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Abstract 
 

Palm trees (Arecaceae) are a diverse group of monocotyledons distributed across the tropics. Some 

members of this family are economically important crops and others are highly prized as ornamentals, 

particularly in Mediterranean climates. Anything that diminishes palm attractiveness, such as foliar lesions, 

will have a negative impact in their aesthetic value. 

In the last 30 years there has been a profusion of studies on palm fungi, a taxonomically diverse and 

important community. Although most of these studies used a descriptive taxonomy approach, from which 

many species and genera were formally identified and described as new to science, only some of these studies 

were focused on biodiversity and/or ecology. 

Considering that palm trees are a plant model for studying fungal diversity, and that fungi are one of the 

main causes of palm foliar lesions, a preliminary assessment of the fungal assemblage on palms was carried 

out. For this a total of 78 foliar lesions on palm leaves were studied. 

Following an isolation flow-chart, a collection of 457 isolates was established. All isolates were 

characterized according to their macro- and micro-morphology and assigned to genera. Their genetic 

diversity was assessed by PCR fingerprinting using csM13 and (GTG)5. Diversity indices were computed, 

and assessments of genera-abundance distribution and genera accumulation curves were also performed. 

Selected isolates were identified by sequencing of accepted DNA barcodes. 

A total of 57 genera were found. The general composition of the fungal community was well described 

by a log-series model, showing a pattern of dominance of very few genera, and a high profusion of infrequent 

and rare genera. From the ecological approaches it was found that the fungal communities are subjected to 

dynamic processes associated with both the host species and the geographical context. Phylogenetic analyses 

revealed one new genus and four new species, which are here formally described. 

This study is pioneer in Portugal, representing a significant advance in the fundamental knowledge on 

palm fungi. 

 

Keywords: Arecaceae, palm fungi, phylloplane fungi, biodiversity indices, ecological approaches, genomic 

fingerprinting, phylogenetic analyses. 
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Resumo 
 

As palmeiras são um grupo de plantas monocotiledóneas altamente diversificado pertencentes à família 

Arecaceae. Esta família é representada por cerca de 2600 espécies distribuídas por 181 géneros. As palmeiras 

são maioritariamente nativas de regiões tropicais e subtropicais, desempenhando um papel importante nos 

ecossistemas onde se inserem, pela sua elevada adaptabilidade e também pela utilidade dos seus produtos. 

Entre os membros da família Arecaceae encontram-se algumas das culturas de plantas mais cultivadas 

mundialmente devido à sua importância económica, tais como a tamareira (Phoenix dactylifera), o coqueiro 

(Cocos nucifera) e a palmeira-de-dendém (Elaeis guineensis). Devido à sua elevada capacidade de adaptação 

a uma ampla gama de condições climáticas, as palmeiras são muito apreciadas e utilizadas como plantas 

ornamentais, nomeadamente em climas mediterrâneos. Sendo das plantas mais características dos climas 

tropicais, as palmeiras conferem às paisagens mediterrâneas o aspecto exuberante e o fascínio dos trópicos, 

sendo utilizadas com muita frequência em alinhamentos de espaços públicos, em arranjos paisagísticos, na 

composição de jardins e, ainda, como plantas de interior. 

Esta utilização das palmeiras no paisagismo urbano, largamente associado ao desenvolvimento do 

turismo, fez crescer consideravelmente a utilização destas plantas em países no sul da Europa. A importação 

das palmeiras das suas regiões nativas, bem como o recente impacto do escaravelho das palmeiras, 

Rhynchophorus ferrugineus, na devastação das palmeiras das Canárias (Phoenix canariensis) tem suscitado 

preocupações relativas a eventuais ameaças fitossanitárias relacionadas com a introdução de agentes 

fitopatogénicos exóticos, nomeadamente de fungos. Um dos principais tipos de doenças causados por fungos 

em palmeiras corresponde às lesões foliares. Neste contexto, os fungos associados às lesões foliares de 

palmeiras constituem o âmbito da presente dissertação. 

Em décadas recentes, verificou-se uma grande expressão dos estudos de fungos associados a palmeiras 

em diferentes áreas da Micologia. Estes fungos começaram a ser considerados uma comunidade 

taxonomicamente diversa e importante, coloquialmente apelidada de “fungos de palmeiras”. Ainda que a 

maioria destes estudos tenha utilizado uma abordagem de taxonomia descritiva, a partir da qual inúmeras 

espécies e géneros foram formalmente identificados e descritos como novos para a ciência, apenas alguns 

destes estudos tiveram como objecto a exploração da biodiversidade e/ou ecologia dos fungos de palmeiras. 

Tendo em conta as características das palmeiras enquanto hospedeiros de excelência para a descoberta de 

novos fungos, o presente trabalho compreendeu dois objectivos distintos. O primeiro consistiu em avaliar a 

diversidade e a ecologia dos fungos que se encontram associados a lesões foliares de palmeiras ornamentais 

em Portugal. O segundo objectivo consistiu em contribuir para a descoberta de novos taxa para a ciência, 

uma vez que esta é actualmente uma das principais tarefas dos micólogos, i.e. o preenchimento da lacuna 

entre o número de espécies de fungos actualmente descritas e o número de espécies que as mais recentes 

estimativas preveem. Assim, esta dissertação encontra-se estruturada em duas partes: na Parte I foram 

aplicadas abordagens ecológicas para o estudo integrado da biodiversidade das comunidades de fungos 

associadas a lesões foliares de palmeiras e na Parte II foram aplicadas abordagens taxonómicas a 

determinados isolados, para estudar o seu posicionamento filogenético. 

O esforço de amostragem resultou num total de 78 lesões foliares a partir de palmeiras sintomáticas de 

Oeiras e Lisboa. As lesões foliares foram morfologicamente caracterizadas e serviram como base para o 

isolamento de fungos a elas associados, para o que foram utilizados vários métodos de isolamento para que 

as comunidades fúngicas recolhidas se encontrassem devidamente representadas. Em algumas lesões o 

isolamento compreendeu a observação e manipulação de estruturas fúngicas presentes no tecido hospedeiro. 

Adicionalmente, todas as lesões foram sujeitas a um método de isolamento directo, o qual compreendeu a 
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esterilização superficial de porções das lesões, que foram, posteriormente, inoculadas em PDA. Para todos 

os isolados obtidos foram estabelecidas culturas puras provenientes de um único esporo. 

A colecção estabelecida compreendeu 457 fungos filamentosos. Estes foram caracterizados de acordo 

com as suas características micro- e macromorfológicas, as quais permitiram a sua identificação até ao 

género. Posteriormente, o DNA genómico foi extraído de culturas de todos esses isolados, utilizando uma 

versão modificada e optimizada do método do tiocianato de guanidina. Estes extractos foram, seguidamente, 

utilizados para a obtenção de perfis genómicos de MSP-PCR, os quais foram baseados nos primers csM13 e 

(GTG)5. Os perfis genómicos obtidos foram agrupados em dendrogramas consenso construídos com o 

software BioNumerics, usando o coeficiente de correlação de Pearson e o método de aglomeração UPGMA. 

A análise destes dendrogramas de perfis genómicos foi utilizada, posteriormente, para avaliar e caracterizar 

a diversidade genética das comunidades dos fungos isolados. Para além dos métodos clássicos e moleculares 

de discriminação e monitorização de taxa referidos, diferentes análises para a avaliação da diversidade de 

comunidades de fungos foram aplicadas, incluindo o cálculo de índices de diversidade, a avaliação da 

distribuição da abundância dos diferentes géneros e, ainda, a avaliação de curvas de acumulação. 

Concomitantemente com as análises de biodiversidade e as observações ecológicas, determinados 

isolados foram seleccionados para a sequenciação de marcadores moleculares actualmente aceites e 

validados, os quais foram posteriormente utilizados para o seu posicionamento filogenético entre taxa 

actualmente descritos. Para o efeito, foram efectuadas análises filogenéticas por máxima verossimilhança e 

por máxima parcimónia, com recurso aos softwares RAxML e PAUP, respectivamente. 

