boiling point and saturated with strontium
nitrate. The solution thus obtained was kept for 24 h in
a thermostat at 60°C and was then cooled to room tem-
perature. Within two to three days, rather perfect elon-
gated Sr(AsUO6)2 · 8H2O crystals of a greenish-yellow
color characteristic of uranyl compounds precipitated.
The subsequent X-ray diffraction analysis was per-
formed on a specially selected ~0.18 × 0.03 × 0.03-mm
single crystal.

The main parameters of the diffraction experiment
and the crystallographic characteristics of the sample
are listed in Table 1. The unit-cell parameters were
refined using 14 reflections with 11.46° < 2θ < 17.50°.
The absorption correction was introduced based on ψ-
scanning. The regular extinctions for h0l reflections
with l = 2n + 1 indicated two possible space groups,
P2/c and Pc, however the statistics of the normalized
structural amplitudes indicated a higher probability of
the acentric sp. gr. Pc. Finally, this space group was
confirmed by the structure determination of the com-
pound by direct methods using the SHELL-93 complex
of programs. The drawings of the structure were
obtained using the ATOMS program [4]. The conclud-
ing atomic coordinates and the local balance of valence
strengths at anions calculated based on the data given in
[5, 6] are indicated in Tables 2 and 3, respectively.
2003 MAIK “Nauka/Interperiodica”
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RESULTS AND DISCUSSION

The crystal structure of strontium uranium arsenate
consists of mixed anionic [AsUO6]– layers (Fig. 1) par-
allel to the (001) plane which are connected by Sr cat-
ions and H2O molecules (Fig. 2). The configuration of
the uranyl arsenate layers is characteristic of uran-
micas. These layers are formed by AsO4 tetrahedra and
uranyl groups tetragonally coordinated with oxygen
atoms, which play the role of bridge atoms in both coor-
dination polyhedra. The lengths of the U–O bonds in
the uranyl groups (1.741–1.830 Å) are noticeably
shorter than four other U–O bonds (2.192–2.361 Å).
The valence O–U–O angles formed with the participa-
tion of oxygen atoms of the uranyl groups in the U(1)
and U(2) polyhedra are equal to 178.33° and 177.79°,
respectively.

The coordination polyhedron of strontium is a
slightly distorted tetragonal antiprism whose six verti-
ces are occupied by H2O molecules located at shorter
distances from the central cation (2.533–2.714 Å) and

Table 1.  Crystallographic characteristics of the Sr(AsUO6)2 ·
8H2O structure

Characteristic Value

Unit-cell parameters, Å, deg a = 7.154(1)

b = 7.101(1)

c = 18.901(7)

β = 92.67(2)

Unit-cell volume V, Å3 959.14

Sp. gr. Pc

Number of formula units Z 2

Calculated density ρ, g/cm3 3.41

Absorption coefficient µ, mm–1 23.1

Molecular weight 1971.3

F(000) 864

Diffractometer Ital structures

Radiation, wavelength MoKα, 0.71073

Crystal dimensions, mm 0.18 × 0.03 × 0.03

Maximum 2θ value, deg 59.95

Scanning mode θ/2θ
Ranges of index variations –3 < h < 10

–9 < k < 9

–26 < l < 26

Total number of reflections 4264

Number of independent reflections 2297

Number of reflections with |F | > 4σ(F) 2086

Rav 0.055

Number of parameters to be refined 127

Program for structural computations SHELXL93

Rhkl in the anisotropic approximation 0.051
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O(2) and O(4) oxygen atoms (valence angle O(2)–Sr–
O(4) = 156.03°) of the uranyl groups of the layers
located at longer distances from the central cation
(2.756–2.794 Å). Two of the total eight H2O molecules
of the formula unit are not included in the coordination
polyhedron of strontium and are kept within the struc-
ture because of the hydrogen bonds with other H2O
molecules and the closest O atoms of the arsenate tetra-
hedra (Fig. 3). We failed to localize protons in the pres-
ence of uranium atoms. At the same time, proceeding
from the shortest é···é distances formed with the par-
ticipation of the H2O molecules, we could guess the
directions of possible hydrogen bonds (Fig. 3), which
considerably improved the balance of valence strengths
at the anions.

It should be emphasized that the formation of hydro-
gen bonds with the participation of “free” H2O mole-
cules and O atoms from the arsenate tetrahedra is char-
acteristic of all the compounds of the series
Ak+(B5+UO6)k · nH2O (B5+ = P and As), which is indi-

Table 2.  Atomic coordinates in the Sr(AsUO6)2 · 8H2O structure

Atom x/a y/b z/c Ueq × 102

U(1) 0.6157(1) 0.2598(2) 0.0648(1) 1.63(4)

U(2) 0.1086(1) 0.2585(2) 0.4650(1) 1.55(4)

As(1) 0.1088(7) 0.2493(5) 0.0146(3) 1.7(1)

As(2) 0.6210(8) 0.7510(6) 0.0132(3) 1.7(1)

Sr 0.3634(15) 0.8307(2) 0.7647(5) 2.61(4)

O(1) 0.609(4) 0.275(3) –0.032(1) 1.4(4)

O(2) 0.615(5) 0.244(3) 0.160(2) 1.5(6)

O(3) 0.102(5) 0.259(3) 0.557(2) 3.3(8)

O(4) 0.125(7) 0.256(4) 0.370(2) 3.2(10)

O(5) –0.694(5) 0.292(4) 0.061(2) 2.1(7)

O(6) –0.059(4) 0.205(3) 0.071(1) 2.3(6)

O(7) 0.141(4) 0.063(4) –0.041(1) 2.9(6)

O(8) 0.072(3) 0.426(3) –0.048(1) 1.1(4)

O(9) 0.589(3) 0.949(3) 0.057(1) 1.4(4)

O(10) 0.683(4) 0.578(4) 0.066(1) 3.1(7)

O(11) 0.803(4) 0.769(3) –0.043(1) 1.5(5)

O(12) 0.430(5) 0.700(4) –0.039(2) 2.6(8)

H2O(1) 0.491(4) 0.537(4) 0.832(2) 3.2(7)

H2O(2) 0.325(4) 0.120(4) 0.841(1) 4.6(7)

H2O(3) 0.029(4) 0.900(4) 0.713(2) 3.8(7)

H2O(4) 0.707(5) 0.940(4) 0.818(2) 3.9(7)

H2O(5) 0.463(3) 0.143(3) 0.700(1) 2.2(4)

H2O(6) 0.267(5) 0.512(5) 0.692(2) 4.6(9)

H2O(7) 0.814(5) 0.332(4) 0.830(2) 3.9(8)

H2O(8) 0.933(5) 0.302(5) 0.695(2) 4.1(8)
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Table 3.  Local balance of valences

Atom U(1) U(2) Sr As(1) As(2) Σ Hydrogen bonds Σ*

O(1) 1.531 1.531 0.116 + 0.096 1.743

O(2) 1.631 0.161 1.792 1.792

O(3) 1.821 1.821 0.145 1.966

O(4) 1.628 0.178 1.806 1.806

O(5) 0.711 1.383 2.094 0.159 2.253

O(6) 0.550 1.328 1.878 0.145 2.023

O(7) 0.621 1.145 1.766 0.246 2.012

O(8) 0.663 1.081 1.744 0.138 1.882

O(9) 0.719 1.383 2.102 0.135 2.237

O(10) 0.604 1.440 2.044 0.119 2.163

O(11) 0.762 1.138 1.900 0.142 2.042

O(12) 0.594 1.235 1.829 0.203 2.032

H2O(1) 0.278 0.278 –(0.212 + 0.203) –0.137

H2O(2) 0.326 0.326 –(0.246 + 0.096) –0.016

H2O(3) 0.278 0.278 –(0.145 + 0.140) –0.007

H2O(4) 0.193 0.193 –(0.153 + 0.142) –0.102

H2O(5) 0.241 0.241 –0.135 0.106

H2O(6) 0.200 0.200 –(0.176 + 0.159) –0.135

H2O(7) 0.000 –(0.116 + 0.138) 0.111

+(0.212 + 0.153)

H2O(8) 0.000 –(0.145 + 0.119) 0.052

+(0.140 + 0.176)

Σ 5.746 6.089 1.855 4.937 5.196

* With due regard for hydrogen bonds.
a

b

Fig. 1. Uranyl arsenate [AsUO6]– layer projected onto the
(001) plane.

cated by the structural data for HB5+UO6 · 4H2O,
Mg(PUO6)2 · 10H2O, Ba(PUO6)2 · 6H2O, etc. [7–10]. It
is most probable that this fact is associated with the
structure stabilization because of such interactions.
C

As(1)

U(1)

U(2)

Sr

As(2)

H2O

b

c

Fig. 2. Sr(AsUO6)2 · 8H2O structure projected onto the
(100) plane. Circles indicate free H2O molecules.

The natural representatives of the uran-mica family,
autunite and metaautunite, differ in the arrangement of
their neighboring layers with respect to one another. In
autunite, two neighboring layers along the long period
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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c are the mirror reflections of one another, whereas in
metaautunite, such layers are displaced by a half-trans-
lation along two other axes. A very interesting charac-
teristic of the structural studies, which considerably
improved our knowledge about polytipism of uran-
micas, is the different layer packing. Considering three
neighboring layers in the Sr(AsUO6)2 · 8H2O structure,
we see that the first and third layers are related by a
translation, whereas the middle layer is displaced rela-
tive to both these layers by a half-translation along only
one period. As a result, we observe the alternation of
arsenic and uranium atoms along the c period, unlike
autunite and metaautunite structures, where the ura-
nium atoms lie along one line and the phosphorus
atoms lie along the other. Thus, the analysis of the
related structures shows that autunite, metaautunite,
and synthetic uranyl arsenate are, in fact, three different
polytype modifications of uran-micas.

On the whole, the configuration of the structure is
close to that of Mg[(UO2)(AsO4)]2 · 4H2O, where the
uranyl arsenate layers are connected via cationic
[Mg(H2O)4]2+ complexes [11]. However, in this case,

c

a

U(2) O(11)

O(1)

O(13)

O(12)

O(7)

O(4)
O(14)

O(15)

O(17) O(18)

O(20)

O(10)

O(8)

O(19) O(16)

O(2)

U(1)
O(5) O(3)

O(6)O(9) As(1)As(2)

Sr

Fig. 3. System of hydrogen bonds in the Sr(AsUO6)2 ·
8H2O structure. Large open circles indicate H2O molecules.
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the coordination polyhedron of uranium is a pentagonal
bipyramid, i.e., differs from the coordination polyhe-
dron of uranium in the strontium uranyl arsenate struc-
ture.

The X-ray diffraction and IR-spectroscopy studies
of the Sr(êUO6)2 · 8H2O and Sr(AsUO6)2 · 8H2O com-
pounds proved their complete similarity [2]. This
allows us to extend the structural information obtained
on strontium uranium arsenate to its phosphorus ana-
logue.
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Abstract—The crystal structure of a new tantalum-rich variety of the mineral eudialyte discovered in Brazil
was established by X-ray diffraction analysis (sp. gr. R3m, R = 0.038, 1092 independent reflections). The struc-
tural characteristic of this mineral is the presence of Ta atoms in the specific positions in the centers of planar
“squares” with Ta–O distances ranging from 2.035(7) to 2.116(8) Å. Two additional oxygen atoms located at
distances of 2.44 and 2.66 Å can complete these “squares” to strongly distorted octahedra. © 2003 MAIK
“Nauka/Interperiodica”.
Minerals of the eudialyte group, trigonal ring sili-
cates with complex variable compositions, are of wide-
spread occurrence in agpaitic rocks. These minerals are
considered as zeolite-like compounds. Unlike tradi-
tional zeolites (aluminosilicates) and zeolite materials
(aluminophosphates, silica gels, etc.) with framework
structures composed of elements with the coordination
number four (Si, Al, and P), zeolite-like compounds
have frameworks that also include elements with the
coordination numbers five and six (Ti, Nb, Al, V, Ga,
1063-7745/03/4802- $24.00 © 20216
etc.). The densities of the eudialyte frameworks calcu-
lated as the number of the Si + (Zr,Ti) atoms per
1000 Å3 are equal to 15 (Si + Zr) or 18 (Si + Zr + Ca),
i.e., are comparable with the densities characteristic of
aluminosilicate zeolites (12–22 atoms). Minerals of the
eudialyte group attract considerable attention because
of their structural diversity, which gives them a broader
range of physical and chemical properties and may
enable them to be purposefully used in practice.
ZZZ

M(3)M(3)M(3)

M(2, 2)M(2, 2)M(2, 2)

M(2, 3)M(2, 3)M(2, 3)

M(1)M(1)M(1)

SiSiSi

SiSiSi

Fig. 1. Framework of the eudialyte structure.
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The crystallochemical formula of eudialytes at Z = 3
can be written in general form as A3M(1)6[IVM(2,1),
VM(2,2), VM(2,3)]3−6[M(3)]2Z3 [Si24O72](OH)2–6X2–4,
where A = Na, K, Sr, REE, Ba, Mn, or H3O; M(1) = Ca,
Mn, REE, Na, or Fe; M(2,1) = Fe, Na, Zr, or Ta; M(2,2)
and M(2,3) = Mn, Zr, Ti, Na, K, Ba, or H3O; M(3) = Si,
Nb, Ti, W, or Na; Z = Zr or Ti; and X = H2O, Cl, F, CO3,
or SO4.

The eudialyte framework consists of three- and
nine-membered Si,O-tetrahedra linked via Z-octahedra
and six-membered rings of M(1)-octahedra (Fig. 1).
The centers of the [Si9O27]-rings, i.e., the M(3)-posi-
tions, are occupied by additional Si-tetrahedra or octa-
hedra usually filled with Nb. Medium-sized divalent
cations (Fe, Mn, etc.) are located in the M(2,1) position,
namely, in the center of a planar “square,” or in the
M(2,2) and M(2,3) positions, namely, in the half-octa-
hedra (octahedra) based on this square. Large (prima-
rily, Na) cations, Cl anions, and water molecules
occupy large cavities between these structural ele-
ments.

Most eudialytes are characterized by very low Ta
and W content (about 0.04 atoms per formula unit). It
was assumed that Ta and W atoms replace Nb in the
M(3) position, with the W atoms prevailing in this posi-
tion only in two minerals—khomyakovite and manga-
nokhomyakovite [1, 2]. We studied a specimen found in
pegmatites of the Pocos de Caldas alkaline massif (Bra-
zil) in the form of pale pink single-crystal grains with
an unusually high tantalum content that had never been
observed before in minerals of the eudialyte group.
According to microprobe analysis data, the local Ta2O5

concentrations are as high as 6.3%. In addition, the
mineral also contains tungsten (up to 1.3% of WO3).
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
The chemical composition of the mineral is
described by the following empirical formula (Z = 3):
(Na11.9K0.7Sr0.3Ba0.1REE0.1)Σ13.1(Ca5.3Mn0.7)Σ6.0(Fe1.3 ×
Mn0.6 Zr0.6)Σ2.5(Zr2.7Ti0.2Hf0.1)Σ3.0(Ta0.8W0.15Nb0.05)Σ1.0 ×
(Si24.7Al0.3)Σ25.0 × Cl1.0, where Ce is the prevalent REE.

Table 1.  Structural data and details of X-ray diffraction study

Characteristic Data and conditions

Unit-cell parameters, Å a = 14.245(4),

c = 30.163(7)

Unit-cell volume, V, Å3 V = 5300.66

Density, ρcalcd, g/cm3 2.83

Sp. gr., Z R3m; 3

Radiation; λ, Å CuKα; 1.5418

Crystal dimensions, mm 0.08 × 0.2 × 0.15

Diffractometer SYNTEK P21

Scan technique ω/2θ
sinθ/λ, Å–1 <0.59

Ranges of the indices of measured
reflections

–14 < h < 16,

 0 < k < –16,

0 < l < –35

Rint for equivalent reflections 0.037

Total number of reflections 3117 I > 2σ(I)

Number of independent reflections 1092 |F| > 4σ(F)

Program for structural computations AREN [4]

Absorption correction DIFABS [5]

Number of independent positions 51

R factor upon anisotropic refinement 0.038
CaCaCa

M(3)M(3)M(3)

TiTiTi

TaTaTa

b

a

Fig. 2. Fragment of the structure of tantalum-rich eudialyte projected onto the (001) plane. Solid circles represent Ta atoms.
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The aim of the present study was to establish the dis-
tribution of these elements over the structural positions.

Taking into account that the new mineral contains
Nb, W, and Ta atoms located on threefold axes in the
vicinity of the centers of nine-membered rings, we
assumed that this mineral is structurally similar to the
Fe,Cl-analogue of kentbrooksite [3] and used the coor-
dinates of the basis atoms of the latter as the starting
model in the refinement of the new mineral. The isotro-
pic and anisotropic refinement of 33 atoms of the struc-
ture reduced the R factor from 28 to 10 and 7.8%,
respectively. At this stage of the refinement, all the
remaining atoms located either in the positions with
partial occupancies or in the split positions (in particu-
lar, on the threefold axis and in the vicinity of the planar
“square”) were localized from a series of difference

Table 2.  Coordinates and equivalent thermal parameters
(Beq) of the framework atoms

Atom x/a y/b z/c Beq, Å2 

Zr 0.3336(1) 0.1668(1) 0.1668(1) 1.50(2)

Ca –0.0004(2) 0.2604(1) –0.0001(1) 1.51(4) 

Si(1) 0.9945(1) 0.6040(1) 0.0977(1) 1.1(1) 

Si(2) 0.0576(1) 0.3268(1) 0.2370(1) 1.2(1) 

Si(3) 0.0816(3) 0.5408(2) 0.2587(1) 1.7(2) 

Si(4) 0.1406(2) 0.0703(1) 0.0826(1) 1.2(1) 

Si(5) 0.2085(1) 0.4170(2) 0.0762(1) 1.7(2) 

Si(6) 0.5260(2) 0.2630(1) 0.2518(1) 1.2(2) 

O(1) 0.1769(4) 0.3538(6) 0.0296(3) 2.9(6) 

O(2) 0.0468(4) 0.3013(4) 0.2890(1) 1.3(3) 

O(3) 0.0346(6) 0.5173(4) 0.3067(2) 1.1(3) 

O(4) 0.4088(5) 0.3023(5) 0.1268(2) 2.3(4) 

O(5) 0.1769(5) 0.3538(8) 0.2193(4) 3.8(6) 

O(6) 0.6259(6) 0.0360(5) 0.0456(2) 2.7(4)

O(7) 0.2626(5) 0.0297(5) 0.2077(2) 2.3(3)

O(8) 0.4784(8) 0.2392(5) 0.2018(2) 3.2(6) 

O(9) 0.2284(8) 0.1142(5) 0.0439(3) 2.2(5)

O(10) 0.1916(7) 0.0958(5) 0.1304(2) 1.9(4) 

O(11) 0.0982(5) 0.3749(5) 0.1066(2) 2.2(4) 

O(12) 0.4889(3) 0.5111(3) 0.1144(2) 1.2(4) 

O(13) 0.4388(8) 0.2194(5) 0.2892(3) 2.2(5) 

O(14) 0.6053(3) 0.3947(3) 0.2595(2) 1.4(4) 

O(15) 0.0610(2) 0.1220(4) 0.0822(2) 1.5(4) 

O(16) 0.0478(6) 0.6123(5) 0.2277(2) 2.6(5)

O(17) 0.214(1) 0.6071(8) 0.2577(5) 5.2(3) 

O(18) 0.2723(3) 0.5446(5) 0.0735(4) 4.0(3)
C

electron-density maps. Three positions on the threefold
axis in the center of one of the nine-membered rings are
occupied by T atoms (Si + Al) and the OH(1) group.
The T-tetrahedron is statistically replaced by a Ti-octa-
hedron and three OH(5) groups located around the
threefold axis. Five positions were localized in another
nine-membered ring. Two of the three cation positions
are occupied by the Si(7a) and Si(7b) atoms. The free
vertices of the tetrahedra formed around these atoms,
namely, OH(4) and OH(3), are oriented along opposite
directions. The third position [M(3)] has an octahedral
environment which involves the OH(3) groups located
around the threefold axis. Assuming that the Ta atom
occupies the M(3)-position, we refined its occupancy
and thermal parameter and proved that the thermal
parameter corresponds to a lighter atom, with the
reduced occupancy of the position. The use of a mixed
scattering curve corresponding to (Nb + W) provided a
reasonable thermal parameter for this position. There-
fore, the compositions of the positions in the centers of
both rings are described by the formulas
[Si0.5Al0.3(OH)0.8Ti0.2(OH)0.6] and [Si0.78(OH)0.78 ×
VINb0.13

VIW0.09(O,OH)0.66], respectively.

At the same time, the approximation of the position
in the center of the “square” by an Fe atom led to a neg-
ative thermal parameter, which indicates that this posi-
tion is occupied by a very heavy atom, i.e., by Ta. This
Ta-position is located at a distance of 0.651(5) Å from
another position statistically occupied by Fe atoms. The
coordination of the latter position is completed with the
OH(5) group to a five-vertex polyhedron. As a result,
this polyhedron is linked to the Ti-octahedron located
on the threefold axis, thus giving rise to a TiFe3 cluster.
The refinement of the occupancies of the two subposi-
tions in the “square” and five-vertex polyhedron
showed that Fe atoms prevail in both subpositions,
whereas Ta atoms are present in smaller amounts so
that a vacancy is formed on the opposite side of the
square. Thus, the composition of this microregion is
described by the formula [VFe1.35(OH)0.7h1.14

IVTa0.51].
The amount of Ta determined from the X-ray diffrac-
tion data is somewhat smaller than could be expected
based on the chemical-analysis data. This fact is
explained by sample inhomogeneity, where the compo-
sition varies even within a grain.

The crystallochemical formula of the mineral at Z =
3 can be written as follows:
[(Na1.9K0.6Mn0.3Ba0.1Ce0.1)(Na2.7Sr0.3)]Na8(Ca5.28Mn0.72) ×
(Zr2.85Hf0.15)[VFe1.35h1.14

IVTa0.51] [Si0.78
VINb0.13 

VIW0.09]
[Si0.5Al0.3Ti0.2] [Si24O72] (OH,O)3.54Cl0.8 × 1.2H2O,
where the compositions of the key positions are indi-
cated in the parentheses and brackets and the coordina-
tion numbers of some cations are indicated by Roman
numerals. The main characteristics of the mineral and
the details of the single-crystal X-ray diffraction study
are given in Table 1. The atomic coordinates are listed
in Tables 2 and 3. The interatomic distances are given
in Table 4.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



CHARACTERISTIC STRUCTURAL FEATURES OF A TANTALUM-RICH EUDIALYTE 219
Table 3.  Coordinates, multiplicities of positions (Q), occupancies (q), and equivalent thermal parameters (Beq) of the ex-
traframework atoms

Atom x/a y/b z/c Beq, Å2 Q q

Ta 0.0100(4) 0.5050(2) 0.0011(1) 2.05(6) 9 0.17(1) 

Fe 0.5211(2) 0.4789(2) 0.9977(1) 3.4(1) 9 0.45(1)

Ti 0.3333 0.6667 0.2978(6) 3.1(3) 3 0.20(1) 

T 0.3333 0.6667 0.2834(2) 1.7(2) 3 0.80(3) 

M(3) 0.3333 0.6667 0.0330(2) 1.9(1) 3 0.22(1) 

Si(7a) 0.3333 0.6667 0.0888(6) 2.4(3) 3 0.35(2) 

Si(7b) 0.3333 0.6667 0.0595(4) 2.5(2) 3 0.43(3) 

Na(1) 0.5590(3) 0.4410(3) 0.1794(2) 3.5(4) 9 1

Na(2a) 0.1120(4) 0.2240(5) 0.1545(3) 2.3(2) 9 0.60(2)

Na(2b) 0.0811(7) 0.1622(9) 0.1701(5) 3.0(3) 9 0.40(5)

Na(3a) 0.257(3) 0.514(4) 0.169(2) 7.6(4)* 9 0.20(4) 

Na(3b) 0.220(2) 0.610(1) 0.1563(8) 5.0(3)* 9 0.46(2) 

Na(4) 0.2020(3) 0.1010(2) 0.2850(1) 2.7(1) 9 1

Na(5) 0.4522(4) 0.2261(3) 0.0524(1) 3.3(1) 9 1 

Cl(1) 0.6667 0.3333 0.0973(4) 3.1(3) 3 0.58(3) 

Cl(2) 0 0 0.2297(9) 3.2(5) 3 0.43(5) 

OH(1) 0.6667 0.3333 0.010(5) 6.3(1) 3 0.80(5) 

OH(2) 0 0 0.343(2) 3.1(9)* 3 0.48(5) 

OH(3) 0.206(5) 0.603(3) 0.001(2) 3.2(5) 9 0.17(5) 

OH(4) 0.3333 0.6667 0.144(3) 7.7(5) 3 0.35(5)

OH(5) 0.604(1) 0.396(1) 0.0012(7) 4.8(4) 9 0.45(5) 

H2O(1a) 0 0 0.186(5) 5.1(9)* 3 0.37(8)

H2O(1b) 0 0 0.252(4) 4(2) 3 0.20(5) 

H2O(2a) 0.6667 0.3333 0.072(4) 3.8(4) 3 0.22(8) 

H2O(2b) 0.586(4) 0.293(3) 0.102(2) 5.6(9) 9 0.20(8) 

Note: Cl(2) = 0.5Cl + 0.5H2O; Biso are marked with an asterisk.
The structural characteristic of the mineral studied
here is an unusual coordination of Ta atoms. The formal
coordination polyhedron around the Ta atom is a
strongly distorted octahedron (indicated by dashed
lines in Fig. 2), which reflects the directions of the
chemical bonds and indicates their nonequivalence.
The strongest bonds corresponding to the shortest dis-
tances (2.035(7) and 2.116(8) Å) are formed by Ta
atoms and four oxygen atoms [two O(2) and two O(6)]
that coordinate the Ta atom forming a square. The inter-
actions of the Ta atom with two other ligands, OH(3)
and OH(5), are much weaker [2.44(2) and 2.66(1) Å,
respectively]. The square coordination formed by the
“vertical” edges of the Ca-octahedra of two adjacent
six-membered rings can be distorted to a trapezium or
rectangle without breaking the structure framework.
Such a coordination found earlier for Fe and Na in the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
eudialyte structures was also established for some other
elements (e.g., Nb) in some synthetic compounds [6].
In eudialytes, we found a square coordination around
Zr atoms that were additional to the typical three Zr
atoms (per formula unit) [7]. Such a coordination is
known for synthetic phases but is unknown for natural
minerals.

Thus, four elements (Fe, Na, Zr, and Ta) in eudia-
lytes have a planar square and not tetrahedral coordina-
tion. These elements have different valence states and
ionic radii, which is seen from the different sizes and
shapes of the “squares” (Table 5). The Na-polyhedron
is the largest [8], whereas the Fe-polyhedron is the
smallest [9], but both are very close to regular squares.
The fourfold coordination of Nb in Nb4O5 is provided
by a virtually isosceles trapezium [6]. The Zr- and Ta-
squares have close dimensions and are rectangles, with
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Table 4.  Characteristics of the coordination polyhedra

Position Composition
(Z = 3)

Coordi-
nation 

number

Cation–anion
distance, Å

(minimum–maximum)
Position Composition

(Z = 3)

Coordi-
nation

number

Cation–anion
distance, Å

(minimum–maximum)

Si(1) Si6 4 1.615(5)–1.637(5) Fe Fe1.35 5 2.010(8)–2.153(6)

Si(2) Si6 4 1.566(5)–1.646(6) Ti Ti0.2 6 1.90(1)–1.92(6)

Si(3) Si3 4 1.559(8)–1.630(8) M(3) Nb0.13W0.09 6 1.81(2)–1.93(1)

Si(4) Si3 4 1.572(9)–1.632(4) T Si0.5Al0.3 4 1.66(1)–1.81(6)

Si(5) Si3 4 1.575(6)–1.651(7) Na(1) Na3 8 2.60(1)–2.81(1)

Si(6) Si3 4 1.560(8)–1.651(6) Na(2a) Na1.8 9 2.51(1)–2.95(5)

Si(7a) Si0.35 4 1.57(1)–1.58(5) Na(2b) Na1.2 8 2.04(3)–2.80(1)

Si(7b) Si0.43 4 1.51(1)–1.56(2) Na(3a) Na0.6 5 2.06(6)–2.91(6)

Zr Zr2.85Hf0.15 6 2.065(6)–2.094(6) Na(3b) Na1.38 4 2.74(2)–3.05(2)

Ca Ca5.28Mn0.72 6 2.314(6)–2.411(7) Na(4) Na1.9K0.6Mn0.3Ba0.1Ce0.1 11 2.57(1)–3.03(1)

Ta Ta0.51 4 2.035(7)–2.116(9) Na(5) Na2.7Sr0.3 12 2.19(1)–2.97(1)

6 2.035(7)–2.657(5) 

Note: Ta atoms can have coordination numbers four or six.

Table 5.  Geometric parameters of the “squares” for different M(2,1) elements

Atom M(2,1)–O distances, Å O–O distances, Å Reference

Na 2.29(1)–2.29(1) 3.28, 3.28, 3.13 × 2 [8]

Nb 2.078(1)–2.198(1) 2.84, 3.81, 2.50 × 2 [6]

Zr 2.040(6)–2.117(7) 2.78, 2.81, 3.03, 3.08 [7]

Ta 2.035(7)–2.116(9) 2.95, 3.11, 2.85 × 2 Our study

Fe 2.03(1)–2.06(1) 2.95, 2.98, 2.80 × 2 [9]
Table 6.  Positions of IR bands for elements in the main po-
sitions of the eudialyte structure depending on their valence
state and coordination number

Cations Stretching frequency ν (cm–1)

Si(7) 912–935

IVNb 553

IVFe2+ 542–545

IVFe3+ 527

IVZr4+ 530–531

V(Mn, Fe3+) 523–526

VIFe3+ 473

IVTa5+ 534

Note: Roman numerals indicate the coordination numbers.
C

the Zr-rectangle being elongated in the direction of the
long axis of the unit cell, while the Ta-rectangle is elon-
gated in the perpendicular direction.

It is commonly assumed [9] that the iron atoms in a
square coordination are divalent, whereas the valence
states of Zr and Ta have not been established as yet.
According to the local charge balance on the anions
forming a square, the central cation tends to have a
charge lower than +4, and, thus, it cannot exceed +4.
However, no structures containing tantalum in the
valence states ranging from 1 to 4 are known in nature
(in some rare cases, tantalum is reduced to native tanta-
lum occurring in the zero valence state). In our case, the
deviation from the local charge balance is somewhat
compensated by its long-range Coulomb interactions
with two oxygen atoms (with Ta–O distances being
2.44 and 2.66 Å) formally completing the coordination
sphere of the Ta atom to a distorted octahedron.
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The relation of Ta to the position in the planar square
is supported by the IR spectrum of the sample. Earlier,
a structural study of more than 20 eudialyte specimens
and more than 100 specimens with a known chemical
composition allowed us to bring into correspondence a
number of bands of the IR spectra with the presence of
various transition metals in this position (Table 6). The
spectrum of the new mineral studied here has no
absorption band at 543 cm–1 due to the stretching vibra-
tions of the Fe atom in the square coordination. At the
same time, the spectrum has an unusual band at
534 cm–1 assigned to the Ta–O stretching vibrations.
The band at 534 cm–1 was not observed in the IR spec-
tra of eudialytes with a low Ta content. Thus, the pres-
ence of tantalum in an unusual planar-square coordina-
tion in the minerals of the eudialyte group can be estab-
lished by IR spectroscopy without resorting to X-ray
diffraction analysis.
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Abstract—A symmetry-topological analysis of Ca,Mg-borates kurchatovites was carried out in the context of
the OD theory developed by Dornberger-Schiff. Two types of two-dimensional periodic blocks (“layers”) of
different symmetry were revealed. According to the fundamental theorem of the OD theory, the number of vari-
ations in the layer arrangement equals two and is responsible for the structural diversity. The MDO polytypes
and periodic structures are considered. Analysis of these structures shows that the Dornberger-Schiff theory has
advantages over the modular approach that takes no account of the fundamental symmetry theorem of the OD
theory. © 2003 MAIK “Nauka/Interperiodica”.
The mineral kurchatovite CaMg[B2O5] was discov-
ered by S.V. Malinko in the Solongo ferrous scarn
deposit (Siberia) in 1966. Clinokurchatovite was dis-
covered in the northern Balkhash region and described
by A.D. Gorshenin in 1977. The crystal structures of
these kurchatovite varieties were first established based
on single-crystal X-ray diffraction data in 1976 [1] and
1980 [2]. It was found that these varieties have different
symmetries, and their structures belong to the orthor-
hombic and monoclinic systems, respectively. In study
[1], the basic block (“hypothetical protostructure”)
common to both structures was established, and the
unit-cell parameters and symmetry groups were deter-
mined. The block size along the a axis (~6.2 Å) is equal
to half the a-parameter of the monoclinic unit sell. Six
such blocks form the a-parameter of the orthorhombic
modification. Both structures are characterized as poly-
types derived from the protostructure. In kurchatovite,
c-pseudoplanes (at four levels along the a axis) and
pseudocenters of symmetry between them were found.
Twinning typical of the crystals of both varieties (in
particular, the monoclinic) was explained using those
block and pseudosymmetry elements.

Taking into account the polytype relations in the Y-,
Nd-, and Gd-borates with a huntite structure estab-
lished based on the OD theory, it was assumed that
monoclinic and orthorhombic kurchatovites are built
by two types of layers that include Mg-octahedra and
Ca-polyhedra and form an OD family with the MDO
polytypes [3].

In spite of the fact that kurchatovite and clinokur-
chatovite rarely occur in nature, these minerals have
attracted the attention of Italian researchers who
recently refined the structures of both varieties [4]. For
clinokurchatovite, the reliability factor was improved,
1063-7745/03/4802- $24.00 © 20222
with the main results being the same. The structure of
kurchatovite established in [4] coincides with the struc-
ture determined earlier in [1] within the presence of a
center of symmetry. Thus, for kurchatovite, the cen-
trosymmetric sp. gr. Pcab (Pbca in the setting used in
[4]) is correct and not the polar sp. gr. Pc21b used in the
refinement in [1]. In [4], not only the kurchatovite
structures were refined, but also their crystallochemical
analysis was performed with the use of the rather pop-
ular modular approach. As earlier in [1], the Italian
authors also revealed a structural block but with a dif-
ferent metric: it was two times smaller along the a axis
(~3.1 Å) [4]. The c-pseudoplanes and pseudocenters of
symmetry were revealed in both studies [1, 4]. In [4],
two symmetry elements were revealed at the block

boundary—the center of symmetry ( ), the glide plane
(b in the setting used in [4]), and the absence of symme-
try elements denoted by the noncrystallographic sym-
bol 0. The simplest variant of alternation of the blocks
is also described, which corresponds to a structure that
has still never been found in synthetic and natural spec-
imens.

Both approaches are reasonable for analysis of
pseudosymmetry. However, the modular approach fails
to explain the alternation of the symmetry elements and
the existence of the structural diversity.

According to the theory of OD structures developed
and published by Dornberger-Schiff in 1964 [5], the
crystal structures consist of main building units (block)
of different dimensionalities which she called “bricks,”
“rods,” and “layers.” In other words, she assumed that a
structural block can be a structural zero-, one-, or two-
dimensionally periodic. The latter case, which actually
corresponds to a layer structural element, was analyzed
most often, which allowed one to study the polytype

1
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relations in the structures on a new basis. The term
“structural block” suggested by Dornberger-Schiff is
identical to the more resent term “module.” However,
unlike arbitrarily separated modules, Dornberger-
Schiff suggested not only separating building blocks
but also analyzing their symmetry and the symmetry
methods of condensation of these blocks. The most
important aspect of this symmetry–topological analysis
is the consideration of the relationships between the
orders of the symmetry groups of individual layers (for
a two-dimensional periodic block) and a pair of such
layers. If the symmetry-group order N of a layer is
higher than the order symmetry-group-order F of a pair
of layers, this signifies that the second layer can be
located in a number of ways with respect to the first
layer of the pair. The number of ways of its location is
determined by the ratio Z = N/F. According to Dorn-
berger-Schiff, the symmetry of the layer does not char-
acterize the structure as a whole but represents its inher-
ent symmetry or represents a particular symmetry oper-
ation. In other words, the elevated symmetry
(pseudosymmetry) of the layers compared to the sym-
metry upon layer combination provides the structural
diversity. Consider some clear examples of such an
analysis given in [5]. These are close packings (metal
structures) in which Z = 12/6 = 2, which corresponds to
the cubic and hexagonal packings; various ZnS modifi-
cations (sphalerite, wurtzite, and their polytype modifi-
cations), SiC, etc.

Dornberger-Schiff considered the structures with
the maximum degree of order (MDO) and the deriva-
tives with different degrees of periodicity (up to com-
pletely disordered ones). One, two, and even three (in
kaolinites) different layers were separated as building
units. Since [5], this approach has been successfully
applied to a large number of structures, and the list of
these structures is still being extended. From the view-
point of the symmetry OD analysis, kurchatovites are
similar to calcium silicates, including anhydrous (wol-
lastonite) and hydrated (cement) CSH [6], sapphirine
polytypes, and the zoisite–clinozoisite and sursassite–
pumpellyite–ardennite OD families [7]. An important
point to note is that a separated layer element (two-
dimensional periodic block) is not necessarily a layer in
the crystallochemical sense.

It is most convenient to analyze kurchatovites by
considering the projections of their structures along the
common b-parameter (~11.14 Å), which corresponds
to the monoclinic axis in the setting used in [4] (see
table). Glide pseudoplanes (b planes in the setting used)
relating the B(1)-triangles and Mg atoms at several lev-
els along the a axis were revealed in both studies [1, 4].
However, the two-dimensional periodic block chosen
(“layer” L1 in Fig. 1a) is characterized by a higher
orthorhombic pseudosymmetry corresponding to the
sp. gr. Pbc21, as follows from analysis of the atomic
coordinates of clinokurchatovite at the corresponding
level along the a axis. This symmetry is the special
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
symmetry operation, namely, the inherent symmetry of
the “layer” that is not obeyed by the structure as a
whole. This symmetry is the true symmetry of the
structure of orthorhombic kurchatovite only for the lay-
ers L1 located at the levels 1/4 and 3/4 along the a axis
(Fig. 1b). The polar group assumes a particular direc-
tion of gliding along the 21 axis. However, the conjuga-
tion of blocks along the a axis can lead to a change in
the gliding direction or their “sign,” which is character-
istic of polytypes. The kurchatovite structures contain
the second two-dimensional block (“layer” L2) alternat-
ing with the first block along the a axis. This block
includes the B(2) triangles and Ca atoms. Its inherent
symmetry is lower and corresponds to the sp. gr.
P121/c1 in the setting used. In this block, the centers of

symmetry  and axes 21 alternate in c/4. The ratio of
the symmetry-group order of the layer L1 to the symme-
try-group order of the pair of layers L1L2 : Z = N/F =
4/2 = 2, which corresponds to two variants of the loca-
tion of the second layer with respect to the first one.

In clinokurchatovite, the direction of the translation
component of the 21 axis of the sp. gr. Pbc21 of the layer
L1 is the same for all the layers of the structure, and,
therefore, the structure has a high pseudosymmetry.
The alternation of the layers along the a axis occurs
with a constant shift of the symmetry center of the layer
L2 with respect to the layer L1 along the c axis. If the
pseudoorthorhombic axis (aorth in Fig. 1a) is chosen, the

successive shifts of the symmetry center  along the c
axis are +1/4, +1/4, +1/4, …. This corresponds to the

alternation of the symmetry elements , 21, , 21, and
so on, in the L2 layers along the pseudoorthorhombic
axis. The situation in kurchatovite is different. In this
mineral, the “sign” of the shift of the symmetry center
is retained within three layers, then the sign of the shift
is changed to the opposite one (+1/4, +1/4, +1/4, –1/4,
–1/4, –1/4, …) (Fig. 1b). In the orthorhombic unit cell,

the symmetry elements , 21, 21, , 21, 21, , …, etc.,
alternate along the a axis. The existence of two varieties
of wollastonite (1A and 2M) is provided by the same
symmetry principle [7]. However, in the 2M structure,
the sign changes in each following layer. It was sug-

1

1

1 1

1 1 1

Main crystallographic characteristics of kurchatovites [4]

Clinokurchatovite Kurchatovite

a, Å 12.329 36.34

b, Å 11.146 11.135

c, Å 5.519 5.499

β, deg 101.62

V, Å3 742.88 2225.09

Z 8 24

Sp. gr. P21/c Pbca
3
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Pbc21
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L1

a (a)

Ca
B(2)

B(1)
Mg

c

aorth

+1/4

+1/4

+1/4

Fig. 1. (a) Clinokurchatovite and (b) kurchatovite structures projected onto the ac plane. The B triangles are shown; the triangles
located at different heights along the b axis are differently shaded. The Mg and Ca atoms are represented by small and large circles,
respectively. The layers and symmetry elements are shown. Arrows (on the right-hand side of the figure) indicate the directions of
layer shifts (see the text).
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gested [5, 7] that such a variable shift be characterized
as a derivative of the noncrystallographic symmetry
element 2±1/2. However, we believe that it is more
appropriate to use the symmetry center and analyze its
shifts. This approach was applied to the analysis of the
OD family of hexaborates [8].

Clinokurchatovite is the first polytype with a maxi-
mum degree of order (or MDO1). The second polytype
with a maximum degree of order (MDO2) is a polytype
in which the shifts of the symmetry centers alternate as
+1/4, –1/4, +1/4, –1/4 …. However, unlike wollastonite
2M and lead borate [8], the MDO2 polytype has not
been established in the kurchatovite family. The kur-
chatovite structure is one of the possible periodic struc-
tures that can be predicted based on a certain repetition
period of the lattice along a. In the absence of periodic-
ity, a disordered structure with an infinite a-parameter
would take place.

Dornberger-Schiff developed a method for the gen-
eral description of all such structures forming the OD
family with the use of the symmetry groupoid. A group
of partial symmetry operations of the layers is denoted
by λ-PO. As is characteristic of the structures contain-
ing layers of two types, the position of the layer with a
lower symmetry λ-PO is determined by the symmetry
of the layer with a higher symmetry λ-PO [3, 5]. Both
L1 and L2 layers are characterized by the absence of
polarity along the direction of the disturbed periodicity
(a axis), which is denoted by ρ (or τ for the polar type).
Apparently, according to the Dornberger-Schiff
nomenclature, these structures belong to the most wide-
spread type, IV [3, 5]. The symmetry groupoid can be
written as follows:

L1, MgBO2.5 L2, CaBO2.5

λ, ρ-PO {P(b)c21} λ, ρ-PO {P(1)21/c1}

[(1) 1 ± 1/4 ].

The first row of the groupoid presents the formulas
of the layers. The second row includes the special sym-

1
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metry operations characteristic of these layers (the
direction corresponding to the direction of the dis-
turbed periodicity is given in parentheses). The possible
shifts of the symmetry centers responsible for the struc-
tural diversity are given in the third row.

To summarize, the modern modular approach is in
fact a somewhat forgotten symmetry-topological anal-
ysis of the Dornberger-Schiff OD theory. However, as
was demonstrated on kurchatovites, only the combina-
tion of the modular and symmetry approaches and the
use of the fundamental theorem of the OD theory pro-
vides an explanation of the structural diversity and
complete description of the OD family, which, as is
seen from [4], cannot be done without the invocation of
this theorem. 
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Abstract—The crystal structure of a strontium variety of a rare phosphate—mineral collinsite
(Ca2 − xSrx)2Mg[PO4] · 2H2O was solved from powder X-ray diffraction data (λCuKα radiation, Ni filter,
12.36° ≤ 2θ ≤ 100.00°, scan step 0.02°, exposure time per step 15 s) by the Rietveld method (Rwp = 4.15%,
RF = 1.03%, RB = 2.46%); a = 5.8219(1) Å, b = 6.8319(2) Å, c = 5.4713(1) Å, α = 96.965(2)°, β = 108.846(2)°,

γ = 107.211(2)°, sp. gr. , Z = 1, ρcalcd = 3.12 g/cm3 (at x = 0.72). The new mineral was discovered in carbon-
atites from the Kovdor alkaline-ultrabasic massif. The crystallochemical data for collinsite were analyzed and
compared with those for isotypic minerals of the fairfieldite group. Characteristic features of the low-tempera-
ture geochemistry of strontium were established. © 2003 MAIK “Nauka/Interperiodica”.

P1
INTRODUCTION

The fairfieldite group of minerals includes hydrated
phosphates and arsenates described by the general for-
mula Ca2M[TO4]2 · 2H2O, where M = Mg, Fe, Mn, Zn,
Ni, or Co and T = P or As. The crystallographic charac-
teristics of triclinic isostructural members of this min-
eral group are given in Table 1.

A very unusual Mg,Fe-representative of this mineral
group—the mineral collinsite—was discovered in
highly hydrothermally alterated carbonatites and
phoscorites from the Kovdor alkaline-ultrabasic mas-
sif, the largest highly differentiated complex in the
Paleozoic Kola alkaline-ultrabasic province. This vari-
ety contains up to 20.87 wt % of SrO and is mineralog-
ically characterized in [10]. The strontium content in
the mineral was found to be four to seven times higher
than the values indicated earlier in collinsite from the
Kovdor massif [11, 12]. There are indications that the
Ca2+  Sr2+ diadochy is not typical of collinsite and
other known minerals of the fairfieldite group, although
the latter are associated with other geological forma-
tions (autometasomatically transformed granite pegma-
tites, ferrous metasedimentary rock masses and erosion
crusts [13]).

A preliminary study showed that the powder X-ray
diffraction patterns of collinsite samples with practi-
cally arbitrary Sr content, which were discovered in the
Kovdor massif, differ from the current standard [14]
(collinsite from the Milgun Station massif, Western
Australia). The most characteristic reflections of these
patterns have considerably different intensities. It was
1063-7745/03/4802- $24.00 © 20226
found that a gradual increase in the Sr content in the
mineral is accompanied by a subsequent increase in its
unit-cell parameters (Table 2). The above-mentioned
facts and the absence of additional X-ray reflections
(compared to the reference collinsite sample) are indic-
ative of probable isomorphous incorporation of Sr
atoms into the Ca positions, which can take place
because of close ionic radii of these elements
(rCa = 1.00 Å and rSr = 1.10 Å [15]).

Below, we describe the study of a strontium variety
of collinsite by the Rietveld method. We obtained new
structural data for the group of rare natural phosphates
and established some characteristic features of the low-
temperature strontium geochemistry.

MINERALOGICAL DESCRIPTION

The sample under study was selected from a hydro-
thermal phosphate association related to a stockwork of
late mineralized fractures in serpentinized rocks of the
late-stage carbonatite core of the Kovdor massif. Col-
linsite “lines” the walls of cracks and cavities as radial-
axial aggregates and crusts of different brown shadows
with a serrated surface (Fig. 1a). These aggregates are
formed by wedge-shaped microcrystals of collinsite
elongated in the [100] direction (Fig. 1b) whose size
does not exceed several micrometers. The habit of the
aggregates resembles intergrowths of collinsite crystals
from the Yukon Territory (Canada) [16].

The chemical composition of the sample was ana-
lyzed on a Cameca MS-46 microanalyzer. The prelimi-
003 MAIK “Nauka/Interperiodica”
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Table 1.  Crystallographic and some physical characteristics of minerals of the fairfieldite group (sp. gr. P , Z = 1)

Mineral, formula Unit-cell parame-
ters, a, b, c, Å

Angles
α, β, γ, deg Color Density,

g/cm3 References

Fairfieldite
Ca2(Mn, Fe)[PO4]2 · 2H2O

5.79(1) 102.3(2) White, greenish-white, 
pale straw-yellow

3.10 [1]

6.57(1) 108.7(2)

5.51(1) 90.3(2)

Messelite
Ca2(Fe, Mn)[PO4]2 · 2H2O

5.95 102.3 From white
to greenish-gray

3.16 [2]

6.52 107.5

5.45 90.8

Cassidyite
Ca2(Ni, Mg)[PO4]2 · 2H2O

5.71 96.8 From pale-green
to dark-green

3.15 [3]

6.73 107.4

5.41 104.6

Collinsite
Ca2(Mg, Fe)[PO4]2 · 2H2O

5.7344(8) 97.29(1) White 2.93 [4]

6.780(1) 108.56(1)

5.4413(9) 107.28(1)

Zinc collinsite
Ca2(Mg, Zn)[PO4]2 · 2H2O

5.712(3) 98.63(1) Gray, white [5]

6.830(3) 106.83(1)

5.393(2) 103.38(1)

Strontium collinsite
(Ca, Sr)2(Mg, Fe)[PO4]2 · 2H2O

5.8219(1) 96.965(2) White 3.12 Our data

6.8319(2) 108.846(2)

5.4713(1) 107.211(2)

Parabrandtite
Ca2Mn[AsO4]2 · 2H2O

5.89 96.77 White-pink 3.55 [6]

7.031 109.32

5.64 108.47

Gaitite
Ca2(Zn, Mg)[AsO4]2 · 2H2O

5.90 111.67 White 3.81 [7]

7.61 70.83

5.57 119.42

Talmessite
Ca2(Mg, Co)[AsO4]2 · 2H2O

5.874(7) 97.3(1) Bright-pink 3.42 [8]

6.943(11) 108.7(1)

5.537(6) 108.1(2)

β-Roselite
Ca2(Co, Mg)[AsO4]2 · 2H2O

5.89 112.63 Dark red-pink 3.60 [9]

7.69 70.82

5.56 119.41

1

nary data allowed us to assume that Sr can be an impor-
tant constituent of some collinsite generations from the
Kovdor massif. A thorough examination of all the sam-
ples at the maximum magnification of an optical micro-
scope and study in reflected electrons proved the
absence of any microscopic inclusions of mineral stron-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
tium phases. To confirm the characteristic features of
the chemical composition of the collinsite crystals from
the Kovdor massif, we performed a comparative study
of the compositions of collinsites from the Canadian
and Australian deposits and of messelite from a holo-
typic deposit (Messel, Germany) by the same analytical
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Table 2.  Unit-cell parameters of collinsite from the Kovdor massif with various Sr contents (given in the formula coefficients*)

Sr content 0** 0.12 0.23 0.74

a, Å 5.734 5.738(9) 5.753(9) 5.824(1)

b, Å 6.780 6.772(8) 6.775(8) 6.800(1)

c, Å 5.441 5.444(5) 5.450(6) 5.479(6)

α 97.29 97.3(2) 97.3(2) 97.6(2)

β 108.56 108.7(2) 108.8(2) 108.9(2)

γ 107.28 107.2(2) 107.2(2) 107.3(3)

V, Å3 185.66 185.61 186.25 189.77

  * According to powder X-ray diffraction data (analyst A.N. Bogdanova).
** Standard ASTM JCPDS no. 26-1063.
methods and under the same conditions. Strontium was
not detected in any of the samples. The results of 51
electron microprobe analyses using wavelength disper-
sive spectrometry (WDS) and two gravimetric chemi-
cal analyses of the collinsite crystals from the Kovdor
massif are presented in Fig. 2. These results show a rig-
orous correlation between the total (Sr + Ba) content
and the Ca content (no correlation was detected
between Sr and Ba and also the elements located in the
second structural position in the collinsite crystals).
The maximum Sr content revealed in the statistically
significant experiments was 37 wt %.

