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Abstract

Halting biodiversity loss is the ultimate challenge of our era. We are losing species at a high
rate, even before assessing their extinction risk. The International Union for Conservation of
Nature (IUCN) Red List is the most complete assessment of species conservation status, yet
it only covers around 138,374 out of about 1.2 million species identified so far. Additionally,
many of those assessments are outdated, due to the ever-evolving nature of taxonomy or lack
of resources. These assessments rely on long, mostly manual processes performed by experts.
Species conservation would gain by automating the identification of species where experts and
financing should focus on.

This work proposes a pipeline to derive datasets out of open data and obtain conservation
status predictions, through machine learning, of Not Evaluated (NE) and Data Deficient (DD)
species. This pipeline was applied to different groups within the Reptilia class, one of the most
under-assessed taxonomic group of vertebrates, and the performance of different machine learning
algorithms was compared using five datasets. The first included only two variables (the most
used in IUCN assessments) – extent of occurrence (EOO) and area of occupancy (AOO). The
second used only ecological variables, the third used all available variables, and the fourth and
fifth variations of the latter two using variable selection. Additionally, SMOTE was used to
balance the datasets where the class of interest was the minority, and improve the results for the
species in that class. The predictions were mapped to locate threatspots and needed conservation
assessments, and to infer global patterns.

The results showed that EOO and AOO are the most relevant predictors of threat status
achieving good results when used alone in models. Nevertheless, most groups benefited from
the inclusion of ecogeographical variables together with those two. Random Forest was the best
method for most groups and variable selection improved results. The predictions, when compared
to the most recent assessments, achieved good sensitivity and specificity results. The threatspot
maps showed that the areas with threatened species may be larger than previously thought,
especially in Africa and Brazil.

Overall, results support that the developed pipeline can be used to perform a general model
assisted conservation status assessment across species to more efficiently allocate conservation
efforts, which more focused studies can then complement.
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Resumo

Travar a perda de biodiversidade é o grande desafio da nossa era. Estamos a perder espécies a
um ritmo elevado, ainda antes de conseguirmos avaliar o seu risco de extinção. A Lista Vermelha
da União Internacional para a Conservação da Natureza e dos Recursos Naturais (IUCN) é a
avaliação mais completa do estado de conservação das espécies, no entanto ainda abrange apenas
138,374 das cerca de 1.2 milhões de espécies identificadas até à data. Adicionalmente, muitas
dessas avaliações estão desastualizadas devido à permanente evolução da taxonomia e à falta
de recursos. Elas dependem de processos demorados, e maioritariamente manuais, realizados
por especialistas. A conservação de espécies ganharia com a automatização da identificação de
espécies nas quais os especialistas e o financiamento se devam focar.

Neste trabalho, é proposta uma pipeline para gerar conjuntos de dados a partir de fontes
abertas e obter previsões do estado de conservação, através de aprendizagem automática, para
espécies Não Avaliada (NE) e Informação Insuficiente (DD). Esta pipeline foi aplicada a diferentes
grupos dentro da classe Reptilia, um dos grupos taxonómicos de vertebrados com menos avaliações,
e comparou-se a performance de diferentes algoritmos de aprendizagem automática utilizando
cinco datasets. O primeiro incluiu apenas duas variaveis (as mais utilizadas nas avaliações da
IUCN) - extensão de ocorrência (EOO) e área de ocupação (AOO). O segundo usou apenas
variáveis ecológicas, o terceiro usou todas as variáveis disponíveis e o quarto e quinto eram
variações dos últimos dois, usando seleção de variáveis. Foi ainda usado SMOTE para balancear
os datasets onde a classe de interesse era a minoritária e melhor os resultados para espécies dessa
classe. As previsões foram mapeadas para localizar threatspots e a necessidade de avaliação de
estado de conservação e para inferir padrões globais.

Os resultados mostraram que o EOO e AOO são as variáveis mais relevantes para prever o
estado de ameaça, tendo tido bons resultados quando usados como únicas variáveis nos modelos.
Ainda assim, a maioria dos grupos beneficiou da inclusão de variáveis ecogeográficas. Random
Forest foi o algoritmo com melhor performance para a maioria dos grupos e a seleção de variáveis
melhorou os resultados. As previsões, quando comparadas com as avaliações de estado de
conservação mais recentes, obtiveram boa sensibilidade e especificidade. Os mapas de threatspots
mostraram que as áreas com mais espécies ameaçadas podem ser mais extensas do que se pensava,
especialmente em África e no Brasil.

No geral, os resultados suportam que a pipeline desenvolvida pode ser utilizada para realizar
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uma avaliação genérica e automática do estado de conservação de múltiplas espécies, de forma
a permitir uma alocação mais eficiente dos esforços de conservação, que estudos mais restritos
podem depois complementar.
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Chapter 1

Introduction

This first chapter explains the motivation and context for this work, from the arguments that
make this such a relevant area of study in the current days, to the choice of Reptiles as the case
study for the dissertation and why the usage of data and machine learning techniques was a
good fit for this application, in Section 1.1. It then details the objectives for this dissertation, in
Section 1.2, and the organization of the rest of the document, in Section 1.3.

1.1 Motivation and context

Species have been disappearing at an alarming rate [1]. As more studies focus on biodiversity
loss and the conservation status of different groups of species, the more we understand the
true dimension of this problem [2]. Biodiversity loss is causing several emerging problems to
humankind. Health issues [3], reduced food security [4, 5], increased contact with diseases [6], and
more unpredictable weather events [7] have been reported to be be related to the biodiversity
loss and estimated to be worsened by it in the future. There are also economic costs related
to impacts of biodiversity loss in ecosystem services, including pollination [8], irrigation, soil
reclamation, pest control, to name a few [9]. The value of global biodiversity and related benefits
for human economies and livelihoods has been estimated in the trillions of dollars [9].

In the face of global environmental change, it is vital to understand how much biodiversity
is being lost. Knowing which species are most at risk of becoming extinct is essential to guide
decision making and to establish priorities for conservation efforts and resource allocation, allowing
to more efficiently place the time of researchers and the money of countries and institutions to
the species that most need them [10–12]. Not knowing the conservation status of a species may
hinder the urgent need for action and miss out on opportunities and resources when devising
policies [13]. Additionally, assessments must be reevaluated periodically to account for changes
in the conservation status and estimate the effect of conservation measures [14].

There is a growing awareness of the importance of policies that can compensate for the
current loss of biodiversity and prevent future losses. Multiple entities have recognized that
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1.1. Motivation and context 2

and have established sets of goals. This includes the agenda set by the Parties of the United
Nations (UN) Convention on Biological Diversity (CBD), which defined the 20 Aichi Biodiversity
Targets [15], and the 17 Sustainable Development Goals (SDGs) identified by the UN 2030
Agenda for Sustainable Development [16]. The Global Environment Facility (GEF), United
Nations Development Programme (UNDP) and United Nations Environment Programme (UNEP)
committed to support governments implement the post-2020 global biodiversity framework [17].
Moreover, in December 2020, a workshop organized by Intergovernmental Science-Policy Platform
on Biodiversity and Ecosystem Services (IPBES) and Intergovernmental Panel on Climate Change
(IPCC) explored the interaction and synergies between climate and biodiversity. The goals was for
its scientific outcome to provide an input into IPCC and IPBES assessments, and into discussions
on the Conference of the Parties (COP) 15 of CBD and COP 26 of United Nations Framework
Convention on Climate Change (UNFCCC) [18].

Organizations struggle to generate assessments for the vast biodiversity on the planet. These
assessments need to be performed species by species, in a very rigorous and time-consuming way,
and by experts [12]. The International Union for Conservation of Nature (IUCN) is the largest
organization tracking conservation assessments [19], yet it only covers around 138,374 [20] out of
the approximate 1.2 million species identified so far, due to the multitude of existing species and
the time and monetary costs of acquiring and analysing data manually, species by species [12].
Moreover, there is not only the need to establish the conservation status of more species, but
to do re-assessments in order to keep information up to date, and to evaluate the results of
conservation actions. Currently, many of the existing assessments are outdated, either due to the
ever-evolving nature of taxonomy, or to the lack of periodic reassessments [14]. This increases
the need for fast, frequent and reliable assessment methods. Despite being highly unlikely that
automated methods will substitute a full field assessment done by IUCN experts, they can be a
valuable tool for faster decision making and prioritization, by generally improving the knowledge
on a broader number of species. Having a better distribution of the available resources, could
lead to a more focused effort in attributing threat levels to unassessed species and more resources
could potentially be spent to reevaluate older assessments.

1.1.1 The reptile case study

The tetrapod taxonomic group is the superclass that aggregates all four-limbed animals, including
amphibians, reptiles, birds, and mammals. Global distribution [21] and drivers of threat
of tetrapods [22] have been largely assessed. Conservation assessments have typically used
distributions of amphibians, birds and mammals, however, the global distribution of reptiles is
still poorly known despite the high diversity of this class of terrestrial vertebrates [21], making
them one of the most under-assessed group of tetrapods [12]. This may be problematic since
hotspots of reptile species, such as some endemic lizards, have little overlap with those of
other taxonomic groups, biasing conservation priorities [21]. For instance, reptiles may be more
vulnerable to habitat degradation, since they have a limited dispersal ability when compared to
birds and some mammals, making them more particularly susceptible to habitat changes [23].
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Moreover, reptiles depend on the environmental temperature to regulate internal temperature
and many species depend on it for sex determination. As such, due to global climate change
there is a growing concern that reptiles will be heavily affected by range contractions and the
destabilization of sex ratios [24]. As reptiles play an important role in their ecosystems, helping
to keep them healthy and balanced by serving, for instance, as predators and preys, pollinators
and seed dispersers, assessing their conservation status urges [25–28].

As of May 2021, there were 11,570 reptile species described in The Reptile Database [29].
According to IUCN [20], 9,100 reptile species were evaluated so far.

1.1.2 Data science for conservation

Massive amounts of data have been collected on species occurrence, abundance, and their
habitats [30]. In addition, environmental data on the climate, geomorphology, vegetation
and land cover, offer insights about species ecological requirements, their habitats, and their
spatiotemporal change. Biologists use it to study species evolution, habitat distribution, perform
conservation studies, among other things. Historically, this data is analyzed by species, or by
taxonomic groups, in order to keep the amount of data manageable using analytic techniques.
Data science and machine learning are providing new tools and techniques to natural sciences to
develop strategies to address the biodiversity crisis [31]. By providing faster ways of exploring
these data and taking advantage of its volume, these methods may provide more accurate
predictions of biodiversity loss [31]. With them we can try to speed up or complement the
analysis and prediction processes that biologists and conservationists aim to perform, uncover
patterns, improve the understanding of biological or ecological processes and obtain faster
predictions.

A characteristic of this data is its heterogeneity, since it comes from a variety of sources,
namely, it was collected for different studies, by a multitude of individuals in separate teams,
and across a span of many years. That leads to a number of considerations and possible biases
that need to be payed attention to when merging the different data sources. A careful curation
process needs to happen before it can be used in modelling.

1.2 Objectives

This study aimed at taking advantage of the vast amount of data on species presences to predict
the conservation status of unassessed species at a global scale, using several machine learning
techniques.

Since data is scattered across many public repositories, the first goal was to create a valid and
representative dataset for as many reptile species as the current data sources allowed. That is in
itself a valuable deliverable since it implies a careful curation of data from a variety of sources.
The result was a representative dataset of non-correlated reptile data points and environment
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information that can be used for multiple future studies.

