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Despite the increasing impact of opioid use disorders on society, there is a dis-

turbing lack of effective medications for their clinical management. An interesting

innovative strategy to treat these disorders consists in the protection of endoge-

nous opioid peptides to activate opioid receptors, avoiding the classical opioid-like

side effects. Dual enkephalinase inhibitors (DENKIs) physiologically activate the

endogenous opioid system by inhibiting the enzymes responsible for the break-

down of enkephalins, protecting endogenous enkephalins and increasing their

half-lives and physiological actions. The activation of opioid receptors by the

increased enkephalin levels, and their well-demonstrated safety, suggests that

DENKIs could represent a novel analgesic therapy and a possible effective treat-

ment for acute opioid withdrawal, as well as a promising alternative to opioid sub-

stitution therapy minimizing side effects. This new pharmacological class of

compounds could bring effective and safe medications avoiding the major limita-

tions of exogenous opioids, representing a novel approach to overcome the prob-

lem of opioid use disorders.
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1 | INTRODUCTION

Opioids have been used for centuries in the treatment of pain,

although their misuse presents serious risks, including overdose and

opioid use disorders (OUDs) (Benyamin et al., 2008). The diagnosis of

OUD is based on the Diagnostic and Statistical Manuel of Mental Dis-

orders (ed. 5; DSM-5) including a persistent desire to obtain and take

opioids despite negative health, social and/or professional

consequences (John et al., 2018). In the United States, opioid pre-

scriptions increased dramatically from the 1990s, when lobbyists and

companies succeeded in broadening the range of conditions the drugs

could be used for, from specific conditions (pain due to surgery and

late-stage terminal cancer) to more general conditions with poorer

analgesic benefit (the potential adverse effects fail to outweigh the

benefits), such as lower back pain, gastrointestinal pain, irritable bowel

syndrome pain or minor odontology interventions (United Nations

Office on Drugs and Crime, 2017). In 2015, Americans consumed

about 50,000 prescribed doses of opioid painkillers per million people

each day, almost doubling those handed out in Canada, and costing

the nation half a trillion dollars (United Nations, 2020). This situation
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led to declaration that the opioid crisis is a national public health

emergency in October 2017 (United Nations Office on Drugs and

Crime, 2017; Wilson-Poe & Mor�on, 2018). Even though the Food and

Drug Administration (FDA) released guidelines to steer drug compa-

nies towards opioid painkillers that are harder to abuse, the opioid cri-

sis still remains a slow-motion emergency unfolding in real time, with

no easy solution (U.S. Department of Health and Human

Services, 2020).

In Europe, this opioid crisis is not of the size and nature seen in

the United States (Seyler et al., 2021), although there are marked dif-

ferences between countries in trends of opioid prescribing and of

proxies for opioid-related harms (Häuser et al., 2021). This crisis has

moved to Europe with a significant increase starting from 2015,

involving mainly northern and eastern countries, and the Mediterra-

nean Area (di Gaudio et al., 2021). Specifically, the levels of opioid

consumption and their increase differed between countries, but there

was a parallel increase in opioid prescriptions and some proxies of

opioid-related harms in France, Finland and the Netherlands between

2004 and 2016 (Häuser et al., 2021). Recent studies in the

United Kingdom have shown an increase in opioid use and attributed

deaths, particularly in areas with higher deprivation (Alenezi

et al., 2021). Although opioid overdose deaths increased between

2016 and 2018 in the United Kingdom, opioid prescriptions remain

constant (Häuser et al., 2021).

In 2018, 57.8 million people globally were estimated to have

used opioids in the previous year, including those who had used

illegal opioids (30.4 million) and those who had misused pharma-

ceutical opioids (Editorial, 2017; United Nations, 2020). From the

over 10 million people currently misusing prescription opioids

worldwide, it was estimated that 2 million had an opioid use disor-

der (OUD; Editorial, 2018). In 2017, the European Monitoring Cen-

tre for Drugs and Drug Addiction estimated that the European

Union had about 1.3 million high-risk opioid users and that about

81% of the fatal drug overdoses in Europe involved opioids (Ayoo

et al., 2020). In addition, 67,367 drug overdose deaths occurred in

the United States in 2018 and opioids were involved in 69.5% of

these (U.S. Department of Health and Human Services, 2018). The

two main drugs responsible for the opioid overdose crisis in the

United States were heroin and fentanyl. Indeed, 808,000 people

used heroin in 2018 and 15,349 deaths are attributed to over-

dosing on heroin that year (U.S. Department of Health and Human

Services, 2018). Fentanyl is a synthetic opioid medication used for

severe pain management, which is 100 times more potent than

morphine. The rate of drug overdose deaths involving synthetic

opioids other than methadone, including drugs such as fentanyl

and fentanyl analogues, increased from 0.3 per 100,000 in 1999 to

9.0 in 2017 (Hedegaard et al., 2017). Fentanyl and pharmacologi-

cally similar synthetic opioids are illicitly manufactured and smug-

gled into the United States (United States Drug Enforcement

Administration, 2018) contributing to the rapid increase in opioid

overdose deaths in recent years with dramatic consequences par-

ticularly in United States (Hedegaard et al., 2017; Jones

et al., 2018; Centers for Disease Control and Prevention, 2016).

2 | CURRENT LIMITATIONS IN THE
PHARMACOLOGICAL TREATMENT OF
OPIOID USE DISORDER (OUD)

According to the World Drug Report 2020, only one out of eight peo-

ple who need drug use disorder treatment receives it (United Nations

Office on Drugs and Crime, 2017). Medications currently available to

treat OUD are methadone, buprenorphine and naltrexone, as well as

lofexidine for acute withdrawal (National Institute on Aging, 2015), all

treatment options having their caveats. Lofexidine, an α2
-adrenocepter agonist, was approved in May 2018 by the FDA as the

first non-opioid medication only restricted to short-term treatment of

acute opioid withdrawal and has, unlike clonidine, fewer adverse

effects, specifically absence of hypotension, anergy, weakness and

tiredness (Kuszmaul et al., 2020). Methadone, a full μ opioid agonist,

is the gold standard for OUD, but it is tied to misuse and deadly over-

doses (Rudd et al., 2010). Methadone is thus only administered in a

treatment facility and patients have to attend the clinic to get their

treatment (National Institute on Aging, 2015). Buprenorphine is a par-

tial μ agonist, which has a ceiling effect and it is given as a take-home

treatment (Bell & Strang, 2020; National Institute on Aging, 2015).