The Sr-enriched collinsite that forms almost chemi-
cally homogeneous aggregates (Table 3) was used for
further X-ray diffraction analysis.

X-RAY DIFFRACTION EXPERIMENT 
AND STRUCTURE REFINEMENT

The powder X-ray diffraction pattern of collinsite
was obtained on an ADP-2 diffractometer (CuKα radia-
C

tion, Ni filter) in the angular range 12.36° ≤ 2θ ≤
100.00° with a 2θ scan step of 0.02° (exposure time at
each point was 15 s). All the computations were per-
formed using the WYRIET program (version 3.3 [17])

within the sp. gr.  typical of triclinic fairfieldites.
The structure was refined using the coordinates of

the basis atoms of collinsite [4] as the starting model.
The unit-cell parameters calculated from the experi-
mental X-ray pattern of collinsite-(Sr) (Table 2, for-
mula coefficient 0.74) were used as the starting values.
The peak profiles were approximated by Pearson func-
tion VII with 6FWHM, where FWHM is the peak width
at the half-height. The peak asymmetry was refined at
2θ ≤ 40°. At the first stage, the scale factor and counter
zero were refined. The subsequent refinement was car-
ried out with the gradual addition of the parameters and
automatic modeling of the background until the attain-
ment of constant values of the reliability factors. The
crystal structure was refined with anisotropic thermal
parameters for the Sr, Ca, P, and Mg atoms and isotro-
pic thermal parameters for the O atoms to Rwp = 4.15%,

P1
20 µm200 µm (b)(a)

Fig. 1. Morphology of crystals of the strontium variety of collinsite (scanning electron microscropy data).
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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RF = 1.03%, and RB = 2.46%. According to the refined
data, the isomorphous substitution of Ca for Sr atoms
takes place—these atoms statistically occupy one gen-
eral position in the ratio 0.64(1) : 0.36(1). The occupan-
cies of the position correspond to Ca1.28Sr0.72 per for-
mula unit of the mineral, which coincides with the data
of microprobe analysis to within 0.01 (Table 3). The
coordinates of the basis atoms of the Sr-containing col-
linsite variety and the equivalent thermal parameters
are listed in Table 4. The interatomic distances are
given in Table 5 together with those of other structur-
ally studied minerals of this series. The experimental
and calculated X-ray diffraction spectra are shown in
Fig. 3.

RESULTS AND DISCUSSION

In the crystal structure of collinsite-(Sr), the Mg–O
interatomic distances in centrosymmetric octahedra
range within 1.98–2.31 Å (average distance 2.13 Å).
The lower accuracy of powder X-ray diffraction experi-
ments compared to single-crystal X-ray experiments
did not allow us to perform rigorous analysis of the
structural distortions caused by incorporation of stron-
tium atoms into the calcium positions of the conven-
tional collinsite. Nevertheless, the results obtained
show the tendency in the changes in collinsite structure
caused by the defect nature of one of the cation posi-
tions.

In the structure of collinsite-(Sr), the scatter in the
interatomic distances in the Mg-octahedron is more
pronounced than in collinsite, where the distances vary
from 2.00 to 2.14 Å (average distance 2.09 Å). The
orthophosphorus tetrahedra are distorted to a larger
extent, and the P–O distances range within 1.46–
1.58 Å, whereas the corresponding bond lengths in fair-
fieldite and collinsite range within 1.51–1.56 Å and

Table 3.  Chemical composition (wt %) and formula coeffi-
cients for the strontium variety of collinsite (ΣR2+ of the cat-
ions equals 3)

P2O5 39.25 P 2.03

CaO 19.02 Ca 1.24

SrO 20.87 Sr 0.74

BaO 1.60 Ba 0.04

FeO 0.13 Fe2+ 0.01

MnO 0.79 Mn 0.04

MgO 10.25 Mg 0.93

H2O 8.92* H2O 1.82

Σ 100.83

* Determined by DTA.
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1.53–1.56 Å, respectively. The average P–O bond
lengths in the three structures are the same (1.54 Å).

The difference in the cation–anion distances in the
eight-vertex polyhedron occupied by Ca atoms in the
structures of this series seems to be of most interest. In
the structures of collinsite, fairfieldite, and talmessite,
the Ca–O distances vary from 2.38, 2.34, and 2.36 to
2.70, 2.72, and 2.77 Å, respectively. The isomorphous
incorporation of Sr atoms into an eight-vertex polyhe-
dron leads to its further distortion, which is seen from
the increase in the cation–oxygen bond lengths (2.27–
2.83 Å). Evidently, the incorporation of larger Sr2+ cat-
ions into eight-vertex polyhedra leads to an increase in
the average distance in the polyhedra to 2.57 Å. The
corresponding average distances in the structures of

1.41.2 1.6 1.8 2.0

0.1

0.3

0.5

0.7

0.9

Ca (formula coefficient)

Sr + Ba (formula coefficient)

R = –0.99

Fig. 2. Chemical composition of collinsite from hydrother-
mal mineral associations in carbonatites from the Kovdor
complex (formula coefficients; per sum of cations equal to
three).

Table 4.  Coordinates of the basis atoms and thermal param-
eters (Å2) in the collinsite-(Sr) structure 

Atom x/a y/b z/c Beq/

Mg 0.0 0.0 0.0 1.93(8)

Ca 0.3133(8) 0.7609(8) 0.6576(8) 2.41(4)

Sr 0.3133(8) 0.7609(8) 0.6576(8) 2.41(4)

P 0.312(2) 0.240(1) 0.672(2) 1.60(6)

O(1) 0.377(2) 0.164(2) 0.934(3) 2.1(5)*

O(2) 0.256(2) 0.064(2) 0.409(3) 1.0(4)*

O(3) 0.157(2) 0.372(2) 0.633(3) 1.5(4)*

O(4) 0.605(3) 0.375(2) 0.733(3) 1.0(5)*

O(5) 0.990(3) 0.285(3) 0.099(3) 0.9(4)*

Biso
*
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Table 5.  Interatomic distances (Å) in the minerals of the fairfieldite group

Mineral Fairfieldite Talmessite Collinsite Collinsite-(Sr)

Octahedra

Mg–O(1) 2.14(2) 2.144(5) 2.31(1)

O(2) 2.12(2) 2.107(4) 2.11(1)

O(5) 2.04(2) 1.997(5) 1.98(1)

Mg–Oav 2.10 2.09 2.13

Tetrahedra

P–O(1) 1.563(7) 1.549(5) 1.53(1)

O(2) 1.556(6) 1.559(5) 1.57(1)

O(3) 1.514(7) 1.527(6) 1.46(2)

O(4) 1.550(7) 1.538(5) 1.58(1)

P–Oav 1.55 1.54 1.54

Eight-vertex polyhedra

Ca(Sr)–O(1) 2.495(9) 2.66(2) 2.594(5) 2.83(1)

O(1') 2.500(7) 2.45(2) 2.523(4) 2.27(1)

O(2) 2.475(8) 2.63(2) 2.589(5) 2.70(1)

O(2') 2.724(9) 2.77(2) 2.702(6) 2.76(1)

O(3) 2.456(8) 2.43(2) 2.468(5) 2.51(1)

O(3') 2.465(8) 2.41(2) 2.403(4) 2.49(1)

O(4) 2.336(9) 2.36(2) 2.384(6) 2.66(1)

O(5) 2.438(7) 2.40(2) 2.385(6) 2.51(1)

Ca(Sr)–Oav 2.49 2.51 2.50 2.57
collinsite, fairfieldite, and talmessite are 2.50, 2.49, and
2.51 Å, respectively (Table 5).

The crystal structures of the minerals of the fair-
fieldite group are composed by isolated Mg-octahedra
(or Fe-, Mn-, Zn-, Co-, or Ni-octahedra) sharing the
oxygen vertices with orthophosphate (orthoarsenate)
tetrahedra to form chains parallel to the c axis (Fig. 4).
In the chain, each tetrahedron shares two vertices with
the adjacent octahedra, whereas two “lone” oxygen
atoms of each tetrahedron are involved in the coordina-
tion of Ca (Sr) atoms only. Four oxygen vertices of each
octahedron are shared with tetrahedra, whereas the two
remaining vertices are occupied by water molecules.
The large Ca2+ (Sr2+) cations are located between the
chains of the octahedra and tetrahedra, thus forming
with these chains a three-dimensional framework; the
same function is also performed by hydrogen bonds.

Comparative analysis of our data on collinsite and
the known data on all the minerals of the fairfieldite
group from all the known deposits in the world [4, 13,
16, 18, 19] leads to the conclusion that the incorpora-
tion of Sr atoms into the structures of these hydrated
phosphates is determined primarily by the correspond-
C

ing intensive parameters of the mineral-forming
medium. The above-described isomorphism has been
established only in hydrothermal mineral associations
related to carbonatites from the Kovdor massif.

The parameters of the hydrothermal process that
occurred in this carbonatite complex were estimated in
the earlier structural studies of yet another hydrated
phosphate from the Kovdor massif—bakhchisarait-
sevite [20]. This open/partially open moderate-low-
temperature hydrothermal system is characterized by
high alkalinity, as opposed to the typical manifestations
of minerals of the fairfieldite group in granite pegma-
tites or quartz-enriched ferrous metasediments. The
activity of CO2 was very high compared to other natural
hydrothermal systems but still too low compared to the
activity of analogous postcarbonatite thermal springs
circulated in alkaline and alkaline-ultrabasic complexes
of the Kola province.

We believe that the presence of Sr in the structures
of chain phosphates of the fairfieldite group is evidence
of specific geochemical conditions that rarely occur in
nature (they have been revealed only in the Kovdor
phoscorite–carbonatite complex). In brief, these condi-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 3. Theoretical (points) and experimental spectra of collinsite-(Sr).
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Fig. 4. Axonometry of the crystal structure of collinsite-
(Sr). Strontium atoms are statistically distributed over Ca-
positions.
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tions can be considered as the final stage of the evolu-
tion of a mantle-derived fluid-saturated carbonate–sili-
cate system in the upper crust (apparently, correspond-
ing to subvolcanic conditions) [10].
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Abstract—The molecular and crystal structures of calix[4]arene 1,3-di-n-propyl ether are determined. The
molecule adopts a cone conformation stabilized by a pair of hydrogen bonds of the O–H···OR type (R is n-pro-
pyl). The dihedral angles between the planes of the benzene rings and the plane passing through the oxygen
atoms are equal to 35.0°, 68.5°, 39.8°, and 71.2°. The larger angles are characteristic of the rings consisting of
the ether groups, whereas the smaller angles are observed in the phenol rings. The bond lengths and angles in
the molecule have standard values. In the crystal, the molecules form centrosymmetric dimers due to stacking
interactions between two benzene rings in each dimer. Each of these rings is enclosed in the cavity of the other
molecule in the dimer. The dimers have the shape of an ellipsoid. The packing as a whole can be described as
an ellipsoid packing in which all the contacts occur through van der Waals interactions. © 2003 MAIK
“Nauka/Interperiodica”.
INTRODUCTION

Calixarenes belong to the class of macrocyclic com-
pounds. At present, these compounds have been studied
extensively [1–8]. The structure of calix[4]arenes
involves four phenol groups linked by orthomethylene
bridges. The most important feature of these molecular
systems is their conformational flexibility, which is
responsible for the ability to fulfill the function of a
host, i.e., to adapt their shape to include small-sized
molecules, molecular fragments, and metal ions of dif-
ferent shape and size. Owing to the presence of aro-
matic rings and OH functional groups in flexible mac-
rocyclic fragments of calix[4]arenes, they can interact
with a guest molecule through stacking and electro-
static mechanisms. This renders calix[4]arenes most
suitable for use as model objects in the elucidation of
the nature of guest–host interactions that play a crucial
role in biochemical processes of molecular recognition
[1–8]. The evolution of research in this field necessi-
tates an investigation into the structure of calixarenes
with a modified skeleton. The modification consists in
introducing different organic substituents either into
aromatic rings or instead of protons of OH groups (with
the partial or complete removal of active protons). Such
a modification can lead to a decrease in the conforma-
tional flexibility of the macrocycle, a change in the
nature of electrostatic interactions with the guest mole-
cule, and an enhancement of hydrophobic effects. In
general, this extends the range of molecular species that
can be incorporated as guest molecules into the macro-
cycle of the host molecule. Moreover, this modification
1063-7745/03/4802- $24.00 © 20233
can affect the energy ratio of stable conformers and the
ratio between the energies of barriers to conformational
transitions. The influence of substituents on the ener-
gies of interconversion of the macrocycle and interac-
tion of calix[4]arenes with metal cations was studied in
[9–11].

This paper reports on the results of an X-ray struc-
ture investigation of calix[4]arene modified by substi-
tuting two n-propyl groups for two protons of the
hydroxyl groups. Details of the chemical experiment
performed in this work will be described in a separate
paper.

EXPERIMENTAL

The most important parameters of the X-ray diffrac-
tion experiment are presented in Table 1. A colorless
single crystal in the form of a prism was covered with a
perfluorinated oil and placed in a Bruker SMART CCD
diffractometer at a temperature of 150.0(2) K. Experi-
mental reflections were measured in the ω scan mode
(exposure time per frame, 15 s).

The structure was solved by direct methods and
refined using the least-squares procedure for F2 . All the
hydrogen atoms were located from the difference syn-
thesis.

The final refinement of the structure was performed
by the least-squares method in the full-matrix anisotro-
pic approximation for all the non-hydrogen atoms and
in the isotropic approximation for the hydrogen atoms.
003 MAIK “Nauka/Interperiodica”
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The coordinates of the non-hydrogen atoms and the
hydrogen atoms of the hydroxyl groups are listed in
Table 2. All the calculations were carried out with the
SHELXS86 [12] and SHELXL97 [13] software pack-
ages.

MOLECULAR STRUCTURE

The molecular structure is shown in Fig. 1. The geo-
metric parameters of the molecule were obtained with

Table 1.  Crystal data, data collection, and refinement pa-
rameters for the crystal structure studied

Empirical formula C34H36O4 

Molecular weight 508.63

Crystal system Rhombohedral

Space group R

a, Å 35.2039(8)

b, Å 35.2039(8)

c, Å 11.7188(4)

α, deg 90.0

β, deg 90.0

γ, deg 120.0

V, Å3 12577.5(6)

Z 18

ρcalcd, g/cm3 1.209

F(000) 4896

µ(MoKα), mm–1 0.078

Crystal size, mm 0.42 × 0.22 × 0.18

T, K 150.0(2)

Radiation type
(wavelength, Å) 

MoKα(0.71073)

Scan mode/θ range, deg ω/1.16–27.51

Index ranges –45 ≤ h ≤ 45

–41 ≤ k ≤ 45

–15 ≤ l ≤ 14

Number of measured
reflections

31619

Number of unique reflections 6426 [Rint = 0.0769] 

Number of reflections
with I > 2σ(I)

5687

Number of refined parameters 488

R factors for reflections
with I > 2σ(I)

R1 = 0.0465, wR2 = 0.1008

R factors for all reflections R1 = 0.0940, wR2 = 0.1174

Goodness-of-fit on F2 0.967

Extinction coefficient 0.00126(9)

Residual electron density
(min/max), e/Å3

–0.294/0.307

3

C

a high accuracy, which makes it possible to discuss in
detail the molecular geometry.

It is known [1–9] that 16-membered macrocyclic
fragments of calix[4]arenes are characterized by four
stable conformations (cone, paco, 1,2-alt, 1,3-alt),
which differ in the orientation of their benzene rings
with respect to each other and to the plane passing
through the methylene bridges. Individual conformers
only slightly differ in energy (by less than 1 kcal/mol),
and the energy barriers to their mutual transformation
are not very high (less than 5 kcal/mol) [9–11]. The
cone (truncated cone or basket) conformation is addi-
tionally stabilized by a cyclic system of hydrogen
bonds [14]. The introduction of substituents into the
endo position (in particular, the substitution of large-
sized organic radicals for protons of the OH groups)
can substantially affect the energy ratio of the conform-
ers or bring about an increase in the interconversion
barriers (to ~13 kcal/mol) [10]. In our case, the substi-
tution of n-propyl radicals for two protons in
calix[4]arene does not lead to destabilization of the
cone conformer. It is this conformation that is revealed
in the crystal under investigation. Among the four
hydrogen bonds observed in unsubstituted
calix[4]arene, the substituted compound retains two
hydrogen bonds, namely, O(1)–H···O(4) [O···O, 2.713 Å;
O···H, 1.825 Å; and the O–H···O angle, 166.7°] and
O(2)–H···O(3) [O···O, 2.679 Å; O···H, 1.799 Å; and the
O–H···O angle, 167.7°]. The distances between the
oxygen atoms that are not involved in the hydrogen
bonds are as follows: O(1)···O(3), 2.804 Å and
O(2)···O(4), 2.852 Å.

The specific feature of the macrocyclic skeleton of
the calix[4]arene ether studied in this work is its flat-
tened structure. Indeed, the oxygen–oxygen diagonal
distances differ significantly: O(1)···O(2), 3.15 Å and
O(3)···O(4), 4.46 Å. Apparently, this feature of the mac-
rocyclic skeleton is associated either with the molecular
packing effects or with the weak intermolecular inter-
actions.

The dihedral angles between the planes of the
C(1)···C(6), C(8)···C(13), C(15)···C(20), and
C(22)···C(27) benzene rings and the plane passing
through the oxygen atoms are equal to 35.0°, 68.5°,
39.8°, and 71.2°, respectively. Most likely, such a sys-
tematic distortion of the ideal cone shape is governed
primarily by the tendency for hydrogen bonds to reach
an optimum geometry. The largest angles are character-
istic of the rings consisting of the ether groups, whose
oxygen atoms are proton acceptors, whereas the small-
est angles are observed in the rings composed of the
phenol groups with the participation of protons. The
obtained data on the cone geometry, the O(1)···O(4)–
C(22) and O(1)···O(4)–C(32) angles (98.3° and 131.3°,
respectively), and the O(2)···O(3)–C(8) and
O(2)···O(3)–C(29) angles (101.1° and 126.7°, respec-
tively) suggest that protons are approximately oriented
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Table 2.  Coordinates (×104) and equivalent isotropic thermal parameters (×103, Å2) for non-hydrogen atoms*

Atom x y z Ueq Atom x y z Ueq

O(1) 508(1) 2001(1) 8713(1) 29(1) C(16) 1731(1) 2578(1) 5825(1) 23(1)

O(2) 999(1) 2027(1) 6443(1) 31(1) C(17) 1981(1) 2866(1) 4961(2) 26(1)

O(3) 1306(1) 2012(1) 8523(1) 24(1) C(18) 1788(1) 2930(1) 4002(2) 30(1)

O(4) 89(1) 1741(1) 6677(1) 28(1) C(19) 1335(1) 2703(1) 3902(2) 29(1)

C(1) 434(1) 2271(1) 9400(1) 22(1) C(20) 1070(1) 2406(1) 4734(2) 25(1)

C(2) 80(1) 2343(1) 9238(2) 24(1) C(21) 573(1) 2149(1) 4613(2) 29(1)

C(3) 9(1) 2590(1) 10051(2) 26(1) C(22) 131(1) 2142(1) 6352(2) 24(1)

C(4) 286(1) 2771(1) 10980(2) 29(1) C(23) 352(1) 2341(1) 5342(2) 25(1)

C(5) 639(1) 2704(1) 11111(2) 26(1) C(24) 380(1) 2736(1) 5030(2) 27(1)

C(6) 721(1) 2454(1) 10336(1) 22(1) C(25) 204(1) 2931(1) 5723(2) 28(1)

C(7) 1100(1) 2367(1) 10494(2) 24(1) C(26) 9(1) 2738(1) 6750(2) 26(1)

C(8) 1571(1) 2461(1) 8745(1) 21(1) C(27) –30(1) 2341(1) 7088(1) 24(1)

C(9) 1487(1) 2642(1) 9709(1) 22(1) C(28) –235(1) 2139(1) 8236(2) 27(1)

C(10) 1761(1) 3091(1) 9904(2) 25(1) C(29) 1477(1) 1741(1) 8958(2) 30(1)

C(11) 2100(1) 3348(1) 9154(2) 26(1) C(30) 1185(1) 1279(1) 8547(2) 45(1)

C(12) 2162(1) 3162(1) 8181(2) 25(1) C(31) 726(1) 1069(1) 9035(3) 66(1)

C(13) 1899(1) 2716(1) 7953(1) 23(1) C(32) –311(1) 1362(1) 6284(2) 36(1)

C(14) 1956(1) 2516(1) 6860(2) 26(1) C(33) –311(1) 957(1) 6699(2) 51(1)

C(15) 1272(1) 2343(1) 5692(1) 24(1) C(34) 48(1) 895(1) 6165(3) 71(1)

H(1)* 329(8) 1898(8) 8101(22) 70(8) H(2)* 1133(9) 2021(9) 7084(25) 88(9)

* The coordinates of the hydrogen atoms of the hydroxyl groups.
toward one of the lone electron pairs of the O(3) and
O(4) oxygen atoms.

The O–C(Ph) bonds of the hydroxyl groups
[1.363(2) and 1.366(2) Å] are shorter than the O–C(Ph)
bonds of the ether groups [1.400(2) and 1.395(2) Å]. In
turn, the latter bonds are shorter than the O–C bonds
with the n-propyl groups [1.448(2) and 1.448(2) Å]. All
these bond lengths have standard values [15].

The C–C bond lengths in the methylene bridges fall
in the range 1.522–1.524 Å. The angles at the atoms of
the methylene bridges lie in the range 111.9°–113.8°.
The benzene rings have a nearly ideal geometry. The
geometric parameters given above also correspond to
standard values.

CRYSTAL PACKING

The molecular packing in the crystal under investi-
gation is also of considerable interest, because it can
provide additional information on the possible nature of
the interaction of calixarenes with organic molecules.

In the crystal, two molecules related by the center of
symmetry are mutually arranged in such a way that one
of the benzene rings of each molecule is located in the
cavity of the other molecule (Fig. 2). As a consequence,
the mutual arrangement of the molecules ensures the
closest packing. Moreover, the enclosed benzene rings
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
are aligned parallel to each other and their peripheral
regions overlap (Fig. 3). The calculations conducted by
Müller-Dethlefs and Hobza [16] and Hunter et al. [17]
demonstrated that only such a displaced mutual
arrangement of the benzene rings leads to a stacking
interaction. Janiak [18] performed an investigation
based on the data available in the Cambridge Structural
Database and revealed that the coaxial π–π interaction
of aromatic systems without their mutual displacement
occurs very rarely. As was shown in [18], the interpla-
nar distances for these interactions, as a rule, lie in the
range 3.3–3.8 Å.

Thus, in the studied structure, the interplanar dis-
tance (3.45 Å) determined in the dimer is typical of
weak interactions of aromatic systems.

In [16], the mutual arrangement described above
was referred to as the parallel-displaced arrangement.
As follows from the ab initio quantum-chemical calcu-
lations performed in [17], the parallel-displaced
arrangement corresponds to an attractive quadrupole–
quadrupole interaction. According to [18], attractive
interactions of the C–H···π-system type should be taken
into account only in the case when the aromatic systems
overlap along their periphery.

It is of interest that, in the dimer, benzene rings of
the C(8)···C(13) type are enclosed in the cavities of the
other molecule of the dimer along the small diagonal of
3
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Fig. 1. Molecular structure. Thermal ellipsoids for atoms are drawn at the 30% probability level.
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Fig. 2. Structure of the stacking dimer.
the flattened cone. For this geometry of the dimer, the
H(10A) and H(12A) hydrogen atoms [as well as the
H(10B) and H(12B) hydrogen atoms, which are cen-
trosymmetric with respect to H(10A) and H(12A)] of
the benzene rings are arranged almost over the planes
of the C(1B)···C(6B) and C(15B)···C(20B) benzene
rings [and, correspondingly, the C(1A)···C(6A) and
C(15A)···C(20A) benzene rings] of the other half. The
distances between the aforementioned hydrogen atoms
C

and the benzene ring planes are equal to 2.87 and
3.01 Å. This geometry corresponds to a weak interac-
tion of the C–H···π type, which is considered a weak
hydrogen bond between the CH group (weak acid) and
the π system (weak base) [19]. Analysis of structural
information revealed that the distance between the
hydrogen atom and the aromatic ring falls in the range
from 2.70 to 3.40 Å [19]. Possibly, it is this weak attrac-
tive interaction that is responsible for the formation of
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 3. Structure of the stacking dimer in the projection onto the plane of one of the overlapping benzene rings.

a

c0

Fig. 4. A fragment of the crystal packing.
the flattened structure of the cone skeleton of the stud-
ied compound.

Note that the stacking interaction occurs between
the phenyl rings of the ether groups. These rings form
large angles with the plane of the basket bottom. It is
YSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
quite reasonable that the surface energy of the dimer
system with this geometry of the interaction should be
substantially less than that in the case of the stacking
interaction between the phenol groups whose tilt is
almost twice as small.
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Despite the presence of six benzene rings on the sur-
face of the dimer system, no other stacking interactions
are found in the crystal structure. The surface of the
dimer system can be approximated by an ellipsoid. The
ellipsoids are closely packed in the crystal (Fig. 4). All
the interatomic contacts between the dimers occur
through van der Waals interactions.
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Abstract—The parameters of the crystal structure of lead titanate with different degrees of imperfection of the
anionic and cationic sublattices are refined by the Rietveld method. The experiments are carried out on a
DRON-4 diffractometer (CuKα radiation; 20° < 2θ < 70°; scan step, 0.01°; exposure time per point, 10 s). All
the calculations are performed with the GSAS software package in the space group P4mm. The structure param-
eters are refined in the isotropic approximation to Rd = 5.0–6.0%. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Lead titanate PbTiO3, like barium titanate BaTiO3,
is a typical representative of oxygen octahedral ferro-
electrics with a perovskite structure. The ferroelectric
properties and the crystal structure of lead titanate were
determined as far back as 1950. Since that time, there
have appeared many works concerned with the deter-
mination of the lattice parameters of lead titanate from
X-ray diffraction data [1–6].

However, the crystallographic data reported in [1–6]
for PbTiO3 and, in particular, the data currently avail-
able in the ASTM Powder Diffraction File are rather
contradictory [1–3]. At room temperature, lead titanate
has a tetragonal structure and belongs to the space
group ê4mm (Z = 1). According to the published data,
the unit cell parameters a and c for PbTiO3 fall in the
ranges from 3.895 to 3.94 and from 4.063 to 4.171 Å,
respectively. Correspondingly, the ratio c/a varies from
1.0312 to 1.0709. Unfortunately, there has been no dis-
cussion of the reasons for such a noticeable scatter of
the unit cell parameters.

Koray [7] demonstrated that the aforementioned
changes in the lattice parameters of the crystal structure
of PbTiO3 can be associated with different sizes of
PbTiO3 crystal grains. It was noted that a change in the
size of crystal grains from 0.02 to 0.15 µm leads to con-
siderable variations in the unit cell parameters a and c
(from 3.915 to 3.905 and from 4.1 to 4.145 Å, respec-
tively). Moreover, it was found that, in the case when
the size of crystal grains is larger than 0.15 µm, the unit
cell parameters are independent of the grain size [7].

For lack of any adequate explanation of the differ-
ence in the lattice parameters of the PbTiO3 crystal
structure, we undertook a more detailed investigation of
1063-7745/03/4802- $24.00 © 20239
the structural characteristics of lead titanate with differ-
ent degrees of imperfection of the anionic and cationic
sublattices.

EXPERIMENTAL

Lead titanate samples with different degrees of
anionic and cationic imperfection were synthesized at
temperatures ranging from 860 to 890°C for 2–8 h.
Titanium dioxide TiO2 (OSCh 5-2 grade) and lead
oxide PbO (OSCh 5-3 grade) were used as the initial
components. The synthesis was performed in closed
corundum crucibles in air. Prior to synthesis, the initial
components were thoroughly mixed and were then
pressed under a pressure of 100 MPa into disks 4 mm
thick and 20 mm in diameter. After the synthesis, the
samples were crushed to powders, which were exam-
ined using X-ray powder diffraction. According to the
X-ray powder diffraction data, the PbTiO3 powders
synthesized at temperatures of 870–890°C had a single-
phase composition and a perovskite structure. The crys-
tal grain size of the studied powders was determined
using grain-size analysis on a Fritsch Model 22 instru-
ment and fell in the range 2–8 µm.

The X-ray diffraction patterns of lead titanate were
measured on a DRON-4 automated diffractometer
(CuKα monochromatic radiation; silicon internal stan-
dard; 2θ scan mode; scan step, 0.01°; exposure time per
point, 10 s). All the calculations were performed with
the GSAS program package [8–10]. As in earlier works
[1, 4, 5], the structure was refined in the space group
ê4mm. The refinement was carried out first for the
background function, scale factor, counter zero, and
unit cell parameters and then for the structure and pro-
file parameters. The unit cell parameters and the param-
003 MAIK “Nauka/Interperiodica”
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Table 1.  Unit cell parameters of lead titanate with different degrees of cationic and anionic imperfection

Chemical formula Synthesis 
time, h

Lattice parameters, Å
Ratio c/a Unit cell volume, Å3

a c

870°C

Pb0.984Ti0.960O2.970 2 3.9024(1) 4.1583(1) 1.0656 63.324(1)

Pb0.991Ti0.962O2.985 4 3.9005(1) 4.1565(1) 1.0656 63.235(1)

Pb0.992Ti0.984O2.957 6 3.8990(3) 4.1552(0) 1.0657 63.169(3)

Pb0.993Ti0.986O2.928 8 3.8989(2) 4.1541(1) 1.0655 63.143(2)

880°C

Pb0.992Ti1.0O2.951 2 3.8993(6) 4.1551(1) 1.0656 63.177(1)

Pb0.998Ti1. 0O3.000 4 3.8993(3) 4.1552(0) 1.0656 63.178(3)

Pb0.983Ti1.0O2.852 6 3.8984(5) 4.1543(1) 1.0656 63.137(1)

890°C

Pb0.998Ti0.964O2.923 2 3.9009(5) 4.1574(1) 1.0656 63.263(1)

Pb0.987Ti1.00O2.8965 3 3.8988(5) 4.1550(0) 1.0657 63.162(1)

Pb0.963Ti1.00O2.707 4 3.9046(4) 4.1597(1) 1.0653 63.419(2)
eters of the theoretical model of the crystal structure
were refined by the least-squares method. The struc-
tural model was used to calculate the theoretical X-ray
diffraction pattern, which was then compared with the
experimental X-ray diffraction pattern. When compar-
ing the calculated and experimental diffraction pat-
terns, the background was subtracted.

The peak shape was described with the use of a
function proposed by Rietveld with due regard for the
asymmetry correction As [11]. This function has the
form

where

fj is the atomic factor, Ts is the absorption coefficient,
and Ss is the displacement of the sample. The function
F(∆T ') is a combination of the Lorentzian and Gaussian
functions [12], that is,

F(∆T ') = ηL(∆T ', É) + (1 – η)G(∆T ', É),

where η = 1.36606(γ/É) – 0.477719(γ/É)2 +
0.11116(γ/É)3 is the matching coefficient, É is the full
width at half-maximum, and γ is the Lorentz factor
[13].

In this work, we refined 40 parameters. The param-
eters to be refined were gradually included in the refine-
ment, which was accompanied by geometric simulation
of the background. The refinement was terminated
when the R factor reached a constant value. The R fac-
tor was defined by the formula

H ∆T( ) giF ∆T '( ),∑=

∆T ' ∆T f iAs/ 2θtan Ss θcos Ts 2θ,sin+ + +=

Rd Yi
exp∑ Yi

theor
–( )/ Yi

exp
.∑=
C

The refinement of the structure parameters was car-
ried out until the final factors Rd characterizing the dis-
crepancy between the experimental and calculated
structure amplitudes became equal to 5.0–6.0%.

The results of the structure refinement in the isotro-
pic approximation for PbTiO3 with different degrees of
anionic and cationic imperfection are presented in
Table 1. The atomic coordinates, site occupancies, and
isotropic thermal parameters are listed in Table 2.

The chemical formulas characterizing the degree of
anionic and cationic imperfection of the samples under
investigations are given in the first column of Table 1.
These formulas were obtained as a result of the refine-
ment of the features in the crystal structure by the
Rietveld method using the GSAS program package for
atomic site occupancies (Table 2).

Analysis revealed that the unit cell parameters
(Tables 1, 2) nonlinearly depend on the degree of
imperfection of the lead, titanium, and oxygen sites. It
should be noted that no imperfection is observed at the
O(1) site; moreover, the total number of oxygen atoms
(nO < 3) in the unit cell is determined by the degree of
imperfection at the O(2) site. The functional depen-
dences of the unit cell parameters a and c on the degree
of imperfection of the cationic and anionic sublattices
were derived by mathematical modeling of the experi-
ment. For this purpose, the matrix of the experiment
(Table 3, columns nPb, nO, nTi, aexp, and cexp) was con-
structed on the basis of the data obtained in the refine-
ment of the unit cell parameters and the atomic site
occupancies. By using the data presented in Table 3 and
one of the methods of mathematical modeling of exper-
iments, namely, the method of the group account of
arguments [14], we derived the following relationships:
a = 8.014195 – 2.08275nPb – 1.842482nTi – 0.791714nO +
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Table 2.  Positional parameters, site occupancies (q), and root-mean-square atomic displacements (u2) for lead titanate sam-
ples synthesized under different temperature (T, °C) and time conditions

Atom

870 880 890

Synthesis time, h

2 4 6 8 2 4 6 2 3 4

Pb(0, 0, 0)

q 0.9844(1) 0.9909(0) 0.9923(2) 0.993(0) 0.9926(3) 0.9982(0) 0.983(1) 0.9981(3) 0.9870(4) 0.9633(3)

u2 0.0049(1) 0.0058(1) 0.013(1) 0.009(1) 0.0011(1) 0.0116(1) 0.0029(1) 0.0111(1) 0.0043(1) 0.0053(1)

O(1)(0.5, 0.5, z)

z 0.1266(0) 0.0811(3) 0.0741(1) 0.0716(2) 0.1469(1) 0.0907(0) 0.0741(4) 0.1362(3) 0.0679(1) 0.0103(0)

q 1 1 1 1 1 1 1 1 1 1

u2 0.059(1) 0.020(1) 0.053(5) 0.045(7) 0.033(1) 0.020(3) 0.053(1) 0.0098(1) 0.0569(4) 0.3045(8)

Ti(0.5, 0.5, z)

z 0.5537(1) 0.5333(1) 0.5300(1) 0.4701(4) 0.5243(1) 0.5291(3) 0.4819(1) 0.5691(4) 0.5424(1) 0.5580(1)

q 0.960(1) 0.962(3) 0.984(1) 0.986(1) 1 1 1 0.964(1) 1 1

u2 0.024(2) 0.024(1) 0.018(0) 0.018(0) 0.003(1) 0.012(1) 0.002(1) 0.0001(0) 0.0002(6) 0.0004(1)

O(2)(0.5, 0, z)

z 0.5838(2) 0.6143(4) 0.6409(4) 0.6458(3) 0.6042(1) 0.5907(0) 0.5315(1) 0.5868(1) 0.5975(1) 0.6090(1)

q 0.980(1) 0.9897(0) 0.9713(0) 0.9522(1) 0.9671(2) 1 0.9010(1) 0.9486(3) 0.9795(2) 0.8049(3)

u2 0.012(1) 0.0023(5) 0.0039(1) 0.0058(2) 0.005(1) 0.025(1) 0.096(3) 0.0098(1) 0.0014(4) 0.0688(1)
0.623518nOnPbnTi + 0.034965 ; c = –1.207632 –
1.960091nPb – 0.677579nTi + 2.63785nO +

0.578774nOnPbnTi – 0.412336  + 0.994991/nTi +

9.595909/ . The dependences of the unit cell param-
eters a and c on the degree of imperfection of the
anionic and cationic sublattices of lead titanate are
described by the above relationships with a high accu-
racy (Table 3, columns atheor and ctheor). The validity of
these relationships was checked against the F criterion,
and their applicability was judged by the coefficient of
determination. In our case, the coefficients of determi-
nation were equal to 0.96 and 0.97 for the formulas rep-
resenting the parameters a and c, respectively, at the
following atomic site occupancies in the crystal lattice:
gPb = (0.963–1.0); gTi = (0.954–1.0); gO(2) = (0.963–
0.998); and gO(1) = 1.0.

DISCUSSION

In the crystal structure of lead titanate, the sizes of
lead and titanium cations are less than those of the holes
occupied by these cations. The interrelation of hole
sizes leads to a displacement of the titanium ion from
the center of the oxygen tetrahedron. It should be noted
that, in a perfect crystal structure of lead titanate, the
ionic displacements in all unit cells should be identical
in magnitude and direction.

The results obtained in the refinement of the struc-
ture parameters of lead titanate powders (synthesized

nO
2

nO
2

nO
2
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under different temperature–time conditions) with dif-
ferent degrees of anionic and cationic imperfections
indicate that the lead titanate prepared at 880°C for 4 h
has a more perfect crystal structure. Under these condi-
tions, the TiO6 oxygen octahedra are distorted to a
smaller extent. The angles in these octahedra are as fol-
lows: O(1)–Ti–O(1) = 180°, O(1)–Ti–O(2) ~ 90°,

Table 3.  Matrix of the experiment and results of mathemati-
cal modeling

nPb nO nTi aexp cexp atheor ctheor

0.963 2.707 1.00 3.9046 4.1597 3.9045 4.1596

0.983 2.852 1.00 3.8984 4.1543 3.8989 4.1546

0.987 2.897 1.00 3.8989 4.1550 3.8987 4.1547

0.992 2.951 1.00 3.8993 4.1551 3.8991 4.1551

0.998 3.00 1.00 3.8993 4.1551 3.8995 4.1552

0.984 2.97 0.96 3.9024 4.1583 3.9024 4.1585

0.989 2.599 0.97 3.9003 4.1565 3.9003 4.1565

0.991 2.985 0.962 3.9005 4.1565 3.9004 4.1563

0.992 2.957 0.984 3.8990 4.1552 3.8995 4.1551

0.993 2.928 0.986 3.8989 4.1541 3.8985 4.1541

0.9885 2.923 0.954 3.9009 4.1574 3.9009 4.1573

Note: nPb, nTi, and nO are the numbers of Pb, Ti, and O atoms in
the unit cell, respectively.
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O(2)–Ti–O(2) = 89.365°, and O(2)–Ti–O(2) = 167.91°.
The site occupancies of the Ti and O(1) atoms are equal
to unity. The maximum site occupancies are observed
for the Pb (0.9982) and O(2) (0.9997) atoms. The posi-
tional parameters (in terms of fractional coordinates)
for the O(1) and O(2) atoms along the z axis are identi-
cal and equal to 0.0907.

A comparison of the structural characteristics (the
lattice parameters, positional and thermal parameters of
the basis atoms, and site occupancies) for lead titanate
powders with different degrees of imperfection allowed
us to make the following inferences.
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Fig. 1. Dependences of the lattice parameters (1) a and
(2) c on the total number nO of oxygen atoms in the unit cell.
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Fig. 2. Dependences of the lattice parameters (1) a and
(2) c on the number nPb of lead atoms in the unit cell at dif-
ferent site occupancies of titanium atoms (site occupancies
are given in the legend).
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(i) The lattice parameters a and c only slightly
increase with a decrease in the degree of imperfection
at the Pb, Ti, and O(2) sites.

(ii) The unit cell volume decreases with an increase
in the degree of imperfection at the Pb and O sites in the
case when the Ti sites are completely filled. The unit
cell volume decreases by 0.4% as the site occupancies
of the Pb and O(2) atoms increase by 0.02 and 0.145,
respectively.

(iii) The displacement of the O(1) and O(2) atoms
along the z axis decreases with an increase in the syn-
thesis time at a given temperature.

(iv) A decrease in the degree of imperfection at the
Ti sites is accompanied by a decrease in the displace-
ment of the Ti atom along the z axis.

(v) The occupancy of the O(2) site decreases when
the synthesis time exceeds 4 h at a given temperature.

The data presented in Tables 1–3 clearly demon-
strate that the changes in the unit cell parameters are
associated with the presence of defects at the Pb, O(2),
and Ti sites. The functional relationships derived for the
unit cell parameters a and c contain a term accounting
for the product of all the three quantities. We examined
the dependence of the total number né of oxygen atoms
in the unit cell on the number of lead atoms nPb under
the conditions when the Ti sites are completely occu-
pied (nTi = 1) (Table 3). This analysis revealed that,
within the accuracy of the determination, the increase
in the degree of imperfection at the Pb sites is attended
by a proportional increase in the degree of imperfection
at the O sites. The functional relationships obtained for
the unit cell parameters a and c make it possible to cal-
culate these parameters as a function of the degree of
anionic and cationic imperfection, provided the num-
bers of atoms in the unit cell fall in the following
ranges: 0.95 ≤ nTi ≤ 1, 2.6 ≤ né ≤ 3, and 0.96 ≤ nPb ≤ 1.
The dependences of the unit cell parameters on the total
number of oxygen atoms (at nTi = 1) are depicted in
Fig. 1. Since the number of lead atoms in the unit cell
varies in proportion to the total number of oxygen
atoms, the dependences of the unit cell parameters a
and c on the lead content show a similar behavior. It fol-
lows from analyzing the dependences displayed in
Fig. 1 that the unit cell parameters are minimum at
nPb = 0.98 and né = 2.85. An increase in the degree of
imperfection at the Pb and O sites (T = 890°C; time,
4 h) results in a considerable increase in the unit cell
parameters. The dependences of the parameters a and c
on the degree of imperfection at the Ti sites are shown
in Fig. 2. These dependences indicate that the unit cell
parameters a = 3.915 Å and c = 4.17 Å can be observed
only in the case when, apart from the imperfection at
the Pb and O sites, the degree of imperfection at the Ti
sites in lead titanate is of the order of 3–4%.

The results of the above investigation demonstrated
that the TiO6 oxygen octahedra can undergo relatively
small but characteristic changes depending on the
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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degree of imperfection. A decrease in the displacement
of the titanium and oxygen atoms along the z axis and
an increase in the occupancy of the O(2) site bring
about an increase in the Ti–O bond length in the (001)
plane from 1.95 to 1.98 Å. In the situation where the
occupancy of the Ti site is close to unity, the Ti–O inter-
atomic distances along the polar axis decrease with a
decrease in the displacement of the Ti and O(1) atoms
and fall in the ranges 1.89–1.41 and 2.58–2.33 Å,
respectively.

The electronic structure of Pb2+ is responsible for
the formation of four shorter (2.61–2.43 Å) and eight
longer (2.82–2.71 Å) Pb–O bonds. The Pb–O(1) bond
lengths decrease with a decrease in the degree of imper-
fection at the Pb sites and a decrease in the displace-
ment of the O(1) atom along the z axis. The length of
the shorter Pb–O(2) bonds depends on both the occu-
pancy of the O(2) site and the displacement of the O(2)
atom along the z axis.

CONCLUSIONS

The structure of lead titanate powders with 2- to
8-µm grains and different degrees of anionic and cat-
ionic imperfection was refined by the Rietveld method
using X-ray diffraction data. It was demonstrated that
the formation of defects at the Pb, Ti, and O(2) sites in
the crystal lattice is responsible for the change in the
structural characteristics of lead titanate.

The analysis of the structural data obtained revealed
a correlation between the unit cell parameters, the inter-
planar distances, and the degree of anionic and cationic
imperfection.
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Abstract—The crystal structures of three Pd(II) compounds with diamine tetracarboxylates in different proto-
nation states are determined, namely, [Pd(H2Cdta)] · H2O (I), [Pd(H3Edtp)Cl] · 2H2O (II), and (H6Edtp)[PdCl4] ·
4H2O (III) (R1 = 0.0230, 0.0313, and 0.0277 for 3040, 3377, and 3809 reflections with I > 2σ(I) for I–III,
respectively). Crystals I and II are built of neutral complexes [Pd(H2Cdta)] and [Pd(H3Edtp)Cl], respectively,
and crystallization water molecules. Crystal III consists of [PdCl4]2– anionic complexes, H6Edtp2+ cations, and
water molecules. In I, one of the protonated acetate groups of the H2Cdta2– ligand forms a very weak additional
Pd–O bond [2.968(2) Å] over the 2N + 2O coordination square. In II and III, the protonated propionate groups
of the H3Edtp– ligand and the H6Edtp2+ cation are not involved in Pd coordination and the coordination squares
consist of the 2N + O + Cl and 4Cl atoms, respectively. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Compounds of bivalent Pd occupy a modest place
among the large number of structurally characterized
metal compounds with diaminocarboxylic acids
(H4Edta and its analogues). The crystal structures of
[Pd(H4Edta)Cl2] · 5H2O [1, 2], Ba2[Pd(Edta)]2 · 10H2O
[3], and (H6Cdta)[PdCl4] · 5H2O [4], where H4Cdta is
cyclohexanediaminetetraacetic acid, are known from
the literature. We obtained new acid complexes of
Pd(II) with diamine ligands in different protonation
states, namely, the [Pd(H2Cdta)] · H2O (I) and
[Pd(H3Edtp)Cl] · 2H2O (II) complexes, and the
(H6Edtp)[PdCl4] · 4H2O (III) salt, where H4Edtp is eth-
ylenediaminetetrapropionic acid. In this paper, the
results of X-ray diffraction studies of I–III are
reported.

EXPERIMENTAL

Synthesis. Compound I was synthesized according
to the procedure described in [5]. Single crystals were
obtained by slow evaporation of an aqueous solution at
room temperature.

Compounds II and III were isolated sequentially
from the same reaction mixture. The H4Edtp acid was
synthesized beforehand. For this purpose, a mixture of
ethylenediamine (En) and acrylamide in the mole ratio
1 : 4 was heated at 60°C for a few hours, hydrolyzed
1063-7745/03/4802- $24.00 © 20244
with NaOH on a water bath until the ammonia evolu-
tion was complete, and acidified with HCl in order to
precipitate H4Edtp. No less than four moles of NaOH
and HCl each were used per mole of En.

The H4Edtp acid obtained was dissolved in water
and partially neutralized with NaOH (two moles per
mole of the acid). The equimolar amount of PdCl2 was
added to the solution, and the solution was heated gen-
tly at 50°C until it completely dissolved. The resultant
yellow solution was evaporated under vacuum. In order
to obtain single crystals of II, the yellow precipitate
was recrystallized by slow evaporation of an aqueous
solution.

After crystals II were separated, HCl was added to
the mother liquor to a concentration of 0.1 mol/l. This
solution was allowed to evaporate in air. First, orange
crystals (probably, [Pd(H4Edtp)Cl2]) precipitated but
dissolved with time, and then, brownish yellow crys-
tals III of the X-ray quality were formed.

X-ray diffraction study. The main crystal data and
parameters of data collection and structure refinement
for compounds I–III are summarized in Table 1.

