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RESUMO  

 

 

A presente tese pretendeu contribuir para o aumento do conhecimento relativo às comunidades 

de fungos marinhos superiores que colonizam ecossistemas intertidais temperados, dada a 

escassez de estudos desenvolvidos neste domínio em geral, e em Portugal em particular. 

Especificamente pretendeu-se inventariar as espécies fúngicas associadas a uma das 

macrófitas mais importantes e dominantes dos sapais da costa portuguesa, a Spartina maritima 

(Curtis) Fernald, e compreender melhor a dinâmica da comunidade e diversos aspectos da 

ecologia de cada espécie fúngica. 

O estudo foi desenvolvido em dois sapais (Castro Marim e Ria de Aveiro) com características 

distintas, no que respeita à localização geográfica, configuração física, estado de conservação 

e representatividade da planta hospedeira.  

O sapal de Castro Marim situa-se no troço final do estuário do Guadiana, na costa sudeste de 

Portugal (37.23° N, 7.42° W), e está incluído numa Reserva Natural; apresenta, por isso, 

estatutos especiais de protecção e uma comunidade de S. maritima bem conservada, que se 

distribui paralelamente ao rio numa faixa contínua. O sapal da lagoa costeira da Ria de Aveiro 

localiza-se na costa noroeste de Portugal (40.62° N, 8.74° W) e integra uma complexa rede de 

canais sujeita a fortes pressões antrópica; nesta área, a comunidade de S. maritima está muito 

fragmentada e dispersa ao longo da faixa de vegetação. 

A amostragem da comunidade de fungos marinhos envolveu a recolha de 195 plantas inteiras, 

maduras, enraizadas e em posição natural de S. maritima durante 2 anos (de Outubro de 2010 

a Agosto de 2012), com uma periodicidade de 2 meses; recolheram-se 20 plantas de cada área 

de estudo nos primeiros 3 meses, e 15 plantas nos restantes períodos. Em laboratório, cada 

planta, previamente lavada e seca ao ar, foi separada em nove categorias de substrato, de 

acordo com as estruturas vegetais que a compunham e estado fisiológico das mesmas; 

especificamente, em bainhas vivas, bainhas senescentes, bainhas em decomposição, caules 

vivos, caules senescentes, caules em decomposição, limbos vivos, limbos senescentes e 

limbos em decomposição. As denominações “vivo”, “senescente” e “em decomposição”, 

caracterizaram tecidos verdes, amarelos e acastanhados, com estrutura física nada, pouco ou 

bastante alterada respectivamente. 

A identificação dos fungos marinhos recorreu a dois métodos distintos, mas complementares; 

(1) a observação directa de estruturas fúngicas (esporos, estruturas de frutificação e 

hipopódios) e (2) a sequenciação da região ITS (Internal Transcribed Spacers) do DNA 

ribossomal nuclear (rDNA). 

O primeiro método envolveu a análise individual de cada substrato vegetal à lupa; as estruturas 

fúngicas detectadas nesse substrato foram observadas ao microscópio e identificadas com 

base nas suas características morfológicas, recorrendo a chaves dicotómicas específicas para 

identificação de fungos marinhos. Adicionalmente registou-se a distribuição vertical e 

densidade das estruturas fúngicas de cada espécie. No período de Fevereiro de 2012 a Agosto 
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de 2012, foram ainda recolhidas 5 plantas extras, as quais foram lavadas e imediatamente 

observadas. Algumas estruturas de frutificação (ascocarpos ou picnídios) diferenciadas neste 

material vegetal fresco foram extraídas e utilizadas na obtenção de culturas puras, através do 

método de esporo único. Os fungos isolados foram preservados por três métodos distintos: (1) 

crescimento activo em Corn Meal Agar (CMA) preparado com água do mar diluída (50%), a 4 

°C; (2) discos de micélio imersos em água do mar estéril (50%), a 4 °C; e (3) discos de micélio 

imersos em solução aquosa de glicerol (10%), a -80 ºC. Duas culturas puras de cada espécie, 

de cada local, foram seleccionadas para determinar a taxa de crescimento vegetativo em CMA 

preparado com água destilada e água do mar diluída (50%). 

Após esta análise, agrupou-se o material vegetal pertencente à mesma categoria de substrato 

e proveniente de todas plantas recolhidas no mesmo período de amostragem e local de estudo. 

Todos os substratos vegetais foram posteriormente liofilizados. 

A identificação molecular dos fungos marinhos foi realizada apenas a partir dos substratos 

recolhidos no primeiro ano de amostragem. A metodologia molecular envolveu, numa primeira 

fase, a extracção do DNA nuclear das culturas puras, e amplificação e sequenciação da região 

ITS do rDNA; estas sequências constituíram uma colecção de referência para comparação e 

identificação dos fungos presentes nas amostras vegetais. Posteriormente, o DNA nuclear dos 

88 substratos vegetais foi igualmente extraído, e a mesma região genómica amplificada por 

primers com especificidade para fungos. Os amplicões obtidos de cada substrato foram 

clonados no sentido de isolar cada sequência ITS; no total, obtiveram-se 1037 clones. No 

sentido de seleccionar os clones de DNA recombinante representativos de cada biblioteca da 

região ITS de cada substrato vegetal, foi realizada uma análise de perfis de restrição (RFLP); 

os diferentes perfis de restrição de cada biblioteca foram sequenciados. 

Estas sequências foram comparadas com sequências depositadas na base de dados pública 

internacional GenBank e com as sequências da colecção de referência (culturas puras), e 

identificadas até à menor categoria taxonómica possível. A identificação destas sequências 

permitiu a extrapolação e identificação das restantes sequências extraídas de todos os 

substratos vegetais analisados.  

A conjugação dos métodos morfológico e molecular revelou-se fundamental para o 

conhecimento da diversidade dos fungos marinhos superiores associados a S. maritima, na 

medida em que permitiu confirmar ou corrigir as identificações dos fungos mais comuns 

realizadas por cada um dos métodos e complementar o inventário com as espécies mais 

infrequentes. De uma maneira geral, houve uma concordância entre os dois métodos no que 

respeita à representatividade de cada fungo nas comunidades, nos substratos vegetais e nas 

áreas de estudo. No total, foram identificados 45 fungos nas primeiras fases do processo de 

decomposição de plantas de S. maritima. Tal como em estudos semelhantes anteriores 

desenvolvidos em sistemas intertidais, esta comunidade revelou ser dominada por fungos 

pertencentes ao filo Ascomycota e à classe Dothideomycetes.  

A comparação das comunidades de fungos marinhos associadas a S. maritima e outras 

espécies de Spartina evidenciou a existência de um grupo nuclear (core group) de espécies 
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que surge associado a este genéro de plantas hospedeiras, independentemente da sua 

localização geográfica. Este grupo inclui espécies em associação exclusiva com plantas do 

género Spartina, como Anthostomella spissitecta, Byssothecium obiones, Buergenerula 

spartinae, Mycosphaerella sp. I, Phaeosphaeria halima, Phaeosphaeria spartinicola; espécies 

que colonizam igualmente outras plantas intertidais de climas temperados, como Leptosphaeria 

marina e Sphaerulina orae-maris; e espécies cosmopolitas, que surgem em diversos substratos 

de climas tropicais e temperados, como Aniptodera chesapeakensis e Dictyosporium 

pelagicum. Apesar dos fungos Lulworthia sp. 1 e Stagonospora sp. 1 não terem sido 

identificados até à espécie, estes géneros taxonómicos são comumente observados em 

plantas de Spartina. 

As espécies B. obiones, B. spartinae, Mycosphaerella sp. I, P. halima e P. spartinicola foram 

registadas como muito frequentes na comunidade geral amostrada neste estudo e presentes 

em todos ou na maioria dos períodos de amostragem, em concordância com estudos 

semelhantes realizados com outras espécies de Spartina. Este estudo revelou que existem, no 

entanto, espécies muito frequentes nas comunidades associadas a S. maritima mas ausentes 

noutras espécies de Spartina, como o fungo cosmopolita Natantispora retorquens, e vice-versa.  

As espécies infrequentes Anthostomella spissitecta, Camarosporium roumeguerii, Ceriporia 

lacerata, Coniothyrium obiones, Cryptococcus mangaliensis, Decorospora gaudefroyi, 

Erythrobasidium hasegawianum, Halosarpheia trullifera, Leptosphaeria marina, Penicillium 

chrysogenum e Stagonospora haliclysta foram registadas pela primeira vez em associação com 

o género Spartina e/ou com S.maritima.  

A presença ou ausência das espécies nas comunidades fúngicas associadas à mesma ou 

outra espécie de Spartina poderá estar relacionada com diferenças na estrutura física e 

composição química das plantas hospedeiras e/ou factores macro ou microambientais. 

Os fungos marinhos nas duas comunidades amostradas neste estudo e particularmente os 

mais frequentes apresentaram padrões de distribuição verticais específicos nas plantas de S. 

maritima em posição natural, i.e. localizavam-se na mesma posição vertical relativa. A posição 

relativa na planta parece reflectir o grau de adaptação das espécies fúngicas às condições 

marinhas. As diferentes estratégias de reprodução sexuada e assexuada ao longo das plantas 

representam e evidenciam algumas das estratégias adoptadas pelos fungos marinhos para se 

adaptarem; os fungos incluídos na classe Sordariomycetes, com ascos unitunicados e 

mecanismos passivos de libertação de esporos, dominam as partes basais das plantas, 

enquanto os fungos incluídos na classe Dothideomycetes, com ascos bitunicados e 

mecanismos activos de libertação de esporos, ocupam principalmente as partes aéreas. Os 

dados sugerem que os fungos que surgem nas partes basais das plantas são marinhos 

obrigatórios, enquanto os fungos das partes superiores são marinhos facultativos. As partes 

intermédias representam, por isso, uma zona de transição e sobreposição dos fungos que 

colonizam exclusivamente os ecossistemas marinhos e os que podem provir de ecossistemas 

fluviais ou terrestres. Apesar de revelarem diferentes dependências e tolerâncias à salinidade 

em condições naturais, todos estes fungos dominantes cresceram em meio de cultura sem 
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salinidade, mas com uma taxa de crescimento mais elevada em meio de cultura preparado 

com água do mar. Estes resultados evidenciaram a elevada plasticidade destes fungos de se 

adaptarem a diferentes condições ambientais. 

As espécies dominantes da comunidade foram também as que exibiram uma área de 

distribuição vertical mais extensa, e que surgiram em mais de uma estrutura vegetal, nos 

diferentes estados fisiológicos, ao longo de todo o período de amostragem. A presença destas 

espécies sapróbias em tecidos vegetais vivos sugere que estas possam iniciar o processo de 

colonização como endófitas. 

A conjugação de todos os resultados indicia que os padrões de distribuição vertical, e a 

ocorrência e o papel ecológico dos fungos mais frequentes dependem da fase do ciclo de vida 

da planta e disponibilidade dos substratos vegetais, das condições microambientais dos 

substratos e adaptação aos ciclos de submersão-emersão, e dos potenciais fungos 

competitores. Durante o processo de decomposição de S. maritima, os fungos marinhos 

obrigatórios B. obiones, Lulworthia sp. 1 e N. retorquens assumem um papel ecológico mais 

activo na decomposição das bainhas e caules inferiores; o fungo marinho facultativo 

Mycosphaerella sp. I, na decomposição dos limbos superiores; os fungos marinhos facultativos 

P. halima e Stagonospora sp. 1, na decomposição das bainhas e limbos superiores; e os 

fungos marinhos facultativos P. spartinicola e B. spartinae, na decomposição de todas as 

estruturas vegetais.  

Em suma, este estudo contribuiu para um enriquecimento do conhecimento da composição 

específica, diversidade e dinâmica das comunidades de fungos marinhos superiores 

associadas a plantas maduras, enraizadas e em posição natural de S. maritima, bem como dos 

requisitos e papel ecológicos de cada espécie na decomposição destas plantas hospedeiras. 

 

 

Palavras-chave: fungos marinhos; Spartina maritima; decomposição; requisitos ecológicos; 

potencial papel ecológico  
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ABSTRACT 

 

 

The major purpose of this thesis was to complement the current knowledge regarding marine 

fungal communities and particularly those inhabiting Portuguese temperate salt marshes. 

Specifically, this study mainly intended to assess the species composition and diversity of the 

fungal communities associated with one of the most dominant macrophytes in these 

ecosystems, Spartina maritima (Curtis) Fernald, and to contribute to a better understanding of 

community dynamics and key ecological aspects of the fungi. The study was conducted in two 

geographically and physically distinct salt marshes, Castro Marim and Ria de Aveiro, where 195 

mature, standing live plants were collected over a 2-year period (October 2010 to August 2012) 

from each study site. Each air-dried plant was separated into nine substrate categories 

according to the vegetative structure (leaf sheaths, stems and leaf blades) and physiological 

state of each structure (live, senescent and decaying). Identification of marine fungi was 

performed by two distinct, but complementary methods, i.e. direct observation of fungal 

structures (fruit bodies, spores and hyphopodia) and sequencing of the internal transcribed 

spacer regions of rDNA (ITS). The first method involved an individual observation of each 

substrate under dissecting- and light microscopes for detection of fungal structures; fungal taxa 

were morphologically identified using specific dichotomous keys for marine fungi. The vertical 

position and density of fruiting structures produced by each identified fungus was also recorded. 

The most frequent fungi were isolated in pure cultures by single spore method. Plant materials 

from the same substrate category, sampling period and study site were mixed and freeze-dried. 

Only the plant samples from the first sampling period were used for molecular identification of 

fungi. This second method involved DNA extraction of pure fungal isolates and plant samples, 

and amplification of the ITS region. Amplicons from plant samples were cloned in order to 

isolate individual amplicons of mixed PCR products. ITS sequences of the 1037 clones obtained 

from the plant samples were submitted to a restriction fragment length polymorphism analysis 

(RFLP); clones with different digestion profiles were sequenced. Phylogenetic analyses were 

performed with sequences of clones, fungal isolates and BLAST best-hits. A comparison 

between morphological and molecular methods revealed a general agreement in taxonomic 

assignments and representativeness of each fungus in the community, vegetative structure and 

study site. The combination of both methods was demonstrated to be crucial for a more realistic 

and accurate representation of the fungal community. Forty-five fungal taxa were recorded in S. 

maritima samples; 91% of these were filamentous ascomycetes, included in the 

Dothideomycetes and Sordariomycetes. The majority of the fungal species most frequently 

recorded in this study were previously described from other species of Spartina. Nevertheless, 

the studied fungal community also included other infrequent species that represent new records 

for the genus Spartina and/or S. maritima plants, e.g. Anthostomella spissitecta, 

Camarosporium roumeguerii, Ceriporia lacerata, Coniothyrium obiones, Cryptococcus 

mangaliensis, Decorospora gaudefroyi, Erythrobasidium hasegawianum, Halosarpheia trullifera, 
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Leptosphaeria marina, Penicillium chrysogenum and Stagonospora haliclysta. The presence or 

absence of species in fungal communities may be related with intra- and interspecific 

differences in the physical structure and chemical composition of the host plants and/or macro 

and microenvironmental factors.  

Similarly to other grass-like plants, the results also demonstrated that the marine fungi are 

vertically distributed along standing plants of S. maritima. Moreover, the most frequent fungal 

taxa exhibited wide vertical distribution ranges, a high investment in the production of fruiting 

structures and were present during all the sampling period on senescent and decaying 

vegetative structures. The majority of these fungi were also found on live plant tissues, which 

indicated that these saprobic species might initiate the colonisation of plant substrates as 

endophytes. These findings suggested that the vertical distribution patterns, and occurrence 

and ecological role of most frequent fungi depend on the phase of plant life cycle and substrate 

availability, micro-environmental conditions of substrates and adaptation to 

submersion/exposure cycles, and potential fungal competitors. During the decay process of S. 

maritima, the obligate marine fungi Natantispora retorquens, Byssothecium obiones and 

Lulworthia sp.1 seem to be involved in the complete decomposition of lower leaf sheaths and 

stems; facultative marine fungi Mycosphaerella sp. I, of leaf blades; facultative marine fungi 

Phaeosphaeria halima and Stagonospora sp. 1, of upper standing leaves; and Buergenerula 

spartinae and Phaeosphaeria spartinicola, of all vegetative structures.  

 

 

Key words: marine fungi; Spartina maritima; decomposition; ecological requirements; potential 

ecological role 
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135 

Table 4 Percent frequencies of occurrence (V very frequent: >20%; F frequent: 10-20%; I 

infrequent: <10%, according to the 3 categories proposed by Tan et al (1989)) and/or presences   

( ̶ ) of fungal taxa on different plant substrates in Ria de Aveiro salt marsh in each sampling period, 

identified by morphological and molecular methods respectively 
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THESIS FRAMEWORK 

 

 

This thesis is organized into four chapters. 

 

Chapter 1 (General Introduction) comprises an overview of the current knowledge concerning 

marine fungi in general (Marine fungi – a brief review), and fungi inhabiting salt marshes in 

particular (Salt marsh fungi). This last review was included in the recently published volume 

“Marine Fungi and fungal-like organisms”, as a book chapter. This introduction also addresses 

the main gaps and limitations to the understanding of marine fungal communities and the 

objectives of the present study. 

The original research work performed in this study was included in two papers published in 

international scientific journals, which represent chapters 2 and 3. The structure and original 

content of the published papers were maintained in the essential but the formatting style was 

changed; all the chapters follow the same formatting and bibliographical rules. 

Chapter 2 (Diversity and ecological characterization of sporulating higher filamentous 

marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt 

marshes) presents an inventory of fungal taxa associated with standing plants of Spartina 

maritima assessed by morphological identification of fungal structures. The biotic and abiotic 

factors that may determine the presence and abundance of fungal species on Spartina maritima 

and their distribution along the vertical axis of these host plants are also enumerated. 

Chapter 3 (Ecological preferences of marine fungi associated with standing decaying 

plants of Spartina maritima (Curtis) Fernald) presents the results from the molecular 

identification of fungi on live, senescent and decaying leaf sheaths, stems and leaf blades of 

standing plants of Spartina maritima. In this chapter, the molecular and morphological methods 

adopted in this study are compared. The presence and prevalence of fungi on each plant 

substrate are used to assess their ecological preferences and infer about their ecological role in 

the decay of Spartina maritima.  

Chapter 4 (Final overview) highlights the main results of this study, pointing out some 

knowledge gaps that should be approach in future studies. 

 

Over the past 6 years, many new species have been described from marine habitats and many 

taxonomic ambiguities have been resolved as a result of the application of more accurate and 

improved molecular tools. This has led to dramatic changes in nomenclatural rules and 

taxonomic classification of fungi after the chapter “Salt marsh fungi” and the paper “Diversity 

and ecological characterization of sporulating higher filamentous marine fungi associated with 

Spartina maritima (Curtis) Fernald in two Portuguese salt marshes” were written. The terms 

anamorph and teleomorph were replaced to asexual and sexual morphs respectively, and 

sequenced asexual morphs were transferred from the artificial group “anamorphic fungi” to 

different taxonomic categories within the Ascomycota and Basidiomycota; holomorphic fungal 
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species, for which both sexual and asexual morphs were demonstrated to be connected, were 

designated by only one name. These new rules were followed in the paper “Ecological 

preferences of marine fungi associated with standing decaying plants of Spartina maritima 

(Curtis) Fernald”. 
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CHAPTER 1 - General Introduction 
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1.1 Marine fungi – A brief review  

 

 

Marine fungi represent an ecological group of fungi that occur from inshore regions to deep 

oceanic waters (Fell and Newell 1998; Hyde et al. 1998), composed primarily by higher 

filamentous fungi included in the Basidiomycota (Ustilaginomycetes and Agaricomycetes) and 

Ascomycota (Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes, Lecanoromycetes, 

Leotiomycetes, Lichinomycetes, Arthoniomycetes and Sordariomycetes) (Kohlmeyer and 

Kohlmeyer 1979; Hyde et al. 2000; Jones and Pang 2012). Most marine fungi belong to the 

Dothideomycetes and Sordariomycetes, particularly to Halosphaeriaceae (Jones et al. 2009; 

Sakayaroj et al. 2011; Jones and Pang 2012; Pang 2012). 

 

Marine fungi include species with a wide range of nutritional modes, i.e. fungal species that 

establish a parasitic or symbiotic mycorrhizal, lichenoid or endophytic relationship with several 

hosts, and saprobes on dead organic material of plant and animal origin (Kohlmeyer and 

Kohlmeyer 1979; Hyde et al. 1998; Kohlmeyer et al. 2004; Jones 2011a; Richards et al. 2012).  

The majority of marine fungal species are decomposers of plant materials, particularly of woody 

substrates (Kohlmeyer and Kohlmeyer 1979; Hyde et al. 1998; Jones 2000; Pointing and Hyde 

2000). Inherent to their metabolic activities, saprobic marine fungi, especially filamentous ones, 

play an important functional and ecological role in the nutrient recycling and energy flow in 

marine ecosystems (Newell 1993, 1996; Hyde and Lee 1995; Hyde et al. 1998; Newell and 

Porter 2000; Pang and Jones 2012). The strategy adopted by mycelial fungi implicates a 

penetrating growth mode by expanding hyphal tips combined with enzyme´s activity (Torzilli and 

Andrykovitch 1986; Newell 1996; Lyons et al. 2003; Raghukumar 2004b). Marine fungi are 

widely recognized by the diverse range of extracellular biologically-important enzymes involved 

in the degradation of recalcitrant cell wall materials, such as cellulases, laccases, lignin 

peroxidases and Mn-dependent peroxidases (Gessner 1980; Torzilli and Andrykovitch 1986; 

Bergbauer and Newell 1992; Newell et al. 1996b; Pointing et al. 1998; Raghukumar 2002, 

2004a; Lyons et al. 2003; Raghukumar 2004b; Jones 2011a). Biotechnological potential of 

lignocellulolytic marine fungi in bioremediation has been widely investigated (Newell et al. 

1996b; Raghukumar 2002, 2004a; Raghukumar 2004b; Jones 2011a). In addition, marine fungi 

represent an important source of structurally unique bioactive secondary metabolites with 

antimicrobial, anticancer, anti-inflammatory and analgesic properties (Bugni and Ireland 2004; 

dela Cruz et al. 2006; Schulz et al. 2008; Jones 2011a; Ebel 2012; Singh et al. 2012; Overy et 

al. 2014a). The production of these metabolites is species-specific (dela Cruz et al. 2006) and 

apparently is not affected by the geographical origin of species (Schulz et al. 2008). Eighty out 

of over 1000 metabolites that have been characterized to date were isolated from marine fungi 

(Overy et al. 2014a). Although the reasons associated with the production of these metabolites 

are not totally known, one of the main purposes might be a chemical defense strategy in 

response to interference competition (Pointing et al. 2000; Jensen and Fennical 2002; 
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Panebianco et al. 2002); some of these compounds were demonstrated to limit spore 

germination or fungal growth (Miller 2000). For endophytes, these metabolites might also play 

an important role in the communication with host species and for adaptation of the hosts to 

environmental stress (Meng et al. 2011). 

 

Nevertheless their trophic strategy, marine fungal species are physiologically and 

morphologically adapted to marine environments. 

Given the high salinity level of marine environments, marine fungi exhibit different mechanisms 

in order to maintain homeostasis in their cells; some fungal species synthesize or absorb 

compatible solutes from surrounding water to their cytoplasm and accumulate them in 

compartmentalized vacuoles, while others pump sodium ions out of cells (Jennings and Garrill 

2000; Jones 2000). Most marine fungi show an optimal vegetative growth and synthesis of 

secondary metabolites in a saline medium than without any marine salts (Masuma et al. 2001; 

dela Cruz et al. 2006; Huang et al. 2011; Pang et al. 2011; Overy et al. 2014a). 

Marine filamentous fungal species, particularly ascomycetes, have evolved to adapt to a marine 

life style; most of these species produce microscopic and enclosed fruiting structures in 

response to the abrasion caused by waves and shifting sand (Fig. 1), exhibit a passive release 

mechanism of spores to enhance the dispersal of these structures in an aquatic environment, 

and differentiate spores with different complexities and shapes of appendages or sheaths to 

facilitate floating, entrapment and attachment to the substrate (Fig. 1) (Kohlmeyer and 

Kohlmeyer 1979; Jones 2000, 2011a; Au and Vrijmoed 2002; Pang 2002; Campbell et al. 2003; 

Sakayaroj et al. 2011; Overy et al. 2014a).  

 

 

Fig. 1 Fruiting structures of ascomycetous fungi: a) ascomata of Phaeosphaeria spartinicola; b) ascoma of Natantispora 

retorquens; c) ascospore of Natantispora retorquens; d) ascospore of Decorospora gaudefroyi (arrows indicate 

appendages (c) and sheaths (d)) 

 

Ascomycetes with an active discharge of spores and mucilaginous sheaths thrive in intertidal 

ecosystems (Jones 2000, 2011a; Suetrong et al. 2009; Sakayaroj et al. 2011; Overy et al. 

2014a), which are characterized by alternate conditions of water immersion and air exposure 

associated with daily tidal cycles; these fungi have been demonstrated to have high affinities 

with terrestrial fungal species (Kohlmeyer and Kohlmeyer 1979; Jones et al. 2009; Schoch et al. 

2009a).  

10 µm 100 µm 100 µm 10 µm 

a b c d 
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Most filamentous ascomycetes possess a delimiting membrane, which prevents the premature 

expansion of the appendages and sheaths before they are released into the surrounding water 

(Jones 2011a). 

 

Although the biogeography of marine fungi is still not fully understood (Jones and Pang 2012), 

some fungal species have been exclusively found in tropical, subtropical or temperate climate 

regions, while others were found to be cosmopolitan species (Kohlmeyer and Kohlmeyer 1979; 

Hyde and Lee 1995; Hyde et al. 1998; Jones et al. 1998; Sarma and Hyde 2001; Alias et al. 

2010; Jones and Pang 2012). 

Among the several factors that could determine the macro-geographical distribution of marine 

fungi, the availability of substrates for colonization and water temperature and salinity are 

apparently the most important controlling key-factors (Hyde and Lee 1995; Jones 2000, 2011a; 

Sarma and Hyde 2001; Kohlmeyer et al. 2004; Jones and Pang 2012).  

In a general perspective, fungal diversity increases from polar to tropical climate zones (Hyde 

and Lee 1995; Jones 2011a, b; Pang et al. 2011), and decreases from intertidal towards 

offshore environments (Kohlmeyer et al. 2004; Nagahama 2006; Burgaud et al. 2013). Marine 

fungi colonize preferentially estuarine ecosystems, such as mangroves, salt marshes or other 

coastline habitats (Fig. 2), where the availability of substrates is higher (Jones 2000, 2011a; 

Morrison-Gardiner 2002; Nagahama 2006; Alias et al. 2010; Azevedo et al. 2012; Overy et al. 

2014b; Rämä et al. 2014) and the physical conditions are more favourable (Burgaud et al. 

2013).  

 

Fig. 2 Intertidal ecosystems: a) salt marsh; b) mangrove; c) sandy beach 

 

In contrast, extreme abiotic conditions in deep-sea environments, i.e. high hydrostatic pressure, 

high salinity and low temperature, oxygen and nutrient concentrations, have restricted the 

colonisation process to a less number of fungal species (Jones 2000; Dupont et al. 2009; 

Huang et al. 2011; Singh et al. 2012; Burgaud et al. 2013). Hydrostatic pressure and full-

strength seawater are the major limiting factors for growth and metabolic activity of filamentous 

fungi (Pointing et al. 1998, 1999; Burgaud et al. 2009; Dupont et al. 2009). 

Although some of the studies revealed that these ecosystems are mainly inhabited by marine 

yeasts and fungal-like organisms (Nagahama 2006; Bass et al. 2007; Edgcomb et al. 2011), 

Damare et al. (2006), Nagano et al. (2010), Singh et al. (2011), Xu et al. (2014) identified also 

fungal signatures of several filamentous ascomycetes in deep-sea sediments.  

1 
a b c 
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At a more reduced scale, the influence of biotic and physical factors in the colonization process 

of each fungal species, such as tolerance to air exposure or submergence conditions, substrate 

exclusivity and competitive abilities, varies from species to species (Gessner 1977; Poon and 

Hyde 1998b; Alias and Jones 2000a, b; Barata 2002, 2006; Panebianco et al. 2002; Buchan et 

al. 2003; Lyons et al. 2005; Al-Nasrawi and Hughes 2012). According to Jones (2000, 2011b) 

the presence of many fungi depends on a consortium of factors interacting together.  

 

Even though ascomycetous and basidiomycetous yeasts have been frequently reported from 

the same marine environments, either free floating or attached to a substrate (Raghukumar 

2004b; Gadanho and Sampaio 2005; Nagahama 2006; Edgcomb et al. 2011; Fell et al. 2011; 

Fell 2012; Jones and Fell 2012), these fungi have been neglected or excluded from this 

ecological group (Jones et al. 2009; Jones 2011a). This may be attributable to the difficulties in 

morphological identification of species and in the understanding of their life traits. Many species 

of yeasts retrieved from intertidal and deep-sea environments were demonstrated to be 

physiologically and phylogenetically related to terrestrial fungi (Alker et al. 2001; Nagahama 

2006; Edgcomb et al. 2011; Fell 2012; Burgaud et al. 2013; Overy et al. 2014a), which raises 

some doubts about the origin of fungal propagules. Few yeast species have been found to be 

autochthonous to marine environments, particularly basidiomycetes in deep-sea sediments 

(Nagahama 2006). Gadanho and Sampaio (2005), Burgaud et al. (2009) and Edgcomb et al. 

(2011) demonstrated, though, that some yeasts inhabiting sea-floor and/or hydrothermal vent 

fauna were metabolically and functionally active. 

