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Namaceae, with a special reference to Phacelia and Wigandia
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This study aimed to examine the systematic position of South American species of Phacelia (Hydrophyllaceae) and
Wigandia (Namaceae) and the historical biogeography of Hydrophyllaceaec and Namaceae using molecular dating and
ancestral area reconstruction. To this end, we constructed two datasets, one with a plastid (ndhF) and one with a nuclear
marker (ITS), using previously published and newly generated sequences. We inferred the phylogeny of
Hydrophyllaceae and Namaceae implementing both likelihood and Bayesian methods. We also estimated divergence
times and ancestral areas for all major clades using a relaxed Bayesian uncorrelated molecular clock and the dispersal-
extinction-cladogenesis (DEC) approach, respectively. The South American representatives of Phacelia are placed in
three different clades of the genus and two colonizations of South America by North American species took place in the
Miocene and at least one in the late Pliocene. Wigandia forms a well-supported monophylum with interspecific
relationships partly unresolved. Within Namaceae a colonization of South America by North American species occurred
during the Oligocene—Miocene transition. The MRCA of Wigandia was distributed in North and Central America in late

Oligocene. Long-distance dispersal may have been necessary for the colonization of South America by Namaceae
during the Oligocene—Miocene transition, when North and South America were not connected.

Key words: Amphitropical disjunction, ancestral area reconstruction, Boraginales II, molecular dating, South America

Introduction

Hydrophyllaceae and Namaceae are two new world fam-
ilies mainly distributed in western North and South
America and a few species in Central America. Mostly
herbaceous Hydrophyllaceae comprise 12 genera and
~240-260 species. Phacelia Juss. is the largest and
most diverse member of the family (~207 species;
Hofmann et al., 2016). Namaceae are a smaller family
of herbs, shrubs, or small, soft-wooded trees. They
comprise four genera with ~75 species in total and
most species in Nama L. (~50 spp.).

Hydrophyllaceae and Namaceae are successively
sister families to the remainder of the Boraginales II
clade (including also Coldeniaceae, Cordiaceae,
Ehretiaceae, Heliotropiaceae, Hoplestigmataceae, and
Lennoaceae) based on plastid data (Luebert et al., 2016;
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Stull et al., 2015; Weigend et al., 2014). Phylogenetic
studies over the last two decades have resolved the
relationships in these two to families: Hydrophyllaceae
falls into three major clades (Ferguson, 1998; Walden,
2010). The first clade includes Phacelia and
Romanzoffia Cham. (equivalent to Romanzoffieae,
Walden et al.,, 2014), the second clade comprises
Hydrophyllum L., Pholistoma Lilja, Nemophila Nutt.,
Emmenanthe Benth., Ellisia L. and Eucrypta Nutt.
(equivalent to Hydrophylleae; Walden, 2015), and the
third clade includes Draperia Torr., Tricardia Torr. ex
S. Watson, Howellanthus (Constance) Walden & R.
Patt. and Hesperochiron S. Watson (unnamed; Luebert
et al., 2016, Walden et al., 2014). Namaceae falls into
two clades: a Nama clade (about 50 spp.; Hofmann
et al., 2016), and a clade comprising woody Wigandia
Kunth (6 spp.; Hofmann et al.,, 2016), Eriodictyon
Benth., and Turricula J.F. Macbr. plus two species of
Nama (rendering Nama polyphyletic Ferguson, 1998;
Luebert et al., 2016; Taylor, 2012).
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Most species of Hydrophyllaceae and Namaceae are
found in western North America. Only one genus of
Hydrophyllaceae (Phacelia) and two of Namaceae
(Nama, Wigandia) have representatives in South
America. Phacelia and Nama thus represent amphitropi-
cal disjunctions, the latter also with one species in
Hawaii (Hofmann et al., 2016). Wigandia is present in
south-western North America, Central America and its
South American distribution is restricted to the northern
part of that continent.

Phacelia has been subject to several molecular phylo-
genetic studies with plastid and nuclear sequence data
(Gilbert et al., 2005; Hansen et al., 2009; Walden et al.,
2014). These studies aimed at evaluating existing
classifications of the genus based on a broad
sampling. However, none of them included South
American species.

In Nama, one dissertation (Taylor, 2012) addressed
the phylogenetic relationships of its species based on
plastid and nuclear sequence data and a sampling that
included one out of three South American species.
However, this study and its sequence data have not been
published so far.

In Wigandia, there is no specific phylogenetic study
available and only few large-scale phylogenies (e.g.,
Ferguson, 1998; Walden et al., 2014) have included one
or two species of the genus from North America.

Therefore, the systematic placement of the South
American species of Hydrophyllaceac and Namaceae
remains to be assessed with molecular data. As a conse-
quence, the biogeographic history of these genera,
across their ranges, has not been investigated.

Late Eocene divergence times of the crown node of
Hydrophyllaceae and Namaceae were recovered in the
first historical biogeography study of the order by
Luebert et al. (2017). The study further retrieves a
North American ancestral area for both families and
subsequent dispersal into Central and South America.
Due to low sampling density in the families specific
questions about the biogeographic history were
not addressed.