This home access also means it is easier to misuse. Thus, it was

reported in 2010 that over 190 million dosage units of buprenorphine

were distributed to pharmacies, which is over four times higher than

the almost 40 million dosage units distributed just 4 years prior in

2006. Interestingly, only 1.1 million dosage units were distributed to

licensed opioid treatment programmes and almost 800,000 individuals

received prescriptions for buprenorphine from physicians with a

waiver. In addition, an Australian study reported that the specific

source of diverted buprenorphine was obtained from friends in about

81% of the cases and in the remaining 19% from acquaintances and

dealers (Lofwall & Walsh, 2014). Naltrexone is a μ antagonist blocking

the effects of opioid agonists and only needs to be injected once a

month in extended release preparations, but it requires full detoxifica-

tion before it can be used (Bell & Strang, 2020). Methadone and

buprenorphine produce ‘drug-liking’ responses, which contributes to

maintaining treatment compliance, although patients who miss doses

experience opioid withdrawal (Kosten & George, 2002). In contrast,

naltrexone produces no positive opioid effects and this may contrib-

ute to its erratic compliance, early dropout and increased risk of fatal

opioid overdose when stopping treatment (Degenhardt et al., 2015).

The main concerns with all these treatments are the difficulties in

starting and maintain the medications together with the high preva-

lence of craving and relapse to the illicit consumption of opioids

(Strang et al., 2020). Actually, despite the positive impact of these

treatments, many OUD patients continue to suffer from craving with

negative affect and dysphoria (Kakko et al., 2019). Indeed, all partici-

pants under methadone treatment for 1 year had a relapse rate of

76.6%, with no significant gender differences (Moradinazar

et al., 2020). Similarly, the proportion of opioid-relapse events was

57% of participants in buprenorphine maintenance treatment during

only 6 months (Lee et al., 2018). Therefore, new alternative therapeu-

tic approaches are required to identify compounds targeting novel
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mechanisms of action in order to provide more safer and effective

medications (Mongi-Bragato et al., 2018). Despite this urgency, there

are few new chemical entities with novel mechanisms of action

(Spahn et al., 2017) currently under development (Emery et al., 2016)

and there is a clear unmet need to bring novel therapeutic strategies

to help improving OUD treatment.

In particular, it is necessary to develop new alternative treatments

to avoid and treat opioid withdrawal syndrome as well as craving and

relapse. A novel and more physiological approach to address these

unmet needs for the treatment of OUD may consist of enhancing the

effects of the endogenous opioid system by protecting the natural

opioid peptides, enkephalins, from their catabolism. Indeed, this

approach has demonstrated high effectiveness avoiding the side

effects of opioids and their potential abuse liability as a possible novel

analgesic treatment (Roques et al., 2012). In this review, we summa-

rize the current evidence that suggest the possibilities of inhibiting

enkephalin catabolism for the treatment of OUD. Multiple animal

studies and previous clinical trials targeting other indications have

provided scientific data that supports the safety and possible efficacy

of this approach, which supports the development of clinical trials to

finally demonstrate the efficacy of the inhibition of enkephalin catab-

olism in OUD treatment.

3 | THE INHIBITION OF ENKEPHALIN
CATABOLISM: A NOVEL AND UNEXPLOITED
THERAPEUTIC TARGET

Enkephalins (Met-enkephalin and Leu-enkephalin) are pentapeptides

produced in the CNS and peripheral tissues, and are the most abundant

endogenous opioids acting on both μ- and δ-opioid receptors, providing

the body with its own pain management system (Poras et al., 2015). In

addition to their analgesic properties, enkephalins are highly implicated

in motivational behaviours and stress responses, playing a key role in

regulating depression-like behaviours and behavioural responses to

stress (Nam et al., 2019). Regarding their analgesic properties, enkepha-

lins bind, with high affinities, to opioid receptors to induce transient

analgesia (Maldonado et al., 2018). Although their efficacy is the same

as exogenous opioids, enkephalins are degraded within minutes of their

release, which makes their development as therapeutic applications

impossible. Once released, enkephalins are rapidly degraded by two

membrane-bound exo-metalloproteases, termed neprilysin (neutral

endopeptidase; NEP) and aminopeptidase N (APN). The physiological

inactivation of these peptides allows the maintenance of a balance to

maintain an appropriate endogenous opioid tone, which is disrupted in

pathophysiological conditions (Corder et al., 2018; Poras et al., 2015;

Raffa et al., 2018; Roques et al., 2012). The inhibition of both NEP and

APN using selective dual inhibitors increases the half-life of the

released pro-analgesic enkephalin peptides causing a targeted physio-

logical action on the endogenous opioid system. Interestingly, it has

recently been demonstrated in humans increased levels of enkephalins

induce complete analgesia, devoid of opioid-like side effects in patients

suffering from congenital insensitivity to pain, thereby supporting the

hypothesis that leveraging the physiological effects of endogenous

enkephalins will provide effective and safe activation of the endoge-

nous opioid system (Minett et al., 2015).

The ultimate candidates for such therapeutic purposes are the

dual enkephalinase inhibitors (DENKIs), acting simultaneously on both

NEP and APN. By inhibiting the extracellular enzymes responsible for

the breakdown of enkephalins, DENKIs protect endogenous enkepha-

lins and increase their half-lives and their physiological actions

(Meynadier et al., 1988) (Figure 1). Increased levels of enkephalins

(Schreiter et al., 2012) with preferential μ-opioid receptor occupancy

(Ruiz-Gayo et al., 1992) have been demonstrated by radioimmunoas-

says after DENKI administration. Interestingly, μ receptors that are

directly involved in opioid rewarding effects and abuse liability

(Matthes et al., 1996) are also directly involved in the analgesic effects

induced by endogenous enkephalins protected from the degradation

by DENKIs. Multiple studies have shown that selective μ antagonists

(β-funaltrexamine /β-FNA and DAMGO) (Le Guen et al., 1999, 2003;

Noble, Soleilhac, et al., 1992), but not selective δ receptor (Le Guen

et al., 2003; Noble, Soleilhac, et al., 1992; Noble, Turcaud,

et al., 1992), nor κ receptor (Le Guen et al., 2003) antagonists blocked

the analgesic effects of RB101, the first systemically active DENKI.