The sets of intensities for crystals I–III were
obtained on an Enraf–Nonius CAD4 automated diffrac-
tometer (λMoKα, graphite monochromator, ω scan
mode). For all crystals, correction for absorption was
introduced using the azimuthal scan method.
003 MAIK “Nauka/Interperiodica”
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Table 1.  Main crystal data and parameters of data collection and structure refinement for I–III

Parameter I II III

Empirical formula C14H20N2O9Pd C14H27ClN2O10Pd C14H34ClN2O12Pd

M 466.72 525.23 670.63

Space group P21/n P21/n P

a, Å 9.165(3) 7.242(2) 6.968(1)

b, Å 13.299(4) 12.896(4) 9.086(2)

c, Å 14.178(4) 21.523(5) 10.947(2)

α, deg 90 90 74.70(3)

β, deg 100.69(2) 93.32(2) 72.87(3)

γ, deg 90 90 79.63(3)

V, Å3 1698.1(9) 2007(1) 634.9(2)

Z 4 4 1

ρcalcd, g/cm3 1.826 1.738 1.754

Crystal size, mm 0.09 × 0.15 × 0.30 0.03 × 0.21 × 0.24 0.09 × 0.24 × 0.30

µMo, mm–1 1.146 1.112 1.210

θmax, deg 28 28 32

Number of measured reflections 3981 4411 4458

Number of unique reflections (N1) [Rint] 3775 [0.0288] 4317 [0.0284] 4251 [0.0275]

Number of reflections with I > 2σ(I) (N2) 3040 3377 3809

R1, wR2 for N1 0.0391, 0.0624 0.0519, 0.0874 0.0343, 0.0775

R1, wR2 for N2 0.0230, 0.0585 0.0313, 0.0807 0.0277, 0.0750

GOOF 1.062 1.062 1.059

∆ρmin and ∆ρmax, e/Å3 –0.459 and 0.582 –0.513 and 0.915 –0.608 and 0.410

1

The structures were solved by the direct method
(SHELXS86 [6]). The non-hydrogen atoms were
refined in the anisotropic approximation. All the hydro-
gen atoms were located from the difference Fourier
syntheses. The hydrogen atoms attached to the C(6) and
C(7) atoms in structure II and the hydrogen atoms of
water molecules in structure III were refined within a
riding model with the isotropic thermal parameters
larger than the Ueq values of the corresponding non-
hydrogen atoms by a factor of 1.2. The remaining
hydrogen atoms in all the structures were refined in the
isotropic approximation. The refinement was per-
formed with the SHELXL97 program [7].

The atomic coordinates and thermal parameters for
structures I–III are listed in Table 2.

RESULTS AND DISCUSSION

Crystals I are built of [Pd(H2Cdta)] complexes
(Fig. 1) and crystallization water molecules. The envi-
ronment of the Pd(1) atom includes two nitrogen atoms
and the O(1) and O(5) oxygen atoms of the deproto-
nated acetate groups of the H2Cdta2– ligand. The N(1),
N(2), O(1), and O(5) atoms are approximately copla-
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nar; the mean atomic deviation from this plane is
0.008 Å. The Pd(1) atom deviates from this plane by
0.184 Å. The H2Cdta2– ligand closes three five-mem-
bered chelate rings. All the rings are corrugated and lie
on one side of the plane of the coordination square. The
uncoordinated acetate arms are situated on the opposite
side of this plane, and one of them hangs over the coor-
dination square and forms a very weak additional bond
Pd(1)···O(8) [2.968(2) Å], which deviates from the nor-
mal to the plane of the square by 30.2°. Similarly, two
additional Pd···O bonds (3.04 Å) complement the Pd
polyhedron (2N + 2O) to the elongated bipyramid in the
structure of [Pd(H4Edta)Cl2] ⋅ 5H2O (IV) [1, 2].

Crystals II are built of [Pd(H3Edtp)Cl] complexes
(Fig. 2) and water molecules. The coordination square
of the Pd(1) atom consists of the O(1) oxygen atom of
the deprotonated propionate group, the N(1) and N(2)
nitrogen atoms of the H3Edtp– ligand, and the Cl(1)
atom in the trans position to N(1). The mean deviation
of the four atoms of the environment from their plane is
0.017 Å. The Pd(1) atom deviates from this plane by
0.056 Å. The protonated alanine groups are turned
away from the plane of the coordination square and do
not form additional bonds with the metal.
3
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Table 2.  Atomic coordinates and parameters of thermal vibrations Ueq (for H atoms, Uiso) in structures I–III

Atom x y z Ueq/Uiso, Å2 Atom x y z Ueq/Uiso, Å2

I II
Pd(1) 0.15929(2) 0.38191(1) 0.66302(1) 0.02199(7) Pd(1) 0.26129(3) 0.22876(2) 0.17777(1) 0.02121(8) 
O(1) 0.1358(2) 0.5152(1) 0.5957(1) 0.0284(4) Cl(1) 0.0341(1) 0.15079(7) 0.23332(4) 0.0344(2) 
O(2) 0.2200(2) 0.5969(1) 0.4806(1) 0.0371(4) O(1) 0.1375(4) 0.1684(2) 0.0993(1) 0.0359(6) 
O(3) 0.6516(2) 0.4556(2) 0.7273(2) 0.0376(4) O(2) 0.1238(4) 0.1004(3) 0.0063(1) 0.0525(8) 
O(4) 0.4539(2) 0.5314(2) 0.6504(2) 0.0457(5) O(3) 0.2385(6) 0.6385(3) 0.0897(1) 0.060(1) 
O(5) –0.0189(2) 0.3884(1) 0.7306(1) 0.0307(4) O(4) 0.2635(5) 0.5383(2) 0.0084(1) 0.0541(8) 
O(6) –0.2073(2) 0.2858(2) 0.7396(1) 0.0384(4) O(5) –0.1255(4) 0.4836(2) 0.3116(1) 0.0349(6) 
O(7) 0.3989(2) 0.2501(2) 0.9500(1) 0.0389(5) O(6) 0.0668(5) 0.4262(3) 0.3866(1) 0.061(1) 
O(8) 0.4114(2) 0.3413(2) 0.8227(1) 0.0427(5) O(7) 0.7526(6) 0.1293(3) 0.4316(2) 0.063(1) 
N(1) 0.3112(2) 0.3496(2) 0.5803(1) 0.0237(4) O(8) 0.6295(6) 0.0262(2) 0.3581(2) 0.062(1) 
N(2) 0.1652(2) 0.2379(2) 0.7072(1) 0.0231(4) N(1) 0.4652(4) 0.2921(2) 0.1285(1) 0.0266(6) 
C(1) 0.2716(3) 0.4207(2) 0.4964(2) 0.0310(5) N(2) 0.4049(4) 0.2829(2) 0.2567(1) 0.0211(5) 
C(2) 0.2075(3) 0.5185(2) 0.5261(2) 0.0289(5) C(1) 0.6188(5) 0.3230(3) 0.1751(2) 0.0290(7) 
C(3) 0.4725(3) 0.3552(2) 0.6237(2) 0.0280(5) C(2) 0.5390(5) 0.3608(3) 0.2343(2) 0.0282(7) 
C(4) 0.5222(3) 0.4546(2) 0.6690(2) 0.0292(5) C(3) 0.5419(6) 0.2037(3) 0.0912(2) 0.0375(9) 
C(5) 0.0018(3) 0.2156(2) 0.6862(2) 0.0264(5) C(4) 0.4150(6) 0.1626(4) 0.0399(2) 0.0399(9) 
C(6) –0.0817(3) 0.3022(2) 0.7221(2) 0.0280(5) C(5) 0.2148(5) 0.1423(3) 0.0496(2) 0.0322(8) 
C(7) 0.2193(3) 0.2161(2) 0.8108(2) 0.0283(5) C(6) 0.4075(6) 0.3759(3) 0.0852(2) 0.0413(9) 
C(8) 0.3531(3) 0.2754(2) 0.8587(2) 0.0299(5) C(7) 0.3374(7) 0.4696(4) 0.1134(2) 0.049(1) 
C(9) 0.2653(3) 0.2412(2) 0.5537(2) 0.0265(5) C(8) 0.2745(7) 0.5511(3) 0.0643(2) 0.045(1) 
C(10) 0.2564(3) 0.1804(2) 0.6446(2) 0.0268(5) C(9) 0.2932(5) 0.3316(3) 0.3052(2) 0.0259(7) 
C(11) 0.1986(3) 0.0747(2) 0.6185(2) 0.0378(6) C(10) 0.1520(5) 0.4096(3) 0.2812(2) 0.0306(7) 
C(12) 0.2949(4) 0.0216(2) 0.5567(2) 0.0461(7) C(11) 0.0283(5) 0.4396(3) 0.3323(2) 0.0286(7) 
C(13) 0.3011(4) 0.0825(3) 0.4661(2) 0.0448(7) C(12) 0.5009(5) 0.1886(3) 0.2844(2) 0.0255(7) 
C(14) 0.3629(3) 0.1872(2) 0.4924(2) 0.0379(6) C(13) 0.6380(6) 0.2094(3) 0.3396(2) 0.0328(8) 
O(1w) 0.5912(4) 0.1208(3) 0.7599(4) 0.081(1) C(14) 0.6719(6) 0.1116(3) 0.3764(2) 0.0372(9) 
H(1A) 0.201(4) 0.396(2) 0.449(3) 0.047(9) O(1w) 0.2966(5) 0.3090(3) 0.4688(2) 0.0440(7) 
H(1B) 0.352(4) 0.433(2) 0.470(2) 0.042(8) O(2w) 0.8658(5) 0.0015(3) 0.1068(2) 0.0506(9) 
H(3A) 0.529(3) 0.342(2) 0.575(2) 0.033(7) H(3) 0.211(6) 0.685(4) 0.060(2) 0.04(1) 
H(3B) 0.491(3) 0.310(2) 0.665(2) 0.028(7) H(5) –0.196(7) 0.487(4) 0.343(2) 0.05(1) 
H(5A) –0.024(3) 0.155(2) 0.713(2) 0.019(6) H(7) 0.755(7) 0.082(4) 0.448(2) 0.05(2) 
H(5B) –0.032(3) 0.213(2) 0.616(2) 0.019(6) H(1A) 0.696(5) 0.266(3) 0.184(2) 0.021(9) 
H(7A) 0.240(3) 0.152(3) 0.820(2) 0.038(8) H(1B) 0.693(6) 0.375(4) 0.159(2) 0.04(1) 
H(7B) 0.147(3) 0.233(2) 0.845(2) 0.036(8) H(2A) 0.472(6) 0.429(3) 0.227(2) 0.04(1) 
H(9) 0.162(3) 0.245(2) 0.515(2) 0.029(7) H(2B) 0.628(6) 0.367(3) 0.264(2) 0.04(1) 
H(10) 0.350(3) 0.174(2) 0.684(2) 0.032(7) H(3A) 0.656(6) 0.232(3) 0.072(2) 0.04(1) 
H(11A) 0.094(4) 0.084(3) 0.585(2) 0.051(9) H(3B) 0.578(7) 0.139(4) 0.120(2) 0.06(2) 
H(11B) 0.197(4) 0.038(3) 0.672(2) 0.050(9) H(4A) 0.465(6) 0.103(4) 0.020(2) 0.04(1) 
H(12A) 0.258(4) –0.042(3) 0.540(2) 0.048(9) H(4B) 0.418(7) 0.215(4) 0.009(2) 0.05(1) 
H(12B) 0.398(4) 0.012(2) 0.594(2) 0.037(8) H(6A) 0.5155(0) 0.3920(0) 0.0573(0) 0.05 
H(13A) 0.202(4) 0.082(2) 0.429(2) 0.035(7) H(6B) 0.3149(0) 0.3426(0) 0.0508(0) 0.05 
H(13B) 0.370(3) 0.050(2) 0.428(2) 0.042(8) H(7A) 0.2323(0) 0.4512(0) 0.1363(0) 0.06 
H(14A) 0.462(3) 0.177(2) 0.532(2) 0.035(7) H(7B) 0.4386(0) 0.5026(0) 0.1443(0) 0.06 
H(14B) 0.361(4) 0.230(2) 0.438(2) 0.046(9) H(9A) 0.240(6) 0.281(3) 0.325(2) 0.03(1) 
H(3) 0.688(4) 0.398(3) 0.736(3) 0.05(1) H(9B) 0.376(6) 0.360(3) 0.331(2) 0.03(1) 
H(7) 0.368(4) 0.200(3) 0.969(2) 0.042(9) H(10A) 0.072(6) 0.386(3) 0.252(2) 0.03(1) 
H(1w) 0.631(6) 0.127(3) 0.710(4) 0.07(2) H(10B) 0.197(5) 0.473(3) 0.268(2) 0.03(1) 
H(2w) 0.596(6) 0.076(4) 0.770(4) 0.10(2) H(12A) 0.409(5) 0.140(3) 0.298(2) 0.021(9) 
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Table 2.  (Contd.)

Atom x y z Ueq/Uiso, Å2 Atom x y z Ueq/Uiso, Å2

H(12B) 0.570(6) 0.156(3) 0.256(2) 0.04(1) C(6) 0.8159(3) 0.6120(2) 0.1907(2) 0.0269(3) 

H(13A) 0.768(7) 0.235(4) 0.327(2) 0.05(1) C(7) 0.9949(3) 0.6511(2) 0.0765(2) 0.0272(3) 

H(13B) 0.592(6) 0.256(3) 0.367(2) 0.04(1) O(1w) 0.3404(4) 0.0354(3) 0.9259(3) 0.0896(9) 

H(1w1) 0.379(7) 0.331(4) 0.479(3) 0.05(2) O(2w) 1.1530(5) –0.2256(4) 0.2446(3) 0.0860(8) 

H(2w1) 0.252(9) 0.365(6) 0.441(3) 0.10(2) H(1) 1.093(4) 0.484(3) 0.301(3) 0.042(7) 

H(1w2) 0.923(8) 0.049(5) 0.102(3) 0.07(2) H(2) 1.608(5) 0.344(4) 0.044(3) 0.06(1) 

H(2w2) 0.842(7) –0.025(4) 0.067(3) 0.07(2) H(4) 0.875(7) 0.842(5) 0.023(4) 0.09(1) 

III H(1A) 0.830(4) 0.417(3) 0.528(3) 0.038(7) 

Pd(1) 0.5 0 0.5 0.02595(6) H(1B) 0.844(4) 0.586(3) 0.449(2) 0.029(6) 

Cl(1) 0.22223(9) –0.03724(8) 0.67667(6) 0.0481(1) H(2A) 0.996(4) 0.205(3) 0.413(3) 0.040(7) 

Cl(2) 0.44742(9) –0.20507(7) 0.43183(6) 0.0440(1) H(2B) 1.178(4) 0.261(3) 0.434(3) 0.044(7) 

O(1) 1.4357(2) 0.4272(2) 0.2297(2) 0.0382(3) H(3A) 1.172(4) 0.227(3) 0.189(3) 0.033(6) 

O(2) 1.5233(3) 0.2907(2) 0.0747(2) 0.0444(4) H(3B) 1.300(4) 0.128(3) 0.273(3) 0.040(7) 

O(3) 1.1472(2) 0.5615(2) 0.0548(1) 0.0352(3) H(5A) 0.723(4) 0.429(3) 0.338(3) 0.037(7) 

O(4) 0.9839(3) 0.7869(2) –0.0027(2) 0.0418(4) H(5B) 0.888(4) 0.382(3) 0.220(3) 0.039(7) 

N(1) 1.0069(2) 0.4350(2) 0.3461(1) 0.0227(2) H(6A) 0.785(4) 0.689(3) 0.240(2) 0.030(6) 

C(1) 0.9174(3) 0.4918(2) 0.4704(2) 0.0280(3) H(6B) 0.696(4) 0.616(3) 0.160(2) 0.029(6) 

C(2) 1.1022(3) 0.2711(2) 0.3731(2) 0.0282(3) H(1w1) 0.327 –0.013 1.002 0.108 

C(3) 1.2406(3) 0.2262(2) 0.2501(2) 0.0288(3) H(2w1) 0.316 –0.028 0.880 0.108 

C(4) 1.4096(3) 0.3261(2) 0.1855(2) 0.0295(3) H(1w2) 1.259 –0.219 0.275 0.103 

C(5) 0.8457(3) 0.4524(2) 0.2738(2) 0.0261(3) H(2w2) 1.062 –0.160 0.280 0.103 
In complexes I and II, the Pd–N bonds are slightly
shorter than those in IV, in which the H4Edta molecule
coordinates the metal atom only by two N atoms, thus
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Fig. 1. Structure of the [Pd(H2Cdta)] complex in I.
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closing the ethylenediamine ring (2.026(2) and
2.012(2) Å in I, 2.039(3) and 2.061(3) Å in II, and
2.087 Å in IV [2]). In the dimeric complex

O(7)

O(8)

O(3)

O(4)

O(2)

O(1)

O(5)

O(6)

C(8)

C(4)

C(7)

C(3)

C(2)

C(1)

C(14)

C(9)

C(10)

C(12)
C(13)

C(11)

C(5)

C(6)

Pd(1)

N(1)

N(2)

Cl(1)

Fig. 2. Structure of the [Pd(H3Edtp)Cl] complex in II.
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[Pd(Edta)  (V) [3], each of the independent Edta4–

ligands forms two glycinate rings, in which the mean
Pd–N bond length [2.08(1) Å] is larger than that in I
and II. The Pd–O bond lengths in I [2.006(2) and
2.043(2) Å] and II [2.022(2) Å] are close to the corre-
sponding values in the dimeric complex V [3]
[1.996(8)–2.020(8) Å], and the Pd–Cl bond length in II
[2.319(1) Å] is comparable to the length of the symmet-
rically equivalent Pd–Cl bonds in IV (2.299 Å [2]).

Crystals III are built of H6Edtp2+ cations, [PdCl4]2–

anionic complexes, and crystallization water mole-
cules. A fragment of structure III is shown in Fig. 3.
The cations and anions occupy centrosymmetric posi-
tions. The [PdCl4]2– anion has a planar-square structure.
The Pd(1)–Cl bond lengths are 2.299(1) and 2.303(1) Å,
and the Cl(1)Pd(1)Cl(2) angle is 91.08(4)°. In the
H6Edtp2+ cation, all carboxyl groups and nitrogen
atoms are protonated and do not participate in the coor-
dination of the Pd(1) atom.

All the acid protons in structures I–III form hydro-
gen bonds. In structure I, strong hydrogen bonds O(3)–
H(3)···O(6) (1 + x, y, z) and O(7)–H(7)···O(2) (0.5 – x,
y – 0.5, 1.5 – z) [O···O, 2.592(3) and 2.589(3) Å,
respectively] link complexes into layers parallel to the
xy plane. The water molecule forms weak hydrogen
bonds O(1w)–H(1w1)···O(6) (1 + x, y, z) and O(1w)–
H(2w1)···O(5) (0.5 – x, y – 0.5, 1.5 – z) [O···O, 2.918(5)
and 3.169(5) Å, respectively] inside the layer.

In structure II, the O(7)–H(7)···O(4) (0.5 + x, 0.5 – y,
0.5 + z) hydrogen bond [O···O, 2.719(5) Å] links the

]2
4–
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O(1)

C(4)

C(7)

C(3)

C(2)
C(1)

C(5)
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N(1)

Cl(1)
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Fig. 3. Fragment of structure III.
C

[Pd(H3Edtp)Cl] complexes into chains. Two other acid
protons are bound to water molecules: O(3)–
H(3)···O(1w) (0.5 – x, 0.5 + y, 0.5 – z) [O···O, 2.538(4) Å]
and O(5)–H(5)···O(2w) (0.5 – x, 0.5 + y, 0.5 – z) [O···O,
2.553(4) Å]. In turn, the water molecules donate pro-
tons in the hydrogen bonds with the oxygen atoms of
the ligands: O(1w)–H(1w1)···O(2) (0.5 + x, 0.5 – y,
0.5 + z), O(1w)–H(2w1)···O(6) (x, y, z), O(2w)–
H(1w2)···O(1) (1 + x, y, z), and O(2w)–H(2w2)···O(2)
(1 – x, –y, –z) [O···O, 2.722(4), 2.800(4), 2.926(4), and
2.771(4) Å, respectively]. Water molecules link the
complexes into a three-dimensional framework.

In structure III, the H6Edtp2+ cations and the
[PdCl4]2– anions are separately packed into layers par-
allel to the xz plane. Inside both layers, chains are dis-
tinguished. The cations are interlinked by hydrogen
bonds O(2)–H(2)···O(3) (3 – x, 1 – y, –z) [O···O,
2.697(2) Å], and the anions are bound through the w(2)
water molecules, which form hydrogen bonds with the
Cl(1) (1 – x, –y, 1 – z) and Cl(2) (1 + x, y, z) atoms
[O···Cl, 3.285(3) and 3.355(3) Å, respectively]. The
second water molecule is attached to the cation by the
O(4)–H(4)···O(1w) (1 – x, 1 – y, 1 – z) hydrogen bond
[O···O, 2.589(4) Å]. The H(2w1) atom forms a bifur-
cated bond with the Cl(1) (x, y, z) and O(2) (2 – x, –y,
1 – z) atoms [O···Cl, 3.321(3) Å; O···O, 2.946(3) Å],
and the H(1w1) atom probably forms a weak hydrogen
bond with the O(1w) (1 – x, –y, 2 – z) atom [O···O,
3.008(5) Å]. Thus, the w(1) water molecule links two
neighboring cationic layers and the anionic layer situ-
ated between them. In addition, intramolecular N(1)–
H(1)···O(1) hydrogen bonds [N···O, 2.878(2) Å] are
formed in the H6Edtp2+ cation.
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Abstract—The crystal structure of decamethylruthenocene (η5-C5Me5)2Ru (I) is investigated by X-ray diffrac-
tion. It is demonstrated that the compound studied crystallizes in two polymorphic modifications, namely, mod-
ification Ia with space group P21/m (Z = 2) in the temperature range 153–300 K and modification Ib with space
group P21/n (Z = 4) at 203 K. No temperature phase transition between the modifications is found. In crystal
Ia, the molecule occupies a special position in the mirror plane. In crystal Ib, the molecule is located in the
general position. The cyclic ligands η5-C5Me5, (Cp*) are aligned parallel to each other and adopt an eclipsed
conformation. The bond lengths in compounds Ia and Ib are identical. Analysis of the anisotropic displacement
parameters of the atoms indicates that molecules Ia and Ib are not structurally rigid and that the Cp* rings
involved in these molecules can execute independent librations. In the temperature range 153–300 K, the
Cp*(1) ligand in molecule Ia is statically disordered over two positions. The barrier heights B5 for rotation of
the Cp* ligands are estimated both from the root-mean-square amplitudes of librations 〈ϕ 2〉 and with the use of
the atom–atom potential method. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Decamethylruthenocene (η5-C5Me5)2Ru (I) belongs
to the series of substituted metallocenes M, where
Cp* is the pentamethylcyclopentadienyl ligand and M
is a 3d, 4d, or 5d transition metal. Earlier investigations
revealed that, in metallocene crystals, ligands can exe-
cute torsional vibrations about the “metal–ring center”
axis [1–4]. Moreover, these compounds are character-
ized by a wide variety of crystalline phases (modifica-
tions). In particular, reversible phase transitions occur
in nickelocene, ferrocene, decamethylosmocene, and
acetylruthenocene [5–8]. It should also be noted that
ligands in metallocene compounds can be disordered in
different ways [9]. The disordering can exhibit a
dynamic [1–4] or static nature [5, 6]. The data available
in the literature on the nature of mechanisms of disor-
dering and phase transitions in molecular crystals are
very scarce. With the aim of obtaining additional infor-
mation on the structure and properties of molecular
crystals, we continued our systematic X-ray diffraction
investigations into the intramolecular motion in crystals
of metallocene derivatives. In this work, we performed
X-ray structure analysis of decamethylruthenocene
(η5-C5Me5)2Ru and examined the intramolecular ther-
mal motion in this crystal as a function of the tempera-
ture.

C p2*
1063-7745/03/4802- $24.00 © 20249
EXPERIMENTAL

Single crystals I were grown by slow evaporation of
a solvent from a solution in acetone. The X-ray diffrac-
tion experiments were performed using two approxi-
mately isometric, prismatic crystals (~0.3 × 0.3 ×
0.4 mm in size). The X-ray diffraction data were col-
lected on a Siemens P3/PC four-circle automated dif-
fractometer (λMoKα, graphite monochromator, θ/2θ
scan mode, θ ≤ 30°) equipped with an LT-2 low-tem-
perature attachment. X-ray diffraction investigations
revealed that compound I crystallizes in two polymor-
phic modifications. Modification Ia crystallizes in the
space group P21/m, Z = 2 (the molecule occupies a spe-
cial position in the mirror plane). For a single crystal of
this modification, the diffraction data were obtained at
temperatures of 153, 203, 223, 263, and 300 K. The
second modification (Ib), which was separated from
the same solvent together with crystals Ia, is described
by the space group P21/n, Z = 4 at 203 K. We failed to
examined the crystal of modification Ib at other tem-
peratures.

Crystals I are monoclinic. The unit cell parameters
of crystal Ia at temperatures of 153 and 300 K are as
follows: a = 7.625(2) and 7.735(2) Å, b = 14.536(3) and
14.664(3) Å, c = 8.547(2) and 8.628(2) Å, β =
106.93(3)° and 106.51(3)°, and V = 906.2(4) and
003 MAIK “Nauka/Interperiodica”
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938.3(4) Å3, respectively. The temperature depen-
dences of the unit cell parameters exhibit a nearly linear
behavior (Fig. 1).

The unit cell parameters of crystal Ib at 203 K are as
follows: a = 7.676(2) Å, b = 14.576(3) Å, c =
16.630(3) Å, β = 99.26(3)°, and V = 1836.3(7) Å3.

It is interesting to note that, as was shown in our pre-
vious work [7], the decamethylosmocene crystal
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Fig. 1. Temperature dependences of the unit cell parameters
for crystal Ia.
C

(η5-C5Me5)2Os (II) undergoes an order–disorder
reversible structural phase transition (P21/m  P21/n)
with a decrease in the temperature in the range from
213 to 183 K; however, the sample remains in the sin-
gle-crystal state. Crystals II are isostructural to crystals
Ib in the temperature range 153–183 K [for II at 153 K,
space group P21/n, Z = 4, a = 7.669(2) Å, b =
14.546(3) Å, c = 16.607(3) Å, β = 99.16(3)°, and V =
1828.9(7) Å3] and to crystals Ia in the range 213–293 K
[for II at 293 K, space group P21/m, Z = 2, a =
7.757(1) Å, b = 14.654(2) Å, c = 8.636(1) Å, β =
106.47(2)°, and V = 941.3(3) Å3].

Therefore, both decamethylruthenocene (Ia and Ib)
and decamethylosmocene (IIa and IIb) have two poly-
morphic modifications. However, no phase transition
between these modifications is found in the case of
decamethylruthenocene (Ia and Ib).

Structures Ia and Ib were solved by the heavy-atom
method and refined by the least-squares procedure in
the anisotropic (isotropic for H atoms) full-matrix
approximation. The hydrogen atoms were located from
the difference Fourier synthesis. Details of data collec-
tion and refinement parameters are summarized in
Table 1. The coordinates and anisotropic thermal
parameters for the non-hydrogen atoms in structure Ia
at temperatures of 153 and 300 K and in structure Ib at
203 K are presented in Tables 2 and 3, respectively. All
the calculations were performed according to the
SHELXTL PLUS 4.2 PC software package [10].

Structure Ia at room temperature was solved earlier
by Albers et al. [11]. However, the molecular structure
was not analyzed in detail. In [11], the authors only
noted that anomalously large anisotropic thermal
parameters of the carbon atoms in the methyl groups
(up to U = 0.275 Å2) can indicate their disordering.

In some cases, the particular (static or dynamic)
nature of disordering can be judged from multitemper-
ature X-ray diffraction investigations [12]. For the
static disordering, the cooling of a crystal to certain
temperatures should not result in a regular decrease in
the thermal parameters of the atoms, because these
parameters reflect only the presence of molecules with
different orientations in the crystal. At the same time,
since the dynamic disordering is associated with large-
Table 1.  Data collection and refinement parameters for structure Ia in the temperature range 153–300 K and structure Ib at 203 K

Modification Ia Ib

T, K 153 203 223 263 300 203

Number of observed reflections 1801 1863 2997 3563 2395 3332

Number of reflections with F > 8σ(F) 1479 1471 2411 2743 1818 2814

R, % 2.21 2.01 1.97 2.11 2.35 2.11

Rw, % 3.02 2.70 2.81 2.87 3.02 2.40

GOOF 1.07 0.83 0.80 0.76 0.78 0.96
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



MOLECULAR AND CRYSTAL STRUCTURES OF DECAMETHYLRUTHENOCENE 251
Table 2.  Coordinates (×104) and anisotropic thermal parameters (Å2 × 102) as components of the tensor T = –2π2(h2a*2U11 + … +
2hka*b*U12) for non-hydrogen atoms in crystal Ia at temperatures of 300 K (first row) and 203 K (second row)

Atom x y z U11 U22 U33 U23 U13 U12

Ru 797(1) 1/4 2921(1) 36(1) 45(1) 34(1) 0 10(1) 0

800(1) 1/4 2963(1) 25(1) 15(1) 46(1) 15(1) 7(1) 6(1)

C(1) –1657(5) 1/4 939(5) 35(2) 164(6) 41(2) 0 4(1) 0

–1705(8) 1/4 930(8) 85(4) 11(2) 226(2) 20(3) 0 6(2)

C(2) –1647(4) 1702(3) 1912(4) 45(1) 95(2) 66(2) –7(1) –16(1) –29(2)

–1678(5) 1700(5) 1921(6) 70(2) 19(2) 154(6) 40(2) –30(3) 16(2)

C(3) –1628(3) 2013(2) 3476(3) 41(1) 62(1) 55(1) –8(1) 18(1) –5(1)

–1640(5) 2014(3) 3525(4) 34(1) 17(1) 54(2) 32(2) –10(1) 10(1)

C(4) 3241(6) 1/4 2139(6) 32(2) 17(2) 55(4) 26(2) 7(9) 11(2)

3231(5) 1/4 2120(5) 39(2) 114(4) 45(2) 0 15(1) 0

C(5) 3230(4) 1710(2) 3095(4) 45(1) 62(2) 61(1) 7(1) 11(1) –15(1)

3258(4) 1709(3) 3112(4) 30(1) 19(1) 40(2) 32(2) –5(1) 10(1)

C(6) 3251(3) 2016(2) 4664(3) 42(1) 43(1) 50(1) 3(1) 6(1) 1(1)

3294(4) 2006(2) 4719(4) 22(1) 18(1) 23(2) 26(2) –1(1) 7(1)

C(7) –1788(12) 1/4 –832(9) 68(4) 261(28) 40(3) 0 4(3) 0

–1854(11) 1/4 –837(9) 149(11) 26(4) 200(9) 19(3) 35(40) 6(3)

C(8) –1749(9) 721(6) 1398(12) 91(3) 139(6) 162(6) –53(4) 55(4) –98(5)

–1779(9) 719(7) 1388(10) 119(4) 62(3) 188(9) 131(6) –81(5) 66(4)

C(9) –1696(6) 1434(3) 4894(6) 72(2) 83(2) 88(2) –15(2) 37(2) 15(2)

–1683(6) 1418(3) 4950(6) 42(1) 40(2) 37(2) 59(2) –12(2) 31(2)

C(10) 3305(9) 1/4 411(7) 66(3) 243(11) 50(3) 0 29(2) 0

3286(8) 1/4 397(7) 56(3) 30(3) 119(8) 25(3) –1(15) 18(2)

C(11) 3316(8) 729(4) 2616(9) 84(3) 87(3) 131(4) 18(2) 17(3) –54(3)

3352(7) 723(3) 2611(7) 57(2) 56(3) 47(2) 78(3) –13(2) 36(2)

C(12) 3363(6) 1425(3) 6108(5) 76(2) 68(2) 72(2) 4(2) 6(2) 26(2)

3410(5) 1409(2) 6169(5) 37(1) 40(2) 29(2) 42(2) 3(1) 13(2)
amplitude low-frequency molecular motions, which are
readily frozen, we can expect a sharp decrease in the
thermal parameters with a decrease in the temperature.

An examination of crystals Ia at different tempera-
ture revealed that this modification exhibits a complex
character of disordering. Analysis of the thermal ellip-
soids at the 50% probability level for the carbon atoms
in the Cp* ligands at temperatures of 153 and 300 K
(Fig. 2) demonstrated that, most probably, the Cp*(1)
ligand [with the C(1), C(2), C(3), C(7), C(8), and C(9)
independent atoms] undergoes a substantially static
disordering. Actually, the major axes of the ellipsoids
for almost all the carbon atoms remain virtually
unchanged as the temperature decreases by a factor of
two. This suggests the occurrence of two possible ori-
entations of the Cp*(1) ligand. In this case, the C(1) and
C(7) atoms lying in the mirror plane are disordered to
the greatest extent. In contrast, the change in the ther-
mal ellipsoids of atoms of the second ligand Cp*(2)
[the C(4), C(5), C(6), C(10), C(11), and C(12) indepen-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
dent atoms] with variations in the temperature indicates
usual (dynamic) torsional vibrations.

In order to resolve two possible orientations of the
Cp*(1) ring, structure Ia was solved and refined in the
space group P21. The least-squares refinement in the
anisotropic (isotropic for the H atoms) full-matrix
approximation led to discrepancy factors R = 0.019–
0.030 (at different temperatures). It was established that
only the C(1) atom in the Cp*(1) ring is disordered over
two equally occupied positions separated by a distance
of 0.5 Å and that the character of disordering does not
depend on the temperature. Note that the positions of
the other carbon atoms [including the C(7) methyl
atom] remain unresolved. However, as a whole, the data
obtained can be interpreted as follows. In the crystal,
the Cp*(1) ligand has two orientations that are rotated
through an angle of 10° with respect to each other and
an angle of 5° with respect to the Cp*(2) ligand. Cer-
tainly, these disordered positions of the carbon atoms
3
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Table 3.  Coordinates (×104) and anisotropic thermal parameters (Å2 × 102) as components of the tensor T = –2π2(h2a*2U11 + … +
2hka*b*U12) for non-hydrogen atoms in crystal Ib at a temperature of 203 K

Atom x y z U11 U22 U33 U23 U13 U12

Ru 683(1) 2414(1) 1479(1) 21(1) 23(1) 21(1) 1(1) 3(1) 1(1)

C(1) 3399(3) 2908(2) 1724(1) 23(1) 39(1) 37(1) –3(1) 7(1) 0(1)

C(2) 3396(3) 1929(1) 1791(1) 23(1) 36(1) 33(1) 4(1) 4(1) –4(1)

C(3) 2630(3) 1559(2) 1014(2) 25(1) 47(1) 35(1) 8(1) 5(1) 11(1)

C(4) 2161(3) 2315(2) 471(1) 25(1) 69(2) 28(1) 3(1) 8(1) 0(1)

C(5) 2639(3) 3147(2) 911(2) 29(1) 52(1) 40(1) 0(1) 11(1) 14(1)

C(6) –910(3) 2971(1) 2336(1) 29(1) 23(1) 35(1) 1(1) 11(1) –1(1)

C(7) –934(3) 1988(1) 2379(1) 29(1) 24(1) 30(1) –2(1) 9(1) 0(1)

C(8) –1711(3) 1650(1) 1595(1) 27(1) 34(1) 34(1) –7(1) 8(1) –7(1)

C(9) –2162(3) 2416(2) 1069(1) 22(1) 51(1) 30(1) 2(1) 4(1) 1(1)

C(10) –1662(3) 3232(2) 1528(2) 26(1) 33(1) 42(1) 6(1) 10(1) 8(1)

C(11) 4166(4) 3553(2) 2392(2) 36(1) 45(1) 56(2) –12(1) 5(1) –12(1)

C(12) 4148(4) 1391(2) 2532(2) 33(1) 47(1) 42(1) 12(1) –4(1) 4(1)

C(13) 2445(4) 563(2) 800(2) 46(2) 57(2) 63(2) 13(1) –1(1) –33(1)

C(14) 1397(5) 2237(4) –412(2) 45(2) 127(3) 28(1) 7(2) 7(1) 0(2)

C(15) 2479(5) 4094(3) 558(3) 54(2) 67(2) 82(3) –5(2) 18(2) 42(2)

C(16) –266(4) 3604(2) 3033(2) 52(2) 33(1) 48(2) –5(1) 17(1) –15(1)

C(17) –352(4) 1425(2) 3123(2) 50(2) 39(1) 37(1) 1(1) 13(1) 10(1)

C(18) –2077(4) 661(2) 1382(2) 56(2) 41(1) 62(2) –19(1) 17(1) –19(1)

C(19) –3095(4) 2377(3) 209(2) 31(1) 107(3) 37(1) 0(2) –5(1) 1(2)

C(20) –1980(5) 4200(2) 1229(3) 58(2) 46(2) 77(2) 24(1) 23(2) 29(1)
cannot be resolved when the structure is refined in the
space group P21/m.

The distance between two unresolved positions of
the C(1) atom was determined to be 0.45 Å from the
relationship Biso = 1/3 × 8π2(∆x/2)2 = 6.58(∆x)2 Å. This
distance only slightly depends on the temperature in
view of the static disordering of the Cp*(1) ligand.
Therefore, in crystal Ia, the mirror plane m can occur
only statistically and the Ru(Cp*)2 molecules actually
adopt a conformation that differs from an ideal eclipsed
conformation by the rotation of one ligand through an
angle of 5°. It should be noted that the Cp*(1) ligand is
disordered over the entire temperature range under con-
sideration. No similar disordering is observed in the
Cp*(2) ligand. This suggests that the Cp*(1) ligand
undergoes a substantially static disordering, whereas
the Cp*(2) ligand exhibits a typical dynamic tempera-
ture behavior.

In structure Ia, the bond lengths obtained in the
refinement in the space group P21 are close to those
determined in the space group P21/m. However, the
C

errors in calculating the former bond lengths are larger
(up to 0.02 Å) due to the high correlation between the
parameters in the least-squares refinement of the struc-
ture. For this reason, further analysis of the molecular
geometry will be performed using the results refined in
the space group P21/m.

The anisotropic thermal parameters derived in the
least-squares refinement of structure Ib are characteris-
tic of ordered structures.

MOLECULAR GEOMETRY

The general view of molecules I is given in Fig. 3.
The bond lengths in molecule Ia are listed in Table 4.

In crystal Ia, the molecule lies in the mirror plane
passing through the Ru, C(1), C(4), C(7), and C(10)
atoms. The crystallographically independent ligands
Cp* adopt an eclipsed conformation. The molecule has
a proper symmetry similar to D5h. In crystal Ib, the mol-
ecule occupies the general position and the Cp* ligands
also exhibit an eclipsed conformation [the deviation
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 2. Structures of the Cp* ligands in molecule Ia (space group P21/m) at temperatures of 153 and 300 K. The atoms are repre-
sented as thermal ellipsoids at the 50% probability level.
from an ideal eclipsed conformation is equal to
1.6(1)°]. In both modifications, the cyclopentadienyl
rings are nearly regular pentagons: the difference
between the bond angles and their ideal value (108°)
does not exceed 0.5° for Ia and 0.2° for Ib, and the
deviations of the C atoms from the root-mean-square
planes of the rings fall in the range 0.0001–0.0021 Å
[the mean value is 0.0008(2) Å for Ia and 0.005 Å for
Ib, irrespective of the temperature]. The rings are
aligned parallel to each other: the angle between the
normals to the root-mean-square planes of the rings is
no greater than 0.2°. The carbon atoms of the methyl
groups deviate from the planes of the Cp* rings by
0.064–0.072 Å [on average, by 0.067(3) Å] toward the
side opposite to the Ru atom for both molecules Ia and
Ib, irrespective of the temperature. The mean devia-
tions of the carbon atoms of the Me groups in crystals
of pentamethylruthenocene (III) [1] and decamethylos-
mocene (II) [7], also regardless of the temperature and
the space group, are equal to 0.073(6) and 0.08(3) Å,
respectively.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
It should be noted that the bond lengths in molecules
of both modifications at the same temperature (203 K)
coincide with each other: Ru–C, 2.167–2.182 Å [on
average, 2.178(3) Å] and 2.171–2.183 Å [on average,
2.179(3) Å]; C–C(Cp), 1.420–1.436 Å [on average,
1.429(6) Å] and 1.426–1.435 Å [on average,
1.431(3) Å]; and C–C(Me), 1.491–1.506 Å [on aver-
age, 1.499(5) Å] and 1.494–1.503 Å [on average,
1.498(4) Å] for Ia and Ib, respectively. In molecule Ia
(unlike the metallocene derivatives studied earlier in
[1–4, 7, 8]), a change in the temperature from 153 to
300 K does not lead to a variation in the bond lengths.
These bond lengths are as follows: Ru–C, 2.171–
2.176 Å [on average, 2.173(3) Å] and 2.164–2.183 Å
[on average, 2.179(3) Å]; C–C(Cp), 1.416–1.437 Å [on
average, 1.428(9) Å] and 1.420–1.439 Å [on average,
1.429(7) Å]; and C–C(Me), 1.481–1.503 Å [on aver-
age, 1.495(7) Å] and 1.492–1.504 Å [on average,
1.501(4) Å] at temperatures of 153 and 300 K, respec-
tively. In structure Ia, the sole geometric parameter,
which depends on the temperature, is the distance



254 ZANIN, ANTIPIN
C(9)
C(3) C(2)

C(8)

C(1)

C(7)

C(10)

C(4)

C(11)

C(5)C(6)

C(12)

Ru
Ru

C(17)

C(18)

C(7)

C(8) C(9)
C(19)

C(20)

C(10)

C(16)
C(6)

C(14)

C(5)

C(15)

C(11)

C(1)
C(2)C(12)

C(13)
C(3)

C(4)

Ia Ib

Fig. 3. A general view of molecules I with the atomic numbering.
between the centroids of the Cp* ligands. This distance
increases from 3.602(5) to 3.620(6) Å with an increase
in the temperature from 153 to 300 K. At a temperature
of 203 K, the distance between the centroids in structure
Ib is equal to 3.615(5) Å. The inclusion of atomic thermal
C

motion in the framework of the TLS model [13, 14] results
in an increase in the bond lengths by 0.005–0.01 Å.

The bond lengths obtained for molecules I are close
to those determined for molecules II and III. In the
Table 4.  Bond lengths (Å) in molecule Ia at temperatures of 153 K (first row) and 300 K (second row) with correction (d')
and without correction (d) for thermal motion

Bond d d ' Bond d d '

Ru–C(1) 2.175(5) 2.181 C(4)–C(5) 1.416(5) 1.425

2.164(4) 2.178 1.431(4) 1.440

Ru–C(2) 2.176(5) 2.182 C(5)–C(8) 1.432(5) 1.440

2.183(3) 2.187 1.422(4) 1.435

Ru–C(3) 2.171(4) 2.177 C(1)–C(7) 1.481(9) 1.409

2.183(3) 2.186 1.502(9) 1.516

Ru–C(4) 2.173(6) 2.177 C(2)–C(8) 1.492(10) 1.503

2.182(5) 2.187 1.502(10) 1.517

Ru–C(5) 2.171(4) 2.179 C(3)–C(9) 1.502(6) 1.511

2.178(3) 2.185 1.503(6) 1.517

Ru–C(6) 2.173(3) 2.180 C(4)–C(10) 1.499(8) 1.507

2.179(2) 2.187 1.492(8) 1.505

C(1)–C(2) 1.435(8) 1.440 C(5)–C(11) 1.503(6) 1.514

1.439(5) 1.443 1.504(7) 1.517

C(2)–C(3) 1.437(7) 1.441 C(6)–C(12) 1.494(5) 1.504

1.420(5) 1.433 1.500(5) 1.514
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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crystal, each molecule Ia or Ib is in contact with
12 adjacent molecules and the packing is characterized
by the presence of a number of H···H intermolecular
contacts.

ANALYSIS OF THE THERMAL MOTION

The refined coordinates and anisotropic thermal
parameters for atoms in structures Ia and Ib (at each
temperature) were used to calculate the root-mean-
square amplitudes of librations and the barrier heights
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Fig. 4. Temperature dependences of the diagonal compo-
nents of the libration tensor Lij. The results obtained in the
structure refinement in the space groups P21/m and P21 are
shown by the solid and dashed lines, respectively.
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for rotation of the Cp* ligands in terms of the TLS
rigid-body model [13, 14] and the Dunitz–White one-
parameter model [15]. The calculations were carried
out according to the THMA-11 program package [16],
in which both models were implemented. The data
obtained are presented in Figs. 4 and 5 and in Table 5.

In crystal Ia, the molecule as a whole executes
anisotropic librations. The maximum amplitude of
librations is observed around the L1 axis, which corre-
sponds to the minimum moment of inertia and is actu-
ally aligned with the fivefold symmetry axis of the mol-
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Fig. 5. Temperature dependences of the root-mean-square
libration amplitudes for the Cp* ligands. The results
obtained in the structure refinement in the space groups
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respectively.
Table 5.  Eigenvalues (first row) and eigenvectors (second row) of the tensors L and T for molecule Ia in the Cartesian coor-
dinate system of the crystal

T, K 153 203 223 263 300

L1 41.5 
0.944 0.0 –0.331

38.0 
0.986 0.0 –0.167

36.5 
0.999 0.0 –0.052

42.2 
0.989 0.0 0.031

49.5 
0.990 0.0 0.144

L2 7.5 
–0.331 0.0 –0.944

13.0 
–0.167 0.0 –0.986

14.8 
–0.052 0.0 –0.999

17.5 
0.052 0.0 –0.989

21.0 
0.144 0.0 –0.990

L3 5.8 
0.0 1.0 0.0

5.9 
0.0 1.0 0.0

6.7 
0.0 1.0 0.0

7.4 
0.0 1.0 0.0

10.3 
0.0 1.0 0.0

T1 0.0601 
0.0 –1.0 0.0

0.0540 
0.0 –1.0 0.0

0.0497 
0.0 –1.0 0.0

0.0520 
0.0 –1.0 0.0

0.0580 
0.0 –1.0 0.0

T2 0.0153 
–0.573 0.0 –0.819

0.0199 
–0.540 0.0 –0.842

0.0233 
0.793 0.0 0.610

0.0281 
0.814 0.0 0.415

0.0354 
0.996 0.0 0.089

T3 0.0137 
0.819 0.0 –0.573

0.0190 
0.842 0.0 –0.540

0.0215 
–0.610 0.0 0.793

0.0273 
–0.415 0.0 0.814

0.0336 
–0.089 0.0 0.996
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ecule (as for the previously studied metallocene deriva-
tives). A distinguishing feature of the motion of
molecule Ia is that the temperature dependence of the
amplitude of librations about the L1 axis differs from
the quadratic dependence observed earlier in [1–4],
whereas the dependences of the amplitude of librations
around the L2 and L3 axes exhibit a quadratic behavior
(see Fig. 4). This is possibly associated with the fact
that the disordering of the molecule in our case mani-
fests itself in the anomalously large anisotropic thermal
parameters, which, in turn, result in large libration
amplitudes. Moreover, the temperature dependence
L11 = f(T) permits us to make the inference that the dis-
ordering at low temperatures is predominantly static in
nature, whereas the dynamic contribution appears in
addition to the static disordering at temperatures above
223 K.

The root-mean-square amplitudes of librations of
molecule Ia were also calculated from the structural
data refined in the space group P21 [with the resolved
positions of the disordered atom C(1)]. It is found that,
in this case, the temperature dependence of the ampli-
tude of librations about the L1 axis turns out to be sim-
ilar to the quadratic dependence (Fig. 4). At 300 K, the
amplitude of librations about the L1 axis is close to that
calculated using the results of the refinement in the
space group P21/m. This also confirms the inference
regarding the predominantly dynamic nature of disor-
dering at 300 K. Note that the root-mean-square ampli-
tude of librations of molecule Ia in the crystal at 300 K

is close to that of the Os molecule (42 deg2) [7] but
is somewhat less than the root-mean-square amplitude
of librations of the CpRuCp* (71 deg2). This supports
the conclusion drawn in our previous works [1, 2] that
the nearest nonbonded environment in the crystal has a
decisive effect on the molecular motion in metallocene
crystals. Indeed, the CpRuCp* molecule in crystal III
interacts with eight adjacent molecules, whereas the

Ru molecule in crystal I and the Os molecule
in crystal II interact with twelve adjacent molecules.

The translational motion in crystal Ia is also aniso-
tropic. The maximum amplitude of translations is
observed along the T1 axis and remains nearly constant
with a variation in the temperature. Most likely, this is
also associated with the disordering of the molecule.
The amplitudes of translational vibrations along the T2
and T3 axes are close to each other and increase by a
factor of two as the temperature increases from 153 to
300 K.

Research into the intramolecular thermal motion in
crystals of metallocene derivatives revealed that ligands
can independently librate in molecules of these com-
pounds [1–4]. In order to evaluate the possibility of
these motions occurring in crystal Ia, the L, T, and S
tensors were calculated separately for each Cp* ring.
With the aim of eliminating the singularity arising from

C p2*

C p2* C p2*
C

a regular structure of the ligands, the Ru atom was
included in the calculations [14]. As a result, the exper-
imental and calculated values of Uij appeared to be in
better agreement as compared to the TLS calculations
for molecule Ia as a whole. Actually, we obtained the
following characteristics of the TLS model: Ru = 0.02–
0.06, 〈∆U2〉1/2 = 0.0005–0.004 Å2 , and 〈σ2(u)〉1/2 =
0.0004–0.003 Å2 in the case of the separate calculations
for each Cp* ring and Ru = 0.04–0.09, 〈∆U2〉1/2 =
0.002–0.006 Å2 , and 〈σ2(u)〉1/2 = 0.001–0.004 Å2 in the
calculations for the molecule as a whole. Consequently,
molecule Ia is not structurally rigid and their Cp*
ligands can execute independent librations. This is sup-
ported by the calculated root-mean-square amplitudes
of librations of the rings (see Fig. 5).

An interesting feature of crystal Ia is that the root-
mean-square amplitude of librations of the Cp*(1) ring
remains nearly constant with a change in the tempera-
ture [53(6) and 57(6) deg2 at 153 and 300 K, respec-
tively], whereas the root-mean-square amplitude of
librations of the Cp*(2) ring increases from 27(4) to
49(6) deg2 with an increase in the temperature from 153
to 300 K. This behavior can be explained by the afore-
mentioned static disordering of the Cp*(1) ligand. At
the same time, this can be treated as if the quantitative
corroboration of the static disordering of the Cp*(1)
ring and the dynamic disordering of the Cp*(2) ring.
The root-mean-square amplitudes of librations of each
Cp* ring were calculated from the data obtained by
refining structure Ia in the space group P21 [with the
resolved positions of the disordered atom C(1)].
According to these calculations, the dependences of
〈ϕ 2〉 on T exhibit a nearly quadratic behavior for both
rings (Fig. 5) and can be described by the equations

〈ϕ 2〉  = 7.4 – 0.032T + 0.0005T 2, (1)

〈ϕ 2〉  = 10.8 – 0.216T – 0.0001T 2. (2)

Thus, in this case, it is as if we separate the contri-
butions of the static and dynamic disordering to the
anisotropic thermal parameters. Then, we take into
account the static contribution and determine the ampli-
tude of librations of the Cp*(1) ring in one of the orien-
tations.