The present study uses previously published sequence
data and supplements them with a broad sampling of
South American representatives of Phacelia and
Wigandia to address the following questions: (1) What
is the phylogenetic position of South American repre-
sentatives of Phacelia and Wigandia? (2) When and
where did these genera originate and diversify? (3) How
many dispersal events between North and South
America took place and in which directions? To address
these questions, we inferred the phylogenetic relation-
ships of Hydrophyllaceae and Namaceae with an
expanded taxon sampling for Phacelia and Wigandia

and estimated their divergence times and ancestral
ranges based on molecular clock analyses and the dis-
persal-extinction-cladogenesis (DEC) approach to histor-
ical biogeography.

Materials and methods

Phylogenetic analyses

Taxon sampling and outgroup selection. We built two
datasets, one with plastid NADH dehydrogenase F
(ndhF) and one with nuclear Internal transcribed spacer
(ITS). In both cases we combined newly generated and
published sequences. Newly generated sequences
include seven out of 10 South American species of
Phacelia and four species of Wigandia. The ndhF data-
set consisted of 241 accessions, 117 Hydrophyllaceae
(110 taxa), 29 Namaceae (23 taxa), and includes repre-
sentatives from all major clades of each family of
Boraginales (see Luebert et al., 2017; Weigend et al.,
2014 for details). All ndh genes are absent in the chloro-
plast of the holoparasitic Lennoaceae (Schneider et al.,
2018), so they could not be included in the analyses.
Four taxa from the Gentianales were chosen as an out-
group, which is likely the sister order to Boraginales
(Leebens-Mack et al., 2019; Stull et al., 2015). The
ITS dataset consisted of 131 accessions, 110
Hydrophyllaceae (107 taxa), and 19 Namaceae (19
taxa). One species each of Ehretiaceae and
Heliotropiaceae were used as outgroups, because a fur-
ther expansion of the outgroup sampling made the align-
ment equivocal. Sampling within Phacelia for both
markers included representatives of all subgenera and
sections recognized by Walden and Patterson (2012).
New sequences were deposited in GenBank. Voucher
information and GenBank accession numbers are given
in Appendix SI.

DNA extraction, amplification, and sequencing. DNA
was extracted from samples of silica-gel-dried leaves or
herbarium material with a modified CTAB method
(Doyle & Doyle, 1987). PCR amplifications were per-
formed in a Trio-Thermoblock thermal cycler
(Biometra, Gottingen, Germany) and a Mastercycler ep
(Eppendorf AG, Hamburg) in a 25 pl volume containing
0.5U of Taq Polymerase, 5Spul 5x Taq Buffer, 25mM
MgCl,, 1.25mM of each dNTP, 0.2 mM of each primer,
and about 50ng of genomic DNA. Amplification pri-
mers and cycling conditions followed Moore and Jansen
(2006). PCR products were purified according to Werle
et al. (1994). Sanger sequencing was performed by
GATC Biotech (Eurofins Genomics Germany GmbH).
The resulting sequences were assembled and aligned


http://dx.doi.org/10.1080/14772000.2020.1771471

Phylogeny and historical biogeography of Hydrophyllaceae and Namaceae 3

automatically using Geneious v.8.1.9 (https://www.gene-
ious.com). Manual adjustments followed using PhyDE
0.9971 (Miiller et al., 2010).

Phylogenetic inference. Previous studies showed that
nuclear and plastid markers are significantly heteroge-
neous in Hydrophyllaceae and Namaceae and should
therefore be analysed separately (Ferguson, 1998;
Hansen et al., 2009; Moore & Jansen, 2006; Nazaire &
Hufford, 2012; Taylor, 2012; Walden et al., 2014;
Weeks et al., 2010). Maximum likelihood (ML) analysis
for each marker was conducted through CIPRES
Science Gateway (Miller et al., 2010) using RAXML-
HPC BlackBox (8.2.12) tool (Stamatakis, 2014) on
XSEDE (Extreme Science and Engineering Discovery
Environment). The substitution model GTR+1I" was
used in both analyses (ndhF and ITS), with 1,000 boot-
strap replicates and best tree search. Bayesian inferences
(BI) were conducted in MrBayes 3.2.6 using XSEDE
through the CIPRES portal using default parameters,
random starting trees, and four independent runs. The
number of generations was set to 1,000,000 using four
chains and sampling every 1,000 generations. The
GTR +I' model was chosen and the number of substitu-
tion types was set to 0.

Historical biogeography

Fossil record and node calibration. The phylogeny
was calibrated by fixing the age of the Boraginales
stem node (Boraginales & Gentianales) with a second-
ary calibration from Magallén et al. (2015), namely a
normal calibration with a mean of 88.25Ma and SD
of 11 Ma. Following Luebert et al. (2017), four fossil
calibrations for internal nodes of Ehretiaceae,
Heliotropiaceae, and Boraginaceae s.str. were set as
lognormal distributions with an offset of the minimum
age of the fossil and with a lognormal mean so that
the median age falls in the middle of the time period
assigned to the fossil. Fossils used for calibration are
listed in Table 1.

Estimating divergence times. To estimate divergence
times in Boraginales the ndhF dataset was used. The align-
ment of ITS across Boraginales and Gentianales is unreli-
able due to extensive sequence variation. We used
Gentianales as a root of the tree and a sister group of
Boraginales based on previous phylogenetic studies (Stull
et al.,, 2015). Uncorrelated Bayesian dating was conducted
with the relaxed molecular clock model implemented in
BEAST v1.8.4. (Drummond et al., 2012). Following previ-
ous analysis (Luebert et al., 2017), an uncorrelated lognor-
mal relaxed-clock and the GTR + I'+I model were selected

and a Yule prior (Gernhard, 2008) was assigned to the
branching process. One run of 100,000,000 chains with
sampling every 10,000 generations was performed and con-
vergence was assessed by analysing the results in Tracer
v1.7.1 (Rambaut et al., 2018). After removing 10,000,000
burn-in samples, median ages and 95% High Posterior
Density (HPD) intervals with a posterior probability limit of
0.95 were summarized with TreeAnnotator v1.8.4 (https:/
beast.community/treeannotator), prior to visualization in
FigTree v1.4.4 (https://beast.community/figtree).