Similarly, the analgesic effects of the systemically active DENKI PL37

were reversed by the selective μ antagonist cyprodime, but not by δ

or κ selective antagonists (Menendez et al., 2008). However, the loco-

motor, antidepressant and anxiolytic effects, as well as the lack of

drug abuse liability, indicate the participation of δ receptors in the

F IGURE 1 Mechanism of action of dual enkephalinase inhibitors
(DENKIs). The inhibition of the extracellular enzymes aminopeptidase
N (APN) and neprilysin (NEP) responsible for the breakdown of
enkephalins by the DENKIs contributes to the increase in the half-
lives and the physiological actions of endogenous enkephalins
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action of DENKIs (Jutkiewicz et al., 2006; Maldonado et al., 1990;

Roques, 2018). These well demonstrated interactions of endogenous

enkephalins with μ receptors support the interest of targeting acute

opioid withdrawal with DENKI treatment, as well as a possible substi-

tutive treatment in OUD using these compounds. This new pharmaco-

logical class of compounds could bring to patients efficient and safe

medications without the side effects of exogenous opioids and pro-

vide a possible novel therapeutic strategy for OUD.

Despite the increasing impact of OUD on society, there is a dis-

turbing lack of effective medications for clinical management of this

disorder. DENKIs selectively inhibit NEP and APN rapidly and with

high selectivity (Rose et al., 2002), and could represent a novel poten-

tial medication for acute opioid withdrawal treatment. Having a new

mechanism of action based on the enhancement of the endogenous

levels of enkephalins and that this mechanism may also have potential

as a novel maintenance treatment of OUD. Indeed, previous studies

have shown that the activation of μ and δ opioid receptors minimizes

opioid craving and relapse (Befort et al., 2008; Le Merrer et al., 2009).

This suggests that the activation of these opioid receptors by “protec-
ted” endogenous enkephalins could represent an interesting approach

for opioid maintenance therapy avoiding the classical side effects,

such as respiratory depression, tolerance or abuse liability. Further

research is needed to confirm this potential use of DENKIs in avoiding

opioid craving and relapse.

4 | ANTINOCICEPTIVE ACTIVITY OF DUAL

ENKEPHALINASE INHIBITORS (DENKIS) IN ANIMAL

PAIN MODELS

Analgesia is the most well-characterized therapeutic effect derived from

the pharmacological activation of the endogenous opioid system. Thus

analgesic measurements have been mainly used to characterize the phar-

macological profile of DENKIs in different experimental models in both

animals and humans. The analgesic effects of systemically active DENKIs

administered by intravenous or oral route can be, in some cases, of lower

intensity than the effects of morphine. Indeed, the effectiveness of pep-

tidases inhibitors towards different pronociceptive stimuli is directly

dependent on the concentrations of enkephalins released in the extracel-

lular space. This correlates with the efficacy of peptidase-protected

endogenous opioid peptides and with the subsequent stimulation of opi-

oid receptors across the areas involved in pain control (Basbaum &

Fields, 1984; Besson & Chaouch, 1987). Furthermore, as enkephalins

harbour high affinities for μ and δ receptors, their protection by DENKI

could add the specific antinociceptive responses mediated by δ receptors

to that associated with μ receptors activation, leading to a modified

response different to the one obtained by μ receptors activation alone

(Gomes et al., 2000).

DENKIs have been extensively evaluated and compared in several

models of pain in rodents (Roques et al., 2012). In the hotplate test

(O'Callaghan & Holzman, 1975), a model of centrally controlled and

integrated acute pain mostly used in mice (Carter, 1991; Knoll

et al., 1955), potent time- and dose-dependent antinociceptive effects

were observed. Intravenous administration of several systemically

active DENKIs (RB101, RB120 and PL37) showed antinociceptive

effects in the hotplate test after 10 min and were statistically signifi-

cant for 30 min (Poras et al., 2014). The dose–response curves after

intravenous administration showed the dose that produces 50% maxi-

mum effect (ED50) at 3 mg�kg�1 for RB120 and 9 mg�kg�1 for RB101,

whereas the ED50 for PL37 was from 4.5 to 16 mg�kg�1, depending

on the composition of the solvent (Fournié-Zaluski et al., 1992; Noble

et al., 1997; Poras et al., 2014). The dose–response curves showed

ED50 of 410 mg�kg�1 for RB120 and 133 mg�kg�1 for PL37 by oral

route (Noble et al., 1997; Poras et al., 2014). Their duration of action

remained relatively short after oral administration with a significant

antinociceptive effect having a duration of less than 1 h.

The tail flick is a predominant spinal reflex (Bonnycastle

et al., 1953; Irwin et al., 1951; Sinclair et al., 1988), which can be mod-

ulated by the activity of supraspinal structures (Mitchell &

Hellon, 1977). The application of thermal radiation to the tail of a rat

or a mouse provokes the withdrawal of the tail by a vigorous

movement (D'Amour & Smith, 1941; Smith et al., 1943). There is a

consensus that this test is very accurate in revealing the activity of

opioid analgesics and is adequate for predicting their analgesic effects

in humans (Archer & Harris, 1965; Grumbach, 1966). RB101, RB120

and PL37 produced dose-dependent antinociceptive responses in the

tail-flick test after intravenous administration with the maximal effects

10 min after administration and were significant during 40 min. The

ED50s were 80, 50 and 20 mg�kg�1 respectively for these three

DENKIs (Fournié-Zaluski et al., 1992; Noble et al., 1997; Poras

et al., 2014). Novel DENKIs, such as RB3007, were also evaluated

with this test after intravenous and intraperitoneal administration. At

50 mg�kg�1, 25–30% analgesia was obtained with a maximal effect at

60 min (Chen et al., 2001). In all these tail-flick experiments, the anti-

nociceptive responses were completely reverse by naloxone and par-

tially by naltrindole, a δ receptor, demonstrating the involvement of μ

and δ receptors.