This dissertation aimed at developing a process and a working pipeline for data preparation,
modelling and evaluation. The intended result was to model the conservation status of species,
using terrestrial reptiles as a case study. This taxonomic group was used to demonstrate the
validity of the method, without loss of generality, due to the large number of unassessed species
in this group and the vast amount of presence data, so that the resulting models could be used
to generate predictions for species not yet evaluated.

Since not all of the IUCN categories have a big enough number of species with available data,
this dissertation formulates the modelling task as a binary classification problem, where species
were labeled as either threatened or non-threatened according to IUCN categories. Additionally,
modelling was done for different taxonomic groups within the Reptilia class in order to better
model their characteristics and needs. To understand which algorithms perform better in this
data, different methods were tested.

An additional goal was to understand if the use of ecological and geographical variables,
not typically used in IUCN assessments, benefits the classification of species into threatened or
non-threatened. This information can potentially be used to improve models by including relevant
predictors, or to understand if species could be assessed using other variables as surrogates when
the Area Of Occupancy (AOO) and the Extent Of Occurrence (EOO) are unavailable. For that,
five sets of predictor variables were compared for each group of species to evaluate the impact
of using ecogeographical variables (EGV), both by themselves and with other predictors more
commonly used in IUCN assessments.

The best models for each group were used to generate predictions for the unassessed species.
Since the beginning of this work, IUCN continued the assessment of reptile species. In order to
understand how the models performed, their predictions were matched with the latest IUCN
assessments, to compare them with the threat status for the species where a manual assessment
was recently made available.

Another goal was to try to improve the model results using a pre-processing technique, namely
SMOTE [32], to balance the datasets where the class of interest was the minority class.

To have a geographic view of the results, this study mapped the areas with more threatened
species (based on model predictions and IUCN assessments), to potentially guide better conser-
vation planning and resource allocation by IUCN, conservationists, researchers, and the involved
countries.

1.3 Organization of the dissertation

The remaining of this dissertation is organized as follows. Chapter 2 presents some preliminary
concepts on IUCN assessment criteria and categories and on the biologic taxonomy, along with
several relevant machine learning concepts needed for understanding this work and reviews the
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state of the art of studies conducted in this area. Chapter 3 describes the steps done during the
curation of the datasets to gather and pre-process the occurrence data from multiple sources,
aggregating it into a species dataset, and presents the five experimental datasets generated.
Chapter 4 introduces the pipeline produced in this dissertation to building and evaluating the
model and generating threatspot maps and explains the experimental setup used in the modelling
process. Chapter 5 presents and discusses the results and, finally, Chapter 6 concludes by
exploring the outcomes of this work, its limitations and potential future improvements and
applications.



Chapter 2

Background and literature review

This chapter introduces a set of concepts needed to better understand the work done in this
dissertation, in Section 2.1, namely it presents the IUCN Red List and its different categories
and criteria, and it explains the basic concepts about reptile taxonomy. Then, in Section 2.2 the
fundamental machine learning concepts used on this dissertation are introduced and explained.
Finally, Section 2.3 introduces several works that preceded this dissertation in applying machine
learning or other techniques to automatically place species under a threat level.

2.1 Background knowledge

2.1.1 IUCN Red List

The International Union for Conservation of Nature’s Red List of Threatened Species is the most
complete source of information on the conservation status of species, and it serves as an indicator
on the state of biodiversity [19]. At the time of writing, 138,374 species had been assessed,
including vertebrates, invertebrates, plants, fungi, and others, 28% of which are threatened
with extinction. IUCN’s goal is to reach 160.000 assessed species with its Barometer of Life
project [20]. Besides the assessment itself, the list contains information on range, population
size, habitat and ecology, use and/or trade, threats, and conservation actions of each species. It
is used by government agencies, wildlife departments, conservation-related Non-Governmental
Organisations (NGOs), natural resource planners, and many others, to inform and improve policy
and conservation decisions, and for education purposes. Using a method other than the IUCN
Red List for a study like this, would incur the risk of having limited impact in policy-making
and definition conservation actions, since this is the de facto standard.

6
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2.1.1.1 Categories

The IUCN assessment consists in a set of nine categories, seven of which representing different
levels of extinction risk. In decreasing level of concern: Extinct (EX), Extinct in the Wild (EW),
Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT) and
Least Concern (LC). Figure 2.1 shows this categories, how they are grouped and whether they
are associated to a risk level.

Figure 2.1: IUCN categories. All existent species, are subsetted into categories with an IUCN
evaluation of their conservation status or under Not Evaluated (NE). Among the evaluated, some
species lack appropriate data for a risk assessment, and thus fall under Data Deficient (DD).
Categories with adequate data have an associated extinction risk level. Adapted from [33].

Extinct is the highest level of risk and indicates an assumed global extinction of the species.
Extinct in the Wild means that the species no longer exists in its natural habitat, but is present in
captivity and may still be reintroduced in the wild, or outside its historic range, as a naturalized
population, due to massive habitat loss. Species under Critically Endangered (CR), Endangered
(EN) or Vulnerable (VU) categories are considered as Threatened, while Near Threatened (NT)
and Least Concern (LC) are considered Non-Threatened species.

Data Deficient (DD) includes species that were evaluated, but there was not enough data to
place them under a leveled category. DD and Not Evaluated (NE) represent species were there
is no assessment of their conservation status. It is not known whether they are threatened or
not, so IUCN advises caution to assume they may have some risk of extinction. Species may be
very close to extinction, but due to lack of data or formal evaluation, fall into one of these two
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categories [33].

2.1.1.2 Criteria

IUCN Red List uses five criteria (A-E) which are meant to be usable and comparable across
different taxa. This comparability ensures proper prioritization decisions and standardizes the
process. Criteria take into account many factors including the number of populations, population
trends, fragmentation level, EOO, AOO, number of locations, and probability of becoming EW
(for which data is rarely available) [33].

Criterion A is based on estimates of population (number of mature individuals) reduction
over 10 years or three generations, Criterion B is based on geographic range, Criterion C is based
on population size, Criterion D mainly concerns very small or restricted populations based on
the number of mature individuals and AOO, and Criterion E is based on a quantitative analysis
of extinction probability within a given number of years.

Figure 2.2: Criteria used by IUCN to place species under a category. Adapted from [33].

2.1.2 Reptile taxonomy

In Biology, species are organized according to a taxonomy (Figure 2.3), which organizes them in
the tree of life according to their common characteristics and ancestors.
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Figure 2.3: Taxonomy used to classify all existing species. Adapted from [34].

The reptilia class, to which all species used in this dissertation are part of, is a class within
the tetrapod superclass. Tetrapods refers to all four-limbed animals, and includes other four
classes — amphibians, reptiles, birds, and mammals. Within the Reptilia class, there are six
distinct clades: amphisbaenians, crocodiles, lizards, snakes, turtles, and tuataras.

2.2 Machine learning

2.2.1 Problem setup

Typical machine learning problems may fall under one of four types of tasks, namely, supervised
learning, semi-supervised learning, unsupervised learning, and reinforcement learning [35].

Supervised learning consists of learning a function that maps inputs to outputs using a set
of labeled training examples [36]. In some domains, labeled data is hard to obtain; it may
require trained humans work to label it, physical experiments, or simply be too expensive or time
consuming. Semi-supervised learning uses small set of labeled data and large set of unlabeled
data to train models [35]. The premise is that, semi-supervised algorithms, can make usage
of more data by using some unlabeled examples, which are typically easier and less expensive
to obtain than labeled data. Unsupervised learning uses only unlabeled data and tries to find
patterns on the data and categorize the inputs based on those patterns [36]. Essentially, they try
to discover the inherent structure of unlabeled data. The output of these models is not as easy to
control as supervised learning models since there is no external guidance on the task that should
be performed. For instance, they may separate the examples by any of their characteristics to
maximizes the distance between clusters, but that may not be the most relevant split for the
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task at hand. Lastly, reinforcement learning creates agents that interact with their environment
and receive feedback from their actions. Their goal is to maximize a cumulative reward [37].

The problem this dissertation proposed to solve was framed as a supervised learning problem,
so a dataset of labeled data had to be put together. Moreover, it was set as a classification
problem since the target variable, the conservation status of species, was categorical. Due to
the low number of records and imbalance of some of species under the IUCN categories, there
was too few data points available to train the models to discriminate between the five categories
of risk (CR, EN, VU, NT, and LC). For this reason, it was turned into a binary classification
problem by binarizing the target variable into threatened and non-threatened classes. The
datasets used contain a number of species (rows) and their their characteristics as features and
threatened/non-threatened label as target variable.

2.2.2 Imbalanced domain learning

In some domains it is typical for distribution of the target variable to be skewed. In the case of
classification problems, this leads to a much higher number of examples of one class (majority
class) than the other (minority class). This becomes an issue when the class with fewer examples
is precisely the one which we are interested in. For example, when trying to predict whether
a transaction is fraudulent, or a patient has a given disease, there are typically much fewer
examples of fraudulent transactions, and sick patients than normal ones, providing fewer training
examples of that class for the models to learn from. Ultimately, this yields to models that are
biased for the prediction of the most frequent class, which according to standard evaluation
metrics (e.g. accuracy), maximizes its performance over all the target variable domain. Since we
are interested in the rare positive cases, the cost of misclassification of these cases is typically
larger. Moreover, depending on the application domain, sometimes a higher cost is assigned
to positive cases incorrectly classified as negatives (false negatives — FN) than negative cases
incorrectly classified as positives (false positives — FP). This setting makes standard machine
learning methods and evaluation metrics not suitable for tackling these type of problems.

These are called imbalanced domain learning problems [38] and four types of solutions
have been proposed: via data pre-processing, special-purpose learning methods, prediction
post-processing and hybrid methods.

Data pre-processing applies transformations to change the data distribution and make learning
algorithms focus on the cases of the most relevant class. Since they are applied to the data,
they have the advantage of working with any existing learning algorithm, the reason why this is
the most common approach for tackling imbalanced domains. Also, the models trained using
the pre-processed data are biased towards the user’s goal, which should make the model more
interpretable with relation to those goals. A drawback is the difficulty to map the original
distribution to one that fulfills the user’s goals. Examples of pre-processing approaches include
re-sampling the data to force the model to focus on the most important examples, and setting
different weights to the training data in order to penalize the misclassification of important
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examples. Within re-sampling, three important strategies should be highlighted: random under-
sampling [39], random over-sampling [39] and SMOTE [32]. The first randomly removes examples
of the majority class, reducing the sample size. However, this may cause relevant examples
to be dropped from the dataset and, consequently, can lead to a worse performance [38]. The
second creates new examples by copying those of the minority class, increasing the sample
size. This technique may lead to overfitting, specially when using high over-sampling rates [40].
Finally, SMOTE, which stands for Synthetic Minority Over-sampling Technique, incorporates
over-sampling of the minority class by generating new synthetic data with a percentage of
random under-sampling of the majority class defined by a parameter. The synthetic examples
are interpolated at a random point on the lines that join two existing data examples - a seed
and one of its k minority class nearest neighbours. A given over-sampling percentage defines the
number of examples to be generated for each example of the minority class [32].