Biogeographic analysis. Biogeographic analyses were
performed  separately for Hydrophyllaceae and
Namaceae. Three biogeographic areas were defined
according to the extant distribution patterns of the two
families: A: North America, B: Central America, C:
South America. Hydrophyllaceae are found in North or
South America only, whereas for Namaceae all three
biogeographic areas are represented. The chronogram
obtained from the BEAST analysis was first edited
using the R-package ‘ape’ (Paradis & Schliep, 2019), in
order to extract the clades corresponding to
Hydrophyllaceae and Namaceae. Using the R-package
‘BioGeoBEARS’ 1.1.2 (Matzke, 2013), the Dispersal-
Extinction-Cladogenesis approach (DEC) described by
Ree and Smith (2008), was implemented. Maxareas was
set to the number of areas in the respective analyses
(i.e., two for Hydrophyllaceae and three for Namaceae).
The coded areas correspond to the distributions at spe-
cies level, except for Wigandia, for which we coded the
distribution of the specimens due to uncertainties in the
species delimitations and distributions and a lack of up-
to-date taxonomic revision.

Results

Phylogenetic analysis and age estimates

The aligned ndhF dataset consisted of 2,228 sites, with
1,347 distinct alignment patterns and the aligned ITS
dataset was 889 sites in length with 517 distinct align-
ment patterns. Separate analyses for the plastid and
nuclear datasets resulted in similar tree topologies, with
the same well-supported major clades in terms of
Bayesian posterior probabilities (BPP) and ML bootstrap
values (BS; Figs 1, 2).

Hydrophyllaceae and Namaceae were retrieved as
monophyletic (1 BPP, 100% BS and 1 BPP, 94% BS
respectively for ndhF; 0.98 BPP, 75% BS and 0.99
BPP, 90% BS respectively for ITS).

In Hydrophyllaceae, Draperia forms a clade with
Tricardia, Howellanthus, and Hesperochiron (1 BPP,
92% BS for ndhF; 0.96 BPP, 60% BS for ITS; hereafter
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Table 1. List of fossils used for calibration.

Median
age (Ma)

Mean

Offset
(Ma)

Estimated

(Ma)

Region

USA

age (Ma)
13.6-10.3

Epoch

Collectors
Thomasson (1987);

Fossil type

Nutlets

Taxon

Family

11.95

0.5

10.3

Upper Miocene

Cryptantha Lehm ex.

1. Boraginaceae s.str.

Gabel et al. (1998)

Hammouda

Fisch & C.A. Mey
Ogastemma Brummitt

48.6

41.2

5641.2 SW Algeria

Eocene

Nutlets

2. Boraginaceae s.str.

et al. (2015)

Graham &

1.1 31.1

28.6

33.9-28.1 Puerto Rico

Lower Oligocene

Tournefortia L. sect. Pollen grains

3. Heliotropiaceae

Jarzen (1969)
Reid & Chandler

Tournefortia
Ehretia P. Browne

1.1 51.8

47.8

London Clay

56-47.8

Lower Eocene

Fruit parts

4. Ehretiaceae

(1933);

Chandler (1961)
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DHHT clade). The ndhF dataset supports that DHHT
clade is sister to Hydrophylleae + Romanzoftfieae (1
BPP, 100% BS). The ITS dataset on the other hand
shows the DHHT clade as sister to Hydrophylleae with
low support (0.53 BPP). The genera Emmenanthe,
Eucrypta, Ellisia, Hydrophyllum, Pholistoma, and
Nemophila form a clade (Hydrophylleae; 0.98 BPP,
63% BS for ndhF; 1 BPP, 91% BS for ITS) sister to
Phacelia + Romanzoffia for the ndhF dataset
(Romanzoffieae; 0.83 BPP, 55% BS). The placement of
Romanzoffia was incongruent between the plastid and
the nuclear topologies: the ITS tree (Fig. 2) recovers
Phacelia as monophyletic (0.97 BPP, 72% BS) and sis-
ter to Romanzoffia (0.99 BPP, 83% BS), while the ndhF
tree (Fig. 1) retrieves Romanzoffia nested in Phacelia
(0.99 BPP, 94% BS).

Most of the currently recognized taxonomic groups of
Phacelia were retrieved as monophyletic with high sup-
port values in both plastid and nuclear analyses. The
only exceptions in the majority-rule consensus tree (BI)
derived from ndhF were Phacelia subg. Pulchellae,
Phacelia sect. Euglypta, and Phacelia sect. Miltitzia
(Fig. 1). In the majority-rule consensus tree (BI) derived
from ITS, Phacelia sect. Whitlavia was retrieved as
paraphyletic (Fig. 2), resulting in a non-monophyletic
Phacelia subg. Phacelia.

