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ARTICLE INFO ABSTRACT

Keywords: The Loasoideae is the largest clade in the Loasaceae. This subfamily is widespread throughout the Neotropics and
Ancestral ranges centered in the Andes, presenting an excellent opportunity to study diversification across much of temperate and
Andes mid to high-elevation areas of South America. Despite that, no studies have addressed the historical biogeo-

Bi_OgeOgraphy graphy of the Loasoideae to date, leaving an important knowledge gap in this plant group. Here, we used four
E;‘;‘::E:‘Ze times plastid markers (i.e., trnL-trnF, matK, trnS—trnG, and rps16) and sequenced 170 accessions (134 ingroup taxa) to
Loasoideae infer the phylogeny of Loasoideae. We then used this phylogeny as basis to estimate divergence times using an

uncorrelated relaxed molecular clock approach and seven fossils as primary calibration points. We employed the
Dispersal-Extinction-Cladogenesis (DEC) approach to reconstruct the ancestral ranges of the subfamily. Our
results indicate that stem Loasoideae diverged from its sister group in the Late Cretaceous to Early Paleocene (ca.
83-62Ma). The crown node of the whole clade goes back to the Middle Paleocene to Middle Eocene (ca.
60-45 Ma), corresponding to the earliest diversification events of the extant groups, prior to most of the Andean
orogeny and roughly coinciding with the Paleocene-Eocene Thermal Maximum. On the other hand, the crown
nodes of most genera appear to have originated in the Oligocene and Miocene (median ages: 28-10 Ma). The
diversification of some extant lineages appears to have happened in parallel to Andean uplift pulses that seem to
have had an effect on the orogeny and concomitant establishment of new habitats and latitudinal corridors. The
most likely ancestral areas retrieved for crown Loasoideae, are the tropical Andes and Pacific arid coast. Most of
the extant clades have remained restricted to their ancestral areas. Transoceanic Long Distance Dispersal appears
to have been involved in the arrival of Loasoid ancestors to South America, and in the distribution of the small
clades Kissenia in Africa and Plakothira on the Marquesas Archipelago. The results presented here suggest that the
historical biogeography of the continental scale radiation of Loasoideae, follows the sequence and timing of the
development of temperate and mid to high-elevation habitats across South America during the Tertiary.

1. Introduction (Luebert and Weigend, 2014). Parallel geological events include the

change in drainage and rainfall patterns in the Amazon Basin, the ar-

South America is one of the most diverse regions on Earth, three of
the five most important centers of plant diversity are found here
(Barthlott et al., 2007). Biotic exchanges between South America and
Africa, North America, Australia and Antarctica, have had profound
effects in the Neotropical flora and fauna since the Cretaceous, as
shown by the fossil record (Wilf et al., 2013), and molecular phyloge-
netic studies (Antonelli and Sanmartin, 2011). At the continental scale,
Andean uplift, and the environmental changes associated with it have
been identified as major driving forces, especially after the Oligocene

idification of the Atacama desert, the creation of a whole range of new
mid to high-elevation habitats and the establishment of a South-North
corridor for temperate plants. The spatio-temporal geodiversity of this
mountain range is considered as an essential driver for the elevated
biodiversity that currently inhabits the region (Mutke and Weigend,
2017). Although there is still controversy concerning the details of the
timing of the Andean uplift (Barnes and Ehlers, 2009; Richardson et al.,
2018), major trends, such as the general progression of the Andean
orogeny from South to North and from West to East (Graham, 2009;
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Gianni et al., 2016) are widely accepted. The historical biogeography of
many plant groups seems to reflect this pattern (Hughes et al., 2013;
Luebert and Weigend, 2014).

The Cornales represents one of the earliest unequivocal documented
radiations of any extant clade of eudicots (89 Ma; Atkinson et al., 2018).
This clade is sister to the remaining Asterids, which represent one of the
major radiations of land organisms (Soltis et al., 2018). Extant Cornales
are subcosmopolitan in distribution, with considerable diversity in the
subtropical to temperate zones of the Northern Hemisphere
(Christenhusz et al., 2017; Soltis et al., 2018). Loasaceae, the largest
family of the order is thought to have diverged from its sister, Hy-
drangeaceae, during the Late Cretaceous (Xiang et al., 2011). The
phylogenetic diversity of the Loasaceae subfamilies Mentzelioideae,
Gronovioideae, and Petalonychoideae is centered in southwestern
North America and Mexico, which is inferred as the likely ancestral area
of the Loasaceae as a whole (Weigend, 1997, 2004; Hufford, 2004;
Schenk et al., 2017). However, Loasaceae subfam. Loasoideae, the
largest clade of the family, is widespread in Central and South America
and particularly species rich from temperate Patagonia over Medi-
terranean Chile to the tropical Andes, being centered in the latter
(Weigend, 2004; Mutke et al., 2014). Loasaceae subfam. Loasoideae
thus presents an opportunity to study the diversification of a clade
across much of temperate and mid to high-elevation areas of South
America.

The historical biogeography of Loasaceae subfam. Loasoideae is still
incompletely understood, in spite of published phylogenetic studies
(Weigend et al., 2004; Hufford et al., 2005; Acuiia et al., 2017).
Weigend (1997) suggested that the common ancestor of Loasoideae and
its sister group might have grown in Mexico and/or adjacent areas in
the Late Cretaceous. Two age estimates have been reported previously
for this clade. While Schenk and Hufford (2010) estimated the age of
the crown group of Loasoideae around the Eocene-Oligocene (ca.
56-23 Ma), Strelin et al. (2017), focusing on the Argentinean Caiophora
C.Presl., dated the most recent common ancestor (MRCA) of the living
Caiophora to the Miocene-Pliocene boundary (17.64-4.37 Ma). Despite
that, none of these studies have addressed the historical biogeography
of the Loasaceae subfam. Loasoideae, the largest clade in the family,
leaving an important gap in the knowledge of this plant group.