Special-purpose learning methods are adaptations of existing algorithms to make them able
to learn from imbalanced data. These techniques try to incorporate the involve user’s goals into
the model itself, which should create more comprehensible models. A clear disadvantage of these
methods is that it restricts the choice of learning algorithms, since they need to be modified
to optimise the goal or developed from scratch for the task. Moreover, changes to the target
loss function force the model to be retrained and, possibly, the algorithm to be further adapted.
The developer needs to have a deep understanding of the learning algorithms to be adapted. In
the literature there are multiple examples of algorithms adapted to deal with imbalance data
(decision tree [41], Support Vector Machine (SVM) [42], RF [43], k-NN [44]).

Post-processing approaches alter the resulting predictions instead of the data distribution
or learning methods. It has several advantages: the needed bias does not need to be known at
learning time or can be easily changed later without adjusting the incoming data or retraining
the models. The trained model can be applied in different deployment scenarios, and standard
learning algorithms can be used. However, they are not as interpretable and do not reflect the
user preferences as the other methods. Two examples are the threshold method [41], which
involves generating multiple models by varying the threshold for examples to fall under one class
or the other and picking the most performant of the models, and cost-sensitive post-processing,
which attributes costs to prediction errors and minimizes the total expected cost [45].

Lastly, hybrid methods may make usage of techniques from different approaches to obtain a
more complex solution.

This work used a hybrid solution using pre and post-processing techniques, namely, re-
sampling using SMOTE, and the threshold method. Not using special-purpose learning methods
allows this work to test and compare different models trained using different - not adapted -
algorithms.
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2.2.3 Evaluation metrics

In imbalanced class problems, like this one, where FN errors have a higher cost than FP, accuracy
is not an effective measure of the model’s performance [38]. This is due to the fact that accuracy
focus on minimizing both types of errors, not accounting with their different costs, and since the
class of interest is, typically, much less represented than the others, a model would have a high
accuracy if it only focus on correctly classifying the examples of the other class. For that reason,
other metrics are better suited for these types of problems.

Several metrics were used in this work some because they are a better fit for imbalanced
datasets, specifically sensitivity, specificity, precision and F-measure with β = 0.5 (F0.5), others
because they were used in other studies of this nature, namely, Area Under the Curve (AUC)
and True Skill Statistic (TSS). These metrics are explained in detail below, including their
formulas in terms of true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN). In the case of this work, the positive class is threatened. Figure 2.4 shows a
confusion matrix of these four possible results of classification of an example in the context of
threatened/non-threatened species.

Figure 2.4: Confusion matrix in the context of threatened/non-threatened species.

• Sensitivity (recall, true positive rate): Fraction of threatened species which were correctly
classified as threatened.

TP

TP + FN

• Specificity (true negative rate ): Fraction of non-threatened species which were correctly
classified as non-threatened.

TN

TN + FP

• Precision: Fraction of the species that were classified as threatened which were actually
of the threatened class.

TP

TP + FP
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• Fβ: Measure of the precision and sensitivity (recall). A β of one is the harmonic mean of
precision and sensitivity, balancing the two. The value of β can be adjusted to put a higher
weight on precision or sensitivity and, consequently, to give a higher cost to false positives
or false negatives, respectively.

Fβ = (1 + β2) × precision× sensitivity

(β2 × precision) + sensitivity

• AUC: Threshold independent metric obtained by calculating the area under the ROC
curve (receiver operating characteristic) which plots the sensitivity (true positive rate)
against the false positive rate. Figure 2.5 presents an example of a ROC curve.

Figure 2.5: Example of a ROC curve.

• TSS: Threshold dependent metric based on sensitivity and specificity and independent of
the prevalence of positive examples.

sensitivity + specificity − 1

2.2.4 Performance estimation

As previously described, a supervised learning model is trained on a set of labeled training data,
but the goal is for it to be able to generalize and correctly predict the output given new, unseen,
inputs. For that reason, in order to validate the performance of the model, one should not use
the same data examples that were already seen in the model during training. Those records
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were used to obtain the model’s underlying function and using them for testing could inflate its
performance to unrealistically values [36].

K-fold Cross Validation (CV) [46] is a technique used for splitting the dataset into train and
test by creating k partitions (folds) of data without repetition. The model training is done on the
data from k − 1 folds and tested on the remaining one. Each fold is left out for testing once and
the average score of the k generated models is taken as an estimation of the model’s performance.

When data is not a problem, CV can be used to estimate parameters, and a separate hold
out test set is then used to obtain an estimation of the model’s performance from data that was
never seen by the model. However, CV is particularly useful when there is a limited amount of
data to train and test the model and it helps avoiding overfitting since all data points end up
being used in training. In the end, a new model should be trained with all training data and CV
provides the estimation of its performance [36].

2.3 State of the art

Even though the application of data science to ecology and conservation is still in its early stages,
and standards and guidelines are still being defined [31], several works in ecology have emerged
in recent years across different scales from ’macro’ applications at a global sphere (e.g., [47, 48])
to ’micro’ applications intended for fine scale assessments (e.g., [49–51]). In particular, machine
learning techniques have been applied to predict conservation status at a global or continental
scale [52, 53].

In [52], the authors focused on the flora of the African continent and created a complementary
method, the Preliminary Automated Conservation Assessments (PACA). It used large numbers of
species data from RAINBIO and GBIF and estimates thereof and, based on the IUCN Criteria A
(estimation of population reduction) and B (estimation of geographic distribution), automatically
categorized species using six preliminary levels. Those levels could then be used to prioritize
more extensive and detailed conservation assessments.

The authors of [53] also devised a workflow to facilitate the process of predicting conservation
status of multiple taxa. Like the work presented in [52], this method was applied to land
plants (over 150,000 species), but at a global level. It used geographic, environmental and
morphological trait data and applied a machine learning method (Random Forest [54]), to predict
the conservation status. Comparing the results from two datasets, one with spatial data only and
another with spatial and morphological, the authors concluded that the spatial-only performed
better, possibly due to the lack of morphological data, which lead them to use fewer data points.

Random Forest (RF) have been extensively used in these type of studies, due to its ability
to deal with overfit issues and to handle large quantities of both data points and predictor
variables [53]. The algorithm has been showing promising results for certain clades [22, 53, 55–57].
In particular, a study used it to assess the threat status of terrestrial vertebrates, and separately
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for four taxonomic groups (amphibians, reptiles, birds and mammals) [22], and another focused
on reptiles [58]. This work stands out from previous works by avoiding assuming that RF is the
best algorithm for this type of application or data, and tested other machine learning algorithms.

Using global data from a very large number of terrestrial plant species and RF, recent studies
showed the utility of coarse-scale data in assessing the extinction risk of plant species [57] by
predicting its threat level [53]. The authors of [59] used herbarium specimens data to compare
machine learning methods, and specifically RF, with more traditional approaches like directly
assessing the AOO and EOO, or the specimen count, against IUCN criteria. Random Forest
outperformed all other approaches in terms of accuracy, using these data. In [60], the authors
used decision trees and regression methods to predict the extinction risk of thousands of species
of plants of the Brazilian Atlantic Forest, and to determine the relationship between predictor
variables and extinction risk. Other authors [61] used deep learning to automate the threat
assessment of plant species globally. Finally, a study [62] used Cumulative Link Mixed Models
(CLMM) to evaluate the threat level of species of a subfamily of fish, the groupers, discriminating
six of the IUCN threat categories.

Conservation data is imbalanced since the percentage of threatened species is typically lower
than that of non-threatened species, respectively, 28% and 72% for all currently assessed species.
That being said, when looking individually into taxonomic groups, there are some where the
number of threatened species surpasses that of non-threatened. Previous works have tackled this
imbalance problem by under-sampling the majority class to match the number of species in the
minority class [53]. Other works did not try to balance the dataset, but used appropriate metrics
for performance estimation, namely, sensitivity and specificity [57].



Chapter 3

Dataset curation

This project started by the curation of a dataset that would allow answering the question of
which species should be given a higher priority for conservation measures. The first step of the
proposed pipeline was to retrieve occurrence data from several sources. Since data was scattered
across many public repositories, the first goal was to create a valid and representative dataset for
as many reptile species as the data sources allowed. That was in itself a valuable deliverable
since it implies data curation from a variety of sources.

This chapter introduces the sources used for this work and all the data transformations
done to them in order to create the actual datasets that were used. It starts by explaining the
steps to import and pre-process the source data, curating it into a dataset of reptile presences
in a geographic locations and at a point in time, in Section 3.1. It then details the process of
choosing the relevant ecological variables, in Section 3.2, and, in Section 3.3, the aggregation of
presences into a species-level dataset and where the geographic variables were generated. Lastly,
in Section 3.4, it introduces the different experimental datasets created in order to test whether
some variables can be used to improve or replace the typical predictors used by IUCN, namely,
AOO and EOO.

3.1 Dataset of presences

3.1.1 Importing and merging the source data

In total, 18,608,087 data points were extracted from four online open databases GBIF [63],
PREDICTS [64], BioTIME [65], and the Living Planet Index (LPI) [66].

After importing the data, each dataset was cleaned and transformed so their columns and
values were matched, which had the same meaning but different naming across the different
sources. Additionally, date formats had to be converted to the same standard. These datasets
were filtered to contain only species of the class Reptilia and to include only data points with
a taxonomic rank of species or subspecies. After each dataset was pre-processed, a subset of

16
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columns was selected. The datasets were then merged to create the presence dataset from where
duplicated records were removed.

3.1.2 Pre-processing

Simply merging the data from these datasets yielded more than 15 million data points, but with
a variety of possible issues. It needed to undergo a process of curation that trimmed down the
number of points. The desired result was a dataset that could be trusted to contain only accurate
and relevant occurrences, and that could be matched against the current reptile taxonomy.

3.1.2.1 Synonymizing

Species taxonomic classification is ever evolving [67]. New findings from biologic and genetic
studies (e.g. genome sequencing) may lead species to be split or synonymized, subspecies to
be promoted to species or vice-versa [68]. Since this data spanned over decades, one needed
a way to map older records to the most up to date taxonomy. To tackle this challenge, the
Reptile Database (or ReptileDB) [29], which is the most complete reference for reptile taxonomy,
containing taxonomic information of 11,440 reptiles, in December 2020, including synonyms of
each taxon, and is frequently updated (every six months), was used to harmonize the species
names on the dataset.

A taxon was referred to using the binomial nomenclature, composed by its genus name and
the specific name. The scientific name of each species on the presence dataset was matched to
the species scientific name in ReptileDB or to a list of synonyms derived from it. If it matched
the synonym it was renamed to the most current name. Records that could not be matched to
the taxonomy, either directly or by synonymizing, were removed, since there was no automatic
way to accurately match them to a taxon.

3.1.2.2 Cleaning

Some of the records represented occurrence data which conveyed the presence/absence of a
species in geographic (or cartographic) coordinates for a given point in time; others, abundance
data, which depicted the number of observed individuals at a given location and date of sighting.
Here, only presence records were of interest, since one could not be sure if an absence indicated
that a species did not exist in that location or habitat, or if it simply was not detected at
observation time [69]. However, abundance data with counts higher than zero was also considered
as presences. The dataset contained other information about each data point, whenever present
in the data source. It included, among others, fields related to the basis of the record (describing
if the point was acquired via human observation, machine observation, preserved specimen, etc),
a measure associated with the coordinate uncertainty, and any notes about data issues (e.g. the
coordinates were rounded, the datum was inferred).
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Reptile taxa resided mostly in tropical or temperate climates, so coordinates falling in extreme
latitudes (larger than 70ºN or 70ºS) were manually verified by experts and removed from the
dataset [21]. Moreover, presences without the observation year, or before the year 2000 were
discarded due to the uncertainty associated with older positioning systems such as GPS or
GLONASS [70]. Inaccurate coordinates could lead to improper values being extracted for the
predictor variables for those species, introducing errors in the data. After applying this filter,
the presence dataset spanned two decades, from 2000 to 2020.

