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Abstract

Motivation: Marine microbial populations play a key role in the ecology of the seas.
The adaptive potential of these species is key to understanding the evolution of their
populations across time and space. This means to comprehend and predict how they
may react to certain environmental conditions, biotic and abiotic factors, and how
their population size may change as a consequence. Here, we investigate the strain
formation within some abundant population genomes exploring genetic diversity,
looking into genetic variations present mainly in hot water seasons, and observing
which are the primary protein functions that are being affected.

Results: Our strain detection analysis shows the presence of different clusters of the
same species that in some cases seem to group by water temperature. We observed
how one MAG of Pelagibacter (SAR11) contained more genetic diversity than MAGs
of Acidimicrobiales, Flavobacteriaceae and Marinisomatia (SAR406 clade). We
detected genetic variations (mainly SNPs) affecting proteins related to different
functional categories, standing out genetic information processing and carbohydrate
metabolism, that were shared and abundant in the 4 analysed MAGs. We also
performed a variant annotation useful for protein adaptation analysis.
Supplementary information: Supplementary code scripts are available at GitHub:
https://github.com/SergioRLL/FDP.qit



https://github.com/SergioRLL/FDP.git

1. Introduction

Marine microbiomes play an important role in the biochemical processes that take place in

such environments. The understanding of these events is fundamental to preserve the
correct functioning of the planet and may allow us to predict ecological responses driven by
changes in environmental conditions. For this purpose, there is a growing interest in omics
studies that aim to reveal the functional and taxonomic diversity of ocean microorganisms.
Nevertheless, the diversity of microorganisms at the population level (variation that is found
in the genome of the same species) has not yet been deeply studied. Obtaining more
knowledge in this field will give us important insight into the evolutionary capacities of marine
organisms and their adaptive potential to different ecological niches, which is indeed crucial
to understand the ecosystem function and community reactions.

Ecology is the branch of biology that seeks to explain life processes, interactions and
adaptations, as well as the abundance and distribution of organisms and biodiversity in the
context of the environment. Adaptations appear in organisms due to changes in the
environment. Environmental factors can be classified into two main groups: biotic factors and
abiotic factors, both of them make up the ecosystem. In biology, abiotic components include
non-living chemical and physical factors, while biotic factors include living components of the
ecosystem: the organisms that live in it.

It is without a doubt that oceans are huge biological environments and they constitute very
important ecosystems and they play a very important role and contribution to the marine and
the global biosphere. For this reason, the information gained in the microbial diversity field is
key to understanding and anticipating changes in these environments, not only for species
diversity but also for the ecological niche as the role these species represent in the
ecosystem. Ecological niches describe how populations of organisms are adapted to
environmental conditions (for instance, resource availability and competitors, temperature,
and salinity levels). How marine microbial communities are affected by these ecological
variables may be determined by populations’ genetic diversity. For example, there might be
strains of a certain population that have developed resistance to low or high temperatures
while another does not, and therefore the first population may grow at a higher rate than the
second one affecting the ecosystem diversity and niches.

To study genetic diversity in microbial populations early approaches involved isolating
multiple cells from the same population and then performing genome sequencing and/or
phenotypic analysis. Recent approaches have been using metagenome analysis, which
involves extracting and sequencing DNA directly from the environment. Then, the resulting
DNA is assembled and binned into genomes in silico. This technique allows for the analysis
of all taxa in microbial populations, including the identification of genetic variants and their
frequencies inside the population. Therefore, using metagenomic tools we have the potential
to investigate the evolutionary dynamics that lead to strain selection.

Among the most frequent questions that arise when investigating microbial population
adaptation, we wonder which are the most important environmental factors selecting for
strains. It is known that strong candidates for this are temperature, salinity concentration,



and nutrient abundance due to geographical location and the depth in which the organisms
live in the water. In addition, microbial interaction also plays an important role as a biotic
factor. It is also common knowledge that the Mediterranean Sea is a highly diverse marine
ecosystem that hosts 7-10% of the world’s marine biodiversity and it has been defined as
“‘under siege” due to the pressure of multiple human activities [1]. Therefore, it will be
necessary to understand how these human activities, and therefore climate change, impact
the biodiversity of the Mediterranean. A first approach may be to see how strains of microbial
populations behave concerning water temperature and how these populations react to
seasonal changes. Furthermore, this analysis would be interesting to compare with data
from the global ocean as the two environments present different features.