In this study, we reconstruct a time-calibrated phylogeny of the
Loasaceae subfam. Loasoideae, estimate ancestral ranges and the bio-
geographic history of the group in order to address the following two
questions: (i) When did main Loasoideae clades diverge from their
closest extant relatives? (ii) Where did these clades originate and spread
afterwards? We discuss the results in the light of important geologic
events that show a spatio-temporal correspondence with the diversifi-
cation of the main clades of Loasoideae and mention other elements of
the flora with similar ecology, distribution, and ages.

2. Materials and methods
2.1. Taxon sampling

We sampled a total of 170 species of Cornales including 134 ingroup
species, representing ca. 65% of the currently accepted species of
Loasoideae. The remaining 36 outgroup taxa are representatives of
other subfamilies of Loasaceae, Hydrangeaceae, Nyssaceae, Cornaceae,
and Curtisiaceae. Voucher information is presented as Supplementary
Material (Supplementary Table S1).

2.2. DNA Amplification, sequencing, and alignment

DNA was extracted using the CTAB method (Doyle and Doyle,
1987). Four plastid regions were amplified: trnL-trnF, matK, the
trnS—-trnG intergenic spacers, and the rps16 intron. Although many se-
quences were newly generated for this study, we also included data
from Acufa et al. (2017, 2018) and Henning et al. (2018). The trnL-trnF
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sequence of Aosa plumieri (Urb.) Weigend was obtained from GenBank
(Hufford et al., 2005). GenBank accession numbers are presented as
Supplementary Material (Supplementary Table S1). The amplification,
sequencing, and alignment protocols follow Acufa et al. (2017). The
four plastid marker sequences were combined in a single matrix', di-
vided in four partitions (one per marker).

2.3. Divergence time estimation

The molecular dataset was prepared in BEAUti 1.8.4 (Drummond
et al, 2012). FindModel (http://hcv.]anl.gov/content/sequence/
findmodel/findmodel.html), which implements Posada and Crandall’s
(1998). Modeltest, suggested GTR + I as the best-fit model for all four
partitions. For each partition we chose an uncorrelated relaxed clock in
order to allow clock rates to vary across the tree. We compared the
divergence age estimates of chronograms, using Yule Process and Birth-
Death tree priors. The largest difference in divergence time estimates
for the ingroup (Loasaceae subfam. Loasoideae) was 1.17 Ma. We chose
the results obtained with the Yule Process tree prior for further ana-
lyses, because less parameters are included than the Birth-Death model.
We placed the following seven fossil calibration points for Cornales,
using absolute ages (Ogg et al., 2016) corresponding to the youngest
boundary of the geologic age to which the fossils have been assigned.
To account for dating and identification uncertainties, we set each prior
to lognormal distributions, with 1.0 as standard deviation, and a log-
normal mean so that the median age fell within the time interval of the
respective geological age assigned to the fossil.

1. The crown node of Cornus L. was set to a minimum age of 72 Ma (end
of the Campanian, logMean: 0.9) based on recently described fossil
fruits of Cornus cf. piggae from the Late Campanian (~73Ma) of
Vancouver Island, British Columbia, which have been confidently as-
signed to the extant Cornelian Cherry clade (Atkinson et al., 2016).

2. Within Nyssaceae, the split between Davidia Baill. and Camptotheca
Decne. + Nyssa L. was set to a minimum age of 56 Ma (end of the
Thanetian, logMean: 0.8), based on fruits and leaves of Davidia an-
tiqua (Newberry) Manchester, from the Late Paleocene (57-55.5 Ma)
of Dakota, Montana and Wyoming, USA (Manchester, 2002), dis-
playing many diagnostic traits of the extant genus. Although older
fossils putatively assigned to Davidia and Nyssa (dating as far back as
the late Campanian ca. 72 Ma) have been reported (Serbet et al.,
2004; Manchester et al., 2015), a recent morphological analysis by
Atkinson (2017, 2018) revealed that these cannot be unequivocally
assigned to any clade within crown Nyssaceae and are therefore not
used in our analyses.

3. The stem node of Nyssaceae (sensu APG IV, 2016) was set to a
minimum age of 86 Ma (end of the Coniacian, logMean: 0.4) based
on the fossil fruits of Obamacarpa edenensis Atkinson, Stockey &
Rothwell (Atkinson et al., 2018), from the Early Coniacian (89 Ma)
of Vancouver Island, British Columbia. Although these cannot be
assigned with certainty to any extant group of Cornales, morpho-
logical analyses place this genus as more closely related to Nyssa-
ceae than to any other extant group (Atkinson, 2017, 2018).

4. The crown node of Jamesioideae (Hydrangeaceae) was set to a
minimum age of 23 Ma (end of the Chattian, logMean: 0.9) based on
fossil leaves of Jamesia caplani Axelrod from the Late Oligocene
(28-23 Ma) of Colorado (Axelrod, 1987). Although it is not known if
every specimen assigned to this name belongs to the same species, at
least some show close resemblance to extant Jamesia americana Torr.
& A.Gray leaves, indicating that the extant genera of the subfamily
had already diverged by this time.