 

The boundaries between terrestrial/freshwater and marine fungi are not always clear and the 

definition of marine fungi is still being discussed among the scientific community (Pang and 

Mitchell 2005; Jones et al. 2009; Overy et al. 2014a). The definition of marine fungi proposed by 

Kohlmeyer and Kohlmeyer (1979) was, for more than 30 years, the most widely accepted and 

consensual one. These authors distinguish obligate and facultative marine fungi based on the 

ecological dependency of fungal species on marine conditions to germinate and/or grow 

vegetatively, produce and disperse spores or vegetative propagules and reinitiate their life 

cycle. Obligate marine fungi include the species that grow and sporulate exclusively in a marine 

or estuarine habitat and are permanently or intermittently submerged, whereas facultative 

marine fungi include species from freshwater or terrestrial environments able to grow and 

possibly also to sporulate in the marine habitats. This dependency inferred from an active 

growth in marine environment has not been, though, easy to test or prove, considering that 

among the fungi recovered from coastal to offshore marine ecosystems that grew vegetatively 

in culture medium, some might be present as dormant propagules in those ecosystems 

(Raghukumar and Raghukumar 1999; Singh et al. 2011; Jones et al. 2015).   

The limited number of morphologically and molecularly well-documented obligate marine fungi 

that are preserved in herbarium and/or in axenic cultures as reference collections has also been 



27 

 

hampering the classification of newly reported fungal species into obligate or facultative marine 

fungi (Rämä et al. 2014). 

Other terrestrial-like fungi morphologically different from facultative marine fungi have been 

frequently reported from deep-sea sediments and from other offshore substrates (Morrison-

Gardiner 2002; Damare et al. 2006; Burgaud et al. 2009; Nagano et al. 2010; Singh et al. 2011, 

2012; Sakayaroj et al. 2012). Some of these fungi have also been recorded in hypersaline solar 

salterns (Nayak et al. 2012). The close relationship with terrestrial taxa and the uncertainly of 

whether these fungi were metabolically active in marine ecosystems prompted some authors to 

adopt a more generic term to designate these fungi, such as marine-derived or ubiquitous fungi 

(Burgaud et al. 2009; Jones 2011a; Overy et al. 2014a). These terms encompasse mostly 

mitosporic fungi included in genera Alternaria, Aspergillus, Cladosporium, Fusarium, Penicillium, 

Phoma and Trichoderma (Morrison-Gardiner 2002; Damare et al. 2006; Burgaud et al. 2009; 

Nagano et al. 2010; Singh et al. 2011, 2012; Sakayaroj et al. 2012; Overy et al. 2014a).  

Nevertheless, some facultative marine fungi and “marine-derived fungal species” were 

demonstrated by laboratory simulation experiments or  molecular analysis to be dominant and 

metabolically active in marine environments, particularly in deep-sea habitats; these fungi have 

been hypothesized to play a much greater role in these ecosystems than truly marine fungi (i.e. 

obligate marine fungi or marine fungi sensu strictu) as a consequence of their physiological and 

metabolic versatility in response to different ecological conditions (Raghukumar and 

Raghukumar 1998; Raghukumar and Raghukumar 1999; Damare et al. 2006; Burgaud et al. 

2009, 2013; Huang et al. 2011; Singh et al. 2011, 2012). Facultative marine fungi and “marine-

derived fungi” have been postulated to reach deep oceanic habitats in the form of spores 

transported by wind or fungal inocula attached to vegetal substrates and/or particulate organic 

matter (Damare et al. 2006; Singh et al. 2011). Osmo- and halotolerance of these fungi have 

been explained as result of a long-term evolution process (Damare et al. 2006; Huang et al. 

2011).  

The recent recognition of marine environments as potential hot spots for chemically new 

secondary metabolites produced by marine fungi (mostly “marine-derived fungi”) has promoted 

the increase of studies in these environments with biotechnological purposes, in both 

mycological and chemical research fields (Jones 2011a; Overy et al. 2014a). However, the lack 

of consensus in the terminology used to classify the fungi has contributed to different 

classifications of the same or new species based on personal interpretation of the terms.  

In an attempt to uniformise the terminology, Overy et al. (2014a) and Jones et al. (2015) argued 

that truly marine fungi may be distinguished from terrestrial counterparts based on their 

ecological roles; these fungi are functionally active in marine ecosystems. Jones et al. (2015) 

referred also that the frequency of occurrence of fungi on marine ecosystems might be used as 

a criterion to distinguish marine from terrestrial fungi.  

 

For decades, marine fungi have been classified based exclusively on the morphology of their 

fruiting structures combined with geographical distribution, host spectrum and asexual morphs 
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(Kohlmeyer and Kohlmeyer 1979; Kohlmeyer and Volkmann-Kohlmeyer 1991; Hyde et al. 2000; 

Jones et al. 2009). For some taxonomic groups, the ultrastructure and ontogeny of spore 

appendages and sheaths were also considered in the classification process (Jones and Moss 

1978; Pang 2002; Jones 2011a).  

However, with the advent of molecular techniques and particularly DNA sequence analysis (e.g. 

nuclear ribosomal genes), morphological features were demonstrated not to be efficient in 

delineating some genera or distinguish species (Campbell et al. 2005; Pang and Mitchell 2005; 

Aveskamp et al. 2010; Sakayaroj et al. 2011), such as cryptic species (Jones 2011a, b). 

Moreover, molecular methods revealed that the majority of evolutionary reconstructions based 

on morphological characters, nutritional modes and ecologies were unrealistic. As pointed out 

by Nagahama (2006), sequence-based identification process provides scalable genetic 

distances that enable a better interpretation of phylogenetic relationships between fungal 

species. Also, some characters classically used in taxonomy and systematics, such as spore 

appendages, ascus dehiscence and hamathecium structures, have been demonstrated to be 

homoplastic (Spatafora et al. 1998; Schoch et al. 2009a; Zhang et al. 2009; Jones 2011b; 

Sakayaroj et al. 2011); within the two most representative classes of Ascomycota 

(Dothideomycetes and some Sordariomycetes), morphological characters may either represent 

retained ancestral or new traits, as a consequence of a convergent or parallel evolution to adapt 

to similar environmental conditions and selection pressures (Spatafora et al. 1998; Schoch et al. 

2009a, b; Zhang et al. 2009; Sakayaroj et al. 2011). This finding has been hampering the 

construction of taxonomic keys able to distinguish phylogenetic groups based on morphological 

characteristics. 

Because some genes were demonstrated to be highly conserved, a combined use of multiple 

genes in a multilocus sequence typing approach has proved to be more phylogenetically 

informative and can resolve different taxonomic issues (Campbell et al. 2003, 2005; Schoch et 

al. 2009a, b; Suetrong et al. 2009; Aveskamp et al. 2010; Sakayaroj et al. 2011; Jones et al. 

2012; Pang 2012). 

Apart from clarifying phylogenetic relationships between morphological similar species, 

molecular methods also have been contributed to the understanding of the origin of marine 

fungi. Higher marine fungi were demonstrated to have a polyphyletic origin (Kohlmeyer and 

Kohlmeyer 1979). More recent molecular phylogenetic data revealed that deep-branching 

fungal sequences were found more frequently in terrestrial than marine environments (Richards 

et al. 2012). These findings suggested that principal lineages of marine fungi were derived from 

terrestrial ancestors; multiple and independent transitions from terrestrial to marine environment 

had occurred along the evolutionary scale (Spatafora et al. 1998; Hyde et al. 2000; Schoch et 

al. 2009a, b; Jones and Pang 2012; Richards et al. 2012; Overy et al. 2014a). Schoch et al. 

(2009b) also hypothesized that all ascomycetous fungi were derived from a saprobic/non-

lichenised ancestor, producer of apothecioid ascomata. These transitions that might have 

occurred gradually from terrestrial to freshwater and then to marine environments were 
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accompanied by further morphological adaptations in fungal structures and in the spore-

dispersion strategy (Vijaykrishna et al. 2006; Sakayaroj et al. 2011; Jones and Pang 2012). 

The identification based on DNA sequences has enabled also the discovery of many novel 

lineages of unculturable and/or non-fruiting fungi (Pang and Mitchell 2005; Jones 2011a, b; 

Richards et al. 2012) and links between sexual and asexual morphs (Aveskamp et al. 2010; 

Abdel-Wahab and Bahkali 2012; Wijayawardene et al. 2012; Jones et al. 2015), contributing to 

a more realistic and accurate estimate of total diversity of fungi in marine environments. Since 

2011, the “one fungus, one name” system was approved, ending with the system of dual 

nomenclature applied to pleomorphic fungal species (Wijayawardene et al. 2012; Hibbett and 

Taylor 2013).  

Even though a large number of marine species have been already sequenced, some of these 

species could not be assigned to any taxonomic position given the low representativeness of 

their gene sequences in public databases and absence of phylogenetically related fungi (Jones 

et al. 2009, 2012; Jones and Pang 2012). The isolation and sequencing of all described fungi is 

thus fundamental to confirm their morphology-based taxonomic placement (Suetrong et al. 

2009; Jones 2011a; Jones et al. 2012, 2015; Pang 2012) and taxonomic placement of related 

species as well. Many marine fungi, in particular members of the Dothideomycetes, await 

assignment to a family or order (Schoch et al. 2009a). 

Finally, molecular methods have contributed for a better understanding of ecology, functional 

role and geographical distribution of already described species (Pang and Mitchell 2005; 

Richards et al. 2012). 

 

Currently, 1,112 marine fungal species have been reported from marine environments (Jones et 

al. 2015). This very recent estimate includes truly or “marine-derived fungi” (yeasts and 

filamentous fungi) and other basal fungal lineages (e.g. Blastocladiomycota and 

Chytridiomycota). 

Jones (2011b) estimated 10,000 fungal species in marine environments if marine-derived, 

cryptic and unculturable filamentous fungal species and yeasts were considered. Although this 

number might be overestimated (Overy et al. 2014a), the increase of survey effort or 

examination of new substrates (e.g. seaweeds, intertidal plants, coral reefs, sediments, water), 

new habitats (e.g. deep-sea environments) and new geographical locations (e.g. Africa, South 

America and Arctic regions), will certainly contributes to a significant rise of fungal diversity 

(Jones 2011a, b; Jones et al. 2015; Alias et al. 2010; Suetrong et al. 2009; Pang and Jones 

2012).  

According to Jones et al. (2015), only the total documentation of all fungal and fungal-like 

species in marine environments enable the entire understanding of phylogenetic relationships 

between species and taxonomic identity and ecology of each species. 
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1.2 Salt marsh fungi 

 

Calado ML and Barata M 

 

 

 

 

 

 

 

Introduction: Salt marsh ecosystem functioning and the importance of the microbial 

community 

 

Salt marsh ecosystem 

 

Salt marshes represent coastal marine ecosystems that occur mainly in temperate and high-

latitude estuaries (Allen and Pye 1992; Simas et al. 2001) and are exposed to low 

hydrodynamic conditions and periodic tidal flooding (Simas et al. 2001). They are plastic, 

dynamic systems created by the combined action of water, sediments and vegetation, and 

constitute a typical example of open ecosystems (Chapman 1977; Boorman 1999). Salt 

marshes have long been recognized as being one of the most productive ecosystems in the 

world (Kohlmeyer and Kohlmeyer 1979; McLusky and Elliott 2004) due to their high primary 

production rates (Bouchard and Lefeuvre 2000; McLusky and Elliott 2004). A number of 

emergent macrophytes, in particular Spartina spp., Juncus roemerianus and Phragmites 

australis, are grass-like plants that thrive in such an environment and represent one of the main 

sources of nutrients and organic matter (Teal 1962; Christian et al. 1990; Newell et al. 1996b; 

Van Ryckegem et al. 2006). The primary production of these macrophytes is essentially 

composed of highly refractory lignocellulosic compounds, such as lignin, hemicellulose and 

cellulose (Maccubbin and Hodson 1980; Benner et al. 1984a, b; Torzilli and Andrykovitch 1986; 

Newell et al. 1996b; Lyons et al. 2010), and hence only a small fraction is consumed as living 

tissue (Teal 1962; Maccubbin and Hodson 1980); most of the production is actually converted 

into detritus, which either remains in the salt marsh or is transported to coastal waters (Teal 

1962; Asaeda et al. 2002). For these emergent macrophytes, the decay process is initiated in 

the standing crops, and continues after abscission and deposition of dead plant material onto 

the marsh surface (Fell and Hunter 1979; Newell and Fallon 1989; Newell et al. 1989, 1998; 

Christian et al. 1990; Samiaji and Barlocher 1996; Gessner 2001; Van Ryckegem et al. 2006; 

Menéndez and Sanmartí 2007). Much of the decay of marsh grass tissue takes place above the 

sediment (Newell and Porter 2000). 

 

 

Marine fungi 

and fungal-like organisms 

 

Jones EBG, Pang KL (eds), De Gruyter, Berlin, 2012, Pages 345-381 
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Decomposer microbial community 

 

The decomposer microbial community, including fungi and bacteria, assumes a fundamental 

ecological role in the degradation of plant material, which is enriched with structural polymers, 

and in the consequent release of nutrients that are essential to the metabolism of a wide marine 

community (Benner et al. 1984b; Boorman 1999; Newell and Porter 2000; Lyons et al. 2005). 

Though the role of fungi in this process has been long neglected, several studies have 

highlighted the importance of the metabolic activities of these saprobic microorganisms on the 

biogeochemical carbon and nutrients cycles, and in the energy fluxes within these ecotonal 

marine ecosystems (Gessner and Goos 1973; Torzilli and Andrykovitch 1986; Newell 1996; 

Newell et al. 1996b; Hyde et al. 1998; Gessner et al. 2007). 

Saprobic fungi that colonize standing-dead tissues of salt marsh grasses initiate the decay 

process (Torzilli and Andrykovitch 1986; Samiaji and Barlocher 1996; Lyons et al. 2005), and 

represent the main secondary producers of the microbial community (Newell and Fallon 1989; 

Newell et al. 1989, 1996a, b, 2000a; Newell 1996, 2001a; Castro and Freitas 2000; Gessner 

2001; Findlay et al. 2002; Van Ryckegem et al. 2006, 2007). Bacteria may become more active 

in the latter phase of decomposition (i.e., when the plant material collapses onto the marsh 

sediment surface) (Benner et al. 1984b; Newell et al. 1989; Newell and Porter 2000). However, 

Buchan et al. (2003) and Lyons et al. (2005) demonstrated that metabolically-active bacteria 

and fungi co-occur on Spartina detritus, which contradicts this idea of temporally segregated 

interventions during the decay process, but apparently without establishing species-specific 

ecological associations. 

In the microbial community associated with standing-decaying tissues of emergent 

macrophytes, there is a clear dominance of fungi over bacteria. This is expressed in biomass 

and productivity. This dominance occurs because the morphological and physiological 

characteristics of the saprobic fungi confer an adaptive advantage on the use and degradation 

of this substrate. In fact, in addition to their ability to tolerate a wide range of environmental 

conditions, fungi can degrade the most resistant substrates in a more efficient manner than 

bacteria. Filamentous fungi are well suited to penetrate substrates with their rigid cell walls, 

apical growth and ability to produce lignocellulose-degrading enzymes (Torzilli 1982; Newell 

1996; Newell et al. 1996b; Raghukumar 2004b). Saprobic fungi act on the surface or within the 

tissues of macrophytes by the production of lignocellulolytic enzymes and physical penetration 

of the host cell walls, bringing about decomposition of senescent tissues (Newell and Porter 

2000). Additionally, saprobic fungi have the ability to retain and convert inorganic nitrogen into 

fungal biomass during the initial phases of plant tissue decomposition (Findlay et al. 2002; Van 

Ryckegem et al. 2006, 2007) and immobilize this nutrient from the surrounding environment 

(Newell 1996; Van Ryckegem et al. 2006). The incorporation of nitrogen into fungal biomass, 

together with the extracellular enzymes produced during the process, results in a nutritive 

enrichment of substrates, which in turn becomes more palatable to several animal consumers 

(Raghukumar 2004b). The fungal community associated with the decomposition of macrophytes 
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is composed mainly of ascomycetes (Gessner and Kohlmeyer 1976; Newell et al. 1996a, 

2000a; Newell 2001a, b; Barata 2002; Buchan et al. 2003; Van Ryckegem and Verbeken 

2005a, b, c). 

 

 

Mycota of salt marshes: biotic and abiotic factors affecting community structure 

 

Despite similar general biophysical characteristics, salt marsh ecosystems present some 

environmental and ecological variations that will reflect on the composition and dynamics of the 

fungal community. The marine fungal community in salt marshes, as in other ecosystems, is 

composed of ubiquitous species, which occur on a broad range of substrates and environmental 

conditions, and also by other species that appear to be strictly associated with particular 

ecological niches (Gessner and Kohlmeyer 1976). The presence of a given fungus in the 

ecosystem depends on an appropriate combination of various biotic and abiotic factors, which 

vary according to species. These diverse factors include:  

(i) degree of host/substrate specificity (Apinis and Chesters 1964; Newell and Porter 

2000; Blum et al. 2004; Torzilli et al. 2006; Lyons et al. 2010);   

(ii) ability to interact and compete with other microorganisms (Torzilli and Andrykovitch 

1986; Buchan et al. 2003; Lyons et al. 2005);   

(iii) vulnerability/resistance to predation (Newell and Wasowski 1995; Newell 2001a, b); 

and  

(iv) ecological requirements, such as water (Newell et al. 1996a; Poon and Hyde 

1998a) and oxygen availability (Wong and Hyde 2002; Menéndez and Sanmartí 

2007), dissolved organic nutrients (Newell et al. 1996a, 2000a; Newell and Porter 

2000; Newell 2001b), salinity (Van Ryckegem and Verbeken 2005c), and 

temperature (Castro and Freitas 2000; Van Ryckegem et al. 2007). 

 

 

Host/substrate specificity 

 

Among the intrinsic biological and environmental factors mentioned, the host/substrate 

specificity - which is related to the chemical and structural composition of plant tissues - appears 

to be primarily responsible for determining fungal community composition and productivity (Fell 

and Hunter 1979; Newell and Porter 2000; Newell et al. 2000a; Blum et al. 2004; Torzilli et al. 

2006; Van Ryckegem et al. 2006, 2007; Lyons et al. 2010). This specificity occurs during the 

selection process of the host plant species to be colonized, but also in the choice of the plant 

tissue.   
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Host plant and associated fungal diversity 

 

Studies of salt marsh fungi associated with diverse host plants reveal no overlap between the 

fungal-decay communities, which emphasizes the general high-level specificity with the 

chemical and structural characteristics of each plant (Newell and Porter 2000; Blum et al. 2004; 

Torzilli et al. 2006). Torzilli et al. (2006) compared the mycota associated with four salt marsh 

plants — S. alterniflora, J. roemerianus, Distichlis spicata and Sarcocornia perennis — and 

concluded that the greater the similarity between the type of plant tissues, the greater is the 

similarity between the associated fungal communities. The same conclusion was reached by 

Lyons et al. (2010), who found the same major ascomycetes on various species of Spartina (S. 

alterniflora, S. foliosa, S. alterniflora x S. foliosa, S. densiflora). 

Walker and Campbell (2010) inventoried the fungal community associated with S. alterniflora 

and J. roemerianus using morphological and molecular approaches, and obtained different 

results. The morphological analyses revealed different species on host plants, but terminal-

restriction fragment length polymorphism community profiles showed that more than 50% of the 

fungal terminal-restriction fragments were found on both plants. The authors suggested that the 

absence of fruiting structures of the same species on S. alterniflora and J. roemerianus might 

indicate that some fungi are able to colonize but not sporulate on both hosts, and thus might be 

host-specific to complete their lifecycle. 

A comparison of species composition of fungal communities associated with the main primary 

producers in marsh ecosystems (Table 1) confirms the above observation. 
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Table 1 Filamentous fungi associated with Juncus roemerianus, Spartina spp. and Phragmites australis in marsh 

ecosystems 

Fungi   Host Plant 

  Juncus roemerianus Spartina spp. Phragmites australis 

Ascomycota     

Amauroascus albicans (Apinis) Arx   Barata (2002)  

Amphisphaeria culmicola Sacc.   Barata (2002)  

Aniptodera chesapeakensis Shearer et 
M.A. Mill. * 

  Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

Poon and Hyde (1998a) 

Aniptodera juncicola Volkm.-Kohlm. et 
Kohlm. * 

 Volkmann-Kohlmeyer and 
Kohlmeyer (1994); Jones 
(2011a) 

  

Anthostomella atroalba Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. 

 Kohlmeyer et al. (1998b); 
Jones (2011a) 

  

Anthostomella poecila Kohlm., Volkm.-
Kohlm. et O.E. Erikss.* 

 Kohlmeyer et al. (1995b); 
Walker and Campbell 
(2010) 

  

Anthostomella punctulata (Roberge ex 
Desm.) Sacc. 

   Van Ryckegem et al. 
(2007) 

Anthostomella semitecta Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. 

 Kohlmeyer et al. (1995b); 
Jones (2011a) 

  

Anthostomella spissitecta Kohlm. et 
Volkm.-Kohlm.* 

  Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Anthostomella torosa Kohlm. et 
Volkm.-Kohlm.* 

 Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002); Jones (2011a) 

  

Anthostomella sp.   Barata (2002)  

Apiospora montagnei Sacc.    Van Ryckegem and 
Verbeken (2005a) 

Aposphaeria sp.    Van Ryckegem and 
Verbeken (2005a,b) 

Aquamarina speciosa Kohlm., Volkm.-
Kohlm. et O.E. Erikss.* 

 Kohlmeyer et al. (1995d); 
Jones (2011a) 

  

Aropsiclus junci (Kohlm. et Volkm.-
Kohlm.) Kohlm. et Volkm.-Kohlm.* 

 Kohlmeyer and 
Volkmann-Kohlmeyer 
(1994); Jones (2011a) 

  

Atkinsonella hypoxylon (Peck) Diehl   Barata (2002)  

Atrotorquata lineata Kohlm. et Volkm.-
Kohlm.* 

 Kohlmeyer and 
Volkmann-Kohlmeyer 
(1993b); Jones (2011a) 

  

Belonium heteromorphum (Ellis et 
Everh.) Seaver  

  Barata (2002)  

Botryosphaeria festucae (Lib.) Arx et E. 
Müll. 

   Van Ryckegem and 
Verbeken (2005a,b) 

Brunnipila palearum (Desm.) Baral   Barata (2002)  

Buergenerula spartinae Kohlm. et R.V. 
Gessner * 

  Barata (2002); Buchan et 
al. (2002); Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002); ; Buchan et al. 
(2003); Walker and 
Campbell (2010) 

 

Byssothecium obiones (P. Crouan & H. 
Crouan) M.E. Barr * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Ceratosphaeria sp.  Fell and Hunter (1979)   

Ceriosporopsis halima Linder *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Chaetomium crispatum (Fuckel) Fuckel   Barata (2002)  

Chaetomium funicola Cooke   Barata (2002)  

Chaetomium globosum Kunze   Barata (2002) Poon and Hyde (1998a) 

Chaetomium thermophilum La Touche   Barata (2002)  
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Chaetomium sp.  Fell and Hunter (1979)   

Cistella fugiens (W. Phillips) Matheis    Van Ryckegem and 
Verbeken (2005b) 

Claviceps purpurea (Fr.) Tul.   Barata (2002)  

Claviceps sp.   Barata (2002)  

Corollospora maritima Werderm. *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002)  

 

Corynascus sepedonium (C.W. 
Emmons) Arx 

  Barata (2002)  

Decorospora gaudefroyi (Pat.) Inderb., 
Kohlm. et Volkm.-Kohlm. * 

  Barata (2002)  

Didymella glacialis Rehm    Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Didymella sp.   Barata (2002) Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Didymosphaeria lignomaris Strongman 
et J.D. Mill. * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Discostroma sp.    Van Ryckegem and 
Verbeken (2005a) 

Ellisiodothis inquinans (Ellis et Everh.) 
Theiss. 

  Barata (2002)  

Gaeumannomyces graminis var. 
graminis (Sacc.) Arx et D.L. Olivier 

  Buchan et al. (2003)  

Gaeumannomyces medullaris Kohlm., 
Volkm.-Kohlm. et O.E. 
Erikss.(anamorph Trichocladium 
medullare Kohlm. et Volkm.-Kohlm.) * 

 Kohlmeyer et al. (1995c); 
Jones (2011a) 

  

Gaeumannomyces sp.    Poon and Hyde (1998a) 

Gibberella gordonii C. Booth   Barata (2002)  

Gibberella zeae (Schwein.) Petch    Van Ryckegem and 
Verbeken (2005a,b) 

Gibberella sp.   Barata (2002)  

Gloeotinia granigena (Quél.) T. 
Schumach. 

 Walker and Campbell 
(2010) 

  

Glomerobolus gelineus Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(1996a); Jones (2011a) 

  

Gnomonia salina E.B.G. Jones *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Guignardia sp.  Fell and Hunter (1979)   

Haematonectria haematococca (Berk. 
et Broome) Samuels et Rossman 

   Poon and Hyde (1998a) 

Haligena elaterophora Kohlm. *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Halosarpheia culmiperda Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1995c); 
Jones (2011a) 

  

Halosarpheia phragmiticola Poon et 
K.D. Hyde * 

   Poon and Hyde (1998a) 

Heleiosa barbatula Kohlm., Volkm.-
Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1996); 
Jones (2011a) 

  

Helicascus kanaloanus Kohlm. *   Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Hydropisphaera arenula (Berk. et 
Broome) Rossman et Samuels 

   Van Ryckegem and 
Verbeken (2005a) 

Hydropisphaera erubescens (Roberge 
ex Desm.) Rossman et Samuels 

  Buchan et al. (2002); 
Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002);  Buchan et al. 
(2003) 

 

Julella herbatilis Kohlm., Volkm.-
Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1997); 
Jones (2011a) 
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Juncigena adarca Kohlm., Volkm.-
Kohlm. et O.E. Erikss. (anamorph 
Cirrenalia adarca Kohlm., Volkm.-
Kohlm. et O.E. Erikss.) * 

 Kohlmeyer et al. (1997); 
Jones (2011a) 

  

Kananascus sp.   Buchan et al. (2003)  

Keissleriella rara Kohlm., Volkm.-
Kohlm. et O.E. Erikss. 

 Kohlmeyer et al. (1995d); 
Jones (2011a) 

  

Keissleriella sp.   Fell and Hunter (1979)   

Lachnum spartinae S.A. Cantrell   Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002); Buchan et al. 
(2003) 

 

Lautospora simillima Kohlm., Volkm.-
Kohlm.  et O.E. Erikss. * 

 Kohlmeyer et al. (1995a); 
Jones (2011a) 

  

Lentithecium arundinaceum (Sowerby) 
K.D. Hyde, J. Fourn. et Yin. Zhang 

  Barata (2002) Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Lentithecium fluviatile (Aptroot et Van 
Ryck.) K.D. Hyde, J. Fourn. et Yin. 
Zhang 

   Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Lentithecium lineare (E. Müll. ex 
Dennis) K.D. Hyde, J. Fourn. et Yin. 
Zhang 

   Van Ryckegem and 
Verbeken (2005b) 

Leptosphaeria albopunctata (Westend.) 
Sacc. 

  Barata (2002)  

Leptosphaeria australiensis (Cribb et 
J.W. Cribb) G.C. Hughes * 

 Fell and Hunter (1979) Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Leptosphaeria lacustris (Fuckel) Wint.   Barata (2002)  

Leptosphaeria marina Ellis et Everh.*   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Leptosphaeria orae-maris Linder*   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002)  

 

Leptosphaeria pelagica E.B.G. Jones *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002); Walker and 
Campbell (2010) 

 

Leptosphaeria sp.  Walker and Campbell 
(2010) 

 Poon and Hyde (1998a) 

Lewia infectoria (Fuckel) M.E. Barr et 
E.G. Simmons 

   Van Ryckegem and 
Verbeken (2005a) 

Lignincola laevis Höhnk *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

Poon and Hyde (1998a) 

Lophiostoma arundinis (Pers.) Ces. et 
De Not. 

   Van Ryckegem and 
Verbeken (2005b) 

Lophiostoma semiliberum (Desm.) 
Ces. et De Not. 

   Van Ryckegem and 
Verbeken (2005b) 

Lophodermium arundinaceum 
(Schrad.) Chevall. 

   Van Ryckegem and 
Verbeken (2005a,b) 

Loratospora aestuarii Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer and 
Volkmann-Kohlmeyer 
(1993b); Jones (2011a) 

  

Lulworthia floridana Meyers *   Barata (2002)  

Lulworthia medusa (Ellis et Everh.) 
Cribb et J.W. Cribb * 

  Jones (1963); Barata 
(2002); Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Lulworthia spp.   Barata (2002)  

Magnisphaera spartinae (E.B.G. 
Jones) J. Campb., J.L. Anderson et 
Shearer * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

Van Ryckegem and 
Verbeken (2005b) 

Massariella sp.   Barata (2002)  

Massarina carolinensis Kohlm., Volkm.-
Kohlm. et O.E. Erikss. 

 Kohlmeyer et al. (1995d); 
Jones (2011a) 

  

Massarina phragmiticola Poon et K.D. 
Hyde * 

   Poon and Hyde (1998a) 

Massarina ricifera Kohlm., Volkm.-
Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1995c); 
Walker and Campbell 

  



38 

 

(2010); Jones (2011a) 

Massarina spp.  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a) 

Massariosphaeria erucacea Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1996); 
Jones (2011a) 

  

Massariosphaeria scirpina (G. Winter) 
Leuchtm. 

  Barata (2002)  

Massariosphaeria typhicola (P. Karst.) 
Leuchtm. * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Massariosphaeria sp.    Van Ryckegem and 
Verbeken (2005b) 

Meliola spartinae (Ellis et Everh.) Berl. 
et Voglino 

  Barata (2002)  

Micronectriella agropyri Apinis et 
Chesters 

  Barata (2002)  

Microthecium levitum Udagawa et Cain   Barata (2002)  

Microthyrium microscopicum Desm.   Barata (2002)  

Mollisia atriella Cooke   Barata (2002)  

Mollisia cf. palustris (Roberge ex 
Desm.) P. Karst. 