In order to analyze population genomic parameters, researchers have been developing
pipelines that deal with intra-population genetic diversity to cluster populations of MAGs
(Metagenome-Assembled Genomes) according to ANI values (Average Nucleotide Identity)
using hierarchical clustering.

It is a hard task to evaluate in bacteria which are the potential traits of an organism that
could undergo a better survival in unfavorable conditions. A first approach may be to
observe which are the most relevant genetic variations and see the functions that they might
have affected.

Objective

This scientific project is focused on investigating the genomic diversity of microbial
populations using two time series of 7 years from the coast of the Mediterranean where
samples are obtained each month. These genomes were obtained from two marine
observatories: BBMO (Blanes Bay Microbial Observatory) and SOLA (from Bay of
Banyuls-sur-mer). To carry out this task, we performed an analysis of SNPs (Single
Nucleotide Polymorphisms) and MNPs (Multiple Nucleotide Polymorphisms) to explore the
genetic variability of the strains inside the populations.

We analysed the genomic diversity of 4 population genomes, analyzing the possibility of the
presence of different strains for each of them. In that case, we aimed to focus on the
differences that define those strains and try to explore the phenotypic changes caused by
the corresponding genetic variations.

2. Material and Methods

2.1 Sample generation

We used 84 samples collected from BBMO (Blanes Bay Microbial Observatory) and 90 from
SOLA (from Bay of Banyuls-sur-mer). Samples were collected once a month for a period of
7 years in both marine observatories, however, in the case of SOLA some samples were



extracted during different days of the same month the same year, thus, there are 6 more
samples collected from SOLA. From these samples, MAGs were assembled and used as
reference genomes for this project. First, 3 year monthly samples (Jan 2011 - Dec 2013)
from BBMO were assembled all together into one co-assembly using the Ray assembler [2].
Then, 34 high-quality MAGs were obtained from the co-assembly by binning with the
MetaWrap pipeline [3]. From them, we selected 4 abundant genomes to perform the
analyses and test this methodology.

2.2 Read mapping, gene prediction and detection of variants

We firstly generated and prepared the required data, containing the information regarding
sequence mapping to the genome assemblies, gene prediction, and detection of variants.

We used Prodigal [4] for gene prediction for our 4 assembled genomes, getting the
sequences of the genes as well as gene features contained in GFF files.

Using Bowtie 2 [5] we mapped the forward and reverse reads (R1 & R2) obtained from the
metagenomic samples with the purpose of obtaining the alignments in SAM format files.
Afterwards, We used SAMTOOLS [6] to convert the SAM files to BAM files (the compressed
binary version of the alignments) and index them. We concatenated the 4 MAGs putting
them together into a single FASTA file in order to be interpreted by inStrain in the next step
along with an STB file, a text file that indicates to which MAG each scaffold belongs.

Subsequently, we used Freebayes [7] to generate files (.VCF) containing the variants
observed in the alignment files for future detection of SNPs, MNPs, indels (insertions and
deletions), and other types of genetic variations.

2.3 inStrain pipeline

In this project, we have been testing different pipelines that can detect the presence of
several strains within MAGs. Here we present the results obtained from [nStrain [8]. In
particular, InStrain uses metagenomic paired reads to profile intra-population genetic
diversity across whole genomes and compares microbial populations in a
microdiversity-aware manner.

First, we used the inStrain profile module to generate objects called “IS_profile” (see Figure
1). This module is described to be as the heart of the pipeline as its output provides
information regarding locations of divergent sites, that is to say, positions in the genome
where either an SNV (Single Nucleotide Variant) or SNS (Single Nucleotide Substitution) is
present, the number of read-pairs that passed the program filters for each scaffold, the
linkage between SNV pairs, etc. through a series of tables and figures. The module uses as
input the previously created FASTA file containing the genomes and the sample alignments
(BAM files). The program takes all the alignments for every sample and keeps the ones
mapping to the genomes with sufficient quality while the others are filtered out. Then, using
only the filtered reads, microdiversity metrics are computed on a scaffold-to-scaffold basis,



including the coverage and nucleotide diversity at each position along the scaffold, and
identification of SNVs and SNSs. It also calculates the linkage between divergent sites on
the same read pair, that is to say, a measure of how likely two divergent sites are inherited
together on the same read pair. Additionally, it computes scaffold-level properties like the
overall coverage, breadth of coverage, ANI between the reads and the reference genome,
and the expected breadth of coverage based on that true coverage.