! Aligned matrix with all markers, available in Mendeley data: either here
https://data.mendeley.com/datasets/698gcrrb2z/1 or the link provided by
Elsevier.
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5. The crown node of Hydrangea L. was set to a minimum age of 41 Ma
(end of Lutetian, logMean: 1.1) based on Hydrangea knowltonii
Manchester from the Late Eocene (43-45Ma) of Oregon
(Manchester, 1994; Manchester et al., 2015). This species has dor-
soventrally flattened seeds, a morphological trait shared only with
H. anomala D.Don from Asia among extant Hydrangeaceae (Hufford,
1995). Although not included in our sampling, H. anomala was re-
trieved as sister to Hydrangea Sect. Cornidia by De Smet et al. (2015),
which is represented in our study by H. oerstedii Briq. Potentially
older (possibly Paleocene) fossils of Hydrangea from Washington
were described by Mustoe (2002), but their actual age remains
uncertain.

6. The stem node of Philadelphus L. + Carpenteria Torr. (the latter
found to be nested in the former by Guo et al., 2013) was set to a
minimum age of 23 Ma (end of the Chattian, logMean: 0.9) based on
leaf fossils of Philadelphus creedensis Axelrod from the Late Oligocene
(28-23 Ma) of Colorado (Axelrod, 1987). According to Axelrod
(1987), leaf morphology resembles that of the extant Philadelphus
microphyllus A.Gray.

7. The crown node of Klaprothieae was set to 28 Ma (end of the
Rupelian, logMean: 2.7) based on amber preserved structures of
Klaprothiopsis dyscrita Poinar, Weigend & T.Henning, from the
Dominican Republic. The Dominican amber fossils have not been
dated precisely and could have ages between 45 and 15 Ma (Poinar
et al., 2015). Although K. dyscrita lacks many traits found in extant
Loasoideae, it bears a closer resemblance to extant Plakothira Flor-
ence and Klaprothia Kunth than to their closest living relative, Xy-
lopodia Weigend.

The fossil Tylerianthus crossmanensis Gandolfo, Nixon & Crepet has
been cited as representing one of the oldest Cornalean taxa (e.g.,
Manchester et al., 2015; Soltis et al., 2018) due to its Turonian-Coniacian
age (88.5-90.4Ma) and putative Hydrangeaceous affinities (Gandolfo
et al., 1998). Despite that, the age and phylogenetic assignment of this
fossil remain equivocal (Friis et al., 2011; Atkinson et al., 2018), thus this
fossil was not included in our analyses. A single secondary calibration
point was placed at the crown node of Cornales based on the result of
Magallén et al. (2015). We set this prior with a normal distribution, a
mean of 104.6 Ma and standard deviation of 5.45.

The partitioned dataset was run in BEAST 1.8.4 (Drummond et al.,
2012) on the CIPRES Science Gateway 3.3 (Miller et al., 2010). The
Markov Chain Monte Carlo was set to 200 million generations sampling
every 10,000 generations. We discarded 10% of the trees as burn-in.
The effective size sample (ESS) and plot likelihoods were examined in
Tracer 1.6 (Rambaut and Drummond, 2014) [ESS was > 200 for all
parameters, except the prior (ESS = 130), most recent common an-
cestor  (Philadelphus  creedensis, ESS = 159), matk.ucld.mean
(ESS = 186), matk.meanRate (ESS = 170) and speciation
(ESS = 123)]. TreeAnnotator 1.8.4 (Drummond et al., 2012) was used
to obtain a maximum clade credibility tree with median ages.

In order to assess the influence that alternative calibrations could have
in our analyses, we explored three calibration schemes: (a) including all
calibration points; (b) excluding the dubious in-group fossil Klaprothiopsis
dyscrita; and, (c) including only the secondary calibration and the fossils
Cornus cf. piggae, Davidia antiqua, and Hydrangea knowltonii, whose affi-
nities are considered as unequivocal. Unless otherwise stated, the age
ranges obtained in our analyses and cited in the discussion correspond to
95% highest posterior density intervals (HPDI). Chronograms were pre-
pared using the R package 'phyloch’ (Heibl, 2013).

2.4. Ancestral area reconstruction

We compiled distribution data from specimens deposited in her-
baria in the Americas and Europe (see Acknowledgements), with ad-
ditional data from the literature (Sleumer, 1955; Pérez-Moreau and
Crespo, 1988; Noguera-Savelli, 2012; Slanis et al., 2016), and GBIF
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(2017, with doubtfully identified specimens excluded). The ancestral
area reconstruction was performed using the Dispersal-Extinction-Cla-
dogenesis (DEC) approach described by Ree and Smith (2008) as im-
plemented in the R-package ‘BioGeoBEARS’ 0.2.1 (Matzke, 2013). We
defined eight geographic areas: (A) Central America and the Caribbean
(including tropical Mexico and the lowlands of extreme northwestern
Colombia), (B) Tropical Andes (Andes north of the Bolivian Orocline),
(C) Arid Pacific (deserts of western Peru and northern Chile), (D) Al-
tiplano (Central Andes between the Bolivian Orocline and ca. 30°S), (E)
Eastern South America (Eastern Brazil, Pampas and Chaco, including
the Sierras de Cérdoba), (F) Southern South America (South of the
Atacama desert and the Pampas), (G) Africa (including the Arabian
Peninsula), and (H) Marquesas Islands.