   Van Ryckegem and 
Verbeken (2005a) 

Mollisia hydrophila (P. Karst.) Sacc.    Van Ryckegem and 
Verbeken (2005a) 

Mollisia retincola (Rabenh.) P. Karst.    Van Ryckegem and 
Verbeken (2005a,b) 

Morenoina phragmitis J.P. Ellis    Van Ryckegem and 
Verbeken (2005a,b) 

Mycosphaerella eurypotami Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. 

 Kohlmeyer et al. (1999); 
Jones (2011a) 

  

Mycosphaerella lineolata (Roberge ex 
Desm.) J. Schröt. 

   Van Ryckegem and 
Verbeken (2005a,b) 

Mycosphaerella salicorniae (Rabenh.) 
Lindau * 

  Barata (2002)  

Mycosphaerella spp.  Fell and Hunter (1979); 
Walker and Campbell 
(2010) 

Barata (2002); Buchan et 
al. (2002); Buchan et al. 
(2003); Lyons et 
al.(2010); Walker and 
Campbell (2010) 

 

Naïs inornata Kohlm. *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Natantispora retorquens (Shearer et 
J.L. Crane) J. Campb., J.L. Anderson 
et Shearer * 

  Barata (2002)  

Nectria sp.  Fell and Hunter (1979)   

Ommatomyces coronatus Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1995c); 
Jones (2011a) 

  

Orbilia junci Kohlm., Baral et Volkm.-
Kohlm. (anamorph Dwayaangam junci 
Kohlm., Baral et Volkm.-Kohlm.) 

 Kohlmeyer et al. (1998a); 
Jones (2011a) 

  

Otthia sp.  Fell and Hunter (1979)   

Panorbis viscosus (I. Schmidt) J. 
Campb., J.L. Anderson et Shearer * 

  Barata (2002); Buchan et 
al. (2003) 

 

Papulosa amerospora Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer and 
Volkmann-Kohlmeyer 
(1993a); Jones (2011a) 

  

Paraphaeosphaeria apicicola Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. 
(anamorph Coniothyrium sp.) 

 Kohlmeyer et al. (1999); 
Jones (2011a) 

  

Paraphaeosphaeria michotii 
(Westend.) O.E. Erikss. 

   Van Ryckegem and 
Verbeken (2005a) 

Paraphaeosphaeria pilleata Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. 
(anamorph Coniothyrium sp.)  

 Kohlmeyer et al. (1995d); 
Jones (2011a) 

  

Phaeosphaeria anchiala Kohlm., 
Volkm.-Kohlm. et K.M. Tsui  

 Kohlmeyer et al (2005); 
Jones (2011a) 

  

Phaeosphaeria caricinella (P. Karst.) 
O.E. Erikss. 

  Barata (2002)  
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Phaeosphaeria culmorum (Auersw. ex 
Rehm) Leuchtm. 

   Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Phaeosphaeria eustoma (Fuckel) L. 
Holm 

   Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Phaeosphaeria gessneri Shoemaker et 
C.E. Babc. * 

  Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Phaeosphaeria halima (T.W. Johnson) 
Shoemaker et C.E. Babc. * 

  Barata (2002); Buchan et 
al. (2002); Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002); Buchan et al. 
(2003); Lyons et 
al.(2010); Walker and 
Campbell (2010) 

 

Phaeosphaeria herpotrichoides (De 
Not.) L. Holm 

  Barata (2002)  

Phaeosphaeria juncina (Auersw.) L. 
Holm 

 Fell and Hunter (1979)   

Phaeosphaeria luctuosa (Niessl ex 
Sacc.) Otani et Mikawa 

   Van Ryckegem and 
Verbeken (2005a,b) 

Phaeosphaeria macrosporidium 
(E.B.G. Jones) Shoemaker et C.E. 
Babc. * 

  Barata (2002)  

Phaeosphaeria neomaritima (R.V. 
Gessner et Kohlm.) Shoemaker et C.E. 
Babc. * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Phaeosphaeria nodorum (E. Müll.) 
Hedjar. 

  Buchan et al. (2003)  

Phaeosphaeria olivacea Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1997); 
Jones (2011a) 

  

Phaeosphaeria pontiformis (Fuckel) 
Leuchtm. 

   Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Phaeosphaeria roemeriani Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1998b); 
Walker and Campbell 
(2010); Jones (2011a) 

  

Phaeosphaeria spartinae (Ellis et 
Everh.) Shoemaker et C.E. Babc. * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Phaeosphaeria spartinicola Leuchtm. *   Barata (2002); Buchan et 
al. (2002); Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002); Buchan et al. 
(2003); Lyons et 
al.(2010); Walker and 
Campbell (2010) 

 

Phaeosphaeria typharum (Desm.) L. 
Holm * 

  Barata (2002)  

Phaeosphaeria vagans (Niessl) O.E. 
Erikss. 

   Van Ryckegem and 
Verbeken (2005a) 

Phaeosphaeria spp.     Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Phomatospora bellaminuta Kohlm., 
Volkm.-Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1995b); 
Jones (2011a) 

  

Phomatospora berkeleyi Sacc.    Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Phomatospora dinemasporium J. 
Webster 

  Barata (2002) Van Ryckegem and 
Verbeken (2005b) 

Phomatospora phragmiticola Poon et 
K.D. Hyde * 

   Poon and Hyde (1998a) 

Phomatospora spp.  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a,b) 

Phragmitensis marina M.K.M. Wong, 
Poon et K.D. Hyde * 

   Poon and Hyde (1998a) 

Phyllachora cynodontis Niessl   Barata (2002)  

Phyllachora graminis var. graminis 
(Pers.) Fuckel 

  Barata (2002)  

Phyllachora sylvatica Sacc. et Speg.   Barata (2002)  
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Physalospora citogerminans Kohlm., 
Volkm.-Kohlm. et O.E. Erikss.  

 Kohlmeyer et al. (1995b); 
Jones (2011a) 

  

Pleospora abscondita Sacc. et Roum.    Van Ryckegem and 
Verbeken (2005a) 

Pleospora herbarum (Pers.) Rabenh.   Barata (2002)  

Pleospora pelagica T.W. Johnson *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002); Buchan et al. 
(2003); Lyons et al.(2010)  

 

Pleospora spartinae (J. Webster et 
M.T. Lucas) Apinis et Chesters * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002); Buchan et al. 
(2003) 

Poon and Hyde (1998a) 

Pleospora vagans var. vagans Niessl   Barata (2002)  

Preussia funiculata (Preuss) Fuckel   Barata (2002)  

Pseudohalonectria falcata Shearer    Poon and Hyde (1998a) 

Pseudohalonectria halophila Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer et al (2005); 
Jones (2011a) 

  

Remispora hamata (Höhnk) Kohlm.  Fell and Hunter (1979) Barata (2002) Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Rivilata ius Kohlm., Volkm.-Kohlm. et 
O.E. Erikss. 

 Kohlmeyer et al. (1998b); 
Jones (2011a) 

  

Schizothecium hispidulum (Speg.) N. 
Lundq. 

   Van Ryckegem and 
Verbeken (2005a) 

Scirrhia annulata Kohlm., Volkm.-
Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1996); 
Jones (2011a) 

  

Sordaria fimicola (Roberge ex Desm.) 
Ces. et De Not. 

  Barata (2002)  

Sphaerulina albispiculata Tubaki *   Barata (2002)  

Sphaerulina orae-maris Linder *   Jones (1963); Barata 
(2002) 

 

Sphaerulina sp.  Fell and Hunter (1979)   

Splanchnonema sp.  Fell and Hunter (1979)   

Sporormia sp.  Fell and Hunter (1979)   

Sporormiella intermedia (Auersw.) S.I. 
Ahmed et Cain ex Kobayasi 

  Barata (2002)  

Stictis sp.    Van Ryckegem and 
Verbeken (2005a) 

Thelebolus crustaceus (Fuckel) Kimbr.   Barata (2002)  

Tremateia halophila Kohlm., Volkm.-
Kohlm. et O.E. Erikss. * 

 Kohlmeyer et al. (1995a); 
Jones (2011a) 

Barata (2002)  

Trichodelitschia bisporula (P. Crouan et 
H. Crouan) Munk 

  Barata (2002)  

Zopfiella latipes (N. Lundq.) Malloch et 
Cain * 

   Poon and Hyde (1998a) 

     

Basidiomycota     

Halocyphina villosa Kohlm. et E. 
Kohlm. * 

  Barata (2002)  

Merismodes bresadolae (Grélet) Singer    Van Ryckegem and 
Verbeken (2005b) 

Nia vibrissa R.T. Moore et Meyers *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Puccinia magnusiana Körn.    Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Puccinia phragmitis (Schumach.) Körn.    Van Ryckegem et al. 
(2007) 

Puccinia seymouriana Arthur   Barata (2002)  

Puccinia sparganioides Ellis et Tracy   Barata (2002)  

Sporobolomyces sp.    Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Tremella spicifera Van Ryck., Van de 
Put et P. Roberts 

   Van Ryckegem and 
Verbeken (2005a,b) 
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Uromyces acuminatus Arthur   Barata (2002)  

Uromyces argutus F. Kern   Barata (2002)  

     

Anamorphic fungi     

Acremonium sp.  Fell and Hunter (1979)   

Alternaria alternata (Fr.) Keissl.  Fell and Hunter (1979) Barata (2002) Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Alternaria maritima G.K. Sutherl.   Barata (2002)  

Arthrinium phaeospermum (Corda) 
M.B. Ellis 

  Barata (2002) Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Arthrinium sp. (state of Apiospora 
montagnei) 

   Poon and Hyde (1998a) 

Arthrinium sp. (state of Apiospora sp.)    Poon and Hyde (1998a) 

Arthrinium sp.  Fell and Hunter (1979)   

Arthrobotrys sp.    Poon and Hyde (1998a) 

Ascochyta cf. arundinariae Tassi    Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Ascochyta cf. leptospora (Trail) Hara    Van Ryckegem and 
Verbeken (2005a) 

Ascochyta spartinae Trel.   Barata (2002)  

Ascochyta sp.   Barata (2002) Van Ryckegem and 
Verbeken (2005a) 

Aspergillus nidulans (Eidam) G. Winter   Barata (2002)  

Aspergillus niger Tiegh.  Fell and Hunter (1979)   

Aspergillus ustus (Bainier) Thom et 
Church 

  Walker and Campbell 
(2010) 

 

Aspergillus spp.  Fell and Hunter (1979) Barata (2002)  

Asteromyces cruciatus Moreau et M. 
Moreau ex Hennebert * 

  Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Aureobasidium sp.  Fell and Hunter (1979)   

Bactrodesmium atrum M.B. Ellis    Van Ryckegem and 
Verbeken (2005b) 

Botryodiplodia sp.  Fell and Hunter (1979)   

Botrytis cinerea Pers.   Barata (2002)  

Camarosporium feurichii Henn.    Van Ryckegem and 
Verbeken (2005a) 

Camarosporium sp.    Van Ryckegem and 
Verbeken (2005a,b) 

Chaetasbolisia sp.    Poon and Hyde (1998a) 

Chaetospermum camelliae Agnihothr.    Poon and Hyde (1998a) 

Cirrenalia macrocephala (Kohlm.) 
Meyers et R.T. Moore * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Cirrenalia pseudomacrocephala Kohlm. 
* 

 Fell and Hunter (1979)   

Cladosporium algarum Cooke et 
Massee * 

  Barata (2002)  

Cladosporium cladosporioides 
(Fresen.) G.A. de Vries 

 Fell and Hunter (1979)   

Cladosporium sphaerospermum Penz.  Fell and Hunter (1979)   

Cladosporium spp.  Fell and Hunter (1979) Barata (2002) Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Cochliobolus hawaiiensis Alcorn  Fell and Hunter (1979)  Poon and Hyde (1998a) 

Cochliobolus tuberculatus Sivan.  Fell and Hunter (1979)   

Colletotrichum sp.    Poon and Hyde (1998a) 

Coniothyrium spp.  Fell and Hunter (1979)   
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Cremasteria cymatilis Meyers et R.T. 
Moore 

 Fell and Hunter (1979)   

Cumulospora marina I. Schmidt *   Kohlmeyer and 
Volkmann-Kohlmeyer 
(2002) 

 

Curvularia protuberata R.R. Nelson et 
Hodges 

 Fell and Hunter (1979)   

Curvularia sp.  Fell and Hunter (1979)   

Cytoplacosphaeria phragmiticola Poon 
et K.D. Hyde * 

   Poon and Hyde (1998a) 

Cytoplacosphaeria rimosa Petr.    Van Ryckegem and 
Verbeken (2005a,b) 

Cytoplea sp.    Poon and Hyde (1998a) 

Deightoniella roumeguerei (Cavara) 
Constant. 

   Van Ryckegem et al. 
(2007) 

Dendrostilbella sp.    Poon and Hyde (1998a) 

Dictyosporium oblongum (Fuckel) S. 
Hughes 

   Van Ryckegem and 
Verbeken (2005b); Van 
Ryckegem et al. (2007) 

Dictyosporium pelagicum (Linder) G.C. 
Hughes ex E.B.G. Jones * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Dictyosporium toruloides (Corda) 
Guég. 

  Jones (1963)  

Drechslera sp.  Fell and Hunter (1979)   

Dumortieria sp.  Fell and Hunter (1979)   

Epicoccum nigrum Link  Fell and Hunter (1979) Barata (2002)  

Flagellospora sp.  Fell and Hunter (1979)   

Floricola striata Kohlm. et Volkm.-
Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2000); Jones (2011a) 

  

Fusarium incarnatum (Desm.) Sacc.   Walker and Campbell 
(2010) 

 

Fusarium spp.  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a,b) 

Geniculosporium sp.  Fell and Hunter (1979)   

Gliocladium sp.  Fell and Hunter (1979)   

Gliomastix spp.  Fell and Hunter (1979)  Poon and Hyde (1998a) 

Halenospora varia (Anastasiou) E.B.G. 
Jones * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Haplobasidion lelebae Sawada ex M.B. 
Ellis 

 Fell and Hunter (1979)   

Hendersonia culmicola Sacc.   Barata (2002)  

Hendersonia culmiseda Sacc.    Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Humicola sp.  Fell and Hunter (1979)   

Hymenopsis chlorothrix Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2001a); Jones (2011a) 

  

Hyphopolynema juncatile Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(1999); Jones (2011a) 

  

Khuskia oryzae H.J. Huds.  Fell and Hunter (1979)   

Kolletes undulatus Kohlm. et Volkm.-
Kohlm. 

 Kohlmeyer et al (2005); 
Jones (2011a) 

  

Koorchaloma galateae Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2001b); Jones (2011a) 

  

Koorchaloma spartinicola V.V. Sarma, 
S.Y. Newell et K.D. Hyde * 

  Buchan et al. (2003)  

Leptosphaerulina chartarum Cec. Roux  Fell and Hunter (1979)   

Memnoniella echinata (Rivolta) 
Galloway 

 Fell and Hunter (1979)   
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Microsphaeropsis spp.    Poon and Hyde (1998a); 
Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Monodictys austrina Tubaki  Fell and Hunter (1979)   

Myrothecium roridum Tode  Fell and Hunter (1979)   

Neottiospora sp.  Fell and Hunter (1979)   

Neottiosporina australiensis B. Sutton 
et Alcorn 

   Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Paecilomyces sp.  Fell and Hunter (1979)   

Papulaspora halima Anastasiou  Fell and Hunter (1979)   

Penicillium spp.  Fell and Hunter (1979) Barata (2002) Poon and Hyde (1998a) 

Periconia cookei E.W. Mason et M.B. 
Ellis 

 Fell and Hunter (1979)  Van Ryckegem et al. 
(2007) 

Periconia digitata (Cooke) Sacc.  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a) 

Periconia echinochloae (Bat.) M.B. Ellis  Fell and Hunter (1979)   

Periconia minutissima Corda  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a) 

Periconia sp.  Fell and Hunter (1979)   

Pestalotia planimi Vize   Barata (2002)  

Pestalotia sp.  Fell and Hunter (1979)   

Pestalotiopsis juncestris Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2001b); Jones (2011a) 

  

Phaeoseptoria sp.    Van Ryckegem and 
Verbeken (2005a) 

Phaeosiaria sp.    Poon and Hyde (1998a) 

Phialophorophoma litoralis Linder *   Barata (2002)  

Phialophorophoma sp.    Van Ryckegem and 
Verbeken (2005a,b) 

Phoma glomerata (Corda) Wollenw. et 
Hochapfel * 

  Barata (2002)  

Phoma suaedae Jaap *   Barata (2002)  

Phoma spp.  Fell and Hunter (1979) Barata (2002) Poon and Hyde (1998a); 
Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Phomopsis spp.  Fell and Hunter (1979) Barata (2002) Poon and Hyde (1998a) 

Phyllosticta spartinae Brunaud   Barata (2002)  

Phyllosticta sp.   Barata (2002)  

Piricauda pelagica T. Johnson *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Pithomyces atro-olivaceus (Cooke et 
Harkn.) M.B. Ellis 

 Fell and Hunter (1979)   

Pithomyces maydicus (Sacc.) M.B. 
Ellis 

 Fell and Hunter (1979)  Poon and Hyde (1998a) 

Prathoda longissima (Deighton et 
MacGarvie) E.G. Simmons 

 Fell and Hunter (1979)   

Psammina sp.  Fell and Hunter (1979)   

Pseudorobillarda phragmitis (Cunnell) 
M. Morelet * 

   Poon and Hyde (1998a) 

Pseudorobillarda sp.   Barata (2002)  

Pseudoseptoria donacis (Pass.) B. 
Sutton 

   Van Ryckegem and 
Verbeken (2005a); Van 
Ryckegem et al. (2007) 

Pycnodallia dupla Kohlm. et Volkm.-
Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2001a); Jones (2011a) 

  

Pyrenochaeta sp.  Fell and Hunter (1979)   

Rhinocladiella spp.  Fell and Hunter (1979)  Poon and Hyde (1998a) 
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Scolecobasidium arenarium (Nicot) 
M.B. Ellis * 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Scolecobasidium humicola G.L. Barron 
et L.V. Busch 

 Fell and Hunter (1979)   

Scolecobasidium salinum (G.K. 
Sutherl.) M.B. Ellis 

  Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Scopulariopsis spp.  Fell and Hunter (1979)   

Selenophoma sp.  Fell and Hunter (1979)   

Septogloeum spartinae (Ellis et Everh.) 
Wollenw. et Reinking 

  Barata (2002)  

Septonema secedens Corda  Fell and Hunter (1979)   

Septoria sp.  Fell and Hunter (1979)  Van Ryckegem and 
Verbeken (2005a) 

Septoriella phragmitis Oudem.    Van Ryckegem and 
Verbeken (2005a,b) 

Septoriella unigalerita Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2000); Jones (2011a) 

  

Septoriella sp.    Poon and Hyde (1998a); 
Van Ryckegem and 
Verbeken (2005a,b); Van 
Ryckegem et al. (2007) 

Setosphaeria rostrata K.J. Leonard  Fell and Hunter (1979) Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Spegazzinia tessarthra (Berk. et M.A. 
Curtis) Sacc. 

 Fell and Hunter (1979)  Poon and Hyde (1998a) 

Sphaeronaema sp.  Fell and Hunter (1979)   

Sporothrix sp.  Fell and Hunter (1979)   

Stachybotrys chartarum (Ehrenb.) S. 
Hughes 

 Fell and Hunter (1979)   

Stachybotrys kampalensis Hansf.  Fell and Hunter (1979)   

Stachybotrys nephrospora Hansf.  Fell and Hunter (1979)   

Stachybotrys sp.  Fell and Hunter (1979) Buchan et al. (2003) Poon and Hyde (1998a) 

Stachylidium bicolor Link  Fell and Hunter (1979)   

Stagonospora abundata Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2000); Jones (2011a) 

  

Stagonospora cylindrica Gunnell    Van Ryckegem and 
Verbeken (2005b) 

Stagonospora elegans (Berk.) Sacc. et 
Traverso 

   Van Ryckegem and 
Verbeken (2005a,b) 

Stagonospora spp.  Fell and Hunter (1979) Barata (2002); Buchan et 
al. (2003) 

Poon and Hyde (1998a); 
Van Ryckegem and 
Verbeken (2005a,b) 

Stauronema sp.    Poon and Hyde (1998a) 

Stemphylium lycopersici (Enjoji) W. 
Yamam. 

 Fell and Hunter (1979)   

Stemphylium maritimum T.W. Johnson 
* 

  Barata (2002)  

Stemphylium vesicarium (Wallr.) E.G. 
Simmons 

 Fell and Hunter (1979)   

Tetranacriella papillata Kohlm. et 
Volkm.-Kohlm. 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(2001b); Jones (2011a) 

  

Tetranacrium sp.    Poon and Hyde (1998a) 

Tetraplosphaeria tetraploa (Scheuer) 
Kaz. Tanaka et K. Hiray. 

 Fell and Hunter (1979)  Poon and Hyde (1998a) 

Tiarosporella halmyra Kohlm. et 
Volkm.-Kohlm. * 

 Kohlmeyer and 
Volkmann-Kohlmeyer  
(1996b); Jones (2011a) 

  

Tracyella spartinae (PK.) Tassi    Barata (2002)  

Trichoderma viride Pers.  Fell and Hunter (1979)   

Trichoderma sp.    Poon and Hyde (1998a) 
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Tubercularia sp.   Buchan et al. (2003)  

Veronaea sp.  Fell and Hunter (1979)   

Virgaria nigra (Link) Nees  Fell and Hunter (1979)   

Xepicula leucotricha (Peck) Nag Raj  Fell and Hunter (1979)   

Zalerion maritima (Linder) Anastasiou *   Barata (2002); Kohlmeyer 
and Volkmann-Kohlmeyer 
(2002) 

 

Zythia spp.   Fell and Hunter (1979)     

Total taxa   136 132 109 

 

* Marine fungi (based on Jones et al. 2009, 2011a) 

The list includes all the taxa associated with these plant hosts, mentioned in the following studies: Jones 1963 (3 taxa); 

Fell and Hunter 1979 (88 taxa); Kohlmeyer and Volkmann-Kohlmeyer 1993a (1 taxa); Kohlmeyer and Volkmann-

Kohlmeyer 1993b (2 taxa); Kohlmeyer and Volkmann-Kohlmeyer 1994 (1 taxa); Volkmann-Kohlmeyer and Kohlmeyer 

1994 (1 taxa); Kohlmeyer et al 1995a (2 taxa); Kohlmeyer et al 1995b (4 taxa); Kohlmeyer et al 1995c (4 taxa); 

Kohlmeyer et al 1995d (4 taxa); Kohlmeyer and Volkmann-Kohlmeyer 1996a (1 taxa); Kohlmeyer and Volkmann-

Kohlmeyer 1996b (1 taxa); Kohlmeyer et al 1996 (3 taxa); Kohlmeyer et al 1997 (3 taxa); Kohlmeyer et al 1998a (1 

taxa); Kohlmeyer et al 1998b (3 taxa); Poon and Hyde 1998a (40 taxa); Kohlmeyer and Volkmann-Kohlmeyer 1999 (1 

taxa); Kohlmeyer et al 1999 (2 taxa); Kohlmeyer and Volkmann-Kohlmeyer 2000 (3 taxa); Kohlmeyer and Volkmann-

Kohlmeyer 2001a (2 taxa); Kohlmeyer and Volkmann-Kohlmeyer 2001b (3 taxa); Barata 2002 (115 taxa); Buchan et al 

2002 (5 taxa); Kohlmeyer and Volkmann-Kohlmeyer 2002 (40 taxa); Buchan et al 2003 (16 taxa); Kohlmeyer et al 2005 

(3 taxa); Van Ryckegem and Verbeken 2005a (58 taxa); Van Ryckegem and Verbeken 2005b (40 taxa); Van Ryckegem 

et al 2007 (27 taxa); Lyons et al 2010 (4 taxa); Walker and Campbell 2010 (12 taxa); Jones 2011a (45 taxa).The names 

of the taxa follow Index Fungorum (http://www.indexfungorum.org), except Byssothecium obiones. 

 

 

The overlap of fungal community between all possible host combinations (Spartina spp./J. 

roemerianus, J. romerianus/P. australis, Spartina spp./P. australis and Spartina spp./J. 

roemerianus/P. australis), is very low (5%), which means that each host plant supports a 

distinct mycota. In fact, from the 332 taxa found on Spartina spp., J. roemerianus and/or P. 

australis, 89% are exclusively associated with one, 9% associated with two and 2% associated 

with the three host species, like Remispora hamata (doubtful species) and Alternaria alternata 

(Table 1).  

 

Spartina species  

 

Spartina appears to be conducive for the growth of saprobic fungi, given its high lignocellulose 

content and non-lignin cinnamyl phenols (Newell et al. 1996b). A total of 132 taxa of higher 

filamentous fungi have been documented from Spartina spp. (Table 1). Among the various 

species associated with this standing marsh grass, Phaeosphaeria spartinicola and 

Mycosphaerella sp. II are ubiquitous and dominant in the community, and exhibit high spore-

expulsion rates (Newell and Wasowski 1995; Newell and Zakel 2000; Newell 2001a; Buchan et 

al. 2002, 2003; Lyons et al. 2010). Additional common species in this community are 

Phaeosphaeria halima and Buergenerula spartinae (Newell and Zakel 2000; Newell 2001a; 

Buchan et al. 2002, 2003; Lyons et al. 2010; Walker and Campbell 2010). 
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Juncus roemerianus 

 

Another salt marsh grass, J. roemerianus, supports a surprisingly high number of fungal taxa 

(Table 1). Most of the fungi associated with this host have been collected and identified by the 

Kohlmeyers and their colleagues in marshes located on the east coast of the United States. 

Jones (2011a) has recently updated the list of fungi documented by Kohlmeyer and Volkmann-

Kohlmeyer (2001c). One-hundred-thirty-six fungi have been identified on J. roemerianus (Table 

1). Newell and Porter (2000) have pointed out that Loratospora aestuarii, Papulosa amerospora, 

Aropsiclus junci, Anthostomella poecila, Physalospora citogerminans, Scirrhia annulata, 

Massarina ricifera and Tremateia halophila are the most common fungi occurring on this 

substrate. 

 

 Phragmites australis 

 

P. australis, another host that has been extensively surveyed for fungi, is a cosmopolitan grass 

that has a widespread worldwide distribution, colonizing not only intertidal marshes but also 

freshwater and terrestrial habitats in temperate and subtropical regions. Over 300 fungi have 

been reported for this plant (Wong and Hyde 2001, 2002), of which 109 species were detected 

in intertidal marshes in Hong Kong (Table 1). 

Poon and Hyde (1998a) identified 41 species associated with P. australis in an intertidal 

subtropical marsh in Hong Kong, from which Massarina phragmiticola, Phomatospora 

phragmiticola and Cytoplacosphaeria phragmiticola were described as new species (Table 1). 

Wong et al. (1998) described Phragmitensis marina from the same locality, while Poon and 

Hyde (1998a) noted that Lignincola laevis, Trichoderma sp., Halosarpheia phragmiticola and 

Colletotrichum sp. were the most common species on this host.  

 

Host tissue preference  

 

In addition to host-specificity, the majority of the saprobic fungi also exhibit other ecological 

requirements that determine its occurrence on different parts of the host plant (Newell and 

Wasowski 1995; Newell et al. 1996b; Newell 2001a; Kohlmeyer and Volkmann-Kohlmeyer 

2001c). This pattern may be a result of a nutritive preference for a particular substrate and/or 

interactions of mutualism, parasitism or competition that are established among the different 

species of fungi.  

P. spartinicola and Mycosphaerella sp. II, for example, occur preferably on the leaf blades of 

Spartina spp. and are involved in lignocellulose degradation (Bergbauer and Newell 1992; 

Newell et al. 1996b; Newell and Porter 2000); both species seem to establish a highly efficient 

mutualistic relationship that suppresses potential competitors (Newell and Porter 2000; Newell 

2001a; Buchan et al. 2003). B. spartinae is dominant on leaf sheaths of Spartina spp., occurring 
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in non-melanized patches (Newell 2001a), but it can also colonize the leaf blades, developing 

characteristic melanotic patches (Buchan et al. 2002). These findings support the hypothesis of 

Newell and Porter (2000) that the melanization of leaf blades by B. spartinae is the result of 

competition between this species and the complex of P. spartinicola and Mycosphaerella sp. II.  

In a given host plant, the colonization of the diverse plant tissues by saprobic fungi may or may 

not proceed simultaneously. Van Ryckegem and Verbeken (2005b) have observed that fungal 

sexual-reproductive structures in P. australis stems only appeared after three months of 

senescence, when nearly 50% of the leaf sheath tissue was decomposed. This time lag in the 

colonization process was attributed by the fact that the stems were more recalcitrant and 

consequently less susceptible to fungal breakdown than the sheaths (i.e., fewer stomata, more 

sclerenchymatous tissue and thicker cuticle).  

Species composition of the fungal community associated with a particular plant tissue does not 

generally remain unchanged, since the plant material undergoes physical and chemical 

changes during decomposition and different fungi require specific nutrients for their metabolism. 

Fell and Hunter (1979) directly compared the fungal communities colonizing J. roemerianus 

leaves of different physiological states and distinguished fungi that occurred mainly or 

exclusively in living, senescent or dead-standing leaves. Buchan et al. (2002, 2003) reached the 

same conclusions, having found fungi present in early- or late-decay blades of S. alterniflora 

and other species in both decay stages. Van Ryckegem and Verbeken (2005b) argued that the 

reduction of carbon resources may lead to an overlap of ecological niches, thereby contributing 

to an increase in competition between species; in this context, the species with higher antibiotic 

activity and with a broader spectrum of enzymes would certainly be favoured. 

Thus, in a particular decaying plant tissue, one can frequently detect patterns in the succession 

of fungi, with total or partial replacement of the colonizing species (Kohlmeyer and Volkmann-

Kohlmeyer 2001c; Buchan et al. 2002, 2003; Van Ryckegem and Verbeken 2005a, b; Van 

Ryckegem et al. 2007). Van Ryckegem and Verbeken (2005a) followed the decay and 

simultaneous colonization process of the leaf sheaths of P. australis by saprobic fungi, and 

characterized three successive phases: 

(i) The process begins with a pioneer community composed of few species, like 

Sporobolomyces sp., Alternaria alternata, Cladosporium sp., Septoriella sp., Phoma 

sp. and Phaeosphaeria sp. (weak pathogens, biotrophic species and opportunistic 

saprotrophs). These exhibit a low tolerance to stress. 