The South American species of Phacelia were not
retrieved as monophyletic, but are rather placed in three
different clades within Phacelia in both analyses.
Andean P. secunda J.F. Gmel. and south-temperate P.
brachyantha Benth. belong to Phacelia sect. Phacelia
clade and the ITS analysis suggests that they are sister
taxa (0.78 BPP, 80% BS) and deeply nested in a North
American clade. P. artemisioides Griseb., P. pinnatifida
Griseb. Ex. Wedd., P. setigera Phil., and P. viscosa
Phil. belong to Phacelia sect. Glandulosae. They form a
well-supported polytomy along with P. vossii N.D.
Atwood for ndhF (1 BPP, 95% BS) and a well-sup-
ported clade for ITS (1 BPP, 100% BS) deeply nested
in a large clade of western North American species. In
the ndhF tree P. affinis A. Gray is sister to all other spe-
cies of the Phacelia sect. Euglypta + Miltitzia clade,
including South American P. cumingii (Benth.) A. Gray
(1 BPP, 100% BS). The ITS analysis suggests that P.
affinis and P. cumingii are direct sister taxa in the
Phacelia sect. FEuglypta + Miltitzia clade (1 BPP,
90% BS).

In Namaceae, most Nama species are grouped
together in one clade (I BPP, 100% BS for ndhF; 1
BPP, 100% BS for ITS), except for Nama rothrockii A.
Gray and Nama lobbii A. Gray. These two species are
retrieved in the second clade with Eriodictyon,
Turricula, and Wigandia (1 BPP, 98% BS for ndhF;
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- MT176369 Phacella secunda

- MT176350 Phacelia secunda

- MT176351 Phacelia secunda

- MT176353 Phacelia brachyantha

- MT476355 Phacelia heterophylla

AAF047810 Phacelia argentea

Q249950 Phacelia calfornica

- JQ249954 Phacelia capitata

JQ249975 Phacelia hastata var compacta

- JQ249994 Phacelia mutabilis

- JQ249998 Phacelia nemoralls var oregonensis

- MT176343 Phacelia egena

AF0AT817 Phacelia humilis

- JQ249964 Phacelia divaricata
JQ249937 Phacelia inulars var insuleris

- JQ249999 Phacelia novenmillensis

- JQ249965 Phacelia eiseri

- Q250022 Phacelia stebbinsi

- Q249973 Phacelia greenei

- Q250010 Phacelia pringlei
MT176362 Phaceli

10249995 Phacelia nashiana

JQ249990 Phacelia mi
JQ250001 Phacelia paryi

- MT176361 Phacelia grandil

- JQ250030 Phacelia viscida var viscida

JQ249946 Phacelia bolanderi

- JQ249982 Phacelia hydrophylloides

JQ250012 Phacelia procera

- MT176368 Phacelia spec nov.

- MT374080 Phacelia pinnatiida

- MT176356 Phacelia artemisiodes

- MT176358 Phacelia pinnatiida

- MT176360 Phacelia setigera

- MT176349 Phacelia viscosa

+JQ250033 Phacelia spec

- JQ250032 Phacelia vossii

- JQ249947 Phacelia bombycina

- JQ249956 Phaoelia coeruiea

- JQ250008 Phacelia petrosa

- JQ249959 Phacelia crenulata var crenulata

- JQ250015 Phacelia rafaelensis
JQ250021 Phacelia splendens

- AF047780 Phacelia congesta

- AF130179 Phacelia patulfiora
JQ250009 Phacelia popei

- JQ250006 Phacelia pedicellata

- JQ250020 Phacelia scariosa
JQ250026 Phacelia distans
Q249980 Phacelia hubbyi
MT176359 Phacelia tanacetifolia
AAF047821 Phacelie issir

- JQ249955 Phacelia cicutaria var cicutaria
MT176352 Phacelia malvifolia

- JQ250028 Phacelia vallis mortae

JQ250004
AAF047795 Phacelia thermalis
JQ249988 Phacelia lineari
KF158037 Phacelia sericea
AFO47772 Phacelia frankinii
MT176367 Phacelia patulifiora

- MT176366 Phacelia lutea
- AF047793 Phacelia gymnoclada
- Q249940 Phacelia adenophora
- JQ249983 Phacelia inundata
- Q250027 Phacelia tetramera
JQ249968 Phacelia glandulifera
- JQ249987 Phacelia leibergii
JQ249945 Phacelia bicolor
JQ249967 Phaceia fremontii

JQ249984 Phacelia ivesiana
MT176364 Phacelia cumingii
MT176363 Phacelia cumingii
- MT176348 Phacelia cumingii
- MT176357 Phacelia cumingii
JQ249941 Phacelia affinis
JQ25000

AAF047804 Romanzoffia californica
AF047784 p:
Q249963

JQ249969 i ifolie
JQ250019 Phacelia rotundifolia

Q249986 e
Q250007 Phaceli

AF047811 Hydrophylum tentipes
AF047785 Hydrophylum capitatum
+ MT176344 Hydrophylum tenuipes
-~ MT176346 Hydrophyllum virginianum
-+ MT176347 Hydrophyllum fendleri
- KF158040 Hydrophyllum canadense
AF047782 Nemophila parviflora
- KF158039 Nemophila menziesii
- AF047799 Pholistoma auritum
KF158031 Pholistoma membranaceum
- AF04779 Elisia nyctelea
- KF158029 Eucrypta chrysanthemifolia
MT176365 Emmenanthe pendulifora
AF047773 Eucrypta micrantha
AFO4T75 Tricardia watsonii
- JQ249933 Howelanthus dalesianus
AFO47783 Hesperochiron pumilis
MT176345 Draperia systyla
MT176373 Wigandia crispa
+ MT176377 Wigandia cf urens
- MT176374 Wiganda cf urens
- MT176371 Wigandia ecuadoriensis
~ MT176372 Wigandia urens
- MT176375 Wigandia caracasana
MT176376 Wigandia caracasana
- AF047812 Wigandia caracasana
- KF158074 Wigandia urens
AF047764 Nama lobbii
AF047820 Eriodictyon califomicum
AF047787 Eriodictyon sessilfolium
'AF047801 Eriodictyon trichocalyx var trchocalyx