Afterwards, we used InStrain compare, another InStrain module to compare multiple inStrain
profiles making pairwise comparisons between them. The module compares genomes that
have been profiled by multiple different metagenomic mappings. Here we executed inStrain
compare using the previously generated profiles and default parameters which forced the
program to only compare genomes that are sufficiently detected and skip clusters that have
near 0% overlap. As the output for this process, different tables are produced summarizing
the differences between the inStrain profiles at genome and scaffold levels, including
coverage overlap, compared base count, and information about SNPs used to compute ANI
(Average Nucleotide Identity) among compared bases between two scaffolds. In addition,
and most importantly for our case, the result of clustering the pairwise comparison data is
used to generate strain-level clusters using hierarchical clustering. Moreover, the pipeline
also produces figures of the dendrograms clustering the samples according to ANI and
shared genome coverage.
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Figure 1. Overview of inStrain pipeline. A graphical representation of the main procedure that we
followed, using the main inStrain modules.



2.4 Visualization of genetic variants

After observing the results obtained by inStrain, especially the strain clustering, we
hypothesized that there could be a strain grouping by temperature, as it is usually the most
decisive environmental factor in microbial life [9]. Therefore, we decided to classify the
samples by temperature and season and to try to determine potential genetic variations that
may be causing this strain differentiation. Thus, these variations might cause significant
phenotypic variations that undergo strain selection.

For this task, we used the Integrative Genomics Viewer (IGV) [10], a high-performance
interactive tool that allows the visualization of different types of genomic data. We observed
the 4 MAGs separately with their respective predicted genes and variants, showing some
variants that were present only during hot water seasons: summer and autumn. Due to the
low abundance of 3 out of these 4 bins (consensus genome corresponding to some
operational taxonomical unit) during these seasons, we thought that genetic variations
occurring mainly or exclusively in these seasons may be significant for explaining the strain
differentiation, allowing the species to live in hot environments. For this reason, we decided
to make a list of potential significant variations, including SNPs, MNPs and indels, with their
respective predicted genes.

2.5 Gene functional analysis and variation effect

Finally, we performed a protein functional analysis in which we used BLASTX from NCBI [11]
and KEGG’s BlastKOALA [12,13] to search for homologous proteins and to seek after
functions and metabolic pathways in the genes we selected due to the presence of
potentially relevant DNA variations occurring exclusively or mostly in genomes from hot
water samples. We used EMBOSS Transeq [14] to translate genes’ nucleic acid sequences
to the corresponding amino acid sequences.

To further estimate the effect of the genetic variations, mainly SNPs and MNPs, on the
transcripts we ran the SnpEff pipeline [15]. This program provides tools for genetic variant
annotations and predicts the effects of genetic variants on genes and proteins such as
amino acid changes. It is also interesting because the tool performs an impact prediction
based on the variation effect type which allows to categorize and prioritize variants. In our
case, the MAGs assembly was at the contig level, we did not have chromosome information
and therefore we had to create a new SnpEff species database for every MAG.

In this way, we were able to determine the functions of the genes and also the effect that the
detected variants were causing on them.