We ran analyses with two alternative biogeographic scenarios em-
ploying the chronogram obtained using the calibration scheme (a). The
first biogeographical scenario included no dispersal constraints be-
tween areas and a maximum of three areas per node (the maximum
number of areas occupied by the most widely distributed extant species
of Loasoideae). The second scenario included a dispersal-constrained
scenario where the adjacency matrix was modified manually so that
dispersal was allowed only between adjacent areas, even when sepa-
rated by the sea (i.e., including combinations AE, AG, AH, BH, CH, EG,
FG, and FH). In order to allow additional ancestral reconstructions
under these dispersal constraints, the maximum number of areas per
node was set to four. R scripts are available upon request.

3. Results
3.1. Phylogenetic relationships

Loasoideae is retrieved as monophyletic with high support
[Posterior Probability (PP) = 1.0], and sister to the also highly sup-
ported Mentzelia L. + Gronovioideae + Petalonychoideae clade
(PP = 1.0, Supplementary Fig. S2). With very few exceptions, the
backbone of the phylogeny is well resolved with good to very good
support (PP = 0.9) across most nodes. The position of early branching
Kissenia R.Br. ex Endl and Huidobria Gay is not clearly resolved and the
monophyly of Huidobria has no support. Conversely, Klaprothieae is
highly supported as monophyletic (PP = 1.0), with the Andean relic
genus Xylopodia sister to the other genera. The ‘Core Loaseae’ con-
stitutes a highly supported clade (PP = 1.0) including all the remaining
genera of the subfamily, with Nasa Weigend highly supported
(PP = 1.0) and retrieved as sister to all other genera. In this latter clade
the generic relationships are all highly supported (PP = 1.0) and Aosa
Weigend is found as sister to Presliophytum (Urb. & Gilg) Weigend and
the South Andean Loasas. The latter are retrieved in three highly sup-
ported clades: (a) Blumenbachia Schrad., (PP = 1.0); (b) Loasa Adans.
(PP = 1.0, as redefined in Acuia et al., 2017); and, (c) ‘Caiophora clade’
(PP = 1.0, Caiophora, Grausa Weigend & R.H. Acufia, Pinnasa Weigend
& R.H. Acufa and Scyphanthus Sweet). Relationships between these
three clades are not resolved. In the ‘Caiophora clade’ relationships are
retrieved as (Grausa + (Pinnasa + (Scyphanthus + Caiophora))).

3.2. Biogeographical analyses

All calibration schemes yielded the same topologies in all moder-
ately to well-supported clades (PP > 0.9) (Fig. 1, Supplementary Fig.
S2). Divergence time estimates for major nodes in Loasoideae were si-
milar, independent of the specific calibration scheme (Table 1,
Supplementary Fig. S2), although the ages obtained with calibration
scheme (c) tended to be higher”. Median ages for the stem node of

2 tre files of the time calibrated maximum clade credibility trees available in
Mendeley data: either here https://data.mendeley.com/datasets/698gcrrb2z/1
or the link provided by Elsevier.
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Table 1
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Comparison between the divergence time estimates in Millions of years before present (Ma) for the major nodes of the Loasaceae subfam. Loasoideae phylogeny
under different calibration schemes with seven (a), six (b) and three (c¢) primary calibration points and estimates from other studies. Numbers in parentheses refer to
95% highest posterior density intervals, except for Schenk and Hufford (2010) who reported 95% Confidence Intervals. See the Material and Methods sections for the
details on each calibration scheme.

Node

Calibration schemes

(@

(b)

(©)

Schenk and Hufford (2010)

Xiang et al. (2011)

Strelin et al. (2017)

Stem Loasoideae
Crown Loasoideae
Crown Klaprothieae
Crown 'Core Loaseae'
Crown Nasa

Crown Aosa

Crown Presliophytum
Crown SAL

Crown Blumenbachia
Crown Loasa

Crown 'Caiophora clade'

Crown Grausa
Crown Pinnasa

Scyphanthus-Caiophora divergence

Crown Caiophora

72.24 (62.11-83.29)
52.08 (44.78-59.73)
27.81 (21.72-34.73)
47.82 (41.30-54.78)
27.67 (23.12-32.49)
20.59 (16.10-25.93)
30.01 (22.23-38.27)
38.42 (33.49-44.19)
27.48 (20.72-34.22)
36.69 (31.34-41.84)
31.42 (26.52-36.46)
23.89 (18.91-29.05)
11.02 (7.00-15.55)

26.31 (21.48-31.32)
10.18 (7.98-12.66)

72.48 (62.10-83.42)
52.29 (45.38-59.90)
28.49 (22.01-35.74)
47.89 (41.78-54.90)
27.84 (23.14-32.48)
20.61 (15.65-25.63)
30.15 (22.20-38.32)
38.38 (33.68-44.11)
27.43 (20.82-34.35)
36.66 (31.91-42.08)
31.35 (26.54-36.28)
23.88 (19.06-29.14)
11.06 (6.92-15.47)

26.17 (21.60-31.19)
10.20 (7.97-12.59)

76.71 (67.73-86.35)
54.73 (48.26-61.89)
29.60 (23.01-36.80)
50.09 (44.25-56.49)
28.94 (24.60-33.53)
21.38 (16.84-26.58)
31.48 (23.48-39.50)
40.14 (35.43-45.24)
28.78 (22.07-35.69)
38.33 (33.58-43.30)
32.74 (28.14-37.59)
24.90 (19.82-29.99)
11.48 (7.30-16.07)

27.41 (22.67-33.36)
10.67 (8.40-13.23)

ca. 65 (44-75)
ca. 44 (24-65)
ca. 20 (9-30)

ca. 40 (19-49)

ca. 10.5 (2-18)

ca. 21 (9-30)
ca. 28 (13-40)

ca. 22.5 (10-35)