Um total de 57 géneros foi identificado na colecção de isolados estabelecida. A composição geral da 

comunidade fúngica associada às lesões foliares foi bem descrita por um modelo log-series, na medida em 

que apresentou um padrão bem definido de co-dominância de três géneros, nomeadamente Alternaria, 

Cladosporium e Phoma, e uma elevada profusão de géneros infrequentes e raros. A considerável diversidade 

de géneros identificados era expectável e está concomitante com estudos anteriores. Deste modo, verificou- 

-se que a comunidade de fungos associada a lesões foliares de palmeiras apresenta uma ampla distribuição 

taxonómica, na qual duas ordens do filo Ascomycota se encontraram particularmente bem representadas, 

Pleosporales e Capnodiales. Apenas um dos isolados obtidos, do género Graphiola, pertenceu ao filo 

Basidiomycota, sendo todos os restantes isolados pertencentes ao filo Ascomycota, o que também era 

expectável tendo em conta estudos anteriores. 

Na colecção estabelecida, a comunidade de cœlomicetes apresentou uma maior diversidade quando 

comparada com a comunidade de hifomicetes, na medida em que incluiu a grande maioria dos géneros 

identificados como infrequentes e raros. Diferenças semelhantes entre cœlomicetes e hifomicetes foram 

anteriormente reportadas em fungos isolados de palmeiras em climas temperados. Assim, o presente estudo 

sugere que a diversidade dos fungos de palmeiras em climas temperados parece estar particularmente 

concentrada na comunidade de cœlomicetes. 

As abordagens ecológicas mostraram que as comunidades de fungos isolados estão sujeitas a processos 

dinâmicos associados quer à espécie do hospedeiro, quer ao contexto geográfico no qual as mesmas foram 

encontradas. Deste modo, enquanto as palmeiras tipicamente tropicais surgiram, na sua generalidade, 

empobrecidas em fungos, nas palmeiras tipicamente temperadas as comunidades de fungos foram mais 

diversas e abundantes, particularmente ao nível dos cœlomicetes. Por sua vez, freguesias nas quais é 

expectável uma maior humidade relativa, atendendo ao contexto geográfico, apresentaram, também, 

comunidades de fungos mais diversas e abundantes. 

A aplicação integrada dos índices de diversidade, juntamente com a avaliação da distribuição da 

abundância dos diferentes géneros, previu que pouco mais de 50% da riqueza de géneros foi identificada no 
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presente estudo. Assim, embora tenha sido registada uma enorme diversidade de géneros de fungos 

filamentosos, que permitiu em última análise estabelecer tendências ecológicas primárias, o presente estudo 

está longe de ter registado a potencial diversidade que se encontra associada a lesões foliares de palmeiras 

em Portugal. Apenas uma abordagem integrada com dados morfológicos e moleculares associada a uma 

maior amostragem, bem como à execução de réplicas no isolamento, poderá (a) revelar a potencial 

diversidade destas comunidades de fungos e (b) estabelecer de forma clara as observações e os padrões 

ecológicos aqui apontados. 

As análises filogenéticas revelaram um novo género, Arecamyces gen. nov., e quatro novas espécies, 

Diaporthe chamaeropsicola, Morinia trachycarpae, Morinia phoenicicola e Arecamyces humilianae spp. 

nov., para a ciência, os quais foram formalmente descritos e ilustrados.  

O presente estudo, embora baseado numa amostragem relativamente pequena, mostrou que as palmeiras 

continuam a ser um hospedeiro de excelência para a pesquisa de novos taxa, bem como um modelo para 

estudos de biodiversidade e abordagens ecológicas que possam revelar as dinâmicas das comunidades de 

fungos. Considerando que apenas 3% dos isolados obtidos foram totalmente caracterizados, espera-se que 

outros novos taxa sejam descritos em estudos futuros. Por fim, este estudo de fungos associados a lesões 

foliares de palmeiras ornamentais em Portugal é pioneiro e representa uma inovação na investigação do 

conhecimento fundamental. 

 

Palavras-chave: Arecaceae, fungos de palmeiras, fungos do filoplano, índices de biodiversidade, abordagens 

ecológicas, perfis genómicos, análises filogenéticas. 
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1. Palm trees, a distinctive element in the urban landscape 

Palms are perennial monocotyledonous trees in the family Arecaceae (syn. Palmae), and one of the most 

distinctive of all plants families since they are easily recognized from their morphology. These trees are 

almost exclusively tropical or sub-tropical, insomuch as they are considered to be “emblems of the tropical 

forests” where their natural biodiversity is concentrated (Tomlinson, 2006; Dransfield et al., 2008; Eiserhardt 

et al., 2011; Balslev et al., 2016). Very few species are native of temperate climates (Eiserhardt et al., 2011). 

Geographically palm trees can be found in habitats ranging from southern France, where the European fan 

palm Chamaerops humilis is native (44° north latitude), to New Zealand, where the shaving brush palm 

Rhopalostylis sapida naturally occurs (44° south latitude) (Johnson, 2011). This remarkable extent of latitude 

where palms can grow reflects their impressive adaptability to diverse climatic conditions, which can be seen 

by the abundance of these trees in temperate regions, although the overwhelming majority of palm species 

are native to tropical climates, particularly to the Malaysian and Neotropical regions. The ability to grow 

under different climatic conditions reflects the enormous diversity of habitats, from tropical rainforests to 

deserts, that are exploited by palm trees (Walther et al., 2007; Eiserhardt et al., 2011; Brancalion et al., 2018). 

Ecologically, palm trees are typically conspicuous large-bodied plants that often have a major ecological 

impact in the plant communities present in the different habitats occupied, especially in tropical ecosystems 

(Couvreur and Baker, 2013). They provide important food resources not only to the fauna, but also to the 

indigenous communities of these regions, who use the trees for their daily needs. These comprise an extensive 

range of traditional uses, from thatching, basketry, weaving and house construction to multiple medicinal 

purposes (Baker et al., 2009; Johnson, 2011). Indeed, palms are among the best known and most extensively 

cultivated plant families and have been recognized, along with the Poaceae and the Fabaceae, as being one 

of the three most important and useful plant families in terms of human exploitation (Tregear et al., 2011; 

Johnson, 2011). Besides the usage in their native, mainly tropical, range, these plants are also important in 

terms of worldwide usage. Almost all parts of palm trees can have an economic value with many uses in 

different species, assuming an extremely economic importance in the international trade where oil (Elaeis 

species), coconut (Cocos nucifera), rattan (Calamus species) and date (Phoenix dactylifera) palms are 

particularly relevant (Tomlinson, 1979; Baker et al., 2009; Johnson, 2011). 

According to the most recent estimates, Arecaceae family, the only in the order Arecales, comprises 

around 2600 species in 181 genera, among which are included some of the most graceful, attractive and 

majestic forms of the Plantae kingdom with an enormous diversity of features and aspects (Dransfield et al., 

2005, 2008; Asmussen et al., 2006; Trias-Blasi et al., 2015; Baker and Dransfield, 2016). This renders them 

the category of interesting objects in natural and artificial landscapes. Thus, besides the economic relevance 

of the previously cited important crops, palm trees are also highly prized and used as ornamental plants in 

the most varied places. They are extensively used in parking lots, along city streets and boulevards, in 

shopping centers, on hotel grounds, in public and private gardens, near swimming pools and in orchards, 

botanical gardens and parks, since they offer a great decorative potential in any landscape (Ramos et al., 

2013, 2015; Beaudoin-Ollivier et al., 2017; MacLeod and Hussein, 2017). There are many kinds of palms 

with a wide range of growth habits appropriate for any environment and landscape site, besides the fact that 

these trees are durable, long-lived and easy to care for (Riffles et al., 2003; Broschat et al., 2014; Beaudoin-

Ollivier et al., 2017; Cohen, 2017). In Portugal, palms are grown solely as ornamentals for their attractiveness 

as decorative plants in parks, gardens and cityscapes. One single palm species, Chamaerops humilis, is native 

to Portugal, with a natural occurrence in the Algarve region (Fabião and Oliveira, 2006; CML, 2015; ICNF, 

2016). All the other palms planted in portuguese cities, particularly Phoenix dactylifera, Washingtonia 

filifera, Washingtonia robusta, Trachycarpus fortunei and, especially, Phoenix canariensis (Ramos et al., 

2013, 2015; CML, 2015), are exotic. Besides the usage of these trees in landscaping arrangements and 

composition of gardens, they are also used as indoor plants, with Dypsis lutescens and Chamaedorea elegans 

the most used in Portugal. 