3.1.3 Handle species with a low count

At this point, only 1,275,311 of the original 18,608,087 data points were kept in the dataset,
corresponding to 7266 species and a great number of them did not have enough data points for
an analysis on it to be meaningful. Thus, only species with at least 20 presences should be kept,
in order to have a minimum amount of information for each species [71, 72].

One option was to drop the records of those species that did not meet this criteria, but it
would mean loosing information on 4651 species. There was also the hypothesis that these species
could have low numbers because they were already under threat or near it. Moreover, many of
those were endemic species, which means they only existed in a particular region of the globe,
putting them more at risk of becoming threatened. These were the reasons for including those
species in this work.

Another option, was to use polygon data available in IUCN [19], and extract the predictor
variables for each cell on the entire range of the polygon. The issue with that was the species
may not occupy the entire range, leading to some false positives in terms of occurrences. A
trade-off between those two was to use the polygon data only for species that had been assessed
by IUCN, and not found to be of least concern (LC). These species were either known to be
threatened (categories: CR, EN and VU), at risk (NT), or had been assessed but the lacked of
data lead to no category being assigned (DD). Like the data of individual presences, the polygon
data also went through the process of synonymizing the scientific name.

By the end of this pre-processing step, the dataset contained 72,289,380 records, including
the values extracted from the polygons.

3.2 Select and generate ecological variables

3.2.1 Relevant ecological variables

Some studies focused solely on the geographic distribution of species. These failed to capture the
relation between taxa and their habitat and the fact that the same environmental characteristics,
which were relevant for a given specie, may occur across many locations. Biodiversity and
conservation models assume a correlation between the number of individuals of a species and the
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extent of their habitat, and the existence of certain conditions on the world around them. For most
species, there is evidence of the effectiveness of environment variables as predictions. For that
reason, this work considered three categories of predictor variables that could, potentially, affect
the distribution of a species. Namely, bioclimatic, topographic and habitat heterogeneity variables,
together called ecological variables from now on. These provided information about species
habitat, climate, vegetation and topography linked to presence data. Predictor variables used for
model development were decided with the help of experts and literature review. Nevertheless,
these variables had the potential to be highly correlated. So, a variable selection process was
carried through an automatic selection process, described below, in Section 3.2.3, and followed
by expert revision as well.

Bioclimatic variables represented annual and seasonal trends in temperature and precipitation
(e.g., Annual Mean Temperature, Precipitation Seasonality), as well as extremes (temperature
of the coldest and warmest month). They were derived from the monthly mean, max, mean
temperature, and mean precipitation values and were created precisely for ecological applications.
Two distinct datasets providing this information were tested, WorldClim and Chelsa. Chelsa
was chosen to move forward since it had a better coverage of the points in the presence dataset,
leading to less missing values (see Subsection 3.2.2). It has also been reported to have better
accuracy [73].

Topographic variables were used because terrain topography create the finer-scale variations
in climate and can have a big impact in nutrient availability, and water flows which influence the
number of individuals in a location. Values related to the terrain elevation, roughness, aspect
eastness, and aspect northness are correlated to the amount of sun light that can reach a given
spot. Since reptiles are ectotherms (cold blooded), and cannot retain heat as well as endotherms
(warm blooded) animals do, they depend on the air and soil temperatures to regulate their own
as well as for sex determination [24].

Habitat heterogeneity variables portrait the amount of distinct vegetation present. Species
with the capacity to inhabit distinct types of habitats should have more ease adapting in the
case of changes to their habitat.

3.2.2 Extract and pre-process

These variables existed on raster layers with values corresponding to coordinates on the globe.
The 29 rasters had the same resolution of 1 km and they were aligned in order of all cells in
order for their cells to overlap geographically, using the bio_1 variable as the baseline.

Due to the valid representation extent of most of the ecological variables used (e.g. land
temperature), their rasters only had values for coordinates on land. For that reason, marine
species, like marine turtles and sea snakes were excluded from the analysis. Even though many
of them spend a part of their time on land, one would need to use a different set of variables
that explains their marine habits and ecosystem better. Without them, the models would not be
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able to learn from a significant part of their habitats. In order to include them other variables
would have to be used, for instance, ocean temperature, salinity, and others. In total, 7 species
of marine turtles and 71 sea snakes were left out. After excluding these species, there were still
multiple records with missing values for the ecological variables. Those could be caused by wrong
coordinated that fell on the water, or by the fact that the raster layers did not have enough
resolution to represent some of the islands and coastal coordinates.

Once again, to avoid loosing information on entire species, these records for species which
would have less than 20 presences after this step and which had a conservation status of CR, EN,
VU, NT or DD were imputed. For that, it was assumed presences of terrestrial species located on
water were due to imprecise coordinates and the points were imputed by looking for the nearer
land cell in a radius incremented by 1 up to 10 km. These data points were savaged because they
belong from species of categories with most interest to conservation efforts. LC records with
missing values, were not imputed and left out of the dataset to avoid the introduction of too
many imputed values.

Duplicates records can happen due to the same record existing in multiple datasets, or
to different samples being done on the same grid cell, thus having the same values in all the
predictor variables. Additionally, species may occur in geographically distant places, but those
environments may be characterized by very similar conditions. If the values of predicted variables
are correlated, even for very geographically distant individuals, the amount of information
contained in the second observation may be small. It has been proven that correlated records
can cause biases in the dataset [74]. To avoid this, presences were filtered using a process of
re-sampling them onto a lower resolution on the predictor space, and by dropping duplicates on
the newer resolution. To maximize variance on the relevant dimensions a Principal Component
Analysis (PCA) was run before the re-sampling, and the top three dimensions were used.

3.2.3 Variables selection

The result from the previous steps was a representative dataset of non-correlated reptile data
points and environment information that can be used for multiple future studies. The final
presence dataset had 70,550,648 data points. In total, the data contains details on 3260 reptile
species which were divided into five groups by their clades, namely, amphisbaenians, crocodiles,
lizards, snakes and turtles. Tuataras were intentionally left out, since this clade comprises only
one species with very unique characteristics and does not fit into any of the other groups. A
sixth group contained the data points of all taxa.

The original set of ecological variables contained 29 variables from the three groups detailed
before (19 climatic, four topographic and six habitat heterogeneity predictors, check Table 3.1).
This was a large number of variables for the amount of species present in each group, and many
of these variables were known to be highly correlated among them. Moreover, each reptile group
has different characteristics, which may lead to different environmental requirements. To better
model the conservation status of each group, this work selected different sets of variables for each
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one and minimized the correlation among each set.

To obtain such subset of variables, a Principal Component Analysis (PCA) was run on the
presences for each group. From these, this dissertation kept the variables that maximize the
variance of each of the top PCA dimensions, according to the Pearson criteria by retaining 80%
of the variance [75]. This predictor selection step allowed each of the groups to be modelled
using the most adequate variables for their characteristics and behaviours.

The ecological variables selected by the PCA provide a subset of variables with low correlation,
that represent the environmental factors tuned to each group. The list of variables for each group
can be seen in Table 3.2.

3.3 Species-level dataset

At this point, presence data was aggregated from individual spatial presences to the species level
to match the response variable (i.e., IUCN conservation status attributed for each species). This
was done by calculating the mean and the standard deviation of each of the ecological predictors
selected by the PCA step, to express how much a species is able to occupy habitats with different
range of ecological conditions aiming to describe species realized niches (i.e., a n-dimensional
hypervolume [81]). Moreover, the geographical variables were extracted from the presence data
and added to the species datasets. The variables were grouped as follows:

• Geographic

– AOO and EOO (two variables)

– Latitude/Longitude-derived variables (four variables)

• Ecological

– Climate (19 variables)

∗ Temperature (T)
∗ Precipitation (P)

– Topographic (four variables)

– Habitat heterogeneity (six variables)

The complete description of these 35 variables can be found in Table 3.1. The variables were
represented in raster layers which allowed to extract values from each one using the geographic
location of data points.

EOO is the area within the shortest imaginary boundary which encompasses all presences of
the given species. According to the IUCN guidelines [33], it can obtained from the minimum
convex polygon, which is the smallest polygon containing all presences of the species and which
has no internal angle over 180 degrees. AOO represents the area within the EOO that is actually
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Table 3.1: List of the geographic and ecological variables used in this study by type, source,
name and description. All raster layers used for the ecological variables have a 1 km resolution.

Type Name Description (unit)
(Source)

Geographic
(GBIF [63], AOO Area of occupancy of a species (km2)
PREDICTS [64], EOO Extent of occurrence of a species (km2)
BioTIME [65], min_lat 5th percentile of latitude (◦)
LPI [66]) max_lat 95th percentile of latitude (◦)

med_dist_eq Median distance to the equator (◦)
med_long Median longitude (◦)

Ecological
Climatic bio_1 Annual mean temperature (◦C)
(CHELSA [76]) bio_2 Mean diurnal range (◦C)

mean of monthly (max temp - min temp)
bio_3 Isothermality

bio_2/bio_7 (×100)
bio_4 Temperature seasonality

standard deviation ×100
bio_5 Max Temperature of warmest month (◦C)
bio_6 Min Temperature of coldest month (◦C)
bio_7 Temperature annual range (◦C)

bio_5-bio_6
bio_8 Mean Temperature of wettest quarter (◦C)
bio_9 Mean Temperature of driest quarter (◦C)
bio_10 Mean Temperature of warmest quarter (◦C)
bio_11 Mean Temperature of coldest quarter (◦C)
bio_12 Annual precipitation (mm)
bio_13 Precipitation of wettest month (mm)
bio_14 Precipitation of driest month (mm)
bio_15 Precipitation seasonality (mm)
bio_16 Precipitation of wettest quarter (mm)
bio_17 Precipitation of driest quarter (mm)
bio_18 Precipitation of warmest quarter (mm)
bio_19 Precipitation of coldest quarter (mm)

Topographic eastness Aspect eastness
(EarthEnv [77]) elevation Elevation (meters a.s.l.)

northness Aspect northness
roughness Roughness

Habitat heterogeneity contrast Exponentially weighted difference in Enhanced Vegetation
(EarthEnv [78]) Index (EVI) between adjacent pixels

cv Coefficient of variation. Normalized dispersion of EVI
homogeneity Similarity of EVI between adjacent pixels
maximum Dominance of EVI combinations between adjacent pixels

(Copernicus
[79] fcover Fraction of green vegetation cover
[80]) ndvi Normalized Difference Vegetation Index
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Table 3.2: List of ecological variables (EcoV) selected for each of the taxonomic groups by the
PCA step of the pipeline. Check Table 3.1 for details on the variables.

EcoV Amphisbaenians Crocodiles Lizards Snakes Turtles All species

bio_1 V V
bio_2 V
bio_3 V
bio_4
bio_5 V V
bio_6 V
bio_7 V V
bio_8 V V
bio_9 V V V
bio_10 V
bio_11
bio_12 V V
bio_13 V V
bio_14
bio_15 V
bio_16
bio_17 V
bio_18 V
bio_19
eastness V V V V
elevation
northness V V V
roughness V
contrast V V V V
cv V V V V
homogeneity V V V
maximum V V V
fcover
ndvi V

occupied by the species. This reflects the fact that a taxon may not occupy all of its EOO, since
it may contain unsuitable or unoccupied habitats. Its estimation was obtained, in accordance
with the IUCN guidelines [33], by counting the number of occupied cells in the grid that covers
the range of the taxon and multiplying it by the area of a cell, as shown in the following formula:

AOO = no. occupied cells × area of individual cell

The cell size used for estimating these metrics, was the recommended reference scale by
IUCN [33], 4km2 (2x2km). Figure 3.1 depicts the difference between the two metrics.