46.69-47.35
19.98-23.39

19.98-23.39

26.97 (13.74-41.00)
11.83 (3.29-22.18)
20.76 (9.01-35.39)
20.09 (8.27-31.97)

4.81 (0.59-10.71)

10.43 (4.37-17.64)

Table 2

Results of the Dispersal Extinction Cladogenesis (DEC) analyses for the major nodes of the Loasaceae subfam. Loasoideae phylogeny. The log-likelihood of each
analysis is indicated in the table header. The numbers that appear in the first column correspond to the respective node number assigned by BioGeoBEARS. The
capital letters in the second and third column correspond to the ancestral areas at the respective node (as defined in materials and methods) arranged in decreasing
order, with their relative probabilities in parenthesis. Only those areas with relative probabilities = 0.05 are shown. A) Central America and the Caribbean, B)

tropical Andes, C) Pacific arid coast, D) Altiplano, E) eastern South America, F) southern South America, G) Africa, H) Marquesas Islands.

Node Dispersal unconstrained, three areas maximumLnL = —209.78

Dispersal constrained, four areas maximumLnL = —200.54

Crown Loasoideae (135)
Crown Klaprothieae (140)
Crown 'Core Loaseae' (143)
Crown Nasa (144)

Crown Aosa (201)

Crown Presliophytum (208)
Crown SAL (212)

BCG (0.47); BCE (0.20); BC (0.08); BCF (0.07)
B (0.57); BH (0.15); ABH (0.10); AB (0.08)
BCE (0.31); BE (0.19); BC (0.15); BCF (0.10)
B (0.98)

E (0.69); AE (0.29)

C (0.89); CD (0.08)

EF (0.39); F (0.35); CF (0.18)

Crown Blumenbachia (214) EF (0.97)

Crown Loasa (222) F (0.77); CF (0.22)
Crown 'Caiophora clade' (233) F (0.94)

Crown Grausa (234) F (1.00)

Crown Pinnasa (237) F (1.00)

Crown Scyphanthus (240) F (1.00)

Crown Caiophora (241) BEF (0.88); BE (0.07)

BCEG (0.36); ABCG (0.33); ACEG (0.13); ACGH (0.07)

ABEH (0.34); AB (0.16); ABE (0.15); BE (0.13); ABH (0.12); BEH (0.08)
BE (0.30); BEF (0.16); BCEF (0.16); BCF (0.14); B (0.09); BC (0.09);
B (0.99)

E (0.79); AE (0.21)

C (0.85); CD (0.15)

F (0.43); EF (0.34); BEF (0.09); CF (0.05)

EF (1.00)

F (0.91); CF (0.08)

F (0.82); BEF (0.08)

F (1.00)

F (1.00)

F (1.00)

BDEF (0.73); BCEF (0.19)

Loasoideae ranged between 72 and 77 Ma, placing it around the late
Campanian, while the crown node of Loasoideae was dated to a median
age between 52 and 55 Ma (Ypresian). Crown node ages of most genera
fell into the Oligocene to Miocene (31-10 Ma). Only the crown node of
Loasa was retrieved as older (37-38 Ma, Eocene).

The unconstrained DEC analysis had a LnL= —209.78
(Supplementary Fig. S3), while the constrained analysis had a
LnL = —200.54 (Fig. 1, Table 2). The results of both analyses differ
mostly in the deeper nodes of the phylogeny (Table 2). Due to the
difference in likelihood, we will focus on the dispersal-constrained
analysis. The two most likely ancestral areas for the crown node of
Loasoideae included the combinations of the tropical Andes + arid
Pacific + Africa and either Central America or eastern South America
(Fig. 1). The most likely ancestral area for crown Klaprothieae includes
all the areas where the clade is currently distributed: Central
America + tropical Andes + eastern South America + Marquesas is-
lands, while tropical Andes + eastern South America was retrieved as
the most likely ancestral area for the crown ‘Core Loaseae’. The most
likely ancestral area of the crown group Nasa corresponds to the tro-
pical Andes, with two dispersal events into Central America and one
into the Pacific arid coast. On the other hand, the remaining ‘Core
Loaseae’ showed arid Pacific + eastern South America + southern

South America as the most likely ancestral area combination. For crown
Aosa, eastern South America is the most likely ancestral area with a
dispersal event into Central America, while for Presliophytum it is the
Pacific arid coast. Crown South Andean Loasas (SAL) has two area
combinations as most likely: southern South America and
eastern + southern South America. The most likely ancestral area for
Blumenbachia is eastern + southern South America, while southern
South America is the area obtained for crown Loasa (with two identified
dispersal events into the Pacific arid coast) and the MRCA of the
Caiophora clade as well as of Grausa, Pinnasa, and Scyphanthus. Finally,
the most likely ancestral area combination for Caiophora is tropical
Andes + Altiplano + eastern + southern South America, coinciding
with most of the areas where this taxon is distributed nowadays.

4. Discussion

In this study, we present the most comprehensive phylogeny of
Loasaceae subfam. Loasoideae to date. This phylogeny is the most
densely sampled both in terms of taxon and character sampling. We
obtained high support values for most of the retrieved clades. At the
same time, our estimations of the historical biogeography of the whole
clade provide an exemplary scenario of the diversification of a mostly
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South American mid to high-elevation plant group across several dif-
ferent biomes, in which the timing of their development and coloni-
zation can be compared to other plant groups as documented in recent
studies.