The motion of the Cp*(1) ring with respect to the
Cp*(2) ring in the structure refined in the space group
P21/m was analyzed using the Dunitz–White one-
parameter model [15]. At 153 K, the root-mean-square
amplitude of librations of the Cp*(1) ring with respect
to the Cp*(2) ring is equal to 16 deg2 and the total
amplitude of librations is 51 deg2. At 300 K, the differ-
ence between the amplitudes of librations of the rings
decreases to 5 deg2 (which is close to the error in calcu-
lating 〈ϕ 2〉) and the total amplitude of librations of the
Cp*(1) ring is equal to 55 deg2. The calculated root-
mean-square amplitudes 〈ϕ 2〉  of librations of the Cp*
ligands were used for estimating the barrier heights B5
for rotation about the fivefold symmetry axis in crystal
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



MOLECULAR AND CRYSTAL STRUCTURES OF DECAMETHYLRUTHENOCENE 257
Ia in the harmonic approximation [17, 18]. In the struc-
ture refined in the space group P21/m, the barriers
heights B5 estimated at 153 K differ significantly [8(1)
kJ/mol for the Cp*(1) ring and 18(2) kJ/mol for the
Cp*(2) ring]. By contrast, at 300 K, the barrier heights
B5 are almost identical [13(1) and 15(2) kJ/mol]. The
low barrier height for rotation of the Cp*(1) ring at
153 K and the fact that the barrier height for this ligand
does not decrease with an increase in the temperature
(due to the thermal expansion of the crystal) are
explained by ignoring the disordering. Indeed, the ther-
mal parameters and the root-mean-square amplitudes
of librations are anomalously large owing to unresolved
positions of the C atoms.

For the space group P21, the estimated barrier
heights for rotation of the Cp* ligands are approxi-
mately identical (within the limits of computational
error) for both ligands and decrease, on average, from
21(2) to 16(2) kJ/mol as the temperature increases from
153 to 300 K.

Similar calculations performed for crystal Ib dem-
onstrated that the root-mean-square amplitudes of
librations and the barrier heights for rotation of the Cp*
ligands at 203 K are the same for both ligands (on aver-
age, 〈ϕ 2〉  = 22(3) deg2 and B5 = 21(3) kJ/mol). These
parameters are close to those calculated for the Cp*(2)
ordered ligand in crystal Ia at this temperature.

The barrier heights obtained for rotation of the Cp*
ligands are close to the barrier height [28(2) kJ/mol]
determined for compound I by Narankevich [19] from
the NMR data and also to the barrier heights estimated for
the Cp* ligands in crystal II [25(6) and 21(4) kJ/mol
at 153 and 293 K] with the use of a similar technique.
The barrier heights B5 for rotation of the Cp* ligand in
crystal III at 123 and 293 K are equal to 20(5) and
11(1) kJ/mol, respectively.

In a number of cases, valuable information on the
nature of disordering can be obtained by calculating the
energy of crystal packing with the use of the atom–
atom potential method [20, 21]. On the basis of this
method, the barrier heights for rotation of the Cp*
ligands in crystals Ia and Ib with due regard for relax-
ation of the nearest environment (in the range up to 5 Å)
were calculated (from the dependence of the crystal lat-
tice energy on the rotation angle for one of the ligands)
according to the OPEC program package [20]. The
atomic coordinates for structure Ia (space group P21/m)
at 153 and 300 K and structure Ib at 203 K were used
as the initial data.

As follows from the calculations, the potential
energy of crystal Ia over the entire temperature range
studied is characterized by two minima when the rota-
tion angles for the Cp*(1) ring are equal to –6° and 6°,
66° and 78°, etc. (i.e., in 72-degree intervals). Thus,
there are two ligand orientations rotated through an
angle of ~6° from the mirror plane. This indicates the
static character of disordering. The differences in the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
energies upon transition between two minima at 153
and 300 K are equal to 1.0 and 0.7 kJ/mol, respectively.
According to the calculations performed for the Cp*(2)
ligand in crystal Ia, only one energy minimum is
observed at ϕ = 0°, 72°, etc. This suggests the absence
of static disordering. The alternation of the energy min-
ima in 72-degree intervals implies that the eclipsed con-
formation of the ligands in structure I is energetically
favorable, which agrees with the X-ray diffraction data.

The calculated barrier heights B5 for rotation at 153
and 293 K are equal to 15(2) and 13(2) kJ/mol for the
Cp*(1) ring and 25(2) and 23(2) kJ/mol for the Cp*(2)
ring, respectively. Note that the largest contribution to the
barrier height is made by the intermolecular interactions
(the intramolecular interactions are virtually independent
of the rotation angle of the ligands, and the energy of
these interactions varies from 0.1 to 0.3 kJ/mol).

CONCLUSION

Thus, the results obtained in the above investigation
demonstrated that compound I crystallizes in two poly-
morphic modifications. It was revealed that one Cp*
ligand in modification Ia (space group P21/m) is disor-
dered. The barrier heights were estimated for rotation
of the Cp* ligands.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-03-32094 and
0015-97-359.

REFERENCES

1. I. E. Zanin, M. Yu. Antipin, and Yu. T. Struchkov, Kristal-
lografiya 36 (2), 420 (1991) [Sov. Phys. Crystallogr. 36,
225 (1991)].

2. I. E. Zanin, M. Yu. Antipin, Yu. T. Struchkov, et al., Met-
allorg. Khim. 5 (3), 579 (1992).

3. I. E. Zanin, M. Yu. Antipin, and Yu. T. Struchkov, in
Abstracts of XV Congress of the International Union of
Crystallography (Bordeaux, France, 1990), p. C-299.

4. I. E. Zanin, M. Yu. Antipin, and Yu. T. Struchkov, in
Abstracts of XIII European Crystallographic Meeting
(Trieste, 1991), p. 207.

5. P. Seiler and J. D. Dunitz, Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem. 36, 1068 (1980).

6. P. Seiler and J. D. Dunitz, Acta Crystallogr., Sect. B:
Struct. Crystallogr. Cryst. Chem. 38, 1741 (1982).

7. I. I. Vorontsov, K. A. Potekhin, M. Yu. Antipin, and
I. E. Zanin, Kristallografiya 45 (2), 266 (2000) [Crystal-
logr. Rep. 45, 234 (2000)].

8. I. E. Zanin, Candidate’s Dissertation in Physics and
Mathematics (Nesmeyanov Inst. of Organoelement
Compounds, Russ. Acad. Sci., Moscow, 1991).

9. M. Yu. Antipin and R. Boese, Acta Crystallogr., Sect. B:
Struct. Sci. 52, 314 (1996).
3



258 ZANIN, ANTIPIN
10. G. M. Sheldrick, SHELXTL PLUS: Release 4.2 (Sie-
mens Analytical Instruments, Madison, Wisconsin,
USA, 1991).

11. M. O. Albers, D. C. Liles, D. S. Robinson, et al., Orga-
nometallics, No. 5, 2321 (1986).

12. I. E. Zanin, M. Yu. Antipin, and Yu. T. Struchkov, in
Problems in Crystal Chemistry (Nauka, Moscow, 1991),
p. 56.

13. V. Shomaker and K. N. Trueblood, Acta Crystallogr.,
Sect. B: Struct. Crystallogr. Cryst. Chem. 24, 63 (1968).

14. K. N. Trueblood, Acta Crystallogr., Sect. A: Cryst. Phys.,
Diffr., Theor. Gen. Crystallogr. 34, 950 (1978).

15. J. D. Dunitz and D. White, Acta Crystallogr., Sect. A:
Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 29, 93
(1973).
C

16. E. Maverick and K. N. Trueblood, Program THMA-11.

17. E. Maverick and J. D. Dunitz, Mol. Phys. 62 (2), 451
(1987).

18. J. D. Dunitz, V. Shomaker, and K. N. Trueblood, J. Phys.
Chem. 92, 856 (1988).

19. Z. Narankevich, Candidate’s Dissertation in Chemistry
(Nesmeyanov Inst. of Organoelement Compounds,
Russ. Acad. Sci., Moscow, 1991).

20. A. Gavezzotti, J. Am. Chem. Soc. 105, 5220 (1983).

21. A. J. Campbell, C. A. Fybe, D. Harold-Smith, and K. Jef-
frey, Mol. Cryst. Liq. Cryst., No. 36, 1 (1984).

Translated by O. Borovik-Romanova
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003



  

Crystallography Reports, Vol. 48, No. 2, 2003, pp. 259–279. Translated from Kristallografiya, Vol. 48, No. 2, 2003, pp. 293–314.
Original Russian Text Copyright © 2003 by Kuleshova, Antipin.

                                                                                                                                                   

STRUCTURE
OF ORGANIC COMPOUNDS
General Structural Features of Centric and Acentric 
Polymorphic Pairs of Organic Molecular Crystals: 

II. Polymorphic Pairs P21/c–P21, P21/c–Pc, and P21/c–Pna21

L. N. Kuleshova and M. Yu. Antipin
Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 

ul. Vavilova 28, Moscow, 119991 Russia
e-mail: lukul@xrlab.ineos.ac.ru

Received February 13, 2002 

Abstract—A systematic investigation into the general structural features of centric and acentric polymorphic
pairs of organic molecular crystals is performed using the data available in the Cambridge Structural Database.
The structural aspects of the P21/c–P21, P21/c–Pc, and P21/c–Pna21 polymorphic pairs are considered. The
most important inferences made in this study are as follows: (i) the centric and acentric modifications rather
frequently (~50% of all the cases) crystallize simultaneously under the same conditions (concomitant polymor-
phism); (ii) the unit cell parameters of these modifications are found to be either close in magnitude or multi-
ples; (iii) in the centric and acentric modifications, identical or very similar types of chiral or acentric stable
molecular associates are formed through hydrogen bonds or other specific intermolecular interactions; and (iv)
the centric and acentric modifications more often than other compounds are characterized by polysystem unit
cells (Z ' > 1). © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Systematic investigations into the general structural
features of centric and acentric polymorphic pairs of
crystalline materials are of considerable importance in
the understanding of the mechanisms of formation of
the crystal structure. The results obtained in these stud-
ies provide a better insight into the mechanisms of crys-
tallization processes and can be useful in solving many
problems of crystal engineering, including important
problems concerning the design of acentric crystalline
modifications with nonlinear optical properties. In our
previous work [1], we formulated the problem,
described the procedure of choosing the objects of
investigation, and examined the structural regularities
of the P21/c–P212121 polymorphic pair, which is most
frequently encountered in centric and acentric modifi-
cations. The analysis was performed with due regard
for the crystallization conditions, unit cell parameters,
densities of crystals, types of associates formed by mol-
ecules, specific physical properties, and the occurrence
of phase transitions. The present work continues our
investigation into the general structural features of
other commonly encountered polymorphic pairs of
centric and acentric modifications, namely, the P21/c–
P21, P21/c–Pc, and P21/c–Pna21 polymorphic pairs.
Uncommon and rarely occurring pairs will be consid-
ered in a separate paper.
1063-7745/03/4802- $24.00 © 20259
THE P21/c–P21 POLYMORPHIC PAIRS

The P21/c–P21 pair (17 compounds) is the second
most frequently encountered polymorphic pair of cen-
tric and acentric modifications (Table 1). After rejecting
the compounds with incomplete data, we obtained
13 pairs. The greater part of modifications (11 com-
pounds) belong to the group of unresolved (or rapidly
inverted) enantiomers. The P21 group is one of the most
commonly encountered space groups in nonlinear opti-
cal crystals. Consequently, the chosen pairs involve
both typical nonlinear optical materials (HAMNEO
and FOVYOE) and compounds with a similar structure
(BANGON, MOPBZA, MBZYAN, and ATCPEN).
The unit cell parameters for polymorphs of this pair
rather frequently (eight out of thirteen cases) are multi-
ples. More exactly, two unit cell parameters are close to
each other, whereas the third parameter (in the centric
modification) is doubled. This becomes clear because
the space group P21 is the subgroup of the centrosym-
metric space group P21/c and the volume of the relevant
unit cell is smaller by a factor of two. In the group of
resolved enantiomers (represented by two compounds,
namely, LAVMOK and HPTHEL), the unit cell param-
eters of the modifications are different and the modifi-
cations themselves are concomitant.1 In the group of
unresolved enantiomers, only the ATCPEN and ZEB-
FAB concomitant modifications and the FOVYOE
modifications obtained under different conditions are

1 The modifications prepared simultaneously under the same con-
ditions are referred to as concomitant modifications.
003 MAIK “Nauka/Interperiodica”
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Table 1.  Polymorphic pairs P21/c–P21

Compound REFCODE 
(∆d)

Space 
group Z ' V, Å3 d,

g/cm3
Unit cell pa-

rameters
Packing 

fragments
Molecular 
geometry

Concomitant modifications of unresolved enantiomers

HAMNEO P21/a 1 778.2 1.877 Multiple Similar Similar Bo
wa
mi(–0.099) P2 1 387.3 1.886

N –CH2—COO– CLYCIN P21/n 1 309.7 1.609 Multiple Similar Similar Bo
the
aq

(0.025) P21 1 157.4 1.584

EMPIPP P21/c 1 1547.1 1.304 Multiple Similar Similar Bo
aq

(0.048) P21 1 802.7 1.256

MBZYAN P21/c 1 1230.1 1.130 Multiple Identical Similar Bo
eth

(–0.017) P21 1 605.9 1.147

FAJTIT P21/n 1 1344.9 1.246 Multiple Similar Similar Bo
2-p

(0.030) P21 2 1378.0 1.216

ATSPEN P21/c 1 661.4 1.326 Different Similar Similar Bo
in 
an(–0.007) P21 1 329.1 1.333

ZEPFAB P21/n 1 2369.
9

1.237 Different Different Different Bo
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Solvent Comments

 saturated and
ed ethanol
tions

a = 2c, b = b, c = a

Identical systems of 
hydrogen bonds

 the ethanol solution Charge-transfer
complex

 the pentane solution a = a, b = b, c = 2c

 the ethanol solution Charge-transfer
complex

 the ethanol–chloro-
 solution

Nonlinear optical
activity

 the ethanol solution a = a, b = b, c = 2c

a = a, b = b, c = 3c

 from the hexane–ace-
 solution
Table 1.  (Contd.)

Compound REFCODE 
(∆d)

Space 
group Z' V, Å3 d,

g/cm3
Unit cell 

parameters
Packing 

fragments
Molecular 
geometry

Modifications prepared from the same solvent under different conditions

MOPBZA P21/c 1 1565.9 1.477 Multiple Identical Similar From
dilut
solu(0.003) P21 1 784.4 1.474

Modifications of unresolved enantiomers, prepared from different solvents

BANGOM P21/c 1 1143.9 1.667 Multiple Identical Similar From

(–0.004) P21 1 570.6 1.671 From

FOVYOE P21/n 1 1231.0 1.387 Different Different Similar From

(–0.018) P21 1 607.8 1.405 From
form

DUVZOJ P21/c 4 3563.9 1.396 Multiple Different Similar From

(–0.047) P21 6 2584.6 1.443

(–0.033) 2 870.23 1.429

Modifications of resolved enantiomers

Di-Me-9-chloromethyl-dibenzobar-
relene-11,12-dicarboxylate

LAVMOK P21/c 1 1750.0 1.400 Different Different Similar Both
tone

(0.023) P21/c 2 3657.7 1.339

(–0.038) P21 1 889.3 1.377

Heptahelicene HPTHEL P21/c 1 1933.9 1.299 Different Different Different

(0.011) P21 2 1948.6 1.288

Br CONH(CH3)2

HO

CHNC6H8

N
MeO N CH Ph pNO2
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0 b
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0 b

a

Fig. 1. (a) Structure of a chiral layer in the P21 modification and (b) superposition of antiparallel layers in the P21/c modification
of HAMNEO.
characterized by different unit cell parameters. The
densities of centric and acentric crystalline modifica-
tions are close in magnitude. However, unlike the
P21/c–P212121 pair [1], the aforementioned polymorths
do not exhibit a tendency to form denser acentric mod-
ifications.

The concomitant polymorphism is observed in nine
out of thirteen compounds, i.e., more often than in the
P21/c–P212121 pair. The polymorphic modifications of
each of the ATCPEN, EMPIPP, FAJTIT, HAMNEO,
GLYCIN, MBZYAN, ZEPFAB, LAVMOK, and
HPTHEL compounds were prepared under the same
conditions. The MOPBZA modifications are also for-
mally concomitant; however, the acentric enantiomer
was formed only after the centric crystals initially pre-
cipitated from a saturated solution were removed from
the mother solution. Therefore, in the strict sense, these
modifications were obtained from the same solvent but
with different concentrations: the P21/c modification
was produced from a saturated solution, whereas the
P21 modification was synthesized from a diluted etha-
nol solution. The BANGOM, FOVYOE, and DUVZOJ
modifications were prepared from solutions of different
solvents.

Concomitant polymorphic modifications. In the
group of unresolved enantiomers, the unit cell parame-
ters for almost all the modifications synthesized under
the same conditions are multiples. For example, the
structure of the HAMNEO acentric modification with a
substantial nonlinear activity [2] is composed of chiral
layers that are formed by molecular cations and Br–

anions linked via the system of contacts (Fig. 1a). The
layers are aligned parallel to the XY0 coordinate plane.
In the crystal, these layers are joined together by the
C

NH···Br hydrogen bonds along the c axis. The structure
of the centric modification involves similar chiral layers
aligned parallel to the above coordinate plane. How-
ever, in the crystal, layers with different chiralities and
antiparallel orientation (Fig. 1b) are joined in pairs to
form a centrosymmetric double layer (stack). The
stacking along the c axis leads to doubling of the
parameter c of the P21/c modification. The same struc-
tural type is characteristic of centric and acentric mod-
ifications of GLYCIN, whose molecules, like the
HAMNEO molecules, form an extended system of
intermolecular hydrogen bonds. In both modifications,
the chiral layers (Fig. 2a), which have pl1 symmetry
and are aligned parallel to the X0Z plane, are formed by
molecules through the NH···O strong hydrogen bonds.
In the P21 crystal, the layers of the same chirality are
joined together by hydrogen bonds. In the P21/c crystal,
the layers with different chiralities and antiparallel ori-
entation are linked by hydrogen bonds to form double
layers, i.e., stacks (Fig. 2c). The congruent stacking
results in the formation of the structure with a doubled
parameter b. Identical chiral layers are also formed in
the EMPIPP modification. The MBZYAN modifica-
tions whose molecules do not form hydrogen bonds are
geometrically characterized by topologically identical
layers (Fig. 3). The layers are located in the X0Z plane,
and the parameter c is doubled in the same plane. This
structure differs from that of the aforementioned modi-
fications in which the unit cell parameters are doubled
in the plane of the molecular associate. This can be
explained by the difference in the layer symmetry: pl1
for the P21 modification and plc for the P21/c modifica-
tion. The molecular geometry in the acentric modifica-
tions is also somewhat different; specifically, the ben-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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zene rings are twisted in a different manner with respect
to the central bond of the molecule.

For the FAJTIT polymorphic modifications, the unit
cell parameters are multiples; however, the unit cell
volumes are close in magnitude. This can be associated
with the fact that the unit cell of the acentric modifica-
tion involves two independent molecules. A compari-
son of the geometries of the independent molecules
according to the OFIT procedure of the XP program
package demonstrated that, first, these molecules are
very similar in geometry and, second, both molecules
have the same chirality; i.e., they are brought into coin-
cidence without inversion (Fig. 4). A closer examina-
tion revealed that two independent molecules are
related by the twofold pseudoaxis, which makes an
angle of ~30° with the crystallographic direction 0b.
The two independent molecules are linked into a stable
dimer D2 by the NH···S hydrogen bonds. These bonds
are responsible for the formation of a centrosymmetric

dimer  in the centric modification. Most probably,
dimers of these types exist already in a solution and
serve as building blocks for different modifications. In

the centric modification, the  dimer has the crystal-

lographic symmetry . At the same time, the crystallo-
graphic axis 2 cannot be realized in the acentric modi-
fication, which results in the formation of a pseudosym-
metric crystal. It is of interest that, although the
molecular layers composed of these dimers in the crys-
tals differ in symmetry, they are closely similar in
topology, which eventually reflects in close unit-cell
parameters.

As was noted above, concomitant modifications of
the group of unresolved enantiomers are characterized
by different unit-cell parameters only for the ATCPEN
and ZEPFAB modifications. Small-sized molecules of
ATCPEN form an extended system of strong hydrogen
bonds. The structures of both modifications contain
chiral layers with pl21 symmetry. However, the struc-
tures of these layers differ radically. In the P21/c modi-
fication, the molecular plane lies in the layer plane
(Fig. 5a). In the P21 modification, the layer is a three-
dimensional stack formed by cross-linking of chains
involving the strongest hydrogen bonds NH···N≡
(Fig. 5b). In this case, the molecular planes are perpen-
dicular to the stack plane. A noticeable difference in the
unit cell parameters of the modifications stems from
different molecular packings. In the ZEPFAB modifica-
tions, the geometries of molecules, their packings, and,
correspondingly, the unit cell parameters are different.

The phase transition P21  P21/n accompanied by
the racemization of molecules was revealed between
the modifications.

The structures of the MOPBZA modifications pre-
pared from the same solvent but at different initial con-
centrations are composed of identical chains. In both
forms, chains lie along the b axis. However, the pack-

D1

D1

1

533 K
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
ings of these chains are different in the crystals. The
doubling of the parameter a in the centric modification
is caused by joining chains comprised of molecules
with different chirality into layers owing to the CH···O
shortened contacts.

Polymorphic modifications synthesized under
different conditions. Both the BANGOM polymor-
phic modifications are charge-transfer complexes, and
stacks of antiparallel molecules are formed in the cen-
tric and acentric structures (Fig. 6). Apparently, it is
these fragments that are the most stable molecular asso-
ciates occurring in polar ethanol and nonpolar pentane.
The interplanar distance is relatively short (3.34 Å) in
both modifications. The stacks are differently joined
into the crystal structure. In the P21 modification, the
CH···F shortened contacts are responsible for the for-

(a)

(b)

(c)

0

a

c

c

b

0

0 c

b

Fig. 2. Modifications of GLYCIN: (a) structure of a chiral
molecular layer and packings of layers in the (b) P21 and
(c) P21/c modifications.
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(a)

(b)

0

a

c

c

a

0

Fig. 3. Structures of molecular layers with (a) pl21 symmetry in the P21 modification and (b) plc symmetry in the P21/c modification
of MBZYAN.
mation of chains along the 0y axis. In the P21/c modifi-
cation, layers are formed along the 0z axis, which
results in a doubling of the parameter c. An unusual fea-
ture of the polymorphic structures is the absence of the
intermolecular hydrogen bonds involving the hydroxyl
groups of the molecules. In both modifications, the
rotation angle of the benzene ring planes with respect to
the C=N central bond falls in the range 40°–45°. Con-
sequently, the OH···N intermolecular contacts are not
too short: 1.89 Å in the P21 enantiomer and 1.98 Å in
the P21/c enantiomer. Possibly, this is explained by the
intermolecular charge transfer in stable associates of
this strongly polar molecule; as a result, hydrogen of
the hydroxyl group ceases to be a donor of the hydro-
gen bond.

The structures of the FOVYOE polymorphic modi-
fications whose molecules are characterized by a high
molecular hyperpolarizability differ radically. The
molecular geometries are also different: the angles
between the planar rings in the centric and acentric
modifications are equal to 19.5° and 35.7°, respectively.
This is favorable to intramolecular charge transfer in
the former case and, most likely, excludes charge trans-
fer in the latter case. The FOVYOE molecules cannot
form intermolecular hydrogen bonds, and strong inter-
molecular contacts can be produced only due to stack-
C

ing interaction [3]. It is this situation that is observed in
the acentric modification whose structure consists of
stacks of parallel molecules (Fig. 7a). This packing is
typical of nonlinear optical crystals. Moreover, an angle
of 52° between the molecular dipole direction and the
polar axis is close to an optimum angle [4]. In the cen-
tric modification, layers are formed by the antiparallel
molecules, which superpose on each other with a con-
siderable shift (Fig. 7b).

All the known modifications of DUVZOJ possess
an antitubercular activity and belong to polysystem
crystals. Both acentric modifications have a pseudo-
symmetry, and their structures involve pseudocen-
trosymmetric dimers formed through the NH···O inter-
molecular hydrogen bonds. The modification with P21
and Z ' = 6 is a disordered analog of the modification
with P21 and Z ' = 2, which can be reduced to the hypo-
thetical pseudosymmetric group P21/c [5]: (P21, Z ' =

6 + c/3)  (P21, Z ' = 2) + (000)  (P21/c, Z ' = 1).
However, the real structure of the DUVZOJ centric
modification prepared from different solution contains
no centrosymmetric dimers, and the crystal is built up
of molecular chains formed by hydrogen bonds NH···N.

Analysis of the structures of all the aforementioned
modifications confirms our assumption that one of the

1
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(a) (b)

(c)
(d)

0 c

b

b

0 c

Fig. 4. (a, c) Structures of dimers formed by independent molecules and (b, d) chains formed by dimers in the (a, b) P21 and
(c, d) P21/c modifications of FAJTIT.
necessary conditions for the formation of centric and
acentric modifications of a particular compound is the
occurrence of a stable chiral packing fragment identical
for all structures. Furthermore, when the structures of
the modifications consist of large-sized stable molecu-
lar fragments, their unit cell parameters are most fre-
quently close in magnitude.

THE P21/c–Pc POLYMORPHIC PAIRS

We revealed 11 pairs of P21/c–Pc polymorphic mod-
ifications. The complete set of crystal structure data are
available for ten compounds (Table 2). It should be
noted that the smaller the number of representatives in
the pair of polymorphs, the stronger the influence of a
specific set of compounds on the results of the analysis.
Moreover, information regarding the methods of pre-
paring crystals, their physical properties, and the occur-
rence of phase transitions has been rarely updated in the
Cambridge Structural Database, and the journals
required (especially those published in recent years) are
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
often absent in libraries. Certainly, this leads to a
decrease in the degree of correctness of generalizations
for the given polymorphic pair. However, it is evident
that the P21/c–Pc pair has a number of distinguishing
features as compared to the pairs described earlier.

First, the group Pc, as well as the group P21, is the
subgroup of the space group P21/c; however, unlike the
two previously considered pairs, both groups in the pair
under investigation are racemic. Note that a larger num-
ber of centric and acentric crystals of these compounds
were synthesized from different solvents, whereas the
concomitant polymorphism was reliably established
only in SILXUG and FAHVOZ (in the case of four
more pairs in Table 2, information on the crystal prepa-
ration is incomplete). Close unit-cell parameters are
more rarely observed (for DGLYCN, DHNAPH, and
SLFNMF) as compared to the two preceding pairs. Fur-
thermore, the unit cell parameters of the compounds in
the P21/c–P21 pairs are often multiples, whereas multi-
ple parameters for polymorphs in the P21/c–Pc pairs
are observed only for the BESKAL, PYRZIN, and
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a

b0

0

b

c

(a) (b)

Fig. 5. Structures of chiral layers in the (a) P21 and (b) P21/c modifications of ATCPEN.

(a) (c)

(b)
(d)

a

0 c
0

a

c

Fig. 6. (a, c) Molecular packings and (b, d) structures of chains in the (a, b) P21 and (c, d) P21/c modifications of BANGOM.
SILXUG modifications. In this case, the volume of the
acentric cell is not necessarily smaller than that of the
centrosymmetric cell. This is associated with the sec-
ond structural feature of these polymorphic pairs,
namely, a very large number of polysystem crystals.
Indeed, seven (out of ten) compounds are characterized
by Z ' > 1. The third distinctive feature of this group is
the occurrence of a relatively large number of polymor-
phic phase transitions. It is worth noting that all the four
known transitions in the modifications of the pair under
consideration are accompanied by the lowering of the
C

P21/c  Pc symmetry, irrespective of whether they
occur with a decrease or an increase in the temperature.

The fourth specific feature is that the P21/c–Pc poly-
morphic pairs are represented by the most chemically
homogeneous molecules. The molecules of six out of
ten compounds (the corresponding data are presented
in the first part of Table 2) have an achiral, planar, usu-
ally aromatic structure (containing benzo, naphtha, or
anthraquinone rings) with hydroxy, carboxy, and other
functional substituents that are capable of transferring
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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0

b

c

(a)

(b)

c0

a

Fig. 7. Molecular packings in the (a) P21 and (b) P21/c modifications of FOVYOE.
protons and forming strong intermolecular bonds. It is
not improbable that the last circumstance is responsible
for the large number of polysystem crystals observed in
the polymorphic pairs under consideration. The role
played by the molecular association in the manifesta-
tion of a pseudosymmetry in crystals was discussed in
detail in our earlier work [5]. In [5], we proposed a sim-
ple scheme for the crystal chemical analysis of pseudo-
symmetric crystals. This scheme is based on the search
for a higher symmetry group G, which is related to the
initial pseudosymmetric group H by the operation G =
H + (g/t)H. Here, g and t are the rotational and transla-
tional components of the pseudoelement. Moreover, the
applicability of this operation was illustrated using
crystals of particular compounds as examples. It should
be noted that the majority of examples (BESKAl,
HY REPORTS      Vol. 48      No. 2      2003
DGLYCN, SILXUG, and SLFNMF) were found
among the P21/c–Pc polymorphic pairs.

Despite the above features, modifications of this
polymorphic pair exhibit a tendency for the unit cell
parameters to retain close (or multiple) values, pro-
vided that the sufficiently large-sized stable packing
fragments remain unchanged irrespective of crystalli-
zation conditions. However, in this case, the formation
of chiral associates is not a necessary condition. Acen-
tric and even pseudocentrosymmetric packing frag-
ments are frequently formed in polymorphs of the
P21/c–Pc pair. In particular, both modifications of gly-
cine nitrate (DGLYCN) have virtually identical struc-
tures (Fig. 8) and, correspondingly, close unit-cell
parameters. In the P21/c denser modification, two gly-
cine molecules are linked together by a symmetric
hydrogen bond into a stable molecular centrosymmet-
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Solvent Comments

Paraelectric

Ferroelectric

ation Phase transition
P21/c  Pc

he ethanol solution Weak nonlinear opti-
cal activity

he aqueous solution Tm = 481–483 K

he chloroform–ace-
ixture

Tm = 488–490 K
a = 2a, 2b = c, c = b

enzene and
form solutions

Phase transition
P21/c  Pc

Texp = 60 K

yrazinecarboxamide

he melt a = c, b = b, c = 2a
Table 2.  Polymorphic pairs P21/c–Pc

Compound REFCODE 
(∆d)

Space 
group Z' V, Å3 d,

g/cm3
Unit cell 

parameters
Packing 

fragments
Molecular 
geometry

NH3–CH2–COOH1/2N DGLYCN P21/a 1 443.9 1.595 Close Similar Similar ?

(–0.016) Pa 2 438.2 1.611 ?

CLBZNT P21/c 1 639.3 1.429 Different Different Similar Sublim

(–0.012) Pc 1 317.0 1.441 From t

BESKAL P21/a 1 648.5 1.578 Multiple Similar Similar From t

(0.036) Pa 2 663.8 1.542 From t
tone m

DHNAPH P21/c 1/2,
1/2

808.2 1.562 Close Similar Similar From b
chloro

(–0.065) Pc 2 771.6 1.637 ? 

PYRZIN P21/c 1 559.7 1.460 Multiple Similar Similar From p

(–0.025) Pa 1 275.1 1.485 From t

O3
–

Cl CN

HO

COOH

OH

O

O OH

OH

NN

CONH3
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Solvent Comments

 the chloroform 
tion

Phase transition
P21/c  Pc

 hot toluene Weak nonlinear
optical activity

 the toluene
tion

Phase transition
P21/c  Pc

Liquid crystal
a = 4c, b = b, 2c = a

Rotamer with inversion

 from the
ene–methanol
tion

Tm = 198–213°C
Table 2.  (Contd.)

Compound REFCODE 
(∆d)

Space 
group Z' V, Å3 d,

g/cm3

Unit cell 
parame-

ters

Packing 
fragments

Molecu-
lar geom-

etry

GAXLEW P21/c 1 1198.3 1.718 Different Different Similar From
solu

(–0.018) Pc 1 591.5 1.736 From

(Ph–COO–Ph–COOCH2–)2 SILXUG P21/c 1/2 1332.9 1.341 Multiple Similar Similar Both
solu

(–0.001) Pn 2 2664.9 1.342

SLFNMF P21/c 2 2621.2 1.421 Close Similar Similar ?

(0.058) Pc 4 2731.4 1.363 ?

FAHVOZ P21/c 2 3166.4 1.407 Different Different Similar Both
benz
solu

(0.004) Pc 2 1587.2 1.403

HOQABS P21/c 2 3644.2 1.300 Different Different Similar ?

(–0.047) Pc 1 879.7 1.347 ?

O

O OH

OH

Cl

Cl

NH2 S

O

O
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ric dimer. In the Pc modification, owing to intermolec-
ular proton transfer, the independent glycine molecules
related by a pseudocenter occur in the form of a neutral
molecule and a zwitterion. However, the molecular
topology remains almost the same. The pseudocenter is
located in the vicinity of the (1/2, 1/2, 1/2) crystallo-
graphic point. The displacement of the pseudocenter
with respect to the crystallographic position does not
exceed 0.4 Å. The space groups of the modifications are
related by the operation (P21/c, Z ' = 1) = (Pa, Z ' = 2) +

(1/2, 1/2, 1/2). According to the Abrahams concepts
[6] and the results of our previous work [5], we can
1

(a)

(b)

0

a

c

c0

a

Fig. 8. Molecular packings in the (a) Pc and (b) P21/c mod-
ifications of DGLYCN.
C

assume that a paramagnetic–ferromagnetic phase tran-
sition between these polymorphs is quite probable.

The structures and the unit cell parameters of centric
and acentric CLBZNT crystals obtained by different
techniques differ significantly. The acentric modifica-
tion prepared from an ethanol solution possesses
weakly pronounced nonlinear optical properties.
Although both polymorphs have a layered structure,
these layers substantially differ in topology (Fig. 9).
The phase transformation I (P21/c, Z ' = 1)  II (Pc,
Z ' = 1) between partially disordered modification I and
completely ordered modification II is observed at room
temperature. The transition is attended by the coopera-
tive rotation of molecules about the centers of gravity
and the corresponding change in the crystal axes.

The same structural fragments are also observed in
the modifications of each of the BESKAL, DHNAPH,
and PYRZIN compounds. Molecules of these com-
pounds form systems of strong intermolecular hydro-
gen bonds whose fragments are retained irrespective of
crystallization conditions. For example, the BESKAL
acentric modification with a lower density but a higher
melting point was obtained from a mixture of aprotic
solvents. The centric modification was synthesized
from an aqueous solution. However, both modifications
are composed of topologically identical layers, which
are centrosymmetric in the P21/c modification and
pseudocentrosymmetric in the Pc modification. In the
crystal of the Pc modification, the layers are linked
together only through van der Waals interactions and
one hydroxyl group in each independent molecule
remains free (Fig. 10). In the P21/c crystal, the layers
are displaced with respect to each other so that hydro-
gen bonds are formed between these hydroxyl groups.
The independent molecules of the acentric modification
are related by the pseudocenter of symmetry, which is
noticeably displaced (by ~2 Å) from the crystallo-
graphic position. Most likely, this excludes the occur-
rence of a phase transition between the modifications. The
symmetry relationship between the groups can be written

in the form (P21/c, Z' = 1) = (Pa, Z' = 2) + (1/2, 1/2, 1/2).

Both modifications of naphthazarin DHNAPH
belong to polysystem crystals. In both crystals, similar
systems of intermolecular contacts bring about the for-
mation of typical pseudohexagonal layers, which were
already noted in other donor–acceptor aromatic sys-
tems (HAMNEO). With a decrease in the temperature
to 110 K, the centric modification undergoes the revers-

ible transition (P21/c, Z ' = 1/2, 1/2)  (Pc, Z ' = 2) to
the denser acentric form. The transition is accompanied
by the intramolecular proton migration and a small dis-
placement of layers with respect to each other. This
leads to loss of the proper center of the molecular sym-
metry; therefore, independent molecules in the Pc crys-
tal are not related by a pseudoelement. Although the
DHNAPH molecules do not possess high molecular
hyperpolarizability, the phase transition was judged

1

110 K
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(b)
(d)

(a)
(c)

0
c

b

b

c0

Fig. 9. Molecular packings in the (a, b) Pc and (c, d) P21/c modifications of CLBZNT in the projections (a, c) parallel and (b, d)
perpendicular to the plane of the molecular layer.

(a) (b)

0 b

a

a

0

c

Fig. 10. Packings of (a) pseudocentrosymmetric layers in the Pc modification and (b) centrosymmetric layers in the P21/c modifi-
cation of BESKAL in the projection perpendicular to the layer plane.
from the second harmonic generation, which is charac-
teristic of the acentric modification [7]. Note that the
related compound GAXLEW forms the same polymor-
phic modifications. In this case, the high-temperature
acentric modification crystallizes from hot toluene. For
this reason, the phase transition from the centric modifica-

tion to the acentric modification (P21/c, Z ' = 1) 
(Pc, Z ' = 1) occurs upon heating to 130°C with the
destruction of the sample. The PYRZIN modifications,
which possess an antitubercular activity, were prepared
from different solvents. However, their packings

130°C
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
involve identical acentric molecular chains (Fig. 11).
These chains are repetitive from modification to modi-
fication and are responsible for multiple values of the
unit cell parameters.

The concomitant modifications of SILXUG were
obtained by slow evaporation of a toluene solution at
room temperature. This compound possesses liquid-
crystal properties. The transition to the liquid-crystal
state is described by the scheme α(P21/c, Z ' =

1/2)  β(Pn, Z ' = 2)  LC. The transition
between the modifications is characterized by the reten-

110°C 185°C



272 KULESHOVA, ANTIPIN
(a)

0 Ò

a

(b)

Ò0

a

Fig. 11. Packings of acentric chains in the (a) Pc and (b) P21/c modifications of PYRZIN.
tion of three-dimensional molecular stacks and a
change in the molecular conformation, namely, the
twisting of central benzene rings and the loss of the
proper center of inversion in the molecule. In addition,
the crystallographic symmetry is lowered owing to loss
of the center of symmetry [which transforms into a
pseudocenter with the coordinates (0.8, 0.26, 0.8)] and
the symmetry relationship is represented as (P21/c, Z ' =

1/2) = (Pn, Z ' = 2) + (0, 1/2, 0). These transformations
upon phase transition result in a doubling of the unit
cell volume without a change in the columnar structure
of the crystal. One more example of crystal packings,
which can differ by either the presence or the absence
of the symmetry center and can be treated as a pair
made up of a centrosymmetric group and a subgroup
with the pseudocenter [(P21/c, Z ' = 2) = (Pc, Z ' = 4) +

(0, 1/2, 0)], is provided by the SLFNMF modifica-
tions. Molecules of this compound form stable noncen-
trosymmetric dimers in the structures of all the modifi-
cations.

It should be emphasized once again that, although
the modifications of the polymorphic pair under inves-
tigation exhibit a tendency for the unit cell parameters
to retain close (or multiple) values, provided that suffi-
ciently large-sized stable packing fragments remain
unchanged, the formation of chiral associates is not a
necessary condition. The acentric and pseudocen-
trosymmetric packing fragments are frequently
observed in the P21/c–Pc pairs considered above.

THE P21/c–Pna21 POLYMORPHIC PAIRS

We revealed 16 pairs of P21/c–Pna21 polymorphic
modifications. The complete set of crystal structure
data are available for 15 compounds. Note that the
P21/c–Pca21 and Pbca–Pna21 pairs are encountered con-
siderably more rarely. Although the space groups P21/c
and Pna21 are isomorphic, they are not symmetrically
subordinate and belong to different symmetry classes,

1

1

C

namely, to the classes 2/m and mm2. Therefore, in this
case, the unit cells should be compared using the
reduced unit-cell parameters. The main crystal parame-
ters of these modifications are presented in Table 3. The
distinctive structural feature of polymorphic modifica-
tions of this pair is that the unit cells are characterized
primarily by different parameters. In rare cases, when
the unit cell parameters appear to be close to each other
(the ACTOLD, PEGVAY, PEZBOL, and TOLSAM
modifications), the differences between them are rela-
tively large and sometimes exceed 10%. Almost all the
compounds listed in Table 3 belong to the group of
unresolved (or rapidly inverted) enantiomers. The data
for concomitant modifications (for the most part, with
nonconjugate, conformationally nonrigid molecules)
are given in the first part of the table. Modifications
characterized by conjugate molecules with donor–
acceptor substituents were prepared from different sol-
vents. The data for these compounds are presented in
the second part of Table 3. The densities of the modifi-
cations, as for the preceding pairs, are close in magni-
tude. The rare exceptions are provided by the modifica-
tions of PEGVAY (the experimental data were obtained
at different temperatures) and CAXMOD (whose cen-
tric modification has a denser packing).

Concomitant polymorphic modifications. These
modifications are relatively rare in occurrence among
the P21/c–Pna21 pairs. Only the modifications of each
of the CAXMOD, FAHNOR, BAAANL, PEGVAY,
and PEZBOL compounds were synthesized under the
same conditions. Among them, three compounds have
nonconjugate (saturated), conformationally nonrigid
molecules. Possibly, this is the reason why the tendency
noted in [1] that the modifications prepared under the
same conditions are more frequently characterized by
close unit-cell parameters as compared to the modifica-
tions obtained from different solvents manifests itself
to a smaller extent for the pairs under consideration.
Actually, the unit cell parameters are close to each other
in two out of five pairs synthesized under the same con-
ditions and in one out of nine pairs produced from dif-
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Solvent Comments

 a solution
e ethanol

Rotamers

ly) from the
lution

Rotamers

 cocrystallization

 the reaction
 acetonitrile

Tm = 297°C, Texp = 233 K

Tm = 249°C, Texp = 173 K

gh diffusion
 in the CH2Cl2 Texp = 130 K

m the saturated
lution

Tm = 147.5°C

diluted ethanol Tm = 151.5°C

melt Phase transition

m an aqueous Triboluminescence
activity

aniline solution

pyridine solution Different orientations
of OH groupschloroform solu-
Table 3.  Polymorphic pairs P21/c–Pna21

Compound REFCODE 
(∆d)

Space 
group Z' V, Å3 d,

g/cm3
Unit cell 

parameters
Packing 

fragments
Molecular 
geometry

From the same solvent

CAXMOD P21/a 1 479.6 1.441 Different Different Different Both from
in absolut(+0.096) Pna21 1 513.8 1.345

FAHNOR P21/n 1/2 708.5 1.455 Different Different Different Both (slow
acetone so(–0.004) Pna21 1 1412.3 1.459

BAAANL P21/c 1 1160.2 1.580 Different Different Similar Both upon

(0.000) Pna21 2 2320.3 1.580

PEGVAY P21/n 1 2658.6 2.434 Close Similar Similar Both from
mixture in(–0.112) Pna21 1 2543.0 2.546

PEZBOL P21/n 1 3577.2 1.327 Close Similar Similar Both throu
of hexane
solution

(–0.001) Pna21 1 3572.6 1.328

From the same solvent at different concentrations

ACTOLD P21/c 1 812.1 1.221 Close Similar Similar Slowly fro
ethanol so

(–0.010) Pna21 1 838.9 1.231 From the 
solution

From different solvents

AMBACO P21/a 1 656.3 1.387 Different Similar Similar From the 

(–0.022) Pna21 2 1292.8 1.409 Slowly fro
solution

Pbca 1 1330.9 1.368 From the 

LEZJAB P21/c 1 647.3 1.581 Different Different Similar From the 

(–0.026) Pna21 1 658.3 1.555 From the 
tion

Br N N N

CH3 NH CO CH3

COOH

NH2

OH

COOH

OH
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Solvent Comments

om the ethanol–water
lution

Tm = 104°C

om an aqueous solution –

pid cooling of the ethanol
lution

Tm = 156°C

owly from the chloroform 
lution

Tm = 157°C

pid cooling of the chloro-
rm solution

Nonlinear
optical activity

om the methyl ethyl
tone–ethanol mixture

Charge-transfer
complex

pidly from the methyl
hyl ketone solution

Charge-transfer
complex

pidly from the ethanol
lution

Charge-transfer
complex

owly from the toluene
lution

om the saturated
clohexane solution

owly from the benzene
lution

om the diethyl ether
lution

owly from the methanol
lution

om the CCl4 solution

om the reaction mixture Tm = 95°C

Tm = 207°C

Tm = 208°C
Table 3.  (Contd.)

Compound REFCODE 
(∆d)

Space 
group Z ' V, Å3 d,

g/cm3

Unit cell 
parame-

ters

Packing 
fragments

Molecu-
lar geom-

etry

TOLSAM P21/c 1 869.4 1.453 Close Similar Similar Fr
so

(+0.056) Pna21 1 904.0 1.397 Fr

NOJHEZ P21/n 1 1249.4 1.389 Different Different Different Ra
so

(+0.027) P21/n 2 2511.9 1.382 Sl
so

Pna21 1 1273.9 1.362 Ra
fo

MBYINO P21/c 2 2760.1 1.334 Different Different Identical Fr
ke

(0.003) P21/c 1 1396.9 1.318 Ra
et

Pna21 1 1382.9 1.331 Ra
so

DMFUSC P21/c 1 1596.5 1.191 Different Different Similar Sl
so

(–0.006) Pna21 1 1588.2 1.197 Fr
cy

P212121 1 1587.5 1.198 Sl
so

TALIZ P21/n 1 1001.2 1.096 Different Similar Different Fr
so

(–0.031) Pna21 1 973.5 1.127 Sl
so

NOETNA P21/c 1 1318.9 1.954 Different Different Similar Fr

(+0.036) Pna21 1 1343.7 1.918 Fr

PNEOSI P21/n 1 1220.4 1.367 Different Different Similar

(0.006) Pna21 1 1226.4 1.361

CH3 · OH3SO3
+

CH N(CH3)2

O
Ph

Ph
CH3

CH3

HO CH2 CH2 N(CH3)2
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ferent solvents. Moreover, in the pairs discussed earlier,
the closeness of the parameters was explained by the
retention of identical (sufficiently large-sized) struc-
tural fragments in different modifications (whose mol-
ecules have a similar geometry). At the same time, the
opposite structural correlation is observed for the
P21/c–Pna21 pairs: different geometries of molecules
lead to the formation of different structural fragments
that, in turn, are responsible for different unit-cell
parameters.

For example, in different CAXMOD modifications,
molecular zwitterions are in the form of different rota-
mers, which probably can exist even in solutions.
Therefore, different conformers form different molecu-
lar associates (Fig. 12) through sufficiently strong inter-
molecular hydrogen bonds. In turn, these associates
most likely stabilize a particular geometry of the mole-
cules in the crystal. More “compact” conformers are
joined together into centrosymmetric dimers. The
dimers are linked into three-dimensional layers (stacks)
with pl21/a symmetry, which form the P21/a crystal.
Linear conformers are responsible for the formation of
a considerably looser noncentrosymmetric framework
with Pna21 symmetry. The FAHNOR molecules in dif-
ferent modifications also occur in the form of different
rotamers. These molecules do not form strong intermo-
lecular hydrogen bonds. However, compact conformers
are joined through the CH···O short contacts into
achiral molecular layers with pln symmetry, which
form the P21/n structure. As in the preceding case, lin-
ear conformers form a molecular diamond-like frame-
work with Pna21 symmetry. The densities of both pack-
ings are close in magnitude. The BAAANL molecules
have similar geometries but differ in packing. The cen-
tric modification is composed of chiral helixes aligned
parallel to the screw axes (Fig. 13). The Pna21 modifi-
cation is built up of chains formed by pseudocen-
trosymmetric dimers, which involve pairs of indepen-
dent molecules joined by the NH···N intermolecular
hydrogen bonds. In both modifications, the chains lie
along the polar direction (the 21 axis). However, differ-
ent chain structures are responsible for different unit-
cell parameters. Note that the orthorhombic form dom-
inates in both crystals obtained by cocrystallization.
Consequently, we can assume that a larger number of
molecules are linked into dimers even in the mother
solution. In the PEGVAY modifications, molecules
exhibit similar geometries. In the crystals of different
modifications, molecules form chains along the polar
direction. These chains are similar in topology (Fig. 14)

but differ in symmetry (pc  in the P21/c modification
and pc21 in the Pna21 modification). The reduced unit-
cell parameters are close in magnitude. A similar situa-
tion is observed for the PEZBOL modifications. In the
crystals of both modifications, molecules form layers
that are similar in topology but different in symmetry
(chiral layers with pl21 symmetry in the P21/c modifi-

1
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cation and racemic layers with pla symmetry in the
Pna21 modification). The packing of these layers leads
to close values of the reduced unit-cell parameters.

Only for one compound (ACTOLD), the polymor-
phic modifications were synthesized from the same sol-
vent but at different concentrations of the mother solu-
tion. The structures of both modifications contain iden-
tical chiral chains of molecules linked by the NH···O
intermolecular hydrogen bonds.2 In the modifications,
molecules have the same geometry, but the mutual
arrangements of molecules in the chains are different.
However, this circumstance does not affect the unit cell
parameters, which turn out to be close to each other.