PL37 and PL265 have also shown antinociceptive responses in

peripheral pain models, such as the formalin test, inflammatory pain

models, such as λ-carrageenan and complete Freund's adjuvant, neu-

ropathic pain, such as the chronic constrictive injury in rats or the par-

tial nerve ligation in mice (Bonnard et al., 2015; Poras et al., 2014),

and bone cancer-induced pain (Gonzalez-Rodriguez et al., 2017;

Menendez et al., 2008), as well as in a corneal pain animal model

(Reaux-Le Goazigo et al., 2019).

Altogether, these results suggest that DENKIs constitute a valid

alternative to opioids in terms of their antinociceptive effects for the

treatment of several chronic pain conditions.

5 | DENKIs ARE DEVOID OF THE MAJOR
DRAWBACKS OF MORPHINE AND ITS
SYNTHETIC DERIVATIVES

The serious shortcomings of morphine and opioid synthetic deriva-

tives limit their use in chronic pain management. These unwanted
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effects are caused by the ubiquitous interaction of these exogenous

compounds with all opioid receptors in the body, whether or not

involved in pain modulation. The main side effects of opioids are tol-

erance, physical dependence, abuse liability, respiratory depression,

nausea and constipation (Baldini et al., 2012). The mechanism of

action of DENKIs being based on the protection of enkephalins

released by nociceptive stimuli is unlikely to trigger the same side

effects as exogenous opioids. This has actually been demonstrated

experimentally by comparing at the same time and on the same exper-

imental models the occurrence of these unwanted effects by mor-

phine and DENKI-protected enkephalins.

5.1 | Absence of antinociceptive tolerance

Tolerance, defined as the need for escalating doses to maintain the

same pharmacological effect, is a well-known side effect of morphine

and exogenous opioids. Analgesic tolerance makes difficult to many

patients to manage an appropriate control of their chronic pain with

opioids (Attal et al., 2002; Tassain et al., 2003). We assessed the

degree of tolerance to DENKI using the hotplate test in mice

(Figure 2a,b; Noble et al., 1993). Dose–response curves were

established for morphine and RB101 to determine their respective

ED50. Then, mice received chronic treatment for 4 days of either mor-

phine (3 mg�kg�1, i.p., twice daily) or RB101 (80 mg�kg�1, i.p., twice

daily), at equipotent doses regarding their antinociceptive effects, or

saline. One day after the last administration, new dose–effect curves

of morphine and RB101 were established for each group. In mice

treated chronically with saline or RB101, the ED50 remained

unchanged, whereas the ED50 was significantly increased in mice

treated chronically with morphine. These results confirm that, as

expected, morphine induced tolerance, but RB101 was devoid of this

drawback. Interestingly, in mice treated chronically with RB101, mor-

phine produced the same analgesia as in mice treated with morphine

alone, but without the generation of tolerance, indicating also that

there was no cross-tolerance between morphine and RB101. Similar

results were obtained with PL265 (Bonnard et al., 2016), demonstrat-

ing that DENKIs do not develop antinociceptive tolerance after

repeated administration and could be a substitute to opioids in

patients who have become tolerant.

5.2 | Absence of physical dependence

Physical dependence was investigated in rats by chronic intravenous

infusion of morphine (0.17 mg per 120 μl�h�1) or the systemically

active RB101 (1.2 mg per 120 μl�h�1) at equipotent doses in respect

to their antinociceptive effects for 5 days (Noble et al., 1994), as

well as with intracerebroventricular infusion of the selective μ ago-

nist DAMGO (0.18 μg�μl�1�h�1), the selective δ agonist DSTBULET

(66.5 μg�μl�1�h�1), and the DENKIs RB38B (40 μg�μl�1�h�1) and

RB38A (40 μg�μl�1�h�1) (Maldonado et al., 1990). The withdrawal

syndrome was precipitated in both cases by naloxone administration

(5 mg�kg�1, s.c.). The major signs of opioid withdrawal that are

widely used to evaluate physical dependence (weight loss, diarrhoea,

writhing, wet dog shakes, teeth chattering and runny nose) were

observed in rats chronically perfused by intravenous route with

morphine but not in rats perfused with RB101. Only tremor

appeared significant with RB101-treated rats as compared with con-

trol groups; also, ptosis was higher when comparing the

RB101-administered animals with saline-treated mice but not

vehicle-treated mice. This ptosis is reduced when compared with

morphine-treated animals (Figure 3b). In agreement, these signs of

opioid withdrawal were avoided in rats when

F IGURE 2 Lack of antinociceptive tolerance and cross-tolerance with morphine (MO) in mice treated with dual enkephalinase inhibitors
(DENKIs) adapted from Figure 2 in Noble et al., 1992. Antinociception was evaluated in the hotplate test (jump response). (a) Antinociceptive
responses 10 min after intravenous administration of 2 mg�kg�1 of MO to mice chronically pretreated with saline (white column), 80 mg�kg�1 of
RB101 (black column) or 3 mg�kg�1 of MO (hatched column) intraperitoneally, twice daily for 8 days. (b) Antinociceptive responses 10 min after
intravenous administration of 20 mg�kg�1 of RB101 to mice chronically pretreated with saline (white column), 80 mg�kg�1 of RB101 (black
column) or 3 mg�kg�1 of MO (hatched column) intraperitoneally, twice daily for 8 days. ★P < 0.05 versus saline (Newman–Keuls test))
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intracerebroventricularly perfused with RB38B, with the exception

of tremor, as mentioned before in RB101. Wet dog shakes were

also observed in RB38A intracerebroventricular-administered rats,

but there were not significant when compared with vehicle adminis-

tered animals (Figure 3a). Based on these results, jumping, consid-

ered one of the main signs of the withdrawal syndrome, seems to

be associated with physical dependence to μ receptors, because δ

agonists and inhibitors of enkephalin catabolism do not induce this

action (Maldonado et al., 1990).