4.1. Phylogenetic relationships

The relationships of Loasoideae as obtained in this study, including
the sister group relationship between Loasoideae and the Mentzelia
L. + Gronovioideae + Petalonychoideae clade, are mostly in agree-
ment with published evidence (Weigend et al., 2004; Hufford et al.,
2005; Acuna et al., 2017). The ‘Core Loaseae,” the largest clade in the
subfamily, characterized by nectar scales formed by three fused sta-
minodia, was retrieved as monophyletic, corroborating the findings of
Hufford et al. (2005) and Acufa et al. (2017). The topology of the SAL
clade, as here retrieved, is essentially that of Acufa et al. (2017), which
provided the most in-depth phylogenetic study on this clade to date.

The uncertain relationships of Huidobria, Kissenia, and Klaprothieae
have remained since early phylogenetic reconstructions in this clade
(Weigend et al., 2004; Hufford et al., 2005). Although access to new
molecular techniques may improve the resolution of the deepest nodes
of the Loasoideae, the divergence events that originated among these
taxa seem to have resulted from ancient rapid radiations, as can be
inferred from our time calibrated phylogenetic reconstructions. Ancient
rapid radiations represent a major challenge for phylogenetic analyses
due to the small amount of data that may support the divergence among
lineages and the great potential to misinterpret phylogenetic informa-
tion given the deep time-frame involved (Whitfield and Lockhart,
2007).

4.2. Biogeographical analyses

Our divergence time estimates for Loasoideae are considerably older
than those previously published for this group (compare Table 1 with
Schenk and Hufford, 2010; Xiang et al., 2011; Strelin et al., 2017). Only
the estimates of the crown node age of Caiophora by Strelin et al. (2017)
are largely congruent with our results, although our 95% HPDI is
considerably narrower (Table 1). Albeit several of the fossils used for
calibration were also employed in previous studies (Schenk and
Hufford, 2010; Xiang et al., 2011), we also included calibration points
based on recently described, unequivocal fossils from early Cornales
that were not considered in previous studies (Cornus cf. piggae, and
Obamacarpa edenensis Atkinson et al., 2016, 2018). Taxonomic sam-
pling density and dissimilar evolutionary rates can bias molecular clock
results (Linder et al., 2005; Soares and Schrago, 2015), while herbs tend
to have higher rates of molecular evolution than woody species (Smith
and Donoghue, 2008). In this study the sampling of Loasoideae is
considerably expanded (134 species) compared to Schenk and Hufford
(2010: 19 taxa), Xiang et al. (2011: five taxa), and Strelin et al. (2017:
31 taxa). At the same time, the first two studies included a higher
proportion of woody species than ours.

The fossil record suggests that there was considerable biotic ex-
change between North and South America during late Cretaceous and
Paleocene (Wilf et al., 2013). This is underscored by the fossil record of
angiosperms (Stull et al., 2012), dinosaurs, and Therian mammals (Wilf
et al., 2013). Divergence times of the stem Loasoideae (Table 1) from its
North American sister group fall within this time frame. Right into the
early Eocene, even southern South America was covered extensively by
mesic tropical to subtropical forests (Wilf et al., 2013), biomes where
Loasaceae are essentially absent today (Weigend, 2004). The Andean
chain likely had only reached a small fraction of its current elevation
(Graham, 2009), but drier habitats may have been present along the
western margin of the continent (Hartley et al., 2005). Around the
Paleocene-Eocene Thermal Maximum (PETM: 55Ma, Zachos et al.,
2008) there was a well-documented rapid increase in floristic diversity
(Jaramillo et al., 2010) and the main clades of crown Loasoideae started
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to diverge around (or shortly after) the same period. The deepest nodes
— i.e. the divergence of the Atacama taxa Huidobria chilensis and H.
fruticosa, African Kissenia and both stem Klaprothieae and ‘Core Loa-
seae’— go back to ca. 57-40 Ma (mostly early Eocene).

The lineages of Loasoideae found in the western coastal deserts of
South America each have an idiosyncratic history. Two of the earliest
diverging groups of Loasoideae are found in the Atacama desert:
Huidobria fruticosa and H. chilensis. These two clades diverged from the
remainder of Loasoideae at 44.78-59.73 Ma and 42.45-56.91 Ma, re-
spectively, suggesting the presence of arid environments in western
South America during the Eocene. These results are in line with Hartley
et al., (2005) who suggested that the Atacama has been semi-arid at
least since the Mesozoic (150 Ma). Presliophytum diverged from its sister
group 36.47-43.24 Ma (Late Eocene) and this was followed by a South-
North progression with the two Atacama lineages diverging during the
Oligocene and the three closely allied Peruvian taxa only diverging
from each other in the Pliocene to Pleistocene (3.83-0.78 Ma). These
arid-Pacific lineages seem to represent ancient and isolated taxa. The
stem age interval of Presliophytum overlaps with the that of one of
Heliotropium L. sect Cochranea (Heliotropiaceae; 32.1-40.2 Ma: Luebert
et al., 2011). This finding contrasts with the more recent stem ages of
other important Atacama groups such as Oxalis L. lineages Car-
nosae + Giganteae (Oxalidaceae; 14.35-27.44 Ma: Heibl and Renner,
2012), the Mathewsia Hook. & Arn. + Schizopetalon Sims clade (Bras-
sicaceae; 10.35-20.77 Ma: Salariato et al., 2016), and Nolana L.f. (So-
lanaceae; Pliocene-Middle Miocene: Dillon et al., 2009). The single
dispersal event of Nasa into the arid Pacific (Nasa chenopodiifolia (Desr.)
Weigend and N. urens (Jacq.) Weigend 5.23-12.05 Ma) appears to have
originated from the tropical Andes, overlapping marginally with the
inferred age of origin of the Lomas formations in the Early Pliocene
(Eichler and Londofio, 2013).