(ii) The second phase includes a more closed and mature community, with a high 

diversity of more competitive species, such as Stictis sp. and Lophodermium 

arundinaceum.  

(iii) The third phase presents an impoverished community dominated by few stress-

tolerant species and/or highly competitive taxa, like Lentithecium arundinaceum and 

Mycosphaerella lineolata.  
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The presence of dominant fungi in plant material, however, seems to be independent of the 

degree of decay of plant tissue (Buchan et al. 2002), which apparently only has effects on the 

spore-expulsion rate (Newell 2001a; Buchan et al. 2003).  

In the latter stages of decomposition, the dead plant tissues finally detach and reach the marsh 

sediment surface, which offers different microenvironmental conditions. Under these new abiotic 

conditions, a shift in species composition of the fungal community occurs with an alteration of 

the productivity of the community (Newell et al. 1989; Kohlmeyer and Volkmann-Kohlmeyer 

2001c; Van Ryckegem and Verbeken 2005a, b; Van Ryckegem et al. 2006, 2007). 

 

Ecological requirements 

 

Tidal regime 

 

In marsh ecosystems fungi usually display patterns of vertical distribution on the colonized 

emergent macrophytes, which go beyond their nutritive requirements and ability to compete with 

other fungi but also reflect their tolerance limits to environmental conditions, particularly tidal 

flooding (Gessner 1977; Barata 1997, 2002; Poon and Hyde 1998b; Kohlmeyer and Volkmann-

Kohlmeyer 2001c; Van Ryckegem and Verbeken 2005a, b, c; Van Ryckegem et al. 2006, 

2007). Vertical distribution of fungi may distinguish between obligate and facultative marine 

species. Gessner (1977), Kohlmeyer and Volkmann-Kohlmeyer (2001c) and Barata (2002) 

characterized the mycota associated with S. alterniflora, S. maritima and J. roemerianus. They 

found that in general terrestrial halotolerant fungi occurred at the tips of the leaves, which rarely 

or never become submerged. Obligate marine fungi occupy the lower periodically-inundated 

portions of the leaves, and facultative marine fungi overlap both plant portions. 

 

Seasonality 

 

Environmental fluctuations inherent to seasonality do not seem to interfere with the species 

composition of fungal communities associated with a particular marsh grass (Torzilli et al. 2006). 

Nevertheless, seasonality has significant impact on the differentiation of reproductive structures 

(Newell 2001a) and the abundance of several species (Buchan et al. 2003), as well as on the 

biomass and productivity of the entire fungal community (Samiaji and Barlocher 1996; Castro 

and Freitas 2000; Newell and Porter 2000; Newell 2001b).  

Even though Castro and Freitas (2000) and Newell (2001b) have shown that fungal biomass 

and productivity increased during winter and spring and diminished during the summer and fall 

periods, the potential reasons for these phenomena were different. Castro and Freitas (2000) 

regarded the decrease of fungal biomass during summer with higher air temperatures and 

salinity resulted in less favorable moisture conditions for fungal survival. Contrarily, Newell 

(2001b) suggested that the higher tides and higher rainfall that occurred in the late summer and 

fall during that particular study, could have contributed to a reduction of fungal biomass and 
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productivity because the leaves had become more accessible to mycophagous invertebrates 

and/or bacterial competitors, and had lost more nutrients through leaching.  

 

Nitrogen 

 

The availability of nitrogen in plant tissues and the surrounding environment is likely to be one 

of the key factors that regulate decomposer activity (Torzilli and Andrykovitch 1986) and fungal 

productivity (Newell et al. 1996a, 2000a; Newell 2001b). In fact, the studies previously 

mentioned have demonstrated that when nitrogen increases, fungal productivity also increases; 

this observation seems to suggest that nitrogen might be the limiting factor in these 

ecosystems.  

 

Water supply 

 

Newell et al. (1996a) have demonstrated that the fungal community is more productive in a 

normal regime of repeated drying/wetting episodes, being incapable of achieving higher 

production when water supply is constant, which proves that this community is well adapted to 

these environments. On the other hand, Poon and Hyde (1998b) and Wong and Hyde (2002) 

compared the fungal community associated with P. australis in two intertidal areas subjected to 

distinct water-availability regimes, and observed that fungal diversity was higher under periodic 

submersion than under a permanent one. Barata (2006) also confirmed this finding in a study 

performed with S. maritima baits in two zones of a salt marsh that were exposed to different 

periods of submergence; the intertidal zone was the most favourable place for colonization by a 

high diversity of marine fungi. Newell (1995) added that when the plant tissues become dry 

during a dry season, the colonizing fungi can interrupt their metabolic activity and resume when 

humid conditions are restored, without any loss of biomass. 

 

Pollution 

 

The impact of anthropogenic pollution on fungal community dynamics is still poorly understood 

(Pointing and Hyde 2000). However, some studies carried out in contaminated salt marshes 

found that the fungal communities remain unchanged, which suggest a higher resistance and 

resilience of fungal and plant communities to these pollutants (Newell and Wall 1998; Newell et 

al. 2000b; Wall et al. 2001). 

 

 

Conclusion 

 

Despite diverse studies of salt marsh fungi, it is quite possible that the total fungal diversity 

associated with these ecosystems is not yet known. Neither are the abiotic and biotic factors 
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that determine the presence of a given fungal species. The continuing investment in this field of 

investigation is therefore fundamental, and should encompass different geographic regions 

and/or in other host plants in order to fill this knowledge gap.  
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1.3 Objectives 

 

 

The overall purpose of this Ph.D. project is to contribute to filling knowledge gaps in diversity, 

biogeography and ecology of marine fungi, particularly of fungal communities associated with 

standing plants of one of the most dominant macrophytes of Portuguese temperate salt 

marshes, Spartina maritima (Curtis) Fernald. Specifically, this project intended to (1) assess the 

diversity of the fungal communities inhabiting Spartina maritima in two geographically and 

physically distinct salt marshes, (2) discriminate the ecological requirements of each fungal 

taxon (tolerance to fluctuating conditions of salinity and humidity, and nutritive preferences) and 

(3) infer about the potential ecological role of the most frequent fungi in the decomposition of the 

host plants. 
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Abstract 

 

Fungal communities associated with early stages of decomposition of Spartina maritima (Curtis) 

Fernald were assessed in two geographically distinct salt marshes in Portugal by direct 

observation of fungal sporulating structures. Twenty-three fungal taxa were identified from 390 

plant samples, 11 of which were common to both study sites. Natantispora retorquens, 

Byssothecium obiones, Phaeosphaeria spartinicola, Phoma sp. 1 and Stagonospora sp. were 

the most frequent fungal taxa in the studied communities. The fungal species Anthostomella 

spissitecta, Camarosporium roumeguerii, Coniothyrium obiones, Decorospora gaudefroyi, 

Halosarpheia trullifera, Leptosphaeria marina and Stagonospora haliclysta were recorded for 

the first time on S. maritima plants; with the exception of C. roumeguerii and L. marina, all of 

these species were also new records for Portugal. The differences between species 

composition of the communities associated with S. maritima were attributed to differences in 

abiotic conditions of the salt marshes. Although the fungal taxa were distributed differently along 

the host plants, common species to both fungal communities were found on the same relative 

position, e.g. B. obiones, Lulworthia sp. and N. retorquens occurred on the basal plant portions, 

Buergenerula spartinae, Dictyosporium pelagicum and Phoma sp. 1 on the middle plant 

portions and P. spartinicola and Stagonospora sp. on the top plant portions. The distinct vertical 

distribution patterns reflected species-specific salinity requirements and flooding tolerance, but 

specially substrate preferences. The most frequent fungi in both communities also exhibited 

wider distribution ranges and produced a higher number of fruiting structures, suggesting a 

more active key role in the decay process of S. maritima.  

 

 

Key words 

Marine fungi; Spartina maritima; salt marsh; vertical distribution patterns; species-specific 

ecological requirements 

 

 

Introduction  

 

Marine fungi constitute an ecological group of fungi that colonize marine environments, ranging 

from intertidal zones to open ocean areas (Fell and Newell 1998). The greatest diversity of 

marine fungi, though, is found in estuarine ecotones, given the higher productivity and 

availability of substrates for colonization (e.g. Hyde and Lee 1995; Jones 2000; Sarma and 

Hyde 2001; Kohlmeyer et al. 2004; Kis-Papo 2005; Gessner et al. 2007; Alias et al. 2010). It is, 

in fact, in salt marshes and mangroves that saprobic marine fungi play a key role in the 

ecosystem´s ecological balance and dynamics by contributing to the degradation of complex 

organic matter and recycling of nutrients.  
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Spartina species, one of the most dominant primary producers in temperate salt marshes 

(Castillo et al. 2010), represent simultaneously one of the main substrates for saprobic marine 

fungi. These cordgrasses are highly enriched with lignocellulose (c.a. 75% of total biomass; 

Maccubbin and Hodson 1980; Hodson et al. 1984) and strictly depend on an active 

decomposition process to release the nutrients into the surrounding environment. This process 

is mainly triggered and carried out by ascomycetous fungi (e.g. Torzilli and Andrykovitch 1986; 

Bergbauer and Newell 1992; Newell 1996; Newell et al. 1996b; Newell and Porter 2000). 

Likewise in other grass-like plants, the major involvement of fungal species in the 

decomposition process occurs during the early stages when the senescent organs are still 

attached to standing-live plants, in natural positions (Newell and Fallon 1989; Newell et al. 

1989; Samiaji and Barlocher 1996; Castro and Freitas 2000; Lyons et al. 2010). In fact, 

senescence and consequent decomposition processes may begin even before these plants 

have reached physiological maturity, occurring gradually from the outer and lower vegetative 

structures towards the inner and higher structures (Newell 2001a). Saprobic ascomycetous 

fungi were found to dominate the living microbial biomass on standing-decaying shoots of 

cordgrasses in the form of mycelia and reproductive structures, being the principal secondary 

producers (Newell et al. 1989, 1996a; Newell 1996, 2001a; Newell and Porter 2000).  

The marine fungal colonizers of intertidal cordgrasses exhibit species-specific ecological 

patterns that determine their distribution on the plants. Barata (2002), Cornick et al. (2005), 

Kohlmeyer and Volkmann-Kohlmeyer (2001, 2002) and Kohlmeyer et al. (1995, 2005) 

considered the tidal regime, the vertical distribution of fungi in standing grasses and the 

definition proposed by Kohlmeyer and Kohlmeyer (1979) to distinguish between obligate and 

facultative marine fungi and set ecological boundaries; obligate marine fungi colonize 

preferentially lower portions of the plants, halotolerant terrestrial fungi inhabit aerial non-

immersed parts and facultative marine fungi occur in between. The differentiation of these 

ecological groups of fungi based exclusively on this criterion is not easy or reliable in all 

circumstances since there are other factors interfering in the vertical distribution of fungi on host 

plants, such as plant tissue type (Sadaba et al. 1995; Barata 2002; Gessner et al. 2007) or 

interspecific competition (Newell and Porter 2000; Newell 2001a; Buchan et al. 2003). The 

relative subjectivity of the criterion to distinguish facultative from obligate fungi prompted Jones 

et al. (2009) to consider some of the described facultative fungal species as obligate fungal 

species. Nevertheless, on the dependence of personal opinion of the criterion, it is important to 

clarify the possible origin and ecological requirements of each fungus in order to better 

understand its role in functioning of the ecosystem. 

According to the classification of Jones et al. (2009), the current list of obligate marine fungi 

associated with Spartina spp. includes 53 fungal species (Calado and Barata 2012); most of 

these species were identified on standing-decaying culms of Spartina alterniflora Loisel in North 

American salt marshes (e.g. Gessner 1977; Newell and Wasowski 1995; Samiaji and Barlocher 

1996; Newell et al. 2000a; Newell 2001a; Buchan et al. 2002; Walker and Campbell 2010; Al-

Nasrawi and Hughes 2012). A comparison among studies on different Spartina species in 
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geographically distant salt marshes using different morphological and/or molecular approaches 

highlighted a core group of marine fungi composed by the same ascomycetous species. 

Specifically, Phaeosphaeria spartinicola, Mycosphaerella sp. II and Phaeosphaeria halima have 

been mentioned as ubiquitous and dominant colonizers of Spartina leaf blades (e.g. Gessner 

1977; Kolmeyer and Kohlmeyer 1979; Newell and Wasowski 1995; Newell and Zakel 2000; 

Newell et al. 2000a; Newell 2001a; Buchan et al. 2002, 2003; Lyons et al. 2010; Walker and 

Campbell 2010) and Buergenerula spartinae on leaf sheaths (Newell 2001a) and Byssothecium 

obiones on stems (Newell et al. 1996b; Barata 2002). These mentioned ascomycetous fungi 

were found to play an important functional role in the degradation of lignocellulosic secondary 

walls of plant cells (Benner et al. 1984; Torzilli and Andrykovitch 1986; Bergbauer and Newell 

1992; Newell et al. 1996b; Newell and Porter 2000; Lyons et al. 2003). The presence of these 

fungal species on Spartina plants over a wide geographic range and the absence from other 

standing plants colonizing the same habitat suggested that these saprobic fungi are host-genus 

exclusive (Torzilli et al. 2006; Walker and Campbell 2010; Al-Nasrawi and Hughes 2012). Host 

exclusivity was proposed by Zhou and Hyde (2001) to apply in the cases of an exclusive 

occurrence of a strictly saprobic fungus on a particular or on a restricted range of related host 

plants, which does not reveal any symbiotic phase during its life cycle.  

Although this core group of fungi is considerably well-known, in terms of species composition 

and general ecological preferences, there are still gaps in understanding the ecology of each 

fungal species and its specific role on decomposition process.  

South European salt marshes are dominated by Spartina maritima (Curtis) Fernald, one of the 

main primary producers of these ecosystems (Castillo et al. 2008; Sousa et al. 2008), and the 

marine mycota associated with this plant has been surprisingly poorly investigated. Barata 

(2002) surveyed S. maritima standing plants from three salt marshes situated in the central west 

coast of Portugal and identified 20 fungal taxa; in one of these salt marshes, Barata (2006) 

recorded 26 colonizers of S. maritima baits exposed to different submersion conditions. 

Azevedo et al. (2012) also inventoried the saprobic marine mycota associated with S. maritima, 

but from drift substrates collected in four Portuguese west coast beaches; 31 fungal taxa were 

recorded on S. maritima stems. Although the fungal community associated with standing plants 

and drift stems included some common fungal species and belonging to the core group, both 

substrates were dominated by different fungal species (Barata 2002; Azevedo et al. 2012). 

Therefore, and in a general perspective, the present study intends to be the first comprehensive 

study of fungi associated with S. maritima in Portugal, providing key information on ecological 

requirements of fungi inhabiting standing-live plants.  

Specifically, this study aims to contribute to: (1) the inventory of higher filamentous marine fungi 

associated with S. maritima, (2) a better understanding of ecology and functional role of fungi in 

early stages of decomposition of S. maritima and (3) the evaluation of the effects of seasonality 

and environmental parameters on fungal community by comparing two Portuguese salt 

marshes with distinct geographical locations, biophysical structures, anthropogenic pressures 

and representativeness of this host plant. Fungal species were identified by direct observation 
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of the reproductive structures (traditional microscopy-based methods) and then classified into 

obligate or facultative marine fungi based on the average vertical position on plants and salt 

requirements for growth assessed by a culture-dependent assay.  

 

 

Material and methods 

 

Study sites 

 

The study was conducted in two salt marshes: the Guadiana estuary (Castro Marim) situated in 

the southeastern coast (37.23° N, 7.42° W) in the Mediterranean region (Costa et al. 2009) and 

the Ria de Aveiro coastal lagoon located in the northwest of Portugal (40.62° N, 8.74° W) 

included in Eurosiberian region (Costa et al. 2009) (Fig. 1).  

 

 

Fig. 1 Study sites: Guadiana estuary (a) and Ria de Aveiro coastal lagoon (b); black circle markers indicate collection 

areas in the salt marshes 

 

Both ecosystems are mesotidal, with a mean tidal range of 2.0 m, and have predominantly 

semi-diurnal tides that dominate the hydrodynamics of the systems (Morales 1997; Dias et al. 

1999). However, the two study sites exhibit a different physical configuration. Lower Guadiana 

estuary consists of a narrow channel bordered by marsh ecosystems, which is oriented 

perpendicular to the coast and connects the fluvial channel with the open littoral zone (Morales 

1997). Ria de Aveiro coastal lagoon runs parallel to the coastline and consists of a complex 

network of channels surrounded by mud flats and salt marshes; the lagoon is permanently 

connected to the Atlantic Ocean by a deep and narrow artificial channel (Dias et al. 1999, 

2000). The freshwater flow in both systems is also different; Guadiana estuary receives a high 
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input of freshwater from Guadiana river whereas Mira channel in Ria de Aveiro lagoon receives 

a lower freshwater discharge from a small system of ponds and rivers (Dias and Lopes 2006; 

Kilsby et al. 2007). 

Additional details of study sites are summarized in Table 1. 

 

Table 1 Abiotic conditions in Guadiana estuary and Ria de Aveiro coastal lagoon 

 Guadiana estuary Ria de Aveiro coastal lagoon 

Minimum tidal range (neap tides) 
a
 1.2 m 0.6 m 

Maximum tidal range (spring tides) 
a
 2.8 m 3.2 m 

Tidal currents velocities 
a
 0.5 ms

-1
 1.0 ms

-1
 

Mean sea surface temperature 
b
 18.5 °C 16.5 °C 

Salinity 
c
 0–33 ppt 

d
 25–35 ppt 

e
 

pH 
c
 7.5–8.2 7.7–8.6 

 

a
 Parameters described in Morales (1997) and Dias et al. (1999) 

b
 Parameter obtained in National Oceanic and Atmospheric Administration (NOAA) 

c
 Parameters measured at the collection areas during the sampling periods, including measurements made in January 

and May 2001 by Caetano et al. (2006) 
d
, in July 1996 by Dias and Lopes (2006) 

e
 and in March 2009 by Rodrigues et 

al. (2012) 
e
 near the collection areas 

 

 

The conservation state of both study sites is also different as a result of different conservation 

status and anthropogenic pressure. Guadiana estuary is protected as a Natural Reserve, being 

subjected to less negative human impacts (Caetano et al. 2006, 2007). In contrast, Ria de 

Aveiro lagoon was for decades (and until 1994) the main receptor of highly contaminated 

effluent discharges (Pereira et al. 2009; Oliveira et al. 2010), and a relatively low mercury 

fraction is still present in the water column, sediment and biota (Coelho et al. 2009, 2014; 

Pereira et al. 2009).  

 

Host plant 

 

In addition to being one of the main primary producers, S. maritima represents an important 

pioneer grass that occupies the first level of emerged vascular vegetation. Given its 

rhizomatous nature, it assumes a fundamental role in the protection of coastline from erosion by 

trapping and aggregating sediment within the clumps (Castellanos et al. 1998; Sánchez et al. 

2001; Ferreira de Carvalho et al. 2013) and in the reduction of eutrophication of the system by 

sequestering nutrients and metals from sediments (Caetano et al. 2007; Sousa et al. 2008; 

Curado et al. 2013, 2014). S. maritima communities include distinguishable tall and short growth 

forms, which have been attributed to genotypic differences (Sánchez et al. 1997; Otero et al. 

2000) and phenotypic plasticity to different environmental conditions (Castillo et al. 2005). In 

Castro Marim salt marsh, S. maritima plants are shorter (average plant height 39  5 cm) and 

with more inrolled and smaller leaf blades (1/3 of total plant height) whereas in Ria de Aveiro 

salt marsh, plants are taller (average plant height 49  6 cm) and with more expanded and 
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larger leaf blades (1/2 of total plant height). In addition to intraspecific differences in 

morphology, both communities exhibited different distribution patterns; in Castro Marim salt 

marsh, S. maritima community forms extensive monotypic beds along the riverside whereas in 

Ria de Aveiro salt marsh, community is fragmented and disrupted in relatively small and 

dispersed patches. 

Although both communities of S. maritima follow the natural phenological cycle, with a growing 

season occurring during spring to early summer, plants of different maturation phases are 

present throughout all seasons.  

 

Sampling procedure 

 

Mature standing-live plants experiencing the same daily tidal wet-dry cycles (i.e. occupying the 

same topographic level, with similar height and containing green, senescent and early-decay 

plant tissues) were randomly collected in Castro Marim and Ria de Aveiro salt marshes (2.45 

and 2.37 m above the Portuguese hydrographic zero, respectively), bimonthly over a 2-year 

period (October 2010 to August 2012). Twenty plants were collected each of the first 3 sampling 

periods and 15 plants afterwards (a total of 390 plants). Five additional plants were also 

collected in each period of the last sampling year (February 2012 to August 2012) for isolation 

of marine fungi (a total of 20 plants). Plant samples were placed in plastic bags and returned to 

laboratory.  

 

Morphology-based species identification  

 

The collected plants were carefully rinsed with running tap water to remove fine-grained 

sediments and seaweeds and air-dried. Each air-dried plant was sequentially analysed from the 

basal to the top portion and from the external vegetative structures (leaf sheaths and blades) 

towards the more internal structures (stems). Fungal structures (fruit bodies, spores and 

hyphopodia) observed on each vegetative structure were picked up under a dissecting 

microscope (Wild M8) mounted into a drop of sterile seawater on a slide examined under a light 

microscope (Leitz Laborlux S, with Normaski) with detailed morphology recorded. The fungi 

were identified using the dichotomous keys of Kohlmeyer and Kohlmeyer (1979), Kohlmeyer 

and Volkmann-Kohlmeyer (1991), Hyde and Sarma (2000) and Jones et al. (2009). The vertical 

position of identified fungi was also recorded, as well as the density of produced fungal 

structures; for more than 10 fungal structures per square centimeter of colonized vegetative 

structure, the density was considered high. The fungal structures were photographed and 

preserved on microscope slides after replacement of seawater by glycerin and sealed with 

several layers of nail varnish. Moreover, some of the identified fungal structures were 

maintained on the original dry plant material and included in the personal collection of M. Barata 

(Herbarium of the University of Lisbon - LISU). 
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Isolation of marine fungi and preservation of pure cultures  

 

Cultures were obtained by single spore method, according to the conventional procedures of 

Vrijmoed (2000). Five fruiting structures (ascomata or pycnidia) of a given fungal taxon growing 

on fresh plant materials were transferred into a drop of sterile seawater on a microscope slide 

and squashed to force the discharge of the spores. This suspension of spores was then 

transferred with a Pasteur pipette onto gridded plates containing cornmeal agar made with aged 

diluted seawater (CMA/sw 50%) and supplemented with chloramphenicol (0.05%), one drop per 

square. Plates were incubated at room temperature for 1–2 days until germination of the 

spores. Each germinated spore was then transferred onto a new CMA/sw plate.  

In order to establish a culture collection, each isolated fungus was subcultured and preserved 

by three methods: (1) one colony was maintained on CMA/sw plate at 4 °C, (2) plugs removed 

from the growing margin of four colonies were transferred to McCartney bottles filled with sterile 

diluted seawater (50%) and kept at 4 °C, and (3) to cryotubes filled with glycerol (10%) and 

stored at -80 ºC.  

 

Growth rates  

 

Growth rates of selected fungi were determined in cornmeal agar media made with diluted 

seawater (CMA/sw 50%) and with distilled water (CMA/dw) at room temperature (18–25 °C). 

With this purpose, an agar disc was cut from the growing edge of fungal colonies and inoculated 

at the intersection point of two perpendicular lines previously drawn on the bottom of CMA/sw 

50% and CMA/dw plates; three replicates were performed for each monospore isolate. The 

colony growth was assessed every 2 days, for 30 days, by measuring and averaging the colony 

diameter along the two perpendicular axes. 

 

Data analyses 

 

Diversity indices  

 

The following diversity indices were calculated in order to better characterize and compare the 

fungal communities inhabiting Castro Marim and Ria de Aveiro salt marshes: Shannon diversity 

index (H´=-∑ 𝑝𝑖ln(𝑝𝑖)S
i=1 , where s is the number of fungal taxa in the community and pi is the 

proportion of occurrences of fungal taxon i relative to total number of occurrences), Shannon´s 

equitability index (E=H´/Hmax, where Hmax=ln s) and Sorenson similarity index (SI=2j/(a + b), 

where “j” is the number of common fungal taxa to both sites, a is the number of fungal taxa in 

one site and b is the number of fungal taxa in the other site). The comparison of Shannon 

diversity indices between study sites was performed based on randomization procedures of 

bootstrapping using the PAST v2.17c statistical software (Hammer et al. 2001). P values were 
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estimated by resampling and randomly redistributing the data 1000 times (Efron and Tibshirani 

1986); differences were considered statistically significant for p value<0.05.  

The average number of fungal taxa per plant sample (total number of fungal occurrences 

divided by the total number of plant samples) was also determined for Castro Marim and Ria de 

Aveiro salt marshes and for the assembly of the two salt marshes. 

 

Frequencies of occurrence and vertical distribution patterns – Total and in each sampling 

period 

 

The percent frequency of occurrence for each taxon in the fungal community was assessed 

(number of plant samples colonized by a specific fungus divided by the total number of plant 

samples x 100). Fungal taxa were grouped according to the percent frequency of occurrence 

and the classification proposed by Tan et al. (1989) in very frequent (>20%), frequent (10–20%) 

and infrequent (<10%). 

The average vertical distribution data of common fungal taxa in both study sites were compared 

by Student´s t tests, using IBM SPSS v22.0 statistical software (IBM Corporation, Somers, NY). 

In an attempt to better discriminate vertical distribution patterns and ecological requirements of 

fungal taxa in the two salt marshes, three vertical microhabitats were defined by separating the 

plant samples in three equally portions based on maximum plants height (basal 0–20 cm, 

middle >20–40 cm, top >40–60 cm). For each plant portion, the same diversity indices 

(Shannon, Equitability and Sorensen similarity indices) were determined; comparisons among 

Shannon diversity indices in plant portions were performed adopting the same procedures 

described above. Additionally, frequencies of occurrence of each fungal taxon, in each sampling 

period, in each plant portion were calculated. These dataset matrices were used to perform a 

preliminary Cluster Analysis with Bray-Curtis similarity measure; seven samples were 

considered outliers, given the atypical and divergent behavior and excluded from the 

subsequent analyses. The reconstructed dataset matrices were then used to perform another 

cluster analysis and a detrended correspondence analysis, using the PAST v2.17c statistical 

software.  

The effect of seasonality on fungal communities was assessed by analysing the variations of 

the frequencies of occurrence and vertical positions of all fungal taxa during the two sampling 

years; the former parameters were interpreted graphically, and the second parameters were 

tested statistically using IBM SPSS v22.0 software. A two-way analysis of variance (ANOVA) 

was performed in order to test the effect of sampling periods and fungal taxa on the total 

variations of vertical distributions in both communities. After this procedure, a new one-way 

ANOVA was performed for each taxon to evaluate the statistical significance of its vertical 

distribution variation.  
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Flooding regime in Castro Marim and Ria de Aveiro study sites 

 

The flooding conditions in both study sites were assessed, given the differences in the physical 

configuration of intertidal systems and in the morphology of host plant. The percentage of days 

in each month that Spartina plants were totally submerged, at least once, was determined, 

considering average plants height, tidal range (high tides height) and the topographic position of 

the plants on both salt marshes. The average time per day that the plants remained flooded at 

each sampling site was estimated using a model developed by Serôdio and Catarino (2000). 

The frequency and time length of flooding were also determined for basal, middle and top plant 

portions. 

 

Vegetative growth rates of fungal isolates 

 

The growth rates were extracted from linear regression equation of colony diameter increase 

over 30 days. The differences between growth rates in the two culture media were assessed 

with Student´s t tests, using IBM SPSS v22.0 statistical software.  