- AF047816 Turricula parryi

- MT176379 Eriodictyon californicum

MT176378 Eriodictyon crassifolium

- MT1
KF1

158023 Nama rof
AAF047769 Nama californica
- KF158032 Nama demissa

- AF047794 Nama pusilla

- MT176370 Nama densa

- AF047768 Nama aretioides
- AF047792 Nama parvifolia
AF047771 Nama undulata
AF047766 Nama stenocarpa

- KF158056 Heliotropium erosum
KF 158061 Ehretia aquatica

0.009

i Phacelia sect. Cosmantha

] I Phacelia subg. Pulchellae

AF047789 Eriodictyon crassifolium vr crassifolium

76354 Eriodictyon crassifolium var nigrescens
throckii

:

Phacelia sect. Phacelia

Phacelia sect. Whitlavia
Phacelia sect. Gymnobytha

Phacelia sect. Baretiana

elp0RYd ‘Bans epoeyd

Phacelia sect. Glandulosae

aeaoe||AydoipAH

Phacelia sect. Ramosissimae

Phacelia sect. Eutoca

Phacelia sect. Euglypta
and Miltitzia

sajouabosoly ‘Bans eypoeyd

| Phacelia sect. Pachyphyllae L
lPhacelia subg. Pulchellae
1 Hydrophylleae
wules
Draperia+Hesperochiron
+Tricardia+Howellanthus

+
!
!
!

Clade Il

seaoewWwEN
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0.99 BPP, 93% BS for ITS). Wigandia is recovered as
monophyletic with high support in both analyses (0.96
BPP, 98% BS for ndhF; 1 BPP, 100% BS for ITS).

Age estimates for Hydrophyllaceae and Namaceae are
shown in Table 2. The median ages estimated for the
nodes are placed within the range of the 95% HPD
intervals. Our analysis suggests that Hydrophyllaceae
and Namaceae started their diversification almost simul-
taneously, between late Cretacecous and middle
Paleogene. Hydrophylleae is estimated as the oldest
clade of Hydrophyllaceae, with a median age in the
Paleocene. The crown node of Romanzoffieae was dated
in early Eocene and the crown node of the DHHT clade
in middle Eocene, albeit with large 95% HPD intervals.
Among the South American Phacelia species, the crown
node of south temperate to Mediterranean P. cumingii is
retrieved with the highest age (4.3 Ma). The essentially
Andean species of Phacelia sect. Phacelia follow with a
crown node median age estimate of 3.3 Ma, whereas the
deserticolous clade in Phacelia sect. Glandulosae is
dated to a median age of 3.2Ma for the crown node.
Slightly younger ages are suggested for most well-sup-
ported clades of Namaceae (see Table 2). The crown
node age of Wigandia is 25.4 Ma.

Ancestral area reconstructions of
Hydrophyllaceae

The ancestral area reconstructions of Hydrophyllaceae
resulting from the DEC analysis are presented in Fig. 3.
The most recent common ancestor (MRCA) of
Hydrophyllaceae probably occurred in North America.
North America is suggested as the ancestral area of all
three major clades of the family and virtually all major
subclades (see Table 3). At least three dispersal events
from North to South America were inferred. South
America was first colonized by representatives of the basal
grade of Phacelia sect. Euglypta and Miltitzia. Phacelia
affinis as a lineage (current distribution in North America)
had split from P. cumingii (current distribution in South
America) ~8.6 Ma. Our ancestral area reconstruction indi-
cates that the dispersal from North to South America
occurred before the inferred split. South American repre-
sentatives of P. sect. Glandulosae (P. artemisioides, P.
pinnatifida, P. setigera, and P. viscosa) form a well-sup-
ported clade which split from its North American sister
group in the late Miocene (~6.8 Ma). The most recent col-
onization of South America occurred in P. sect. Phacelia
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during late Pliocene (~3.6 Ma) and could be the result of
a single dispersal event. P. brachyantha occurs only in
South America while P. secunda in both North and South
America. Due to lack of resolution in the ndhF topology
and low sample size in the ITS dataset, the exact number
of dispersal events remains to be confirmed.

Ancestral area reconstructions of Namaceae

The ancestral area reconstructions of Namaceae resulting
from the DEC analysis are presented in Fig. 4. The
MRCA of Namaceae probably occurred in North America.
Both the MRCA of clade I and clade 1I likely occurred in
North America (see Table 4). The MRCA of Wigandia
occurred in North and Central America in the Oligocene
(~25Ma) and the colonization of South America took
place during the Oligocene—Miocene transition.