Deserticolous, African Kissenia diverged from its closest living re-
latives at 40.07-55.31 Ma. Even if this clade arrived in Africa at such
early ages, long-distance dispersal (LDD) must be invoked for the in-
tercontinental dispersal, as previously suggested for Fagonia L.
(Zygophyllaceae; Beier et al., 2004), Thamnosma Torr. & Frem. (Ruta-
ceae; Thiv et al., 2011) and Turnera L. (Turneraceae; Thulin et al.,
2012) respectively. Our divergence age estimates between both species
of Kissenia (1.96-7.48 Ma: Late Miocene-Pliocene), agree broadly with
those of African elements showing similar distributions (Pokorny et al.,
2015). Some of these taxa are thought to have dispersed via an arid
corridor across east Africa during Pliocene-Pleistocene (Bellstedt et al.,
2012).

The crown node age of Andean ‘Core Loaseae’, was dated to the mid-
Eocene (41.30-54.78 Ma), predating both rapid (ca. 10 Ma: Gregory-
Wodzicki, 2000), and gradual (ca. 40 Ma: Barnes and Ehlers, 2009)
estimates of Andean uplift. The topography of South America during
that time was dramatically different from today: The “Incaic II” de-
formation would have caused uplift of the Western Cordillera by the
late Eocene (Taylor, 1991; Gregory-Wodzicki, 2000), but the highlands
were neither extensive nor continuous, as indicated by marine incur-
sions into western Amazonia (Hoorn et al., 2010) and the presence of
low-elevation paleofloras in regions that today lie thousands of meters
above sea level (Graham, 2009). By the end of the Eocene, the dense
forests that covered southern South America (Patagonia) were replaced
by more open habitats (Dunn et al., 2015) probably allowing the range
of Core-Loaseae to expand. We retrieve two distinct geographical clades
in Core-Loaseae, the tropical Andean Nasa and its mostly South Andean
sister group (Fig. 1).

Considerable diversification took place in the Southern Andes be-
tween the late Eocene and Middle Oligocene, including the divergence
of the bulk of the lineages from Mediterranean Chile. Crown Loasa is
ancient (31.34-41.84Ma), and reaches its highest diversity in
Mediterranean Chile. Heibl and Renner (2012) consider this area as a
refuge for Oxalis, but for Loasa it acts as a source (i.e., an area where
new lineages originated and expanded into new habitats and regions):
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two independent dispersals into the arid Pacific (Fig. 1) took place
(15.8-28.7 Ma) largely preceding the advent of hyperaridity (Mid-
Miocene: Houston and Hartley, 2003). Floristic interchange between
Mediterranean Chile and the arid Pacific coast has been reviewed for
related species in e.g., Southern Tecophilaeaceae, Tropaeolum L. sect.
Chilensia (Tropaeolaceae), and Chaetanthera Ruiz & Pav. (Asteraceae)
(Luebert, 2011). However, it is uncertain if the dispersal of those taxa
was in a northwards direction, like observed in Loasa. Andean orogeny
pulses, starting ca. 22 Ma, as well as the late Miocene global climatic
cooling trend (Ogg et al., 2016) could have triggered diversification in
the high Andean/Patagonian clades Blumenbachia sect. Angulatae
(crown age 6.11-14.11Ma), Caiophora (7.98-12.66 Ma), Pinnasa
(7.00-15.55 Ma), and the divergence of the Grausa lateritia (Gillies ex
Arn.) Weigend & R.H.Acufla lineage (7.83-18.49 Ma). Similar crown
ages, coinciding with South Andean orogeny, have been found in other
families, namely: The subclades of Calyceraceae (ca. 12-15Ma:
Denham et al., 2016), Puya Molina (Bromeliaceae; 10 Ma: Givnish et al.,
2011), Azorella Lam. sect. Laretia (Apiaceae; 7.49-18.35Ma: Nicolas
and Plunkett, 2014), the Austral Clade of Brassicaceae tribe Eudemeae
(6.07-12.89 Ma: Salariato et al., 2016), and the Oxalis lineage Palma-
tifoliae (5.91-19.6 Ma: Heibl and Renner, 2012). Conversely, the di-
versification of the more northerly distributed, mostly high-Andean
Caiophora, only started in the late Miocene, after the uplift pulses in the
Central Andes at ca. 13-10Ma (Gregory-Wodzicki, 2000; Graham,
2009), which likely facilitated the northward expansion and diversifi-
cation in this and other groups with south temperate origin (Luebert
and Weigend, 2014).