 

 

Results 

 

Fungal diversity 

 

Twenty-three sporulating higher filamentous marine fungi were recorded from the total 390 

analysed plants, with 20 and 14 fungal taxa occurring in Castro Marim and Ria de Aveiro salt 

marshes, respectively (Table 2; Fig. S1, Online Resource). The average number of fungi per 

plant was found to be five in both sites. 
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Table 2 Percent frequency of occurrence of fungal taxa and species diversity indices in communities in Castro Marim 

and Ria de Aveiro salt marshes and on average between the sites; fungal taxa are organized by decreasing values of 

frequency of occurrence based on the average and according to the three categories proposed by Tan et al. (1989) 

Fungal taxa 

Percent frequency of occurrence  

Overall 
(390 plants) 

Castro Marim 
(195 plants) 

Ria de Aveiro 
(195 plants) 

Very frequent  (>20 %)    

Natantispora retorquens (Shearer & J.L. Crane) J. Campb., J.L. 
Anderson & Shearer 

95.1 91.8 98.5 

Phaeosphaeria spartinicola Leuchtm. 87.4 83.1 91.8 

Byssothecium obiones (P. Crouan & H. Crouan) M.E. Barr 74.1 86.7 61.5 

Phoma sp. 1 50.5 56.4 44.6 

Stagonospora sp. 39.7 38.5 41.0 

Mycosphaerella sp. I 38.7 0.0 77.4 

Lulworthia sp. 27.2 9.7 44.6 

Buergenerula spartinae Kohlm. & R.V. Gessner 25.9 37.4 14.4 

    

Frequent (10–20 %) 
   

Sphaerulina orae-maris Linder 20.0 39.5 0.5 

Leptosphaeria marina Ellis & Everh. 15.4 30.8 0.0 

    

Infrequent (<10 %) 
   

Decorospora gaudefroyi (Pat.) Inderb., Kohlm. & Volkm.-Kohlm. 6.2 12.3 0.0 

Phoma sp. 2 5.9 11.8 0.0 

Coniothyrium obiones Jaap 2.6 5.1 0.0 

Dictyosporium pelagicum (Linder) G.C. Hughes ex E.B.G. Jones 2.6 3.1 2.1 

Stagonospora haliclysta Kohlm. 2.1 4.1 0.0 

Fusarium sp. 1.0 2.1 0.0 

Aniptodera chesapeakensis Shearer & M.A. Mill. 0.8 0.5 1.0 

Panorbis viscosus (I. Schmidt) J. Campb., J.L. Anderson & Shearer 0.5 1.0 0.0 

Anthostomella spissitecta Kohlm. & Volkm.-Kohlm. 0.3 0.5 0.0 

Camarosporium roumeguerii Sacc. 0.5 0.5 0.5 

Halosarpheia trullifera (Kohlm.) E.B.G. Jones, S.T. Moss & Cuomo 0.3 0.0 0.5 

Leptosphaeria sp. 0.3 0.0 0.5 

Mycosphaerella sp. 2 0.5 1.0 0.0 

    

Species richness (S´) 23 20 14 

Number of occurrences 1940 1006 934 

Average number of fungi per plant 4.97 5.16 4.79 

Shannon diversity index (H´) 2.33 2.32 2.02 

Equitability index (E) 0.74 0.78 0.77 
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The fungal communities of Castro Marim and Ria de Aveiro salt marshes were mostly 

composed of the Ascomycota, representing 60% (12) and 71% (10) of the total number of 

fungal taxa and 76% (769) and 82% (762) of the number of occurrences, respectively. The 

remaining fungal taxa found in both study sites belong to asexual fungi, mainly coelomycetes 

(30% in Castro Marim and 21% in Ria de Aveiro). Ascomycetous fungi were restricted to 

Dothideomycetes, Sordariomycetes and Sordariomycetes incertae sedis; Pleosporales, 

Microascales (i.e. Halosphaeriaceae) and Capnodiales were the most representative orders, 

with 33, 25 and 17% in Castro Marim and 20, 30 and 20% in Ria de Aveiro, respectively.  

Although the diversity of fungal community was significantly higher in Castro Marim than Ria de 

Aveiro (p<0.01), both communities revealed a similar high equitability value. 

The results also evidenced a high overlap between fungal communities of Castro Marim and 

Ria de Aveiro salt marshes regarding species composition and common taxa. From the 23 total 

fungal taxa associated with S. maritima, 48% (11) were common between the study sites. 

Natantispora retorquens, B. obiones, P. spartinicola, Phoma sp. 1 and Stagonospora sp. were 

very frequent in both communities. Sorensen´s index revealed a similarity of 0.65 between both 

fungal communities. 

The main differences between the two fungal communities were the number of exclusive 

infrequent fungal taxa, which was higher in Castro Marim than in Ria de Aveiro salt marsh (8 vs 

2). Moreover, the former study site included two frequent and one very frequent exclusive fungal 

taxa, namely Leptosphaeria marina, Decorospora gaudefroyi and Phoma sp. 2, respectively, 

while Ria de Aveiro harboured only one very frequent exclusive fungal species, Mycosphaerella 

sp. I. Sphaerulina orae-maris was very frequent in Castro Marim and infrequent in Ria de Aveiro 

salt marsh.  

 

Vertical distribution of fungi 

 

Fungal taxa inhabiting S. maritima in both study sites were distributed vertically along the plant, 

displaying distinct distribution patterns; some were restricted to the upper or lower portions of 

the plants while others spanned widely along the plant, showing different extents of substrate 

occupation (Fig. 2).  
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Fig. 2 Vertical distribution of fungal taxa on standing S. maritima in Castro Marim (a) and Ria de Aveiro (b) salt 

marshes. The boxplot shows the distribution of the average vertical positions of each fungal taxon on all plant samples: 

the quartiles include 50% of the distribution, and the whiskers indicate the spread of the data outside the upper and 

lower quartiles. The grey circle ( ) represents the average of the average vertical positions on all samples. The black  

marker () represents the average vertical position where the density of fruiting structures is higher in all plant samples 

(for the majority of the rare or infrequent fungal taxa, it was not observed a high number of fruiting structures on the 

plant samples, and for this reason this information is lacking in the figure). B. spartinae differentiated hyphopodia and 

ascomata at different vertical levels on the plant, being divided in two groups accordingly with the type of structure 

 

In general, the fungi produced a higher number of reproductive or other fungal structures at the 

average vertical position of their distribution (Fig. 2). 
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A comparison between vertical distribution data of common fungal taxa in Castro Marim and Ria 

de Aveiro salt marshes demonstrated that the differences were statistically significant (p<0.05), 

except for Dictyosporium pelagicum. However, the shared fungal taxa appeared to occupy the 

same relative vertical position on the plants, despite the variations on the absolute vertical 

distribution. 

Fungal subcommunities on basal, middle and top portions of the plants in both study sites were 

shown to be considerably different by diversity indices (Table 3), cluster analysis (Fig. 3) and 

Detrended Correspondence Analysis (DCA; Fig. 4). 

 

Table 3 Diversity indices and number of records in the 3 vertical portions of the plants in Castro Marim and Ria de 

Aveiro salt marshes 

 Castro Marim Ria de Aveiro 

 
Basal Middle Top  Basal Middle Top 

Species richness (S´) 13 18 4  10 11 5 

Number of records 380 542 20  388 301 237 

Shannon index (H´) 1.68 2.35 1.30  1.28 1.78 1.35 

Equitability index (E) 0.66 0.81 0.94  0.56 0.74 0.84 

 
Basal x 
Middle 

Middle x 
Top 

Top x 
Basal 

 
Basal x 
Middle 

Middle x 
Top 

Top x 
Basal 

Sorensen similarity index 0.65 0.36 0.24  0.67 0.50 0.27 

 

 

Middle portion yielded the highest species richness and diversity than either basal or top 

portions (Table 3). The differences in the Shannon indices were statistically significant between 

basal/middle and middle/top portions (p<0.001), but not between basal/top portions in Castro 

Marim and Ria de Aveiro salt marshes (p>0.05).  

The fungal subcommunities inhabiting basal and middle plant portions revealed higher 

similarities considering species richness and fungal taxa composition in both study sites than 

those in basal/top portions and in middle/top portions.  

The cluster and DCA analyses, which provided an integrated overview of spatial arrangement of 

fungal community based on the frequencies of occurrence of fungal taxa in each vertical plant 

portion corroborated the existence of three distinct microhabitats supporting distinct fungal 

subcommunities (Figs. 3 and 4). 
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Fig. 3 Cluster dendrogram based on Bray-Curtis similarity of fungal communities colonizing basal, middle and top plant 

portions in each sampling period and study site (a Castro Marim, b Ria de Aveiro), considering the frequency of 

occurrence of fungal taxa. The first two letters of the code name indicate the study site (CM Castro Marim, AV Ria de 

Aveiro), the next three letters and two numbers designate the month and year of the collection respectively, and the last 

number indicates the plant portion (1 basal, 2 middle, 3 top)  
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Fig. 4 Two-dimensional DCA plot expressing the fungal taxa and the three vertical plant portions spatial distributions 

based on frequency of occurrence of fungal taxa in each portion in each sampling period and in each study site (a 

Castro Marim, b Ria de Aveiro). The black pentagons ( ), dark grey triangles ( ) and light grey polygons ( ) 

correspond to basal, middle and top plant portions, respectively.  The two-letter code represent  fungal taxa: AC 

Aniptodera chesapeakensis, BO Byssothecium obiones, BS Buergenerula spartinae ascomata, BS(hyp) Buergenerula 

spartinae hyphopodia, CO Coniothyrium obiones, CR Camarosporium roumeguerii, DG Decorospora gaudefroyi, DP 

Dictyosporium pelagicum, LM Leptosphaeria marina, Lu Lulworthia sp., My1 Mycosphaerella sp. I, My2 Mycosphaerella 

sp. 2, NR Natantispora retorquens, Ph1 Phoma sp. 1, Ph2 Phoma sp. 2, PS Phaeosphaeria spartinicola, PV Panorbis 

viscosus, SH Stagonospora haliclysta, SO Sphaerulina orae-maris, St Stagonospora sp. 
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The cluster analysis (Fig. 3) performed with Castro Marim dataset separated first the top plant 

portion (ca. 0.29 of similarity) and then basal (ca. 0.31 of similarity) from middle portion, 

coinciding exactly with the defined microhabitats; with Ria de Aveiro dataset, the analysis only 

distinguished clearly the basal plant portion from the middle and top portions (ca. 0.42 of 

similarity).  

The DCA reinforced the results from the previous analysis (Fig. 4). Along the axis 1, with the 

higher eigenvalue (Castro Marim: 0.52; Ria de Aveiro: 0.86) and explanatory power, there was 

a clear spatial separation of the three plant portions in Castro Marim dataset, which was not so 

evident between middle and top portions in Ria de Aveiro dataset. The graphical separation of 

basal, middle and top portions followed the natural vertical sequence of microhabitats, which 

confirmed the higher similarity of fungal subcommunities between adjacent plant portions. 

The DCA analysis also highlighted specific ecological niches by plotting the distribution of fungal 

taxa across plant portions. Fungal taxa were distributed along the axis 1 following the vertical 

distribution on the standing plants in Castro Marim and Ria de Aveiro salt marshes, from the top 

to the basal plant portions. The spatial proximity of each fungal taxon to a certain plant portion 

in the plot suggested higher affinities to that particular microhabitat. Thus, the results evidenced 

a subcommunity associated with basal portions, mainly represented by B. obiones, Lulworthia 

sp. and N. retorquens in both salt marshes, and Panorbis viscosus and L. marina in Castro 

Marim; a subcommunity colonizing middle portions composed by B. spartinae, D. pelagicum 

and Phoma sp. 1 in both study sites and Coniothyrium obiones, D. gaudefroyi, Phoma sp. 2 and 

S. orae-maris in Castro Marim; and a subcommunity associated with upper portions composed 

by P. spartinicola and Stagonospora sp. in both salt marshes, Mycosphaerella sp. I in Ria de 

Aveiro, and Mycosphaerella sp. 2 and Stagonospora haliclysta in Castro Marim. 

Both axes 2 and 3 presented a lower eigenvalue in Castro Marim (axis 2: 0.12; axis 3: 0.06) and 

Ria de Aveiro (axis 2: 0.08; axis 3: 0.06) datasets, explaining little variation in the data. 

Comparisons of micro-environmental conditions on the three plant portions revealed some 

differences. Specifically, it was observed a decrease in flooding time (from 8 to 2 daily hours) 

and frequency (from 100 to 50% of the days per month) along the vertical axis of the plants, 

from the basal upwards to the top portions, in both salt marshes; although it was not measured 

in this study, this vertical gradient of tidal flooding reflected obviously in salinity and water 

availability levels in each plant portion. Middle and top plant portions in Castro Marim salt marsh 

remained slightly longer and were more frequently submerged than analogous portions in Ria 

de Aveiro salt marsh.  Furthermore, it was found that the vegetative structures in each plant 

portion were different: basal portions included mostly a senescent naked stem or a stem 

enwrapped by leaf sheaths; middle portions included mainly a stem enwrapped by leaf sheaths 

and leaf blades; top portions included mostly upright-standing leaf blades. Nevertheless, the 

host plants from the two salt marshes presented some differences in the proportions of 

vegetative structures included in analogous portions, as a result of differences in the 

morphology. The main differences were found in the middle plant portions; Castro Marim plants 
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included mostly the stem and leaf sheaths whereas Ria de Aveiro plants also included leaf 

blades in this portion.  

 

Seasonality 

 

The effects of seasonality on fungal community dynamics and particularly in the frequencies of 

occurrence of the most frequent fungal taxa in the two study sites (Fig. 5) and for fungi 

producing a high density of fruiting structures (Fig. 6) were investigated. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Bimonthly variation of the frequency of occurrence (%) of each fungal taxon in Castro Marim (a) and Ria de 

Aveiro (b) salt marshes and average variation of the frequencies of occurrence in each sampling period: BO 

Byssothecium obiones, BS Buergenerula spartinae, DG Decorospora gaudefroyi, LM Leptosphaeria marina, Lu 

Lulworthia sp., MyI Mycosphaerella sp. I, NR Natantispora retorquens, Ph1 Phoma sp. 1, Ph2 Phoma sp. 2, PS 

Phaeosphaeria spartinicola, SO Sphaerulina orae-maris, St Stagonospora sp. 
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Fig. 6 Bimonthly variation of frequency of occurrence (%) of high density of fungal structures produced by each fungal 

taxon in Castro Marim (a) and Ria de Aveiro (b) salt marshes and average variation of the frequencies of occurrence in 

each sampling period: BO Byssothecium obiones, BS Buergenerula spartinae, LM Leptosphaeria marina, Lu Lulworthia 

sp., My1 Mycosphaerella sp. I, NR Natantispora retorquens, Ph1 Phoma sp. 1, Ph2 Phoma sp. 2, PS Phaeosphaeria 

spartinicola, SO Sphaerulina orae-maris, St Stagonospora sp. Buergenerula spartinae only differentiated a high density 

of hyphopodia and not fruiting structures 

 

The results showed that seasonally driven changes in environmental conditions apparently had 

no significant effect on the presence and life cycle of N. retorquens in Ria de Aveiro salt marsh, 

but interfered slightly on the presence and production of fruiting structures of the remaining 

fungi for both communities (Figs. 5 and 6).  

Although no obvious species-specific seasonal patterns were detected, the presence of P. 

spartinicola and Stagonospora sp. on Spartina plants in Castro Marim and Ria de Aveiro salt 

marshes was generally lower during warmer months than in cooler periods. Similarly, for these 

mentioned fungal taxa and also for N. retorquens in Castro Marim salt marsh, it was observed a 

decrease in the production of fruiting structures during the spring–summer seasons.  

Despite the seasonal effect on fungal communities, the dominance pattern was maintained in 

both salt marshes, i.e. the most frequent fungi were the same over time. In addition of being 

omnipresent in the communities, these fungi were also investing more intensively in sexual or 

asexual reproduction and/or differentiating other fungal structures in Castro Marim and Ria de 

Aveiro salt marshes (Figs. 5 and 6).  
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Seasonal variation on the vertical positions of fungal taxa that occurred during the sampling 

periods on the plants was also investigated (Fig. 7). 

 

 

 

 

Fig. 7 Bimonthly variation in the average height of host plants and vertical position of fungal taxa that occurred in most 

of the sampling periods on the plants in Castro Marim (a) and Ria de Aveiro (b) salt marshes: BO Byssothecium 

obiones, LM Leptosphaeria marina, Lu Lulworthia sp., My1 Mycosphaerella sp. I, NR Natantispora retorquens, Ph1 

Phoma sp. 1, PS Phaeosphaeria spartinicola, SO Sphaerulina orae-maris, St Stagonospora sp. 

 

The results evidenced statistically significant variations on the mean positions of fungal taxa 

during the study period in both sites (Castro Marim: p<0.001, F=1.97; Ria de Aveiro: p<0.05, 

F=1.42). The one-way ANOVA performed for each fungal taxon revealed that the differences 
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were statistically significant (p<0.05) for all fungal taxa, except for L. marina. However, the 

relative mean position of each fungus on the plants seemed to be maintained, as well as the 

spatial pattern of occupancy along the vertical axis of the plant by different fungal taxa. 

 

Salinity requirements of fungi 

 

To confirm the salinity requirements for the isolated fungi with vertical distribution pattern on the 

standing plants in natural environment, a culture experiment was performed. Fifteen strains 

were randomly selected from the 57 isolated fungi from Castro Marim salt marsh representing 8 

fungal taxa, namely B. spartinae (2 strains), B. obiones (2 teleomorph strains), L. marina (2 

strains), N. retorquens (2 strains), P. spartinicola (2 strains), Phoma sp. 1 (2 strains), S. orae-

maris (1 strain) and Stagonospora sp. (2 strains); 13 strains were selected from the 66 isolated 

fungi from Ria de Aveiro salt marsh representing 6 fungal taxa, specifically B. obiones (2 

teleomorph strains and 2 anamorph strains), Lulworthia sp. (2 strains), N. retorquens (1 strain), 

P. spartinicola (2 strains), Phoma sp. 1 (2 strains) and Stagonospora sp. (2 strains). 

The comparison between mycelia growth rates under two different culture conditions, on media 

lacking and containing diluted seawater, provided additional information about the ecological 

preferences of each taxon (Fig. 8).  
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Fig. 8 Daily growth rate of eight fungal taxa isolated from Castro Marim (a) and six fungal taxa isolated from Ria de 

Aveiro (b) salt marshes under two culture conditions, media with diluted seawater (SW) and with distilled water (DW): 

BO Byssothecium obiones (teleomorph), BO(an) Byssothecium obiones (anamorph), BS Buergenerula spartinae, LM 

Leptosphaeria marina, Lu Lulworthia sp., NR Natantispora retorquens, Ph1 Phoma sp. 1, PS Phaeosphaeria 

spartinicola, SO Sphaerulina orae-maris, St Stagonospora sp. The differences between growth rates were considered 

statistically significant (* p<0.05; ** p<0.01; *** p<0.001) or non-significant (ns, p>0.05) 

 

The obtained results indicated that all the tested fungal strains grew in both culture conditions. 

Although some strains representing the same species exhibited contradictory growth results, 
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the majority of strains showed significantly higher growth under saline conditions. An exception 

was L. marina, which grew faster in media without seawater, and P. spartinicola, which grew 

equally well under both conditions. Additionally, the results revealed different growth rates 

among fungal taxa, with Lulworthia sp., Stagonospora sp. and B. spartinae displaying the 

highest growth rates on both media. 

 

 

Discussion 

 

Fungal diversity  

 

In the present study, 23 fungal taxa were identified associated with early stages of 

decomposition of S. maritima; 20 fungal taxa inhabited Castro Marim salt marsh and 14 

occurred in Ria de Aveiro salt marsh (Table 2). Both fungal communities were predominantly 

represented by the Ascomycota, particularly Dothideomycetes and Sordariomycetes. The clear 

preference and dominance of these taxonomic groups in intertidal habitats, characterized by 

alternate cycles of immersion and exposure, have been widely documented in several studies 

(e.g. Gessner and Kohmeyer 1976; Gessner 1977; Newell et al. 1989, 1996a, 2000a; Samiaji 

and Barlocher 1996; Alias and Jones 2000; Barata 2002; Al-Nasrawi and Hughes 2012).  

The species richness and diversity of fungal communities colonizing S. maritima in Castro 

Marim and Ria de Aveiro salt marshes were similar to those found in the same host plant by 

Barata (2002, 2006), in S. alterniflora by Gessner (1977), Samiaji and Barlocher (1996) and Al-

Nasrawi and Hughes (2012), and in Spartina densiflora Brongn. by Peña and Arambarri (1998). 

Both fungal communities from Castro Marim and Ria de Aveiro salt marshes were found to be 

well-balanced, without a clear dominance. These findings corroborated observations by 

Gessner et al. (2007) and Van Ryckegem et al. (2007), who denoted that fungal communities 

associated with Spartina spp. are not particularly complex, with a low diversity and few 

dominant species.  

 

Fungal species composition of communities associated with Spartina spp. 

 

A comparison between the species composition of the studied fungal communities associated 

with S. maritima and the list of marine fungi reported from Spartina species (Kohlmeyer and 

Kohlmeyer 1979; Barata 2002; Kohlmeyer and Volkmann-Kohlmeyer 2002; Calado and Barata 

2012) revealed nine common fungal species. These species can be categorized into three 

groups according to their geographical distribution and substrate specificity: (1) host-genus-

exclusive fungi that have been described from different Spartina species in different 

geographical locations, namely Anthostomella spissitecta, B. spartinae, B. obiones, 

Mycosphaerella sp. I and P. spartinicola (Gessner & Kohlmeyer 1976; Peña and Arambarri 

1998; Barata 2002; Kohlmeyer and Volkmann-Kohlmeyer 2002; Cornick et al. 2005; Walker and 
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Campbell 2010); (2) temperate fungi that have a broad substrate preference, such as L. marina 

and S. orae-maris, which were found on Spartina spp. (Gessner and Kohlmeyer 1976; 

Cavaliere 1977; Kohlmeyer and Kohlmeyer 1979; Shoemaker and Babcock 1989; Peña and 

Arambarri 1998; Barata 2002) and also on Juncus roemerianus (Cavaliere 1977; Kohlmeyer 

and Kohlmeyer 1979) and driftwood (Cavaliere 1977; Kohlmeyer and Kohlmeyer 1979; Peña 

and Arambarri 1996; Figueira and Barata 2007); and (3) cosmopolitan fungal species that have 

also been recorded on a wide variety of substrates, such as Aniptodera chesapeakensis and D. 

pelagicum in temperate (Jones et al. 1998; Barata 2006; Figueira and Barata 2007) and tropical 

climates (Sadaba et al. 1995; Poon and Hyde 1998a; Hyde and Sarma 2006; Alias et al. 2010; 

Khan and Manimohan 2011; Manimohan et al. 2011). 

In this study, B. spartinae, B. obiones and P. spartinicola, mentioned in the literature as the 

main colonizers of decaying Spartina plants (Gessner 1977; Newell and Wasowski 1995; 

Newell and Zakel 2000; Newell et al. 2000a; Newell 2001a; Barata 2002; Buchan et al. 2002, 

2003; Cornick et al. 2005; Lyons et al. 2010; Walker and Campbell 2010), were also very 

frequent or frequent in both studied communities. 

The high number of common fungal species colonizing different Spartina hosts corroborated the 

existence of a very stable core group of fungi, mainly dominated by the same host-exclusive 

fungi. This core group apparently is not much affected by variations in abiotic conditions 

(Gessner and Kohlmeyer 1976). 

Different Spartina species, however, supported some different fungal species. This finding, 

previously demonstrated by Blum et al. (2004) and Lyons et al. (2010), was attributed to the 

higher variation in the morphology and chemical composition between different host species 

than within the same species. In fact, and as pointed out by several authors (Gessner and 

Kohlmeyer 1976; Torzilli et al. 2006), the substrate quality appears to be primarily responsible 

for determining fungal community composition. This reason could explain the absence of some 

fungal species that have been frequently collected from other Spartina species on S. maritima 

plants in this study and in a similar study performed by Barata (2002), as well as the exclusive 

presence of other fungal species in these communities.  

In concordance with Barata (2002) study, N. retorquens was found to be the most frequent and 

dominant species in the two studied fungal communities, although it has not been reported from 

other Spartina species. The absence of N. retorquens on these host plants is not easy to 

explain, considering that this fungal species has been collected from driftwood in temperate 

regions (Jones et al. 1998; Figueira and Barata 2007; Azevedo et al. 2012) and from different 

substrates in tropical climates (Sadaba et al. 1995; Prasannarai and Sridhar 2001; Alias et al. 

2010). However, it could be related with the fact that most of studies that inventoried Spartina 

spp. focused mainly or exclusively on leaf blades. Similarly, P. viscosus, another cosmopolitan 

species that has been described from temperate and tropical regions (Peña and Arambarri 

1996; Jones et al. 1998; Prasannarai and Sridhar 2001; Figueira and Barata 2007; Alias et al. 

2010), was reported for the first time on standing plants of Spartina by Barata (2002), on drift 

stems of the same host plant by Azevedo et al. (2012), and collected again in this study. 
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Even though the high overlapping of fungal communities associated with the same host 

species, it were found some variations in the mycota associated with standing plants of S. 

maritima in different salt marshes in terms of species composition and frequency patterns.  

S. maritima was found to be a new host plant for seven fungal species; A. spissitecta, C. 

obiones, D. gaudefroyi, L. marina and S. haliclysta were exclusively collected from Castro 

Marim plants, Halosarpheia trullifera was exclusively present in Ria de Aveiro plants and 

Camarosporium roumeguerii occurred in both study sites (Table 2). From all the mentioned 

fungal species, only A. spissitecta and L. marina have been previously described from other 

Spartina species. C. roumeguerii, C. obiones and D. gaudefroyi have been observed inhabiting 

other salt marsh plants (Inderbitzin et al. 2002; Abdel-Wahab and Bahkali 2012). S. haliclysta 

and H. trullifera have been found colonizing the seaweed Pelvetia canaliculata (Abdel-Wahab 

and Bahkali 2012) and driftwood in temperate regions (Peña and Arambarri 1996; Jones et al. 

1998), respectively. With the exception of C. roumeguerii and L. marina, all the other fungal 

species were also new records for Portugal. 

Although the differences in sampling methods applied in this study and in Barata (2002) study 

may explain some differences between surveyed fungal communities, these are more likely to 

have resulted from different environmental conditions in the study sites. Similarly, this last 

reason could explain the differences in the fungal communities from Castro Marim and Ria de 

Aveiro salt marshes. The higher species richness and diversity found in Castro Marim salt 

marsh may be attributed to suitable environmental conditions given by a more preserved 

habitat; these conditions may favour the colonization and reproduction of less well-adapted 

species.  

The fact that S. maritima community is more reduced and fragmented in Ria de Aveiro marsh 

and the vestigial presence of mercury in this study site (not measured in the present study, but 

mentioned by Coelho et al. 2009, 2014 and Pereira et al. 2009) might have provided less 

favourable conditions for colonization by occasional and infrequent species. The total mercury, 

as demonstrated by Coelho et al. (2009), accumulates more in old leaves than in stems, 

although in lower concentrations than in belowground biomass. These conditions seemed to 

have no effects on the most frequent fungal taxa in the community. The resistance of dominant 

saprobic ascomycetous fungi associated with S. alterniflora to several potentially toxic pollutants 

was already demonstrated by Newell and Wall (1998) and Newell et al. (2000b); they measured 

the living fungal biomass and sexual productivities of dominant fungi in standing-decaying leaf 

blades in the presence of mercury, methylmercury, polychlorinated biphenyls, chlorinated 

organocyclic insecticide toxaphene, chromium, copper, lead and polycyclic aromatic 

hydrocarbons and showed that these biological parameters were not affected by the presence 

of the toxicants. Moreover, the omnipresence of dominant fungal species in different Spartina 

communities of different states of conservation was also revealed by Cornick et al. (2005) –

stable versus declining beds of Spartina anglica C. E. Hubbard – and Walker and Campbell 

(2010) – natural versus created S. alterniflora salt marshes. 
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However, the absence of Mycospharella sp. I in Castro Marim salt marsh, as well as the 

absence and infrequent occurrence of L. marina and S. orae-maris respectively in Ria de Aveiro 

salt marsh, was more difficult to interpret under an ecological perspective. The absence of L. 

marina from three salt marshes highly exposed to anthropogenic pressure surveyed by Barata 

(2002) and the absence of S. orae-maris from the most polluted one (Barata 2002) suggested 

that both species may require habitats with favourable conservation status to occur.  

On the other hand, the slightly differences in the tidal regime in Castro Marim and Ria de Aveiro 

salt marshes, which reflected on the flooding patterns and salinity exposure in the study sites, 

might have limited the colonization by L. marina, S. orae-maris and Mycosphaerella sp. I. 

Although S. maritima plants occurred at a higher topographic level in Castro Marim salt marsh, 

they were shorter (39 cm) and submerged more frequently during the sampling period (79% 

days per month); S. maritima plants in Ria de Aveiro salt marsh colonized a lower topographic 

level but were taller (49 cm), being totally submerged less frequently (60% days per month). In 

addition to different flooding frequency, both study sites presented different salinity ranges, 

varying more in Castro Marim than in Ria de Aveiro salt marsh (Table 1).  

Furthermore, and as pointed out by Torzilli et al. (2006) and Lyons et al. (2010), the intraspecific 

morphological variations in host plants, which implied differences in their chemical composition, 

may have restricted the colonization process to the more well-adapted species. Also, the 

general smaller size of leaf blades of S. maritima in Castro Marim might have promoted the 

interspecific competition among fungi, conditioning the colonization by Mycosphaerella sp. I. 

Newell and Zakel (2000) observed that Mycosphaerella sp. II tended to produce more 

ascospores in larger and thicker leaf blades.  

Although these last enumerated hypotheses to explain the presence/absence of fungal species 

in the communities are merely speculative, this study clearly demonstrated the importance of 

environmental factors (biotic and abiotic) for the colonization of some fungal taxa, especially 

less frequent ones.  

 

Vertical distribution patterns of fungi 

 

The fungal taxa colonizing S. maritima plants were found to exhibit vertical distribution patterns 

on the host plants in Castro Marim and Ria de Aveiro salt marshes (Fig. 2). This finding is in 

concordance with similar studies that focused on fungal communities inhabiting mangroves 

trees and shrubs (Sadaba et al. 1995) and other standing grasses distributed from brackish 

(Poon and Hyde 1998a, b; Van Ryckegem and Verbeken 2005a, b; Van Ryckegem et al. 2007) 

to more saline tidal marshes (Gessner 1977; Kohlmeyer and Kohlmeyer 1979; Barata 2002; Al-

Nasrawi and Hughes 2012). Fungal taxa occupy their own ecological niche, as a consequence 

of species-specific ecological requirements (i.e. chemical composition of the substrate, and 

temperature, salinity and moisture of the microhabitat) and interspecific competition (Jones 

2000).  
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The separation of basal, middle or top portions of the plants in both study sites based on the 

distribution of fungal taxa (Figs. 3 and 4) emphasized the importance of micro-environmental 

conditions for the colonization and establishment of ecological niches. An integration of all 

results highlighted some ecological patterns, particularly of the most representative fungal taxa 

in the community (Figs. 2 and 4): N. retorquens, B. obiones, Lulworthia sp. and L. marina (in 

Castro Marim) occurred mostly in the more frequently flooded plant portions (basal portions) 

associated with stems and/or leaf sheaths; B. spartinae, S. orae-maris and Phoma sp. 1 

occupied preferentially the middle portions, colonizing stems and/or sheaths and basal portions 

of leaf blades; P. spartinicola, Stagonospora sp. and Mycosphaerella sp. I (in Ria de Aveiro) 

were found in the less inundated top portion of the plants, mainly associated with leaf blades.  