Around the Mediterranean, palm trees have become an essential and distinctive component of the urban 

landscape, where they provide a bold and luxuriant look typical of the tropical flora, which sometimes is used 
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as a symbol of tourism (Ramos et al., 2015; MacLeod and Hussein, 2017). Consequently, the use and 

importation of these plants have expressively increased over the last decades, which has raised new 

phytosanitary threats, such as the red palm weevil Rhychophorus ferrugineus, and highlighted the potentially 

devastating effects of pests and diseases introduced onto a host growing outside of its native range (Ramos 

et al., 2013, 2015; Beaudoin-Ollivier et al., 2017; MacLeod and Hussein, 2017). In fact, the rapid increase in 

the international trade of plants, most of which are used as ornamentals, is a major pathway for the spread of 

associated pests and other invasive alien species (Parker and Gilbert, 2004; Desprez-Loustau et al., 2010; 

Gilbert and Parker, 2010; Lilja et al., 2011; MacLeod and Hussein, 2017). Like any other plant, palm trees 

are prone to attack by pathogens, especially fungal pathogens, and subject to diseases and pests that can be 

responsible for considerable damage, whether in outdoors or indoors plants. Since these plants are an exotic 

element in Portugal’s urban landscapes, the potential introduction of alien fungal pathogens is a threat whose 

study should be of utmost status. Considering that palms in Portugal are grown exclusively for the beauty of 

their foliage, leaf spots and leaf blights, although responsible for relatively minor damage, play an important 

role in palm trees diseases because they disfigure the foliage, which consequently depreciates their aesthetic 

value. Since fungi are the main cause of these diseases (Elliott, 2018a) it is important to have knowledge on 

the fungi associated with them, which is the scope of this dissertation. 

2. Palm fungi, an historical overview 

The study of microfungi associated with palm trees makes it possible to explore different types of research 

in the Mycology area. While the majority of previous studies on palm fungi have focused on descriptive 

taxonomy (Hyde, 1992a; Pinnoi  et al., 2003a; Konta et al., 2016c), a considerable number of studies explored 

the biodiversity and/or the ecology of these microorganisms (Yanna et al., 2002; Pinnoi at al., 2006; Sarma 

and Hyde, 2018; Monteiro et al., 2019). The following approach intends to give a general and brief overview 

of the research that has been done on this subject. It should be noted that the relevance of the studies on 

microfungi associated with palms made them begin to be considered an important and taxonomically diverse 

assemblage that is often referred to as “palm fungi” or “palmicolous fungi” (Taylor at al., 2000; Hidayat 

et al., 2006). This terminology is adopted herein. 

Systematic and descriptive taxonomy studies 

There are numerous reports scattered through the literature of fungi collected from different parts of 

different species of palm trees and from different regions of the world. An overwhelming number of these 

studies was dedicated to collection and description of fungi, including new genera and new species. Although 

there are several reports prior to the 1990s, the present overview focuses on the extensive studies carried out 

by Hyde and his co-workers. Most of the descriptions before Hyde’s research comprise short Latin 

paragraphs that lack illustrations and give limited information about the true identity of the fungi (Hyde, 

1993h). Nevertheless, it is noteworthy to mention two extensive studies on palm fungi, namely those of 

Pirozynski and Matsushima. Pirozynski (1972) reported 46 species, including one new genus, Bondiella, six 

new species and some new combinations, of fungi from oil palm Elaeis guineensis collected from Tanzania. 

On the other hand, Matsushima (1971, 1975, 1980, 1981, 1983, 1985, 1987, 1989, 1993 and 1995) reported 

326 fungi from palm litter, including one new genus, Venustocephala, and 88 new species, collected from 

different regions around the globe, from the Americas to Australia and Eastern Asia, most of which were 

compiled in the classic book series “Matsushima mycological memoirs”. In the last 30 years, mycology has 

been observing an extensive profusion of studies regarding palmicolous fungi by Hyde and his co-workers. 

These systematic studies culminated in the publication of three books entitled “Palm microfungi” (Fröhlich 

and Hyde, 2000), “Genera of ascomycetes from palms” (Hyde et al., 2000) and “Microfungi of tropical and 

temperate palms” (Taylor and Hyde, 2003), and a series of publications entitled “Fungi from palms”, 

comprising 49 papers where a lot of new fungi to science were described (Hyde, 1992b,c, 1993a–h, 1994a–

d, 1995a–g, 1996a–g; Fröhlich and Hyde, 1995a, 1998a,b; Hyde and Fröhlich, 1995a, 1997; Hyde and Taylor, 

1996; Hyde et al., 1996a, 1998a,b, 1999a, 2000; Hyde and Aptroot, 1997; Taylor et al., 1997; Lu and Hyde, 

1999; Taylor and Hyde, 1999a; Aptroot et al., 2000; Fröhlich et al., 2000b; Guo and Hyde, 2001; Hosagoudar 
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et al., 2001; Sarma and Hyde, 2001; Smith and Hyde, 2001). Genera of fungi with common representatives 

found on palms are summarized in Supplementary Table A.1. Genera that were described as new to science 

and found on palms in the last three decades are summarized in Supplementary Table A.2. 

Microfungi from palms have been studied since 1988 and 1989 with the description of the genera 

Linocarpon and Oxydothis from the mangrove palm Nypa fruticans (Hyde, 1988; Hyde and Nakagiri, 1989). 

Hyde made an extensive survey of these palmicolous fungi from a wide range of tropical palm species in 

different regions of the world, such as Brunei (Hyde, 1991a,b, 1992d, 1993f, 1994a, 1996d,g), Indonesia 

(Hyde, 1993f,g, 1995c,e, 1996d,e,f, 1997b), Ecuador (Hyde, 1995g, 1996g, 1997a), Papua New Guinea 

(Hyde, 1994e,f, 1995f, 1996f), Malaysia (Hyde, 1993c, 1994b,c, 1996d,f, 1997b), Australia (Hyde, 

1993a,b,e,h, 1996e,g, 1997b), Philippines (Hyde, 1995d) and USA (Hyde, 1995a,c). All the regions surveyed 

revealed the presence of an enormous diversity of fungi, among which many genera were described as new 

to science (Supplementary Table A.2). Along with Hyde’s work on redescribing, illustrating and 

monographing existing genera (Hyde, 1992b, 1993a,d, 1994c, 1995e,f, 1996a,c), these studies resolved 

certain taxonomic relationships. A striking example includes the description of numerous new species from 

the genera Linocarpon (Hyde, 1988, 1992a; Hyde and Alias, 1999) and Oxydothis (Hyde and Nakagiri, 1989; 

Hyde, 1993d, 1994c), two of the most common genera found on palms (Supplementary Table A.1). These 

first case studies in the early 90s verified the existence of a well-represented set of morphological characters, 

which allowed to distinguish these genera from other related genera, as well as to clarify the existence of new 

morphologically similar genera. 

The huge number of new genera and new species reported on palms by Hyde in the early 90s, rapidly 

increased the interest in the mycobiota of this host and several of his students and co-workers worked towards 

extending the knowledge on palmicolous fungi. Thus, different aspects of these fungi were studied and 

contributed on the way to the fundamental fungal and biodiversity knowledge, besides the many new taxa 

reported. The intensive research led, ultimately, to description of at least two knew families, namely 

Phaeochoraceae (Hyde et al., 1997a) and Apiosporaceae (Hyde et al., 1998b) to accommodate genera that 

were described on palms, respectively, Cocoicola (Hyde, 1995b) and Appendicospora (Hyde, 1995d), along 

with extant related genera. In fact, the constant description and illustration of new taxa found on palms lead 

frequently to the discussion of their placement in fungal classification (Yanna et al., 1997; Hyde et al., 1998b, 

2000; Taylor et al., 2001). 