The labels corresponding to the IUCN threat level (Critically Endangered, CR; Endangered,
EN; Vulnerable, VU; Near Threatened, NT; Least Concern, LC; Data Deficient, DD) were
extracted from the IUCN Red List webpage (https://www.iucnredlist.org/) and matched with
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(a) (b) (c)

Figure 3.1: Example of the difference between EOO and AOO. (a) shows the spatial distribution
of presences of a given taxon. (b) shows the minimum convex polygon which can be used to
estimate EOO, and (c) shows how AOO can be estimated using the sum of the occupied grid
squares. Adapted from [33].

the corresponding species. The target variable was obtained by binarizing to threatened/non-
threatened classes. IUCN categories CR, EN and VU were considered as threatened and, NT
and LC categories were considered non-threatened. DD and NE have an unassessed extinction
risk category, so they were not used for training. The final models were used to make predictions
for species in those two latter classes. DD and NE species are of particular interest for this
application given that the lack of information may imperil them [12].

The result of this step was a set of six species-level datasets, with threat status label,
corresponding to the five clades of species, plus the entire species pool. The characteristics of
these datasets are presented in Table 3.3, including the number of examples used for training
(corresponding to the number of assessed species) and the number of variables. Neither of the
datasets had a perfect balance between threatened and non-threatened species, but the imbalance
was not too steep, see Table 3.3 for details. Note that, for the most imbalanced groups, there
were more non-threatened than threatened species, while the groups where threatened was the
majority class tended to be less imbalanced. Also note that there was a large difference in the
number of examples across the groups of species. Independently of which is the minority class
for a given group, Threatened was always used as the positive class.

While the amount of presence data was very substantial, the models will be trained on the
dataset of species, which has much less data points. In total, the data contains details on 3260
reptile species.

3.4 Experimental datasets

AOO and EOO are traditionally used by IUCN experts to generate assessments, but often, it is
not possible to calculate them accurately or these depict a shallow representation of the species
niche hypervolume. In those cases, it would be good to rely on a more complete proxy set of
variables. This work set the goal of understanding whether ecological variables, which are more
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Table 3.3: Number of presences, total number of species (Tsp) with presence data, number of
species (Nsp) with threat status available at IUCN, and ecogeographical variables (Nvr) for each
group, the imbalance ratio (IR), calculated as the size of minority class over the size of majority
class, and the minority class of each reptile group.

Group Presences Tsp Nsp Nvr IR Minority class

Amphisbaenians 1,901,717 44 19 21 0.7 Non-threatened
Crocodiles 1,044,135 23 21 23 0.9 Non-threatened
Lizards 29,323,862 2716 2103 21 0.5 Threatened
Snakes 25,078,835 1582 970 21 0.4 Threatened
Turtles 13,202,099 203 147 23 0.6 Non-threatened
All species 70,550,648 4568 3260 24 0.5 Threatened

easily available, would have a satisfying performance and could be used without the presence of
AOO and EOO. Moreover, if adding other geographical variables would improve performance
over a dataset of only AOO and EOO.

In order to evaluate if there is a gain from using variables other than AOO and EOO, this
work created five distinct datasets for each of the six groups of species, totalling 30. All five
datasets contain the same set of species, only the variables vary.

The six groups/datasets, one for each taxonomic group plus the one for the group of all
species, had up to eight ecological variables chosen using PCA, plus six geographic variables,
totalling up to 14 variables, but some of the groups were small (e.g.: Nspamphisbaenians = 19;
Nspcrocodiles = 21) for such a number of variables. For this reason, an additional variable selection
step, using recursive feature elimination (RFE) [82], a backwards selection method, was tested
and implemented for the datasets of ecological and of ecogeographical variables, generating the
last two of the five datasets created per group. The workflow used for choosing the most relevant
variables for each group is depicted in Figure 3.2.
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Figure 3.2: The workflow used for selecting the ecological and geographic variables for each
dataset. This was applied to each of the groups and resulted in two datasets per group: one
with a set of ecological variables specifically picked for the group using PCA, plus all geographic
variables, and one that further drills down on the most relevant variables using recursive feature
elimination (RFE).

The five datasets, summarized below, were used in the experimental study performed in this
dissertation to evaluate the effect of including different types of variables.

• AOO_EOO - the baseline — dataset containing only AOO and EOO, the two most important
variables considered in IUCN assessments;

• EcoV - dataset containing only ecological variables;

• EcoV_FS - EcoV dataset post-processed by a variable selection step, using backwards
selection;

• All EGVs - datasets containing both AOO and EOO, and ecological variables, plus other
geographical variables derived from the presences dataset: minimum and maximum latitudes,
latitude length, median longitude and median distance to the equator;

• All EGVs_FS - All EGVs dataset post-processed by a variable selection step, using backwards
selection.

Given the interest in comparing performance of classification models to predict the threat
status of species using the environmental datasets and the AOO_EOO datasets typically used in
IUCN assessments, the AOO_EOO dataset was used as the baseline, for each group. The result
of this step was a set of six species-level datasets, with threat status label, corresponding to the
five clades, plus the entire species pool. Table 3.4 shows the characterization of the 30 datasets
generated.

The next chapter presents the experimental setup in detail.
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Table 3.4: Dataset characterization containing the number of training examples (species with
threat status available at IUCN), and variables for each dataset. The imbalance ratio (IR),
calculated as the size of minority class over the size of majority class, and the minority class of
each reptile group are shown for context.

Group Dataset Examples Variables IR Minority class

AOO_EOO 2
EcoV 14

Amphisbaenians EcoV_FS 19 3 0.7 Non-threatened
All EGVs 21
All EGVs_FS 4
AOO_EOO 2
EcoV 16

Crocodiles EcoV_FS 21 2 0.9 Non-threatened
All EGVs 23
All EGVs_FS 2
AOO_EOO 2
EcoV 14

Lizards EcoV_FS 2103 6 0.5 Threatened
All EGVs 21
All EGVs_FS 16
AOO_EOO 2
EcoV 14

Snakes EcoV_FS 970 11 0.4 Threatened
All EGVs 21
All EGVs_FS 19
AOO_EOO 2
EcoV 16

Turtles EcoV_FS 147 6 0.6 Non-threatened
All EGVs 23
All EGVs_FS 16
AOO_EOO 2
EcoV 17

All species EcoV_FS 3260 10 0.5 Threatened
All EGVs 24
All EGVs_FS 16



Chapter 4

Experimental study

This chapter presents the modelling pipeline created to generate and pre-process the datasets used
for this dissertation, model the threat level and evaluate the models, and to generate the outputs,
namely, the predictions for unassessed species and the maps of threatspots, in Section 4.1. It
then details the experimental setup used for the modelling task and to compare the models using
different datasets, in Section 4.2.

4.1 Modelling pipeline

The created pipeline has six main steps to address the gathering of terrestrial reptile presences,
construction of a tidy dataset of species, including the relevant predictors, and the modelling
and evaluation of the resulting predictions (cf. Figure 4.1). It started from the raw presence
data available in online databases. Afterwards, the pipeline cleaned, pre-processed, performed
variable analysis, and aggregated the data into a species-level dataset. These three steps are
detailed in Chapter 3. The dataset, aggregating all variables at species-level, was the input of
the modeling step, in which models were trained and evaluated using the experimental setup
described in Section 4.2. The best models were used to generate predictions for the species
without a known conservation status (i.e., DD and NE). Five sets of predictor variables were
compared for each group of species to evaluate the impact of using ecogeographical variables
(EGV), both by themselves and with other predictors more commonly used in IUCN assessments
and the predictions were matched to newly available assessments. Lastly, those predictions were
mapped globally by generating the convex hull of presence records of each species, thus revealing
potentially unknown threatspots.

28
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(a)

Figure 4.1: Diagrams of the modelling pipeline showing the six high-level steps implemented.
Namely, three steps for the dataset curation, resulting in several labeled datasets at the species
level, containing different sets of variables; the training and evaluation of the models and the
generation of outputs.

4.1.1 Predictive modelling

In this domain, the cost of a false negative was higher, as that may lead to the lack of conservation
efforts allocated to threatened species. On the other hand, a false positive may mean that the
already scarce funding would be distributed to species that do not need it. In imbalanced
classification problems, like this one, with different costs for the two types of errors, accuracy is
not an effective measure, since it does not reflect the higher cost of a false negative. For these
reasons, this work selected models that maximize sensitivity (also known as true positive rate),
but without loosing too much specificity (true negative rate).

The models were trained and evaluated using reptile species where the conservation status
is known, using the IUCN Reptiles assessments available in December 2020 [83]. The binary
classification models were trained to discriminate between threatened and non-threatened species,
according to IUCN criteria [33], for each group, using different algorithms implemented in R [84],
namely, RF [85], XGBoost [86], decision trees (C5.0-[87] and rpart [88], General Linear Model
(GLM) [89] and k-NN [90].

To understand whether the use of other variables have an effect on the classification
performance of species into threatened or non-threatened, three groups of datasets were generated:
containing (i) only variables based on IUCN assessment criteria — AOO and EOO, (ii) only
ecological variables, and, lastly, (iii) ecological and geographical variables (EGVs). To assess if
the performance of the models using different datasets was significantly better with respect to
the baseline dataset (AOO_EOO), this dissertation used the paired one-sided Wilcoxon test. It
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also applied this test to the pairs of the EcoV and EcoV_FS and the All EGVs and All EGVs_FS
datasets, allowing us to test how the ecological variables alone would perform against the latter
datasets as a baseline.

Lastly, to try to improve the performance of the models for the groups where the class of
interest was the minority class, this study tried to address the class imbalance problem [38] by
applying SMOTE [32] as a pre-processing step on those datasets, an comparing the results. As
previously mentioned, some works balanced the dataset by under-sampling the majority class
to match the minority class [53]. This had the drawback of reducing the number of species
available to train the model. With only 970 labeled species on the smallest of the three groups,
the snakes, and 3260 on the group of all species, it was important to keep as many data points
as possible. For this reason, SMOTE was used to generate synthetic examples from the existing
data, but without doing any under-sampling, balancing the datasets to a 50/50 distribution of
threatened/non-threatened species.

4.1.2 Threat status predictions

To understand which factors contributed the most to predicting the threat status of species,
this dissertation ranked variable importance scores, using the cross validation (CV) dataset.
For that the varImp function of the caret package [82] was used, which is a generic wrapper
function that calls the specific methods for calculating variable importance of different types of
models produced with caret. Also, in this step of the pipeline, previously trained models which
performed best for each of the five reptile clades were used to obtain predictions for previously
unassessed species, labelled as DD and NE.

Some reptile species have been very recently re-assessed by IUCN in June 2021 after the
predictions were generated [14], making them the perfect blind dataset for evaluating the models
and estimating how well the models performed. To compare the predictions with these new
assessments, this study extracted the new threat status of those species, synonymized their
scientific names against the taxonomy used to generate the models, from Reptile Database [29] in
December 2020, and matched them against the species to which the models generated predictions.
88 matches were retrieved.