Polymorphic modifications prepared from dif-
ferent solvents. Pairs of P21/c–Pna21 polymorphic

2 The P212121 modification of this compound is also included in
the Cambridge Structural Database; unfortunately, only the data
on the unit cell parameters are available for this modification.

(a)

0 Ò

a
(b)

(c)

N(1)
C(2) C(1)

O(1)

O(2)

0 Ò

b

Fig. 12. Modifications of CAXMOD: (a) molecular geome-
tries and molecular packings in the (b) Pna21 and (c) P21/c
modifications.
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(a)

0 b

a

(c)

(b)

(d)

a

0 Ò

Fig. 13. (a, c) Structures of molecular chains and (b, d) projections of chain packings in the (a, b) Pna21 and (c, d) P21/c modifica-
tions of BAAANL.

(a)

(b)

Fig. 14. Structures of molecular chains in the (a) Pna21 and (b) P21/c modifications of PEGVAY.
modifications with conjugate rigid molecules were pre-
dominantly obtained from different solvents. The sol-
vent nature (polarity or protonation ability) especially
strongly affects the crystallization of compounds that
contain active acid protons, for example, carboxylic
acids. In particular, three polymorphic modifications
were found for o-aminobenzoic acid AMBACO (see
Table 3). The acentric modification (Pna21, Z ' = 2) syn-
thesized from the aqueous solution possesses tribolu-
minescent activity, i.e., the capability of luminescing
under friction. Apart from the P21/c centric modifica-
tion (prepared from the melt), there exists the centric
C

orthorhombic modification (Pbca, Z ' = 1) produced
from the aniline solution. The structures of all the mod-
ifications involve centrosymmetric dimers (Fig. 15).
However, in the Pna21 modification, these dimers are
pseudocentrosymmetric due to different structures of
the independent molecules, which occur in the form of
a neutral molecule and a zwitterion (water used for pre-
paring this modification transfers protons). In all the
modifications, dimers are involved in the formation of
two-dimensional layers, which, in turn, form the crystal
structure. In the Pna21 and Pbca polymorphs, the crys-
tal structures are strengthened by additional hydrogen
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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(a)

0

b

c

0 c

a

(b)

(c)

(d)
0

b

c

Fig. 15. Molecular packings in the (a) Pna21, (b) P21/c, and (c) Pbca modifications and (d) structures of molecular dimers in the
Pna21 (dashed lines) and Pbca modifications of AMBACO.
bonds between layers (see Fig. 15). Furthermore, the
Pna21 modification undergoes the phase transition

(Pna21, Z ' = 2)  (Pbca, Z ' = 1). The phase transition
occurs upon heating and is attended by proton migra-
tion, the displacement of the pseudocenter by ∆r = 0.2 Å,
and the rotation of crystallographically independent
molecules with respect to each other by approximately
30° (Fig. 7). The unit cell parameters of the Pbca mod-
ification are close to those of the P21/a (Z ' = 1) modifi-
cation (in this modification, one parameter is doubled).
The highest density is observed for the Pna21 modifica-
tion.

In modifications of dihydroxybenzoic acid LEZ-
JAB, molecules differ only in the orientation of one
hydroxyl group. In the crystals precipitated from a non-
polar solvent (chloroform), the carboxyl group of dihy-
droxybenzoic acid is involved in the intramolecular
hydrogen bond, which prevents the formation of cen-
trosymmetric dimers typical of carboxylic acids. As a
result, there arises a three-dimensional framework with
Pna21 symmetry. In the crystals synthesized in polar
pyridine, both hydroxyl groups of the molecule partici-
pate in the formation of intramolecular hydrogen

81°C
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bonds. Hydrogen atoms of free carboxyl groups form
stable centrosymmetric dimers through strong (nearly
symmetric) hydrogen bonds. The CH···O weaker con-
tacts are responsible for the formation of planar ribbons

with pc  symmetry (Fig. 16). The sole example of the
same unit-cell parameters for the modifications pro-
duced from different, even if related, solvents is pro-
vided by crystals of oxonium salt of 4-methylsulfonium
acid TOLSAM. In this case, salt molecules have the
same structure and form layers with similar structures
but different symmetries through identical systems of
contacts. The packing of these layers results in the for-
mation of crystals with different symmetries but close
unit-cell parameters. At the same time, it should be
noted that the modification synthesized from the water–
alcohol solution is characterized by a substantially
denser packing.

However, investigation into the crystallization of
5-nitro-2-thiophenecarboxaldehyde-4-methylphenylhy-
drazone NOJHEZ [7] revealed that the symmetry of the
crystal structure depends on the crystallization kinetics
rather than on the solvent polarity. It was found that a
slow crystallization (through evaporation or upon con-

1
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trolled cooling) from solutions in any one of the seven
solvents studied leads to the growth of the P21/n modi-
fication (Z ' = 2) (I).3 A rapid cooling of the supersatu-
rated solutions in the same solvents results in the coc-
rystallization of the Pna21 modification (Z ' = 1) (II) and
P21/n modification (Z ' = 1) (III), which have a higher
thermodynamic stability. Moreover, the crystallization
in protic and aprotic solvents is accompanied by the
predominant formation of modifications III and II,
respectively. It should be noted that NOJHEZ is the sole
compound that possesses the nonlinear optical activity
in the pair of polymorphic modifications under consid-
eration. The work performed by Pan et al. [7] is a rare

3 The solutions used were prepared in toluene, chloroform, metha-
nol, ethanol, ethyl formate, acetone, and acetonitrile.

(a)

0 b

a

(b)

0 Ò

a

Fig. 16. Molecular packings in the (a) Pna21 and (b) P21/c
modifications of LEZJAB.
C

example of a systematic investigation into the polymor-
phism and the search for acentric modifications of
hydrazone derivatives. In [7], it was also demonstrated
that hydrazones rather easily form polymorphic modi-
fications owing to the high conformational flexibility of
molecules (the torsion angle between two planar
molecular fragments varies from 0° to 60° in different
modifications). Furthermore, it was shown that hydra-
zones are a very promising class of compounds due to,
first, the high molecular hyperpolarizability of donor–
acceptor derivatives and, second, the high probability
of forming noncentrosymmetric structures (~40%).
The molecular conformations in the modifications pre-
dominantly differ in the angle between the planes of the
phenyl and thiophene rings: 8° in I, 3° in II, and 16° in
III. The largest differences between the molecular
geometries are observed for modifications II and III,
which are produced by rapid cocrystallization. Most
likely, similar differences in the geometry occur even in
the solution, which is responsible for the formation of
different crystal structures. It is of interest that, in the
modifications prepared by rapid crystallization, mole-
cules probably have not managed to form intermolecu-
lar hydrogen bonds. The opposite situation is observed
for modification I prepared by slow evaporation of the
solution. In this modification, chiral molecular chains
are formed through the NH···N hydrogen bonds
between crystallographically independent molecules.
No obvious relation between the symmetry of the crys-
tal structure and the solvent nature was revealed for the
other compounds of this group.

All the three MBYINO modifications obtained
under different conditions from different solvents are
organic photoelectron semiconductors, irrespective of
the lattice symmetry. These properties are attributed by
researchers to intramolecular and intermolecular (in the
case of centric modifications) charge transfer. The unit
cell parameters of all the polymorphs are different, even
though all the modifications have a layered packing. In
the centric modifications, layers are formed by stacking
contacts between antiparallel molecules, which is typi-
cal of charge-transfer organic complexes. The structure
of the acentric modification is formed through stacking
contacts between translational molecules. The
DMFUSC compound is characterized by three modifi-
cations, namely, one monoclinic and two orthorhombic
modifications. As was already noted in our earlier work
[1], the modifications α(P21/c, Z ' = 1) and β(P212121,
Z ' = 1) were prepared by slow evaporation from the
solutions in benzene and toluene. The γ(Pna21, Z ' = 1)
was synthesized from a saturated cyclohexane solution.
The molecular conformations are similar in all the three
modifications, whereas the packing and the unit cell
parameters of the γ modification differ from those of the
α and β modifications. In the TALJIZ modifications
(Fig. 17), despite identical systems of intermolecular
hydrogen bonds, local fragments (chains) exhibit dif-
ferent symmetries. The structure of the centric modifi-
cation is characterized by the antiparallel packing of
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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(a)

0 c

a

(b)

0

a

b

Fig. 17. Packings of chains in the (a) Pna21 and (b) P21/c modifications of TALJIZ.
chains (pc21) of different chiralities. These chains are
formed by the OH···N hydrogen bonds. The structure of
the acentric modification is composed of chains with
pcc symmetry.

Therefore, irrespective of the method used for pre-
paring the crystals, identical molecular associates occur
in the pair of P21/c–Pna21 polymorphic modifications
considerably more rarely as compared to those in all the
pairs considered above.

CONCLUSIONS

The results of analyzing the structures of pairs of
centric and acentric polymorphic modifications
allowed us to make the following inferences. Although
each of the studied pairs of polymorphic modifications
exhibits its own specific features, these pairs, according
to their basic characteristics, can be divided into two
groups, namely, the centric–chiral and centric–racemic
groups. In the former group (the P21/c–P212121 and
P21/c–P21 pairs), more than one half of the pairs are
concomitant modifications and the revealed regularities
manifest themselves most clearly. In this group, the
most important condition for the occurrence of a pair of
centric and acentric polymorphic modifications is the
formation of stable chiral molecular associates with
identical or very similar structures. In the cases when
molecules in the polymorphs form sufficiently large-
sized supramolecular fragments (layers or chains), the
unit cell parameters either are close in magnitude or are
multiples. In the latter group (the P21/c–Pc and P21/c–
Pna21 pairs), the stable molecular associates found in
the polymorphs do not necessarily exhibit a chiral
OGRAPHY REPORTS      Vol. 48      No. 2      2003
structure. Racemic and even pseudocentrosymmetric
molecular fragments are rather commonly encountered
in the acentric phase. Moreover, close unit-cell param-
eters are observed more rarely (especially in the P21/c–
Pna21 pair), and the concomitant polymorphic modifi-
cations are also rare in occurrence.
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Abstract—The structure of 4-methyl-6,7,8,9-tetrahydro-2-quinolone is studied by the single-crystal X-ray dif-
fraction technique (a = 6.6890(17) Å, b = 7.926(2) Å, c = 8.993(3) Å, α = 85.50(2)°, β = 68.22(2)°, γ =

82.89(2)°, Z = 2, and space group ). The structure is solved by direct methods and refined to R1 = 0.0592
and wR2 = 0.1206. In the crystal, intermolecular hydrogen bonds link molecules into centrosymmetric dimers.
© 2003 MAIK “Nauka/Interperiodica”.

P1
INTRODUCTION

This work continues our structural investigations of
the heterocyclic compounds that are able to undergo
various rearrangements, in particular, cyclization reac-
tions [1–10]. As in our previous papers, we step-by-step
perform the X-ray diffraction studies of all the interme-
diates and final products of multistage cyclization reac-
tions and rearrangements. Substituted pyridones are
interesting objects for these investigations, because
they are characterized by a high reactivity. In this study,
we determined the structure of 4-methyl-6,7,8,9-tet-
rahydro-2-quinolone. At present, data on its molecular
and crystal structures are not available in the Cam-
bridge Structural Database (Version 04.02) [11].

EXPERIMENTAL

4-Methyl-6,7,8,9-tetrahydro-2-quinolone (I) was syn-
thesized according to the procedure described in [12]:

The 1H NMR spectrum was recorded on a Bruker
AM-360 spectrometer (field strength, 8.46 T; operating
frequency, 360.14 MHz for protons; DMSO-d6; inter-
nal standard, TMS). Based on the available data, the
NMR signals were assigned as follows (δ, ppm): 11.50
(s) H(1); 5.90 (s) H(3); 2.48 (t) H(9A), H(9B); 2.34 (t)
H(6A), H(6B); 2.03 (s) H(1A), H(1B), H(1C); 1.72 (m)
H(7A), H (7B), H(8A), H(8B).

The intensities of diffraction reflections were mea-
sured on a CAD4 diffractometer [13] (MoKα radiation,

O
+

O

H2N

CH3

O N
H

O

CH3

I

1063-7745/03/4802- $24.00 © 20280
graphite monochromator, ω scan mode) at room tem-
perature. The unit cell parameters were determined and
refined using 25 reflections in the θ range 13°–15°.
Selected experimental parameters and crystal data are
included in Table 1.

Since the crystals of the compound studied are small
in size and have small linear absorption coefficients, the
data were not corrected for absorption. The primary

Table 1.  Crystal data and details of the X-ray diffraction ex-
periment and refinement of structure I

Compound C10H13NO

Molecular weight 163.21

Crystal system Triclinic

Space group P

a, Å 6.6890(17)

b, Å 7.926(2)

c, Å 8.993(3)

α, deg 85.50(2)

β, deg 68.22(2)

γ, deg 82.89(2)

V, Å3 439.1(2)

Z 2

ρcalcd, g/cm3 1.235

µ(MoKα), cm–1 0.080

Crystal size, mm 0.30 × 0.30 × 0.30

θmax, deg 26

Number of reflections with
I ≥ 2σ(I)/number of parameters

1618/162 

R1/wR2 0.0592/0.1206 

∆ρmax/∆ρmin, e/Å3 0.203/–0.141 

1
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Table 2.  Bond lengths d (Å) for non-hydrogen atoms in
structure I

Bond d

N(1)–C(2) 1.3541(16) 

N(1)–C(10) 1.3830(18) 

C(2)–O(2) 1.2578(17) 

C(2)–C(3) 1.4107(18) 

C(3)–C(4) 1.374(2) 

C(4)–C(5) 1.4172(18) 

C(4)–C(11) 1.5122(18) 

C(5)–C(10) 1.3541(17) 

C(5)–C(6) 1.514(2) 

C(6)–C(7) 1.503(2) 

C(7)–C(8) 1.451(2) 

C(8)–C(9) 1.509(2) 

C(9)–C(10) 1.4754(18) 

Table 3.  Bond angles ω (deg) for non-hydrogen atoms in
structure I

Angle ω

C(2)–N(1)–C(10) 125.10(10) 

O(2)–C(2)–N(1) 120.04(11) 

O(2)–C(2)–C(3) 124.34(12) 

N(1)–C(2)–C(3) 115.61(13) 

C(4)–C(3)–C(2) 121.00(12) 

C(3)–C(4)–C(5) 120.58(11) 

C(3)–C(4)–C(11) 118.99(12) 

C(5)–C(4)–C(11) 120.43(13) 

C(10)–C(5)–C(4) 118.52(13) 

C(10)–C(5)–C(6) 119.81(11) 

C(4)–C(5)–C(6) 121.65(11) 

C(7)–C(6)–C(5) 113.50(12) 

C(8)–C(7)–C(6) 114.38(16) 

C(7)–C(8)–C(9) 112.60(13) 

C(10)–C(9)–C(8) 111.96(12) 

C(5)–C(10)–N(1) 119.14(11) 

C(5)–C(10)–C(9) 125.08(13) 

N(1)–C(10)–C(9) 115.78(11) 

Table 4.  Parameters of interatomic contacts in structure I

D–H d(D–H) d(D···A) d(H···A) ωDHA A Symmetry operation

N(1)–H(1) 0.82(1) 2.772(1) 1.96(1) 174(1) O(2) (2–x; 1–y; 1–z) 

C(7)–H(7A) 1.07(2) 3.515(2) 2.66(2) 137(1) O(2) (1–x; 1–y; 1–z)

C(8)–H(8B) 0.99(2) 3.536(2) 2.58(2) 163(1) O(2) (x; y; z–1) 

C(11)–H(11C) 0.89(2) 3.547(2) 2.81(2) 141(2) O(2) (x–1; y; z)

Note: D is a donor, A is an acceptor, and H is a hydrogen atom; the d distances and ω angles are given in angstroms and degrees, respectively.
processing of the experimental data was performed
with the WinGX98 program package [14], and all fur-
ther calculations were performed with the SHELX97
program package [15]. The crystal structure was solved
by direct methods. The positional and thermal parame-
ters were refined in the anisotropic approximation for
all the non-hydrogen atoms. The hydrogen atoms were
located from the difference Fourier synthesis and
refined in the isotropic approximation. The interatomic
distances and bond angles are listed in Tables 2 and 3,
respectively. The parameters of the interatomic con-
tacts involving the hydrogen atoms are given in Table 4.
The crystal data for compound I are deposited in the
Cambridge Structural Database (deposit no. 198666).
The molecular structure of I and the atomic numbering
are shown in the figure, which was drawn with the use
of the PLUTON96 program [16].
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
RESULTS AND DISCUSSION

In molecule I, the N(1)C(2)C(3)C(4)C(5)C(10) six-
membered ring is planar within 0.014 Å. The O(2),
C(6), C(9), and C(11) atoms lie in the plane of this ring.
The C(7) and C(8) atoms deviate from this plane by
−0.236 and 0.425 Å, respectively. In crystal I, intermo-
lecular hydrogen bonds link molecules into centrosym-
metric dimers (figure, Table 4). In the Cambridge Struc-
tural Database (Version 04.02) [11], we found a com-
pound with a similar structure, namely, 7,8-dihydro-7-
methyl-2,5(1H,6H)-quinoline-2,5-dione (II) [17]

N
H

OH3C

O

II
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In both structures, the ellipsoids of thermal vibra-
tions of the C(7) and C(8) atoms (the numberings are
identical; see figure) are elongated almost perpendicu-
lar to the plane of the heterocyclic system. As a conse-
quence, the distance between the C(7) and C(8) atoms
is significantly shorter [1.451(2) Å] than the C(5)–C(6),
C(6)–C(7), C(8)–C(9), and C(9)–C(10) distances
(Table 2). However, with allowance made for strong
anisotropy of the thermal parameters [18], the C(7)–
C(8) distance is 1.58 Å, which is consistent with the sp3

hybridization. The structure of the heterocyclic frag-
ment of the bicycle in molecules I and II corresponds
to the pyridone, rather than pyridol, tautomer.

The fusion of the cyclohexene and pyridone frag-
ments in molecule I along the C(5)–C(10) double bond
results in a slight shortening of this bond (1.354 Å) in
comparison with the other double bond, namely, C(3)–
C(4) (1.374 Å); that is, the carbocyclic fragment
slightly contracts the bond in the adjacent heterocycle.
Note that the environment of the C(5)–C(10) double
bond in the bicycle includes the C(4), C(6), C(9), and
N(1) atoms and has an asymmetric configuration: the
C(6)–C(5)–C(4) exocyclic angle is 121.7°, whereas the
C(9)–C(10)–N(1) angle is only 115.8°. This leads to a
close spacing between the C(9)H2 methylene fragment
and the nitrogen atom, which should be considered in
the analysis of the reactivity of molecule I. For exam-
ple, in the alkylation reactions, the N(1) nitrogen atom
can be considerably shielded by the C(9) methylene
link.

C(11)

C(4)
C(5) C(3)

C(2)C(10)

C(9)

C(8)

C(7)

C(6)

O(2)
N(1)
H(1)

Molecular structure with the atomic numbering and forma-
tion of the centrosymmetric dimer in structure I.
C

In the coming months, we are going to study the
reactivity of compound I and to perform X-ray struc-
ture analysis of the products obtained.
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Abstract—The crystal structure of L-alanine phosphate (C3O2NH7 · H3PO4) is determined by the single-crystal
diffraction technique; a = 11.918(1) Å, b = 9.117(1) Å, c = 7.285(1) Å, γ = 104.7(1)°, space group P21, and
Z = 4. The amino group of the alanine is protonated by the hydrogen atom of the phosphoric acid. Pairs of
H2P  hydrogen-bonded ions are packed into layers alternating with layers of alanine molecules in the crystal.
No hydrogen bonds are formed immediately between the alanine molecules. © 2003 MAIK “Nauka/Interperi-
odica”.

O4
–

The structures of β-alanine, DL-alanine, and sar-
cosine phosphates were investigated earlier in [1]. This
study concentrates on the determination of the crystal
structure of L-alanine phosphate [2], which has not yet
been studied. This compound exhibits piezoelectric
properties [3]. The crystals for this study were obtained
1063-7745/03/4802- $24.00 © 20283
by slow cooling a saturated aqueous solution of alanine
and H3PO4 at pH < 2 in an LKB-Brommo thermostat,
which operated in the temperature range between –10
and +40°C with an error of 0.5 K.

The temperature of the solution was lowered from
25 to 8°C at a rate of 1 K per day. The unit cell param-
H(2)H(19)

H(15) H(16)

H(18)

H(17)
H(1)

P(1)

H(20)

N(2) C(6)

C(4)
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O(3) O(2)

O(1)
O(12)

H(13)

O(5)

O(9)
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C(1)
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c

a
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Projection of the structure along the b axis.
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Table 1.  Bond lengths d (Å) and angles ω (deg) in L-alanine
molecules and H2P  ions

Bond d Angle ω

H2P

P(1)–O(1) 1.497(1) O(1)–P(1)–O(2) 115.4(1)
P(1)–O(2) 1.507(1) O(1)–P(1)–O(3) 107.9(1)
P(1)–O(3) 1.561(1) O(1)–P(1)–O(4) 110.3(1)
P(1)–O(4) 1.566(1) O(2)–P(1)–O(3) 111.2(1)

O(2)–P(1)–O(4) 105.8(1)
O(3)–P(1)–O(4) 105.6(1)

P(2)–O(5) 1.501(1) O(5)–P(2)–O(6) 116.1(1)
P(2)–O(6) 1.510(1) O(5)–P(2)–O(7) 106.3(1)
P(2)–O(7) 1.562(1) O(5)–P(2)–O(8) 110.5(1)
P(2)–O(8) 1.564(1) O(6)–P(2)–O(7) 111.4(1)

O(6)–P(2)–O(8) 106.4(1)
O(7)–P(2)–O(8) 105.6(1)

L-alanine-1
C(1)–O(9) 1.217(1) O(9)–C(1)–O(10) 124.4(1)
C(1)–O(10) 1.293(2) O(9)–C(1)–C(2) 120.9(2)
C(1)–C(2) 1.522(2) O(10)–C(1)–C(2) 114.5(1)
C(2)–N(1) 1.490(1) C(1)–C(2)–C(3) 110.6(1)
C(2)–C(3) 1.521(2) N(1)–C(2)–C(1) 110.6(1)

N(1)–C(2)–C(3) 111.0(1)
L-alanine-2

C(4)–O(11) 1.210(1) O(11)–C(4)–O(12) 124.2(1)
C(4)–O(12) 1.307(2) O(11)–C(4)–C(5) 122.6(2)
C(4)–C(5) 1.524(2) O(12)–C(4)–C(5) 113.0(1)
C(5)–N(2) 1.494(1) C(4)–C(5)–C(6) 114.0(1)
C(5)–C(6) 1.507(2) N(2)–C(5)–C(4) 109.6(2)

N(2)–C(5)–C(6) 111.7(1) 

O4
–

O4
–

C

eters of the crystal studied are as follows: a = 11.918(1) Å,
b = 9.117(1) Å, c = 7.285(1) Å, γ = 104.7(1)°, space
group P21, and Z = 4. The intensities of X-ray reflec-
tions were measured on an automated single-crystal
diffractometer operating in a perpendicular beam
geometry with layer-by-layer recording of reflections
(åÓKα radiation, pyrolytic graphite monochromator).
In the index ranges –18 ≤ h ≤ 18, 0 ≤ k ≤ 15, and 0 ≤ l ≤
7 (2θmax = 80.27°), 2749 nonzero unique reflections
were measured, of which 2593 reflections with I >
3σ(I) were used in further calculations.

The estimation of the integrated intensities and cor-
rection for the background were performed using an
algorithm of the profile analysis [4]. The crystal stabil-
ity was controlled by periodic measurements of the
intensity of the reference reflection. The coordinates of
the non-hydrogen atoms were determined by direct
methods with the AREN program package [5]. All the
hydrogen atoms were located in a series of difference
Fourier syntheses alternating with the least-squares
refinement of the positional and thermal parameters of
the atoms with the use of the modified ORFLS program

[6] and the weighting function w = [σ2(F0) + 0.001 ]–.
The scattering factors of the neutral atoms were used in
the refinement. The thermal parameters of the non-
hydrogen and hydrogen atoms were refined in the
anisotropic and isotropic approximations, respectively.
The final R factors have the following values: R = 0.027
and wR = 0.030 for 2593 reflections with I > 3σ(I) and
R = wR = 0.039 for the complete set of diffraction data.
The number of the parameters refined in the structure is
286. The projection of the structure of L-alanine phos-
phate along the b axis is shown in the figure, which is
drawn with the ORTEP III program [7].

The crystal data are deposited in the Cambridge
Crystallographic Database (CCDC deposit no. 196194).

F0
2

Table 2.  Parameters of hydrogen bonds

D–H···A d(D–H) d(D···A) d(H···A) ω(DHA)

O(3)–H(1)···O(11)i .91(4) 2.658(1) 1.78(3) 161(3)
O(4)–H(2)···O(6)ii .83(3) 2.604(2) 1.79(3) 163(2)
O(7)–H(3)···O(2)iii .91(4) 2.592(2) 1.67(4) 173(5)
O(8)–H(4)···O(9)iv .90(4) 2.628(2) 1.74(4) 164(3)
O(10)–H(5)···O(1) .84(3) 2.512(2) 1.70(3) 159(5)
O(12)–H(13)···O(5) .97(3) 2.507(2) 1.53(3) 175(5)
N(1)–H(10)···O(2)iii .87(3) 2.911(1) 2.04(3) 173(3)
N(1)–H(11)···O(5)v .99(4) 2.782(1) 1.80(3) 169(2)
N(1)–H(12)···O(2)v .99(3) 2.904(1) 1.91(3) 170(2)
N(2)–H(18)···O(1)vi .86(3) 2.756(1) 1.90(3) 168(3)
N(2)–H(19)···O(6)ii .91(3) 2.918(1) 2.00(3) 176(3)
N(2)–H(20)···O(6)vi .99(3) 2.883(1) 1.93(3) 157(4)

Note: D is a donor, A is an acceptor, and H is a hydrogen atom (distances d and angles ω are expressed in angstroms and degrees, respec-
tively). The symmetry codes are as follows: i x, y – 1, z; ii x, y, z – 1; iii x, y, 1 + z; iv x, 1 + y, z; v 1 – x, 1 – y, 1/2 + z; vi –x, 1 – y, z – 1/2.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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As is obvious from the figure, the amino group of the
alanine is protonated by the hydrogen atom of the phos-
phoric acid. The H2P  ions are linked by two strong
hydrogen bonds in pairs and form layers parallel to the
bc plane. These negatively charged layers alternate with
layers formed of the protonated alanine molecules. The
interatomic distances and angles in the alanine mole-
cules and H2P  ions are included in Table 1. The

H2P  ion has a distorted tetrahedral structure,
because the P–OH bonds are significantly longer than
the P–O bonds. Note that, although two alanine mole-
cules and two H2P  ions are symmetrically indepen-
dent, the corresponding bond lengths and angles have
very close values. A noticeable difference is observed
only in the torsion angles of two molecules. For exam-
ple, the O(9)–C(1)–C(2)–C(3) and O(11)–C(4)–C(5)–
C(6) torsion angles are 73.5(2)° and 23.7(2)°, respec-
tively. These angles are apparently determined by the
interactions between the methyl group and its environ-
ment, which is different for the two molecules. The
Flack parameter, which is equal to –0.0415, confirms
the validity of the configuration described above.

The bond lengths and angles in the alanine mole-
cules agree well with the values reported earlier in [8].

Three hydrogen atoms of the NH3 group are bound
to three oxygen atoms of three different phosphate
groups situated in the neighboring layers. The hydroxyl
groups of the alanine molecules are also included in the
hydrogen-bond system. Thus, in addition to the electro-
static interactions, the structural units are linked by the
extended hydrogen-bond system. The geometry of the

O4
–

O4
–

O4
–

O4
–

CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
hydrogen bonds is represented in Table 2. Note that
there are no hydrogen bonds immediately between the
alanine molecules.
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Abstract—The structure of a liquid crystal of 4-cyano-4'-n-undecyloxybiphenyl (C24H31NO) is determined by
X-ray diffraction. The compound crystallizes in the monoclinic crystal system (space group C2/c) with the unit
cell parameters a = 84.108(7) Å, b = 7.159(2) Å, c = 6.922(2) Å, and β = 91.6(4)°. The structure has been solved
by direct methods and refined to the residual index R1 = 0.067. Both phenyl rings are almost planar, and the
dihedral angle between these rings is 31.5(6)°. © 2003 MAIK “Nauka/Interperiodica”.
1 INTRODUCTION

Biphenyl and its derivatives have been studied
extensively in the past because of the difference found
in the exocyclic torsion angles in the solid state [1–3]
and in the gas phase [4, 5]. This has entailed extended
studies of the molecular geometry, crystal packing, and
thermal motion effects [6–9]. In continuation of our
work on crystallization and preparation of biphenyl sin-
gle crystals of X-ray diffraction quality with the use of
solvent-loss and vapor diffusion techniques [10–18],
the present paper reports the three-dimensional molec-
ular and crystal structures of 4–cyano-4'-n-undecylox-
ybiphenyl determined by X-ray diffraction.

EXPERIMENTAL

Single crystals of 4-cyano-4'-n-undecyloxybiphenyl
of X-ray diffraction quality were obtained by the vapor-
precipitation technique using dimethylformamide and
cyclohexane as solvent systems.

A three-dimensional set of X-ray diffraction data for
a pale yellow platelike crystal (0.40 × 0.25 × 0.15 mm)
were collected on an Enraf–Nonius CAD4 diffractome-
ter (CuKα radiation). The accurate unit-cell dimensions
and orientation matrix were obtained by a least-squares
fit to the setting angles for 25 reflections. The ω/2θ scan
mode was employed for intensity data collection. A
total of 3509 reflections were collected (–99 ≤ h ≤ 100,
–4 ≤ k ≤ 8, –4 ≤ l ≤ 8). One standard reflection measured
every hour showed no variation in the intensity data.
The reflection data were corrected for Lorentz and
polarization effects. Absorption and extinction correc-
tions were not applied.

1 This article was submitted by authors in English.
1063-7745/03/4802- $24.00 © 20286
The crystal structure has been solved by direct
methods with the SHELXS97 software package [19]
and refined by using the SHELXL97 software package
[20]. The atomic scattering factors were taken from the
International Tables for Crystallography [21]. All the

Table 1.  Crystal data and details of X-ray diffraction exper-
iment and structure refinement

Chemical formula C24H31NO

Molecular weight 349.5

Crystal system Monoclinic

Space group C2/c

a, α (Å, deg) 84.11(7), 90.0

b, β (Å, deg) 7.159(2), 91.63(4)

c, γ (Å, deg) 6.9223(19), 90.0

V (Å3) 4166(4)

Z 8

ρcalcd, g/cm3 1.114

µ(CuKα), cm–1 0.510

Crystal size, mm 0.15 × 0.25 × 0.40

θmax, deg 68.00

Number of unique reflections 3510 (Rint = 0.0435)

Number of reflections in L.S.
with I ≥ 2σ(I)

3510/360

GOOF (F2) 0.977

R1/wR2 0.0672/0.1929

Extinction 0.00021(11)

∆ρmax/∆ρmin, e/Å3 0.270/–0.270
003 MAIK “Nauka/Interperiodica”
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Fig. 1. A general view of the molecule and the atomic numbering.

Fig. 2. Packing of the molecule. 
hydrogen atoms were located from the difference Fou-
rier map, and their positions and isotropic temperature
factors were refined. The crystal data are presented in
Table 1. Information on this crystal structure (CIF) has
been deposited (CCDC [22], deposit no. 196013). The
general view of the molecule with the atomic number-
ing is shown in Fig. 1. The molecular packing is shown
in Fig. 2 and designed using the ORTEP-3 program
[23]. Bond lengths and angles are listed in Tables 2 and
3, respectively. The geometrical calculations were per-
formed using the PARST program [24].
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
RESULTS AND DISCUSSION

The average bond lengths for both phenyl rings are
in good agreement with those obtained in analogous
structures [10–17, 25, 26]. The C(13)≡N(1) bond
length [1.143(1) Å] is slightly less than its standard
value [27]. The four endocyclic angles at the C(1),
C(4), C(7), and C(10) atoms are significantly smaller
than ideal angle of 120.0° [117.4(2)°, 117.4(1)°,
116.0(1)°, and 118.9(1)°] but similar to those found in
related compounds [10–17, 25, 26]. The length of the
C(1)–C(7) bond between two phenyl rings [1.479(2) Å]
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Table 2.  Interatomic distances d (Å) in the structure studied

Bond d Bond d

O(1)–C(10) 1.351(3) C(9)–C(10) 1.411(3)

O(1)–C(14) 1.436(3) C(10)–C(11) 1.377(4)

N(1)–C(13) 1.142(3) C(11)–C(12) 1.358(4)

C(1)–C(6) 1.390(3) C(14)–C(15) 1.484(4)

C(1)–C(2) 1.403(3) C(15)–C(16) 1.522(4)

C(1)–C(7) 1.477(4) C(16)–C(17) 1.517(4)

C(2)–C(3) 1.362(4) C(17)–C(18) 1.522(3)

C(3)–C(4) 1.399(4) C(18)–C(19) 1.506(5)

C(4)–C(5) 1.399(3) C(19)–C(20) 1.528(4)

C(4)–C(13) 1.419(4) C(20)–C(21) 1.515(5)

C(5)–C(6) 1.359(4) C(21)–C(22) 1.516(4)

C(7)–C(8) 1.397(4) C(22)–C(23) 1.508(6)

C(7)–C(12) 1.406(3) C(23)–C(24) 1.509(5)

C(8)–C(9) 1.353(4)

Table 3.  Bond angles ω (deg) in the structure studied

Angle ω Angle ω

C(10)–O(1)–C(14) 117.6(2) C(6)–C(1)–C(2) 116.9(3)

C(6)–C(1)–C(7) 121.9(2) C(2)–C(1)–C(7) 121.1(2)

C(3)–C(2)–C(1) 121.4(3) C(2)–C(3)–C(4) 121.3(2)

C(5)–C(4)–C(3) 117.2(3) C(5)–C(4)–C(13) 120.4(2)

C(3)–C(4)–C(13) 122.4(2) C(6)–C(5)–C(4) 121.1(2)

C(5)–C(6)–C(1) 122.0(2) C(8)–C(7)–C(12) 116.0(3)

C(8)–C(7)–C(1) 123.3(2) C(12)–C(7)–C(1) 120.7(2)

C(9)–C(8)–C(7) 122.5(2) C(8)–C(9)–C(10) 120.0(2)

C(1)–C(10)–C(11) 125.7(2) O(1)–C(10)–C(19) 115.5(2)

C(11)–C(10)–C(9) 118.8(3) C(12)–C(11)–C(10) 120.3(2)

C(11)–C(12)–C(7) 122.4(3) N(1)–C(13)–C(4) 178.9(2)

O(1)–C(14)–C(15) 108.3(2) C(14)–C(15)–C(16) 112.6(2)

C(17)–C(16)–C(15) 113.2(2) C(16)–C(17)–C(18) 114.3(2)

C(19)–C(18)–C(17) 113.5(2) C(18)–C(19)–C(20) 113.8(2)

C(21)–C(20)–C(19) 113.3(3) C(20)–C(21)–C(22) 113.8(3)

C(23)–C(22)–C(21) 112.8(2) C(22)–C(23)–C(24) 112.7(4)
C

is quite close to the standard value for a single bond
between the trigonally linked carbon atoms [28]. The
bond angles in both phenyl rings have normal values.
The dihedral angle between the two phenyl rings is
31.5(6)°. In view of the a parameter having an excep-
tionally large value, the molecular packing along the b
axis shows the manner in which molecules have lined
themselves up and appear to be extending diagonally
across the ac plane. The molecules are stacked in
reversed orientations.
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of Ferroelastic Lead Orthophosphate
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Abstract—The possible existence of an interlayer with the symmetry of the paraphase in the W and W' domain
walls of lead orthophosphate has been checked from the condition of matching the crystal lattices of adjacent
domains. It is shown that two types of interlayers are possible, which possess different symmetries, strain ten-
sors, matrices of the rotation of the coordinate system, thicknesses, and elastic energies. It is shown that the
domain-wall energy is proportional to the squared spontaneous deformation. © 2003 MAIK “Nauka/Interperi-
odica”.
INTRODUCTION

The domain structure of crystals undergoing phase
transitions is considered in numerous experimental and
theoretical studies. However, the acting twinning mech-
anism is not clear. In this connection, the “pure” fer-
roelastics are the simplest objects for studying the
structural changes associated with the formation of
domain walls.

Below, we consider a model of an equilibrium
domain wall for crystals possessing a ferroelastic mon-
oclinic phase using lead orthophosphate as an example.

Lead orthophosphate Pb3(PO4)2 belongs to the class
of pure improper ferroelastics [1]. This crystal under-
goes a first-order ferroelactic phase transition from the
rhombohedral β-phase to the monoclinic α-phase at
180°C [2, 3]. In the ferroelastic phase, three types of
domains and two types of domain walls, W and W', are
formed [4, 5]. The W domain wall is almost normal to
the (100) plane of the monoclinic phase, and W' forms
an angle of ~73° with it. The orientation of the domain
walls is consistent (within 1°) with the equations
obtained from the condition of consistency of spontane-
ous deformation in a domain wall [6].

It is well known that the temperature variation gives
rise to the rotation of the crystallographic axes in adja-
cent domains in ferroelastics with the rotation angle
being dependent on the spontaneous deformation
[7−9]. Such a behavior of the crystallographic axes can-
not be explained in the frameworks of continuous
approach [6].

The equations of the phase boundaries are obtained
from the condition of matching the crystal lattices of
both phases of Pb3(PO4)2 [10]. It is also shown that in
the first-order phase transition, the rotation of the crys-
tallographic axes is proportional to the change in the
parameters of one phase relative to the other.
1063-7745/03/4802- $24.00 © 20290
Since the crystal lattices of the adjacent domains
show no matching, then, taking into account the afore-
said, we can assume the existence of an induced phase
(interlayer) that should promote lattice matching and
also of adjacent domains between the interlayer and the
α phase, i.e., the occurrence of a first-order phase tran-
sition.

Consider this model in two stages: first, determine
the parameters and symmetry of the interlayer in the W'
and W domain walls at room temperature (t = 20°C),
and then perform analogous calculations in the vicinity
of the phase transition in order to establish the temper-
ature dependence of the domain-wall energy.

Since the lattice can be matched only if certain sym-
metry elements of the paraphase are present, the inter-
layer symmetry is no lower than monoclinic. Therefore,
we describe all the phases using the parameters of the
monoclinic system. Denote the parameters of the
β-phase near the phase transition by a0, b0, c0 , and β0;
those of the α-phase, by a1, b1, c1, and β1; the parame-
ters of the interlayer, by a2, b2, c2, and β2; and those of
the orientational states, by C1, C2 , C3. The X axis of the
chosen orthogonal coordinate system is parallel to c,
the Y axis is parallel to b, and the Z axis forms the angle
ϕ = β – 90° with a.

STRUCTURE OF THE DOMAIN WALL W ' 

Since a domain wall is the reversible first-order
phase transition, the interlayer “matches” the adjacent
orientation states with the aid of two phase boundaries
that have the orientation of the domain wall. According
to [10], the equation of the phase boundary matching
two monoclinic unit-cells with the parameters a1, b1, c1,
ϕ1 = β1 – 90° and a2, b2, c2 , ϕ2 = β2 – 90° in the coordi-
003 MAIK “Nauka/Interperiodica”
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nate system of the first phase has the following form:

(1)

where A11 = 1 – , A22 = 1 – , A13 =

−  – , A33 = 1 –

cos2ϕ2 +  – ; in the

coordinate system of the second phase, it is

(2)

where B11 = 1 – , B22 = 1 – , B13 =

−  – , B33 = 1 –

cos2ϕ1 +  – .

Under the condition

det ||Aij || = 0. (3)

Equation (1) corresponds to the equation of two inter-
secting planes [10]

(x + By + Cz)(x – By + Cz) = 0, (4)

where B = ; D22 = A22/A11; C = D13 = A13/A11.
From the experimental data [7, 8], one can obtain the
equation of the W' domain wall separating C1 and C2 in
the coordinate system of the α-phase:

x1 + A2y1 + A3z1 = 0, (5)

where A2 = 1.6643; A3 = –0.59355.

Since the phase boundary possesses the orientation
of the domain wall, one of two possible conditions (4)
coincides with (5), i.e.,

 = A2, (6)

D13 = A3. (7)

Equations (3), (6), and (7) form a system of three
equations with four unknowns. It can be shown that it
has numerous solutions. Impose an additional con-
straint: the interlayer has the symmetry of the
paraphase. In the chosen coordinate system, the tensor
of spontaneous deformation has the form [11]

A11x1
2

A22y1
2

A33z1
2

2A13x1z1+ + + 0,=

c2

c1
---- 

 
2 b2

b1
----- 

 
2

c2

c1 ϕ1cos
-------------------

c2

c1
---- ϕ1sin

 a2

a1
----- ϕ2sin 



1

ϕ1cos
2

----------------
a2

a1
----- 

 
2


 c2

c1
---- ϕ1sin

 a2

a1
----- ϕ2sin 


2




B11x2
2

B22y2
2

B33z2
2

2B13x2z2+ + + 0,=

c1

c2
---- 

 
2 b1

b2
----- 

 
2

c1

c2 ϕ2cos
-------------------

c1

c2
---- ϕ2sin

 a1

a2
----- ϕ1sin 



1

ϕ2cos
2
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a1

a2
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2


 c1

c2
---- ϕ2sin

 a1

a2
----- ϕ1sin 


2




D22–

D22–

e
s

e11
s

0 e13
s

 e11
s

– 0

  0 
 
 
 
 
 

,=
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where = 0.5(e11 – e22), e11 = (c2 – c0)/c0, e22 = (b2 –

b0)/b0,  = (c2 + 3a2cosβ2)/(6a2sinβ2). Hence, 

(8)

(9)

Since the unambiguous solution of the system requires
one more equation, we search for an interlayer satisfy-
ing condition (8). We arrive at the following system of
equations:

(10)

Solving this system, we obtain

(11)

(12)

(13)

(14)

where F = , c = , P = 1 – .

Substituting the corresponding crystal-lattice
parameters of the α- and β-phases from [12] into the
solution, we obtain the interlayer parameters; then,
using these data we obtain the deformation tensors 

in the coordinate system of the α-phase and  in the
coordinate system of the β-phase (see table). As is seen
from , e13 = –1.66 × 10–4. Since this value lies within
the experimental error, condition (9) should be fulfilled,
and the interlayer has the symmetry of the paraphase.

Substituting the interlayer parameters into (2), we
obtain the equation of the domain wall in the coordinate
system of the interlayer:

(15)

Within the accuracy 0.08°, this equation corresponds to
the orientation of W' along the twofold axis of the
β-phase lost in the phase transition, which is consistent
with [1].

Since the equations of the domain-wall plane are
known in two coordinate systems, [(5) and (15)], we

can determine the rotation matrix  in the transition
from the β- to the α-phase [13] (see table).

Solving the analogous problem for the adjacent ori-
entation state C2 , we obtain an interlayer similar to the

e11
s

e13
s

e11
s

0,=

e13
s

0.=

D22– A2=

D13 A3=

det Aij 0=

e11 e22.=







b2 b1 1 A2
2

+( )/ 1 A2
2
F

2
+( ),=

c2 c1b2F/b1,=

ϕ2tan A3 1 c
2

–( ) c
2 ϕ1tan+( )/c P,=

a2 a1 ϕ1 P/ ϕ2,coscos=

b1c0

b0c1
----------

c2

c1
----

A3
2

1 c
2

–( )

c
2

-------------------------

P1'

D1'

P1'

x2 1.73832y2 0.58141z2–+ 0.=

T1'
3
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Parameters of interlayers in the domain walls W ' Ë W

t, °C  Domain wall W ' Domain wall W

20 a2, Å 13.8973 a2, Å 13.824

b2, Å 5.5128 b2, Å 5.6341

c2, Å 9.5482 c2, Å 9.7583

β2, deg 103.2582 β2, deg 102.9034

P', 10–3 P, 10–3

D', 10–3 D, 10–3

T1

T2

E ', J/m2 3.7596 E', J/m2 13.3205

, J/m2 7861 Es, J/m2 27 851

180 E ', J/m2 0.09029 E', J/m2 0.3018

, J/m2 7917 Es, J/m2 26464

5.8126– 0 0.166–

 5.8126– 0

  1.1– 
 
 
 
  16.066 0 6.153

 16.066 0

  4.96– 
 
 
 
 

11.245 0 6.565–

 31.828– 0

  3.889 
 
 
 
  33.499 0 0.246–

 10.523– 0

  0.006 
 
 
 
 

T1'
0.9998 0.0175– 0.002–

0.0174 0.9997 0.014–

0.0022 0.0138 0.9999 
 
 
 
  0.9998 0.0187 0.0105–

0.0186– 0.9998 0.0062

0.0106 0.006– 0.99992 
 
 
 
 

T2'
0.9998 0.0175 0.002–

0.0174– 0.9997 0.014

0.0022 0.0138– 0.9999 
 
 
 
  0.9998 0.0187– 0.0105–

0.0186 0.9998 0.0062–

0.0106 0.006 0.99992 
 
 
 
 

Es'

Es'
previous one but rotated via an angle of 120° around the
Z axis of the β-phase.

Thus, with due regard for the symmetry, these inter-
layers are similar and one common interlayer matches
the crystal lattices of the adjacent domains: so-called
P-twinning.

Consider the criterion of choosing the domain-wall
thickness. Since the energy of the ferroelastic domain
walls increases with an increase in the interlayer thick-
ness, the thickness d was taken to be the shortest dis-
tance between two parallel phase boundaries that limit,
with due regard for the orientation, one unit cell (d ≈
20 Å).

The surface density of the elastic energy was evalu-
ated by the formula

(16)

where d is the wall thickness, eij are the components of

the deformation tensor , and cijkl are the elastic con-
stants [14, 15]. As is seen, this value is comparable (by

E
d
2
---cijkleijekl,=

D1'
C

an order of magnitude) to the value obtained for the Kit-
tel model [16].

Now, return to Eq. (4). The equation of the second-
phase boundary is

x – By + Cz = 0, (17)

where B = A2, C = A3. The above equation coincides
with the equation of the domain wall W ' separating C1
and C3. To this domain wall there corresponds the inter-
layer that differs from the first one only by the rotation
matrix  (see table).

Thus, each orientational state in the formation of W '
can have two orientations with the matrices  and .

STRUCTURE OF THE DOMAIN WALL W 

The equation of the domain wall W in the coordinate
system of the α-phase has the form [1, 2]

x1 – 0.554363y1 – 0.0139635z1 = 0. (18)

T2'

T1' T2'
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Performing the calculations by Eqs. (11)–(14), we
obtain the interlayer parameters for W and, based on
these data, the deformation tensors P1 and D1 (see
table). It is seen from the deformation tensor that e13 =

6.15 × 10–3, i.e.,  ≠ 0, and, thus, the interlayer has
monoclinic symmetry. The equation of this domain
wall in the coordinate system of the interlayer differs
from the equation of a straight wall

x2 – 0.579026y2 – 0.013505z2 = 0. (19)

Such an interlayer can be considered as pseudotrigonal,
but rotated by an angle of α =  in the XZ
plane. A similar situation takes place in the adjacent
domain. To match these two interlayers, it is necessary
to rotate each of them about their Y axes by the angle
−α. Performing this operation, we arrive at the follow-
ing equation:

x3 – 0.57897y3 – 0.0012z3 = 0, (20)

which corresponds, within 0.07°, to the lost symmetry
plane of the β-phase.

Since two equations of the domain wall (16) and
(20) are known, we can determine the matrix of rotation
from the β to the α phase, T1 (see table).

From the analysis of the structure of the wall W sep-
arating C1 and C2 and also C1 and C3, we obtain that
each orientational state arising in the formation of the
domain wall W can take two orientations, to which the
rotation matrices T1 and T2 from the β- to the α-phase
correspond (table). A similar “splitting” of each orien-
tation state into close four orientations was observed in
a polydomain BaTiO3 crystal [17]. 

Consider the thickness of the domain wall W. Unlike
W ', where the reversible phase transition to one inter-
layer is observed, in W, an additional rotation of each
interlayer by an angle –α is observed. Hence, W con-
sists of two interlayers, and its thickness equals twice
the thickness of W '. With due regard for the latter fact,
we obtain an essential increase in the elastic energy in
this domain wall.

Thus, in the formation of W, a more complex twin-
ning process is observed, which we will call F-twin-
ning.

It is expedient to study the variation of the domain-
wall energy with a change of temperature within the
framework of this model. In [18], the equations of W
and W ' in the vicinity of the phase transition are
obtained. Performing analogous calculations, we estab-
lished a considerable decrease (by about 40 times) of
the domain-wall energy in comparison with the
decrease observed at room temperature (see table).

Now, introduce a new quantity Es equal to the ratio
of the surface density of the elastic energy E to a
squared component of the spontaneous deformation.

(21)

e13
s

2 e13( )arctan

Es E/ e11
s( )

2
.=
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This quantity will be referred to as a relative surface
density of the elastic energy of a domain wall. As is
seen from the table, Es is almost independent of temper-
ature.

DISCUSSION AND CONCLUSIONS

It is seen from the given calculations that two differ-
ent mechanisms of twinning are possible in lead ortho-
phosphate. In P-twinning, all the components of spon-
taneous deformation of the induced interlayer are equal
to zero. In F-twinning, only the main components of
spontaneous deformation of the matching interlayer are
zeroes. The existence of a nonzero shear component
complicates the twinning mechanism and increases the
thickness and energy of the twinning boundary (domain
wall).