Discussion

Phylogenetic analysis

Our results largely confirm previous studies on
Hydrophyllaceae and Namaceae. We recovered similar
ndhF topologies as Ferguson (1998) and Walden et al.
(2014), and similar ITS topologies and support values as
Gilbert et al. (2005), Hansen et al. (2009) and Walden
et al. (2014). The plastid analysis resulted in better reso-
lution regarding the sister relationships between major
clades, whereas the nuclear analysis resulted in better
resolution within the individual clades. Weaker support
for deeper nodes in the ITS trees was also shown by
Hansen et al. (2009) and Walden et al. (2014).
However, divergent taxon sampling between the plastid
and the nuclear analyses in this study may also explain
some of the topological differences.

Hydrophyllaceae is divided into three major clades as
shown before (Ferguson, 1998; Luebert et al., 2016;
Walden, 2010). However, some of our results differ
from previous studies. Draperia is well-supported sister
to the DHHT clade in both analyses, which is probably
a result of the increased sample size compared with
Walden et al. (2014). The placement of Emmenanthe is
incongruent between the ITS and ndhF phylogenies. In
the ITS analysis Emmenanthe is sister to the remaining
Hydrophylleae clade, whereas in the ndhF analysis it
forms a monophylum with Eucryptha micrantha (Torr.)
A. Heller with low support (0.68 BPP, 56% BS), which

<

Fig. 1. Phylogram obtained from the Bayesian analysis based on ndhF. Only the Hydrophyllaceae and Namaceae clades and their
sister genera Heliotropium and Ehretia (OG = outgroup) are shown. The remaining clades were pruned. Numbers above branches are
ML bootstrap values (>50) and below branches Bayesian posterior probabilities (BPP). Scale bar=mean number of nucleotide
substitutions per site. Major clades of Phacelia are indicated with different colours.
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Table 2. Crown (C) and stem (S) node age estimates in major groups of Boraginales phylogeny. Time is given in millions of years
(Ma) before present and in parentheses are noted the 95% highest posterior density intervals.

Node

Age estimates (Ma)

(C) Hydrophyllum+Pholistoma+Nemophila+Ellisia+Eucrypta+Emmenanthe (Hydrophylleae)

(C) Phacelia+Romanzoffia (Romanzoffieae)

(C) Draperia+Howellanthus+Hesperochiron+Tricardia (DHHT)
(C) Hydrophyllaceae

(C) Nama (Clade I)

(C) Wigandia clade (Clade II)

(S) Wigandia clade (Clade II)

(C) Nama+Eriodictyon+Turricula (Clade II)

(C) Namaceae

58.2 (43.5-73.9)
54.9 (41.6-68.5)
47.9 (26.3-68.8)
66.1 (51.7-83.1)
42.2 (27.5-59.8)
25.4 (14.3-39.4)
38.6 (23.9-58.3)
30.3 (15.6-47.4)
66.8 (46-88)

is then sister to the remaining Hydrophylleae (Walden
et al, 2014; see also Walden, 2015). Eucrypta is
retrieved as paraphyletic (Ferguson, 1998; Walden,
2015). The relationship between Phacelia and
Romanzoffia remains incongruent between the two
markers. The monophyly of the genus Phacelia with
Romanzoffia sister to it, is supported only by the ITS
analysis (Gilbert et al., 2005; Hansen et al., 2009;
Walden et al., 2014), whereas in the ndhF phylogeny
Romanczoffia is nested in Phacelia.

Phacelia is currently subdivided in three subgenera, 11
sections and 12 subsections (Figs 1, 2; Walden &
Patterson, 2012). The majority of these units were retrieved
as monophyletic in both analyses. The paraphyly of
Phacelia subg. Pulchellae in the ndhF analysis could not
be confirmed in the ITS tree: no ITS-sequences were avail-
able for the relevant species P. keckii Munz & 1.M. Johnst,
P. suaveolens Greene and P. cookei Constance & Heckard.
Sections Euglypta and Miltitzia were not monophyletic
(see also Ferguson, 1998; Gilbert et al., 2005; Hansen
et al.,, 2009; Walden et al., 2014), but they were retrieved
in one clade exactly as in Walden et al. (2014). Section
Whitlavia was paraphyletic in the nuclear analysis and con-
sequently Phacelia subg. Phacelia was not retrieved as
monophyletic (see also Hansen et al., 2009; Walden et al.,
2014). The monophyly of section Whitlavia is supported in
the ndhF analysis (also in Walden et al., 2014) and add-
itionally in a combined rp/i6 intron+ITS dataset in
Hansen et al. (2009). The placement of section Baretiana
was incongruent in plastid and nuclear analyses, as in
Walden et al. (2014). Section Eufoca was monophyletic
only in the ndhF tree. Walden et al. (2014) retrieved a
monophyletic section Eufoca for ITS without sampling P.
franklinii, which in our case did not group together with
the other two representatives of the section.

The South American Phacelia species are not mono-
phyletic, but are placed in three different clades in both
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phylogenies. P. viscosa, P. artemisioides, P. pinnatifida,
and P. setigera are placed in Phacelia. sect.
Glandulosae. Phacelia brachyantha belongs to Phacelia
subsect. Phacelia (not Phacelia subsect. Humiles as sug-
gested by Walden and Patterson (2012)). The placement
of P. cumingii in Phacelia sect. Euglypta and its sister
relationship to the North American P. affinis is in con-
gruence with previous studies (Gilbert et al., 2005;
Hansen et al., 2009; Walden et al., 2014).

The topology of Namaceae retrieved in the present study
is congruent with previous phylogenetic analyses
(Ferguson, 1998; Luebert et al., 2016; Taylor, 2012). Our
extensive sampling of Wigandia confirmed its monophyly.