Hyde, Fröhlich, Taylor, Aptroot and Goh, studying ascomycetes developing on living, diseased and dead 

palm material, surveyed different regions from East and Southeast Asia (Hyde and Fröhlich, 1995a, 1997; 

Goh and Hyde, 1997b; Hyde et al., 1997b, 1998a, 1999a, 2000; Taylor et al., 1997, 1999; Taylor and Hyde, 

1999a; Aptroot et al., 2000), Australasia (Taylor et al., 1996; Goh and Hyde, 1997a; Hyde and Fröhlich, 

1997; Fröhlich and Hyde, 1998b; Hyde et al., 1998a, 1999a,d, 2000; Fröhlich et al., 2000b) and South 

America (Fröhlich and Hyde, 1995a; Goh and Hyde, 1996a,b, 1997b; Hyde and Fröhlich, 1997; Taylor and 

Hyde, 1999b) and reported more than 50 new species of ascomycetes. One intensively studied region worth 

mentioning is the rainforests of North Queensland (Australia), where Fröhlich and Hyde (1994, 1995b,c,d, 

1998b), Hyde and Fröhlich (1995b) and Fröhlich et al. (1997, 2000b) found an immense diversity of fungi, 

some of which were associated with palm leaf spots. These studies yielded, for example, the new genus 

Maculatipalma (Supplementary Table A.2). Besides the incredible contribution towards the knowledge on 

fungal biodiversity and its placement in fungal classification, these studies also allowed to discuss and unveil 

some sexual-asexual morphs connections (Hyde et al., 1996b; Jones et al., 1996, Hyde et al., 1999d). 

The studies on palmicolous fungi in the tropics proceeded with other regions starting to be surveyed more 

systematically, including many reports from additional Hyde co-workers, namely Yanna, Pinnoi, McKenzie 

and Pinruan. Yanna et al. (1997, 1998a,b, 1999, 2000b, 2004) described several new species from different 

palm tree species in Hong Kong, comprising the typical Ascomycota assemblage commonly found on palms, 

particularly with species of Appendicospora (Yanna et al., 1997), to atypical hyphomycete and coelomycete 

genera, such as Koorchaloma (Yanna et al., 1998a), Staurophoma (Yanna et al., 1998b) and 

Endomelanconium (Yanna et al., 1999). Other hyphomycetes were described from palms during similar 

studies in Brunei, Thailand and North Queensland (Yanna et al., 2000a, 2001c; Hyde et al., 2002). Although 
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the initial studies on palms focused mainly on the evaluation of Ascomycota coverage through the presence 

of its sexual morphs on the host, particularly on mangrove palms such as Nypa fruticans, the evident potential 

of these hosts for biodiversity surveys led to the diversification of both the approaches and, consequently, 

the discoveries. Thus, a considerable number of reports started to describe several new species of palmicolous 

hyphomycetes, in addition to the usual ascomycetes sexual morphs, from already well surveyed regions, such 

as Brunei, Hong Kong, North Queensland and Thailand (Goh and Hyde, 1997a,c, 1998a,b,c, 2000; Goh et 

al., 1999; Hyde et al., 1999b; Ho et al., 2001; Wong et al., 2001, Yanna and Hyde, 2002; McKenzie et al., 

2002; Pinruan et al., 2002, 2004a,b; Pinnoi et al., 2003a,b, 2004) (Supplementary Table A.1). Along with 

these new palmicolous hyphomycete species, four new genera were described as new to science, namely 

Stratiphoromyces (Goh and Hyde, 1998b), Polybulbophiale (Goh and Hyde, 1998c), Mackenziella (as 

Mackenziea) and Waihonghopes (Yanna and Hyde, 2002) (Supplementary Table A.2), the last two resulting 

from the extensive investigation on the biodiversity of fungi on palms in North Queensland previously 

mentioned. 

A perusal of the available literature on palm fungi reveals that no intensive studies on palmicolous 

hyphomycetes and, especially, coelomycetes have been carried out so far. Nevertheless, along with the 

previously cited examples from Hyde and co-workers, some scattered studies reporting new species and/or 

genera of palmicolous hyphomycetes are worth mentioning. Subramanian (1992, 1993, 1994, 1995, 1996) 

reported several new species and four new genera (Supplementary Table A.2) of dematiaceous hyphomycetes 

from different palm species in Malaysia and India. Sierra et al. (1997a,b,c, 1998) and Abarca et al. (1997) 

described several new hyphomycetes from palms in Central American countries, including Costa Rica, 

Mexico and Cuba. Later Castañeda-Ruíz et al. (2000, 2001) surveyed palmicolous fungi from litter of forests 

in the Canary Islands and Venezuela and Delgado (2008a,b, 2009, 2010, 2013, 2014) reported several new 

species of palmicolous hyphomycetes on dead plant debris from South Florida, including two new genera, 

namely Veramycella (Delgado, 2009) and Kalamarospora (Delgado, 2010) (Supplementary Table A.2). 

A few scattered studies have surveyed palmicolous fungi in Argentina. However, they were not systematic 

studies concerning descriptive taxonomy, but studies done to understand better the diversity of ascomycetes 

on woody parts of palms, especially in areas or parks that had been proposed as natural reserves for protection 

(Capdet and Romero, 2010, 2012; Capdet et al., 2010; Trierveiler-Pereira et al., 2012). In a similar way, 

considering the available literature on palm fungi, except for some stray collections, no intensive studies on 

the fungal diversity on palms in India have been carried out. Nevertheless, a few reports reveal a remarkable 

diversity of palmicolous fungi, namely those of Subramanian (1952a,b, 1953, 1955) that, in his series “Fungi 

imperfecti from Madras”, reported new hyphomycetes species from dead palm leaves in Chennai, besides 

his previous cited reports of dematiaceous hyphomycetes (Subramanian, 1992, 1993, 1994, 1995, 1996), and 

D’Souza and Bhat (2002) and D’Souza et al. (2002), who reported several new species and one new genus 

(Ernakulamia) of dematiaceous hyphomycetes (Supplementary Table A.2) from forests in India. 

This overview of the literature shows that palms support a vast array of fungi, especially ascomycetes. In 

fact, in the well surveyed tropical regions of East and Southeast Asia, Australasia and South America, where 

these fungi have received considerable attention, a remarkable diversity of fungi was revealed with the 

description of numerous new species. Although much of this diversity could be attributed to the tropical and 

subtropical habitats surveyed, the few research works done on palms that can thrive in temperate regions, 

such as New Zealand (Taylor and Hyde, 2003; Mckenzie et al., 2004) and some countries of Europe (Taylor 

and Hyde, 2003), also showed a considerably rich diversity of fungal assemblages, where some new taxa 

were discovered as new to science. Additionally, as can be verified from the previous brief literature review, 

the diversity of palmicolous fungi recovered can in part be due to the wide range of hosts and habitats 

surveyed, including different palm species in terrestrial, freshwater and marine or mangrove ecosystems. 

Up to 2003, the intensive research carried out by Hyde and his co-workers discovered and reported, with 

full descriptions and illustrations, more than 280 species of palmicolous fungi belonging to more than 150 

genera (Taylor and Hyde, 2003). Nevertheless, in all these earlier studies, all taxa reported were introduced, 

described and arranged in different taxonomic ranks within the Ascomycota based solely on their morphology 

(Fröhlich and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003). This approach was, however, 
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subjective and many taxa were assigned to Ascomycota genera incertae sedis. Therefore, considering that 

palms are important hosts harbouring potential novel fungal species, it is critical that these palmicolous fungi 

are recollected, epitypified where needed, isolated and sequence data obtained so that they can be placed in 

a natural taxonomic framework (Ariyawansa et al., 2013, 2014; Jayasiri et al., 2015). Referring to the initial 

striking example concerning some of the most common fungal genera found on palm trees, such as 

Linocarpon, Oxydothis and Neolinocarpon, several species were report from palms, but only a small 

percentage of them have associated sequence data available on accessible databases, what makes their 

position in the natural taxonomic framework weakly supported as pointed out by Konta et al. (2017). Thus, 

the known taxa, introduced based solely on morphological characteristics, need to be recollected so that 

molecular data can be used to establish their natural phylogenetic placements. 