Supplementary code

Supplementary code scripts are available at GitHub: https://github.com/SergioRLL/FDP.qit
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3. Results and Discussion

3.1 Strain detection and clustering

With the inStrain pipeline, we were able to cluster the different metagenomic sequence
reads according to the variants detected for each of the 4 MAGs. The strain definition and
differentiation was the result of clustering the pairwise comparison data from the
metagenomics samples performed by inStrain compare. From the output of inStrain
compare, we were able to see the different number of predicted strains for every MAG. In
Figure 2 we can observe the Pelagibacter MAG dendrogram comparing all samples based
on population ANI and shared bases. The dendrograms for the other 3 MAGs can be found
in Supplementary Figure 1. In depth, we found that the hierarchical clustering algorithm
determined 68 strains (clusters) for Pelagibacter (bin208), 18 for Marinisomatia (SAR406
clade) (bin228), and only 3 for Flavobacteriaceae (bin216) and Acidimicrobiales (bin120). A
table showing which metagenomic sample belongs to each strain for every MAG can be
found in Supplementary Table 1. These results can tell us about the genetic diversity that is
found within populations of these microbial organisms. Among these 4 species, we can state
that Pelagibacter (SAR11) has more divergent sites than the rest of the other species
populations. Thus, Pelagibacter species contain more genetic diversity and may have more
adaptive potential than the others, however, we can relate that with the fact that Pelagibacter
has a higher abundance than the rest of the species.

Figure 2. Dendrogram of clustered samples after mapping them to the selected Pelagibacter
MAG. The figure shows the metagenomic samples mapped to the Pelagibacter MAG that passed the
filters. Then, they were compared by Shared Genome Coverage (above) and Average Nucleotide
Identity (below). We can see the main clusters in different colors.

In order to confirm this hypothesis, we can take a look at the abundance of the
Acidimicrobiales and Pelagibacter MAGs among the samples from BBMO and see the
number of reads that we find per sample. Observing Figure 3, we can state, by looking at the
number of reads (RPKG) and the number of SNPs we found at each season, that the
Pelagibacter population is abundant during the whole year while Acidimicrobiales is not.
Moreover, we find that the latter species is found mostly in cold water seasons (winter) with
low abundance the rest of the year, while the Pelagibacter MAG seems to be a bit more
abundant in hot seasons (summer) although it is significantly present in all of them. This
result is reinforced by the fact that Pelagibacter (SAR11) is the most abundant plankton



species found in the ocean, therefore, we should expect that it has high genomic variability.
Regarding the other 2 species, we find that Marinisomatia and Flavobacteriaceae are also
species that seem to behave similarly to Acidimicrobiales, appearing almost exclusively
during cold seasons. Graphs for Marinisomatia and Flavobacteriaceae are shown in
Supplementary Figure 2.

Furthermore, by comparing the number of strains obtained using inStrain and Anvi'o [16]
metagenomic pipelines, we think that perhaps they are similar enough to state that both
approaches are reliable in terms of estimating the number of clustered metagenomic
samples, and therefore, the number of strains. We have to take into account that this is a
number that depends on the way the hierarchical clustering is done, and when determining
the distance threshold that defines the number of strains.
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Figure 3. Dendrograms of BBMO samples based on SNP composition for Acidimicrobiales
(bin120) and Pelagibacter (bin208) MAGs. Dendrogram showing the clustering of the samples
based on the SNP composition of each MAG using Euclidean distance. Abundance data in RPKG
(Reads Per Kilobase Million) and number of SNPs in each sample is also provided. Environmental
factors including temperature and day length (number of sun hours) are also plotted for each sample.
Figures made using R ggplot2 package, data obtained from the Anvi'o software.

3.2 Detection of relevant genetic variations

Using IGV’s ability to combine genome sequences, genes (using in our case GFF format)
and DNA variants information, it was possible to perform a visualization of gene regions and
observe where SNPs, MNPs, and indels were occurring. By inspecting those regions and the
VCF files, we realized that the main types of detected genetic variations corresponded to
mainly SNPs and MNPs, with few cases of insertions and deletions. Unfortunately, for this
analysis, we only used BBMO samples because SOLA samples were not mapped at this
point to the MAGs yet. We grouped the metagenomic samples according to their season
and water temperature. While observing in /IGV Marinisomatia, Flavobacteriaceae, and
Acidimicrobiales MAGs we detected that the majority of the variations appeared mainly in



samples collected during cold water seasons (winter and spring), therefore, strains living in
cold water environments. We inferred that this fact made a lot of sense owing to the high
abundance of these organisms during those seasons and the low abundance that they
presented during the rest of the year.