The less obvious separation between middle and top portions in Ria de Aveiro plants 

established by the cluster analysis (Fig. 3) might have resulted from differences in plant heights; 

the plants were considerable shorter in the first four sampling periods than in the remaining 

period (Fig. 7). As a consequence, the fungal communities that were mainly found on the top 

portions during the period June 2011–August 2012, were detected on the middle portion during 

the period October 2010–April 2011. Therefore, and considering the fact that the relative 

positions of fungi on the standing plants were maintained, it was not attributed any biological 

meaning for this result.  

The fact that all fungal taxa occurred more frequently on the same plant portion of Castro Marim 

and Ria de Aveiro plants, i.e. basal, middle or top portion, even though the morphological 

differences between the host plants suggested a clear preference for the micro-environmental 

conditions of the colonized microhabitat.  However, none of the fungal taxa was exclusively 

restricted to one particular microhabitat; in fact, the majority was observed in two plant portions, 

and only P. spartinicola and Phoma sp. 1 were detected in all portions in Castro Marim and Ria 

de Aveiro salt marshes. This finding, in addition to the differences in the absolute distribution 

ranges of common fungal taxa in plants from both salt marshes (Fig. 2) and the seasonal 

variation of vertical position of fungi on the plants (Fig. 7), suggested that the plant substrate 

might be the major key factor determining distribution boundaries. This reason may also explain 

the higher similarity between middle and top plant portions in Ria de Aveiro salt marsh based on 

the frequency of occurrence of fungal taxa harboured in those microhabitats (Fig. 4), which 

were found to be more similar in terms of the proportion of vegetative structures available for 

colonization. 

The distribution ranges of fungal taxa, determined in this study by the vertical positions of 

fruiting structures on standing plants, were assumed to be more realistic for the species more 

frequently collected than for the infrequent ones. This assumption was complemented with the 

argument that a high density of fruiting structures implies substantial supportive matrix of an 

active mycelium (Newell and Porter 2000) to infer about the importance of the fungi on the 

decay process. Thus, it was hypothesized that fungal taxa that were producing more fruiting 

structures over a larger distribution area, such as B. obiones and N. retorquens on leaf sheaths 

and P. spartinicola, Phoma sp. 1 and Stagonospora sp. on leaf blades, were presumably 
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assuming a more active role in the decomposition of colonized plant tissues. However, the 

absence/paucity of fruiting structures does not directly indicate if a fungus is absent/less 

abundant on the substrate, but probably that the required species-specific biotic and abiotic 

conditions for reproduction were not achieved.  

Some of the ecological niches revealed in the present study have already been documented in 

similar studies performed with S. maritima and also with other species of Spartina; specifically, 

the higher occurrence and dominance of P. spartinicola and Mycosphaerella sp. I in the top of 

the canopy on leaf blades (Gessner 1977; Newell and Wasowski 1995; Newell and Zakel 2000; 

Newell et al. 2000a; Newell 2001a; Barata 2002; Buchan et al. 2002, 2003; Lyons et al. 2010; 

Walker and Campbell 2010; Al-Nasrawi and Hughes 2012). Newell and Wasowski (1995) 

demonstrated that the extent of occupancy of fruiting structures on S. alterniflora produced by 

P. spartinicola is not affect by the frequency of flooding, but rather by the colonized vegetative 

structure, i.e. the lower percentage occupancy was found on the leaf sheaths. B. spartinae 

observed in present study and Barata (2002) study (as ascomata and hyphopodia) on leaf 

sheaths and stems in the middle portion of S. maritima plants has been mostly recorded on 

Spartina leaf blades and sheaths in the middle-top portions (Newell and Wasowski 1995; Newell 

et al. 2000a; Newell 2001a; Cornick et al. 2005; Walker and Campbell 2010; Al-Nasrawi and 

Hughes 2012). In addition to host exclusivity, the general agreement between this study and 

previous studies indicated that these fungi also presented a high degree of preference for 

vegetative structures and for particular vertical positions on standing plants.  

The sequential vertical positions of Lulworthia sp., N. retorquens, B. obiones, S. orae-maris, D. 

pelagicum, B. spartinae, Stagonospora sp., P. spartinicola and Phoma sp. 1 along S. maritima 

plants described by Barata (2002) was confirmed in the present study, with slight variations.  

Even though there are similarities in the relative positions and colonized vegetative structures of 

common fungal taxa found in this study and Barata (2002) study, the absolute positions were 

different.  

Thus, this study demonstrated that although the vertical distribution patterns of fungi resulted 

from the combined effect of micro-environmental conditions and substrate preference, it is this 

last biological factor that exerts a greater influence in determining the distribution range of these 

fungi. 

 

Ecological characterization of fungi 

 

Even though most of the fungal species recorded in this study are considered as obligate 

marine fungi by Jones et al. (2009), Barata (2002) presented some strong evidences to support 

the classification into obligate or facultative marine fungi. The higher or lower tolerance of fungi 

to salinity, air exposure and water submersion conditions that influences their vertical 

distribution on standing plants may, in fact, be related with their origin and physiological and 

morphological adaptations. In agreement with Barata (2002) observations, both fungal 

communities from Castro Marim and Ria de Aveiro salt marshes did not included terrestrial or 
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halotolerant fungi since the plants were normally totally submerged twice a day during high 

tides. Therefore, the results from the present study corroborate the classification of Lulworthia 

sp., N. retorquens and B. obiones into obligate marine fungi and Stagonospora sp. and P. 

spartinicola into facultative marine fungi, which were found on basal and top portions of the 

plants, respectively. Lulworthia sp. and N. retorquens were frequently collected by Barata 

(2006) from S. maritima baits exposed to permanent and temporary submersion conditions, 

which reinforce the argument that these fungi are highly adapted to marine environments. 

Moreover, Sadaba et al. (1995) also recorded N. retorquens on basal portions of Acanthus 

ilicifolius, an herbaceous mangrove standing plant. 

The average vertical positions and distribution ranges of obligate and facultative fungi were 

taken into account to establish a virtual threshold value to distinguish from other fungal taxa. 

The threshold value (22 cm) was found to be situated in the middle plant portion, which means 

that this microhabitat constituted a vertical transition area for obligate and facultative marine 

fungi. As a transition zone, this microhabitat was colonized by fungal taxa both of the basal and 

top plant portions, which led to the greatest fungal richness, number of occurrences and 

diversity in both study sites (Table 3).  

With this assumption, the fungal species more frequently recorded on basal portions, such as P. 

viscosus and L. marina, and on top portions, such as Mycosphaerella sp. I, Mycosphaerella sp. 

2 and S. haliclysta, are likely to be obligate and facultative marine fungi, respectively. 

The classification of the fungal taxa located in the middle plant portions was, though, more 

complicated.  Nevertheless, and considering the established threshold value, the present study 

confirmed the classification of S. orae-maris as an obligate marine fungus and D. pelagicum, B. 

spartinae and Phoma sp. 1 as facultative marine fungi proposed by Barata (2002). Moreover, 

the results suggested that C. obiones, D. gaudefroyi and Phoma sp. 2, which occurred in the 

middle portion of Castro Marim plants, are facultative marine fungi. 

Although the low occurrence of some fungal taxa in both salt marshes did not enable to 

distinguish their real distribution range, the presence of A. chesapeakensis, H. trullifera and A. 

spissitecta on lower plant portions and of Fusarium sp., Leptosphaeria sp. and C. roumeguerii 

on top plant portions might indicate that these species are obligate and facultative marine fungi, 

respectively. A. spissitecta was also found in lower portions of Spartina plants, being classified 

by Kohlmeyer and Volkmann-Kohlmeyer (2002) as an obligate marine fungus. H. trullifera was 

more frequently recorded by Jones and Kuthubutheen (1989) on submerged mangrove wood, 

which suggested that this species is, indeed, an obligate marine species. 

A focus on the morphology of reproductive structures and mechanism of spores dispersal of the 

fungal taxa present along the vertical axis of the host plants seemed to corroborate the 

distinction previously made. As pointed out by Hyde and Lee (1995), Alias and Jones (2000) 

and Hyde and Sarma (2006), the subcommunities inhabiting the basal and top plant portions 

possessed, in general, morphological characteristics that well adapt them to marine and 

terrestrial environments respectively. The group of marine fungi that colonized the basal 

microhabitat included fungal taxa with membranous (e.g. N. retorquens), carbonaceous (e.g. B. 
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obiones) and coriaceous (e.g. Lulworthia sp.) ascomata, whereas the majority of the fungal taxa 

that occurred on the upper plant portions produced coriaceous ascomata, i.e. more resistant to 

desiccation imposed by a terrestrial habitat. Regarding ascus morphology and spore-discharge 

mechanism, the Sordariomycetes with dissolving unitunicate asci and passive spore-discharge 

dominated the basal portions, while the Dothideomycetes with bitunicate asci and an active 

spore-discharge inhabited the top portions. These findings are in agreement with Fell and 

Newell (1998), Alias and Jones (2000), Barata (2002) and Hyde and Sarma (2006) studies. 

According with Kohlmeyer and Kohlmeyer (1979), the spore dispersal mechanism through a 

forceful ejection has probably evolved in terrestrial habitats, whereas a passive release of 

spores directly in water is more likely to have evolved in aquatic species, given the spores are 

easily washed away by tidal currents. The hypothesis that the active mechanism for spores 

discharge has a terrestrial origin was also proposed by Jones and Kuthubutheen (1989) 

referring to some mangrove fungi. No clear correspondence was found between the vertical 

position of fungal taxa on the plants and the colour, presence/morphology of spore appendages 

and position of reproductive structures on the plant tissues (i.e. immersed, erumpent, 

superficial); most of the fungal reproductive structures were immersed on the substrate.  

The evidences showed in this study supported the existence of obligate and facultative marine 

fungi colonizing different positions on intertidal standing plants, with distinct morphological 

adaptations and possibly distinct origins.  

 

Seasonality 

 

The results revealed that fungal composition of the communities of Castro Marim and Ria de 

Aveiro salt marshes did not considerably change during the study period, with the most frequent 

fungi present in all sampling periods. This finding, which is in agreement with previous studies 

conducted in intertidal ecosystems (Buchan et al. 2003; Torzilli et al. 2006; Walker and 

Campbell 2010), reinforced the observation of Gessner (1977) of a characteristic, resilient and 

stable community associated with Spartina species.  

The occurrences and production of fruiting structures by frequent and very frequent fungal taxa 

in both communities, though, varied over the sampling time, except for N. retorquens in Ria de 

Aveiro salt marsh (Figs. 5 and 6). In general, the variations in the frequencies of occurrence of 

fungal taxa and of high density of fruiting structures produced by the same species did not 

follow a regular pattern. For this reason, these variations cannot be directly related with the 

seasonal variations of temperature and humidity or inclusively with the seasonal variation of 

nitrogen content in decaying vegetative structures of Spartina plants (Newell 2001b; Cartaxana 

and Catarino 2002). 

However, the reduction in the frequency of occurrence of P. spartinicola and Stagonospora sp. 

in the two communities during the warmer periods suggested an effect of seasonality on the life 

cycle of these fungal species. The climatic factors also seemed to have affected the production 

of fruiting structures by the same species and N. retorquens in Castro Marim salt marsh. The 



95 

 

interference of seasonality in the life cycle of fungal species and particularly the general 

decrease of fungal biomass and productivity during the warmest months have been already 

demonstrated in previous studies (Samiaji and Barlocher 1996; Castro and Freitas 2000; Newell 

and Porter 2000; Newell 2001b). Newell (2001a) documented higher percentages of released 

spores for P. spartinicola during cooler seasons. In contrast, Buchan et al. (2003) study 

revealed that the abundance of P. spartinicola did not change with the seasonality. The 

differences between these two studies could be related with the applied methodologies.  

The lack of obvious seasonal patterns pointed to a requirement of longer studies to better 

discriminate the effect of seasonality in fungal community dynamics and avoid biased 

conclusions. The variations in the vertical distribution of most frequent fungal taxa during the 

study period seemed not to be directly related with seasonality but either with the phenological 

growth patterns of the host plants. 

 

Salinity requirements of fungi 

 

The results from the culture experiment demonstrated that B. obiones, B. spartinae, Lulworthia 

sp., N. retorquens, L. marina, P. spartinicola, Phoma sp. 1, S. orae-maris and Stagonospora sp. 

grew on media lacking and containing seawater (Fig. 8), which suggests that there is not an 

absolute requirement of sodium chloride at concentrations found in seawater for growth. 

However, the growth rates in the two culture media were, in general, statistically different and 

higher under saline conditions, even for fungal taxa previously classified into facultative marine 

fungi, such as B. spartinae, Phoma sp. 1 and Stagonospora sp. The results from this 

experiment are in agreement with reported observations in similar studies (Jones and Jennings 

1964; Sguros and Simms 1964; Jones 2000; Masuma et al. 2001; De la Cruz et al. 2006; 

Huang et al. 2011; Jones 2011; Pang et al. 2011; Burgaud et al. 2013) that marine fungi were 

capable of growing vegetatively without marine salts, although they generally exhibit an optimal 

growth under higher concentrations of salinity. The ability to grow without marine salts and 

tolerate salinity fluctuations likely confers an adaptive and competitive ecological advantage 

over their terrestrial counterparts in intertidal habitats subjected to intermittent dilution by 

freshwater inputs (Sguros and Simms 1964), i.e. seasonal precipitation and continuous 

freshwater discharges from adjacent rivers. 

The fluctuations in salinity were demonstrated by some studies, though, to interfere in the 

production of antimicrobial metabolites by fungal species (Masuma et al. 2001; Huang et al. 

2011) and in their sporulation (Jones 2011).  

Even though the general tendency of fungal taxa to grow better in the presence of marine salts, 

two fungal species revealed different vegetative growth patterns. P. spartinicola demonstrated a 

higher physiological plasticity than the other fungal taxa to adapt to different culture media 

conditions, being able to grow to the same extent on media with and without sea salts; this 

behavior under culture conditions reinforced its classification into facultative marine fungi. L. 

marina was the only species showing a better growth on culture media without marine salts, 
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which contradicted the observations made on the field; the interpretation of its response was not 

straightforward since there is no additional evidence that this fungal species colonizes other 

less saline habitats.  

The fact that the results from the culture experiment did not totally corroborate the field 

observations, suggests that it is not possible to distinguish obligate from facultative marine fungi 

based exclusively on vegetative growth responses. This means that is not recommended to 

apply the current definition of marine fungi in laboratory context, as argued by Kohlmeyer 

(1974), even with the certainty that all tested fungi are active in the community. 

However, this experiment was important to demonstrate the high physiological plasticity and 

versatility of marine fungal taxa to adapt to different abiotic conditions, as well as species-

specific salinity requirements. The differences among vegetative growth rates and particularly 

the faster growth of Lulworthia sp., B. spartinae and Stagonospora sp. (Fig. 8) may indicate that 

these fungal taxa have, in fact, high growth rates or, alternatively, that they were exploring more 

efficiently this particular artificial substrate.  

 

Final remarks 

 

This study, conducted in a less surveyed geographical region, supported the existence of a 

stable core group of fungi associated with Spartina species. Besides being dominated by the 

same host-exclusive ascomycetous fungi, the studied fungal communities also included other 

saprobic fungi exclusive to S. maritima, and seven new records were documented for this host 

plant and five for Portugal. This study also confirmed the species-specific vertical distribution 

patterns of fungi along the standing plants, which were attributed mainly to the substrate 

availability and to a lesser extent, the micro-environmental conditions of the habitat. The most 

frequent fungal taxa in the two communities revealed a high tolerance to salinity fluctuations 

and exhibited wide vertical distribution ranges and a high investment in the production of fruiting 

structures. These findings suggested that these fungal species were well-established and 

adapted to the intertidal habitat, exploring efficiently the substrate and consequently assuming 

an important and active key role in the early stages of decomposition of S. maritima. 
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Fig. S1 Marine fungal taxa associated with Spartina maritima standing plants: Lulworthia sp. (A1-ascoma; A2-ascospores; A3- detail 

of the apical-chamber of ascospores); Natantispora retorquens (B1-ascoma; B2-immature ascus; B3/B4-ascospores); Panorbis 

viscosus (C1-ascomata; C2-ascus; C3-ascospores); Buergenerula spartinae (D1-hyphopodia; D2-ascus; D3/D4-ascospores); 

Aniptodera chesapeakensis (E1-ascoma; E2-immature ascus; E3/E4-ascospores); Mycosphaerella sp. I (F1-ascoma; F2-ascus; F3/F4-

ascospores); Mycosphaerella sp.2 (G1-ascoma; G2-asci; G3-ascospore); Sphaerulina orae-maris (H1-ascoma; H2/H3-asci; H4-

ascospore); Byssothecium obiones, teleomorph (I1-ascoma; I2-ascus; I3/I4-ascospores); Byssothecium obiones, anamorph (J1-

pycnidium; J2-phialides; J3-conidia); Phaeosphaeria spartinicola (K1-ascoma; K2-asci; K3-ascospore); Stagonospora sp. (L1-

pycnidia; L2/L3-conidia); Phoma sp.1 (M1-pycnidia; M2/M3-conidia); Leptosphaeria marina (N1-ascoma; N2-ascus; N3-ascospore); 

Leptosphaeria sp. (O1-ascoma; O2-ascospore); Decorospora gaudefroyi (P-ascospore); Anthostomella spissitecta (Q-ascospore); 

Halosarpheia trullifera (R-ascospore); Phoma sp.2 (S1-pycnidium; S2/S3-conidia); Stagonospora halyclista (T1-pycnidia; T2-

conidia); Coniothyrium obiones (U1-pycnidium; U2-conidia); Camarosporium roumeguerii (V-conidia); Dictyosporium pelagicum 

(W1/W2-conidia); Fusarium sp. (X-conidium). 
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Abstract 

 

Fungal communities inhabiting live, senescent and decaying leaf sheaths, stems and leaf 

blades of standing plants of Spartina maritima (Curtis) Fernald in two Portuguese salt marshes 

were assessed by fruiting structures- and ITS sequence-based identification methods. Forty-five 

fungi were found on early decaying plants. The molecular method enabled identification of 

infrequent ascomycetes and basidiomycetes (filamentous and yeasts), and the asexual morph 

of Byssothecium obiones and Phaeosphaeria halima. The results suggested that the 

occurrence and ecological role of most frequent fungi on different plant substrates depend on 

the phase of plant life cycle, micro-environmental conditions of substrates and potential fungal 

competitors. Specifically, B. obiones, Natantispora retorquens and Lulworthia sp. 1 seem to be 

involved in the decay of lower culms; Mycosphaerella sp. I, of leaf blades; P. halima and 

Stagonospora sp. 1, of upper standing leaves; and Buergenerula spartinae and Phaeosphaeria 

spartinicola, of all vegetative structures. The presence of these fungi on live vegetative 

structures suggested an earlier endophytic colonisation. 

 

 

Keywords 

 

Marine fungi; Spartina maritima; early stages of decay; leaf sheaths; leaf blades; stems; 

ecological preferences; potential ecological roles; ITS rDNA libraries 

 

 

Introduction  

 

Spartina species represent one of the main dominant halophytes in temperate salt marsh 

ecosystems, contributing significantly to the annual biomass production and nutrient budget 

(Castillo et al. 2010; Curado et al. 2013). Given the fact that the bulk of Spartina biomass is 

composed of cell wall recalcitrant polymers, particularly lignocellulose ( 75%; Maccubbin and 

Hodson 1980; Hodson et al. 1984; Torzilli and Andrykovitch 1986), the release of nutrients to 

the surrounding environment strictly depends on the degradative activity of microbial 

communities, particularly of saprobic fungi (Gessner 1980; Torzilli and Andrykovitch 1986; 

Bergbauer and Newell 1992). The decomposition of Spartina species, similarly with other grass-

like plants, is initiated in senescent vegetative structures that remain in natural position (Newell 

et al. 1989; Newell 1993; Castro and Freitas 2000; Newell and Porter 2000; Menéndez and 

Sanmartí 2007). The senescence, which may begin very early in the growing season (Samiaji 

and Barlocher 1996; Menéndez and Sanmartí 2007), occurs gradually from the outer and lower 

vegetative structures towards the inner and higher structures (Samiaji and Barlocher 1996; 

Kneib et al. 1997; Newell 2001a). Typically, a sequential abscission of the more decomposed 

leaf blades occurs, but the leaf sheaths remain attached to stems until complete breakdown 

(Healy and Walters 1994; Menéndez and Sanmartí 2007).  The stems, enwrapped by 
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successive and overlapping layers of leaf sheaths that arise from each node, only start to 

senesce when become more exposed to air, i.e. when the surrounding leaf sheaths are 

fragmented or detached from the stems.  

The senescent process is induced by external and internal factors and involves physiological 

changes and chemical transformation of the plant tissues (Buchanan-Wollaston 1997; 

Hortensteiner and Feller 2002). Although most antimicrobial and more complex polymers 

remain after senescence (Valiela et al. 1979; Wilson et al. 1986a,b; Graça et al. 2000), some 

soluble tannins and phenolics may leach out quickly during the initial stages of decay process 

(Raghukumar 2004). Decomposition is initiated by mycelial fungal species that previously 

inhabit internal photosynthetic plant tissues as endophytes and/or are able to withstand the 

antimicrobial substances in the senescent material (Raghukumar 2004; Cornick et al. 2005). 

Some endophytic fungal species demonstrated physiological adaptability to switch to a saprobic 

life style after a physical or maturational change in the host plants, like senescence (Alva et al. 

2002; Kumaresan and Suryanarayanan 2002; Promputtha et al. 2007, 2010). Among these, 

some endophytes were shown to be morphologically and phylogenetically similar with their 

saprobic counterparts (Alva et al. 2002; Kumaresan and Suryanarayanan 2002; Promputtha et 

al. 2007, 2010).  

Pioneer mycelial decomposers combine their filamentous and pervasive growth mode with the 

production of extracellular enzymes to initiate an extensive lysis with physical disruption and 

chemical transformation of intact plant tissues (Newell et al. 1996b; Hyde et al. 1998; Newell 

and Porter 2000; Kis-Papo 2005). Simultaneously, some pioneer fungi have the ability to 

metabolize some antimicrobial substances, such as cinnamic acids, ameliorating 

microenvironmental conditions for subsequent fungal decomposers (Newell 1993). 

Ascomycetous fungi play a more relevant role during this initial standing-decay phase, 

dominating the microbial assemblages (Newell 1993, 1996, 2001a; Newell and Porter 2000). As 

the decomposition carried out by these fungi proceeds, the organic matter content in the various 

vegetative structures decreases (Buchan et al. 2003); a considerable fraction of dissolved 

organic matter is readily leached out, and about 10–20% is converted into fungal biomass in 

form of mycelia and reproductive structures (Newell et al. 1989, 1996a, 2000; Newell and 

Wasowski 1995; Samiaji and Barlocher 1996; Newell and Porter 2000; Newell 2001b). The 

substrate remains potentially nutrient-depleted with high lignin and low nitrogen contents in final 

stages of decomposition (Torzilli and Andrykovitch 1986). The physical and chemical changes 

of Spartina substrates during decomposition have been postulated to interfere with fungal 

community dynamics (Gessner 1977; Buchan et al. 2003; Raghukumar 2004; Barata 2006).  

Previous studies on the decomposition process of Spartina species mainly focused on the 

dominant fungi associated with standing decaying leaf blades of S. alterniflora in U.S. salt 

marshes (Newell and Wasowski 1995; Newell and Zakel 2000; Newell et al. 2000; Newell 

2001a; Buchan et al. 2002; Lyons et al. 2010; Walker and Campbell 2010).  

The fungal community associated with Spartina maritima (Curtis) Fernald, one of the main 

pioneer colonisers of salt marsh mudflats in southern European and North African coastlines 
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(Sánchez et al. 2001) and one of the dominant macrophytes in Portuguese salt marshes, has 

been poorly investigated: Barata (1997, 2002) and Calado et al. (2015) together inventoried 

fungi on standing plants from five geographically and physically distinct salt marshes; Barata 

(2006) surveyed stem baits exposed to different abiotic conditions in one of these salt marshes; 

and Azevedo et al. (2012) analysed drift stems collected in four Portuguese sandy beaches. 

The identification of species relied on the morphological features of fungal structures produced 

at the time of collection and/or after incubation.  

The advent of molecular techniques has contributed greatly to overcome the major drawbacks 

of traditional culture- and microscopy-based techniques in documenting fungal diversity and to 

provide a more accurate taxonomic classification of fungi (Buchan et al. 2002; Lyons et al. 

2005; Pang and Mitchell 2005; Torzilli et al. 2006; Walker and Campbell 2010; Jones 2011a; 

Abdel-Wahab and Bahkali 2012). Internal transcribed spacers (ITS) of the rDNA operon region 

have been frequently used for fungal species identification because they are present in multiple 

copies within each cell, easily amplifiable by Polymerase Chain Reaction (PCR) and highly 

variable in sequence (Buchan et al. 2002; Nilsson et al. 2006; Arnold 2007; Aveskamp et al. 

2010; Schoch et al. 2012; Velmurugan et al. 2013). Except for some taxonomic groups which 

have very conserved ITS, this region is widely accepted as the most powerful universal DNA 

barcode for fungi (Schoch et al. 2012; Toju et al. 2012). Even though many marine fungal 

species have been already sequenced, ITS sequences for a number of marine fungi are not yet 

available in international databases for sequence comparison (Nilsson et al. 2006; Porter and 

Golding 2011; Schoch et al. 2012). For this reason, and also the systematic biases associated 

with PCR amplification and/or cloning techniques (Buchan et al. 2002, 2003; Pang and Mitchell 

2005; Toju et al. 2012), molecular techniques should be coupled with other methods to study 

fungal community dynamics.  

Thus, the present study intended to provide a more realistic representation of fungal community 

associated with standing plants of S. maritima in salt marsh ecosystems, by combining 

morphological and molecular approaches. Specifically, the main purposes were to complement 

the list of fungi associated with S. maritima recently published by Calado et al. (2015) and to 

infer about ecological preferences and involvement of these fungi during the decay process of 

standing leaf sheaths, leaf blades and true stems, using morphological (fungal structures 

identification) and molecular (ITS sequencing) techniques. 

 

 

Material and Methods 

 

Study sites, host plant and sampling procedure 

 

The study was performed in two salt marshes located in distinct geographical regions, the 

Guadiana estuary (Castro Marim) situated in the southeastern coast (37.23° N, 7.42° W), and 
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the Ria de Aveiro coastal lagoon in the northwest of Portugal (40.62° N, 8.74° W). Both estuary 

and coastal lagoon also differ in physical configuration and conservation status.  

Field sampling procedure involved a bimonthly collection of mature standing plants in Castro 

Marim and Ria de Aveiro salt marshes, over a two-year period (October 2010 to August 2012). 

Twenty plants were collected on the first three sampling periods and 15 plants afterwards (a 

total of 390 plants); five additional plants during the second sampling year were also collected 

for isolation of marine fungi. 

A detailed description of the study sites, S. maritima communities and sampling criteria can be 

found in Calado et al. (2015).  

 

Morphology-based species identification  

 

The collected plants were carefully rinsed with running tap water to remove fine-grained 

sediments and seaweeds, and air-dried. Each air-dried plant was first separated into three 

categories according to the vegetative structure –leaf blade, leaf sheath and stem – and 

subsequently into three further subcategories based on the visually observed physiological state 

of the structure – live (green parts), senescent (yellow parts, with the physical structure still 

intact) and decaying (brown parts, with the physical structure visibly altered). This separation 

resulted in nine different samples that were designated as substrates, i.e. live leaf sheaths, 

senescent leaf sheaths, decaying leaf sheaths, live stems, senescent stems, decaying stems, 

live leaf blades, senescent leaf blades and decaying leaf blades. 

Fungal structures (fruit bodies, spores and hyphopodia) observed on each plant substrate were 

picked up under a dissecting microscope (Wild M8), mounted in a drop of sterile seawater on a 

slide, examined under a light microscope (Leitz Laborlux S, with Normaski) with detailed 

morphology recorded. The fungi were identified using the dichotomous keys of Kohlmeyer and 

Kohlmeyer (1979), Kohlmeyer and Volkmann-Kohlmeyer (1991), Hyde and Sarma (2000) and 

Jones et al. (2009). 

Plant substrates collected in the same study site and sampling date were mixed together, frozen 

at -80 °C and freeze-dried for three days in a Christ Alpha I-5 apparatus at 10
-1

mbar and -42 °C.  

 

Isolation of marine fungi and preservation of pure cultures  

 

Several strains of the most frequent fungal taxa were isolated by single spore method 

(described in detail by Calado et al. 2015). Each pure culture was maintained in active growth in 

cornmeal agar made with sterile aged diluted seawater (CMA/sw 50 %) at 4 °C, and as mycelial 

discs (7 mm diameter) in McCartney bottles filled with sterile diluted seawater (50%) at 4 °C and 

in cryotubes filled with glycerol (10%) at -80 °C.  
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DNA extraction and amplification of ITS genes 

 

Twenty-three fungal isolates (belonging to the nine most frequently collected fungal taxa; 

Calado et al. 2015) obtained from S. maritima were used to create a reference database for 

comparing and identifying fungal sequences recovered from 88 lyophilized plant samples 

(representing the first sampling year, October 2010 to August 2011).  

Genomic DNA was extracted from axenic cultures using a standard phenol–chloroform protocol 

adapted from Pang et al. (2008). The DNA extraction from plant samples involved the 

maceration of c.a. 0.05 g of each plant sample to a fine powder in liquid nitrogen and a thermal 

incubation of the material (water bath at 70 °C for 15 min, liquid nitrogen for 2 min and water 

bath at 70 °C for 15 min); the subsequent steps of the procedure were identical to the procedure 

of DNA extraction from axenic cultures. 