Relatively few of the earlier studies on palmicolous fungi were based on molecular data. However, the 

introduction of molecular methods for the study of fungi served as a stimulus for the description of new taxa 

from palms. Some of the first researches on palmicolous fungi that combined molecular with morphological 

data were those from Pinruan et al. (2004c,d, 2008, 2010b) and Pinnoi et al. (2010) in Thailand, who reported 

several new taxa, including new genera (Supplementary Table A.2), of saprobic fungi on the peat swamp 

palms Licuala longecalycata and Eleiodoxa conferta. This constitutes a continuation from the previous solely 

morphological studies that already yielded a remarkably rich diversity of fungal taxa (Pinruan et al., 2002, 

2004a,b; Pinnoi et al., 2003a,b, 2004; Liu et al., 2011a). The number of reports increased rapidly revealing 

not only several new taxa, but also resolving their phylogenetic position among closely related taxa. This, in 

turn, contributed towards unveiling the natural taxonomic framework of the palmicolous fungi, including 

members of the classes Sordariomycetes (Bahl et al., 2005; Hidayat et al., 2006; Pinruan et al., 2008, 2010b; 

Pinnoi et al., 2010; Geng et al., 2013; Daranagama et al., 2016; Konta et al., 2016b; Delgado and Miller, 

2017) and Dothideomycetes (Pinnoi et al., 2007, 2010; Phillips et al., 2008; Liu et al., 2010, 2011b; 

Wulandari et al., 2011; Konta et al., 2016a,c; Delgado et al., 2018; Zhang et al., 2018) frequently found on 

palms. The latest reports on palmicolous fungi have included the establishment of new families to 

accommodate extant and new palmicolous taxa, including the new genera Longicorpus and Striatiguttula 

from Nypa fruticans in Thailand (Konta et al., 2017; Li et al., 2017; Zhang et al., 2018, 2019) (Supplementary 

Table A.2). Thus, these studies continuously reveal not only the importance of the Arecaceae family as a 

host for the search for new fungal species, but also the imperative need of applying sequence data to resolve 

the phylogeny of this taxonomically diverse assemblage of palmicolous fungi. 

Biodiversity and ecological studies 

As stated before, palm trees have shown to be a diverse habitat exhibiting an intense fungal colonization. 

The great majority of studies on microfungi colonizing palms are taxonomic, insomuch as they have focused 

primarily on cataloguing fungi and describing new taxa collected from several regions around the globe, 

especially in the tropics. Nevertheless, a few studies concerning palmicolous fungi are ecological and have 

concentrated on the biodiversity and ecology of saprobic and endophytic fungi. Although the approach of 

these studies is different, the description of new taxa often resulted from initially ecological approaches that 

yielded several interesting fungi to properly analyse. This suggests that both approaches may be crucial to 

explore the fungal knowledge base and its biodiversity. 

Briefly reviewing the literature on ecology of palm fungi reveals that studies have been done over the last 

three decades. Fröhlich and Hyde (1999) studied the biodiversity of palm fungi in the tropics, raising the 

question that the estimate of 1.5 million would be a “very conservative estimate of the number of fungal 

species extant on the planet”. Taylor et al. (2000) investigated the biogeographical distribution of microfungi 

from temperate and tropical palms, revealing that differences in fungal assemblages were more related to 

climatic influences than hosts sampled. In addition, Yanna et al. (2001a,b, 2002) following her previous cited 

studies on palmicolous fungi from Hong Kong, assessed the composition of fungal communities and its 

succession over time, pointing out that differences in fungal assemblages could be related to different growth 

stages, different sites, different hosts and different tissues sampled. Besides these, several reports were 

dedicated to endophytic palmicolous fungi, one of the first ecological issues to be investigated on fungi from 



 

GENERAL INTRODUCTION     Palm trees as a plant model for studying fungal diversity: historical overview and actual biodiversity challenges 

6 

 

palms (Rodrigues and Samuels, 1990; Rodrigues et al., 1993; Rodrigues, 1994; Southcott and Johnson, 1997; 

Guo et al., 1998; Fröhlich and Hyde, 1999; Fröhlich et al., 2000a). Such studies frequently reported 

significant differences in the number of isolates in respect to plant growth stages, season, site and tissues 

sampled, not only on tropical palms within their natural geographic range, but also on temperate palms, such 

as Trachycarpus fortunei (Taylor et al., 1999). The importance of the subject and its implications in fungal 

biology rapidly increased the interest of mycologists on unveiling several aspects of the ecology of 

palmicolous endophytes. Molecular data then started to be applied in such studies and made endophytes one 

of the main subjects of palmicolous fungi to be explored until recent years (Guo et al., 2001; Gómez-Vidal 

et al., 2006; Rungjindamai et al., 2008; Pinruan et al., 2010a; Jiaojiao et al., 2015, 2016; Mahmouda et al., 

2017). Relatively few studies have focused on palmicolous pathogens (Fröhlich et al., 1997; Hyde and 

Cannon, 1999). Other ecological studies have focused on fungi from peat swamp palms (Pinnoi et al., 2006; 

Pinruan et al., 2007) and mangrove palms (Hyde and Alias, 2000; Pilantanapak et al., 2005; Hyde and Sarma, 

2006; Loilong et al. 2012; Sarma and Hyde, 2018). One of the most recent publications in the ecology of 

palmicolous fungi reported aspects related to the existence of fungal species on Nypa fruticans at Brunei, 

which unveiled some aspects related to the fungal community structures and helped in understanding 

ecosystem dynamics (Sarma and Hyde, 2018). 

The ecological studies are extremely important, along with the taxonomic approaches, to assess a 

complete and integrated perspective of the biodiversity surveys, since biodiversity relies both on the taxa and 

on their biotic and abiotic interactions (Zak and Willig, 2004). In fact, the high fungal diversity that has been 

reported on palm trees could be associated with specific ecological questions, such as any kind of site, host 

or, more intrinsically, tissue specificity of the fungal assemblages surveyed, or even any kind of biotic 

relationships established between them. 

3. Palm fungi, an assemblage with a key role in biodiversity surveys 

Regular discoveries of new fungal species have incited mycologists to wonder about the number of fungi 

that exist worldwide. Since Fries (1825), who established a comparison between fungi and insects diversity, 

fungi are known as one of the largest groups of organisms. Estimates of the number of fungal species 

worldwide has varied over time, comprising from relatively low numbers of 100 000 (Bisby and Ainsworth, 

1943), 270 000 (Martin, 1951) and 720 256 (Schmit and Mueller, 2007) to impressive higher estimates of 

3.5 to 5.1 (O’Brien et al., 2005) and almost 10 million (Cannon, 1997). Until recently, the most cited and 

acknowledged number was the 1.5 million fungal species hypothesized by Hawksworth (1991), who based 

his conclusions on the observed ratio between flowering plant diversity and fungal diversity. However, this 

number was considered “a very conservative estimate” and has been revisited several times in the literature 

as the world rate of description of new species has increased over the last decades (Fröhlich and Hyde, 1999; 

Hawksworth, 2001, 2004, 2012; Bass and Richards, 2011; Blackwell, 2011). 

The currently accepted estimate of species richness is between 2.2 to 3.8 million (Hawksworth and 

Lücking, 2017). Considering that presently 120 000 accepted fungal species are known, these values indicate 

that less than 10% of the worldwide mycota is named so far. For that reason, the question “where are the 

missing fungi?” has often been asked (Hawksworth and Rossman, 1997; Fröhlich and Hyde, 1999; Hyde, 

2001; Tang et al., 2006, Hyde et al., 2007; Mueller and Schmit, 2007). This in turn has motivated the 

persistent search for new fungal species. To search for these undescribed fungal species is important for 

biodiversity surveys, which have an incredible economical potential in discovering organisms with novel 

biotechnological and industrial uses (Hyde et al., 2019b). Palm trees have proven to be a rich source of new 

fungal taxa, and a remarkable number of new species to science have been described from this host over the 

last three decades (Fröhlich and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003; Zhang et al., 2019). 

The inventory of fungal species from different substrata, particularly niches where species richness is very 

high, such as palm trees, certainly account for the description of some of the missing fungal diversity 

(Hyde, 2001; Hyde et al., 2007). Indeed, the evidence gained from the extensive palm fungi research 

undoubtedly indicates that many of the missing fungi can be found on palms, insomuch that Hyde et al. 