These results demonstrate that, unlike morphine, chronic adminis-

tration of DENKIs does not cause the development of physical

dependence.

5.3 | Absence of abuse liability

Morphine and μ agonists can act as discriminative cues in rats

(Joharchi et al., 1993). Discrimination of different classes of opioid

F IGURE 3 Lack of physical dependence after
chronic administration of dual enkephalinase
inhibitors (DENKIs), (a) adapted from Figure 1 in
Noble et al., 1994 and (b) from Figure 3 from
Maldonado et al., 1990. a) Effects of naloxone
administration (5 mg�kg�1, s.c.) on behaviour of
rats chronically intravenously perfused for 5 days
with morphine (M) (0.17 mg per 120 μl�h�1),
RB101 (I) (1.20 mg per 120 μl�h�1) or control

solutions (S, saline; V, vehicle) (120 μl�h�1). The
results are expressed as means + SEM of the
number of events counted during the 30-min
period of observation immediately after naloxone
injection (writhing, wet dog shakes and teeth
chattering), according to the quotation scale
established: One point was given for the
presence of each sign over 10-min periods during
the 30 min of observation (maximum score: 3)
(tremor, diarrhoea and ptosis). *P < 0.05 and
**P < 0.01 versus control (Newman–Keuls test).
(b) Effects of naloxone administration (5 mg�kg�1,
s.c.) on the behaviour of rats chronically
intracerebroventricularly perfused for 5 days with
DAMGO (0.18 μg�μl�1�h�1), DSTBULET
(66.5 μg�μl�1�h�1), RB38A (40 μg�μl�1�h�1),
RB38B (40 μg�μl�1�h�1) and control solutions.
Values are means ± SEM. *P < 0.05 versus
control groups, when they are placed on the
columns, or versus DSTBULET group when they
are placed on the opened arrow, or versus
DAMGO group when they are placed on the
closed arrow (Newman–Keuls test)
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drugs shows a close correlation to differences in subjective experi-

ences of these drugs in humans and these responses are evaluated in

abuse liability studies. Rats were trained in a two-level choice task to

select an appropriate lever depending on whether they have been

administered with morphine or saline before the test session. The sys-

temically active PL37 was tested for its ability to replace or generalize

the trained drug cue expressed by responding on the appropriate

lever. Unlike the positive effects of morphine and hydrocodone, PL37

intraperitoneal, at a dosing range of up to 32 mg�kg�1, did not pro-

voke discriminative properties in rats. These data suggest that analge-

sic doses of PL37 do not produce morphine-like subjective effects

and should not have the abuse potential of μ receptor agonists.

The ability of morphine and other μ-opioid agonists to induce

rewarding properties or to directly promote operant responses reveal-

ing their reinforcing effects is well established. The rewarding proper-

ties of DENKIs were investigated using the conditioned place

preference test (Figure 4a,b; Noble et al., 1993). In this model, mice

were treated with morphine (3 mg�kg�1, i.p.), RB101 (80 mg�kg�1, i.p.)

or saline for developing place conditioning. After this conditioning

phase, a shift towards the drug-associated compartment was

observed only in mice treated with morphine and this effect was

increased after administration of naloxone.

DENKIs' reinforcing properties were first evaluated in the self-

administration test, using animals trained in a two-lever choice task

to select an appropriate lever depending on whether they have

been administered morphine or saline before the test session. Novel

drugs can be tested in this paradigm for their ability to replace the

trained drug cue expressed by responding on the appropriate lever.

In this model, rats treated with morphine (3 mg�kg�1) presented dis-

criminative responses, but not rats treated with RB120 (10 mg�kg�1)

(Hutcheson et al., 2000). Operant intravenous self-administration in

animals is the most frequently used and reliable method to assess

drugs' reinforcing effects. Animals almost exclusively intravenous

self-administer compounds abused by humans and the specific

pattern of intake for each drug is quite comparable (Panlilio &

Goldberg, 2007).

Altogether, these results demonstrate that DENKIs do not pre-

sent any abuse potential at analgesic doses and demonstrate the

major difference compared with the effects of administration of exog-

enous opioid agonists.

5.4 | Absence of respiratory depression

One of the major side effects of opioids is respiratory depression.

Endogenous opioid peptides, such as enkephalins, are potent analge-

sics, but they depress ventilation due to an effect on the CNS

(Denavit-Saubié & Foutz, 1997; Yeadon & Kitchen, 1989). To study

the consequences of the increase of these endogenous opioids by the

action of DENKIs in the respiratory control, ventilation was measured

in cats and rodents in both awake and anaesthetized states (Boudinot

et al., 2001). RB101 tested at antinociceptive doses (40–160 mg�kg�1,

i.p.) did not affect ventilation evaluated using a plethysmograph cham-

ber by the barometric method, indicating that DENKIs are devoid of

respiratory-depressant effects.

5.5 | Absence of constipation

Constipation is a major side effect of morphine and exogenous opi-

oids. The effects of DENKIs on gastrointestinal transit have been eval-

uated in rodents. In a model of castor oil-induced diarrhoea in mice

(Noble et al., 2008), RB101 showed antidiarrheal properties in wild-

type animals, as previously shown with the NEP-specific

enkephalinase inhibitor acetorphan (racecadotril) (Roge et al., 1993),

but only a slight effect in knockout mice for the preproenkephalin

gene (Penk1�/� mice). These results suggest a differential effect of

exogenous opioids and DENKIs.