In [19], a motion of the domain walls W and W ' was
studied during overheating (∆T) of the α-phase associ-
ated with a certain orientation of the temperature gradi-
ent. It was obtained that ∆T depends linearly on the
domain-wall length, whereas the ∆TW ' /∆TW ratio was
equal to 0.3 for infinitesimal domain walls. This ratio
was interpreted as the ratio of the energies of the corre-
sponding domain walls in the vicinity of the phase tran-
sition. Dividing the first energy density into the second
energy density, we obtain 0.282 at t = 20°C and 0.299
at t = 180°C, which is in a good agreement with the
experiment.

Thus, it follows from the above model of the domain
wall that various types of domain walls in lead ortho-
phosphate have different symmetries of interlayers,
thicknesses, energies, and mechanisms of twinning.
The thickness of the domain wall W is twice as great as
W ', whereas its energy is higher (by a factor of 3.5) than
the energy of W '. The domain walls are formed along
the corresponding symmetry elements of the paraphase
lost in the phase transition in those cases, where one or
several parallel domain walls of the same type are
formed in a crystal. Each orientation state can have four
close orientations depending on the type of the domain
wall and the orientation of the adjacent domain. The
domain-wall energy is proportional to a squared spon-
taneous deformation. The relative density of the surface
energy Es is the temperature-independent energy char-
acteristic of each type of the domain walls in a crystal.
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Abstract—The efficient Stokes and anti-Stokes laser emissions with Raman frequency shift at about 2960 cm–1

are excited in a food ë12H22O11 sugar (sucrose) single crystal under pulsed pumping. Other (χ(2) + χ(3)) effects
of the parametric Raman generation are also detected. © 2003 MAIK “Nauka/Interperiodica”.
1 In recent years, the necessity of creating efficient
sources of high-quality laser radiation with specific
wavelengths in the visible, near IR, and medium IR
ranges has increased interest in laser converters based
on stimulated Raman scattering (SRS) by χ(3)-nonlinear
crystals [1–3]. Among the well-known solid-state SRS-
χ(3)-media [4, 5], the most attractive ones are several
organic crystals and one organometallic crystal [6]. The
pronounced Raman frequency shift of their SRS-active
vibrational modes (ωSRS up to ~3150 cm–1, Table 1)
allows one to transform the pump (fundamental radia-
tion) into laser emission with the required wavelength
rather efficiently without using higher Stokes orders
(unlike the case of inorganic χ(3) crystals with a nonex-
tended phonon spectrum). It is obvious that this advan-
tage inherent in organic crystals can substantially sim-
plify the development of a number of practically impor-
tant SRS-converters, SRS-lasers, and SRS-amplifiers.
Realizing the importance of the search for new organic
SRS-crystals, the author focused on the commonly
used food (sweet) C12H22O11 sugar (sucrose or β-D-
fructofuranosyl-α-D-glucopyranoside), which has an
acentric crystalline nature and, therefore, a nonlinear
(χ(2) + χ(3)) material. Numerous applications and the
availability and low cost of sucrose are obvious—the
sugar industry has existed in many countries for quite a
long time; there are numerous institutes and museums
studying sugar as well as related scientific journals.
Moreover, there exist numerous international scientific
and industrial societies and unions dealing with sugar.

Below, we briefly report the first results on excita-
tion of the high-order pulsed SRS in the visible range
(Fig. 1) in C12H22O11 single crystals. In this mode of
χ(3)-generation, some additional manifestations of non-

1 The results of this study were presented at the 201st meeting of
the monthly Moscow Seminar on Physics and Spectroscopy of
Lasing Crystals on September 26, 2002.
1063-7745/03/4802- $24.00 © 20295
linear self-frequency (χ(2) + χ(3))-conversion of the
SRS-components were also observed in the UV range.
The preliminary data on these effects are also consid-
ered.

Sugar is crystallized in the acentric monoclinic sp.

gr.  with two formula units in the unit cell; the struc-
ture contains no crystallization water. The hardness of
C12H22O11 crystals is somewhat higher than the hard-
ness of nonlinear [NH4]H2PO4 (ADP) and KH2PO4
(KDP) crystals widely used in quantum electronics
[11]. Compared to the latter crystals, C12H22O11 crystals
are also more resistant against atmospheric moisture.
Pulsed second-harmonic generation of 1-µm radiation
from a Nd3+ : Y3Al5O12 laser was first obtained in
C12H22O11 crystals many years ago [12]. Dispersion of
the refractive indices of this crystal was also measured
in [12]. The crystals showed piezoelectricity and tri-
boluminescence and are optically active, so they can be
assigned to the class of UV-nonlinear materials.

SRS-spectroscopy experiments were performed on
specially prepared 6 to 8-mm-thick samples cut out
from rather large single crystals of food sugar.2 No pro-
tective or blooming coatings were applied to polished
plane-parallel surfaces of the samples. Some physical
characteristics of the C12H22O11 crystals studied are
presented in Table 2.

In the SRS-experiments, a single-pass cavity-free
scheme was used. The excitation was produced by fre-
quency-doubled (λP = 0.53207 µm) pulses from pico-
(τP ≈ 80 ps) and nanosecond (τP ≈ 20 ns) Nd3+ :
Y3Al5O12 lasers with an emission energy of up to 2 mJ.
This pump radiation with the Gaussian intensity distri-
bution over the cross-section was directed by a lens
onto C12H22O11 samples. The focal length of the lens

2 The sugar, produced by Pfeifer & Lamp Co., was bought in a
Berlin supermarket.

C2
2
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Table 1.  Organic and organometallic SRS-active crystals

Crystal Sp. gr. Nonlinearity SRS-active vibra-
tional modes, cm–1 Nonlinear-laser effects Reference

Organic crystals

C12H22O11(sugar) χ(2) + χ(3) ~2960 SHG*, SRS, self-SHG 
(SRS)**, self-SFM***

Present 
study

C13H10O (benzophenone) χ(2) + χ(3) 3070, 1650, 998, 
~103 SHG, SRS [7]

C13H10O3 (salol) χ(2) + χ(3) ~3150 SRS [7]

C14H10O2 (benzyl) ( ) χ(2) + χ(3) ~1000 SRS [7]

α-C14H12O χ(3) 3065 SRS [7]

C15H19N3O2 (AANP) χ(2) + χ(3) ~1280 SHG, SRS, self-SFM*** [8]

C16H15N3O4 (MNBA) χ(2) + χ(3) ~1587 SHG, SRS, self-SFM*** [9]

Organometallic crystal

C14H26N8O13Zr (GuZN-III) χ(2) + χ(3) ~2940, ~1008 SHG, SRS [10]

    * Second-harmonic generation.
  ** Self-frequency doubling of the first Stokes component of the generation excited in the crystal.
*** Self-sum-frequency mixing of the parametric Raman generation and the laser pump.

C2
2

D2
4

D2h
16

D3
4 D3

6

C2h
5

C2v
9

Cs
4

D2
5

was chosen so as to achieve the highest possible effi-
ciency of the SRS-conversion without causing crystal
destruction. The experimental conditions ensured the
steady-state SRS mode (τP @ T2 = 1/π∆νR ≈ 2 ps, where
T2 is the time of phonon relaxation and ∆νR ≈ 7 cm–1 is
the linewidth of the SRS-active vibrational mode in the
spectrum of spontaneous Raman scattering (inset in
Fig. 2)). The spectral composition of the parametric
Raman generation in sugar crystals was measured by a
technique described elsewhere [7–10]. The recorded
lines of the χ(3)-conversion and (χ(2) + χ(3))-self-conver-
sion of the laser pump radiation and the components of
the parametric Raman generation in C12H22O11 are
summarized in Table 3 and partly illustrated in Fig. 1.

Using the approximate expression for the increment
in the steady-state Raman amplification gssRIthlR ≈ 30
[13] (Ith and lR are the threshold pump power and the
SRS-active length of the crystal, respectively), the gain
gssR in the first Stokes component (λSt1 = 0.5315 µm) of
the generation in the C12H22O11 crystals was estimated
from the comparative measurements involving well-
known χ(3)-active NaCl and α-KY(WO4)2 crystals. Its
lower limit proved to be gssR ≈ 6.5 cm GW–1. Under
picosecond pumping (pulse energy ~1.5 mJ) under
experimental conditions that were far from optimal (the
quality of the crystals, optical treatment of their “work-
C

ing” surfaces, and low values lR = 6–8 mm), the total
efficiency of the nonlinear χ(3)-conversion into the
Stokes and anti-Stokes components in C12H22O11 was
about 35%. Under nanosecond excitation (with the
energy of the pump pulses being the same), the effi-
ciency was two times lower.

Because of the low symmetry of a C12H22O11 crystal
and, hence, the large number of the vibrational modes
in the spectra of spontaneous Raman scattering (see
Fig. 2) and IR absorption (3NZ = 270; ÉN = 133A +
137B, of which (A + 2B) are acoustic modes and
(129A + 129B) are internal modes), it is quite difficult
at this stage of the research to establish the relation of
the observed SRS-mode ωSRS = 2960 cm–1 to the spe-
cific C–H vibrational bond (ν[CH] or ν[CH2]). It is
planned to establish such a relation after a detailed
study of all the vibrational spectra of a C12H22O11 crys-
tal and the performance of necessary quantum chemical
calculations of its vibrational levels.

Thus, the experiments performed showed that
C12H22O11 single crystals can be considered as a rather
efficient χ(2) and χ(3) optical material. Its SRS-potential,
availability, low cost, and various structural modifica-
tions make this crystal quite attractive for application in
laser physics and nonlinear optics.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 1. Spectrum of parametric Raman generation in a C12H22O11 crystal obtained at picosecond pumping with λP = 0.53207 µm
(marked with an asterisk) at 300 K. The generation wavelengths are indicated in micrometers; their intensities were not corrected
for the spectral sensitivity of the recording system based on an Si-CCD matrix. Brackets show the relation between the Stokes and
anti-Stokes lines of the χ(3)-generation and the SRS-active vibrational mode ωSRS = 2060 cm–1 of the crystal. The inset shows a
sugar molecule and its two constituents.
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Fig. 2. Fragment of the spectrum of spontaneous Raman scattering of a C12H22O11 crystal obtained under excitation by Ar-laser
radiation with λ = 0.5145 µm at 300 K. The line intensities were not corrected for photodetector sensitivity (the sensitivity in the
long-wavelength range of the spectrum is about twice as low as the sensitivity in the excitation region). The inset shows the lines of
the long-wavelength fragment of the spectrum, of which the most intense one (with ωSRS = 2060 cm–1) is associated with the SRS-
active vibrational mode of the crystal.
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Table 2.  Some physical characteristics of a monoclinic C12H22O11 crystal at ~300 K

Characteristic

Sp. gr. –P21 (no. 4)

Class Polar

Unit-cell parameters, Å, deg a = 10.86

b = 8.7

c = 7.75

β ≈ 103.5

The number of formula units in the unit cell Z = 2

Local symmetry of atoms C, H, and O in the C1-positions

Density, g cm–3 d ≈1.59

Melting point, t°, C ~186

Vickers microhardness, N mm2 ~600*

Thermal conductivity, W m–1 K–1 ~0.5

Thermal expansion**, K–1 8.2 × 10–5

Linear optical classification Negative, biaxial

Optical transparency***, µm ~0.19…~1.35

Dispersion formula for refractive indices [12]****, λ, µm

Effective nonlinear SHG coefficient at λ = 1.064 µm [12]

Threshold of optical damage [12]*****, MW cm–2 ~500

Extension of phonon spectrum******, cm–1 ~3600

Raman frequency shift of the χ(3)-active vibration*******, cm–1 ~2960

            * Mohs hardness >2.5.
          ** The value averaged over the temperature range from –20 to 50°C.
        *** For a ~1-mm-thick plate.
      **** Sellmeier coefficients.

    ***** For 1.064-µm laser pulses with a duration of ~10 ns.
  ****** From spectra of spontaneous Raman scattering and IR absorption.
******* From picosecond SRS spectra (Fig. 1).

C2
2

n2 A
Bλ2

λ2 C–
--------------- Dλ2–+=

deff
2 0.2deff(ADP)

2=

n A B C D

nx 1.8719 0.4660 0.0214 0.0113

ny 1.9703 0.4502 0.0238 0.0101

nz 2.0526 0.3909 0.0252 0.0187
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Table 3.  Spectral composition of the χ(3) and (χ(2) + χ(3)) parametric Raman generation in C12H22O11 single crystals under
pumping by the second harmonic of pulsed Nd3+ : Y3Al5O12 lasers at 300 K

Wavelength*, µm Line** Line identification Experimental and measurement conditions

0.7767*** St2 ωP – 2ωSRS Along ~a axis

0.6315*** St1 ωP – ωSRS Along ~a axis; the SRS-conversion
efficiency exceeds 30%

0.53207*** λP ωP

0.4597*** ASt1 ωP + 2ωSRS Along ~a axis

0.3158**** SHG 2ωSt1 *****

0.2887**** ΣλP, λSt1 ωP + ωSRS ******

          * Measurement accuracy is not lower than ±0.0005 µm.
        ** The symbol Σ indicates the process of parametric self-sum-frequency mixing.
      *** Recording by an Si-CCD matrix (Hamamatsu S3429-1024Q) and McPherson-218 grating monochromator.
    **** Recording with a photomultiplier with an antimony–cesium cathode and a MDR grating monochromator supplied with UV optics.
  ***** Excitation conditions close to phase matching.
****** Excitation geometry should be refined.
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Abstract—Conoscopic figures of optically active crystals are described by the formulas for the intensity of
light transmitted by a plate located between arbitrarily oriented polarizer and analyzer. The differences in the
behavior of optically active and inactive crystals and also of right- and left-handed crystals are established. The
corresponding computations and the simulation of conoscopic figures are performed using the Mathemati-
ca-4.1 package of computer programs. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Interference patterns formed during transmission of
a convergent light beam through crystalline plates
placed between a polarizer and analyzer provide rich
information about the plate properties. The information
extracted from conoscopic figures allows one to deter-
mine the orientation and character of the optical indic-
atrix, the angle formed by the optical axes of a biaxial
crystal, the optical sign, the dispersion of the optical
axes, and the qualitative and quantitative changes in the
optical indicatrix under the action of various external
factors. It is also well known that the optical activity (or
gyroscopy) gives rise to certain changes in conoscopic
figures in comparison with the conoscopic figures of
inactive crystals during light beam propagation along
the optic axis.

A typical conoscopic figure of an optically inactive
uniaxial plate cut out normally to the optic axis of the
crystal is a black Maltese cross consisting of two
isogyres and a series of concentric rings (isochromes).
The conoscopic figure of an optically active crystal
consists of a well pronounced system of isochromes. In
this case, the black Maltese cross does not occupy the
whole figure—its center is not black and may be col-
ored. 

Conoscopic figures of uni- and biaxial crystals are
considered in various monographs [1–4], which also
describe the formation of conoscopic figures of opti-
cally inactive crystals. As far as we know, no analogous
consideration has yet been made for optically active
crystals. Therefore, the present article aimed to fill this
gap.
1063-7745/03/4802- $24.00 © 20300
INTENSITY OF LIGHT TRANSMITTED 
BY AN OPTICALLY ACTIVE PLATE

To describe conoscopic figures of optically active
crystals theoretically, we used the following formula
for the intensity of light transmitted by a plate cut out
from an optically active crystal which is located
between arbitrarily oriented polarizer and analyzer [5]:

(1)

where J = I/I0, I is the intensity of the transmitted light,
I0 is the intensity of the incident light, α is the angle of
rotation of the polarizer from its initial position, β is the
angle of rotation of the analyzer from its initial posi-
tion, ∆el is the phase difference introduced by the crys-
talline plate, and γ is the quantity which describes the
optical activity (k =  is the ellipticity of the eigen-
waves in the crystal, sin2γ = 2k/(1 + k2)).

As usual (see, e.g., [1]), we assume that the cono-
scopic figures of optically inactive crystals are
described by the term J1 (in brackets) in Eq. (1). The
additional terms J2 and J3 describe the contribution of
the optical activity to the total intensity with a plus sign
before the latter term for a right-handed crystal and a
minus sign, for a left-handed one.

One has to bear in mind that the quantity ∆el depends
not only on birefringence but also on the parameters of
the optical activity. In the general case, ∆el is calculated

J α β–( )cos
2

2α 2β ∆el/2( )sin
2

sinsin–[ ]=

– 2α 2β 2γ ∆el/2( )sin
2

sin
2

coscos

± 2 α β–( ) 2γ ∆elsinsinsin[ ] /2 J1 J2– J3,±=

γtan
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by the formula

(2)

where d is the plate thickness, n1 and n2 are the refrac-
tive indices of the waves propagating in optically active
crystals, λ is the wavelength of the incident light, φs is
the average value of the angles formed by the waves
refracted by the crystal. The angle φs is determined by
the well-known Snell’s law, sinφs = sinφi /ns, where φi is
the angle of incidence and ns = (n1 + n2)/2.

In optically active crystals, the quantity ∆nel = (n2 –
n1) (so-called elliptical birefringence) is calculated
from the rigorous equation of normals [6]. However,
since the conoscopic figures are determined from the
approximate relationship for angles of light refraction,
one can calculate ∆nel using the principle of birefrin-
gence superposition [7]

, (3)

where ∆nl = (n02 – n01) is the linear birefringence, ∆nc =

G/  is the circular birefringence, n02 and n01 are
the refractive indices of eigenwaves propagating along
the given direction of the wave normal in the absence of
optical activity, and G is the scalar parameter of gyra-
tion.

All the above formulas are applicable to optically
active uni- and biaxial crystals.

Now, consider in more detail the uniaxial crystals
for which the refractive index n02 of the extraordinary
wave is calculated by the formula [4]

(4)

where nÓ and nÂ are the principal refractive indices of
the ordinary and extraordinary waves, respectively; nav
is the unit vector along the average direction of the
wave normals of the refracted waves; c is the unit vector
along the optical axis; (navc) = cosθ; and θ is the angle
formed by the optic axis and the wave normal nav.

The ellipticity of eigenwaves, k = , is calcu-
lated by the relationship given in [4]:

(5)

where G = g33cos2θ + g11sin2θ for uniaxial crystals and
g33 and g11 are the components of the gyration pseudot-
ensor [5, 7]. As was shown in [8], the components of the
gyration pseudotensor in the approximate and the rigor-
ous theories (gij) and (αij) are related as

(6)

∆el 2πd n2 n1–( )/ λ φscos( ),=

∆nel
2 ∆nl

2 ∆nc
2

+=

n01n02

n02
2

no
2
ne

2
/ no

2
ne

2
ne

2
no

2
–( ) navc( )2

+[ ] ,=

γtan

k n02
2

n01
2

–( ) n02
2

n01
2

–( )
2

4G
2

+–[ ] / 2G( ),=

g33 2α11n01, g11 α11 α33+( ) n01 n02+( )/2.= =
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DESCRIPTION OF CONOSCOPIC FIGURES 
OF CRYSTALS

Now, demonstrate how one can interpret the well-
known difference between the conoscopic figures of
optically inactive and active crystals in the case of light
propagation along the optic axis (θ = 0°) using Eq. (1).
With this aim, one has to consider the conoscopic fig-
ures obtained for real crystals. We observed conoscopic
figures of plates cut out normally to the optic axis of an
optically active quartz, lithium iodate, and paratellurite
crystals, optically inactive lithium niobate, and many
other crystals. We consider here simulated conoscopic
figures that coincide with the experimentally observed
ones.

As was indicated earlier [9], the possibilities pro-
vided by the systems of computer mathematics are still
insufficiently used for solving the problems of crystal
optics. In the present study, all the curves and figures
were simulated using the Mathematica-4.1 package of
programs.

Normally Located Polarizer and Analyzer

It is usually assumed that the clockwise rotation of
the electric vector of a light wave is a right-handed rota-
tion if the observer is looking toward the incident beam
[1–5]. Then the corresponding component of the gyra-
tion tensor is given a negative sign. In accordance with
this, the sign of g33 in a right-handed quartz crystal is
negative and the sign of g11 is positive (which contra-
dicts the Nye definition [7]). In this case, one has to
assume that, for a right-handed crystal, the ellipticity of
a faster wave propagating along the optic axis is k = – 1. In
an optically active crystal, the rotation of the polariza-
tion plane of the incident light ∆el is determined by the
relationship

(7)

where ρ is the specific rotation.

To interpret the conoscopic figures of optically
active crystals, consider first the case of the crossed
polarizer and analyzer (α – β = 90°). Then, using
Eq. (1), we have

(8)

It is seen that, in comparison with the case of opti-
cally inactive crystals, Eq. (8) has an additional term J2

proportional to sin22γ and, moreover, the quantities ∆el
and γ have nonzero values along the optic axis. Now, it
should be indicated that the conoscopic figures
observed at such an orientation of the polarizer and ana-
lyzer for right- and left-handed crystals are the same,
because the additional term J2 associated with the opti-
cal activity always has the same sign.

∆el ρd g33πd/ noλ( ),= =

J 2α ∆ el/2( )sin
2

sin
2[ ]=

+ 2α 2γ ∆el/2( )sin
2

sin
2

cos
2[ ] .
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Fig. 1. Conoscopic figures of crystalline plates cut out nor-
mally to the optic axis of a crystal. (a) Optically inactive
crystal, (b) optically active left- or right-handed quartz crys-
tal, (c) section of the conoscopic figures at angle α = 45°
corresponding to the direction of the diagonals of the
squares in (a, b); (1) optically inactive and (2) optically
active crystals.
C

Figures 1a and 1b show the conoscopic figures in a
monochromatic light simulated for an optically inactive
and active crystal, respectively. The simulation was
performed for a plate cut out from a right- (or left-)
handed quartz crystal with a thickness of d = 3 mm and
the refractive indices nÓ = 1.54263, nÂ = 1.55169 and
g33 =  × 10–5, g11 = ±5.539 × 10–5 (α11 =

 × 10–5 and α33 = ±6.895 × 10–5) at the wave-
length λ = 632.8 nm [4]. For more convenient compar-
ison, we also used the same parameters for an optically
inactive crystal with due regard for the fact that g33 =
g11 = 0.

Since the conoscopic figures are observed if the
incident light is emitted by a far extended source, one
has to consider the transmission by the plate of the
waves propagating along different directions and,
therefore, incident onto the plate at different angles.
Using Eq. (8), we consider the intensity of the transmit-
ted light at α = 45° as a function of the angle of inci-
dence (Fig. 1c). Curves 1 and 2 correspond to the “sec-
tion” of the conoscopic figures along the diagonals of
the squares shown in Figs. 1a and 1b.

It is clearly seen from Eq. (8) and Fig. 1 that if the
light propagates along the optic axis, the intensity of the
transmitted light in an optically inactive crystal equals
zero (Fig. 1c, curve 1), whereas in an optically inactive
crystal, it considerably differs from zero because ∆el ≠
0 (Fig. 1c, curve 2). It is seen that at the given parame-
ters, the effect of the optical activity is important in the
angular range close to the direction of the optic axis. It
is clear that this angular range depends on the relation-
ship between birefringence and the parameters of the
optical activity of the crystal.

Polarizer and Analyzer Located 
at an Arbitrary Angle

Now consider the case where the polarizer and ana-
lyzer are located at an arbitrary angle to one another. It
is clear that, with a gradual rotation of the analyzer
from the initial crossed position, the conoscopic figures
change. It is usually assumed that the negative change
of the rotation angle of the polarizer corresponds to its
clockwise rotation and the positive change of this
angle, to the anticlockwise rotation. It follows from
Eq. (1) that, depending on whether the crystal is right-
or left-handed, the term J3 = ±(sin2(α – β)sin2γsin∆el)/2
can make different contributions to the total intensity of
the transmitted light during rotation of the analyzer for
the same angle ϕ from the crossed position. Since in the
vicinity of the optic axis of a right-handed crystal,
g33 < 0 and k < 0, and in the left-handed crystal, g33 > 0
and k > 0, the sign of the product (sin2γsin∆el) is the
same for the right- and left-handed crystals. It is posi-
tive if ∆el < 180° and negative if ∆el > 180°. Thus, at the
same angle of the analyzer rotation from the crossed
position, the signs of J3 would be different for the right-

10.258+−
3.315+−
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and left-handed crystals. Therefore, the conoscopic fig-
ures of these crystals would also be different. This pro-
vides the possibility of distinguishing between right-
and left-handed crystals.

The above is illustrated by Fig. 2. Figures 2a and 2b
show the conoscopic figures calculated for the right-
and left-handed quartz crystals at β = –90° + 30°,
which corresponds to the clockwise rotation of the ana-
lyzer by an angle ϕ = 30° from the crossed position.
The optical parameters here are the same as in Fig. 1.
One can clearly see the difference between the cono-
scopic figures of the right- and left-handed crystals: the
bright region looks like a small diffuse cross in the cen-
ter in Fig. 2a, whereas the corresponding region in
Fig. 2b has a dark cross. Figure 2c shows the corre-
sponding sections of the conoscopic figures calculated
by Eq. (1) at α = 45° (along the diagonals of the squares
in Figs. 2a and 2b). The obvious difference in the vicin-
ity of the direction of the optic axis is explained by dif-
ferent signs of the term J3 for the right- (curve 1) and
left-handed (curve 2) crystals. If the analyzer is rotated
from the crossed position (β = –90°–30°) in the oppo-
site direction, the conoscopic figures for the right- and
left-handed crystals change places. This is explained by
the behavior of the term J3, which describes the optical
activity and changes its sign with the change of the sign
of sin2(α – β). For optically inactive crystals, these
changes are independent of the rotation angle β of the
analyzer (β = –90° ± ϕ) (Fig. 3a).

DETERMINATION OF THE SIGN 
AND MAGNITUDE OF THE ROTATION 

OF THE POLARIZATION PLANE

Rotating the analyzer, one can determine the sign
and magnitude of the rotation of the polarization plane
and also its dispersion with the variation of the wave-
length of the incident light. The angle of rotation of the
analyzer from the crossed position to the position cor-
responding to the extinction of the central part of the
conoscopic figure (J = 0) equals ±ϕ = ∆el = ρd, whence
one can determine the specific rotation ρ. The minus
sign of the angle ϕ defining the right-handed crystal
corresponds to the clockwise rotation of the analyzer,
whereas the plus sign defining the left-handed crystal,
to the rotation in the anticlockwise direction. This is
clearly demonstrated by Figs. 3b and 3c, which show
the dependence of the light intensity J transmitted at
certain wavelengths for the right- and left-handed crys-
tals. It is seen that the rotation of the analyzer from the
crossed position by certain angles determining the sign,
magnitude, and dispersion of the polarization-plane
rotation gives rise to extinction. Thus, it is seen from
Fig. 3b (curve 1) that if the rotation of the analyzer by
an angle ϕ ≈ –57° from the crossed position in the
clockwise direction results in the extinction of a quartz
crystal in the red light, this quartz crystal is right-
handed.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 2. Conoscopic figures of the crystalline quartz plates
cut out normally to the optic axis of a crystal with the ana-
lyzer being rotated by an angle ϕ = 30° from the crossed
position with the polarizer; (a) right- and (b) left-handed
crystals and (c) section of the conoscopic figures at α = 45°,
which corresponds to the direction of the diagonals of the
squares in (a, b); (1) right-handed and (2) left-handed crys-
tals.
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To determine the sign of the polarization-plane rota-
tion, one has to compare the conoscopic figures
obtained in the monochromatic light with the use of two
filters, e.g., first with a red filter and then with a green
one [2]. In this case, the direction of the necessary rota-
tion of the analyzer from the position of extinction with
the use of a red filter (ϕ ≈ –57°) to the position of extinc-
tion with a green filter (ϕ ≈ –75°) coincides with the
direction of the polarization-plane rotation of a right-
handed crystal (Fig. 3b). For a left-handed crystal, the
angle ϕ has the opposite sign, although the absolute val-
ues ∆el remain unchanged (Fig. 3c).
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Fig. 3. Variation in the intensity J of the light transmitted by
the crystalline plate in the center of the conoscopic figure at
the rotation of the analyzer by an angle ϕ from the crossed
position with the polarizer at several wavelengths λ of the
incident light: (1) 633, (2) 589, and (3) 546 nm. (a) Opti-
cally inactive crystal, (b) right-, and (c) left-handed crystals.
C

It is the term J3 that explains the determination of
the sign of the polarization-plane rotation described in
[2, 3], which is necessary for the observation of cono-
scopic figures in both monochromatic and white light.
If the rotation of the analyzer in the clockwise direction
(which corresponds to the negative angle ϕ) results in a
“decrease” in the interference color of the central part
of the conoscopic figure (in the sequence of the spec-
trum colors—from red to violet), the crystal is right-
handed; if it results in an “increase” in the color, the
crystal is left-handed. Moreover, if the clockwise rota-
tion of the analyzer results in the “repulsion” of the iso-
chromatic rings from one another, the crystal is right-
handed; if the these rings are “attracted” to one another,
i.e., become closer, the crystal is left-handed. One has
to take into account that the above speculations are
valid only if ∆el < 180°. If ∆el > 180°, the opposite
occurs. At a considerable rotation, one has to use light
filters possessing closer transmission ranges [2].

Thus, the above analysis of the light transmitted by
a plate cut out from a uniaxial crystal and placed
between the arbitrarily oriented polarizer and analyzer
explains the differences in the conoscopic figures of
optically active and optically inactive crystals. The
above relationships show how one can distinguish
between right- and left-handed crystals and evaluate the
dispersion in the specific-rotation values in these crys-
tals.
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Abstract—The boundary problem for a semi-infinite magnetic medium with an arbitrary orientation of the
magnetization vector has been solved. The polarization and intensity characteristics of the reflected light wave
are analyzed. It is shown that the variations of the incidence angle, magnetization orientation, and polarization
plane substantially affect the polarization characteristics and give rise to typical features in the dependences
studied. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that magnetooptical Kerr effects are
widely used in fundamental studies, namely, in spec-
troscopy of magnetically ordered media. A great num-
ber of publications [1–6] deal with the parameters of
the light reflected from a planar interface between a
nonmagnetic insulator and a uniformly magnetized
medium. However, the majority of the studies are
devoted to the limiting cases of the magnetic-moment
orientation in a medium corresponding to the polar,
meridional, and equatorial geometry in the Kerr effect.
At the same time, the reflection effects can be most pro-
nounced at magnetization orientations that differ from
those mentioned above. It is in these situations that new
features of magnetooptical reflection can be revealed.

In the present study, we analyze the polarization and
energy characteristics of a light wave reflected from a
nonabsorbing magnetic medium with an arbitrary ori-
entation of the magnetization vector in the linear
approximation with respect to the magnetooptical
parameter. The linear approximation is chosen because
in this case the form of the dielectric constant tensor 
for cubic crystals (such as garnet ferrites), the most typ-
ical representatives of magnetic dielectrics, does not
depend on the orientation of the crystallographic axes
on the crystal surface [7, 8].

FORMULATION OF THE PROBLEM

Let a linearly polarized laser radiation be incident
on the interface (xy plane) between a transparent isotro-
pic dielectric with the dielectric constant ε0 and a cubic
magnet at the angle ϕ0 to the normal (z axis). The yz
plane coincides with the incidence plane of the light
wave. The dielectric-constant tensor for a magnetic

ε̂

1063-7745/03/4802- $24.00 © 20305
medium in a uniformly magnetized state with the mag-
netic moment being oriented at an angle γ with respect
to the z axis in the yz plane in the linear magnetooptical
coupling approximation has the form [8]

(1)

where f is the magnetooptical parameter. In the optical
range, the magnetic permeability of the medium is
equal, within a high accuracy, to unity, µ = 1, and,
hence, the wave equation for the electric field in this
medium has the form

(2)

where c is the light velocity in vacuum. The solution of
Eq. (2) is sought as a plane wave,

(3)

where ω is the radiation frequency, k is the wave vector,
which, in general, is a complex quantity. Substituting
Eqs. (1) and (3) into the wave equation, one obtains the
electric-field amplitude of the light wave,

(4)

where k0 = ω/c is the wave number in vacuum. Let ψ be
the refraction angle, i.e., the angle between the direc-
tion of the light propagation in the medium and the sur-
face normal. The medium is considered to be nonab-
sorbing, which is quite justified for the transparency
windows in magnetic crystals. For garnet-type ferrites,
this interval corresponds to the near IR-range. In this
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case, the parameters ε and f are real quantities, which
makes the wave number and the refraction angle also
real quantities. In the geometry considered here, the
wave vector k has the components (0, ksinψ, kcosψ).
With due regard for this fact, Eq. (4) can be represented
in the form

(5)

System (5) has a nontrivial solution if its determinant is
equal to zero, whence we obtain the following charac-
teristic equation:

(6)

The solution of the above equation is the wave numbers
kj of two pairs of eigenwaves (j = 1, 2) propagating in
opposite directions:

(7)

From Eq. (7), we obtain the well-known relations of
the wave numbers of the light waves propagating in the
longitudinal direction, where γ – ψ = 0, π and the eigen-
waves are the circularly polarized waves with kj =

k0 , and the transverse direction, where γ – ψ =
±π/2 and the eigenwaves are two waves with orthogo-
nal polarization planes and the wave numbers k1 =

k0  and k2 = k0 .
In the general case, the eigenwaves in a medium uni-

formly magnetized along the arbitrary direction are two
elliptically polarized waves with the wave vectors
determined by Eq. (7).

Denote the electric-field amplitudes of the incident,
reflected, and transmitted waves as Ei , Er, and Et,
respectively; and the magnetic-field amplitudes, as Hi ,
Hr , and Ht, respectively. The wave vectors of these
waves are kα = (0, kαy, kαz), where α = i, r, t. The conti-
nuity condition for the tangential components of the
electric and magnetic fields at the interface between the
two media (z = 0) valid for any interface point yields the
relation for the y-components of the wave vectors of the
waves in question, kiy = kry = kty, whence we obtain the
equation for the determination of angles at which the
eigenwaves propagate in the magnetic medium:

(8)

where kj is determined from Eq. (7).
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REFLECTION MATRIX

In the experiments on reflection of light from a mag-
netogyrotropic medium, a linearly polarized radiation
is commonly used [3–5]. Therefore, in what follows,
we analyze the p- and s-components of the electric field
of a wave either parallel or perpendicular to the inci-
dence plane. Their relation to the Cartesian components
of the field in the incident wave is given by the expres-
sion

Now, introduce the reflection matrix  relating the inci-
dent and the reflected waves:

(9)

where the corresponding elements  are determined as

(10)

Here, the following notation is used:

Let the polarization plane in an incident beam be
determined by the angle β of the beam deviation from
the incidence plane. Then, the components of the elec-
tric field of the incident wave are determined as Eip =
Ei cosβ and Eis = Ei sinβ, whereas the components of
the reflected wave are

(11)

The energy reflection coefficients, which determine
the part of the energy of the incident wave for the cor-
responding polarization component of the reflected
wave in the case of an arbitrary orientation of the polar-
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ization plane of the incident radiation, can be intro-
duced as follows:

(12)

In this case, the total reflection coefficient, which deter-
mines the total reflected energy, is given by the expres-
sion R = Rp + Rs. The reflection coefficients defined as

(13)

should be introduced, if the incident wave is either p- or
s-polarized. In the general case, the coefficients given
by (13) are less convenient for the analysis than those
given by (12). The relation between these coefficients
can readily be established and has the form

If the incident wave is p- or z-polarized, i.e., if β = 0
or β = π/2, respectively, the above coefficients coincide:

However, in this case, Rp(π/2) = |rps |2 and Rs(0) = |rsp |2,
whereas the coefficients (π/2) and (0) lose their
meaning since they acquire infinitely high values.

The polarization characteristics of the reflected radi-
ation are determined by the relation Ers/Erp =  –
iη), where θ is the angle determining the orientation of
the major axis of the polarization ellipse with respect to
the incident plane and the angle η determines the ratio
of semi-axes of the polarization ellipse, i.e., the ellip-
ticity.

NUMERICAL ANALYSIS

For the convenient representation of the graphical
data characterizing the polarization state of the
reflected wave, it is advisable to introduce an auxiliary
quantity, χ = . Below, we present the results of the
numerical analysis of the relations obtained above for
χ, θ, and Rp, s as their dependences on the magnetization
orientation determined by the angle γ, the angle of inci-
dence ϕ0 , and the orientation of the polarization plane
of the incident wave determined by the angle β. In the
calculations, we used the following values of parame-
ters: ε = 5, f = 5 × 10–3 for a magnetic medium and ε0 =
1 for a nonmagnetic dielectric medium.
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It is shown that the ellipticity of the reflected wave
χ and the difference of the refraction angles of the
eigenwaves ∆ψ = ψ1 – ψ2 are the most sensitive to
changes in the magnetization orientation. Figure 1
shows the moduli of the above quantities as functions of
the angle γ obtained for the p-type incident wave and
the angles of incidence ϕ0 = 15°, 30°, 45°, 60°
(curves 1–4). Both dependences look similar, they have
the same period, and the values of the amplitudes
increase with the angle of incidence in the same way.
However, if the angles ϕ0 are equidistant, the ampli-
tudes |∆ψp | are also equidistant, whereas the amplitudes
of |χp | considerably increase with the approach of the
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Fig. 1. (a) Moduli of ellipticity of the reflected wave and (b)
the difference between the refraction angles of eigenwaves
as functions of the orientation of the magnetization vector
at various angles of incidence of the p-type wave: ϕ0 = 15°,
30°, 45°, 60° (curves 1–4).
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angle of incidence to the Brewster angle. The change in
the sign of χp, which determines the direction of the
rotation of the light vector over the polarization ellipse,
occurs at the angle γ corresponding to the orthogonal
orientation of the magnetization vector with respect to
the direction of the wave propagation in the medium.

The dependence χs(γ) has a similar character; how-
ever, the amplitudes in this case are essentially less than
at χp. Moreover, in the vicinity of the angles γ = ±90°,
the quantity χs, in the linear approximation, has some
singularities, which disappear if the quadratic magne-
tooptic coupling is taken into account.

Figure 2 shows the dependences of the ellipticity of
the reflected wave on the angle of incidence at various
magnetization orientations, γ = 0°, 45°, 90°, 135°, and
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Fig. 2. Ellipticity of the reflected wave as a function of the
angle of incidence at various magnetization orientations γ
for the (a) p- and (b) s-polarizations of the incident wave:
γ = 0°, 45°, 90°, 135°, and 180° (curves 1–5).
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Fig. 3. (a) Ellipticity, (b) the angle or rotation of the major
axis of the polarization ellipse, and (c) the reflection coeffi-
cient as functions of the orientation of the polarization plane
at various angles of incidence: ϕ0 = 15°, 30°, 45°, and 60°
(curves 1–4).
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180° (curves 1–5), for the p- and s-polarized incident
wave. It is seen that in the vicinity of the Brewster
angle, χp essentially depends on the angle of incidence,
where a pronounced increase of ellipticity takes place.
The angle (ϕ0 ≈ 66°) is almost independent of the mag-
netization orientation. At the Brewster angle, the ellip-
ticity sign changes irrespective of the angle γ. The
quantity χs is either a monotonic function of the angle
ϕ0 or has a weakly marked extremum at different values
of the angle γ.

Figure 3 shows the ellipticity χ, angle of rotation of
the principal axis of the polarization ellipse ∆θ = θ – β,
and the reflection coefficient R as functions of the ori-
entation of the polarization plane, β, recorded at various
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Fig. 4. Dependence of δ on the angle between the magneti-
zation vector and the z axis for the (a) p- and (b) s-polariza-
tions of the incident waves and the angles of incidence ϕ0 =
15° and 45° (curves 1, 2).
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angles of incidence ϕ0 = 15°, 30°, 45°, and 60° (cur-
ves 1–4). Of all the dependences analyzed, only the
dependence χ(β) is strongly dependent on the orienta-
tion of the magnetic moment, whereas ∆θ(β) and R(β)
are independent of γ within the graphical accuracy. It is
also seen that the ellipticity of the reflected wave at any
angle β and the polar orientation (γ = 0°, 180°) has a
higher absolute value than that at meridional orienta-
tion (γ = 90°). In the latter case, with an increase in the
angle β, the ellipticity goes through zero. The depen-
dence ∆θ(β) has characteristic zero values of the p- and
s-polarizations at any angle of incidence, and also the
maximum whose value increases with an increase in
the incidence angle. At ϕ0 = 0°, the maximum at β = π/4
is displaced towards lower β-values. The intensity of
the reflected wave increases monotonically with β; the
range of R variation increases with an increase in the
angle of incidence within the whole range of β varia-
tion.

Figure 4 shows the δ = (R0 – R)/R0 as a function of
the magnetization orientation; here R and R0 are the
reflection coefficients at an arbitrary γ and at γ = 0.
These dependences are shown for p- and s-polarized
incident waves at the angles of incidence ϕ0 = 15° and
45° (curves 1, 2). It is seen that there are two sharp
peaks for both types of polarization at two γ values cor-
responding to two mutually orthogonal orientations of
the magnetic moment and the direction of the wave
propagation. Their intensities of these peaks indicate
the quadratic character of these effects with respect to
the magnetooptic parameter f. This effect increases
with an increase in the angle of incidence. The effect is
much more pronounced for the p-polarization than for
the s-polarization.

CONCLUSIONS

The main result of this study is the solution of the
boundary problem for a semi-infinite magnetic medium
in a saturated state with an arbitrary orientation of mag-
netization along the incidence plane. As a result of the
numerical analysis, the intensity and the polarization
parameters of the reflected wave (intensity R, the rota-
tion angle θ of the principal axis of the polarization
ellipse, and the ellipticity χ) are represented in graphi-
cal form. It is shown that the change of the angle of
incidence, magnetization orientation, and the polariza-
tion plane substantially influence the polarization char-
acteristics of the reflected wave and result in the forma-
tion of some singularities in the dependences studied.
These singularities can be detected experimentally by
making precise ellipsometric measurements in the win-
dows of optical transparency of single crystal samples
of garnet ferrites.
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Abstract—The formation and subsequent changes of a fringe pattern of the surface and the bulk of planar AgBr
microcrystals were observed for the first time as well as their light-induced deformation in the course of a
microscopic study. © 2003 MAIK “Nauka/Interperiodica”.
Large AgBr crystals were grown from a saturated
solution by two methods. The first one was a somewhat
modified version of the procedure proposed in [1]. The
second one, proposed by us, is based on the use of pla-
nar 1–15 µm-long microcrystals in order to grow larger
AgBr crystals. Both methods for growth of microcrys-
tals were based on the use of aqueous solutions of the
starting materials.

The first method reduced to the following: 50 ml of
the AgNO3 solution was poured for 3 min into 50 ml of
1.0 N KBr solution at t = 35°ë. Upon decantation (sep-
aration of the solid precipitate and the solution), the
vessel with the precipitate was filled with 300 ml of
15% ammonia solution, closed tightly with a stopper,
and was left to settle for 24–48 h at room temperature.
Then a thin layer of the settled solution was applied
onto an object plate. One to two minutes later, crystals
20–100 µm in diameter appeared on the glass surface.
To prevent settlement of smaller crystals, the excessive
solution was removed with the aid of the filter paper.
The preparations thus obtained were washed with dis-
tilled water to remove soluble salts.

The second method for growing large silver bro-
mide microcrystals reduces to the use of preliminarily
prepared planar microcrystals synthesized by two-
stream emulsification (simultaneous filling of the ves-
sel with a vigorously stirred aqueous medium with two
solutions). Upon precipitation of planar microcrystals,
the vessel was filled with 15% ammonia solution, was
tightly closed, and the solution thus obtained was
brought to boiling point and then slowly cooled for 2–
4 h in darkness. With an increase in temperature, the
solubility of AgBr microcrystals in the silver medium
dramatically increases, and, thus, smaller crystals are
dissolved. Slow cooling results in a lower solubility and
slow precipitation of AgBr from the solution. This
method gives the possibility growing larger AgBr crys-
tals (40–500 µm in diameter). The model were studied
using the second method; AgBr crystals were applied to
the glass surface.
1063-7745/03/4802- $24.00 © 20311
The X-ray diffraction analysis of the photographic
emulsions containing the planar crystals showed the
presence of a certain texture oriented along the [111]
direction. At the same time, during coating of the sub-
strate with the photographic emulsion, AgBr microc-
rystals precipitated with larger faces onto the substrate.

Since an X-ray counter records the faces parallel to
the sample surfaces, then, comparing the experimental
data obtained, one can draw the conclusion that the
upper and lower surfaces of a planar microcrystal are
faceted with {111} faces.

The averaged thickness of planar microcrystals was
determined by two methods: (1) from the broadening of
the X-ray reflections from the {111} planes of AgBr
microcrystals and (2) from the interference colors
described by the formula for a normally incident light
wave:

where L is the thickness of the microcrystal, λ is the
wavelength of coloring, and n is the refractive index.

The thickness of the synthesized AgBr crystals
ranged from 44 to 82 nm.

The optical microscopy study of the AgBr microc-
rystals by the above methods showed that the microc-
rystal coloring “embraces” the entire visible range of
the spectrum (Fig. 1). The microcrystals were also col-
ored if a microscope objective was focused on the sur-
face. This phenomenon should be attributed to the
localized interference of light in the plane-parallel
plates.

If light is absorbed by microcrystals, the excited
photoelectrons reduce the interstitial Ag ions. This pro-
cess is accompanied by a change in the refractive index
of these microcrystals. Photolytic Ag is aggregated at
certain sites of the surface (bulk) of a microcrystal,
which results in the change of the fringe pattern at the
sites of separation of photolytic Ag. This allows one to
reconstruct the history of microcrystal growth and trace

L
λ

4n
------,=
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the evolution of formation of silver aggregate at the
microcrystal surface (autodecoding) (Fig. 2). Figure 2a
is transformed into Fig. 2b within the time of 12 s.
These photographs show planar microcrystals exposed
to white light. Evidently, the zones of separation of
photolytic silver formed under the action of light on the
microcrystal surface have regular geometric shape. Sil-
ver particles are deposited on growth steps of the crys-
tal. The photographs show alternating light and dark

(a)

(b)

Fig. 1. (a) General view of planar AgBr microcrystals in a
light microscope; (b) an individual microcrystal.
C

fringes parallel to the microcrystal faces and associated
with pAg pulsation during formation of the AgBr crys-
tal.

Thus, we observed for the first time a new phenom-
enon: the appearance and propagation of interference
fringes at the surface (bulk) of silver bromide microc-
rystals synthesized by the second method under the
action of white light. The “sources” of interference
fringes are the sites of the highest defect concentration
in microcrystals. Similar to waves, fringes propagate
through microcrystals. The direction and the shape of
the wave change, and the wavelength becomes shorter.
The hemispherical shape of the fringes is transformed
into planar (Fig. 3). Within 3 s, Fig. 3a is transformed
into Fig. 3b. The samples were placed on an STN-1
table where the temperature was kept constant within
±0.1–0.05°C. The effects observed do not depend on
temperature, which is confirmed by the fact that the
wave effects are observed only on some microcrystals
of the same color (thickness).

(a)

(b)

Fig. 2. Light-induced autodecoding: (a) the initial view of a
microcrystal and (b) the same view 12 s later.
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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The generation of propagating waves and the
change in the refractive index seem to be associated
with the formation of photolytic Ag during excitation

(a)

(b)

(c)

Fig. 3. (a) Formation and (b, c) propagation of interference
fringes over the surface (in the bulk) of AgBr microcrystals
illuminated with white light. Fig. 3b is obtained three sec-
onds later than Fig. 3a.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
from the 4P level onto the free 5S level of silver:

(Ag+ + Br–) + hν  Ags + Br.

The reduction of a silver ion occurs directly at the
site of the AgBr lattice. In fact, the AgBr lattice is face-
centered, a = 4.077 Å, which is equal to the distance
between the nearest Ag ions along the [111] direction in
the AgBr lattice. Thus, the formation of the Ag crystal
lattice requires only the deformation of the AgBr lattice
accompanied by the formation of the microstress zones.
On the other hand, the mobility of these zones shows
the instability of the silver formed in the sites of the
AgBr microcrystals, while the photoelectron motion in
the conduction band of 5S silver along a certain [110]
direction provides the aggregation of photolytic Ag on
the “defect sites” of the lattice.

Thus, under the action of white light, the defects in
the crystal lattice become the sources of propagating
microstresses. Photolytic Ag concentrates at the imper-
fections of AgBr microcrystals. The interference phe-
nomena on the surface of the platelike microcrystals
can also be of great importance because of the unique
property of AgBr to evolve photolytic silver under the
action of a light quantum. The combination of these two
phenomena can produce a qualitative effect on the
parameters characterizing the photosensitivity of AgBr
microcrystals.

In the course of the study of the optical properties of
AgBr microcrystals, we discovered the phenomenon of
the light-induced deformation of microcrystals. Figure 4
shows the microdeformation of a triangular silver bro-
mide microcrystal. An electromagnetic wave from the
visible range incident onto the microcrystal surface
normally gives rise to a 0.5 to 1-s-long deformation that
consists in bending the triangle vertices, whereas the
middle part of the microcrystal is not deformed. Under
the action of normally incident light, all the crystals are

Fig. 4. Pattern of light-induced deformation in an AgBr
microcrystal.
3
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deformed either in the direction of light incidence or in
the opposite direction. This effect can be explained on
the assumption that the larger surfaces of the microc-
rystals are characterized by the {111} faceting. The
study of the distribution of photolytic silver over the
thickness [2] showed that the crystal bulk has no visible
Ag particles. These particles are concentrated in a sub-
surface layer several micrometers thick. The surface of
an AgBr microcrystal is formed by the network of Br–

ions, which leave the crystal under the action of light.
In turn, this may give rise to deformation of planar
AgBr crystals.
C

Thus, new optical phenomena were found in 40 to
85-nm-thick AgBr microcrystals with a diameter of 40–
500 µm. These phenomena require further investiga-
tion.
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Abstract—The temperature dependence of spontaneous polarization in Li2Ge7O15, a ferroelectric with one
polarization axis, is studied in the temperature range from 4.2 K to TC. An unusual character of spontaneous
polarization associated with the change of the crystal behavior from the Ising to multipole type is revealed in
the vicinity of TC. The low value of spontaneous polarization is explained not by the relation between certain
physical quantities, but rather by the interaction of the components of higher order (n > 2) electric moments
which, by definition, have rather low values. The Li2Ge7O15 structure is built by macrofragments consisting of
two types of mesotetrahedra whose distortion results in the appearance of pseudopolarization of the nonvector
type. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION
It is obvious that, in the broad sense, spontaneous

polarization is the central problem for all pyroelectrics,
including so-called pseudoproper ferroelectrics. It
seems that Li2Ge7O15 (LGO) crystals, in which the
phase transition is characterized by low values of the
spontaneous polarization and Curie–Weiss constant,
should be assigned to pseudoproper ferroelectrics as
well.