(1997c) discovered that 75% of the fungi collected from palms were new to science. 
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Palm fungi are a taxonomically diverse group, comprising more than 1500 described species, which 

include representatives from almost all major fungal classes (Fröhlich and Hyde, 2000; Hyde et al., 2000; 

Taylor and Hyde, 2003; Zhang et al., 2019). The most representative group of palmicolous fungi are the 

ascomycetes, a diverse assemblage within which the best represented family is Xylariaceae (Zhang et al., 

2019). Concerning higher taxa, the Sordariomycetes are the best represented class, with three commonly 

recorded genera, namely Anthostomella, Linocarpon and Oxydothis (Taylor and Hyde, 2003; Hidayat et al., 

2006, 2007; Lechat and Fournier, 2012; Daranagama et al., 2016; Konta et al., 2016b, 2017). Recent reports, 

particularly those based in both morphological and phylogenetic data, have described a series of 

Dothideomycetes within which the best represented fungal genera are members of the orders Pleosporales, 

such as astrosphaeriella-like species, Fissuroma and Roussoella, and Botryosphaeriales, such as 

Botryosphaeria, Phyllosticta and Neodeightonia (Liu et al., 2010, 2011b, 2012, 2014; Wulandari et al., 2011; 

Phookamsak et al., 2015; Wanasinghe et al., 2018; Zhang et al., 2018; Nuankaew et al., 2019). 

The great diversity of fungi that has been recorded on palms plays an important role in different aspects 

related to biodiversity surveys. 

Firstly, the studies by Hyde and his co-workers have resulted in a wealth of data that provided new 

information for fungal biodiversity estimates and established a much higher fungus to plant ratio ranging 

from 26:1 to 33:1 (Hyde, 1995h; Fröhlich and Hyde, 1999; Hyde et al., 1997c). These estimates imply the 

existence of almost 73 thousand species of fungi on palms worldwide of which only less than 3% are currently 

known (Taylor and Hyde, 2003). In this wealth of data, a diverse and abundant assemblage of host- (Hyde 

and Alias, 2000) and tissue-specific fungi (Yanna et al., 2001b; Pilantanapak et al., 2005; Pinnoi et al., 2006) 

was found, which account for the high fungal diversity reported on palms, subsequently accounting for the 

largely unknown species estimated.   

Secondly, studies on palmicolous fungi led to discussions about the effect of geographical location on 

composition of the mycobiota, since different composition was significantly affected on same host taxa 

occurring in different countries, which have important implications in fungal estimates and ecology (Taylor 

et al., 1999; Yanna et al., 2001a). Considering that the great majority of palms are native of tropical climates, 

the study of their fungal assemblage also addressed the issue concerning the global fungal diversity 

differences between temperate and tropical climates (Fröhlich and Hyde, 1999; Taylor et al., 2000). 

Thirdly, palms trees have been revealing interesting aspects of endophytes, not only because they 

comprise a considerable amount of them, as assessed by Guo et al. (1998) studies on palm endophytic sterile 

mycelium, but also because they allowed observations on the changing of endophytes mode of life to 

saprophytes once the host tissue died (Fröhlich and Hyde, 2000; Guo et al., 2001). 

Finally, the evidence gained from the extensive palm fungi research allowed the assessment of several 

other aspects of fungal ecology that are essential for studying fungal communities and their biological 

patterns in the ecosystems. Subjects such as vertical and horizontal distribution (Hyde and Sarma, 2006), 

fungal succession (Yanna et al., 2001a, 2002; Pilantanapak et al., 2005) and fungal co- 

-occurrence (Sarma and Hyde, 2018) are frequently assessed on palmicolous fungal assemblages due to their 

abundance, diversity and patterns on the hosts sampled. This clearly shows a close association of palm fungi 

with palms hosts, insomuch as they are considered to be good biogeographical indicators (Taylor et al., 2000), 

playing a key role in biodiversity surveys. 

4. Palm fungi, the major cause of palm tree leaf spots and leaf blights 

As in many other plants, three ecological groups of microfungi are found on palms – endophytes, 

saprophytes and pathogens (Hyde, 1995h). While endophytes and saprophytes have been intensively studied, 

relatively few studies on palmicolous fungi have addressed plant pathogens. Additionally, the great majority 

of these studies focused mostly on the host perspective, consisting more of phytosanitary measures rather 

than ecological and/or descriptive taxonomy studies of the phytopathogenic agents (Broschat et al., 2014, 

2015; Elliott, 2004, 2017, 2018a–g, 2019; Yu and Elliott, 2019). The adverse implications of fungal 

pathogens to quarantine and the ornamental palm industry are long known (Forsberg, 1987), which is a 

glaring example of important research that has not been carried out. 
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Although a great diversity of ascomycetes is consistently found associated with palms in the tropics, most 

are not pathogenic to palms (Fröhlich and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003). Very few 

fungal pathogens of palm trees are lethal, and the vast majority are responsible for minor damage that when 

well managed are easily controlled. Common fungal diseases found on ornamental palms include the 

following: lethal or potentially lethal diseases, such as Fusarium wilt (caused mainly by Fusarium 

oxysporum), Ganoderma root and butt rot/basal stem rot (caused by Ganoderma spp.), Gliocladium 

blight/pink rot (caused by Nalanthamala vermoesenii, formerly Gliocladium vermoeseni) and Thielaviopsis 

trunk rot (caused by Thielaviopsis paradoxa) and other Thielaviopsis diseases; and minor damage diseases, 

such as several leaf spots and leaf blights, petiole and rachis blights, as well as the diamond scale (caused by 

Phaeochoropsis neowashingtoniae) and other tar spot diseases (Hyde and Cannon, 1999; Broschat et al., 

2014, 2015; Elliott, 2004, 2017, 2018a–g, 2019; Yu and Elliott, 2019). 

In Portugal, some biotic diseases in ornamental palms have been identified since 1998 following studies 

in order to gain knowledge on phytosanitary problems that depreciate plants in green spaces. Among these, 

the common fungal diseases reported are the pink rot and Thielaviopsis trunk rot (Ramos et al., 2013, 2015). 

Currently, except for these scattered studies, almost nothing is known about fungal diversity on palm trees in 

Portugal. In this context, this dissertation intends to gain knowledge on the subject focusing on palmicolous 

fungi associated with foliar lesions as a starting point. 

Leaf spotting palmicolous fungi 

The terms “leaf spot” and “leaf blight” are broadly used in the literature to describe a wide variety of 

different symptoms of plant leaf diseases, which sometimes can be confusing and misleading. In this 

dissertation, the terms are defined according to Elliott (2018a). Leaf spots are usually rather definite diseased 

leaf areas that “initially start as small, water-soaked lesions that then turn various shades of yellow, gray, 

reddish-brown, brown or black” and “are usually surrounded by a halo or ring of tissue that is a different 

color”. The difference between a leaf spot and a leaf blight depends on the degree of damage to the leaf blade. 

Leaf blights are often the consequence of the merging of numerous leaf spots that grow up to form irregular 

blotched areas of diseased tissue. Thus, as pointed out by Elliott (2018a), “as long as the spots are discretely 

separated from each other by green tissue, the disease is referred to as a spot”, while leaf blights are generally 

larger diseased areas and more irregularly shaped. 

Most leaf spots and leaf blights of palm are caused by fungi and are ubiquitous in palms in production 

and in the landscape (Broschat et al., 2014; Elliot, 2018). However, most of them are more problematic in 

young palms (Forsberg, 1985). Numerous fungal pathogens can be associated with these diseases, but their 

symptoms are relatively similar, insomuch that usually no specific name can be allocated to a particular foliar 

symptom until after the pathogen is determined (Broschat et al., 2015). Potential fungal causes of palm leaf 

spots and leaf blights with a wide host range, both within the Arecaceae and other plant families, include the 

following genera: Alternaria, Annellophora, Bipolaris, Botryosphaeria, Botrytis, Calonectria, Cercospora, 

Colletotrichum, Curvularia, Exserohilum, Fusarium, Graphiola, Gloeosporium, Nalanthamala, 

Pestalotiopsis, Phaeotrichoconis, Phyllachora, Pseudocercospora, Sclerotium, Seiridium and Stigmina 

(Broschat et al., 2014, 2015; Elliott, 2018a). Although the complete host range for each of these pathogens 

is unknown, it is assumed to be broad within palm tree species and it is quite likely that every palm species 

is susceptible to at least one of them (Elliott, 2018a). 