F IGURE 4 Absence of drug abuse liability in animals treated with dual enkephalinase inhibitors (DENKIs) adapted from figure 1 in Noble
et al., 1993. (a) Percentage of time spent in the conditioned compartment (drug-paired compartment) and (b) percentage of time of visit to the
conditioned compartment on Day 2 (preconditioning, white bars) and Day 11 (postconditioning, black bars). Mice were conditioned with
morphine (3 mg�kg�1, i.p.) or RB101 (80 mg�kg�1, i.p.) using four place pairings. ★P < 0.05 compared with the control group on Day 11; ✩P < 0.05
compared with values on Day 2 (Noble et al., 1993)
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6 | POTENTIAL INTEREST OF THE
INHIBITORS OF ENKEPHALIN-DEGRADING
ENZYMES IN OPIOID USE DISORDER (OUD)

The main concerns with current opioid maintenance treatments are

the difficulties to start and maintain the medications together with the

high prevalence of craving and relapse to illicit consumption of opioids

(Strang et al., 2020). Indeed, despite the positive impact of these treat-

ments, many OUD patients continue to suffer from craving with nega-

tive affect and dysphoria (Kakko et al., 2019). The most difficult aspect

in the treatment of addiction is the protracted abstinence syndrome,

one of the main factors contributing to relapse. Indeed, the first days

after cessation of prolonged drug use leads to acute withdrawal syn-

drome, which consists of physiological changes (i.e. agitation,

hyperalgesia, tachycardia, hypertension, diarrhoea, vomiting cardiovas-

cular and thermoregulatory) and emotional subjective changes that

may persist for months or even longer after the last opioid administra-

tion (Galinkin & Koh, 2014; Sigmon et al., 2012). Therefore, new alter-

native therapeutic approaches are required to identify compounds

targeting novel mechanisms of action in order to provide more safe

and effective medications (Mongi-Bragato et al., 2018).

Thus, a still uncovered challenge in OUD is to develop an effec-

tive treatment to minimize the short-term withdrawal syndrome and

to obtain a substitution treatment that avoids protracted opioid

abstinence.

The use of a more ‘physiological’ maintenance treatment by

increasing the level of endogenous opioid peptides represents an

interesting new approach for the treatment of acute opioid with-

drawal, and a potential maintenance treatment for OUD that could

prevent craving and relapse, as suggested in multiple previous studies.

In contrast to exogenous opioid agonists or antagonists, chronic

administration of mixed enkephalin-degrading enzyme inhibitors does

not induce changes in the synthesis of the clearing peptidases and in

the synthesis of its target peptide precursors, as well as in the release

of the endogenous peptides (Roques, 1988). Accordingly, animal stud-

ies revealed that a transgene-mediating enkephalin expression in rats

also efficiently attenuated opioid withdrawal (Hao et al., 2009). Inter-

estingly, the brain extracellular levels of enkephalins were increased in

rats chronically treated for 5 days with morphine (Fukunaga &

Kishioka, 2000; Nieto et al., 2002), which underlies the potential inter-

est of inhibiting their catabolism as a therapeutic alternative.

Withdrawal syndromes are expected to be avoided or reduced by

means of peripheral administration of peptidase inhibitors, as observed

in rodents (Dzoljic et al., 1986; Dzoljic et al., 1992; Haffmans &

Dzoljic, 1987). Early studies have shown that the NEP inhibitors

phosphoramidon, thiorphan and acetorphan and the mixed inhibitor

phelorphan minimize the severity of the naloxone-precipitated mor-

phine withdrawal syndrome in rats and mice (Dzoljic et al., 1986;

Haffmans & Dzoljic, 1987; Livingston et al., 1988). The first DENKIs,

kelatorphan and RB38A, were also evaluated on the somatic manifes-

tations of naloxone-precipitated morphine withdrawal. These early

DENKIs were unable to cross the blood–brain barrier (BBB) and were

consequently evaluated after intracerebroventricular administration

(Maldonado et al., 1989). Kelatorphan and RB38A showed a higher

effectiveness in the attenuation of the behavioural and somatic mani-

festations of naloxone-precipitated morphine withdrawal than the

selective NEP inhibitor thiorphan (Figure 5). The greater efficacy of the

mixed inhibitors presumably is due to the resulting greater increase in

enkephalins in certain brain regions, especially those enriched in μ

receptors, such as the periaqueductal grey matter which also contains

high levels of NEP (Waksman et al., 1986) and could be an important

site of action for the manifestations of the behavioural symptoms of

physical morphine dependence (Maldonado et al., 1995). Accordingly,

local administration of kelatorphan or RB 38A into the periaqueductal

grey matter produces a severe attenuation of the severity of the with-

drawal syndrome in rats. This result indicates that during morphine

F IGURE 5 Acute administration of dual enkephalinase inhibitors (DENKIs) attenuates the behavioural manifestations of morphine withdrawal
adapted from Figure 1 and 2 in Maldonado et al., 1989. Effect of saline, thiorphan (100 μg), kelatorphan (32 μg) or RB38A (12 μg), 30 min before
naloxone (5 mg�kg�1) on the behavioural manifestations of naloxone-precipitated morphine withdrawal syndrome. Values are means ± SEM. ★

P < 0.05 versus morphine + saline group (Mann–Whitney U-test)
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withdrawal syndrome, there is a tonic release of opioid peptides, pre-

sumably enkephalins, into this structure and that local inhibition of

their degradation strongly decreases the severity of the withdrawal

syndrome (Maldonado et al., 1995).

The inability to cross BBB of the first inhibitors precluded investi-

gations of their possible effects using a clinically relevant route of

administration. New series of compounds able to cross the BBB and

to inhibit NEP and APN were developed. RB101 easily crossed the

BBB following intravenous injection in mice but was poorly soluble in

vehicles suitable for administration in human. The intravenous

administration of this systemically active DENKI significantly and

dose-dependently attenuated the behavioural manifestations of

naloxone-precipitated morphine withdrawal syndrome. Interestingly,

this beneficial effect of RB101 was potentiated by the co-

administration with a cholecystokinin octapeptide antagonist (PD-

134.308/CI-988) (Figure 6a; Maldonado et al., 1995). To evaluate the

responses triggered by a spontaneous morphine abstinence at differ-

ent times, an experimental model of spontaneous opioid abstinence

and substitutive maintenance treatment in rats was developed

(Figure 6b; Ruiz et al., 1996). This experimental model was used to

evaluate the effects induced by RB101 and to compare the responses

to those produced by compounds used to reduce opioid dependence

in humans, such as clonidine and methadone. In this model, clonidine

decreased the severity of spontaneous abstinence only after its acute

administration and this effect was significant only during this initial

observation session when compared with the saline group, in agree-

ment with the acute moderate responses revealed in clinical studies

with α2-adrenoceptor agonists (Van der Laan & De Groot, 1988). The

responses induced by RB101 in this model of spontaneous withdrawal

were similar to those induced by methadone (Figure 6b). Indeed,

RB101 decreased opioid abstinence in all the observation sessions

and this effect was particularly strong in the sessions performed at

the end of the substitutive administration, suggesting a long-term

effectiveness of DENKIs in OUD substitutive treatment. Indeed, the

responses induced by RB101 in these late sessions could be due to an

effective interruption of the adaptive changes underlying the expres-

sion of opioid abstinence as a consequence of the potentiation of the

endogenous opioid system induced by the peptidase inhibitor.