With this idea in mind, we decided to make a selection of genetic variations present mainly
or only during summer and autumn such as the ones shown in Figure 4 with the hypothesis
that the effects of these variations in their corresponding genes, are important to understand
the key gene or protein functions that undergo adaptation for these species in hot water
environments. Some of these variants were also occurring in non-coding regions, we noticed
them but we decided to discard them as it may be difficult to determine their possible effects
without a precise annotation.
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Figure 4. Genetic variants distribution visualization in IGV. Section of Flavobacteriaceae (bin216)
(A) and SAR11 Pelagibacter (bin208) (B) MAGs. The upper region displays genomic coordinates (bp).
Below it, we can see the variants track, where we can see their distribution across the genome,
indicating the corresponding source sample. In light-blue we can observe the alternative nucleotides
differing from the reference ones (e.g. SNPs or MNPs). The MAG reference sequence is shown below
with colors representing nucleotides. Under it, we can find the corresponding codon translation with
the 3 possible frames. At the bottom, we also see the predicted genes by Prodigal colored in
dark-blue. The 2 colored columns next to the sample names on the left side show the added sample
attributes. For seasons, red corresponds to winter, blue to spring, green to summer, and purple to
autumn.

In total, we selected 43 genes for Pelagibacter, 82 for Acidimicrobiales, 42 for
Flavobacteriaceae, and 45 for Marinisomatia having relevant genetic variations, those
appearing only or mainly in hot water samples.

3.3 Functional analysis

After detecting these genetic variations, we performed a BLASTX search at the NCBI’s
non-redundant protein sequences (nr) database. We also tried to find hits in other databases
such as UniProtKB/Swiss-Prot, however, as our data belong to a metagenomic project and
bacterial genomes were not deeply investigated and annotated, there were few results and
the percentage of identity was low. For some of the genes, we could only find hits for
hypothetical proteins predicted in other metagenomic studies but they have not been deeply
annotated.

On the other hand, we also used KEGG’s BlastKOALA tool to make a search and find hits in
KO (KEGG Orthology) database [17]. In this step, we did a search for both the selected gene
sets (with those genes containing the relevant genetic variations) and the whole sets of
predicted genes for the 4 MAGs.

As we expected in Figure 5, there is no highly predominant functional category in neither the
whole gene sets nor the selected gene sets. Thus, we can confirm that there is not only one
functional category that is key for adaptability and that there are many of them that are
intervening with this process. Moreover, looking at the selected gene sets’ pie charts, we see
that genetic information processing categories (skin-colored sections including both genetic
information processing and protein families: genetic information processing) and
carbohydrate metabolism represent nearly half of the functions found in all of them. For this
reason, we looked in-depth at these categories to search for similarities and differences
between them.

Interestingly, the four MAGs had SNPs in some of the functional pathways within the
selected gene sets defined, including some cases where the affected protein, the one with
the relevant SNPs, is the same. For example, we found that preprotein translocase subunit
SecA [EC:7.4.2.8], a protein involved in the protein export process in the bacterial secretion
system interacting with the SecYEG preprotein conducting channel, had relevant SNPs in
both Flavobacteriaceae and Marinisomatia genomes. An image showing protein export



through the bacterial Sec pathway can be found in Supplementary Figure 3. SecA has a
central role in coupling the hydrolysis of ATP to the transfer of proteins into and across the
cell membrane, serving both as a receptor for the preprotein-SecB complex and as an
ATP-driven molecular motor driving the stepwise translocation of polypeptide chains across

the membrane [18].
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Figure 5. Pie chart of KEGG’s KO functional categories. On the left, we can observe the results
obtained for the whole set of genes of each MAG and on the right for the selected genes containing
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interesting genetic variants. On top of each pie chart, we can see the number of proteins annotated,
i.e., the ones having a significant KO match in the database.

Another case we found interesting was the modification of the RNA degradosome in both
Pelagibacter and Marinisomatia. In this case, different proteins were affected:
polyribonucleotide nucleotidyltransferase [EC:2.7.7.8] in Pelagibacter, and transcription
termination factor Rho in Marinisomatia, both involved in different types of RNA
degradosome. It is known that its presence has been maintained throughout the evolution of
many bacterial species due most likely to its diverse contributions in global cellular
regulation. It also has been experimentally demonstrated that the presence of RNA
degradosome is a selective benefit for E. coli [19]. Thus, some variations in those species’
degradosomes may be positively selected for their evolution. An image showing the bacterial
RNA degradosome structure can be found in Supplementary Figure 4.