An LGO ferroelectric with one polarization axis
undergoes a phase transition from the polar (Pbc21) to
the high-temperature (Pbcn) phase at TC = 238.5 K
[1−3]. The Curie–Weiss constants are rather low, 0.82
(T < TC) and 3.2 K (T > TC) [4]. The known data on the
spontaneous polarization Ps show a considerable scat-
ter, from 2.2 × 10–4 to 3.8 × 10–4 C/m2 (T = 248 K)
[4, 5]. There is no detailed information on the behavior
of Ps(T) in the vicinity of TC. The data on spontaneous
polarization obtained in the temperature range from 15
to 300 K [5] indicate its rather unusual behavior, in par-
ticular, the change of its sign at T = 135 K. Similar
behavior was also established for sodium biphthalate
single crystals [6]. The pyroelectric studies [4] revealed
a slight anomaly in the pyroelectric constant γ(T) in the
vicinity of 220 K and a change in the sign of this con-
stant at T = 248 K, which corresponds to the maximum
spontaneous polarization. It was also established that a
1%-level of LGO doping (e.g., with Ni) considerably
changes the behavior of spontaneous polarization and
the phase-transition temperature [7].

The dynamics of the vibration spectrum of the LGO
lattice studied by the Raman scattering [8] and submil-
limeter spectroscopy [9] revealed the soft mode on both
1063-7745/03/4802- $24.00 © 20315
left- and right-hand sides of TC responsible for the dis-
placive-type phase transition. Thus, LGO crystals are
reminiscent of (CH3NHCH2COOH)3CaCl2 crystals
[10]: the authors believe that the dipole–dipole interac-
tion is rather weak and gives a pronounced contribution
to spontaneous polarization only in the vicinity of TC.
Therefore, there are grounds to believe that with an
approach to TC, the typical Ising behavior of LGO crys-
tals changes to pseudodipole behavior. At first sight,
this assumption is consistent with the data of more
recent studies [11]. The key role is assumed to be
played by the ordering of the orientations of GeO4 tet-
rahedra, which, together with GeO6 octahedra, form
continuous GeO6–GeO4–GeO4–GeO4–GeO6–… chains
along the 〈001〉  directions (Fig. 1). With an approach to
TC from the side of the polar phase, the disorder in tet-
rahedron orientations induces a displacive-type phase
transition in the sublattice formed by the tetrahedra. On
the other hand, the diffraction experiments show the
existence of two nonequivalent lithium positions in the
structure, Li(1) and Li(2). The NMR 7Li data [12]
allowed one to establish that the sublattice of Li(1)
atoms at T > TC is more ordered than the lattice of Li(2)
atoms. Further NMR experiments showed that the
geometry of the nearest environment of a Li(1) atom
undergoes considerable changes in the transition to the
low-temperature phase [13]. The pronounced deforma-
tions of the nearest environment arising in this case
compensate the distortion of the medium along the
crystallographic 〈001〉  directions and, thus, determine a
low value of Ps. The possible contribution of multipole
interactions was ignored.
003 MAIK “Nauka/Interperiodica”
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Despite the unambiguous structural data, the spe-
cific features of the phase transition were interpreted in
[5, 11] as a result of the presence in the structure of two
strongly interacting antiparallel polarized sublattices.
However, a similar situation should be characteristic
not only of LGO crystals but also of all pyroelectrics.
This was confirmed within the framework of the crys-
tallophysical approach [14]. Moreover, in the structure
of some crystals such as LiíaO3 [15], KTiOPO4 [16],
LiBO3 [17], etc., two antiparallel-polarized sublattices
formed by two types of mesotetrahedra possessing
dipole moments with different magnitudes and signs
were singled out. Thus, the existence of two sublattices
cannot be explained by low spontaneous polarization Ps

in LGO crystals. We believe that it is very interesting to
establish the cause of such a low effective charge of the
soft-mode branch. The latter can be established by
comparing the data on the temperature dependence of
the order parameters (which are not necessarily the
components of the first-rank tensor) with the results of
structural studies.

Thus, to better understand the nature of the phase
transitions, in general, and in LGO, in particular, it is
important to establish the nature of the order parame-
ters in LGO, a weak ferroelectric. With this aim, we
undertook a detailed study of spontaneous polarization
everywhere including the region of the phase transition.
The data obtained are analyzed with due regard for the
structural characteristics of LGO crystals determining
the character of multipole interactions.

GeO6

GeO4

Ps

Fig. 1. Fragment of the LGO structure where ordering of the
tetrahedron orientations determines the order–disorder
phase transition. Ps is the direction of the spontaneous
polarization.
C

EXPERIMENTAL

To measure the spontaneous polarization of LGO
crystals, we used the conventional pyroelectric method,
which allows one to reproduce the behavior of Ps(T) in
the whole range of existence of the low-temperature
phase with a sufficient accuracy under the condition
that the phase-transition temperature can be attained
under real experimental conditions.

LGO Crystals

The studies were performed on single crystals
grown at the Institute of Crystallography of the Russian
Academy of Sciences. The faceting of the crystals
grown corresponded to the inherent symmetry ele-
ments. The crystals had a cleavage plane, which indi-
cated a high perfection of the grown boule; chromium
impurity attained a level of 10–2%. The study of the
absorption spectra showed that chromium ions, Cr+4

and Cr+3, are located in the germanium positions in the
octahedra and tetrahedra, respectively [18]. Different
intensities of the two absorption bands allow one to
assume that the probability of chromium being located
in octahedra is higher by an order of magnitude than the
probability of their being located in tetrahedra, i.e., that
the concentration of ër+3 is at a level of noncontrollable
impurities. This is a very important result, because, as
will be shown later, the tetrahedra directly participate in
the formation of the polar LGO phase.

We selected a boule elongated in the 〈100〉  direction
and cut out of it two rectangular z-cut plates with sur-
face areas of 0.49 and 0.89 mm2 and a thickness of
2.3 mm. The electrodes were prepared from a silver
paste applied to preliminarily cleaned (001) surfaces.
A monodomain state of the sample was attained in a
±500-V/cm electric field.

Preliminary measurements showed that the incorpo-
ration of chromium into the sample composition does
not change the temperature of the ferroelectric phase
transition.

Experimental Technique

The electric charge arising on the surface of LGO
samples with a change in temperature of ∆T was mea-
sured by an electrometer of series 617 produced by
Keithly. The sample was suspended on a thin wire in a
crystal holder placed into a helium cryostat. The tem-
perature was measured by a Cemox-1050CD thermom-
eter. The sample temperature was varied with a pro-
grammed thermoregulator of series 222 produced by
the same company. The samples were mounted in cor-
respondence with the conditions necessary for measur-
ing spontaneous polarization and the pyroelectric con-
stant of the sample in the mechanically free state. All
the measurements were made during sample heating
from 4.2 K to the temperatures T > TC. The measure-
ments were repeated in the fields of different polarity
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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with the subsequent cooling of the sample to helium
temperature. Then, the sample was kept for a certain
time under these conditions, and then the measure-
ments were taken again. The drift of the zero of the
measuring system within the three-hour-long experi-
ment determined the main experimental error, which
did not exceed ±5%.

The experimental curves of the change in ∆Ps with
an increase in the sample temperature were recorded
within two cycles of measurements. The difference
between these curves is caused only by the zero drift in
the measuring system. No noticeable anomalies were
recorded either in the low-temperature range or in the
range of the phase transition. The experimental ∆Ps(T)
curves thus obtained were normalized with due regard
for the fact that spontaneous polarization tends to zero
at T > TC.

RESULTS AND DISCUSSION

The results of the processing of the experimental
data that describe the temperature dependence Ps(T) in
LGO crystals are shown in Fig. 3. As was to be
expected, the maximum Ps value is obtained in the low-
temperature range. The difference between the data
obtained in [5] and our results seems to be caused by
different fixation of the sample in the crystal holder
and, therefore, are of minor importance. The change in
the sign of spontaneous polarization is observed at T =
125 K. No anomalies in the low-temperature range that
could indicate the presence of impurities were
observed.

The study of the behavior of Ps in the vicinity of the
phase transition showed its nonmonotonic dependence
on temperature (Figs. 4a, 4b), which indicates some
specific features of the phase transition in LGO. The
anomaly is also characteristic of the temperature
dependence of the pyroelectric constant (Fig. 4c). The

–2.5
T, K

∆Ps × 10–4, C/m2

100 200

0

2.5

5.0

7.5

Fig. 2. Effective values of the changes in spontaneous polar-
ization in LGO crystals in the temperature range from 4.2 to
300 K. The curves correspond to two cycles of ∆Ps mea-
surements.
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well pronounced transition to the high-temperature
phase indicates the infinitesimal contribution of the
substitutional-type defects to the change of the transi-
tion temperature. The Ps(T) dependence in the logarith-
mic coordinates (Fig. 4b) confirms the change in the

4

2

100

–2

–4

200 300
T, K

1

2

Ps × 10–4, C/m2

Fig. 3. Temperature dependence of spontaneous polariza-
tion of LGO crystals. (1) E = 500, (2) E = –500 V/cm.
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Fig. 4. Temperature dependence of (a, b) spontaneous
polarization Ps and (c) pyroelectric constant γs in the vicin-
ity of the phase transition; (a, c) on the conventional scale,
(b) on the logarithmic scale.
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Fig. 5. Temperature dependence of the pyroelectric constant in the range from 4.2 to 300 K.
character of the phase transition, namely, in the temper-
ature range from (TC–2 K) to (TC–30 K), polarization
obeys the law Ps ~ (TC–T)0.3 at TC = 284 K, whereas in
the temperature range from 283 to 283.5 K, it obeys the
law Ps ~ (TC–T)1.25. In the first case, the exponent is
close to the critical one, 5/16 [19], which correspond to
the three-dimensional Ising model. In the range from
TC–2 K to 283 K, ∂Ps/∂T goes to zero.

Additional information on the characteristics of the
phase transition can be obtained from the detailed anal-
ysis of the data on the pyroelectric constant measured
over a wide temperature range (Fig. 5). Figure 5 also
shows the dependence γs(T) in the temperature range
from 4.2 K to TC. The maximum value of γs equal to
1.7 × 10–4 C/m2 K corresponds to (283.1 ± 0.5 K) and
exceeds the result obtained in [4] by an order of magni-
tude.

It is well known that within the Born–Einstein
model, the temperature dependence γs(T) can be

Parameters of the approximation of the temperature depen-
dence of the pyroelectric constant of an LGO crystal calcu-
lated by Eq. (1) (Aj × 10–6 C/m2 K and θj , K)

Ad Ae1 Ae2 Ae3

2.05 7.77 –3.67 –1.43

θd θe1 θe2 θe3

125 200 360 880
C

approximated by the following expression [20]:

(1)

where D(θd/T) and E(θei /T) are the Debye and Einstein
functions and Ad and Aei are the corresponding coeffi-
cients. Such an approximation is valid only for linear
pyroelectrics. In ferroelectrics, the situation is quite dif-
ferent. At temperatures lower than 4 K, the main contri-
bution comes from the acoustic vibrations and γs ~ T3

[21]; with an increase in the temperature, the more pro-
nounced optical vibrations “catch” weak acoustic
vibrations. This phenomenon is well known in the the-
ory of vibrations. For LGO, the condition Ad ≠ 0 (see
table) should be considered as a result of the weak effi-
ciency of the interactions between the acoustic and
optical lattice vibrations. It seems that it is this fact that
constitutes the difference between conventional ferro-
electrics and their pseudoanalogues.

The above data on spontaneous polarization in LGO
are inconsistent with the conventional concepts of the
nature of ferroelectric ordering in crystals [19]. There-
fore, we shall try here to take into account not only the
dipole–dipole interactions but also the multipole inter-
actions within the phenomenological approach
described in [22]. Thus, the transition into the polar
LGO phase can be described by a set of noncentrosym-
metric parameters that can be transformed like tensor
quantities such as vectors, pseudodeviators, and septors
[23]. According to the symmetry of crystals described
by the point group mm2, the components of the tensors

γs T( ) AdD θd/T( ) AeiE θei/T( ),
i 1=

3

∑+=
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Fig. 6. LGO structure projected onto the (a) (001) and (b) (100) planes of the paraelectric phase.
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, − , , S131, and S232 have nonzero values. The
quantities thus introduced characterize the dipole,
pseudoquadrupole, and octupole moments of the LGO
structure.

On the other hand, the loss of the center of inversion
by the medium can be depicted in graphical form by
representing the structure by a set of mesotetrahedra
connecting individual fragments of the structure. Ana-
lyzing the data in [11], we can single out two types of
mesotetrahedra formed by two lithium atoms, Li(1) and
Li(2), located in crystallographically different positions
(Fig. 6). The charge states of these atoms are not equiv-
alent and are determined by their nearest environment.
Two mesotetrahedra in Fig. 7a form infinite chains
along the 〈001〉 directions. The local symmetry of the
chain elements corresponds to the point group mm2.
The orientation of the mesotetrahedra with respect to
one another corresponds to a sphalerite-type structure
with the zero dipole moment dictated by the symmetry.
Thus, in the first approximation, the intrinsic dipole
moment of the LGO structure should be infinitesimal.

The Li(1) and Li(2) atoms are bound by the struc-
tural fragments obeying the symmetry conditions
(Fig. 1). In turn, the central atoms of the Li(1) mesotet-
rahedra are bound to the periphery Li(2) atoms via
GeO4 tetrahedra. The tetrahedra are strongly deformed
[11] and, therefore, possess dipole moments. Unlike the
KH2PO4 structure, where the mesotetrahedra are bound
by hydrogen atoms [23], in the LGO structure, the situ-
ation is much more complicated. The existence of the

P3' P3'' Q12*

–+
BA

B A

x

z

y

(a)

(b)

Fig. 7. (a) The main motif of the LGO structure represented
by two mesotetrahedra, A(1) and B(2), connected by the
GeO4–GeO4–GeO4–GeO6 chains and (b) their projections
onto the (001) plane with the change of the sign of the field
that gives rise to the formation of the monodomain state of
the sample. Large circles represent Li(1) atoms; small cir-
cles represent Li (2) atoms.
C

intermediate element (GeO6 octahedron possessing no
dipole moment in the first approximation) in the infinite
chain (Fig. 1) makes multipole interactions less effi-
cient. Thus, this model is reminiscent of the situation
with the structurally simplest NH4Cl compound, where
the ordering of hydrogen atoms over the bonds is
described sufficiently well within the Ising model [24].
The temperature dependence of the octupole moment
(which seems to play the role of the order parameter)
obeys the law of 1/8. In the case of LGO, the critical
index calculated based on the experimental data is close
to 5/16, which corresponds to a three-dimensional ana-
logue of the Ising model [19]. Therefore, there are
grounds to believe that, in the LGO structure, the orien-
tations of GeO4 tetrahedra are ordered along all the
three crystallographic directions. In other words, the
transition to the polar phase is accompanied by the
appearance of the octupole moment of the structure.

The experimentally measured spontaneous polariza-
tion is related to the components of the octupole
moment by the formula

 = g3311S311 + g3322S322, (2)

where g33ii are the coefficients of a tensor of rank four
symmetric with respect to the permutation of the three
latter indices. Thus, in the case of LGO, one has to con-
sider the order–disorder phase transition of the sublat-
tice of GeO4 positions, which is accompanied by the
appearance of an octupole moment of mesotetrahedra
forming the noncentrosymmetric motif of the LGO
structure.

The appearance of octupole moments is accompa-
nied by the change in the nearest environment of the
Li(1) atoms [13], whereas the Li(2) atoms (statistically
distributed over two equilibrium positions) are ordered
in the (001) plane (Fig. 7b). Depending on the sign of
the applied field, the bases of the mesotetrahedra are
rotated in two opposite directions. Such a distortion of
the LGO structure is accompanied by the appearance of
the pseudoquadrupole moment whose magnitude, as in
the case of äç2êé4, can be either measured directly
[23] or calculated measuring the total pseudopolariza-
tion of the LGO sample:

Ps =  +  = g3311S311 + g3322S322 + . (3)

Here  is the nonzero component of the pseudoten-
sor of rank three in the low-temperature phase. From
the condition of the free-energy minimum, it follows

that the signs of the quantities  and  should be
opposite, which decreases the total polarization,
whereas its change in the range from 4.2 to 300 K
acquires the form shown in Fig. 3. This is confirmed by
the approximated temperature dependence of the pyro-
electric constant (see table) which indicates different
contributions (both in magnitude and sign) of the opti-
cal vibrations of the LGO lattice. Therefore, the tem-

Ps'

Ps' Ps'' g123* Q12*

g123*

Ps' Ps''
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perature dependence of the pseudopolarization of LGO
is the consequence of a number of facts. First, it is quite
obvious that the octupole moment is the quantity of the
next order of smallness in comparison with ; i.e.,

 > . Second, the temperature dependence of 

far from TC should be more pronounced than . Third,
at a temperature of 283.5 K, a displacive-type phase
transition takes place, since the value of Ps changes
almost in a jumpwise manner. Fourth, the phase-transi-
tion temperatures of the GeO sublattice GeO4 and Li(2)
positions should be different. To show this, one has to
develop direct methods for measuring multipole
moments in noncentrosymmetric crystals.

CONCLUSIONS

The situation in LGO is reminiscent of the situation
in improper ferroelectrics of the gadolinium molybdate
type [25], in which the role of the transition parameter
is played by spontaneous deformation and the sponta-
neous polarization attaining the values of 10−3 C/m2 is
only a consequence of this fact. In LGO crystals, the
problem of the existence of multipole interactions has
not been formulated even theoretically as yet, although
the low spontaneous polarization is the consequence of
the existence of nonzero multipole moments. In con-
ventional ferroelectrics such as KH2PO4, the contribu-
tion of multipole moments is infinitesimal [21].
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Abstract—The dielectric properties of rapidly grown potassium dihydrogen phosphate KH2PO4 (KDP) crys-
tals have been studied over a wide temperature range and compared with the properties of traditionally grown
KDP crystals. It was found that the contribution of domains to permittivity in rapidly grown crystals is consid-
erably less than in conventionally grown ones. The dielectric properties in various growth sectors of KDP crys-
tals are determined. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

It is well known that the polar phase of ferroelectric
KDP crystals exhibits an anomalous behavior of dielec-
tric properties [1, 2]: permittivity does not decrease (as
is expected according to the phenomenological theory)
but has anomalously high values and remains almost
constant over a wide temperature range. Such a behav-
ior of permittivity of a KDP crystal is explained by an
anomalous contribution of domains to permittivity in
the ferroelectric phase [3, 4].

The nature of the anomalous contribution of
domains to permittivity was studied in many works, in
particular, the effect of various external factors, defects,
and impurities [5, 6], as well as the measurement con-
ditions [7]. However, the physical nature of the anoma-
lous behavior of the dielectric properties has not been
established as yet [8]. Below we describe our study of
the dielectric properties of KDP crystals grown by dif-
ferent methods.

KDP crystals are a model object for studying the
basic problems of ferroelectricity and phase transitions
and are of great interest because of the practical use of
their nonlinear optical properties. The use of large KDP
crystals in laser optics stimulated the development of a
rapid growth method with [9] a growth rate of up to
10 mm/day, which is higher by more than an order of
magnitude than in the traditional method of growth in
KPD crystals. Usually, an increase in the growth rate
results in a deterioration of the crystal quality. How-
ever, the optical properties of rapidly grown KDP crys-
tals proved to be sufficient for their use in nonlinear
optical devices [10]. Since no data on the dielectric
properties of these crystals are available, the present
study was undertaken with the aim of comparing the
dielectric properties of rapidly grown KDP crystals
with the properties of KDP crystals grown by the tradi-
tional method and, thus, establishing the influence of
the growth method on the quality of KDP crystals.
1063-7745/03/4802- $24.00 © 20322
Rapidly grown KDP crystals are characterized by
the well-developed prismatic sector that is practically
not observed in crystals grown by the traditional
method [11, 12], which allows one to compare the
dielectric properties in different sectors of rapidly
grows KDP crystals (in the studies of the “traditional”
KDP crystals, only the data for the pyramidal sector are
reported).

EXPERIMENTAL

The KDP crystals under study were grown on a
point seed using the rapid-growth technique described
in [12, 13]. The dimensions of the crystals grown were
~8 × 8 × 9 cm. The crystals had well-developed {101}
pyramidal and {100} prismatic growth sectors.

The samples were cut out from both sectors of the
crystal in the shape of plates with the surface plane
being normal to the polar axis. The average surface area
was 5 × 8 mm2; the thickness was 1 mm. The sample
faces normal to the c axis were coated with a thin layer
of silver paste.

For the comparative analysis of the dielectric prop-
erties, we also used a KDP crystal grown by the tradi-
tional slow growth method, in which growth of the pris-
matic sector was practically blocked. Samples of the
same dimensions were also prepared from the pyrami-
dal sector of this crystal.

The temperature dependences of permittivity were
measured during the cooling of samples from room to
liquid-nitrogen temperature. The cooling rate was 0.5–
1 K/min in the paraphase that is far from Të and
0.2 K/min in the vicinity of the transition point. In
recording the temperature hysteresis in the close vicin-
ity of the phase transition, both the cooling and heating
rates were 0.1 K/min.

All the measurements were performed by the bridge
method using an E7-14 immitance meter at a frequency
003 MAIK “Nauka/Interperiodica”
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of 10 kHz; the level of the measuring signal applied to
the sample was 0.04 or 2 V.

RESULTS

Figure 1 shows the temperature dependences of per-
mittivity and the tangent of dielectric losses for a rap-
idly grown KDP crystal and a traditionally grown KDP
crystal.

In the paraelectric phase, the temperature depen-
dences of permittivity were the same for all the crystals
studied; the Curie point was measured at 121.8 K.

The temperature dependence for the traditional
(“classical”) crystal (Fig. 1a, curve 1) coincides with
data [14, 15]. Below the Curie point, a region of anom-
alous values of permittivity is observed (“plateau”
region). Close to 80 K, the εC value drops, while tanδ
approaches the maximum (the phenomenon of domain
freezing; the maximum of tanδ is observed at the freez-
ing temperature TF).

As is seen from Fig. 1a, the dielectric properties of
the polar phase of rapidly grown crystals are character-
ized by the suppression of the εC maximum at the Curie
point. The permittivity value in the plateau region of a
rapidly grown crystal is much lower than the value in
the “classical” crystal.

The temperature dependences of the dielectric-loss
tangent (Fig. 1b) are typical of KDP crystals—a jump
at the Curie point and the maximum in the region of
domain freezing [16]. For “rapid crystals,” the values of
the maxima at TF are lower than for a traditional crys-
tals. In addition, the character of the tanδ curve is
changed below TC in the plateau region—with a
decrease in the temperature below the transition point,
tanδ starts increasing instead of decreasing (as in the
pyramidal sectors). In the plateau region, the values of
tanδ in the prismatic sector are higher by a factor of 2−3
than in the pyramidal sector (Fig. 1b, curve 3).

Figures 2 and 3 show the temperature dependences
of the inverse permittivity in the vicinity of the phase
transition during cooling and heating. For all the crys-
tals, the hysteresis characteristic of the point of the first-
order phase transition is observed. For a traditional
crystal (Fig. 2), a continuous transition is observed dur-
ing cooling and a jumplike transition, during heating.
The hysteresis reproduces the dependence first reported
in [17]. In both pyramidal and prismatic sectors of the
rapid crystal (Fig. 3), the jumps in permittivity were
observed during heating and cooling. In this case,
noticeable hysteresis of εC in the polar phase was
observed in the pyramidal sector of a rapid crystal; the
results of its study will be considered elsewhere.

DISCUSSION

Figure 1a shows that permittivity in the plateau
region of the rapidly grown KDP crystals is much lower
than the permittivity of traditional crystals. High per-
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
Fig. 1. Temperature dependences of (a) permittivity and
(b) the tangent of dielectric losses for (1) the pyramidal sec-
tor of a traditionally grown KDP crystal and the (2) pyrami-
dal and (3) prismatic sectors of a rapidly grown KDP crys-
tal.
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Fig. 2. Temperature hysteresis of permittivity in the vicinity
of the phase transition for a “traditional” KDP crystal dur-
ing (d) cooling and (s) heating.
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mittivity in this region seems to be associated with an
anomalously high mobility of domain walls [4]. The
studies of the influence of various defects and impuri-
ties on the dielectric properties of KDP crystals showed
that the contribution of domains to εC decreases in the
presence of the defects because of pinning of domain
walls at these defects [5, 6].

The suppression of the “domain contribution”
detected in rapidly grown KDP crystals seems to be
caused by “background impurities” (cations of trivalent
metals), which are almost always present in KDP single
crystals [18]. It seems that the incorporation of the
background impurities at concentrations higher than
their concentration in traditional crystals results in the
formation of certain structure defects (“stoppers”) that
hinder the motion of domain walls.

A reduced domain contribution can be observed not
only in the wide temperature range of the plateau region
but also in the close vicinity of the phase transition tem-
perature. This is clearly seen in the temperature depen-

dence of  (Figs. 2, 3): in the traditional crystal (with
an enormous domain contribution), the jump in εC is

εC
1–
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Fig. 3. Temperature hysteresis of permittivity for the
(a) pyramidal and (b) prismatic sectors of the rapidly grown
KDP crystal during (d) cooling and (s) heating.
C

observed only during heating, while in the rapid crystal
(suppressed domain contribution), the jumps in εC are
observed during both heating and cooling. Thus, one
can assume that the absence of a jump in εC in the clas-
sical KDP crystal during cooling is explained by a con-
siderable domain contribution (which can exceed εC in
a single-domain crystal). With a decrease in the domain
contribution (as in the rapidly grown crystals), this sign
of a first-order phase transition is also observed during
cooling.

Figure 1 shows that the dielectric properties in the
prismatic and pyramidal sectors of rapidly grown crys-
tals are different. The most noticeable difference is
observed in the domain contributions, which indicates
different quantities of growth defects and background
impurities in different growth sectors. The domain con-
tribution in the prismatic sector is rather high, and a
well-defined maximum of tanδ is observed in the region
of domain freezing. In the pyramidal sector, the domain
contribution is suppressed, and the tanδ has much a
lower maximum at TF .

Close to TC, the temperature dependences of the
inverse permittivity in the pyramidal and prismatic sec-
tors are also different. In the prismatic sector, the hys-
teresis value is lower, and the dependence resembles
the dependence of a classical crystal. In the pyramidal
sector (where the domain contribution is considerably
suppressed), the slope of the temperature dependence
of 1/εC in the polar phase increases, and 1/εC deviates
from an approximately linear dependence. This may
indicate a different mechanism of the formation of the
temperature dependence of the domain contribution to
permittivity (Fig. 3a).

Different defect structures in different sectors of a
crystal are also confirmed by the dielectric-loss data.
Figure 4 shows a portion of the temperature depen-
dence of tanδ in the vicinity of room temperature. At
room temperature, the value of tanδ is 85 × 10–3 in the
pyramidal sector of a rapidly grown crystal, whereas in
the prismatic sector of a rapidly grown and a traditional
crystal, it is 3 × 10–3 and 1 × 10–3, respectively. This
result shows that electrical conductivity in the pyrami-
dal sector of a rapid crystal exceeds the value in the
pyramidal sector of a traditional crystal by more than an
order of magnitude. Nominally pure KDP crystals have
low dielectric losses at room temperature, while in
doped KDP crystals, the value of tanδ is substantially
higher [19]. In this case, the losses due to conductivity
are especially high in the high-temperature region of
the paraphase [6]. This was really observed in the pyra-
midal sector of a rapidly grown crystal, which showed
the high concentration of defects in this crystal.

The data on domain contribution, dielectric losses in
the vicinity of room temperature, and the formation of
a hysteresis in the vicinity of the phase-transition point
indicate the fact that the characteristics of the prismatic
sector in a rapid crystal are closer to the classical crystal
than the characteristics of the pyramidal one. This leads
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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to the conclusion that the prismatic sector of a rapid
crystal has a lower concentration of defects than the
pyramidal one.

We mean here, first and foremost, those defects that
interact with domain walls and influence their mobility,
because the dielectric measurements allow one to
extract the data on those defects that affect the domain
contribution to permittivity.

It is also interesting to compare the results obtained
with a classical crystal, in which the weakly developed
prismatic sector has a higher defect concentration than
the pyramidal one [20]. Our dielectric measurements
showed that, in a rapidly grown KDP crystal, the pyra-
midal sector has more defects than the prismatic one. In
the traditional growth method, the background impuri-
ties are absorbed mainly by the prism, thus forming
numerous defects and blocking its growth [11]. In the
rapid growth method, background impurities are dis-
tributed more uniformly over both sectors, thus increas-
ing the defect concentration in the pyramid and
decreasing it in the prism. It is the incorporation of the
smaller amount of background impurities into the
prism that results in the efficient development of this
sector in rapidly grown crystals.

CONCLUSIONS

Dielectric measurements show that the rapid growth
method gives rise to a certain increase in the concentra-
tion of structural defects in KDP crystals, which
reduces the mobility of domain walls and, hence, influ-
ences the suppression of the domain contribution to
permittivity. The value and form of the domain contri-
bution can serve as a measure of the “purity” of KDP
crystals containing growth and impurity defects.

It is shown that the dielectric properties in different
sectors of a KDP single crystal are different. Unlike in
a classical KDP crystal, the prismatic sector in rapidly

240220

0

0.15

300260 280
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Fig. 4. Temperature dependence of the tangent of dielectric
losses for (1) the pyramidal sector of a traditionally grown
paraelectric KDP crystal and the (2) pyramidal and (3) pris-
matic sectors of a rapidly grown paraelectric KDP crystal at
the temperature close to room temperature.
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grown KDP crystals has a lower concentration of
defects than the pyramidal one.
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Abstract—The surface morphology and the structure of porous germanium layers obtained by chemical etch-
ing of n-type single-crystal Ge(111) substrates with their subsequent annealing in hydrogen atmosphere are
studied by high-resolution X-ray diffractometry. It is established that upon etching a 1.5 to 2.0-µm-thick porous
germanium layer is formed, which contains quasi-ordered microinhomogeneities in the form of elongated pits
with characteristic dimensions of 1 µm and an average distance between them of 3–4 µm. The layer bulk has
pores with radii ranging within 25–30 nm and nanocrystallites with an average size of 10 nm, with the average
porosity being 56%. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

High-resolution X-ray diffractometry (HRXRD) is
widely used for studying the real structure of crystals,
thin subsurface layers, multilayer heterosystems, etc.
[1, 2]. Traditionally, the analysis of rough surfaces is
performed by X-ray reflectometry [2]. The possibility
of determining the relief and roughness of the surfaces
of perfect single crystals by the method of triple-crystal
X-ray diffractometry (TCXRD) was first studied theo-
retically in [3] and used experimentally in [4]. How-
ever, the rapid development of various technologies of
surface treatment, the use of electron microscopy,
X-ray reflectometry, and atomic force microscopy to
some extent postponed the study of the surface mor-
phology by X-ray diffraction methods.

The great interest in newly synthesized porous
materials in recent decades is associated, first and fore-
most, with the discovery of photoluminescence in the
visible range of the spectrum of silicon containing
pores of nanometer dimensions (nanopores), which
gave new impetus to the development of X-ray diffrac-
tion methods for studying the structure of porous films
and surface microrelief [5–11]. It should be indicated
that the possibilities provided by X-ray reflectometry at
the grazing angles of the radiation incidence onto the
sample surface become rather limited for surfaces with
roughness of micron dimensions because of the spread-
ing and weakening of the reflected beam. In the Bragg
scattering of the X-ray radiation, the incident beam
forms angles with the surface equal to several tens of
degrees, which is sufficient for the solution of the above
1063-7745/03/4802- $24.00 © 20326
problem. It was established [10] that the primary beam
used for studying porous silicon layers of the thick-
nesses of the order of several microns is rather spread,
which can be used for characterization of pores with a
size of several nanometers. The possibility of using
high-resolution X-ray diffractometry for characteriza-
tion of porous structures with pores having dimensions
of the order of several microns has not been studied as
yet. In recent years, such structures have been obtained
by various technologies [11–13]. Thus, it was shown
[11] that the formation of porous germanium layers by
chemical (stain) etching was accompanied by the
appearance of a large-scale relief responsible for the
formation of rocking curves with nontraditional shapes.

Porous germanium layers attract the considerable
attention of numerous researchers [12, 13] because they
provide the formation of nanocrystals. Since the effec-
tive masses of the carriers in germanium are rather
small, the quantum-dimensional effects in germanium
nanocrystals should manifest themselves at consider-
ably larger crystallite dimensions than in nanocrystals
of other semiconductors [13]. Moreover, the technol-
ogy of obtaining nanocrystals of elemental semicon-
ductors is considerably simpler than that of multicom-
ponent ones. It should also be indicated that, in this
case, chemical etching has a number of advantages;
namely, it allows one to use the initial germanium of a
given quality, orientation, and conductivity type and
also provides the formation of layers with controllable
thickness and porosity. This method also agrees well
with the modern technologies used in microelectronics.
003 MAIK “Nauka/Interperiodica”
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The present article considers the possible use of
high-resolution X-ray diffractometry for characteriza-
tion of the microrelief and structure of porous layers
and also the specific features of the rocking and triple-
crystal XRD curves observed in [11]. The experiments
were made on chemically etched (stain etching) and
thermally annealed Ge(111) single crystals. The results
obtained are compared with the scanning electron and
atomic force microscopy data.

SAMPLES AND METHODS 
OF STUDY

Porous layers were obtained by using chemical
(stain) etching of samples in the HF : H3PO4 : H2O mix-
ture (in the proportion 34 : 17 : 1) [11]. The initial sub-
strates were n-type (111)-oriented single-crystal ger-
manium wafers with a conductivity of 4.6 Ω cm. The
porous layers to be studied were formed upon 3-h-etch-
ing under illumination with an incandescent lamp. The
samples thus obtained were broken into two parts, of
which one was subjected to 30-min thermal annealing
in a hydrogen atmosphere at 600°C, whereas the other
was left intact in order to be used as a standard for the
comparison with the treated part. Annealing was used
for passivation of dangling bonds and removing possi-
ble stresses at the interface with the porous surface.
According to the already published data, our estimates,
and the scanning electron microscopy data, the temper-
ature of 600°C (the optimum temperature for stress
relaxation) still cannot give rise to any structural
changes of the pores (their collapse and the aggregation
of nanocrystals accompanied by considerable changes
in their dimensions). Being illuminated with natural
light, a porous layer thus formed on the sample surface
was, in fact, a slightly scattering but specularly reflect-
ing transparent film whose color changed from brown-
ish to silver upon annealing.

X-ray diffraction experiments were performed on a
TRS-1 triple-crystal X-ray diffractometer controlled by
a personal computer via a programmed MATEX con-
troller. The radiation source was a linear projection of
the focal point of a 1.1-kW X-ray tube with a copper
anode. The X-ray beam was formed by a slit single-
crystal silicon monochromator with a triple 111 reflec-
tion and 2.0- and 0.3-mm-wide exit collimating slits in
the vertical and horizontal directions, respectively. To
study the Ge(111) reflection, we used a quasi-disper-
sionless arrangement of the crystals (n, –m) and (n, –m, n)
in a double- and triple-crystal configuration for record-
ing the rocking and triple-crystal XRD curves, respec-
tively. The rocking curves were measured at the open
slit placed before the detector by a θ/2θ scan. The tri-
ple-crystal XRD curves were recorded with the aid of a
plane Si(111) crystal analyzer. The scattered-intensity
distribution in the vicinity of the reciprocal-lattice point
Ge(111) was recorded in the ω-scan mode.
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
EXPERIMENTAL RESULTS 
AND DISCUSSION

Rocking Curves

Figure 1 shows the double-crystal rocking curves
R(α) from porous germanium samples prior to
(curve 1) and upon (curve 2) annealing in a hydrogen
atmosphere and also the curve for the initial substrate
(curve 3), where α = ϑ  – ϑB is the angle of the sample
rotation with respect to the Bragg angle ϑB = 13.64°.
The width of the rocking curve from the sample with
the porous germanium layer was 19′′  prior to annealing,
and 17.8′′  after it. The latter value was practically equal
to the half-widths of the rocking curves obtained for the
initial substrate and calculated for an ideal Ge(111) sin-
gle crystal, 17.5′′  and 17.3′′ , respectively. The calcula-
tions were performed based on the dynamical theory of
scattering with due regard for dispersion and the convo-
lution of the rocking curves of the sample and the crys-
tal monochromator. The rocking curves from the sam-
ple prior to and upon annealing have two symmetrically
located (with respect to the angle α = 0) regions of addi-
tional diffraction scattering in the vicinity of the angles
α0 ≈ ±20′′  and α0 ≈ ±28′′ . Upon annealing (curve 2),
the scattered intensity was almost two times lower than
that of curve 1 obtained prior to annealing in the vicin-
ity of the exact Bragg angle and slightly increased at
angles |α| ≥ 50′′ .

Comparing the data obtained and those indicated in
[5, 6], we see that a porous-germanium film is formed
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3

4

5

6
logR

α, arcsec

1
2

3
4

Fig. 1. Double-crystal rocking curves for a Ge(111) sample
with the porous surface layer (1) prior to and (2) upon
annealing, (3) a Ge(111) sample prior to etching, and (4) the
rocking curve calculated with due regard for the correlation
in defect location.
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on the surface, but the pore parameters and the crystal-
lite dimensions and their deformation differ from those
in porous silicon films. Diffuse scattering in the porous
structure in our case is much stronger and is localized
in the vicinity of the exact Bragg angle. This indicates
that the major scattering objects are rather large and
have the characteristic dimensions r ≈ λ/2 |α0 |cosθB,
which are approximately of the order of a micron. The
absence of a noticeable diffraction maximum from the
film and the broadening of the rocking-curve maximum
shows that the scattering objects are only partly coher-
ent with respect to one another and the substrate. This
is confirmed by the fact that the diffraction reflection
from the crystals with the porous-germanium layer is
lower by about 10–15% than the diffraction reflection
from the nonetched sample. This indicates the forma-
tion of a layer that is amorphous with respect to X-ray
radiation (hereafter referred to as an X-ray-amorphous
layer). Earlier, X-ray reflectometry data showed [11]
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Fig. 2. Map of the scattered intensity distribution in the
vicinity of the 111 reciprocal-lattice point for porous ger-
manium upon annealing.
C

that the average density of the porous germanium layers
is about 40% of the substrate density, whereas its thick-
ness is about 1.5–2.0 µm. However the data obtained
are too scarce to construct the model of surface mor-
phology.

Triple-Crystal X-ray Diffractometry

To obtain more detailed information on the structure
of porous germanium layers, we measured the intensity
distribution of diffraction scattering in the vicinity of
the 111 reciprocal-lattice point by triple-crystal X-ray
diffractometry. The two-dimensional distribution of the
I(qx, qz) intensities was obtained by recording a series
of triple-crystal XRD curves measured in the angular
ranges of the sample and analyzer rotation ±450′′  in the
ω-scan mode. Figure 2 shows the 111 reflection for the
annealed sample, where qx = k0(2α – ∆θ)sinθB, qz =
k0∆θcosθB, and k0 = 2π/λ, where λ is the radiation
wavelength. One can clearly see the dynamical bands in
the narrow regions in the vicinity of the lines qz =
−  (the apparatus band A associated with the
use of the crystal analyzer with a single reflection) and
qx = 0 (the Bragg scattering B localized along the sur-
face normal of the crystal). It should be indicated that
the intense small-angle scattering S along the qz =

 line could not be detected if, at the given set-
ting of the crystals, one uses a triple-reflection slit
monochromator and a highly perfect single crystal as a
sample. In the general case of such scattering, it is asso-
ciated with both defects in the crystal lattice [14] and
the structure of the sample surface [10]. The contours of
equal intensities in the form of concentric circumfer-
ences around a reciprocal-lattice point indicate diffuse
scattering D from small defects. It was discovered [11]
that such defects in these samples are the pores with an
average radius of 30 nm at the layer porosity P = 56%.
The distinctive feature of this intensity distribution is
the presence of rather narrow weak coherent diffuse
(CD) bands symmetric with respect to the line qx = 0.
On the whole, the map of the intensity distribution
obtained upon etching is analogous to the map shown
in Fig. 2, and, therefore, it is not given here.

Thus, the porous germanium layers studied have a
rather complicated structure and contain two types of
defects—microinhomogeneities and nanopores. These
defects give rise to diffuse scattering represented in
Fig. 2. To construct the model of subsurface porous
germanium layers, we analyze the intensity distribution
in several sections of a reciprocal-lattice point.

The triple-crystal XRD curves in the section of the
reciprocal-lattice point along qx for a porous germa-
nium layer prior to annealing (curve 1) and after it
(curve 2) and for the initial substrate (curve 3) are
shown in Fig. 3a (analyzer angle ∆θ = 0, ω-scan mode).
Since the angular resolution of a triple-crystal X-ray
diffractometer is much higher than that of a double-

qx θBcot

qx θBcot
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crystal one, the diffuse scattering on the tails of the dif-
fraction maximum in the ω-scan mode (Fig. 3a) is more
distinct than in Fig. 1. This partly coherent diffuse scat-
tering manifests itself as two humps that are symmetric
with respect to the central Bragg maximum at the devi-
ation angles of the sample α0 ≈ ±16′′  prior to annealing
(curve 1) and α0 ≈ ±23′′  after it (curve 2). The addi-
tional maxima are also observed on the ω-scan curves
at other nonzero positions of the analyzer (Fig. 4). It
should be indicated that similar features are also
observed in systems possessing a short-range order in
the arrangement of the scattering objects along the
crystal surface characterized by the average distance L
between these objects and a certain length of the longi-
tudinal correlation [5, 7, 11, 15].

The quantitative characterization of the morphology
and the surface structure requires the establishment of
the causes that give rise to the appearance of diffuse
scattering. First, it is small-angle scattering associated
with a certain order in the arrangement of the pores and
microinhomogeneities along the sample surface. Sec-
ond, it is the contribution to scattering that comes from
crystallites that are incoherently related to the substrate
matrix. Therefore, one has to take into account the
shape and mosaic distribution of such crystallites. One
more cause of diffuse scattering is the deformation in
the subsurface layers of crystallites associated with the
surface-tension forces at the oxide–crystallite and sec-
ond-phase–crystallite interfaces and also the existence
of elastically stressed regions at the porous-germa-
nium–germanium substrate interface. The appearance
of diffuse scattering by the latter mechanism is demon-
strated by Fig. 3a. Upon thermal annealing, the occur-
rence of reduction reactions results in stress relaxation
and their more uniform distribution along the surface.
As a result, one observes a reduced intensity and an
increased angular distance |α0 | ~ λ/L between the dif-
fuse-scattering maxima (cf. curves 1 and 2 in Fig. 3a),
which confirms the conclusions drawn from the rocking
curve data.

Measuring the pure Bragg scattering along qz, one
can determine the slightest deformations in the subsur-
face layer of the sample and extract information on the
crystalline objects coherently related to the sample
matrix. The triple-crystal XRD curves were recorded in
the θ/2θ scan mode and are shown in Fig. 3b. In fact,
this scan mode provides a measurement of only the
coherent component of the total scattering from the
chosen samples, whereas the contribution of diffuse
scattering is negligible. It is seen from Fig. 3b that the
widths of all the Bragg maxima are almost the same and
are equal to 17.7′′ , the value corresponding to the value
calculated in the geometry chosen for the experiment.
However, the deviation from the exact Bragg angle
results in some characteristic features in curves 1 and 2:
the diffraction-reflection intensities in the region of the
negative α values are higher than at α > 0. Moreover,
the scattering intensities at the tails of curves 1 and 2
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 3. Triple-crystal XRD curves for the section of the 111
reciprocal-lattice point of a Ge(111) sample at (a) qz = 0 and
(b) qx = 0: (1) upon etching, (2) upon etching and subse-
quent thermal annealing, and (3) prior to etching.
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Fig. 4. Triple-crystal XRD curve from a Ge(111) sample
with the porous surface layer prior to annealing obtained in
the ω-scan mode at a fixed position of the crystal analyzer
∆θ = 160′′ . BP denotes the Bragg peak, PPA denotes the
pseudopeak of the analyzer, and S denotes the small-angle
scattering recorded at the position of the monochromator
pseudopeak. Partly coherent diffuse scattering from micro-
inhomogeneities is recorded as two satellites (1 and 2) on
both sides of the Bragg peak BP.
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Fig. 5. Triple-crystal XRD curves from a Ge(111) sample with the layer of porous germanium recorded in the θ-scan mode (a) prior
to and (b) upon annealing in a hydrogen atmosphere. Dash lines show scattering from a Ge(111) sample prior to etching. On the
left, scattering at the deviation angle α = –60′′  is shown; on the right, scattering at α = 60′′ .
from the samples with porous germanium layers are
much lower than the corresponding values on the curve
from the initial substrate (cf. with curve 3 in Fig. 3b).
Thus, in porous germanium layers, only some crystal-
lites are coherently related to the substrate matrix.
A considerable part of the porous germanium layers do
not participate in the Bragg scattering because they
have no scattering atoms, i.e., because of the formation
of pores at the sites of scattering atoms. A similar result
was also obtained in the study of porous silicon films
[6] despite the fact that they had different morphology
and a more perfect structure of nanocrystallites.

The intensity measurements in the vicinity of the
reciprocal-lattice point in θ-scan allow one to compare
the contributions of various components to the total
scattering. Figure 5 shows the corresponding triple-
crystal XRD curves I(∆θ) at the angles α of the sample
deviation from the exact Bragg angle equal to α = ±60′′ .
Each of the curve sections has three maxima: a Bragg
peak at ∆θ = 2α, a pseudopeak at ∆θ = α, and a diffuse-
scattering peak whose shape, angular position, and
intensity are determined by the type and number of
defects. It is seen that, in this scan mode, the triple-crys-
tal XRD curve for the initial Ge(111) substrate (curve 3)
has only one Bragg maximum, whereas no noticeable
C

diffuse-scattering peak and pseudopeak are observed.
In this case, the X-ray scattering corresponds to scatter-
ing from a perfect crystal. At the same time, for the
sample with a porous germanium layer, the intensity of
the Bragg peaks in the vicinity of the negative ∆θ
angles exceeds by a factor of 3–4 the intensity of the
Bragg peaks on the side of the positive angles (Figs. 5a,
5b). This confirms the results shown in Fig. 3b and
proves that the porous germanium layer formed upon
chemical etching has a lattice parameter exceeding that
of the substrate. The average deformation obtained
from the angular dependence of the reduced intensity
function α2I(2α) [1] is ∆d/d ≈ 4 × 10–4. This deformation
is determined by the capillary phenomena and surface-
tension forces in various substances, which are either
the products of the chemical reactions or are adsorbed
from the atmosphere upon sample preparation.

It is seen from Fig. 5 that, both prior to and upon
annealing, the triple-crystal XRD curve from porous
germanium possesses a rather intense diffuse-scattering
peak in the vicinity of the angle ∆ϑ ≈ 2α sin2θB, which
corresponds to the scattering from randomly distributed
spherical defects [1]. As a result of annealing, the
θ-scan curves show the following considerable
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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changes: the Bragg scattering peak becomes less asym-
metric; the pseudopeaks become more pronounced,
whereas their intensities simultaneously increase (espe-
cially in the range of positive angles); and the diffuse
scattering in the vicinity of the reciprocal-lattice point
is symmetrized and slightly increases. All these facts
indicate that annealing results in the partial removal of
the stresses, an increase in the number of coherently
scattering nanocrystallites or their scattering power,
and also in the formation of more pronounced inter-
faces between the pores and crystallites. Since the dif-
fuse peak remained almost unchanged, we can assume
that it is associated with scattering by the objects
located in the layer and not with the stresses at the crys-
tallite surface.

Another feature that distinguishes the triple-crystal
XRD curves (Fig. 5) from those of porous germanium
layers is the existence of the maximum at the position
of the monochromator pseudopeak, which is practically
absent on the curve from the initial substrate (note the
noticeable intensity distribution along qz =  in
Fig. 2). As was shown in [10], this results from the
small-angle scattering of the X-ray beam with an
almost è-like angular profile in a medium with pro-
nounced local density variations. The magnitude of this
effect is proportional to the density gradient in the
neighboring regions and the number of such regions.
Assuming that chemical etching results in the forma-
tion of microinhomogeneities on the surface, we obtain
that modeling of the angular dependence of the small-
angle scattering intensity (peak S) yields the following
value of the average dimension of microinhomogene-
ities D ≈ 0.8 µm (see Figs. 6, 7b).