Interestingly, the chronic maintenance with RB101 or methadone not

only avoided the manifestation of the spontaneous withdrawal but

F IGURE 6 Acute administration of dual enkephalinase inhibitors (DENKIs) attenuates the behavioural manifestations of morphine withdrawal
adapted (a) from Figure 5 in Maldonado et al., 1995 and (b) from Figure 6 in Ruiz et al., 1996. (a) PD-134.308 (3 mg�kg�1), RB101 (5, 10 and
20 mg�kg�1), PD-134.308 + RB101 and saline effect on the global withdrawal score after naloxone administration in morphine dependent rats.
Values are means ± SEM. ★P < 0.05 versus saline + saline group; ✩P < 0.05 versus RB101 + saline group (Newman–Keuls test) (Maldonado
et al., 1995). (b) Effects of clonidine (0.025 mg�kg�1, B), methadone (2 mg�kg�1, C), PD-134.308 (3 mg�kg�1, D), RB101 (40 mg�kg�1, E), RB101
+ PD-134.308 (F) and saline (A) on the global withdrawal score of spontaneous morphine abstinence in rats. Values are means ± SEM. ★P < 0.05
versus value of the same group in the first session (Newman–Keuls test); ✩P < 0.05 versus value of saline in the same session (Dunnett's test)
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also removed the previous state of opioid dependence, because no

signs of withdrawal were observed when naloxone was injected 2 h

after the last substitute injection. This effectiveness in decreasing

withdrawal symptoms, not only after its acute administration but also

under maintenance circumstances, points to the possible usefulness

of RB 101 as substitutive treatment for the maintenance of patients

suffering OUD. Moreover, preliminary recent results demonstrate that

the intravenous administration of PL37 also attenuates naloxone-

precipitated morphine withdrawal in mice. In this last study, increasing

doses of morphine (from 10 to 40 mg�kg�1, s.c., twice daily) were

administered for 5 days and the withdrawal syndrome was precipi-

tated by a naloxone challenge (1 mg�kg�1, s.c.). A low dose of PL37

(5 mg�kg�1, i.v.) or saline was administered 10 min before naloxone

and PL37 was found to significantly attenuate the global withdrawal

score in these mice when compared with saline-treated mice. In sup-

port of these data, the peptidase-resistant enkephalin analogues FK

33-824 and metkephamid (LY-127,623) completely suppress opioid

withdrawal in monkeys (Gmerek et al., 1983). Furthermore, a herpes

simplex virus vector that promotes local release of enkephalins in ani-

mals with persistent pain attenuated the manifestations of naloxone-

precipitated morphine withdrawal syndrome (Hao et al., 2009). Proba-

bly, increased concentration of enkephalin in the spinal dorsal horn

produced by vector-mediated release competes with naloxone, lead-

ing to a more intensive saturation of the opioid receptor and

corresponding attenuation of the withdrawal syndrome.

It has been hypothesized that enkephalin release is increased dur-

ing morphine withdrawal as a compensatory mechanism ameliorating

the effects of withdrawal (Fukunaga & Kishioka, 2000). These previ-

ous results suggest that enkephalins or other proenkephalin-derived

peptides, released during morphine withdrawal may induce a wave of

constitutive activity, which could attenuate naloxone withdrawal. The

persistence of such endogenous opioid activity, produced by

enkephalin release, may be a homeostatic mechanism ameliorating

opioid withdrawal and should be improved by the protection of

enkephalins from metabolism by DENKIs.

All these data reveal that an increase in opioid receptor occu-

pancy by endogenous enkephalins protected from catabolism by dual

inhibitors significantly reduced morphine abstinence in rodents.

7 | DENKIs AS ALTERNATIVE FOR
AVOIDING OPIOID WITHDRAWAL

In agreement with animal studies, withdrawal syndrome in heroin

addicts can be reduced by the administration of endogenous opioid

peptides (Wen & Ho, 1982; Wen & Ho, 1984). In patients on heroin

withdrawal, dynorphin (1-13) has shown to relief the manifestations

of the withdrawal syndrome (Wen & Ho, 1982. It was also observed

that the duration of this relief lasts longer than other endogenous opi-

oid peptides such as β-endorphin, [D-Ala2, D-Leu5]-enkephalin or

dynorphin (Wen & Ho, 1984). In addition, human studies have also

compared the effectiveness of different opioid peptides in

suppressing the withdrawal syndrome in heroin addict patients and

the most effective results were obtained with the intravenous admin-

istration of [D-Ala2, D-Leu5]-enkephalin analogues (Wen & Ho, 1984).

These withdrawal syndromes are expected to be avoided or

reduced by means of peripheral administration of peptidase inhibitors.

In fact, the enkephalinase inhibitor acetorphan has shown to attenu-

ate some aspects of the opioid withdrawal syndrome, such as lacrima-

tion, weight loss and diarrhoea in humans (Hartmann et al., 1991).

These results make enkephalinase inhibition a novel and safe thera-

peutic approach for the treatment of opioid withdrawal, despite the

need of more human studies.

8 | CLINICAL STUDIES WITH DENKIS

Pharmacological studies in animals have demonstrated the safety and

potential therapeutic interest of DENKIs in the treatment of OUD.

These data are supported by early studies in humans using enkephalin

analogues and inhibitors of the enkephalin catabolism, as previously

discussed. In addition, several clinical trials have now been carried out

using the most advance DENKI in terms of research, PL37, which

further demonstrate the safety of this novel therapeutic approach.