Other interesting functions that we noticed include genetic variants present in bacterial
DNA-directed RNA polymerase B and B’ subunits [EC:2.7.7.6] of Acidimicrobiales,
modifications in glycolysis/gluconeogenesis in Acidimicrobiales, Pelagibacter and
Marinisomatia, as well as other carbohydrate metabolism processes in some of them.

Unfortunately, arround 40% of the genes selected having interesting genetic variations did
not get a significant hit in the KO database and therefore we were not able to see the
functions related to them. However, it would be interesting for future studies to get more
insight into them.

3.4 Analysis of genetic variations effect

Finally, after using SnpEff to see what type of effect the DNA variations were causing in the
genes, we obtained files with every variant annotated with their corresponding effect
prediction, such as missense variants or stop codon gained. In addition, we got information
on every MAG and gene and the number of variants according to their impact. For instance,
a “high” impact is assigned when the variant produces a STOP codon or a frameshift caused
by insertions or deletions, and a “low” impact is assigned in the case of a synonymous
variant.

After observing the results, included in Table 1, we noticed that Flavobacteriaceae has the
largest number of high and moderate impact variants and that Pelagibacter has the largest
number of low impact variants. Nevertheless, for all of the MAGs, close to 90% of the
variants were assigned a “modifier” impact, these are usually non-coding variants or variants
affecting non-coding genes, where predictions are difficult or there is no evidence of impact.
Therefore, around 90% of the variants were defined as just upstream or downstream gene
variants because it was difficult to predict their effect beyond that. However, we got useful
information on the other 10% of the variants for which an impact was predicted and thus,
some of these annotated variants may be interesting to analyse in depth, relating them to
structural and functional protein modifications that may play a role in those species
adaptability.
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Files showing resulting summary statistics can be found in the Github repository. They
contain information regarding the number of variants by type, the number of effects by
functional class, type and region, base and codon changes, etc.

Type
(alphabetical

order) Acidimicrobiales (bin120) Pelagibacter (bin208) Flavobacteriaceae (bin216)  Marinisomatia (bin228)
Count Percent Count Percent Count Percent Count Percent
HIGH
LOW

MODERATE
MODIFIER

Table 1. Number of effects by impact type.

4. Conclusions

In this project, we obtained more insights on genetic variability regarding Mediterranean
marine bacterial species. So far, we have explored the genetic diversity within 4 population
genomes that are abundant in samples extracted from Blanes Bay Microbial Observatory
and SOLA during a period of 7 years. We detected the presence of several strains for every
population genome tested in inStrain, a recently developed pipeline, and we discovered that
Pelagibacter (SAR11) has higher genetic variability than Acidimicrobiales,
Flavobacteriaceae, and Marinisomatia species. We saw how these detected strains may
cluster according to water temperature and that, with the exception of Pelagibacter, the
species were a lot less abundant during hot water seasons: summer and autumn.

Using a visualization tool, IGV (Integrative Genomics Viewer), we detected relevant genetic
variations (SNPs and MNPs) occurring only or mainly in hot water seasons. We selected a
set of predicted genes that presented those kinds of variations and we searched for their
identity and functionality in different protein databases. From the results of KEGG’s KO
significant hits, we further analyzed the functional categories with more hits in them within
the selected gene sets previously defined: genetic information processing and carbohydrate
metabolism. Inside those categories, we found several proteins with relevant SNPs present
in hot water environments that may be underlying selective pressures acting on those
species’ phenotypes and undergoing adaptation changes, that would be interesting to
investigate in further detail.

However, this is just the beginning of the project, since it would be interesting to perform the
same analysis using the same dataset but including future samples, as 7 years is not a very
long time to observe a clear genotypic adaptation. Moreover, further analysis should also be
done using the rest of the MAGs to try to see a general pattern of adaptation/evolution
shared among all the species or groups of them.
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