4.1.3 Maps of threatspots

Using the dataset of presences gathered and cleaned in step one, the conservation status extracted
from IUCN assessments and the predictions from the models, this work generated a dataset
containing the range of the each species, using the convex hull, as it is used by IUCN, and the
label – threatened or not threatened.

For each reptile group, the total and threatened species richness was calculated in each
10×10km cell based on rasterized convex hulls, merging geographic records by species.
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Predictions were mapped in order to analyse how the threatened species of each group were
distributed at global level and outline the hotspots of threatened and unassessed species, thus
revealing potentially unknown threatspots, this is, gap areas previously unknown by IUCN.to have
high threatened species richness. Thus, this dissertation plotted the percentage of threatened
species to all reptile species, and of the threatened species predicted by the models to the
threatened species assessed by IUCN. In the first case, higher values highlight the threatspots
where conservationists should focus on, due to the relatively high number of threatened species.
In the second case, high values on the map show gap areas that have a high incidence of predicted
threatened species, but low incidence of species known to be threatened. So they are potential
unknown threatspots.

4.2 Experimental setup

As previously mentioned, different classification models were trained, for each group, using
different algorithms implemented in R [84]. Namely, Random Forest (RF) [85], XGBoost [86],
decision trees (C5.0 [87] and rpart [88]), Generalized Linear Model (GLM) [82, 89] and k-
NN [82, 90]. RF is an ensemble method based in trees, and used by other recent studies in
prediction conservation status of species [53, 57, 59]. XGBoost is another ensemble strategy that
has shown to perform better than RF in some settings [91]. In opposition to RF, which uses
bagging to improve performance by using the vote of multiple, parallel trees, XGBoost uses a
boosting to minimize the classifier error each iteration [92]). Decision trees generated by the
CART algorithm implemented by rpart, is the base algorithm used by Random Forest. Both
CART and C5.0 decision trees are simple algorithms, which may have better results in smaller
datasets due to their smaller natural tendency to overfit. GLM is also extensively used in this
domain [93], and it creates a linear decision boundary, which may be desirable for groups with
a low species count. k-NN is a simple instance-based machine learning algorithm. The fit to
the data can be tuned with a single parameter k, which establishes the number of neighbour
instances to consider to obtain a classification.

In the case of k-NN, the variables were normalized using Min-Max normalization. This was
done because, k-NN is distance-based, making it sensitive to having variables with different
scales, and Min-Max transforms all values into decimal between 0 and 1. The formula to perform
Min-Max normalization is as follows:

value−min

max−min

The feature selection step used to generate the EcoV_FS and All EGVs_FS datasets described
in Chapter 3 was done using Recursive Feature Elimination (RFE) [82], a backwards selection
method.

In a first approach, for the datasets of smaller groups, namely, amphisbaenians, crocodiles and
turtles, which have 19, 21 and 147 examples respectively, training and test sets were split using
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Leave One Out Cross Validation (LOOCV) and for bigger groups, lizards, snakes and all species,
with 2103, 970 and 3260 examples respectively, a standard 10-fold Cross Validation (10-CV)
estimation method was used to split the dataset in training and test datasets. This allowed for
more training examples to be available in the smaller groups, where data is too scarce for a
bigger testing set. This had the drawback of yielding non-comparable results between groups.
Moreover, the estimations obtained for the smaller groups were highly variable. Additionally,
in a first approach, there was a separate testing set containing 25% of the examples, where no
tuning of parameters was done, to allow for the performance estimation to use a set of data that
was not seen by the model in any stage of training. Again, due to the low number of species
available for training, even in the group of all species (only 2445 data points would be available
for training after this split), this approach was dropped. In the final setup CV was used both to
tune the parameters and to estimate the models’ performance, which is also a typical approach
in other similar studies [57].

Each dataset was split into a training and testing set using a 2x5-fold cross validation (CV).
In this context, and given the small number of examples, the option taken was to split the
dataset into five random partitions. Then, one partition was left out to be used for testing and
performance evaluation, and the model was trained in the remaining four partitions [94]. Each
partition was used for testing once, which means that five different models were trained and
tested. To achieve a more reliable performance estimate, this process was run twice [46]. Thus,
the performance of the models was assessed based on ten different metrics.

For the lizards, snakes and all species groups/datasets, we could face an imbalanced
classification problem [38]. That is, they had a, comparatively, higher imbalance and, their
minority class was precisely the class of interest (i.e., threatened class). In conservation, a false
negative may lead to the lack of conservation efforts for threatened species and their irreversible
extinction. On the other hand, a false positive may lead to scarce funding to be distributed to
non-threatened species. As previously mentioned, in imbalanced problems like this one, with
different costs for the two types of errors, accuracy is not an effective measure, since it does not
reflect the higher cost of a false negative [38]. For these reasons, the models that maximized
sensitivity (true positive rate), but without losing too much specificity (true negative rate [95]
were selected.

To obtain a good model for each dataset, a set of parameters of each algorithm were tuned
using a grid search approach (Table 4.1) which consists in testing and comparing multiple
combinations of parameter values [96]. Each set of parameter values was used to train one
model and its performance was estimated on the 2x5-fold. The parameters of the best model,
according to the sensitivity and specificity metrics, were the ones used to train the model on
the entire training set. It should be noted that the range of values for the tuning of k in k-NN
and max_depth in rpart were chosen as to allow a good set of values to be tested without
compromising too much on performance [97]. Since the performance of the models was not
improving for any groups for values approaching 20 and 14 for k and max_depth, respectively,
values higher than those were not tested. Additionally, the classification threshold was also tuned
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by testing each value from 0.10 to 1, with increments of 0.05 [98]. The tuning process maximized
the sensitivity of the models, without letting specificity drop to values lower than 0.7. Over the
six algorithms used, a total of 1086 parameter values were tested for each of the five datasets of
each of the six groups of species, leading to a total of 195,480 models trained using this tuning
process.

Table 4.1: Parameter values of methods used in grid search for tuning.

Method Parameter Definition Values R Package

RF
mtry
ntree
nodesize

Number of variables randomly sampled at each split.
Number of trees to train.
Minimum size of terminal nodes. Large numbers lead to smaller trees.

2:7
{5,10,20,50,100,200,500}
1:5

randomforest [85]

XGBoost

nrounds
eta
max_depth
colsample_bytree
min_child_weight

Number of passes through the data. Each new round further reduces
the difference between ground truth and prediction.
Size of each boosting step.
Maximum depth of the trees.
Ratio of column under-sampling.
Minimum sum of instance weight needed in a child in order to
continue partitioning that node further.

{5, 10, 20, 50, 75, 100, 200}
{0.01, 0.1, 0.3, 0.5}
2:4
{0.5, 1}
1:5

xgboost [86]

k-NN k Number of neighbours to consider. 1:20 caret [82]
rpart max_depth Maximum depth of the tree. 1:14 caret [82]

The performance of models was assessed by the evaluation metrics sensitivity, specificity,
precision and three metrics that combine others. Namely, Area Under Curve (AUC), True
Skill Statistic (TSS), and F-measure with β = 0.5 (F0.5). These metrics are common and
appropriate when dealing with imbalanced data [99]. AUC and TSS, in particular, are used by
other applications in this domain [100, 101]. F0.5 was choose since it aligns with the domain
objectives.

The five datasets resulting from the data integration explained in Chapter 3, namely,
AOO_EOO, EcoV, EcoV_FS, All EGVs and All EGVs_FS, were split keeping the folds constant
in all five datasets. Meaning when comparing one of the 10 folds of the 2x5-fold CV, between
the five datasets, the records were the same and only the columns varied. This makes the set of
estimated performance values comparable by pairwise comparison test.

To assess if the performance of the models using a different dataset is significantly better
with respect to the baseline dataset (AOO_EOO), the paired one-sided Wilcoxon signed rank
test was used over the results obtained by 2x5-fold CV. This test is a non-parametric statistical
hypothesis test, so it does not assume that the data is normally distributed. It tests the null
hypothesis that the distribution of pairwise difference between the two samples is symmetric
around 0. Being a one-sided test, it allows to checking if the performance of a given model is
significantly improved against a baseline, instead of testing for a significant difference between
the two, in any direction. The statistical tests were carried using both confidence levels of 95%
and 99%, so p-values smaller than 0.05 and 0.01, respectively. This process allow us to assess if
the models trained with the dataset being tested had a significantly better performance than the
one trained with the baseline dataset. This test was also applied to the pairs of the ’ecological’
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and the ’all’ variables datasets, allowing us to test how the ecological variables alone would
perform against the all variables as a baseline. For implementing the test, the function wilcox.test
of the stats R package was used.

The datasets responsible for generating the best models for the groups where threatened was
the minority class, namely, lizards, snakes and all species, were augmented using SMOTE to
generate synthetic examples. For that, the smote function of the DMwR package [102] was used
with the parameters perc.over = 300, k = 3, and perc.under = 0, and a random selection of the
synthetic examples was appended to the dataset in order to obtain a 50/50 balance of threatened
and non-threatened examples. The best algorithms for each of these groups were then trained
using these datasets. A Wilcoxon signed rank test was then run to compare the original models
with the ones generated with the SMOTE datasets, using the first as the baseline.



Chapter 5

Results and discussion

This chapter starts, in Section 5.1, by presenting the results of the experiments done, namely,
it shows the results for the models created, specially, for the best performing model of each
taxonomic group, selected based on F0.5, the variable importance from the All EGVs models,
the new predictions generated for the unassessed species and the maps of threatspots. Then, in
Section 5.2, these results are analysed from a modelling and from a conservation perspectives.

5.1 Results

Figure 5.1 summarizes the comparison of the performance of the models for the five datasets and
for each of the six groups of species using the three metrics previously mentioned, F0.5, AUC
and TSS. For a given group, some models performed significantly better (alpha=0.05) when
comparing to the results of the same algorithm over the AOO_EOO dataset. The results show
that most groups of species benefited from using ecological and geographical variables, since, for
multiple groups, All EGVs and All EGVs_FS datasets performed better than when using only the
traditional predictors from IUCN, at least for some of the methods.

Overall, models trained for smaller groups, namely amphisbaenians and crocodiles, showed a
larger performance variation across algorithms. With such a small number of cases the mean is a
weak estimate and statistical significance differences are harder to obtain. This reinforces the
importance of gathering more species presence (or abundance) data and including a broader set
of species for improving training conditions for the models. In addition, these results suggest that
when deciding on how to group species for modelling, one should balance between having groups
that reflect species with similar taxonomic, phylogenetic and/or functional characteristics (so
these can be well represented by the same set of variables), and also, having enough data points
for the methods to be able to properly learn and generalize. The results of the best models for
each of the six reptile groups, according to the three performance metrics are shown in Table 5.1.

A complete view of the results of the modelling, including the results for sensitivity, specificity,
precision, F0.5, AUC and TSS, for the six groups, six methods and five datasets, and of the
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Figure 5.1: Performance of the models trained for each combination of taxonomic group, method
and dataset, according to three metrics: (F0.5, AUC and TSS. n stands for sample sizes. Each dot
represents the mean of the results of a model across the 10 folds of the 2x5-fold cross validation
setup. The standard deviation is represented by the vertical line. Results of models shown in an
opaque color significantly outperformed the same algorithm over the AOO_EOO dataset.
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Table 5.1: Best model trained for each group and their predictions for Data Deficient (DD) and
Not Evaluated (NE) species. The table shows the total number of species (Tsp) with presence
data, number of species (Nsp) with threat status available at IUCN, and ecogeographical variables
(Nvr), the number of unassessed and total taxa predicted to be threatened, and the percentage
of threatened taxa in respect to Tsp, the dataset and method that performed better for each
group, selected based on F0.5 results, and their performance estimates with respect to F0.5, AUC
and TSS metrics. The imbalance ratio (IR), calculated as the size of minority class over the size
of majority class, and the minority class of each reptile group (non-threatened, nT; threatened,
T) is also given.