Amplification and sequencing of the ITS regions of pure fungal cultures were conducted using 

primer pairs ITS5 (5´ GGAAGTAAAAGTCGTAACAAGG 3´)/ ITS4 (5´ 

TCCTCCGCTTATTGATATGC 3´) (White et al., 1990). The primer pairs ITS1-F_KYO1 (5´ 

CTHGGTCATTTAGAGGAASTAA 3´)/ ITS4_KYO3 (5´CTBTTVCCKCTTCACTCG 3´) (Toju et 

al., 2012) were used for selective amplification of fungal rDNA in mixed DNA samples (plant 

materials). Both primer pairs cover partial sequences of 18S rRNA, complete sequences of 

ITS1, 5.8S rRNA and ITS2, and partial sequences of 28S rRNA genes.  

PCR amplifications were performed in 25 µL reaction volumes, containing 0.8 µM of each 

primer, 12.5 µL of Taq Premix (Cat.No. RT803A, Bioman, New Taipei City, Taiwan) and 1 µL of 

genomic DNA. PCR was carried out on a thermocycler (Biometra T3000) using the following 

parameters: initial denaturation for 5 min step at 95 °C, 34 cycles of 30 s at 95 °C 

(denaturation), 30 s at 55 °C (primer annealing) and 30 s at 72 °C (elongation), then a final 

elongation step of 5 min at 72 °C.  

Amplicons of pure fungal isolates were directly sent to Genomics Biosci. & Tech. (New Taipei 

City, Taiwan) for sequencing, using the same pair of PCR primers.  

Amplicons from plant samples were cloned in order to isolate individual amplicons of the mixed 

PCR products; in this study, cloning and restriction analysis were preferred over the next-

generation sequencing approach given the expected high number and lengths of the amplicons. 

 

ITS region clone libraries construction and restriction profiles analysis 

 

PCR products from each plant sample were purified using the EasyPure PCR/Gel Extraction Kit 

(BIOMAN, Scientific CO, LTD, Taiwan), following the manufacturer’s instructions. Purified 

amplicons were ligated into a TA cloning vector, using the RBC TA Cloning Vector Kit (RBC 

Bioscience Corp., Taiwan). After ligation, the mixture was used directly to transform Escherichia 

coli DH5α competent cells using RBC HIT Competent Cells Kit (RBC Bioscience Corp., 

Taiwan). Detection of transformed cells with recombinant DNA was performed through blue-

white screening technique. Twenty white colonies were selected, and each one was transferred 
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into Luria Broth medium; a colony PCR was conducted in 20 µL reaction volume, with  2 µL of 

every bacterial suspension, 0.5 µM of each previously used primers and 10 µL of Taq Premix. 

ITS region clone libraries from 88 plant samples included a total of 1037 sequences. A 

restriction fragment length polymorphism (RFLP) analysis was used to categorise 

phylogenetically related sequences (Pang and Mitchell 2005).  

Several restriction enzymes were tested on ITS of pure fungal isolates of the most common 

fungi on S. maritima and HpyF31 (DdeI) produced patterns that enabled differentiation of 

different fungal species (results not shown). Restriction enzyme digestion reaction followed the 

manufacturer´s instructions (Cat.No. ER1881, Thermo Scientific, New Taipei City, Taiwan). All 

the clones that exhibited different restriction profiles in the same plant sample were selected. 

Three hundred out of 1037 clones were sent to Genomics Biosci. & Tech. (New Taipei City, 

Taiwan) for sequencing in one direction. 

 

Sequence alignment and phylogenetic analyses 

 

ITS sequences of the 23 pure fungal isolates were assembled and manually adjusted to obtain 

a consensus sequence using DNA Baser Sequence Assembler v4.10 software (2014; Heracle 

BioSoft, www.DnaBaser.com). These sequences, as well as the 300 single-stranded full-length 

sequences retrieved from plant samples, were compared with those sequences available in 

GenBank database of National Center for Biotechnology Information (NCBI). The fungal ITS 

sequence-based classification relies on the phylogenetic relationships among species, using the 

BLAST best-hit method to classify an unknown sequence (Porter and Golding 2011). In this 

study, the sequences were identified to lowest possible taxonomic level based on a cut-off value 

of 97% of sequence similarity and 90% of sequence cover for species proposed by Nilsson et 

al. (2012) and Blaalid et al. (2013). Identification name provided by reference database was 

always adopted over the one provided by public database whenever there was a higher 

homology between the unknown sequence and a reference sequence. All the BLAST best-hits 

were retrieved from GenBank for further analysis. Even though BLAST top hits were mostly 

selected, the next best hits were retrieved whenever there was a better proposal in the list with 

similar cover/identity rates, i.e. of a fungal species that had been previously identified by 

morphological methods but not isolated in culture.  

In a preliminary approach, all the sequences assigned to the same taxonomic families were 

grouped together, aligned by ClustalW and submitted to a phylogenetic maximum-parsimony 

analysis using Molecular Evolutionary Genetics Analysis (MEGA) v.6.06 software (Tamura et al. 

2013); operational taxonomic units (OTUs) were then defined. One representative sequence 

was randomly chosen from each defined OTU; 62 out of 300 clones were selected and sent to 

Genomics Biosci. & Tech. (New Taipei City, Taiwan) for sequencing the complementary strand.  

The sequences of representative clones, isolates and BLAST hits representing the main 

taxonomic classes were automatically aligned by ClustalW and refined manually with 

ambiguous regions of alignment removed using MEGA v.6.06 software.  
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Phylogenetic and neighbor-joining distance analyses were additionally performed using the 

same software, in order to confirm the OTUs previously established. Phylogenetic trees were 

constructed using maximum-parsimony and neighbor-joining methods. Maximum-parsimony 

trees were performed using 100 heuristic searches with random stepwise addition of 

sequences, tree-bisection-reconnection (TBR) branch swapping algorithm and maximum 

number of trees to retain set to 100. Characters were equally weighted and gaps were treated 

as missing data. Neighbor-joining trees were performed using p-distance, Jukes-Cantor, 

Kimura-2 and Logdet parameter substitution models. Topological robustness of the 

phylogenetic trees in both maximum-parsimony and distance analyses was estimated by 

performing 1000 bootstrap replicates. Neighbor-joining distance analysis was based on a 

pairwise-distance model. 

 

Data analyses 

 

A more accurate representation of species richness in different plant substrates from Castro 

Marim and Ria de Aveiro salt marshes was obtained by combining the results provided by 

morphological and molecular methods from the first-sampling year. Since the number of fungal 

taxa recorded on each plant substrate might represent a downward-biased estimator of the total 

species richness (Gotelli and Colwell 2010), species richness in the same substrates was also 

calculated using Chao 2 and Jacknife 2 estimators (SChao2 = Sobs+(
m-1

m
)

Q1 (Q1-1)

2 (Q2+1)
 and SJack2 = 

Sobs+[
𝑄1(2𝑚−3)

𝑚
−

𝑄2(𝑚−2)2

𝑚(𝑚−1)
], where Sobs is the total observed number of fungal taxa, m the number 

of samples, Q1 the number of fungal taxa that occurred in only one sample, and Q2 the number 

of fungal taxa that occur in two samples); according to Gotelli and Colwell (2010), these 

estimators are more appropriate to replicated presence/absence data, correcting the observed 

species richness based on the frequencies of the very rarest species. A sample-based 

rarefaction was not performed because one of the plant substrates included only two samples. 

Species composition of fungal communities inhabiting different plant substrates of Castro Marim 

and Ria de Aveiro salt marshes were also compared based on presence/absence and 

percentage frequencies of occurrence of fungal taxa in communities. Presence/absence of 

fungal taxa detected by morphological and/or molecular methods on each plant substrate (live, 

senescent and decaying leaf sheaths, stems and leaf blades), sampling period and study site 

during the first sampling year was compiled in two dataset matrices (one matrix per each study 

site). Percentage frequencies of occurrence of fungal taxa identified by morphological method 

on each plant substrate, sampling period and study site during the total sampling period were 

also determined and organized in two complementary dataset matrices (one matrix per each 

study site); percentage frequencies of occurrence of fungi were obtained from the number of 

plants in which a specific fungus occurred on each substrate divided by the total number of 

plants x 100. Contrary to the general studies, the binary data (presence/absence) were herein 

more informative than frequency data because they included the results provided by two 
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different but complementary methods; moreover, they did not depend on the fruiting patterns of 

fungi, and attributed the same weight to frequent and infrequent species. Nevertheless, 

percentage frequencies of occurrence of fungi on plant substrates throughout the 2-year study 

period provided robust information on fruiting preferences of marine fungi. 

Given the complexity of datasets, multivariate analyses were carried out using the PAST v2.17c 

statistical software (Hammer et al. 2001) to reduce and summarize the data.  

A preliminary and exploratory Cluster analysis was performed on sample-by-species matrices 

with binary data using Bray-Curtis similarity measure index. This index is suggested as an ideal 

coefficient to be used for the construction of similarity matrices given its effectiveness in dealing 

with datasets containing multiple blocks of zeros (Rees et al. 2004). The values identified as 

outliers were excluded from further analyses.  

Additionally to the Cluster analysis, a Nonmetric multidimensional scaling (MDS) analysis was 

also applied on the reconstructed dataset matrices. MDS analysis, which is one of the most 

widely accepted ordination techniques in microbial ecology, only displays the samples in the 

plot based on values generated in a similarity matrix (Clarke and Warwick 2001; Rees et al. 

2004; Ramette 2007). Another ordination method, a Detrended Correspondence Analysis 

(DCA), was also performed with relative frequency data in order to confirm patterns in 

dimensional coordinate plots; DCA is appropriate to model relative frequency data, enabling a 

simultaneous visualization of the samples and species in the ordination plot along an 

environmental gradient. Bray-Curtis index was selected for MDS analysis, whereas chi-squared 

index was implicit in DCA. 

Differences between a priori groups (i.e. plant substrates) established on the basis on the 

presence/absence of species in the samples were statistically assessed through a one-way 

ANOSIM. A post hoc test to assess the significance of pairwise comparisons between 

substrates was also carried out.  

 

 

Results and Discussion 

 

Molecular identification of ITS sequences retrieved from plant samples 

 

The majority of the 1037 ITS sequences recovered from S. maritima plant samples (99%) were 

identified. As demonstrated previously by Toju et al. (2012), the primers pair ITS1-F_KYO1/ 

ITS4_KYO3 used in this study was highly fungal-specific, considering the low number of non-

fungal sequences recovered with these primers (0.1%); in contrast, most of the sequences 

amplified by the primers pair ITS5/ ITS4 belonged to S. maritima (86%).  

The restriction enzyme HpyF31 (DdeI) was demonstrated to be able to provide better 

discriminatory results for fungal sequences than HaeIII, frequently used in T-RF technique 

(Buchan et al. 2002; Walker and Campbell 2010).  
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Fungal ITS sequence length (including partial 18S and 28S and full length 5.8S rDNA) of the 

representative clones from both Castro Marim and Ria de Aveiro salt marshes ranged from 365 

to 674 bp. These sequences were identified to the lowest taxonomic rank possible and grouped 

in OTUs based on results from BLAST searches and phylogenetic analyses (Table 1, Figs. 1a, 

b).   

 

Table 1 Fungal taxa identified on Spartina maritima samples by molecular methods. Pure fungal cultures previously 

isolated by morphological methods and representative clones assigned to the same fungal species on the basis of 

similar BLAST results and positions on phylogenetic trees, were grouped together. Best BLAST hits of clones and pure 

fungal isolates are mentioned, as well as homology scores between sequences 
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Fig. 1 Phylogenetic consensus trees based on a maximum parsimony analysis for the Dothideomycetes (a) and 

Sordariomycetes (b), showing the placement of clone sequences, isolate sequences (marked with an asterisk ) and 

BLAST best-hit sequences. Bootstrap values higher than 50 are shown on the left side of the tree nodes; the first value 

refers to maximum parsimony analysis and the second and subsequent values to neighbor-joining analyses performed 

with p-distance, Jukes-Cantor, Kimura-2 and Logdet parameter substitution models respectively 

 

Primer sets used in this study enabled amplification and species delimitations from both 

Ascomycota and Basidiomycota phyla (Table 1). 

Maximum parsimony analyses of the ITS sequences included in the Dothideomycetes and 

Sordariomycetes generated 1 and 60 most-parsimonious trees respectively. The topological 

differences between the 60 equally parsimonious trees recovered from the Sordariomycetes 

dataset were restricted to branching order of clades and positions of three sequences 

(AV3BVc7, CM3BS2c4, CM4CS1c3). 

Most of the terminal clades provided by parsimony and distance analyses were concordant and 

supported by similar high levels of bootstrap (Figs. 1a, b).  

The best parsimony tree of the Dothideomycetes clearly separated different OTUs in different 

clades.  
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Clones AV1LS2c13, AV2LVc1 and AV3LS1c1 were identified as Mycosphaerella sp. based on 

the BLAST results (Table 1) and the highly-supported clade where they were integrated (Fig. 

1a); however, the pairwise distance (9%) between sequences distinguished AV2LVc1 and 

AV3LS1c1 from AV1LS2c13. Even lacking an isolate for comparison, the high abundance of the 

first two amplicons in the clone libraries suggested that these sequences might belong to 

Mycosphaerella sp. I; this species was frequently identified on S. maritima plants from Ria de 

Aveiro salt marsh by its fruiting structures (Calado et al. 2015), but did not grow in culture 

medium.  

Clones CM6BS1c7 and AV3LS1c8 clustered together on a high-supported clade with the isolate 

of Sphaerulina orae-maris and with marine ascomycetes AF422993 and AF422994 (Fig. 1a); 

the separation of this clade in two subclades and the high pairwise distance between the 

sequences of the clones (15%), suggested that this clade may represent two different species.  

Clone CM1BS2c12 formed a monophyletic clade with isolates of Leptosphaeria marina (Fig. 

1a). Also the clones CM1CS2c1, CM4CVc4, CM2BS2c1, AV2BS2c2, AV2BS2c8 and isolates of 

Byssothecium obiones grouped in a distinct monophyletic clade with a high bootstrap support 

(Fig. 1a). The integration of the isolates *08AV2569, *20AV2566 and *27AV2385 (previously 

misidentified as Phialophorophoma litoralis by morphological methods) and the isolates of B. 

obiones *23CM2662, *17CM2441, *13AV2143, *07AV2562 in the same highly supported clade 

(Fig. 1a) and the low pairwise distance between their sequences (0 to 3%) indicated that the 

first three isolates represent a possible asexual morph of B. obiones. 

Clones CM6BVc2 and CM6BVc15 were identified as Decorospora gaudefroyi despite the high 

nucleotide divergence between these and D. gaudefroyi AF394541 sequences (> 5%); the 

reasons for this were the high bootstrap value (Fig. 1a) and the fact that this species was 

previously recorded on the same vegetative structures and study site by morphological methods 

(Calado et al. 2015).  

Some of the clones exclusively detected by molecular methods were only identified to order 

(CM6BS1c3, CM5LVc4/CM6LS1c12 and CM6LS1c3 representing Pleosporales 1, 2 and 3 

respectively) or genus level (CM5LS1c2 representing Phaeosphaeria) given the lack of pure 

isolates and published sequences for comparison at lower taxonomic levels (Table 1, Fig. 1a). 

Clones CM6LS1c15 and CM6BS1c4 were identified as Phaeosphaeria spartinae based on the 

close affinity of these clones to BLAST best-hits (Table 1) with which they formed a well-

supported clade (Fig. 1a). 

Clones CM1LVc8, CM2LVc18, CM3LS2c15 were included in Stagonospora clade, which 

comprised isolates and BLAST best-hits (Fig. 1a). The clone AV3LS1c14 was also representing 

the genus Stagonospora based on the BLAST results (Table 1), but was a different species 

(Fig. 1a). The positions of Stagonospora sp. 1 and 2 in the trees suggested that both species 

might be asexual morphs of the Pleosporales; Stagonospora sp. 1 might also be an asexual 

morph of Phaeosphaeria as this fungus produces seven-septate conidia (Fig. S1 in Calado et 

al. 2015) as the asexual morphs of Phaeosphaeria (Câmara et al. 2002; Kirk et al. 2008; Zhang 

et al. 2009).  
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Isolates previously identified as Phoma sp.1 (Calado et al. 2015) were found to be the asexual 

morph of Phaeosphaeria halima by BLAST results (Table 1). Clones CM6LS1c2, CM4LVc9, 

AV1LS1c10, AV3BVc5 were closely related with these isolates and with P. halima AF422971 

and AF422991 retrieved from GenBank, forming a distinct clade but poorly supported (Fig. 1a); 

this clade was separated into two relatively well-supported subclades. Pairwise distance 

between sequences included in distinct subclades varied between 4 and 8%. The high 

sequence divergence of ITS sequences of P. halima has already been documented by Buchan 

et al. (2002), who observed that strains of P. halima isolated from S. alterniflora and decaying 

wood grouped in a high-supported clade with a 84% sequence similarity. Clone AV2LVc11, 

although identified as P. halima, was placed in the sister clade representing Phaeosphaeria 

spartinicola, which highlighted the high homology between both species (Fig. 1a). This last 

clade comprised clones CM1LS1c2, CM2LS1c1, AV1LVc1 and AV3LS2c 7, isolates of P. 

spartinicola and sequences of this species retrieved from GenBank (Table 1, Fig. 1a); 

nevertheless the low bootstrap value supporting this clade, the pairwise distance between 

sequences was lower than 2%.  

In the maximum parsimony tree of the Sordariomycetes, all the defined OTUs were 

distinguished (Fig. 1 b). 

The ITS sequence of the clone AV3CVc6 was compared with several unpublished sequences of 

the Halosphaeriaceae and showed high homology with Halosarpheia fibrosa (pairwise distance 

between sequences was 5%); considering that H. fibrosa has only been described from 

mangroves, particularly in subtropical regions (Hyde and Lee 1995), and that Halosarpheia 

trullifera was previously recorded in leaf sheaths of S. maritima (Calado et al. 2015), it is more 

likely that the clone represented the latter species. However, the lack of an isolate or published 

sequences of H. trullifera for comparison did not enable an identification to species level (Table 

1). Clones AV3BVc7 and CM3BS2c4 also did not cluster with any other taxa or show high 

affinity with BLAST best-hits (Table 1, Fig. 1b), being designated as unidentified 

Halosphaeriaceae 1 and 2 respectively given their position on the phylogenetic tree. Clones 

AV5BVc7 and AV5BS2c2 were identified as Natantispora retorquens based on the highly 

supported clade comprising these clones and isolates of this species (Fig. 1b).  

The clone CM6BS1c2 formed a well-supported clade with Anthostomella brabeji (EU552098) 

(Fig. 1b); however, a sequence similarity of 90% to A. brabeji (Table 1) and the record of 

Anthostomella spissitecta on the same study site (Calado et al. 2015) suggested that the clone 

might be best referred as A. spissitecta or another species in the same genus.  

Maximum parsimony and neighbor-joining trees distinguished an entirely separated and highly 

supported clade comprising members of Lulworthiaceae (Fig. 1b). Within this clade, clones 

CM4CS1c3 and CM4CS1c15 grouped in a relatively well-supported subclade, whereas clones 

AV1BS1c1 and AV5BVc12 and isolates of Lulworthia were included in another highly supported 

subclade; the pairwise distance between sequences of the clones positioned in different 

subclades was higher than 5%. The higher homology between the sequences of the clones 

AV1BS1c1 and AV5BVc12 and isolates suggested that all sequences represented the same 
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species, i.e. Lulworthia sp. 1. The higher proximity of this unidentified species of Lulworthia to 

Lulwoana (Table 1) than to other species of Lulworthia may be related to the polyphyly of the 

genus (Campbell et al. 2005; Jones 2011b; Pang 2012).  

Phylogenetic trees also separated the sequences assigned to Nectriaceae in a well-supported 

clade, which was, in turn, divided in two subclades representing the genus Fusarium and 

Cosmospora (Fig. 1b); clones CM3LVc6 and CM3BS2c1 were identified as Fusarium 

oxysporum and Cosmospora sp. respectively, based on the tree and affinity to BLAST best-hits 

(Table 1, Fig. 1b).  

Sequences of the isolates of Buergenerula spartinae and sequences retrieved from GenBank 

formed a monophyletic, highly supported clade with clones AV4BVc2 and CM6BVc13, with a 

high similarity (> 99%) (Fig. 1b). 

In total, the sequences of the 54 representative clones retrieved from the plant samples 

represented 33 fungal taxa (Table 1). These sequences were then used as a reference 

database to identify the remaining 842 sequences (436 and 406 retrieved from Castro Marim 

and Ria de Aveiro samples respectively) (Fig. 2).  
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Fig. 2 Number of amplicons assigned to each fungal taxon retrieved from Castro Marim (a) and Ria de Aveiro (b) plant 

samples: BO Byssothecium obiones; DG Decorospora gaudefroyi; LM Leptosphaeria marina; MyI Mycosphaerella sp. I; 

My3 Mycosphaerella sp. 3; PH Phaeosphaeria halima; PR Phaeosphaeria spartinae; PS Phaeosphaeria spartinicola; Ph 

Phaeosphaeria sp.; Pl Pleospora sp. ; Pl 1 Pleosporales 1; Pl 2 Pleosporales 2; Pl 3 Pleosporales 3; SO Sphaerulina 

orae-maris; Sp Sphaerulina sp.; St 1 Stagonospora sp. 1; St 2 Stagonospora sp. 2; An Anthostomella sp.; BS 

Buergenerula spartinae; CO Cosmospora sp.; Fu Fusarium oxysporum; Ha Halosarpheia sp.; Lu 1 Lulworthia sp. 1;  Lu 

2 Lulworthia sp. 2; NR Natantispora retorquens; Ha1 Unidentified Halosphaeriaceae 1; Ha2 Unidentified 

Halosphaeriaceae 2; PC Penicillium chrysogenum; Gl Gloeotinia sp.; CL Ceriporia lacerata; Ju Junghuhnia sp.; CM 

Cryptococcus mangaliensis; EH Erythrobasidium hasegawianum. Ascomycota and Basidiomycota are represented by 

grey and white colors respectively, and Dothideomycetes, Sordariomycetes,  Eurotiomycetes and Leotiomycetes 

classes by light, medium, medium-dark and dark gray respectively 

 

The results revealed that ITS amplicons more frequently recovered from plant samples 

corresponded to the most frequently fungi recorded by fruiting structures in the same samples, 

i.e.  B. obiones, L. marina, Lulworthia sp. 1, Mycosphaerella sp. I, P. halima, P. spartinicola and 

Stagonospora sp. 1 (Fig. 2; Calado et al. 2015). This means that the abundance of amplicons in 

the clone libraries reflected the real frequencies of occurrence of fungi in Castro Marim and Ria 

de Aveiro salt marshes. The only exceptions were N. retorquens and S. orae-maris in Castro 

Marim plants samples, and B. spartinae on samples from both study sites; the first species was 

not recovered by molecular methods, the second was detected only once, and the third was 

represented by a very few amplicons (Fig. 2). One of the reasons for these exceptions might be 

the high melanisation of cell walls of fungal taxa that may interfere in the extraction of DNA 

(Buchan et al. 2002). The exclusive absence of sequences of N. retorquens from Castro Marim 

samples was totally unexpected and inexplicable.  

Even though the identification of the sequences retrieved from plant samples relied mainly on 

the comparison with published sequences, the sequences of fungal isolates revealed a crucial 

importance in the identification of the most abundant ITS amplicons in the clone libraries (Table 

1, Fig. 2). The entire ITS regions of the frequent fungal taxa B. obiones, L. marina, Lulworthia 

sp. 1, N. retorquens, S. orae-maris and Stagonospora sp. 1 were sequenced for the first time in 

this study. Moreover, the isolation and sequencing of ITS rDNA of sexual and asexual morph of 

B.obiones enabled to establish a connection; the asexual morph of B. obiones identified in this 

study might correspond to the one previously described by Kohlmeyer and Kohlmeyer (1979). 

Since most of fungal species associated with Spartina plants are host-exclusive and temperate 

fungi (Calado et al. 2015), there is still a lack of fungal ITS sequences recovered from species 

of Spartina and salt marsh ecosystems in these databases. Most of the BLAST best-hits were 

provided by Buchan et al. (2002) study that focused on the mycota inhabiting leaf blades of S. 

alterniflora.  

The majority of other sequences and singletons exclusively retrieved by molecular methods 

were also not represented in public databases and thus were not identified to species level. 

Exceptions were the ascomycetes D. gaudefroyi, F. oxysporum, Penicillium chrysogenum and 

P. spartinae and the basidiomycetes Ceriporia lacerata, Cryptococcus mangaliensis and 

Erythrobasidium hasegawianum. 
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Fungal species richness of communities associated with S. maritima 

 

A total of 45 fungal taxa, mostly Ascomycota, were recorded in S. maritima samples; 22 (49%), 

12 (27%) and 11 (24%) were identified by molecular, morphological and both methods 

respectively (Table 1; Calado et al. 2015). The primer sets and cloning procedure enabled the 

detection of the most frequent fungi recorded by morphological methods (Calado et al. 2015), 

but also other infrequent, inconspicuous and/or non-sporulating fungal species for which the 

morphological approach was unable to detect and identify. Basidiomycetes C. lacerata, C. 

mangaliensis and E. hasegawianum, as well as the ascomycete P. chrysogenum, were reported 

for the first time on Spartina substrates. The low representation of single-celled and filamentous 

basidiomycetes in both salt marshes is consistent with previous studies performed in intertidal 

(Gessner and Kohlmeyer 1976; Samiaji and Barlocher 1996; Barata 2002; Calado and Barata 

2012) or marine ecosystems in general (Kohlmeyer and Kohlmeyer 1979; Jones et al. 2009; 

Jones and Fell 2012).  

The species richness obtained in this study may be slightly overestimated based on the fact that 

some infrequent fungi identified by morphological and molecular methods might represent the 

same fungus, such as the following pairs of fungal taxa: A. spissitecta and Anthostomella sp.; 

Fusarium sp. and F. oxysporum; and H. trullifera and Halosarpheia sp.. 

Nevertheless, the number of fungal taxa was found to be higher in comparison with other fungal 

communities inhabiting S. maritima (Barata 1997, 2002) or different Spartina species (Gessner 

1977; Peña and Arambarri 1998; Al-Nasrawi and Hughes 2012), which might be related to the 

combined methodology used herein.  

Similarly as reported by Calado et al. (2015) throughout the observation of fruiting structures, 

the combination of morphological and molecular methods confirmed that the fungal community 

inhabiting Castro Marim salt marsh was more species rich than the community of Ria de Aveiro; 

34 and 26 fungal taxa were recorded in Castro Marim and Ria de Aveiro plant samples 

respectively (Fig. 2; Calado et al. 2015). The higher species richness in Castro Marim, which 

resulted mainly from a high number of less frequent fungi, suggested that this well-preserved 

study site may offer more suitable biotic and abiotic conditions for fungal colonisation than Ria 

de Aveiro salt marsh, especially for more sensitive and vulnerable species. 

 

Species-specific ecological preferences  

 

This study focused on a particular phase of S.maritima life cycle, which implied different 

representativeness of the nine plant substrates at the time of collection, in terms of presence 

and proportion of plant material. This resulted from the time-lag that occurred between the onset 

of senescence and decay processes in different parts of Spartina species. In addition to these 

differences, substrates were positioned differently along the vertical axis of the standing plants, 

presenting different micro-environmental conditions in terms of water and salinity contents 

(Gessner 1977; Kohlmeyer and Kohlmeyer 1979; Barata 2002; Calado et al. 2015). 



133 

 

In this early decay phase, only leaf sheaths under different physiological states were present in 

all sampling periods and study sites (Table 2), and in similar proportions (data not shown).  

 

Table 2 Number of sampling periods during the first year in which each plant substrate was collected, and absolute and 

estimated species richness using Chao 2 and Jacknife 2 estimators in each plant substrate, study site (CM Castro 

Marim; AV Ria de Aveiro) and combination of both study sites 
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Unlike the leaf sheaths that remained attached to the stems as decomposition progressed, most 

of the lower and decayed leaf blades had already abscised before the collection of plants; this 

implied that only the uppermost leaf blades, which were mostly alive or senescent, were 

available at the moment of collection. Most of stems were totally green, even in the lower naked 

portions, which explained the absence or scarcity of senescent and decaying stems during the 

sampling time.  

The low representativeness of senescent and decaying stems and decaying leaf blades might 

explain the low species richness observed and estimated by Chao2 and Jacknife 2 estimators 

for these substrates in comparison with the remaining ones (Table 2); this hypothesis was 

based mainly on previously studies that documented a high percentage of colonisation, species 

richness and diversity on drift decaying stems of S. maritima (Azevedo et al. 2012) and 

decaying leaf blades of S. alterniflora (Buchan et al. 2002; Walker and Campbell 2010). 

Similarly, the high species richness observed and estimated for live, senescent and decaying 

leaf sheaths in both study sites (Table 2) might have resulted from a high availability of these 

substrates at the time of collection, but may also be related with the morphochemical 

characteristics of these vegetative structures. Leaf sheaths are wider, with a lower phenolic 

content, more aerenchyma and structurally tougher but less lignified than leaf blades (Anderson 

1974; Graça et al. 2000); stems are more heavily lignified (Hodson et al. 1984) and with a lower 

nitrogen content than leaves (Cartaxana and Catarino 1997; Curado et al. 2013). 

Even though the estimates of species richness pointed out for an insufficient sampling effort 

(Table 2), the detection of the most frequent fungal taxa by both methods suggested that it was 

the minimum required to adequately record the most important fungal taxa occurring in this 

phase of S. maritima life cycle. 

The comparison of the species composition of communities inhabiting the nine plant substrates 

revealed that it varied mostly between different vegetative structures (Tables 3 and 4). 