Wigandia urens (Ruiz & Pav.) Kunth and Wigandia
caracasana Kunth were retrieved as non-monophyletic
in the ndhF tree. Cornejo (2006, 2007) recognizes six
species in Wigandia, treating W. caracasana as a syno-
nym of W. urens s.l., but this would still not render W.
urens monophyletic. A critical revision of this wide-
spread genus is urgently required.

The odd placement of two species of Nama (Nama roth-
rockii and N. lobbi) further underlines the need for generic
alignments in Namaceae. Taylor (2012) already indicated
the isolation of the latter two species, with N. lobbii (=
Eriodictyon lobbii Greene) nested in Eriodictyon and
Nama rothrockii as sister to Eriodictyon. An expansion of
the genus Eriodictyon to include both species, as well as
Tirricula parryi which appears nested within Eriodictyon
clade (Figs 1, 2), would thus be the simplest solution to
resolve the taxonomy.

Divergence times and historical
biogeography

We obtained similar age estimates to previous studies
(Bremer et al., 2004; Luebert et al., 2011, 2017) for the

<

Fig. 2. Phylogram obtained from the Bayesian analysis based on ITS. Hydrophyllaceae and Namaceae clades and their sister genera
Heliotropium and Ehretia (OG = outgroup) are shown. Numbers above branches are ML bootstrap values (>50) and below branches
Bayesian posterior probabilities (BPP). Scale bar =mean number of nucleotide substitutions per site. Major clades of Phacelia are

indicated with different colours.
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Table 3. Results of the Dispersal-Extinction-Cladogenesis (DEC) analysis for the major crown (C) or stem (S) nodes of the
phylogeny of Hydrophyllaceae. The log-likelihood of the analysis is InL. = —43. Letters indicate the ancestral areas at the node and
the numbers in parentheses are their relative probabilities. Displayed are only reconstructions with relative probabilities (RP) >

0.05. A: North America, B: South America.

Node Unconstrained, total area InL = —43
(C) Hydrophyllaceae A (0.99)

(C) Draperia+Howellanthus+Hesperochiron+Tricardia (DHHT) A (1)

(C) Hydrophylleae A (0.99)

(C) Romanzoffieae A (0.99)

(S) Romanzofficae A (0.99)

(C) Phacelia sect. Miltitzia & Euglypta A (0.6); AB (0.4)
(C) P. affinis & P. cumingii clade AB (1)

(C) P. cumingii clade B (1)

(C) Phacelia sect. Glandulosae A (1)

(C) P. vossii, P. artemisiodes, P. pinnatifida, P. setigera, P. viscosa clade AB (0.99)

(C) P. viscosa & P. setigera clade B (1)

(C) P. vossii, P. artemisiodes, P. pinnatifida clade AB (1)

(C) Phacelia sect. Phacelia A (1)

(C) P. brachyantha & P. heterophylla clade AB (1)

stem node of Boraginales (112.7 (95% HPD
96.4-129 Ma)). The age estimates for the crown nodes
of Hydrophyllaceae (66.1 (95% HPD 51.7-83.1 Ma))
and Namaceae (66.8 (95% HPD 46-88 Ma)) are dated
to the early Paleocene whereas Luebert et al. (2017)
suggested that both families may have diversified in par-
allel during the Middle Eocene. This difference is prob-
ably due to the expanded taxon sampling for these
families in our study, or due to the use of a single
marker (ndhF). Reduced ingroup sampling has been
shown to lead to lower age estimates (Linder et al.,
2005; Luebert et al., 2017; Soares & Schrago, 2015).
Our expanded sampling of Hydrophyllaceae and
Namaceae provides the first detailed insights into their
historical biogeography. They both appear to have origi-
nated in North America. Our results are consistent with
the general trend that amphitropical disjunctions are
mainly the outcome of long distance dispersal (LDD)
during the Miocene to Holocene and that the most com-
mon directionality is from North to South America
(Raven, 1963; Simpson et al., 2017; Wen & Ickert-
Bond, 2009). Direct dispersal by migratory birds may
have occurred by epizoochory or endozoochory.
Hydrophyllaceae first colonized South America dur-
ing the early to middle Miocene (Phacelia sect.
Euglypta) and at least two more dispersal events
occurred later, one in the late Miocene (Phacelia sect.
Glandulosae) and one in the Pliocene (Phacelia sect.
Phacelia). P. vossii, which occurs in North America,

&

groups together with the South American species of P.
sect. Glandulosae with low support and no resolution,
indicating the possibility of a back-dispersal to North
America. The phylogenetic relationships of P. secunda
and P. brachyantha in the clade of P. sect. Phacelia are
not well-resolved and South American divergence and
subsequent back-dispersal cannot be excluded. P.
secunda could be an ancestral paraphyletic species or a
species complex with cryptic taxa embedded.
Independent of the individual timing and the taxa
involved, long-distance dispersal must be assumed for
the exchange between North and South America.
Although some species of Phacelia show no obvious
dispersal mode (Heckard, 1963), a range of dispersal
mechanisms are realized in Hydrophyllaceae and
Namaceae, including myrmecochory (Hofmann et al.,
2016) and epizoochory (Heckard, 1963; Schenk &
Saunders, 2017). However, very little is known about
the real dispersal mechanisms in Hydrophyllaceae and
Namaceae in general, although many species, especially
in Namaceae (Wigandia, Eriodictyon) have dust-fine,
wind-dispersed seeds (Hofmann et al., 2016). Especially
Wigandia and many species of Nama and Phacelia are
early colonizing species with naturally small, disjunct
populations, depending on regular dispersal for their
preservation. Wigandia is thus common on road-cuttings
in the Andes and Phacelia viscosa is commonly found
on recent landslides and scree-slopes. Nama dichotomum
is an extremely widespread weed on roadsides and