There are a few reports scattered throughout the literature that explore the assemblage of fungi associated 

with leaf diseases of palms mostly following a descriptive taxonomic approach. Hyde and his co-workers 

were one of the first to realize that these fungi are an important assemblage in palm leaf diseases that were 

understudied. Thus, following a commentary on the diseases of palms by Chase and Broschat (1991), later 

revised as a compendium by Elliott (2004), a remarkable diversity of fungi associated with leaf diseases of 

palms have been reported. This included some new species of Capitorostrum, Oxydothis, Astrosphaeriella, 

Phyllosticta, Myelosperma, Everhartia, Pseudospiropes and Cercospora, and two new genera, 

Maculatipalma and Maculatifrondis (Supplementary Table A.2). The leaf spots surveyed in these reports 

were both from different palm hosts and different regions of the world, namely North Queensland (Fröhlich 



 

GENERAL INTRODUCTION     Palm trees as a plant model for studying fungal diversity: historical overview and actual biodiversity challenges 

9 

 

and Hyde, 1994, 1995b,c,d; Hyde and Fröhlich, 1995b; Fröhlich et al., 1997), Papua New Guinea and Irian 

Jaya (Hyde and Philemon, 1991; Hyde and Fröhlich, 1995b), Ecuador and South Africa (Hyde et al., 1996b), 

Hong Kong (Yanna et al., 2000) and Thailand (Pinnoi et al., 2009; To-anun et al., 2009; Wulandari et al., 2011). 

Many other species of leaf spotting palmicolous fungi remain to be described. While most of these studies 

focused on identifying the cause of the spots or blights, only one study treated these symptoms as possible 

communities of fungi. In fact, Fröhlich et al. (1997) reported the results of a study into the biodiversity of 

fungi associated with leaf diseases of palms in the rainforests and nurseries of North Queensland, following 

an integrated approach of culture-dependent methods (i.e. isolations of fungal assemblage associated with 

the diseased leaf areas). Almost none of these studies were supported by molecular data, which highlights 

the urgent need to develop studies on the fungi associated with palm leaf spots and leaf blights that can fit in 

modern methods of fungal diversity studies so the pathogens and their phylogenetic relationships can be 

placed in a natural taxonomic framework (Konta et al., 2017). Subsequently, this will contribute towards the 

efforts to provide a stable platform for the taxonomy of phytopathogenic fungi that has been the main focus 

of the Genera of Phytopathogenic Fungi (GOPHY) series of papers (Marin-Felix et al., 2018, 2019a,b). 

5. Dissertation aim 

Palm trees are undoubtedly a key resource in the ornamentation of parks and gardens and as shade trees 

in Portuguese cities. Anything that diminishes their attractiveness, such as disfiguring leaf diseases, or kills 

them will negatively affect their aesthetic value. The recent impact of the red palm weevil, Rhynchophorus 

ferrugineus, which has decimated Phoenix canariensis in Portugal, has highlighted the fact that pests and 

diseases introduced onto a host growing outside of its native range can have devastating effects. Considering 

that relatively few studies on palmicolous fungi have addressed plant pathogens and the almost complete lack 

of knowledge about fungi on palms in Portugal there is an urgent need to gain knowledge on the assemblage 

of fungi that are found on palms, especially those associated with diseased trees. 

The main aim of the present study was to make a preliminary assessment of the diversity and ecology of 

fungi associated with palm trees in Portugal, especially those associated with foliar symptoms. A secondary 

aim was to contribute towards the global effort to discover the missing species of fungi, since palms have 

proven to be a rich source of new fungal taxa. This information is important, firstly to Portugal’s gardening 

and landscaping industry and plant disease control, since it will contribute to efforts to prevent the entry of 

plant diseases into the country and to identify possible threats. It will also contribute to the base of knowledge 

on fungal, and general biodiversity surveys. The study of microfungi associated with palm leaf spots and leaf 

blights in Portugal is pioneer and represents an innovation in the fundamental knowledge research. 

 

The present dissertation is structured into two parts. 
 

Part I explores the diversity of the fungal assemblage associated with the leaf spots and leaf blights 

surveyed and assesses ecological traits that can be evaluated at this level. For this purpose, classical and 

molecular methods for discriminating and monitoring taxa, including isolation, morphological observation 

and DNA fingerprinting with csM13 and (GTG)5 primers, and analyses for assessing fungal diversity, 

including calculation of diversity indices, assessment of genera-abundance distribution and genera 

accumulation curves, were applied. Five questions arose as the main objectives of this part: (a) what fungal 

genera are found associated with foliar lesions on palm trees in Portugal? (b) are different fungal genera 

found on different host species of palm trees with foliar lesions? (c) are different fungal genera found in 

different parishes where palm trees with foliar lesions were surveyed? (d) how many fungal genera can 

co-exist in a single foliar lesion? Is there any association between fungal community and foliar lesions type? 

(e) what degree of genetic diversity exists in the main fungal genera found on palm trees with foliar lesions 

in Portugal? 
 

Part II provides in-depth analyses of some interesting isolates to determine if they account for some of 

the undescribed global mycota. For this purpose, currently accepted barcodes were sequenced and used to 

establish phylogenetic relationships between the new isolates and extant taxa. 
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1. Introduction 

Fungi play a key role in ecosystems, not only as decomposers essential in nutrient cycles, but also as 

symbionts and pathogens. Thus, it is of interest to measure and monitor their biodiversity and to study their 

ecology. Tang et al. (2006) pointed out that the driving force for fungal diversity studies outcomes form “the 

need for knowledge on their ecological functioning, evolutionary relationships, physiological and 

biochemical properties, and biotechnological and pharmaceutical potential”. Only a few fungal species are 

presently utilized in biotechnological processes or in the production of novel compounds, which implies that 

there is a huge potential for their industrial exploitation (Hyde et al., 2019b). Several data sets have shown 

that a more complete inventory of microfungi from various ecological niches need to be developed to build 

up a representative collection of these organisms for future research, society and prosperity (Hyde et al., 

2007). Hyde et al. (2019) outlined an interesting diagram showing the potential use of fungi in biotechnology 

and this starts with the basic biodiversity research. Modern Mycology is aware that biodiversity research is 

a key element and an essential tool to accomplish any kind of applied research that in turn will lead to 

commercialized products. 
 

In the following subsections a methodological and data analysis introduction is presented for some of the 

methods used throughout the development of the present approach to assess the characterization of the fungal 

communities surveyed. 

1.1.  Biodiversity measures: species richness and species evenness 

Diversity is a measure of the complexity of structure in an ecological community (Zak and Willig, 2004). 

It comprises two distinct attributes that are evaluated by quantitative expression of community structure 

(biodiversity measures), namely species richness (S) – number of species of a given taxon – and species 

evenness or equitableness (E) – how similar species are in their abundances (Clifford and Stephenson, 1975; 

Magurran, 2004). Given that species richness is highly dependent on the collection effort, S is of limited 

value as a comparative index. Thus, species richness indices were developed to decrease the effect of this 

bias (Ludwig and Reynolds, 1988), such as the Margalef species richness index (DMg) (Margalef, 1958). 

These are based on the ratio between the species richness and the total number of individuals in the sample 

(Magurran, 2004). Besides the species richness indices, several nonparametric species richness estimators 

have been developed, such as Chao1 (SChao1) (Chao, 1984). These estimators of richness aim to determine 

the number of species that have yet to be discovered in the studies’ sampling context (Magurran, 2004; 

Schmit and Lodge, 2005). 

1.2. Diversity indices: Shannon and Simpson indices of diversity 

Many indices are available in literature for estimating biodiversity measures, but since each index 

highlights different diversity components no unified diversity index is available (Tang et al., 2006). Two of 

most common diversity indices are the Simpson index of diversity (D) and the Shannon index of 

diversity (H’). 

Simpson index of diversity (D) (Simpson, 1949) was the first one to be used in ecology and it is referred 

to as a dominance measure since it is strongly affected by the abundance of the most common species 

(Zak and Willig, 2004). As a measure, D reflects the probability of randomly choosing two individuals that 

belong to the same species (Kim et al., 2017). It varies from 0 to 1 and increases as the diversity decreases, 

so to ensure that the index increases with increasing diversity the reciprocal or complement form of D 

(1/D or 1 – D, respectively) is usually presented (Magurran, 2004). 

Shannon index of diversity (H’) (Shannon, 1948) is the most widely used measure of diversity in 

community ecology and represents a measure of the average degree of uncertainty in predicting the specific 

identity of an individual randomly chosen from a collection of S species and N individuals (Zak and Willig, 

2004). Important characteristics of this diversity index are related to the fact that average uncertainty will 

increase as the numbers of species increases and as the distribution of individuals among species becomes 

more even (Magurran, 2004).  