Indeed, safety, tolerability and preliminary pharmacokinetics of

PL37 were investigated in a ‘first-in-human’ clinical trial

(PL37-2008-C01/EudraCT No. 2008-000863-41; Debio0827-102/

EudraCT No. 2010-018271-18). A total of 80 healthy volunteers of

both genders were exposed to single ascending oral doses of PL37.

Subjects were randomized in a 6:2 ratio to receive active treatment

(PL37) or placebo. Single doses of 6.25, 12.5, 25, 50, 100, 200, 400 and

800 mg of PL37 or matching placebo were administered. Two doses

(50 and 200 mg) were tested in female subjects with low differences in

pharmacokinetic time course profiles. Metabolites were also measured

in plasma and urine. The most frequently reported adverse events

in Phase 1 studies (EudraCT No. 2008-000863-41; EudraCT

No. 2010-018271-18) were CNS disorders, mainly headaches rated as

mild or moderate in intensity and orthostatic intolerance rated as

moderate or severe in intensity. A number of episodes of postural

hypotension also occurred in the single-dose study, most of them

asymptomatic, but not at higher doses in the multiple-dose study. All

doses were well tolerated and no severe adverse effects were observed

in Phase 1 studies, supporting the safety of this therapeutic approach.

The endogenous NEP and APN activities and the inhibitory

effects of ascending doses of PL37 were assessed in plasma samples

from the first Phase 1 study. Maximal NEP inhibition was similar for

subjects receiving 100 to 800 mg of PL37, with an almost complete

inhibition during the first hours. The time needed to get back to basal

activity tended to be longer for subjects receiving 400 and 800 mg of

PL37. Mean APN inhibition results reveal a clear dose-dependent

effect on enzyme inhibition for subjects receiving 100 to 400 mg of

PL37, whereas 400 and 800 mg of PL37 produced similar inhibition

profiles with an almost complete inhibition during the first hours

(EudraCT No. 2008-000863-41).

Analgesic efficacy and safety of oral PL37 were assessed in a

4-week Phase 2a, multicentre, randomized, double-blind,
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placebo-controlled add-on study (PL37-C03-2013/EudraCT No. 2013-

004876-37) in diabetic subjects suffering from neuropathic pain with

inadequate pain relief despite being on stable dose of pregabalin or

gabapentin. Randomized subjects received, in addition to their therapy,

either oral PL37 (200 mg, t.i.d.) or matching placebo t.i.d. for 4 weeks

(28 days). Subjects were assigned to a treatment group (PL37 or pla-

cebo) in a 1:1 ratio. In the pregabalin stratum, the primary endpoint

was considerably improved in the PL37 group in comparison with pla-

cebo (although no significant). Importantly, no biological or vital signs

changes nor laboratory alterations nor severe adverse events were

reported, underlying the safety of this novel therapeutic approach.

It must be mentioned that NEP has been involved in the degrada-

tion of natriuretic peptides in vitro, and its inhibition has been explored

to reduce BP, which may raise concerns about the safety of this

approach in normotensive subjects. Indeed, sacubitril was the first NEP

inhibitor approved by FDA in 2015 and marketed for heart failure in

association with an angiotensin II receptor antagonist (valsartan) under

the drug name LCZ696 or Entresto® and has demonstrated safety and

efficacy over a period of 5 years (Campbell, 2017). Angioedema events

were not recorded in either the 497- or 297-patient trials receiving

sacubitril for 8 weeks (Srivastava et al., 2018). However, one patient

out of 149 with heart failure that received sacubitril therapy for

36 weeks developed severe angioedema (Raheja et al., 2018), although

angioedema incidence was acceptably low in heart failure patients

receiving sacubitril therapy (0.45%), not different from that for

enalapril (angiotensin-converting enzyme inhibitor) therapy (0.5%)

(Campbell, 2018). The cardiovascular safety of PL37 was also reported

in Phase 2a clinical trial. No clinically significant changes in ECG were

reported. In sharp contrast with sacubitril, BP showed no changes

between baseline and end of study (PL37 systolic BP change from

baseline to end of treatment = �1.2 ± 13.1 mmHg; placebo systolic

BP change from baseline to end of treatment = �0.0 ± 15.98 mmHg),

and no differences between the placebo (135.0 ± 17.85 mmHg) and

PL37-treated group (132.6 ± 17.32 mmHg), which underlines the dif-

ferences between these two drugs in cardiovascular safety.

In summary, Phase 1 and Phase 2 clinical studies reveal that PL37

is well tolerated and safe in humans by oral route. Altogether, these

studies show that DENKIs are well poised to serve as drugs with

novel mechanisms of action for OUD treatment.

9 | CONCLUSIONS

After a long time of misuse, society now is becoming conscious about

the danger of inappropriate use of opioids. The current situation in

the United States due, at least in part, to initial improper medical use

of opioids has led to a dramatic epidemic of opioid use disorder

(OUD). Most of the patients affected by this epidemic do not receive

an appropriate treatment and the therapeutic approaches now avail-

able has serious caveats. The use of physiologically produced endoge-

nous opioid peptides could represent an excellent approach to open

novel therapeutic perspectives for OUD. Taking into account that

enkephalins are the most abundant endogenous opioids and they are

degraded within minutes of their release, making impossible their

therapeutic application, the inhibition of their catabolism could be an

innovative method to maintain the activation of the endogenous opi-

oid system avoiding the classical opioid-like side effects. To date, pre-

clinical and clinical studies carried out confirm the safety of this novel

therapeutic approach showing an absence of the classical harmful side

effects caused by opioids. Preclinical studies have also provided a

solid amount of data that demonstrate pharmacological effects of

these inhibitors of the enkephalin catabolism that are of potential

interest for OUD treatment. Early studies in humans have demon-

strated that endogenous opioids are able to alleviate the severity of

opioid withdrawal. Therefore, all of the current data highlight the use-

fulness of enkephalin catabolism inhibitors as a potential novel thera-

peutic strategy to minimize the current opioid crisis.

9.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in the IUPHAR/BPS Guide to PHARMACOL-

OGY http://www.guidetopharmacology.org and are permanently

archived in the Concise Guide to PHARMACOLOGY 2021/22

(Alexander, Christopoulos et al. 2021; Alexander, Fabbro et al. 2021).
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