N

Fig. 3. Divergence time estimates for the phylogeny of Hydrophyllaceae. Major clades are indicated. The distribution corresponding
to each species is indicated by the coloured squares next to the tips. Pie charts at the nodes depict relative probabilities of areas as
estimated from the Dispersal-Extinction-Cladogenesis (DEC) analysis with BioGeoBEARS (unconstrained, single-area analysis).
Significant areas (relative probability > 0.05) are also indicated next to the pie charts (for details see Table 3). Bars around nodes are
95% highest posterior density intervals.
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Fig. 4. Divergence time estimates for the phylogeny of Namaceae. Major clades are indicated. The distribution corresponding to each
species is indicated by the coloured squares next to the tips. Pie charts at the nodes depict relative probabilities of areas as estimated
from the Dispersal-Extinction-Cladogenesis (DEC) analysis with BioGeoBEARS (unconstrained, single-area analysis). Significant
areas (relative probability > 0.05) are also indicated next to the pie charts (for details see Table 4). Bars around nodes are 95%

highest posterior density intervals.

Table 4. Results of the Dispersal-Extinction-Cladogenesis (DEC) analysis for the major crown nodes (C) of the
phylogeny of Namaceae. The log-likelihood of the analysis is InL = —20.93. Letters indicate the ancestral areas
at the node and the numbers in parenthesis are their relative probabilities. Displayed are only reconstructions
with relative probabilities (RP) > 0.05. A: North America, B: Central America, C: South America.

Node Unconstrained, total area InL = —20.93
(C) Namaceae A (0.53); AB (0.23); AC (0.11); ABC (0.13)
(C) Clade I (Nama species) A (0.96)

(C) Clade II (Shrubby genera)
(C) Wigandia
(C) Eriodictyon, Nama, Tirricula

A (0.35); AB (0.30); AC (0.08); ABC (0.26)
AB (0.50); AC (0.04); ABC (0.46)
A (1)

fallows. All these species evidently have high dispersi-
bility. Due to its broad ecological range and tropical
nature, stepping stone dispersal across much of its cur-
rent range is thus likely for Wigandia — which is fully
tropical and present in tropical Central America — ever
since the development of the Isthmus of Panama
(15-13 Ma; Coates & Stallard, 2013; Hoorn & Flantua,
2015; or even earlier: Bacon et al., 2013) and possibly
also for Nama dichomtomum. Based on ecological pref-
erences of extant species, this can be ruled out for
Phacelia, which today has a large distribution gap in

Central America. For this genus, only epizoochory can
be invoked (Heckard, 1963; Schenk & Saunders, 2017).

Phacelia shows an amphitropical disjunct distribution
and has been listed as an example of temperate disjunc-
tions (Raven, 1963; Simpson et al., 2017, Wen &
Ickert-Bond, 2009), although desert and temperate
American amphitropical disjunctions (AAD) are occa-
sionally difficult to differentiate (Simpson et al., 2017).
We suggest that the case of P. affinis and P. cumingii
represents a desert disjunction (dating to 8.64 Ma BP)
based on current distribution ranges (see details about
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AAD bioregions in Simpson et al., 2017) and diver-
gence times. The mean divergence time of desert AAD
has been found to be 5.96 Ma, whereas that of temperate
AAD is 2.76 Ma (Simpson et al., 2017), which corre-
lates to our dates for the respective clades in Phacelia
(P. sect. Euglypta and Miltitzia ~8.64, P. sect.
Glandulosae ~6.8 Ma, P. sect. Phacelia ~3.6 Ma).

Colonization of South America by Namaceae
occurred earlier, during the Oligocene-Miocene transi-
tion or later. Species of the genus Nama have also been
listed as examples of temperate disjunctions for which
LDD has been suggested (Raven, 1963; Simpson et al.,
2017; Wen & Ickert-Bond, 2009). For species in Nama
with continuous distributions in the Neotropics, stepwise
migration is a possible explanation.

Wigandia also shows a continuous distribution range
from northern Mexico to north-western South America
and it is found in subtropical and tropical areas and in
semiarid situations (Hofmann et al., 2016). The timing
of the diversification in Wigandia coincides with the
timing of colonization of South America during the
Oligocene—Miocene transition, indicating that LDD may
have to be invoked.

Luebert et al. (2017) suggested a minimum of one
dispersal event in each Hydrophyllaceae and Namaceae.
The present study demonstrates several dispersal events
in the two families, at least three in Hydrophyllaceae
and at least three in Namaceae, which took place across
a wide chronological range and must be explained in
the context of different biogeographic processes, with
LDD as the overruling mechanism. Future research
should focus on filling the sampling gaps that still exist
in the phylogenies of both families and increasing
phylogenetic resolution by adding more markers or
employing next-generation sequencing. Most import-
antly, the taxonomic uncertainties, especially in South
American Phacelia and Wigandia, need to be addressed
in order to design an adequate sampling strategy.
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