Nasa is retrieved as essentially Tropical Andean, with ancestors that
likely inhabited the moderate relief areas resulting from the Incaic II
phase of Andean uplift that preceded the crown age of this genus
(23.12-32.49 Ma). This is broadly contemporary with ages of crown
American Hedyosmum Sw., (Chloranthaceae; ca. Late Oligocene-Early
Eocene: Zhang et al, 2011), and Rubiaceae tribe Cinchoneae
(22.9-35.1 Ma: Antonelli et al., 2009). These groups reach their highest
diversity in the middle elevations of the Andes (1000-3000 m, Todzia,
1988; Andersson, 1995, Mutke et al., 2014). However, the crown ages
of other mid-elevation Andean radiations [Centropogon C.Presl and al-
lies (Campanulaceae), Ceroxylon Bonpl. (Arecaceae), Fuchsia L. sect.
Fuchsia (Onagraceae), Gesneriaceae tribe Episcieae, Vasconcellea A.St.-
Hil. (Caricaceae)] are generally lower (ca. 4-23 Ma, Luebert and
Weigend, 2014; Lagomarsino et al., 2016; Sanin et al., 2016). Accord-
ingly, it has been suggested that the radiations of these clades were
influenced by more recent uplift events (Berry et al., 2004; Carvalho
and Renner, 2012; Lagomarsino et al., 2016; Sanin et al., 2016). The
diversification of the genus Nasa throughout the last ca. 25Ma may
have resulted from the continuously increasing topographic and cli-
matic complexity, being likely influenced by orogenic pulses in the
tropical Andes that peaked at ca. 23 Ma and ca. 12 Ma. (Antonelli et al.
2009; Hoorn et al., 2010; Poulsen et al., 2010).

Aosa diversified in eastern South America prior to the Middle-
Miocene. Its crown age (16.10-25.93Ma) agrees broadly with the
crown age of other clades with eastern South American origin such as
the tribe Sinningieae (Gesneriaceae; 15.0-28.1 Ma: Perret et al., 2013),
Syagrus Mart. (Arecaceae; 14.99-24.95Ma: Meerow et al., 2014), At-
talea Kunth (Arecaceae; ca. Early Miocene-Late Oligocene: Freitas et al.,
2016), Ficus L. sect. Pharmacosycea (Moraceae; 13.9-27.0 Ma: Machado
et al., 2018), and Amorimia W.R.Anderson (Malpighiaceae;
15.71-29.11 Ma: Almeida et al., 2018). An overall increase of the ar-
idity in South America has been linked to the radiation of some of these
clades (Perret et al., 2013; Almeida et al., 2018). We hypothesize that
the MRCA of the Central American-Caribbean Aosa grandis (Standl.)
R.H.Acufia & Weigend, and A. plumieri (Urb.) Weigend arrived via LDD
from eastern South America. Our age estimates for their divergence
from their sister group (12.13-19.78 Ma) post-date the submersion of
the hypothetical GAARlandia (Greater Antilles-Aves Ridge) ca. 33 Ma
(Iturralde-Vinent and MacPhee, 1999), but could have overlapped with
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an early closure of the Central American Seaway 13-15Ma (Montes
et al., 2015).

Blumenbachia includes one Andean and two extra-Andean clades. Its
crown age overlaps broadly with that of Calyceraceae (22-36.1 Ma:
Denham et al., 2016), a group with similar distribution. The divergence
between eastern and western lineages of Blumenbachia
(20.72-34.22 Ma) appears to have resulted from vicariance (Fig. 1).
However, this divergence predates that of taxa with similar disjunctions
such as those of Butia Becc. and Jubaea Kunth (Arecaceae;
8.87-21.39 Ma: Meerow et al., 2014), Myrceugenia O. Berg (Myrtaceae;
8.86-21.67 Ma: Murillo et al., 2016), and Fuchsia sect. Quelusia (Ona-
graceae; ca. 13 Ma: Berry et al., 2004). For these clades, it has been
suggested that the major orogenic events in southern South America
(22-8 Ma: Giambiagi et al., 2016; Gianni et al., 2016), the establish-
ment of the rainshadow effect in the region (ca. 16 Ma: Gianni et al.,
2016) and the first Paranense Marine Transgression (15-13 Ma:
Herndndez et al., 2005) may have caused vicariance (Murillo et al.,
2016). The latter two events correspond to the time of divergence (95%
HPDI 9.53-19.96 Ma), and could have shaped the ranges of the two
extra-Andean sections of Blumenbachia.

The data here presented shows that the historical biogeography of
Loasaceae subfam. Loasoideae closely follows the known sequence and
chronology of the development of temperate and mid to high-elevation
habitats in South America. Early diversification falls into the PETM and
largely predates the bulk of Andean orogeny. The historical biogeo-
graphy of the clade implies that adaptations to aridity arose early in the
evolution of the group and most of the early diversification seems to
have taken place in semi-arid and temperate climates at low to mod-
erate elevations. The long-lasting presence of Loasaceae subfam.
Loasoideae in arid habitats, potentially since the early Eocene, makes
this clade an interesting example of evolution associated with the dry
biomes of the continent (in particular along the Pacific slope), as is the
case for the legume genera Amicia Kunth, Coursetia DC., Cyathostegia
(Benth.) Schery, Mimosa L., and Poissonia Baill from the seasonally dry
Andean forests (Sarkinen et al., 2012). Later diverging groups colonized
more mesic and higher elevation habitats. Since the Oligocene, the
diversification of these clades appears to have taken place mostly in
parallel with the major Andean uplift pulses, especially in the Andean
genera such as Nasa. As the Andes gradually reached higher elevations,
these became both the source of new habitats and a latitudinal corridor
(Luebert and Weigend, 2014) for Loasoideae. The high-Andean clades
of Nasa started to diversify in the late-Miocene, when the pre-
dominantly Andean genus Caiophora also experienced considerable
northward expansion and diversification. A further expansion of the
sampling and the use of more highly-resolving molecular tools would
help to resolve Pliocene and Quaternary nodes. The Quaternary glacial
and interglacial cycles may then be reflected in speciation and extinc-
tion patterns of Andean Loasoideae, but our data is not sufficiently
resolved at shallow levels to address this issue yet.
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