 

Table 3 Percent frequencies of occurrence (V very frequent: >20%; F frequent: 10-20%; I infrequent: <10%, according 

to the 3 categories proposed by Tan et al (1989)) and/or presences ( ̶ ) of fungal taxa on different plant substrates in 

Castro Marim salt marsh in each sampling period, identified by morphological and molecular methods respectively; the 

superscript letters mark those frequencies of occurrence that were calculated based exclusively on the presence of 

hyphopodia (
h
) or spores (

s
) 
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Table 4 Percent frequencies of occurrence (V very frequent: >20%; F frequent: 10-20%; I infrequent: <10%, according 

to the 3 categories proposed by Tan et al (1989)) and/or presences ( ̶ ) of fungal taxa on different plant substrates in Ria 

de Aveiro salt marsh in each sampling period, identified by morphological and molecular methods respectively; the 

superscript letters mark those frequencies of occurrence that were calculated based exclusively on the presence of 

hyphopodia (
h
) or spores (

s
) 
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The most frequent fungi found in both salt marshes demonstrated a clear prevalence on leaf 

sheaths, stems and/or leaf blades regardless their physiological state (Tables 3 and 4). 

Specifically, B. obiones, Lulworthia sp. 1 and N. retorquens were recorded on leaf sheaths and 

stems; P. spartinicola, P. halima and Stagonospora sp. 1 on leaf sheaths and blades; and B. 

spartinae hyphopodia on all vegetative structures.  

Mycosphaerella sp. I, an exclusive and very frequent fungus from Ria de Aveiro salt marsh, was 

found on leaf blades under different physiological states. L. marina and S. orae-maris, two 

exclusive and frequent fungi from Castro Marim salt marsh, were only identified on senescent 

and decaying leaf sheaths.  

Even though the remaining species were recorded on particular plant substrates, their 

infrequency did not allow to accurately clarify their ecological preferences during this phase of 

plant life cycle.  

The comparison of different plant substrates based on the presence/absence of fungal taxa in 

all the sampling periods of the first year corroborated most of the above-mentioned ecological 

tendencies (Figs. 3 and 4). 
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Fig. 3 Cluster dendrogram based on Bray-Curtis similarities of plant substrates, considering the presence/absence of 

fungal taxa on each plant substrate, in each sampling period and in each study site (a Castro Marim; b Ria de Aveiro). 

The first three letters of the code name indicate the substrate (LLs-live leaf sheaths, SLs-senescent leaf sheaths, DLs-

decaying leaf sheaths, LSt-live stems, SSt-senescent stems, DSt-decaying stems, LLb-live leaf blades, SLb-senescent 

leaf blades, DLb-decaying leaf blades), the next two letters designate the study site (CM-Castro Marim, AV-Ria de 

Aveiro) and the number indicates the sampling period (1-Oct10, 2-Dec10, 3-Feb11, 4-Apr11, 5-Jun11, 6-Aug11). 

Different symbols correspond to different plant substrates:  live leaf sheaths,  senescent leaf sheaths,  decaying 

leaf sheaths,  live stems,  senescent stems,  decaying stems, + live leaf blades,  senescent leaf blades,  

decaying leaf blades 

 

 

 

Fig. 4 Nonmetric multidimensional scaling plot based on Bray-Curtis similarities of plant substrates considering the 

presence/absence of fungal taxa in each plant substrate, in each sampling period and in each study site (a Castro 

Marim; b Ria de Aveiro). Different symbols correspond to different plant substrates:  live leaf sheaths,  senescent leaf 
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sheaths,  decaying leaf sheaths,  live stems,  senescent stems,  decaying stems, + live leaf blades,  

senescent leaf blades,  decaying leaf blades 

 

Cluster analysis and MDS ordination clearly differentiated the samples that represent different 

vegetative structures, i.e. leaf sheaths, stems and leaf blades, regardless of their physiological 

states. However, based on the s-stress values provided by MDS analyses (Castro Marim: 0.17; 

Ria de Aveiro: 0.30), the ordination of Castro Marim samples in the plot represented well the 

relationships among them, while the Ria de Aveiro samples seem to be more randomly 

distributed in the 2-dimensional ordination space. 

Both analyses revealed a higher similarity between the communities inhabiting leaf sheaths and 

blades in Castro Marim, and leaf sheaths and stems in Ria de Aveiro salt marsh; stems and leaf 

blades yielded the most dissimilar fungal communities.  

ANOSIM analyses showed significant differences in the fungal communities on plant substrates 

from both salt marshes (R=0.7, p<0.001); in the majority of posterior pairwise comparisons, no 

significant differences were found among substrates representing the same vegetative structure 

(data not shown). 

The comparison of the same plant substrates based on the fruiting patterns of fungal colonisers 

along a two-year study period by a DCA (Fig. 5) analysis confirmed the existence of three main 

ecological niches. 
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Fig. 5 Two-dimensional DCA plot expressing the spatial distributions of fungal taxa and the nine plant substrates based 

on the frequencies of occurrence of fungal taxa in each plant substrate, in each sampling period and in each study site 

(a Castro Marim; b Ria de Aveiro). Different symbols correspond to different plant substrates:  live leaf sheaths,  

senescent leaf sheaths,  decaying leaf sheaths,  live stems,  senescent stems,  decaying stems, + live leaf 

blades,  senescent leaf blades,  decaying leaf blades. The two-letters code represent  fungal taxa: AC Aniptodera 

chesapeakensis, AS Anthostomella spissitecta, BO Byssothecium obiones, BS Buergenerula spartinae ascomata, BSh 

Buergenerula spartinae hyphopodia, CO Coniothyrium obiones, CR Camarosporium roumeguerii, DG Decorospora 

gaudefroyi, DP Dictyosporium pelagicum, Fu Fusarium sp., HT Halosarpheia trullifera, LM Leptosphaeria marina, Lu1 

Lulworthia sp. 1, MyI Mycosphaerella sp. I, My2 Mycosphaerella sp. 2, NR Natantispora retorquens, PH Phaeosphaeria 

halima, Ph2 Phoma sp. 2, PS Phaeosphaeria spartinicola, SH Stagonospora haliclysta, SO Sphaerulina orae-maris, St1 

Stagonospora sp. 1 

 

The first dimension of DCA-ordination (Fig. 5), with a high eigenvalue for both datasets (Castro 

Marim: 0.71; Ria de Aveiro: 0.94), clearly separated the samples according to the three 

vegetative structures represented by them. The higher proximity of the fungal taxa to particular 

vegetative structures in the plots confirmed the species-specific ecological preferences in this 

phase of plant life cycle.  

Considering the fact that the majority of the most frequent fungal taxa in these communities 

have been already recorded on other Spartina species (Calado et al. 2015), the results from this 

and similar studies were combined in order to assess the ecological patterns of these fungi. 

Byssothecium obiones, N. retorquens and Lulworthia sp. 1, which colonise preferentially the 

basal portions of standing Spartina plants (Calado et al. 2015), dwell on live, senescent and 

decaying leaf sheaths and stems naturally positioned (Tables 3 and 4; Newell 1993; Newell et 

al. 1996a; Barata 1997, 2002; Peña and Arambarri 1998; Cornick et al. 2005) and collapsed 
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and unrooted stems (Gessner 1977). Leptosphaeria marina, a fungus that also occurs on the 

basal plant portions (Calado et al. 2015), is found inhabiting standing-senescent and -decaying 

leaf sheaths of S. maritima (Table 3) and rooted- and unrooted-decayed stems of Spartina spp. 

(Gessner and Kohlmeyer 1976). Sphaerulina orae-maris, a coloniser of middle plant portions 

(Calado et al. 2015), colonises standing-senescent and -decaying leaf sheaths of S. maritima 

(Table 3; Barata 1997, 2002); this species was also identified on stem baits of the same host 

plant (Barata 2006). B. spartinae, another species that occupies middle plant portions (Calado 

et al. 2015), develops hyphopodia under certain circumstances, which strongly adhere and 

penetrate the surfaces of living, senescent and decaying leaves and stems of Spartina plants 

(Tables 3 and 4; Gessner 1977; Kohlmeyer and Kohlmeyer 1979; Barata 1997). Hyphopodia 

were demonstrated by Onyile and Gessner (1982) to be produced at a wide range of 

environmental conditions, including less favorable conditions for fungal growth. The presence of 

hyphopodia may indicate that the ideal conditions for sexual reproduction were not totally 

achieved. In this study, ascomata of B. spartinae were exclusively and infrequently recorded on 

decaying leaf sheaths (Tables 3 and 4). However, these structures have been previously 

reported from standing-decaying leaf blades and stems (Gessner 1977; Kohlmeyer and 

Kohlmeyer 1979; Newell and Wasowski 1995; Newell et al. 1996a, 2000; Barata 1997, 2002; 

Newell and Porter 2000; Newell 2001a; Buchan et al. 2002; Walker and Campbell 2010) and 

drift material (Peña and Arambarri 1996; Azevedo et al. 2012) from S. maritima and other 

species of Spartina. Phaeosphaeria halima, a coloniser of middle plant portions (Calado et al. 

2015), inhabits decaying leaf blades of Spartina spp., co-occurring with P. spartinicola and 

Stagonospora sp. (Tables 3 and 4; Newell and Wasowski 1995; Newell and Porter 2000; Newell 

and Zakel 2000; Newell 2001a; Buchan et al. 2002, 2003; Lyons et al. 2003; Walker and 

Campbell 2010). In this study, this species was also recorded on living and senescent leaf 

blades and on leaf sheaths in all physiological states. However, and contrary to similar studies, 

this species only differentiated asexual reproductive structures; the factors that trigger the 

asexual or sexual reproduction in holomorphic species are not yet clearly understood.  

Phaeosphaeria spartinicola and Stagonospora sp. 1 extend their distribution area to the top leaf 

blades, where they are more frequent (Calado et al. 2015) and dominant (Newell and Wasowski 

1995; Newell and Porter 2000; Newell and Zakel 2000; Newell 2001a; Buchan et al. 2002; 

Walker and Campbell 2010). Even though these last mentioned studies had only reported P. 

spartinicola from decaying leaf blades, this species and Stagonospora sp. 1 were identified 

herein on leaves under all physiological states (Tables 3 and 4); on leaf sheaths, they occupy a 

small area directly adjacent to the ligule. Barata (2006) and Azevedo et al. (2012) also reported 

P. spartinicola and unidentified species of Stagonospora from stem baits and drift stems of S. 

maritima, although with a much lower frequency of occurrence. Mycosphaerella sp. I, a 

coloniser of the top plant portions (Calado et al. 2015), occurs exclusively on leaf blades, 

particularly on the most decayed ones (Table 4; Newell and Wasowski 1995; Barata 1997; 

Newell 2001a; Walker and Campbell 2010); in this study, this species was also found on live 

and senescent leaf blades.  A positive interaction between P. spartinicola and Mycosphaerella 
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sp. II in leaf blades of S. alterniflora to suppress competitors (e.g. P. halima, B. spartinae) has 

already been suggested by some authors (Newell and Porter 2000; Newell 2001a; Buchan et al. 

2003; Walker and Campbell 2010), and might actually have occurred in this study with a 

different species of Mycosphaerella.  

Even though the low frequency of the remaining fungal species limited an understanding of their 

ecological patterns, the combination of data from this and similar studies that focused on fungal 

communities associated with Spartina spp. confirmed or complemented the information about 

the ecology of species: A. spissitecta occurs on decaying leaf sheaths (Table 3; Kohlmeyer and 

Volkmann-Kohlmeyer 2002); A. chesapeakensis colonises senescent leaf sheaths and stems 

(Tables 3 and 4; Barata 2006); D. pelagicum occurs on senescent and decaying leaf sheaths 

and decaying stems (Tables 3 and 4; Barata 1997, 2002, 2006; Azevedo et al. 2012); F. 

oxysporum is found on all vegetative structures (Tables 3 and 4; Al-Nasrawi and Hughes 2012); 

P. spartinae inhabits senescent and decaying leaves and decaying stems (Table 3; Newell 

1993; Newell et al. 1996a; Barata 1997; Peña and Arambarri 1998); P. viscosus occurs on 

decaying leaves and stems (Table 3; Buchan et al. 2002, 2003; Barata 2006; Azevedo et al. 

2012).  

In conclusion, the results suggested an enrichment of fungi along the decay process of leaf 

sheaths, stems and leaf blades instead of a real succession of fungal species. Despite the 

decrease of soluble organic compounds and increase of recalcitrant materials and interspecific 

competition for space and nutrients as the decomposition progresses, more decayed substrates 

presented low content of antimicrobial substances. In addition to the enrichment of species, 

senescent and decaying vegetative structures represented the substrates where the majority of 

fungal taxa produced fruiting structures (87% and 83% respectively; Tables 3 and 4). This is in 

agreement with other studies (Newell 1993, 2001a; Newell and Wasowski 1995; Newell and 

Zakel 2000; Buchan et al. 2002; Cornick et al. 2005). Fungal fruiting structures represent the 

end result of the decay process and indicate a substantial amount of supportive mycelium within 

the plant substrate (Newell and Porter, 2000). According to Van Ryckegem and Verbeken 

(2005), the reduction of carbon compounds and/or changes in the proportions of the different 

carbon substrates may trigger fungal reproduction.  

Moreover, the results revealed that the occurrence of most frequent fungi on different substrates 

of Spartina depends on three main factors: (1) phase of plant life cycle and specifically the 

availability of each substrate, (2) vertical position of substrates on standing plants and 

associated micro-environmental conditions (Calado et al. 2015), and (3) potential fungal 

competitors inhabiting the same substrates. Each of these factors might interfere more or less in 

the colonisation process of each fungus, depending on its ecological requirements. The majority 

of these fungal taxa initiate the colonisation process on a particular vegetative structure that 

might proceed to other vegetative structure throughout the decay process. This fact indicates 

that dominant fungal taxa exhibited less nutritive restrictions and high physiological versatility in 

adapting to different ecological niches. 
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Potential ecological roles 

 

The high occurrence of B. spartinae, B. obiones, Lulworthia sp. 1, Mycosphaerella sp. I, N. 

retorquens, P. halima, P. spartinicola and Stagonospora sp. 1 throughout all decay stages of 

the same vegetative structure (Tables 3 and 4, Fig. 5) strongly indicated an high ecological 

importance as saprobes. With the exception of N. retorquens, all the remaining fungal species 

were demonstrated to be involved on the decay process of Spartina spp. and particularly in the 

digestion of lignocellulose present in secondary walls and middle-lamellar layer of cell (Torzilli 

and Andrykovitch 1986; Bergbauer and Newell 1992; Newell et al. 1996b; Newell and Porter 

2000; Buchan et al. 2002, 2003; Lyons et al. 2003, 2010). The marine fungi L. marina and S. 

orae-maris seem to be also playing an important ecological role as saprobes in the leaf sheaths 

that have already undergone natural senescence (Table 3).  

The detection of B. spartinae, B. obiones, Lulworthia sp. I, Mycosphaerella sp. I, N. retorquens, 

P. halima, P. spartinicola and Stagonospora sp. 1 on live plant tissues, either by molecular, 

morphological or both methods together, raises some questions about the life style of these 

species before the onset of senescence. It is not possible to unequivocally conclude if these 

fungi were present as functional or metabolically inactive propagules since the surfaces of plant 

samples were not-sterilised and the genetic molecule used in this study was not appropriate for 

selection of active members of community. According to Edgcomb et al. (2011), RNA-based 

clone libraries are more indicative for identifying active species rather than DNA-based clone 

libraries. Moreover, the presence of fruiting structures on living tissues did not clearly indicate if 

the associated mycelial network was inside or outside the plant tissues.  

Despite the limitations imposed by the methodology, the host plants did not reveal any visible 

disease symptoms suggesting that the fungi were not parasites or pathogens. The only 

exception might be B. spartinae, given that hyphopodial-entry mechanism has been associated 

with a parasitic phase in the species life cycle (Kohlmeyer and Gessner 1976; Kohlmeyer and 

Kohlmeyer 1979). Hyphopodia may represent part of the strategy of the species to gain 

competitive advantage in the colonisation of substrate (Kohlmeyer and Kohlmeyer 1979; Barata 

1997). 

An early endophytic colonisation of healthy plant tissues by the remaining frequent fungi would 

certainly give them a competitive advantage over pioneer and latter fungal saprobes and 

explain their dominance during the decay process. This hypothesis was also postulated by 

Newell (1996) to explain the omnipresence of P. spartinicola on standing decaying leaf blades 

of Spartina plants. Even though these frequent species were not mentioned before as marine 

endophytes of Spartina plants (Nagahama 2006; Kandalepas et al. 2015), there is no reason for 

excluding this hypothesis. The genus Lulworthia, Mycosphaerella, Phaeosphaeria and 

Stagonospora have been demonstrated to include endophytic species associated with intertidal 

plants (Elsebai et al. 2009; Xing et al. 2011; Sakayaroj et al. 2012; Kandalepas et al. 2015). 
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Moreover, B. obiones, Mycosphaerella sp. I, P. halima and P. spartinicola exhibited a degree of 

specificity with Spartina spp. (Calado et al. 2015), as has been demonstrated for endophytic 

fungi (Arnold 2007).  

For the infrequent fungi, any interpretation about their ecological role would be merely 

speculative. Moreover, it is also plausible that some of these fungal taxa that have never been 

documented in marine environments might represent airborne contaminants. 

 

Final remarks  

 

The combination of morphological and molecular methods provided a more accurate 

representation of the fungal community associated with standing plants of S. maritima; 45 

fungal taxa were identified on early decaying plants. Moreover, it contributed to a better 

understanding of community dynamics and ecological patterns and potential roles of the most 

frequent fungi in an early phase of decay of the host plant. The integration of the results from 

this study and similar ones that focused on Spartina decay system revealed that the presence 

and ecological role of dominant fungi on different substrates depends on the combination of 

three main factors: phase of plant life cycle, micro-environmental conditions of substrates and 

potential fungal competitors.  

Further studies should be performed in order to clarify the ecological role of these fungi before 

the beginning of senescence. 
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4.1 General conclusions  

 

 

The present study contributed to a better understanding of marine fungal communities 

associated with Spartina plants in temperate salt marshes. Specifically, it complemented the 

inventories of marine mycota in these ecosystems and in Portugal, shedding light on key 

aspects of the ecology of fungi inhabiting standing-decaying plants of Spartina maritima.  

As expected, the combination of traditional morphological and molecular identification methods 

was demonstrated to be advantageous. The results revealed a high agreement between the 

identification based on direct observation of fruiting structures and on nuclear ITS sequences 

concerning with assignments to fungal species and representativeness of each fungus in the 

community, plant portions (basal, middle and top portions), plant substrates (live, senescent and 

decaying leaf sheaths, stems and leaf blades) and study site (Castro Marim and Ria de Aveiro 

salt marshes). On the other hand, the use of both methods was crucial for obtaining a more 

realistic estimate of fungal diversity associated with S. maritima plants since it helped 

overcoming the major drawbacks inherent to morphological and molecular methods. 

The fungal communities associated with S. maritima and other Spartina species over a wide 

geographic range were demonstrated to be very similar, in terms of species diversity, 

composition and frequency patterns. These communities are not particularly complex or 

diverse, being dominated by the same host-genus-exclusive species, i.e. Buergenerula 

spartinae, Byssothecium obiones, Phaeosphaeria halima and Phaeosphaeria spartinicola; these 

fungal species integrate a very stable core group that, apparently, is not much affected by 

variations in environmental conditions inherent to different latitudinal positions, different 

morphochemical structure of other Spartina host plants or seasonality. Apart from these 

frequent host-exclusive fungi, also cosmopolitan fungi Aniptodera chesapeakensis and 

Dictyosporium pelagicum, frequently reported from other Spartina species, were observed in 

this study. Even though the frequent fungal taxa Lulworthia sp. 1 and Stagonospora sp. 1 were 

not identified to species level, the two genera are usually well-represented in fungal 

communities associated with Spartina plants.  

Beyond this similarity, the communities are composed by other fungal species, whose 

occurrence seems to be determined by other macro and/or micro-environmental factors.  

Natantispora retorquens, a cosmopolitan species reported from several tropical ecosystems, 

was found to be one of the most frequent and dominant species in the fungal communities 

associated with S. maritima, although it has not been reported from other Spartina species. 

Similarly, Panorbis viscosus, another cosmopolitan species that has been described from 

temperate and tropical regions, was infrequently collected in this, Barata (2002) and Azevedo et 

al. (2012) studies, on plants of S. maritima. 

Mycosphaerella sp. I, an host-genus-exclusive fungus, very frequent in Ria de Aveiro salt marsh 

and in other temperate salt marshes, was absent in Castro Marim salt marsh. On the other 

hand, the temperate non-host-exclusive fungi Sphaerulina-oraemaris and Leptosphaeria marina 
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were found to be very frequent in Castro Marim salt marsh but infrequent and absent, 

respectively, in Ria de Aveiro salt marsh; similarly, Phaeosphaeria spartinae, a very common 

fungi in communities associated with Spartina species, was only retrieved by molecular 

methods from plant samples of Castro Marim salt marsh. L. marina, as well as infrequent 

ascomycetous species Anthostomella spissitecta, Camarosporium roumeguerii, Coniothyrium 

obiones, Decorospora gaudefroyi, Fusarium oxysporum, Halosarpheia trullifera, Penicillium 

chrysogenum and Stagonospora haliclysta, and basidiomycetes Ceriporia lacerata, 

Cryptococcus mangaliensis and Erythrobasidium hasegawianum, were reported for the first time 

on S. maritima plants. From all these fungal species, only A. spissitecta, F. oxysporum and L.  

marina have been previously described from other Spartina species.  

The presence/absence of these host-genus-exclusive or cosmopolitan fungal species in the 

communities of S. maritima may be attributed to differences in the status of conservation, tidal 

regime and physical configuration of salt marsh ecosystems, intraspecific morphological 

variations in host plants, or even nutrient or space competition phenomena.  

The fungal taxa colonizing standing plants of S. maritima were found to exhibit vertical 

distribution patterns (Fig. 1). Even though the absolute vertical positions of fungal structures 

produced by common frequent species varied from one salt marsh to another, the relative 

positions of these structures along the plants were maintained. 
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Fig. 1 Illustrative representation of vertical distribution of very frequent and frequent fungi on standing plants of Spartina 

maritima: BO Byssothecium obiones; BS Buergenerula spartinae; LM Leptosphaeria marina; Lu1 Lulworthia sp. 1; MyI 

Mycosphaerella sp. I; NR Natantispora retorquens; PH Phaeosphaeria halima; PS Phaeosphaeria spartinicola; SO 

Sphaerulina orae-maris; St1 Stagonospora sp. 1. Darker areas in the bars represent the locations where the fungi were 

more commonly observed and the concentrations of fruiting structures were higher. The grey lines represent the 

extension of the plants occupied by each vegetative structure: LB leaf blades; ST stems; LS leaf sheaths 

 

The molecular identification of fungi from different substrates that were also vertically distributed 

along the axis of the standing plants, indirectly confirmed the vertical positions of these fungi 

(Fig. 1).  

The more frequently flooded plant portions (basal portions) were colonised by B. obiones, 

Lulworthia sp.1 and N. retorquens; these species occurred on live, senescent and decaying leaf 

sheaths and stems.  
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The middle plant portions were inhabited mainly by B. spartinae and P.  halima; these two 

species were detected on culms and leaves in all physiological states, respectively. L. marina 

and S. orae-maris were also reported on basal and middle plant portions respectively, but 

occurred only on senescent and decaying leaf sheaths.  

The less inundated plant portions (top portions) were colonised by Mycosphaerella sp. I, P. 

spartinicola and Stagonospora sp.1; Mycosphaerella sp. I was found exclusively on leaf blades 

whereas P.  spartinicola and Stagonospora sp.1 were observed on leaf blades and adjacent 

areas of leaf sheaths in all physiological states.  

B. obiones, B. spartinae, Mycosphaerella sp. I, N. retorquens, P. halima, P. spartinicola and  

Stagonospora sp. I were vertically distributed over larger areas of standing plants of S. maritima 

(Fig. 1). 

Even though the variations in the plants´ heights and proportions of different substrates during 

decay process and along the axis of standing plants, the vertical distribution range of each 

fungus seemed to be maintain. The fact that fungal taxa occupied the same relative vertical 

positions regardless of the phase of plant life cycle, suggests that the distribution range and 

abundance of these fungi might be determined by the combination of three factors: salinity and 

flooding conditions, availability of plant substrate and potential fungal competitors inhabiting the 

same substrate.  

The influence of salinity and flooding conditions in the distribution of fungi was clearly revealed 

by the dominance of the Sordariomycetes, with dissolving unitunicate asci and passive spore-

discharge, in the basal portions and of the Dothideomycetes, with bitunicate asci and an active 

spore-discharge, in the top portions.  Distinct morphologies of reproductive structures and 

mechanisms of spore’s dispersal of the fungal taxa distributed along the standing plants reflect 

different adaptation strategies to marine or terrestrial environments. This finding, which has 

already been described in some studies (Fell and Newell 1998; Alias and Jones 2000; Barata 

2002; Hyde and Sarma 2006), justified the classification of these fungi into obligate and 

facultative marine fungi. This classification, which followed the same criteria used by Kohlmeyer 

and his colleagues to distinguish obligate and facultative marine fungi in standing plants of 

Juncus roemerianus (e.g. Kohlmeyer & Kohlmeyer 2001), goes beyond a merely interpretation 

of the initial definition proposed by the same authors (Kohlmeyer and Kohlmeyer 1979). The 

criteria used by Kohlmeyers in their classification have been criticized by some authors as being 

subjective and dependent on personal opinion. Moreover, these authors argued that the   

tolerance or dependency to seawater submergence cannot be used as a criterion to infer about 

the origin of fungi; Jones et al. (2009, 2015), one of the critics to  Kohlmeyers´ classification, 

considered all the fungal species recorded in this study as obligate marine fungi. Even though it 

may be proved that the fungal species designated in this study as facultative marine fungi are 

not of terrestrial origin but exclusively marine, the information reported herein about the 

tolerance or dependency on marine conditions remains unchanged since it is factual. Therefore, 

and while the concepts are not redefined based on more objective and unequivocal criteria and 

supported by strong ecological evidences, there is no need to adopt a new classification. A 
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successful redefinition and standardisation of the concepts should rely on a better and more 

consistent knowledge of the ecology and biology of each fungus.  

The results from this study and the comparison with similar ones (e.g. Gessner and Kohlmeyer 

1976; Peña and Arambarri 1996; Barata 1997, 2002, 2006; Azevedo et al. 2012) also revealed 

that the occurrence of fungi on different plant substrates depends on their availability during 

each phase of plant life cycle. Moreover, the majority of the most frequent species is not strictly 

associated with a particular vegetative structure, but is capable to colonise different vegetative 

structures located in a specific vertical position along the decomposition of Spartina plants as 

soon as the structures become exposed and more accessible.  

The presence and abundance of fungi in each ecological niche might also depend on their 

competitive abilities. 

Additionally to the species-specific ecological requirements, the results from this study 

contributed to infer about species-specific ecological roles during early stages of decay of S. 

maritima, particularly of the most frequent fungal taxa in the communities. The presence of B.  

obiones, B. spartinae, L. marina, Lulworthia sp. 1, Mycosphaerella sp. I, N. retorquens, P. 

halima, P. spartinicola, S. orae-maris and Stagonospora sp. 1 on senescent and decaying 

vegetative structures in the majority or all the sampling periods indicates a very stable saprobic 

community; the seasonality only seemed to interfere in number of fruiting structures produced 

by these fungi.  

The majority of these fungi were also recorded on live tissues by morphological and/or 

molecular methods. The identification of hyphopodia of B. spartinae on live stems and leaf 

sheaths indicated a parasitic phase in the species life cycle. The occurrence of B. obiones, 

Lulworthia sp. 1, Mycosphaerella sp. I, N. retorquens, P. halima, P. spartinicola and 

Stagonospora sp. 1 on live healthy plant tissues suggested that these fungi might start 

colonising the plant as endophytes to gain a competitive advantage over the other pioneer 

fungal saprobes; this strategy may thus explain the high frequency of these fungal taxa later in 

the decay process. 

All of these findings point out for the existence of a very stable and well-adapted fungal 

community involved in the decay process of Spartina plants. Most frequent obligate marine 

fungi inhabiting lower and middle plant portions play a major key-role in the decomposition of 

leaf sheaths and stems, whereas facultative marine fungi inhabiting middle and top plant 

portions assume a major role in the decay of upper stems and leaf sheaths and/or leaf blades.  

These fungi exhibit higher ecological plasticity and lesser nutritive requirements than the 

remaining fungi in the community, being able to explore more efficiently the plant substrates. 

Among all the frequent fungi, B. spartinae and P. spartinicola seem to be more active and 

intensively involved in the decomposition of Spartina species, since they were found on all 

vegetative structures of standing decaying and drift plants of Spartina spp.. 
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4.2 Future perspectives  

 

 

Even though the substantial increase of general knowledge regarding marine fungi that came 

with the advent and optimisation of molecular techniques, there are still many gaps in this 

subject. The search for new fungi has been encouraged mainly by the awareness of the 

potential biotechnological or pharmaceutical applications of secondary metabolites and 

enzymes produced marine fungi. Therefore, this has been contributing for a change in the main 

research paradigm, i.e. the purposes of any research project cannot be exclusively scientific or 

related with management and conservation strategies in order to be funded, but have also to 

have a direct or indirect applicability to the society and/or industries.  

Nevertheless the research motivation, it is crucial to invest more intensively in the assessment 

of the diversity of the communities on the less surveyed substrates, habitats and/or 

geographical locations, as well as in the understanding of the dynamics of these communities 

and ecology and functional role of each fungus in each particular ecosystem, employing 

microscopy, culture and molecular techniques. All the fungal species recorded in each study 

should be isolated and preserved in reference collections and/or their genomic sequences, 

preferentially of barcoding genes, deposited in public repositories, in order to facilitate 

taxonomic assignments of unknown or misidentified fungi. Moreover, the metabolic profiles and 

biotechnological potential of all isolates should be explored. 

A holistic and integrated knowledge is required to ensure the success of any management 

strategy in a conservation or exploration and economic profitability perspective. 

Moreover, this knowledge will elucidate about the origin, phylogeny and metabolic dependency 

of fungi on marine conditions, as well as their ecological importance in marine ecosystems, 

facilitating the redefinition of the terms used to classify the fungi. 
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