The above results show that the main characteristic
feature of scattering from the samples with porous ger-
manium layers is the formation of pronounced addi-
tional maxima on the rocking curves (Fig. 1) and two
narrow bands parallel to the Bragg-scattering band
qx = 0 on the map (Fig. 2) and also of the maxima on the
corresponding sections (Figs. 3a, 4). These features are
associated with diffuse X-ray scattering from partly
ordered noncrystalline regions located along the sur-
face which are, in fact, the pores in the bulk, cracks, or
etch pits on the sample surface. Therefore, this effect
can be used for studying surface morphology.

Diffuse Scattering from the Blocks on the Sample 
Surface Which Are Amorphous for X-rays

In the kinematical approximation, the scattering
amplitude of such a structure is represented by the sum
of the scattering amplitudes of the crystalline part of the
sample and the defects located in it:

(1)

where S = k1 – k0 is the scattering vector, Vc is the sam-
ple volume, Vd is the sum of the defect volumes, fc  and

qx θBcot

A S( ) f c iSRn( )exp
Vc Vd–

∑ f d iSrn( ),exp
Vd

∑+=
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fd are the scattering factors of atoms and defects in the
crystal, and Rn and rn are the atomic coordinates of the
crystalline part of the sample and the part with defects,
respectively. Now, adding to and subtracting from
Eq. (1) the term equal to the scattering amplitude from
the crystalline regions with the total volume Vd [16], we
obtain

(2)

where

Here, AB is the amplitude of the Bragg scattering from
the defect-free crystal, which has a nonzero value only
in the small vicinity of the reciprocal-lattice points, and

A S( ) AB S( ) Ad S( ),+=

AB S( ) f c iSRn( ),exp
Vc

∑=

Ad S( ) f d iSrn( )exp f c iSRn( )exp–[ ] .
Vd

∑=

(a) 1 µm

(b)

2 
µm

2 µm

Fig. 6. Images of the surface of a Ge(111) sample upon
etching and subsequent thermal annealing in a hydrogen
atmosphere: (a) electron microscopy image at the incidence
angle 30°, (b) atomic force microscopy image from a 14 ×
14 µm surface region.
3
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Fig. 7. (a) Section of the scattered intensity along qz = 0 in the vicinity of the 111 reciprocal-lattice point for a porous germanium
sample upon etching and (b) the pseudopeak intensity as a function of the rotation angle of an annealed porous germanium sample;
(1) experiment, (a) calculation with due regard for the partial correlation in the defect location (2), (b) calculation with due regard
for diffuse scattering in the vicinity of the zeroth reciprocal-lattice point (2), and (3) pseudopeak intensity for the initial substrate.
Ad  is the amplitude of diffuse scattering from defects.
It is assumed that the defects do not distort the crystal
lattice. If the defects are either empty pores or etch pits
on the surface, the scattering factors in Eqs. (1) and (2)
are zeroes, fd = 0.

Now, assume that all the defects have the same
shape and volume. Then Rn = rm + , where rm  is the
position of the mth defect with respect to the origin and

 are the positions of the atoms with respect to the
defect center. The intensity of diffuse scattering due to
the presence of etched regions in the porous layer is
determined by the expression

(3)

where C is a constant, S = h + q, h is the reciprocal-lat-
tice vector, and G(q) is the Fourier transform of the
formfactor of an individual defect. The function

(4)

is determined by the defect distribution over the crystal.
Now, assume that pores are spheres of radii r and that
the formfactor is G(q) = 3(sinβ – βcosβ)/β3, where β =
qr. For the regions that have a parallelepiped shape with
the characteristic dimensions ax , ay, and az, it is conve-
nient to use the representation that takes into account
the possible scatter in the dimensions and spreading of
the interfaces:

(5)

where g(qi) = 1/[1 + (0.36aiqi)2].

rn'

rn'

I qx qz,( ) C F S( ) G q( ) 2
qy,d∫=

F S( ) iS rm rn–( )[ ]exp
n

∑
m

∑=

G q( ) 2
g qx( )g qy( )g qz( ),=
C

If the defects are distributed randomly, F(S) = N,
where N is the total number of such defects in the illu-
minated volume of the sample. In this case, the angular
dependence of the diffusely scattered intensity (3) is
determined only by the pore nature. However, at high
porosity (P ≥ 50%) and an average distance between
the pores, L, comparable with their dimensions, the for-
mation of a certain short-range order in the pore distri-
bution is possible. A similar situation also takes place if
chemical etching along certain highly symmetric direc-
tions results in the formation of macroscopic elongated
etched regions of submicron dimensions (Fig. 6). In
this case as well, it is possible to single out a system of
parallel pits on the surface arranged almost periodically
(with a certain interval) along the surface. If the defects
are periodically arranged along the x axis, then

(6)

where ξ = (1/2)qxL, Nc is the number of defects in the
surface region where the periodicity is observed, and N0
is the number of such regions. It is also assumed that
these regions do not correlate with one another.

In the general case, one has to perform statistical
averaging in Eq. (4) with due regard for the mutual cor-
relation function in the pore distribution, Cmn, and pore
orientation. For the Gaussian distribution, we have

where L|| and L⊥  are the longitudinal and transverse cor-
relation lengths. As a result, some additional symmetri-
cally located weak broad maxima are formed on
diffuse-scattering curve 3. Their angular position at

F qx( ) N0 Ncξ( )/ ξ( )sinsin[ ] 2,=

Cmn ρm ρn–( )||
2
/L||

2
–[ ] zm zn–( )2

/L⊥
2

–[ ] ,expexp=
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qz = const is determined by Eq. (6) under the condition
qxL = 2πj, where L is the average distance between the
centers of the neighboring pores along the surface and
j are the integers (jL ≤ L||, ⊥ ). If α1 is the angular position
of the first maximum with respect to the Bragg peak,
the average distance between the defects is L ≈
λ/2α1sinϑB.

The intensities of the additional maxima on partly
correlated components of the total diffuse scattering are
proportional to the squared L||/L ratio, whereas their
widths are inversely proportional to this ratio. The for-
mation of these maxima is most pronounced at such
dimensions ax and az at which the angular half-width of
the scattering function |G(q)|2 at a defect approximately
coincides with the position of the first maximum, i.e., at
L ≈ 2.3ax .

Figure 7a shows (on a linear scale) the experimental
section of the scattered intensity along the chemically
etched Ge(111) surface in the vicinity of the reciprocal-
lattice point (solid curve 1) and the data calculated by
Eq. (3) at qz = 0 with due regard for the correlation
between the defects in the form of rectangular etched
regions on the surface (dash curve 2). The Bragg reflec-
tion from the substrate was calculated within the theory
of dynamical diffraction with due regard for absorption
in the porous germanium layer. The best fitting of the
calculated and experimental curves is attained at the fol-
lowing parameters: ax ≈ 1 µm, the etching depth
az ≈ 0.6ax, the average distance between these regions
L ≈ 3.8 µm, and the longitudinal correlation length
L|| ≈ 7.6 µm.

In the double-crystal scheme, the diffuse-scattering
intensity is determined by summing up the intensities
over all the scattering angles at each fixed position of
the crystal

(7)

Figure 1 shows the rocking curve for a sample of
porous germanium upon annealing (curve 4) calculated
by Eqs. (3)–(7) for the defects in the form of elongated
pits on the surface at the model parameters ax ≈ 0.8 µm,
az ≈ 0.6ax and the average distances between the defects
L ≈ 2.6 µm and L|| ≈ 5 µm. Despite the simplicity of the
model used, the values obtained from the analysis of
the rocking curve (Fig. 1, curve 4) and the section along
qx (Fig. 7a, curve 2) are close to the data obtained from
the analysis of the electron microscopy image of the
porous germanium surface shown in Fig. 6a.

Some decrease in ax upon annealing is explained by
the restoration of the crystal structure in the amor-
phized walls of etched pits on the porous germanium
surface.

As was indicated above, the existence of a porous-
germanium layer results in a dramatic (by almost two
orders of magnitude) increase in the pseudopeak inten-
sities on triple-crystal XRD curves in comparison with

Ids α( ) I qx qz,( ) ∆ϑ .d∫=
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those on the curves obtained from the initial substrate
(Fig. 7b). This increase is associated with the angular
spread of the X-ray beam during its passage through the
layer of amorphous germanium and caused by diffuse
scattering from the defects and its subsequent reflection
from the perfect region of the sample. Figure 7b shows
the angular dependence of the peak intensity provided
by diffuse scattering in the direction toward the zeroth
reciprocal-lattice point [see Eq. (5) at h = 0]. The calcu-
lations were performed at the model parameters
obtained above for the annealed porous germanium
layer. It is seen that the angular behavior of curves 1 and
2 and their widths (68′′  and 74′′ ) are practically the
same, which confirms the validity of the assumption
made. In this case, the contribution from nanopores to
the scattering intensity is much less than the contribu-
tion from the etched regions of micron dimensions and,
therefore, is ignored. The intensity of the pseudopeak
from the initial highly perfect Ge(111) substrate (curve 3)
is low. This proves that the mechanism of such scatter-
ing resulting from the X-ray diffraction from the exit
slit of the collimator considered in [10] is much less
probable than the small-angle diffuse scattering from
the large-scale roughness of the porous germanium sur-
face. The roughness is formed by the etched regions of
micron dimensions separated by hillocks at the germa-
nium surface.

In the model used, the contribution of diffuse scat-
tering that comes to the inner structure of microblocks
to the total diffuse-scattering intensity is insignificant
despite the pronounced thickness (1.5–2.0 µm) of the
porous germanium layer. This is explained, first and
foremost, by the number, shape, and dimensions of the
scattering objects. Based on the rocking and triple-crys-
tal XRD curves, it is natural to assume that the microb-
locks revealed consist of nanopores and nanocrystals
with the average dimensions r ≈ L(3P/4π)1/3 and dc ≈
2r[K(L/r) – 1], respectively, where P is porosity. The
coefficient K is determined by the symmetry of the pore
environment (K ≈ 0.87 and 0.57 for the cubic and hex-
agonal close packings of pores). The bulk porosity in
the porous germanium layer is determined by the rela-
tionship P ≈ (4π/3)(r/L)3, where L ≥ 2r. With due regard
for the angular position (α ≈ ±1000′′ ) of weak humps on
the experimental rocking curves obtained from the
annealed porous germanium [11], we have L ≈ 65 nm,
whereas the average pore radius and the characteristic
dimension of nanocrystallites are 25–30 and ~10 nm,
respectively. The porosity of the porous germanium
layer was determined by the reflectometry method and
equals 56%. These X-ray diffraction data are consistent
with the Raman scattering data (for details see [11]).

CONCLUSIONS

Thus, our experiments showed that high-resolution
X-ray diffractometry allows one to study such struc-
tural characteristics of a porous germanium layer as the
presence of micro- and nanoinhomogeneities, the
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degree of their deformation and coherence with the
substrate matrix, etc. The analysis of the results
obtained lead to the following conclusions. Chemical
(stain) etching of the Ge(111) surface results in the for-
mation of a 1.5 to 2.0-µm-thick porous germanium
layer. The surface of this layer has a system of elon-
gated etch pits with a width of ~1 µm, depth of ~0.6 µm,
and average distance between the parallel pits of ~3–
4 µm. The distribution and orientation of these pits
show certain short-range order with a correlation length
of ~5–8 µm. The pits are separated by hillocklike
ledges, which, being projected onto the (111) surface,
have a shape close to regular triangles. The bulk of hill-
ocklike ledges of porous germanium contains pores
with characteristic dimensions of ~25–30 nm and a dis-
tance between the pore centers of ~65 nm. The average
porosity equals 56%.
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Abstract—To elucidate the mechanism of nucleation and growth of filamentary crystals on the bipyramid faces
of KH2PO4 (KDP) crystals from solution with the addition of Al(NO3)3 · 9H2O, the growth rates and transverse
dimensions of the crystals were measured at various supersaturations, temperatures, and impurity concentra-
tions. The dependences obtained can be interpreted with due regard for the competition between the intrinsic
and impurity particles in the presence of Cabrera–Vermilyea stoppers. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

At a certain critical supercooling of the solution
with the addition of Al(NO3)3 · 9H2O, one observes
nucleation and growth of filamentary KDP crystals on
the bipyramid faces [1]. Below we report the results of
a detailed study of the influence of impurity on the
growth of filamentary KDP crystals at high impurity
concentration and supersaturations in the solution. The
effect of low impurity concentrations at low supersatu-
rations was thoroughly studied by measuring the veloc-
ity of step motion [2]. The dependence of the velocity
of the step motion over the {100} KDP faces on super-
saturation in the presence of Cr3+ ions can be attributed
to the action of the impurity unreliably adsorbed at the
terraces and kinks. The effect of an impurity on the
growth of KDP crystals was also studied using scan-
ning atomic force microscopy [3]. We observed the step
motion at a constant supersaturation and the change in
the step shape upon the addition of Fe3+ ions during the
growth process. As a consequence, the step profile
acquired a wavy profile and the surface ceased to grow,
which may be caused by the Cabrera–Vermilyea mech-
anism.

The filamentary KDP crystals are convenient
objects for studying the effect of impurity on crystal
growth from solution, because the impurities produce
practically no effect on the solution state during growth
and have a very small growing surface and high growth
rates. The measurements of the growth rate and the
transverse dimensions of filamentary crystals allow one
to elucidate the mechanisms of crystal formation and
the action of the impurity effect and impurity trapping.

EXPERIMENTAL

The measurements were performed in a glass cell in
which the temperature was kept constant with the aid of
1063-7745/03/4802- $24.00 © 20335
an ultrathermostat with an accuracy of ±0.1 K. A cylin-
der with transparent base (window) can be screwed into
the cell cover in such a way that the window is located
in the solution. A ~5 × 2 × 2-mm3 seed crystal was fixed
at a distance of 2–3 mm from the plane of the cylinder
bottom, with the z axis of the crystal being horizontal.
The solutions were prepared from distilled water and
analytically-pure-grade materials. First the impurity
and then the basic substance were dissolved in a certain
weight of water. Upon filtration, the overheated solu-
tion was poured into the cell, which was then closed
with the cover containing the seed. The latter was sub-
merged into the solution during its cooling to the nec-
essary temperature.

In several minutes, tapered ledges were formed at
the faces of the seed bipyramid. Then, filamentary crys-
tals grew from these ledges along the z axis. Using a
microscope with an ocular micrometer, we measured
the displacement of the vertex of a chosen filamentary
crystal with the cross section size 20–50 µm per one
minute and calculated the growth rate. Such measure-
ments were performed for 20–30 min on each crystal.
The growth rates were different, but no monotonous
change was observed during crystal growth. Therefore,
we determined the average growth rate of the filamen-
tary crystal during the whole observation time. Then,
the confidence interval was calculated. The transverse
dimensions were measured on several tens of grown fil-
amentary crystals in each experiment and were then
averaged.

RESULTS

Three types of experiments were made: (1) those at
a constant temperature and impurity content but at dif-
ferent supersaturations, (2) those at a constant temper-
ature and supersaturation but at different contents of
003 MAIK “Nauka/Interperiodica”
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Al(NO3)3 · 9H2O in the solution, and (3) those at a con-
stant content of aluminum nitrate but at different tem-
peratures and supersaturations. The growth rates of the
filamentary KDP crystals along the z axis were mea-
sured in all the experiments, whereas their transverse
dimensions, in the experiments of the first two types
only.

Figure 1 shows the results of the measurements
made at a constant temperature, 21°C, and impurity
content, 0.7 g Al(NO3)3 · 9H2O per kg of water, but at
different supersaturations. No filamentary crystals were
formed up to a relative supersaturation of σ ≈ 0.6. At
σ > 0.6, crystals start growing with their growth rate
increasing with an increase in σ.

The average transverse dimension of the filamentary
crystals increases with an increase in σ, all the other
factors being the same (Fig. 2). The minimum trans-
verse dimensions of the filamentary crystals were in the
range 2–10 µm; the maximum dimensions, in the range
60–150 µm.

Figure 3 shows the experimental results obtained at
the constant temperature, 18°C, and the constant super-
saturation, σ = 0.85, but at different contents of
Al(NO3)3 · 9H2O. For the given σ, the growth of the fil-
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Fig. 1. Growth rate of filamentary KDP crystals as a func-
tion of relative supersaturation.
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Fig. 3. Growth rate of filamentary KDP crystals as a func-
tion of impurity concentration in the solution.
C

amentary KDP crystals begins only at an Al(NO3)3 ·
9H2O concentration of 0.5 g/kg H2O (only thick taper-
ing ledges grow at lower concentrations). With an
increase in impurity content, the growth rate also
increases, then remains constant, and, finally, drops to
zero at an Al(NO3)3 · 9H2O content of 1.2 g/kg H2O. At
concentrations higher than 0.6 g/kg H2O, no substantial
effect of the transverse dimensions of the filamentary
crystals on their growth rate was observed. With an
increase in the Al(NO3)3 · 9H2O content, the average
transverse dimension of the crystals decreases (Fig. 4).

Finally, the measurements were also performed with
a stepwise change of the temperature. The solution sat-
urated at 50°C was prepared by addition of Al(NO3)3 ·
9H2O (0.7 g/1 kg H2O); then the solution was cooled to
21°C, and a seed was introduced. The measurements
were made on an isolated filamentary crystal with a
transverse dimension of about 30 µm. The results are
shown in Fig. 5. The points were obtained by averaging
the growth rate over a 5-min interval. The error was
15%. The temperature 21°C corresponds to σ1 = 0.70.
A decrease in the supersaturation at higher tempera-
tures results in a decrease in the growth rate. At 26.5°C
(σ2 = 0.54), the filamentary crystal is tapered and stops
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Fig. 2. Average transverse dimension of filamentary KDP
crystals as a function of relative supersaturation.
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Fig. 4. Average transverse dimension of filamentary KDP
crystals as a function of impurity concentration in the solu-
tion.
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growing (like all the other crystals). With a decrease in
σ, some thick filamentary crystals split into several
thinner ones. The repeated decrease in the temperature
down to 12°C (σ3 = 1.1) gave no rise to crystal growth.
Below 12°C, the crystals start expanding rapidly either
along their length or only in the individual segments,
and new filamentary crystals (as a rule, isolated and ori-
ented along the z axis) are formed. After some time,
some of these crystals also expand, whereas some other
continue growing as thin crystals. There were also
some filamentary crystals that grew without seeds. An
increase in the temperature up to 25.5°C stops the
growth of all the crystals. The cessation of growth at a
temperature lower than 26.5°C is associated with the
formation of a certain amount of a crystalline precipi-
tate in the course of experiment, i.e., with the absence
of supersaturation.

DISCUSSION AND CONCLUSIONS

Considering the experimental results, we can sug-
gest causes of formation and growth of the filamentary
KDP crystals on a seed crystal in the presence of
Al(NO3)3 · 9H2O in the solution.

Since the dislocation-free growth of the faces of the
KDP bipyramid in a “pure” solution takes place at a
rather low supersaturation, σ = 0.29 [4], the face growth
via the formation of two-dimensional (2D) nuclei in the
range 0.5–0.95 becomes even more probable. The 2D
nucleation at the faces of the KDP bipyramid signifi-
cantly contributes to the total step density at values as
low as σ = 0.1 [5]. At σ = 0.6–0.95, this contribution
should be dominant.

This assumption is confirmed by the fact that the
surface density on the bipyramid face of the filamentary
crystals is higher than the density of the dislocation etch
pits on the z-cuts of the crystal [6]. In addition, we made a
special experiment. Using selective etching, we first deter-
mined the etching-pit density on the seed, (25 ± 4) cm–2.
Then the filamentary crystals were grown on the same
seed; their density was ~600 cm–3. Nevertheless, only
direct methods of dislocation observation can give the
answer to the question about the nature of step sources.

Upon introduction of a seed into the solution,
numerous 2D nuclei appear on the bipyramid faces.
The steps formed by these nuclei propagate over the
face. Simultaneously, the impurity molecules arrive at
the crystal surface. Their flux is proportional to the
impurity concentration in the solution. According to the
Paneth rule [7], compounds whose formation involves
Al3+ ions should be adsorbed at the KDP crystal. One
can assume that impurity islets (probably, based on
phosphate complexes) of colloidal size are formed in
front of the steps. These islets are Cabrera–Vermilyea
stoppers [8]. An expanding step encounters on its way
an ever denser row of such stoppers. The velocity of the
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
growth-step motion over the face is determined by the
expression

v  = v 0(1 – 2rc/l)1/2,

where v 0 is the velocity of a rectilinear step in the
absence of an impurity, l is the average interstopper dis-
tance, and rc is the radius of the critical nucleus. It fol-
lows from the above expression that a growth step
ceases to move if l ≈ 2rc. The longer the initially clean
surface of the face–solution contact (that is, the lower σ)
and the higher the impurity concentration, the shorter
the distance passed by the step and the smaller the
transverse dimensions of the bases of filamentary crys-
tals (Figs. 2, 4). If new 2D nuclei appear on the under-
lying layer, the following layer is formed whose dimen-
sions are limited by the area of the basic layer. The ends
of these successive layers are the side faces of a fila-
mentary crystal—the prism faces, which practically do
not grow at high impurity concentration [9]. Thus, the
bipyramid faces are divided into a set of the individual
growing regions (filamentary crystals of various thick-
nesses). Thicker crystals are formed due to merging of
the steps from several nuclei or due to the nonuniform
distribution of the impurity aggregates over the surface.
At the whisker top, the impurity aggregates are formed
less intensely because of the small area of the top and
the intense inflow of intrinsic particles. The indepen-
dence of the growth rate of the filamentary crystals
(Fig. 3) from the impurity concentration (for a dopant
content ranging from 0.7 to 1.0 g/kg of water at σ =
0.85) indicates an insignificant effect of the impurity on
the rate of nucleation on the vertices of filamentary
crystals and, what is more important, on the step veloc-
ity. This results from the fact that the growth rate is not
limited by the step velocity at high σ. Upon the addition
to the solution of Al(NO3)3 · 9H2O (1.2 g/kg H2O), no
filamentary crystals grow, because the step motion
from all the step sources ceases. The curve in Fig. 1 fits
the above pattern well. Up to σ = 0.6, no step motion is
observed and, hence, no face growth is observed either.
In the range σ = 0.6–0.8, the step velocity increases for
two reasons. First, with an increase in supersaturation
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Fig. 5. Growth-rate hysteresis in filamentary KDP crystals.
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the number of stoppers decreases because of the com-
petition between the intrinsic and impurity particles. It
is not improbable that their dimensions and the strength
of their attachment to the face also change. Second, the
dimension of the critical nucleus decreases, and, in con-
formity with the Cabrera–Vermilyea formula, the step
velocity increases. The portion of the curve at even
higher σ corresponds to the maximum step velocity (in
this case, the face becomes kinetically rough, and the
effect of stoppers becomes insignificant). Thus, the
impurity determines the nonlinear character of the
changes in the step velocity with variation of supersat-
uration and, hence, also the normal growth rate of the
filamentary crystals.

Thus, the explanation of the growth process of fila-
mentary KDP crystals from solution with the addition
of Al(NO3)3 · 9H2O requires the use of the concept of
the finite time of the formation of impurity aggregates
on the faces [10]. The competition between the intrinsic
and impurity particles is confirmed by the splitting (and
sharpening and tapering before growth cessation) of the
filamentary crystals with a decrease in the supersatura-
tion. This is explained by an increase in the stopper
density and the larger dimensions of the critical
nucleus.

As was indicated in [11], local growth occurs under
conditions of strong adsorption of the impurity accord-
ing to the Cabrera–Vermilyea mechanism and the tem-
poral dependence of adsorption. The slow adsorption is
indicated by the hysteresis of the growth rate, which
was actually observed for filamentary crystals (see
Fig. 5). Earlier, the hysteresis of the growth rate of the
faces of the KDP prism was revealed in solution with
the addition of Fe3+. The hysteresis was explained by
slow adsorption of the impurity in accordance with the
Cabrera–Vermilyea mechanism [12].

As follows from the results obtained, the following
model of the formation and growth of filamentary KDP
crystals in the presence of an active impurity seems to
be probable. A high supersaturation provides the for-
mation of a 2D nucleus. The step velocity increases
with an increase in the supersaturation and, along with
C

the impurity concentration, controls the stage of the
adsorption development on the surface in front of the
step of this impurity. Here, there exists a certain charac-
teristic time either of the impurity arrival from the solu-
tion [10] or of the formation of the aggregates of certain
active dimensions that become the step stoppers. The
suggested mechanism is consistent with the experimen-
tal results obtained in this study.
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Abstract—A statistical method for image analysis of smooth heterogeneities (with comparatively large lumi-
nance grade) is suggested. The method allows one to determine the average dimensions of image heterogene-
ities and characterize the anisotropy of their dimensions and heterogeneity of image luminance by constructing
the corresponding pointer curves. The algorithms suggested for the image analysis are tested on two types of
heterogeneities in Ba1 – xRxF2 + x crystals grown from melts by the Stockbarger method—the cellular substruc-
ture and heterogeneity on a nanometer scale. These heterogeneities are characteristic of the whole family of
nonstoichiometric fluorite M1 – xRxF2 + x phases. The analysis of the typical images proves the high efficiency of
the method of extraction of quantitative information on heterogeneities in M1 – xRxF2 + x crystals on various
scales. © 2003 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Recently, the computer image analysis of objects
obtained by various methods has begun to play an
important part in various branches of science and, in
particular, in crystal physics. Crystals often contain het-
erogeneities of various origins that can be observed on
different scales. Depending on the dimensions and ori-
gin of these heterogeneities, they can be revealed and
studied by different methods—from optical (in particu-
lar, polarization) microscopy, X-ray topography, and
high-resolution electron microscopy to intensely devel-
oping scanning probe microscopy, which allows one to
study the images of solid surfaces at a resolution close
to atomic.

Once the image of the object under study containing
the information on various types of heterogeneities is
obtained, one has to analyze it with the aim of extract-
ing information on the heterogeneity dimensions (aver-
age dimension and its scatter), the morphology of het-
erogeneities and their mutual arrangement, the pres-
ence or absence of boundaries, the degree of
homogeneity (heterogeneity) of the sample as a whole,
image symmetry, etc. [1].

Over recent decades, the theory of the analysis and
processing of images (and, in general, signals) has been
well developed. The corresponding methods are used in
modern program packages. Suffice it to mention here
the Image-Pro Plus program developed by Media
Cybernetics.

The automatic methods for measuring the dimen-
sions of the image details are especially well developed
1063-7745/03/4802- $24.00 © 0339
for images which can readily be reduced to a binary
form (two luminance levels) or images characterized by
a small luminance range. As an example, we mention
here the images of a series of single erythrocytes, eutec-
tic structures formed by regular intergrowth of various
phases, etc.

The problem becomes even more complicated if the
image heterogeneities are smooth, i.e., if the number of
the luminance grades is comparatively large. In these
cases, it is rather difficult to develop a universal method
for evaluating even such a simple characteristic as the
average dimension of heterogeneities. Therefore, one
has to develop several methods applicable to the analy-
sis of various groups of image heterogeneities.

We studied the crystals of a large practically impor-
tant family of nonstoichiometric M1 – xRxF2 + x phases
with a defect fluorite-type structure in the MF2 – RF3
systems (M = Ca, Sr, Ba and R are rare earth elements)
[2–5]. Therefore, the algorithms developed were tested
on two types of heterogeneities in Ba1 – xRxF2 + x crystals
grown from melt by the Stockbarger method. These
types of heterogeneities determine numerous important
properties of the crystals and are also characteristic of
the whole family of nonstoichiometric fluorite phases.

The scale of the first type of heterogeneities (cellular
substructure) ranges from fractions of a millimeter to
several millimeters, i.e., is a macroscopic scale. A cel-
lular substructure is formed as a result of the concentra-
tion supercooling of a multicomponent melt character-
ized by incongruent melting (i.e., melting occurring
with melt decomposition) [6–9]. This type of heteroge-
2003 MAIK “Nauka/Interperiodica”
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neity is observed in transmitted light because of the
concentration gradient of the second component in the
crystal bulk and the corresponding gradient of the
refractive index.

An example of the second type of heterogeneities
observed in M1 – xRxF2 + x crystals is the images of
atomic planes and moiré fringes observed in a high-res-
olution electron microscope [9–11]. The scale of these
heterogeneities is close to atomic.

The present study aims to design algorithms that
would provide the determination of the average dimen-
sions of heterogeneities and the characterization of the
anisotropy in their dimensions and luminance of the
image as a whole by constructing the corresponding
pointer curves.

The experimental images are digitized and input
into the computer. The corresponding information is
represented as a certain numerical matrix. Each number
of the matrix corresponds to the minimum image unit
(pixel) defining its luminance. Thus, if the luminance is
given by eight bytes of information, it is an integer from
the interval from 0 to 255, where 0 corresponds to the
zero intensity and 255, to the maximum intensity. The
algorithms for the analysis of the image heterogeneities
are based on certain operations with such numerical
matrices.

The general idea underlying the suggested algo-
rithms reduces to an analysis of the estimates of the sta-
tistical characteristics of the arrays of mean square
deviations of luminance for a sufficiently large number
of regions of a given shape and arbitrary dimensions
and orientations singled out from the image in a random
way.

DETERMINATION OF THE AVERAGE 
DIMENSION OF HETEROGENEITIES 

IN Ça1 – xRxF2 + x CRYSTALS
The simplest measure of the heterogeneity of the

image as a whole or its arbitrary portion is the mean
square deviation of the pixel luminance from the corre-
sponding average luminance. However, this character-
istic provides no information either on the dimensions
or other characteristics of heterogeneities. Therefore,
the average dimension of heterogeneities is determined
in the following way.

Consider a gray-level array and single out a rather
large number N of square regions having the same pixel
size, j × j. The position of each of these regions is cho-
sen in a random way using a generator of uniformly dis-
tributed pseudorandom numbers. Now calculate the
mean square deviation of the pixel luminance Si( j ) (i =
1, …, N) for each region. Hereafter, the Si( j ) values are
called local heterogeneities. Then, calculate the average
value M( j ) = 〈Si( j )〉  and the mean square (standard)
deviation D( j ) of the local heterogeneities Si( j ).

Let the dimension of the above regions increase at a
step of unity in the range from unity up to a certain
C

value jmax. This value is set in a way to exceed a priori
the average heterogeneity dimension. Thus, first, we
single out a series of N regions of the same dimensions
and then a series of N regions of different dimensions,
etc. For each of the series of N regions of the dimension j,
the M( j ) and D( j ) values are calculated.

Thus, we obtain jmax pairs of M( j ) and D( j ) values
for the given image. Then, construct the curves M( j )
and D( j ) (1 ≤ j ≤ jmax).

Figure 1 shows the image of the region of the crystal
of the solid solution of the composition Ba0.95Yb0.05F2.05
(5 mol % YbF3). This crystal melts incongruently (with
decomposition). In the course of the directed crystalli-
zation, the conditions are created (concentration super-
cooling) under which the growth front stops being pla-
nar and a cellular substructure is formed. In the bulk of
the solid-solution crystal, the concentration of the
impurity component (in this case, Yb) varies from point
to point. This process is accompanied by changes in the
refractive index and other crystal properties, which can
be observed visually. Figure 1a shows the image of the
cellular substructure of a 1-mm-thick plane-parallel
plate cut out from this crystal obtained by the shadow
method.

It is seen from Fig. 1b that M( j ) increases monoton-
ically from the zero value and shows a tendency to sat-
uration. Indeed, if the regions are small, they are all
almost homogeneous and the mean square deviation of
the pixel luminance in each region (local heterogeneity)
is rather small. Therefore, the average value of the local
heterogeneities is also small (close to zero).

With an increase in the area of the singled-out
regions, one encounters an ever increasing number of
regions with noticeable heterogeneities. Therefore, the
average value of the local heterogeneities also
increases. With a further increase in the dimension j, the
singled-out regions would contain several heterogene-
ities simultaneously. Therefore, the local heterogeneity
in each of these regions would attain a considerable but
approximately the same value. As a consequence, the
average value of the local heterogeneities also becomes
large. The curve shows a tendency to saturation if the
dimension j becomes comparable with the average
dimension of heterogeneities.

The area under the curve M( j ) can be calculated as

(1)

The above formula can be used as the integral esti-
mate of the heterogeneity of the image as a whole.
Since the dimension of the singled-out regions cannot
be larger than the shorter side of the image, the variable
j should vary from unity to the length of the shorter side
of the image denoted as w.

It is expedient to consider the plot D( j ) with the
maximum (Fig. 1c), which can be interpreted as fol-

Σ M j.
j 1=

w

∑=
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Fig. 1. (a) Image of the portion of a Ba0.95Yb0.05F2.05 crystal obtained in transmitted light (shadow method); (b) the average local
heterogeneity M as a function of the region dimension j; (c) the mean square deviation of the local heterogeneities, D, as a function
of region dimension j. The average heterogeneity dimension and its error in pixels is indicated in the upper right-hand corner. The
parameter N = 3000. The image dimensions are 375 × 354 pixels (4.28 × 4.04 mm2).
lows. If the dimensions of the singled-out regions are
small (low j value), the local heterogeneities of each
region are small and approximately equal. Therefore,
the mean square deviation D( j ) of the local heteroge-
neities Si( j ) (i = 1, …, N) is also small. With an
increase in the dimensions of the singled-out regions,
this value increases, because along with the homoge-
neous regions there are also inhomogeneous ones,
which makes the scatter in the values of local heteroge-
neities more pronounced.

With a still further increase in the region dimen-
sions, most of the singled-out regions would contain
several heterogeneities simultaneously. The local heter-
ogeneities in all the large regions tend to have a certain
average value and, therefore, the mean square deviation
D( j ) of the local heterogeneities would decrease.
Therefore, at a certain intermediate dimension j compa-
rable with the average heterogeneity dimension, the
curve D( j ) should acquire a maximum.

Approximating the portion of the plot D( j ) contain-
ing the region around the maximum by a certain smooth
curve f(x) (usually a polynomial of degree three or
four), we can determine the value of j at the maximum,
which is denoted here as Rav. Hereafter, the Rav value is
called the average dimension of image heterogeneities.
To calculate the error in Rav, one has to expand the
approximating function f(x) into a Taylor series in the
neighborhood of the maximum and take into account
the terms up to the third one (one has to calculate its
second derivative f ''(x)). The increment in the function
in this expansion is taken to be the mean square devia-
tion of the residual vector; thus, we arrive at the corre-
sponding increment in the argument which is consid-
ered to be the error in the average heterogeneity dimen-
sion (∆Rav).

Of course, in the conventional sense of the theory of
measurement processing, this quantity is not an error.
The ∆Rav/Rav ratio has a higher value if the image con-
tains both small and large heterogeneities and is lower
if all the heterogeneities are of approximately the same
dimensions. However, this ratio can be considered as a
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
measure of scatter in the heterogeneity dimensions with
respect to their average value only conditionally,
because ∆Rav/Rav decreases with an increase in N.

Within this algorithm, the average dimension of het-
erogeneities and its error for the image shown in Fig. 1a
equals Rav = 14 ± 3 pixels. The corresponding heteroge-
neity dimension in the studied Ba0.95Yb0.05F2.05 crystal
equals 0.16 ± 0.04 mm.

The image considered above is rather simple and
consists of the elements that have close shapes and
dimensions. The electron microscopy image of a
Ba0.8Lu0.2F2.2 crystal (20 mol % LuF3) at an atomic res-
olution is much more complicated (Fig. 2a) [10]. This
image is formed by several systems of atomic planes
having different orientations, extensions, and inter-
atomic spacings. It is also complicated by several sys-
tems of moiré fringes having different orientations and
periods. Such a complicated crystal structure reflects
crystal microheterogeneity on the nanometer scale [11].

The average dimension of image heterogeneities in
Fig. 2a determined from the D( j ) plot (Fig. 2b) is Rav =
22 ± 4 pixels, which corresponds to 52 nm. It should be
indicated that, unlike the image shown in Fig. 1a, the
calculation of the average heterogeneity dimension of
the complicated images, e.g., of that shown in Fig. 2a,
can give a rather unexpected result. However, even the
approximate quantitative estimate of the heterogeneity
dimension can turn out to be rather useful.

ANISOTROPY OF LUMINANCE 
OF HETEROGENEITIES 

AND THEIR DIMENSIONS

Introduce some definitions. Moving along a certain
straight line of the image, we encounter pixels having
different luminance. If pronounced luminance differ-
ences along a given direction are encountered more
often than along some other direction, we state that the
luminance heterogeneity along the former direction is
more pronounced than along other directions, and this
phenomenon is called the anisotropy of the luminance



342 MARYCHEV et al.
(a) 8.0
5

j

Dj

10 15 20 25 30 35 40 45 50

9.5

11.0

12.5

14.0

f(x)

(b)
22 ± 4

Fig. 2. (a) Electron microscopy image of a Ba0.8Lu0.2F2.2 crystal (20 mol % LuF3) at an atomic resolution; (b) mean square devia-
tion of the local heterogeneities, D, as a function of the region dimension j. The average heterogeneity dimension and its error in
pixels is indicated in the upper right-hand corner. The parameter N = 3000. The image dimensions are 372 × 462 pixels (890 ×
1100 nm2).
heterogeneity. An example of the structure with such an
anisotropy is a system of alternating parallel dark and
light fringes. Often, heterogeneities are of an elongated
shape and arranged more or less orderly. In such
instances, one can consider anisotropy of heterogeneity
dimensions.

To characterize these characteristics of the image
quantitatively, the following method can be used. One
singles out on the image a series of N regions in the
shape of straight parallel strips of length ρ and a thick-
ness of one pixel. The origin of each strip is chosen
arbitrarily. This series of strips can also be character-
ized by the angle ϕ formed by the strips and the positive
direction of the X axis. The X axis originates at the left
upper angle of the image and goes to the right (Fig. 3b).
The angle ϕ can vary from 0° to 180°.

Now, calculate the average value of M(ρ, ϕ) and the
mean square deviation D(ρ, ϕ) for N mean square devi-
ations of the luminance of the strips of this series. Since
the variables ρ and ϕ vary in a discrete manner, then, for
each direction ϕ, we obtain the arrays of the functions
M(ρ, ϕ) and D(ρ, ϕ) corresponding to the series that
differ only in the length ρ of the strips.

We shall use the sum Σϕ calculated in a way similar
to Eq. (1) as the absolute characteristic of luminance
heterogeneity along the given direction. The number of
such sums is determined by the number of the values of
the variable ϕ for which the average values of M(ρ, ϕ)
were calculated.

It is more convenient to use the following relative
characteristic of the luminance heterogeneity:

(2)

where Σϕmax is the maximum value of all the Σϕ sums.
The set of A(ϕ) values can conveniently be repre-

sented as a plot in the polar coordinates, the so-called

A ϕ( )
Σϕ

Σϕ max
------------- 100%,×=
C

pointer curve of luminance heterogeneity. If no anisot-
ropy of luminance is observed, the plot has the form of
a circumference arc of the 100% radius.

Approximating the portions of the maxima of the
dependences D(ρ, ϕ) which, irrespective of the angle ϕ,
are considered as functions of one variable, ρ, we can
determine the average heterogeneity and its error along
each direction. Thus, we can construct the curve of the
average heterogeneity dimension as a function of direc-
tion in the polar coordinates, the so-called pointer curve
of the heterogeneity dimension.

The A(ϕ) and R(ϕ) curves for the image shown in
Fig. 3a (similar to the image in Fig. 1a with the only dif-
ference—the heterogeneity dimension is averaged over
the plot shown in Fig. 3d) are given in Figs. 3c and 3d.

At the angle ϕ = 45°, the global minimum of the rel-
ative heterogeneity luminance has the form shown in
Fig. 3c. This corresponds to the presence on the image
of a system of quasiparallel bright fringes alternating
with relatively dark fringes and forming an angle of 45°
with the positive direction of the X axis. It should also
be indicated that, on the whole, Fig. 3a shows no obvi-
ous anisotropy of the heterogeneity dimensions,
although some individual heterogeneities show such
anisotropy. This is confirmed by the plot R(ϕ) (Fig. 3d).
However, a certain tendency for R(ϕ) values to increase
in the angular range 120°–150° indicates that heteroge-
neity dimensions along these directions are somewhat
larger.

It is important to indicate that the heterogeneity
dimensions averaged over the plot R(ϕ) are equal to
26 ± 5 pixels (which corresponds to 0.30 ± 0.05 mm)
and differ from the average heterogeneity dimension of
the same image obtained by the first algorithm. It is
explained by different shapes of the singled-out
regions, so that one should not expect their complete
correspondence. If necessary, this difference can be
RYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      2003
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Fig. 3. (a) Image of a Ba0.95Yb0.05F2.05 crystal (analogous to that shown in Fig. 1a); (b) the reference system and the parameters of
the singled-out strip; (c) pointer curve of the relative heterogeneity of image luminance (parameter N = 100, step in ρ equals 5 pixels,
step in ϕ equals 5°); (d) the pointer curve of the heterogeneity dimensions of the image (parameter N = 3000, a step in ρ equals
1 pixel, a step in ϕ equals 1°); the average heterogeneity dimension and its error in pixels (calculated by averaging the data in
Fig. 3d) are indicated in the upper right-hand corner. The image dimensions are 375 × 354 pixels.
“balanced” by the introduction of a certain factor into
one of the algorithms.

It is interesting to compare the pointer curves for
some other crystals studied. Thus, Fig. 4 shows the
A(ϕ) and R(ϕ) pointer curves for the electron micros-
copy image shown in Fig. 2a.

The pointer curve of the relative luminance hetero-
geneity in Fig. 4a shows that this characteristic is max-
imal in the angular range ϕ = 30°–60°; in Fig. 2, this
corresponds to the directions transverse to the series of
tilted moiré fringes in the right-hand part of the image.
In addition to this system of fringes, one can see the
contrast horizontal mooiré fringes in the upper right-
hand angle of the image. It seems that these features
give rise to the formation of a broad minimum in the
angular range ϕ = 30°–90° of the pointer curve of the
heterogeneity dimension shown in Fig. 4b.

Consider also an example of the image of the cellu-
lar substructure of the portion of a Ba0.9Pr0.1F2.1 crystal
(10 mol % PrF3) (Fig. 5). The pointer curves A(ϕ) and
R(ϕ) for this crystal are shown in Fig. 6. It is seen that
the image of this substructure is characterized by the
almost complete absence of anisotropy of the lumi-
nance heterogeneity and heterogeneity dimensions,
CRYSTALLOGRAPHY REPORTS      Vol. 48      No. 2      200
which satisfactorily agrees with the qualitative conclu-
sions drawn from Fig. 5.

Sometimes, an image has two characteristic direc-
tions along which the image properties differ more sig-
nificantly. In these cases, it is possible to introduce cer-
tain quantities defining the relative difference in the
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Fig. 4. (a) Pointer curve of the relative heterogeneity of rel-
ative luminance heterogeneity on the image shown in
Fig. 2a (parameter N = 500; the step in ρ equals 2 pixels, the
step in ϕ equals 5°); (b) pointer curve of the heterogeneity
dimensions on the image shown in Fig. 2a (parameter N =
3000, the step in ρ equals 1 pixel, the step in ϕ equals 5°).
3



344 MARYCHEV et al.
above image characteristics along these two directions.
For simplicity, we assume that these are the horizontal
and vertical directions.

Let the series of N horizontal and N vertical straight
strips of the same length j and the width of one pixel be
singled out in a random way. For each strip, we can cal-
culate the mean square deviation of the pixel lumi-
nance—the value of the local heterogeneity. Then, we
can calculate the average value of the local heterogene-
ities MG( j ) and MV( j ) and the mean square deviations
DG( j ) and DV( j ) of the local heterogeneities for the
series of vertical and horizontal strips, where the sub-
scripts G and V indicate the horizontal and vertical
directions, respectively. The lengths of the vertical

Fig. 5. Image of the portion of the solid-solution crystal of
the composition Ba0.9Pr0.1F2.1 (10 mol % PrF3) in transmit-
ted light (shadow method).
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Fig. 6. (a) Pointer curve of the relative luminance heteroge-
neity on the image shown in Fig. 5 (parameter N = 200, the
step in ρ equals 2 pixels, the step in ϕ equals 5°); (b) pointer
curve of the heterogeneity dimensions on the image shown
in Fig. 5 (parameter N = 15000, the step in ρ equals 1 pixel,
the step in ϕ equals 2°).
C

strips can vary in a discrete manner within a step of one
pixel in the range from unity to r (r is the number of
rows in the image matrix), whereas the lengths of the
horizontal strips vary from unity to c (c is the number
of columns in the image matrix). Let the above proce-
dure of singling-out the series of horizontal and vertical
strips of pixels on the image and the subsequent calcu-
lation of MG( j ), MV( j ), DG( j ), and DV( j ) values be
repeated for all the possible j values. Then, for the hor-
izontal direction, we obtain c pairs of the MG( j ) and
DG( j ) values, whereas for the vertical one, r pairs of the
MV( j ) and DV( j ) values. These sets of the values can
conveniently be represented in graphical form. Figu-
re 7b shows the MG( j ) and MV( j ) curves for the image
shown in Fig. 1a (Fig. 3a) rotated by an angle of 45°.

Now, limiting the variable j from above by the
length w of the shorter side of the image, we can calcu-
late, similar to Eq. (1), the areas ΣG and ΣV under the
curves MG( j ) and MV( j ). We suggest using the ratio of
the difference between their areas to their average value
as the estimate of the luminance anisotropy along the
vertical and horizontal directions:

(3)

The sign of εBr depends on the fringe directions on
the image: the plus sign corresponds to the vertical or
near vertical direction of the fringes, whereas the minus
sign corresponds to the horizontal or near horizontal
direction (the latter situation is illustrated by Fig. 7).

Figure 8a shows the curves DG( j ) and DV( j ) for the
image identical to that shown in Fig. 7a, and Fig. 8b
shows the curves DG( j ) and DV( j ) for the image
obtained by its 25%-extension along the vertical
(increase of the scale by 25%).

Using the curves DG( j ) and DV( j ), we can calculate
the average heterogeneity dimensions along the hori-
zontal and vertical directions (the method of processing
these curves is the same as in the calculation of the
average heterogeneity dimensions in the first algo-
rithm). We suggest using the ratio of these dimensions
to their average value as an estimate of the anisotropy
degree of heterogeneity in dimensions along the verti-
cal and horizontal directions:

(4)

The sign of the εRVG value contains information on
the direction of “elongation” of the image heterogene-
ities. It should be noted that εRVG and εBr can have oppo-
site signs.

It is seen from Fig. 8b that the 25%-image extension
in the vertical direction resulted in the equivalent
changes in the heterogeneity dimensions along the hor-
izontal and vertical directions and the estimate of the

εBr

2 ΣG ΣV–( )
ΣG ΣV+

--------------------------100%.=

εRVG

2 RG RV–( )
RG RV+

---------------------------100%.=
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Fig. 7. (a) Image of a crystal of the solid solution of the composition Ba0.95Yb0.05F2.05 rotated by 45° with respect to the image
shown in Figs. 1a and 3a; (b) the average values of the local heterogeneities in the series of thin strips of pixels oriented along the
horizontal (MG is the lower curve) and vertical (MV is the upper curve) directions as functions of the strip lengths j. The quantitative
estimate of the anisotropy of the luminance heterogeneity is indicated. Parameter N = 1000. Image dimensions are 410 × 383 pixels.

0
j

εRVG = –7%

20 40 60 80

2

4

6

8

DG
DV

RV = 29 ± 4

RG = 27 ± 4

0

εRVG = –30%

20 40 60 80

2

4

6

8

DG
DV

RV = 35 ± 5

RG = 26 ± 4

Fig. 8. (a) Mean square deviations of the local heterogeneities in the series of thin strips of pixels oriented along the horizontal DG
and the vertical DV dimensions as functions of strip length j on the image shown in Fig. 7a; (b) mean square deviation of the local
heterogeneities in the series of thin strips of pixels oriented along the horizontal DG and vertical DV directions as functions of the
strip length j upon the 25%-extension of the image along the vertical direction (new dimensions 410 × 478 pixels) illustrated by
Fig. 7a. The values of the average dimensions of heterogeneities along the horizontal and vertical directions are indicated together
with the estimate of the degree of anisotropy of these dimensions. Parameter N = 5000.
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degree of anisotropy of the heterogeneity dimensions
introduced above.

CONCLUSIONS

All the algorithms suggested above are based on the
analysis of a rather large but finite number of the
regions of various dimensions and shapes singled out
from the image in a random way. Therefore, the results
obtained are somewhat dependent on the input parame-
ters, e.g., the number N of the regions of the given
dimensions singled out from the image (one passage)
and also on the degree of the approximating polynomi-
als used to refine the form of the experimental depen-
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dences. One has also to take into account the statistical
nature of the results obtained and evaluate the corre-
sponding errors.

If the characteristic heterogeneity dimension is
about 5–10 pixels, one also observes the noticeable
effect of low image resolution. This is especially clearly
seen in the algorithm used to calculate the pointer
curves of heterogeneities in luminance and dimensions,
especially of the pointer curve of heterogeneity dimen-
sions. We recommend digitizing the image at such a
resolution that the characteristic dimension of the het-
erogeneities would not exceed 30–50 pixels. This
advice also seems to be useful for analysis of images by
any other method.
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In addition to the formal description of the statistical
method of the analysis of the image heterogeneity, one
also has to consider those specific characteristics of the
image that are necessary for the reasonable application
of the method. This condition requires the presence on
the image of a sufficiently large number of heterogene-
ities that are approximately uniformly distributed over
the whole image area. For example, in this case, the
value of the average heterogeneity dimension will be
the closest to the dimension that is determined visually.

The algorithms suggested here are not universal and
should be considered only as one of the possible
approaches to the analysis of the heterogeneity of
images. The efficiency of the use of these algorithms
should be determined for each set of the images stud-
ied.

The above method was tested when analyzing the
growth heterogeneities in crystals of fluorite-type solid
solutions. We believe that, in general, this method can
be rather efficient for analysis of the images of physical
objects obtained by various methods.
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