Group Tsp Nsp Nvr DD+NE Total %T Dataset Method F0.5 AUC TSS IR Minority
to T T class

Amphisbaenians 44 19 21 10 21 47.7 AOO_EOO GLM 0.97 0.88 0.75 0.7 nT
Crocodiles 23 21 23 1 12 52.2 All EGVs_FS RF 0.99 0.98 0.95 0.9 nT
Lizards 2716 2103 21 404 1125 41.4 All EGVs_FS RF 0.87 0.84 0.68 0.5 T
Snakes 1582 970 21 125 382 24.1 AOO_EOO k-NN 0.88 0.90 0.80 0.4 T
Turtles 203 147 23 34 124 61.1 EcoV_FS XGBoost 0.88 0.77 0.54 0.6 nT
All species 4568 3260 24 854 1945 42.6 All EGVs_FS RF 0.88 0.86 0.72 0.5 T

statistical tests, can be found in the Table A.1. RF showed very good results across all groups,
and was the most performant model for these three metrics on three out of six groups (check
Table A.1), Additionally, less complex algorithms, like GLM and k-NN which are not based in
ensembles, performed better with the AOO_EOO dataset, which has few variables, while RF
and XGBoost tended to work better with the remaining datasets (Table 5.1). Moreover, in
general, the additional variable selection step implemented in the pipeline yielded better results
in comparison to its counterpart without variable selection.

5.1.1 Variable importance

To better understand the role of each EGV in the predictions by the different models, this
work also evaluated their importance. Figure 5.2 shows the ranking of importance for RF,
XGBoost, C5.0, GLM, and rpart, using only the top ten variables obtained with each method,
and considering the dataset with All EGVs and the group of all species. K-NN was left out of
this analysis because there was no wrapper for it in the varImp function.

It is clear that both EOO and AOO had an important role in the classification models
(Figure 5.2). Additionally, other variables contributed to improving model performance, especially,
geographic and bioclimatic variables. Results also suggest that variables based on statistical
dispersion measures (e.g., standard deviation, SD) perform generally better since these portray
species ecological tolerance ranges.
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Figure 5.2: Variable importance plot for the group that included all species, using the All EGVs
dataset. The plot shows the cumulative variable importance across five distinct algorithms,
Random Forest (RF), XGBoost, C5.0, GLM, and rpart, shown in different colors. Only the top
ten variables obtained with each of the five methods were considered. On the variable names, P
stands for precipitation and T for temperature.

5.1.2 Handling Imbalance

When comparing the results of the original models to the ones using SMOTE to obtain a 50/50
balance of threatened and non-threatened species, all three groups improved their performance
significantly, for metrics that put more wait in false negative errors, namely, sensitivity, precision
and F0.5. The lizards group, in particular, improved in all of the metrics using SMOTE, even
though the improvement in specificity was not significant, as can be seen in Table 5.2.
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Table 5.2: Results comparing the two version of the best algorithm for each of the groups where
threatened was the minority class, one using the dataset without SMOTE and another with
SMOTE. Values marked with a bold color represent models where performance, was, significantly,
improved relative to the original dataset (without SMOTE), used as the baseline. Values of the
Wilcoxon tests marked with one or two asterisks (*, **) indicate significance values higher than
95%, or 99%, respectively.

5.1.3 Predictions for DD and NE Species

Using the most performant model for each group (Table 5.1), this dissertation generated
predictions for the DD and NE species. These predictions indicated that about a fifth of
unassessed species of snakes (125 out of 612) and a half of amphisbaenians (10 out of 25) and
crocodiles (1 out of 2) were considered threatened. Turtles were predicted to have more than
half of threatened species (34 out of 56). For lizards, this value was almost three quarters (404
out of 613). The model for all species predicted 854 out of 1308 unassessed species as threatened,
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which is more worrying view compared to 574, the sum of threatened species detected by the
models of the five groups. Since the beginning of this work, IUCN continued to generate new
assessments for reptile species [19]. From the 88 species that were a match between the model’s
predictions and the latest IUCN assessments – 47 lizards, 32 snakes, seven turtles, one crocodile,
and one amphisbaenian.

Using the best group-specific models, 70 were correctly classified as non-threatened and two
as threatened. There were eight false positives and eight false negatives. An analysis of the eight
false negatives showed that mostly VU species were misclassified (5 out of 8) and the remaining
were assessed as EN. Turtles was the group with more false negatives, followed by snakes and
lizards. Seven of the eight species that the model misclassified as false positives were lizards
assessed as LC and one was a turtle assessed as NT (check Table 5.3).

Table 5.3: List of errors made by the best model for the amphisbaenians, crocodiles, lizards,
snakes and turtles datasets. False negatives (top) are species evaluated as non-threatened (nT,
this is, Near Threatened, NT or Least Concern, LC) which were later assessed as threatened (T;
this is, Endangered, EN or Vulnerable, VU), and false positives (bottom) vice-versa. Species
that were false negatives/positives in both the all species and group-specific models were marked
in bold.

Prediction Scientific name Group True assessment

nT Aldabrachelys gigantea turtles VU T
nT Cachryx defensor lizards VU T
nT Chelonoidis denticulatu turtles VU T
nT Emys blandingii turtles EN T
nT Hydrodynastes gigas snakes EN T
nT Lissemys ceylonensis turtles VU T
nT Nawaran oenpelliensis snakes VU T
nT Trachemys dorbigni turtles EN T
T Abronia monticola lizards LC nT
T Aspidoscelis neotesselatus lizards LC nT
T Cyclemys gemeli turtles NT nT
T Hemidactylus smithi lizards LC nT
T Lerista chalybura lizards LC nT
T Pseuderemias striatus lizards LC nT
T Scincopus fasciatus lizards LC nT
T Uromastyx dispar lizards LC nT

On the other hand, the best model using the group of all reptile species achieved a sensitivity
of 0.80 and a specificity of 0.85, with only two false negatives and 12 false positives. The false
negatives were a VU lizard and an EN snake, and the false positives were mostly LC (10 out of
12) and mostly lizards and snakes (5 species each), followed by a crocodiles and a turtle (check
Table 5.4).
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Table 5.4: List of errors made by the best model for all reptile species dataset. False negatives
(top) are species evaluated as non-threatened (nT, this is, Near Threatened, NT or Least Concern,
LC) which were later assessed as threatened (T; this is, Endangered, EN or Vulnerable, VU),
and false positives (bottom) vice-versa. Species that were false negatives/positives in both the
all species and group-specific models were marked in bold.

Prediction Scientific name Group True assessment

nT Cachryx defensor lizards VU T
nT Hydrodynastes gigas snakes EN T
T Amblyodipsas rodhaini snakes LC nT
T Atractaspis reticulata snakes LC nT
T Aspidoscelis neotesselatus lizards LC nT
T Contia longicaudae snakes LC nT
T Crocodylus johnsoni crocodiles LC nT
T Cyclemys gemeli turtles NT nT
T Hemidactylus smithi lizards LC nT
T Lerista chalybura lizards LC nT
T Letheobia stejnegeri snakes LC nT
T Pseuderemias striatus lizards LC nT
T Scincopus fasciatus lizards LC nT
T Suta flagellum snakes LC nT

5.1.4 Maps of threatspots

According to the models’ predictions, the threatspot maps showed the area occupied by
threatened species could be larger than what is currently known. Figure 5.3 shows the maps for
amphisbaenians, crocodiles, lizards, snakes, turtles, and all reptile species. Maps showing the
ratio of known and predicted threatened species in respect to the total of species in the group
dataset are displayed in Figure 5.4. Predictions showed no new threatspots for amphisbaenians
(Figure 5.3a), but highlighted two concerning areas in Guinea and on the Central American
islands (Figure 5.4a). They also showed there may be unassessed threatened crocodiles in a large
range of Africa (Figure 5.3b), with a hotspot for threatened species ratio in India (Figure 5.4b).
Lizards showed new predicted threatened species over Africa and India (Figure 5.3c) and a
threatspot on the eastern South American coast, New Zealand and other south-west Pacific
Ocean islands (Figure 5.4c). Snakes showed little new threatspots (Figure 5.3d), and areas of
most concern in Madagascar, several south-west Pacific Ocean islands (Figure 5.4d) and western
South American coast. Turtles have a much larger distribution which is reflected in the vast
area showing threatened species. Predictions showed that their range may be even greater,
extending to Central and South America, southern Africa and Australia (Figure 5.3e). Their
new threatspots are over Central and Eastern Africa, Brazil, and several countries on the Pacific
including Vietnam, Malaysia, Indonesia, Philippines and parts of Australia (Figure 5.4e). Lastly,
the model contained all species had predictions consistent to the group-specific models, showing
most of South America, specially Brazil, North America, specially Florida, Africa, India and
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the Pacific Islands, to have most predicted threatened species. New Zealand and several smaller
islands on the South Pacific, like the Fiji archipelago and New Caledonia, have the highest ratio
of threatened species, according to the all species model.

5.2 Discussion

5.2.1 Predictive modelling

Both the specific models for species groups and the model using all species achieved very
promising results. In the new predictions that were matched to IUCN new assessments, the
model trained using all the reptile species available had few mistakes, and, specially, few false
negatives (only 2 out of 10 threatened species) showing this is indeed a valid method to help
boost conservation assessment efforts. As for the modelling technique, it has been demonstrated
that RF generated the best models for three of the six groups, which is consistent with the fact
that many studies on this domain used this algorithm, due to its ability to deal with overfit
issues and to handle large quantities of both data points and predictor variables, and it typically
performed well [53]. RF has been shown to out-perform other machine learning methods for
certain clades [56]. Previous authors devised a pipeline and applied it to the global flora [53].
Unlike us, they generated different models for each continent. This dissertation created a model
for each taxonomic subgroup, so the variables that better described each group could then be
picked considering ecological differences across groups. They reported that the accuracy of their
classifiers was in the range of 73-82%. In this study, the best models of all six groups achieved a
F0.5 higher than 0.87 and only one group, the turtles, had an AUC lower than 0.80. In another
study, the authors did not use machine learning techniques, but were able to generate preliminary
assessments of the risk level of 22,036 plant species at a continental scale, using IUCN Criteria A
and B [52].

Additionally, variable selection was an important step included in the proposed pipeline.
For four out of the six groups, the use of a variable selection step generated the best models.
Using global data from a very large number of terrestrial plant species and RF, recent studies
showed the utility of coarse-scale data and variable selection for assessing the extinction risk of
plant species [53, 57]. The authors of [59] used herbarium specimens’ data to compare machine
learning methods, and specifically RF, with more traditional approaches like directly assessing
AOO and EOO, or the specimen count, against IUCN criteria, and RF outperformed all other
approaches in terms of accuracy.

Regarding the variable importance, results are also consistent with studies performed with
flora species where the authors compared the results from two datasets, one with spatial data
only and another with spatial and morphological and concluded that the spatial-only performed
better [53]. Results also suggest that variables based on statistical dispersion measures (e.g.,
standard deviation) perform also generally better than other ecological ones since these portray
species ecological tolerance ranges [53].
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(a) Amphisbaenians (b) Crocodiles

(c) Lizards (d) Snakes

(e) Turtles (f) All species

Figure 5.3: Threatspot gap maps showing the predicted areas with threatened species (in red),
versus the areas occupied by species already classified as threatened by IUCN (in blue). Darker
colours indicate higher species richness. Maps for (a) amphisbaenians, (b) crocodiles, (c) lizards,
(d) snakes, (e) turtles, and (f) all species, respectively. Some small details referent to predicted
(red outline) and known (blue outline) threatened species are highlighted using zoom.
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(a) Amphisbaenians (b) Crocodiles

(c) Lizards (d) Snakes

(e) Turtles (f) All species

Figure 5.4: New threatspot maps showing the ratio of the sum of the known and predicted by
the total of species in the group dataset. Darker colours indicate higher ratios of threatened
species. Maps for (a) amphisbaenians, (b) crocodiles, (c) lizards, (d) snakes, (e) turtles, and (f)
all species, respectively.
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Previous state of the art works predicting the conservation status of species did not try to
tackle the imbalance class problem, or they used simple techniques, like under-sampling. SMOTE
was able to significantly improve model results, specially when using the metrics that focus on
the class of interest, showing the potential of advanced pre-processing techniques to balance
conservation data.

In the new predictions that were matched to IUCN new assessments, the model trained using
all the reptile species available had less mistakes, and, specially, less false negatives (only two
against eight from the group-specific models). Specifically, the turtles model, generated many
false positives that the model of all species was able to classify correctly. This indicates that
certain groups may benefit from a specific model tuned to its data and with adjusted set of
features, but others may benefit from more data being used in the training process. The turtles
group had only 147 records that could be used for training, so this group probably benefited
from the remaining 3113 species present in the all species dataset.

5.2.2 Species conservation

When looking into other predictions made for DD and NE species, using the most complete
dataset with spatial variables only the authors of [53] placed 3.4 to 13.6% plant species as non-
Least Concern (non-LC) at a probability of >0.80 and 18.7 to 41.9% at a probability of >0.60.
The authors of [52], when applying Criterion A predicted 22.8% of species to be threatened,
22.1% using Criteria B and 31.7% using both. These estimates look conservative in comparison
to this work’s predictions for reptile species, where only one group (snakes) presented less than
half of unassessed species as threatened. The predictions suggested that lizards are the reptile
group with the highest percentage of threatened species, followed by turtles, amphisbaenians and
crocodiles, and lastly, snakes. This advises for more conservation action to be put forward for
these groups, lizards in particular [12]. On the other hand, the smaller percentage of predicted
threatened species for a group like snakes (only a fifth of the DD and NE species) versus the
lizards and turtles (almost three quarters and more than half, respectively) may indicate biases
in the manual evaluation process caused by experts being cautious when assessing endemic and
island restricted species, as previously documented for the vascular flora of Cabo Verde [103].

It is important to note that the errors presented by the models, especially the false positives,
could indicate that these species are indeed threatened, or very close to be. This is especially
relevant due to the very high specificity of the models, even in the blind dataset, and for the
species that were misplaced by both the group specific and the all species models.

Comparing the threatspots generated using the predictions to the maps of threatened species
richness for tetrapods, and reptiles in particular, generated by the authors of [22] the same regions
are highlighted. Particularly, India, Central Africa and Madagascar, some regions of South
America and several Pacific islands. The models also predicted a strong presence of threatened
species in Central America, Australia, New Zealand and across a larger range of South America
and Africa.



Chapter 6

Conclusions

This chapter started by summarizing the work done in this dissertation and the conclusions
of the study. It then presents the main contributions and the limitations and future work, in
Sections 6.1 and 6.2, respectively.

This work strived to create a time and cost-efficient tool that provided preliminary threat
status over a large set of unassessed species, providing the first picture of the conservation
status of entire groups and allowing governmental and non-governmental organizations to better
prioritize conservation efforts. The solution is in the form of a pipeline, which was applied to
the Reptilia class, without loss of generality. The incredible volume of presence records from a
large number of species and freely available EGVs can be used to perform general model-assisted
assessments across other under-assessed taxonomic groups following the proposed framework,
which can then be complemented by detailed studies. The proposed pipeline included several steps
to tackle very relevant issues in the application domain such as data curation and imputation,
variable generation and selection, hyperparameter selection as well as algorithm and dataset
comparison [53].

Overall, the models performed well according to standard metrics and metrics that consider
the higher cost of false negatives. On the blind dataset, the model for all species was balanced,
and the models for the amphisbaenians, crocodiles, lizards, snakes and turtles performed very well
in terms of specificity, but were limited on their sensitivity. This shows how data quality issues
may lead to overly positive outcomes, which needs to be a consideration when applying machine
learning models to this domain. Results showed that some models may be improved by using
more variables besides those traditionally used by IUCN evaluators, which reside mostly on the
AOO and EOO. Those variables are, in decreasing order, geographic (mainly the latitudinal range
of species, but also their longitudinal distribution), bioclimatic indices, habitat, and topographic
heterogeneity. However, to benefit from the inclusion of such variables, more data both quantity
and quality-wise are needed as the scale of assessment becomes finer and more detailed.
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6.1 Contributions

In sum, the main contributions of this work were: (i) a curated dataset of ecogeographical and
conservation data for reptiles, (ii) a processing pipeline applicable to multiple taxa, (iii) a large
scale prediction model to automate the assessment of conservation status of one of the most
under-assessed taxonomic groups of vertebrates, the reptiles, (iv) a comparison and comment
on predictor variable importance, including experimental results and discussion on the usage of
different groups of variables to augment two traditional predictors used by IUCN, (v) predictions
for the threat status of 1,308 DD and NE reptile species, (vi) threatspot and gap maps for
terrestrial herpetological richness and for each reptile clade, and, (vii) demonstrating the potential
of techniques like SMOTE to balance the dataset and improve performance.

6.2 Limitations and future work

In the future, other algorithms could be tested, for instance, Neural Networks (NN) since they
had promising results in similar studies [61].

Improvements to the pipeline can also open up the possibility of forecasting species threat
status and addressing climate change impacts by feeding models data from climate scenarios
provided by United Nation’s (UN) Intergovernmental Panel on Climate Change (IPCC). These
scenarios are a set of projections of how the climate may evolve in the future, according to
different greenhouse gas emission pathways. Such application is deemed critical for domain
specialists to anticipate species vulnerabilities in the face of global environmental change [31].
Moreover, other sets of variables that depict anthropogenic disturbances on species habitats,
such as land use change, landscape fragmentation, wildfires, invasive species, which influence
the amount, the connectivity and the ability of species finding suitable environments could be
tested [57].

Some of the taxonomic groups had very few species, leading to a larger performance variation
across algorithms. This reinforces the importance of gathering more species presence (or
abundance) data and including a broader set of species for improving training conditions for the
models [57]. In addition, these results suggest that when deciding on how to group species for
modelling, one should balance between having groups that reflect species with similar taxonomic,
phylogenetic and/or functional characteristics (so these can be well represented by the same set of
variables), and also, having enough data points for the methods to be able to properly learn and
generalize. Additionally, some species presented data points very far from their typical habitat,
which could correspond to species present in museums, or purely, to location errors. Models are
very dependent on the quality of the data since it is the raw material of any data product [59].
Without data quality there is no way to achieve good modelling results. For this reason, data
repositories need to provide proper data curation, not only by ensuring taxonomic correctness, but
also that the coordinates are precise and make sense given the species distribution. Additionally,
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the class imbalance problem [38] could concern the lizards, snakes and all species groups/datasets,
because they had a, comparatively, higher imbalance and, their minority class was precisely the
class of interest (i.e., Threatened class), as was also seen in other studies [53]. And as previously
mentioned, in a modelling task, the performance of the models should be estimated on a testing
set where no parameter tuning has been done. The low amount of species data limited this work,
and is likely to limit most models of the threat status of species. For that reason, it should be
noted that the performance metrics estimated using CV may be slightly optimistic.

The models were based mostly in the IUCN Criteria B (restricted distribution), but Criteria A
(declining distribution) is also a very important basis to determine the threat status (IUCN, 2012).
There was a limitation that prevented us from including this criteria: the lack of abundance
data periodically added to repositories for each species. For the models to include a temporal
dimension, one would need to have a much higher amount of data for each species, distributed
over the years. Without it, a possible approach could leverage species distribution models (SDMs)
to predict the distribution range of each species over time [93].

Using the convex hulls was a good option to approximate the species distribution. It is the
technique used by IUCN themselves, but it generates polygons sharp polygons, while the actual
distribution of species is likely to be much more even. A possible improvement would be to use
the information on the species presences and, possibly, absences, and SDMs, to estimate their
potential range, and use that output to generate the maps.

Also, in the future, the threat maps, combined with socioeconomic knowledge of the underlying
countries, could be used to study the correlation between the threat level and countries gross
domestic product (GDP) to understand if there is any correlation between a country’s economic
status and its conservation efforts.

Lastly, SMOTE was able to significantly improve model results for this data, specially for
the metrics that focus on the class of interest, showing the potential of techniques to balance the
dataset in this domain, other parameters and methods could be explored and compared. Due to
the chronology followed by this dissertation, the predictions for DD and NE species were done
using the original models. SMOTE was an attempt to improve model results even further, after
the fact. Since it did improve them for some of the groups, so those models should be the ones
used to generate the final predictions and outputs.



Appendix A

Model results

The following tables show the results of final models for each combination of model and dataset.
Each table details the values for the six metrics used, sensitivity, specificity, precision, F0.5, AUC
and TSS, for each of the six groups of species. They also contain the results of the paired one-sided
Wilcoxon tests done using the AOO_EOO dataset as baseline, or the All EGVs or All EGVs_FS in
the case of the tests done between the EcoV and All EGVs datasets, see eco-all columns. Values
marked with a bold color represent models where performance, for that particular metric and
algorithm, was, significantly, improved relative to the AOO_EOO dataset. Values of the Wilcoxon
tests marked with one or two asterisks (*, **) indicate significance values higher than 95%, or
99%, respectively.
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Table A.1: Results of final models for each combination of model and dataset, and per evaluation
metric. Values marked with a bold color represent models where performance, for that particular
metric and algorithm, was according to the Wilcoxon test, significantly, improved relative to the
AOO_EOO dataset. Values marked with one or two asterisks (*, **) indicate a confidence level
higher than 95%, or 99%, respectively.
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Appendix B

Bibliographic note

The work developed in this dissertation allowed the production and submission of two scientific
articles, one for a core A international conference in data science and another in an Ecology
journal. Figures B.1 and B.2 shows the proof of submission to the two.

• Soares, N., Gonçalves, J., Vasconcelos, R., Ribeiro, R. - Combining Multiple Data Sources
to Predict IUCN Conservation Status of Reptiles submitted to 8th IEEE International
Conference on Data Science and Advanced Analytics (DSAA) 2021 - Application Track

Figure B.1: Proof of submission to the DSAA conference.
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• Soares, N., Vasconcelos, R., Gonçalves, J., Ribeiro, R. - Predicting threat status through
machine learning to accelerate conservation efforts submitted to Methods in Ecology and
Evolution (MEE) - Special Feature in Methods in Ecology and Evolution: Realising the
promise of large data and complex models

Figure B.2: Proof of submission to the MEE journal.
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