 

PART I     Microfungal communities of palm foliar lesions: from biodiversity to ecological observations 

11 

 

Both diversity indices have specific biases. While Shannon index of diversity sets a greater weight on 

species richness, Simpson index of diversity places a greater weight on species evenness (Magurran, 2004; 

Kim et al., 2017). Each diversity index has a corresponding evenness index that measure the degree to which 

a certain community displays the maximal diversity possible, given the observed richness (Zak and Willig, 

2004). Pielou (1966) proposed an evenness index (J’) based on the Shannon index of diversity. The quantity 

J’ expresses the observed diversity (H’) as a proportion of the maximum possible diversity (H’max), insomuch 

that it could be used as a measure of entropy in the distribution of individuals among the species (Zar, 2010). 

1.3. Genera-abundance distribution and collector’s effort curve 
 

Diversity indices are often of limited use since they compress the data to a single value that little expresses 

about the species abundance in the ecological community (Zak and Willig, 2004). In this sense, several other 

strategies have been developed to evaluate the diversity of the ecological community, such as species-

abundance distributions and collector’s effort curves. 

Species-abundance distributions were developed by Fisher et al. (1943) in order to examine how the 

diversity and the structural organization of an ecological community are related. This concept relies in the 

fact that a characteristic pattern arises when the number of species and their relative abundances within a 

community are plotted (Zak and Willig, 2004). Thus, the species-abundance distributions are models used to 

describe the distribution of commonness and rarity in an ecological community (Su, 2018) and their 

assessment is “a major steppingstone to understanding communities in general” (McGill et al., 2007), since 

they provide the most complete assessment of diversity (Magurran, 2004). 

One of the oldest and most common analysis of diversity data is the construction of a species- 

-accumulation curve, also known as collector’s effort curve. This is constructed by plotting the cumulative 

number of species found against a pertinent measure of the effort used in finding them (Magurran, 2004; 

Schmit and Lodge, 2005). Collector’s effort curve is often used as a tool to evaluate the sampling effort or to 

make comparisons between the diversity of different sampling sites (Magurran, 2004). 

1.4. Genomic discrimination and clustering: MSP-PCR 

Morphological traits and cultural characteristics have been often very difficult characters to use as 

exclusive tools in the identification, differentiation and classification of species and strains of filamentous 

fungi. Subsequently, additional techniques, such as molecular markers, have been successfully used to 

overcome these problems (Meyer et al., 1993a; Rodriguez et al., 2004). 

Genomic fingerprinting is a molecular method frequently used for microbial genotypic characterization 

due to its reproducibility and highly discriminatory power (Jeffreys et al., 1985; Rademaker and de Bruijn, 

1997). This methodology comprises a vast range of DNA-based techniques that provide practical markers, 

as a result of DNA polymorphisms, for molecular typing (Weising et al., 1995). These methods are 

commonly used as tools in fungal taxonomy, since they allow the discrimination of isolates from intrageneric 

to strain levels (Soll, 2000). One broadly used class of those methods is the polymerase chain reaction (PCR)- 

-based genomic fingerprinting, such as the microsatellite/minisatellite primed (MSP)-PCR, which analyse 

the whole genome. This is a good alternative to methods that rely on specifically targeted primers and have 

been shown to be relatively robust and discriminatory (Olive and Bean, 1999). 

MSP-PCR is a genomic fingerprinting technique that uses small sized primers complementary to 

microsatellites/minisatellites sequences, i.e., ubiquitous tandem repeats of small DNA motifs of 

1–5/10–60 bp long present in several copies across the genomes (Lieckfeldt et al., 1993; Meyer and Mitchell, 

1995; Vogel and Scolnik, 1997). These small sized primers generate DNA fingerprintings that are useful for 

discriminating between fungal isolates. The primers csM13, the core sequence of the wild-type phage M13, 

which is specific to minisatellite DNA sequences, and (GTG)5, which are specific to simple repetitive DNA 

microsatellite sequences, are examples of commonly used primers in this technique 

(Meyer et al., 1991, 1993b, 1997, 1999, 2001; Alves et al., 2007; Ramírez-Castrillón et al., 2014). 
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2. Materials and Methods 

A schematic overview of the workflow used in the present work is presented in Supplementary Figure A.1. 

2.1. Specimen collection and examination 

Diseased ornamental palm leaflets and leaf segments, especially those showing leaf spots or leaf blights, 

were collected during September and October 2018 from parks, gardens, cityscapes and indoor environments 

in Oeiras and five Lisbon parishes (Alvalade, Areeiro, Marvila, Parque das Nações and São Vicente) 

(Figure 2.1). Plant material was transported to the laboratory in paper envelopes on which collection details 

were noted (namely sample number, location, collector, collection date, host and other notes when needed) 

and examined as soon as possible for associated fungi. Specimens were air-dried and stored in a cardboard 

box at room temperature (18–20 ℃). Specimens were examined with a Leica MZ9.5 stereo microscope 

(Leica Microsystems GmbH, Germany) for observations on lesion morphology and for the presence of fungi. 

Morphological details of lesions were observed on both adaxial and abaxial surfaces. Lesion shape, margin 

topography, colour and its evolution over time (when possible), presence or absence of a distinctive border, 

halo or occasional coalescence, overall distribution on the leaflet and, if applicable, the size were recorded. 

 

Figure 2.1  Map of Lisbon and respective sampling sites. Each collection site (parish) is highlighted with a different colour 

and is followed by a pie-chart representing the corresponding percentage of lesions sampled. The samples from Oeiras are not 

represented on the map but could be assessed on the grey slice present in the general pie-chart on the right, where all the 

samples are considered with the corresponding parish colour. Map source: adapted from “Lisboa em Números”, by 

Observatório de Luta Contra a Pobreza na Cidade de Lisboa, 2019 (https://observatorio-lisboa.eapn.pt). 

2.2. Culture media and growth conditions 

Potato Dextrose Agar (PDA) (BIOKAR Diagnostics, France) was prepared at two different 

concentrations, namely half-strength PDA (1/2 PDA) and quarter-strength PDA (1/4 PDA). Unless stated 

otherwise, cultures were incubated in ambient light at room temperature (18–20 ℃). To stimulate 

sporulation, isolates were cultured on 2% water Agar (WA) (BIOKAR Diagnostics, France) with healthy 

doubled autoclaved (two cycles of 20 min, 121 °C and 1 bar with 48 h between each cycle) Populus sp. twigs 

or palm leaflet pieces on the agar surface. Cultures were incubated at 25 ℃ under black light. 

2.3. Fungal isolation 

Isolations were made on 1/2 PDA containing 0.05% chloramphenicol (CPDA) to reduce bacterial 

contamination (Choi et al., 1999) following the isolation flow-chart presented in Figure 2.2. Leaflets and 
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segments were first examined with a stereomicroscope for the presence of spore-producing structures. If no 

signs of sporulation were seen the specimens were incubated for 1–3 weeks in a moist chamber and examined 

daily with the stereomicroscope for signs of sporulation. 

 

Figure 2.2  Isolation flow-chart. Each colour represents a different step in the isolation process. Green shapes indicate either 

the beginning or the termination of the process. Orange-diamonds are decision points where the process is split into decisive 

options. Blue shapes represent the methods of isolation used. Yellow shapes represent methodological steps before an isolation 

method or the end of the process. DSW = distilled sterile water. 

If fertile hyphomycete conidiophores were present, isolations were made by touching the tip of a sterile 

needle on the conidiophores and spreading the conidial mass on CPDA. After incubation for up to 24 h, 

15–20 single germinating conidia were transferred separately onto 1/2 PDA. 

If enclosed fruiting bodies were found, they were first examined microscopically to determine whether 

they were ascomata or conidiomata. 

If conidiomata were found, the lesion was incubated in a humid chamber to stimulate spore release. 

Conidia were then transferred on a sterile needle to plates of CPDA and spread over the agar surface. After 

a suitable period of incubation, 15–20 single germinating conidia were transferred to fresh plates of 1/2 PDA. 

If, after 7 days of incubation, no conidia could be seen, the lesion was surface sterilized and the conidioma 

crushed in a drop of sterile water on a flamed microscope slide. The resulting conidial suspension was diluted 

100 times to reduce the chances of contamination (Choi et al., 1999) and spread on CPDA, incubated and 

15–20 single germinating conidia were transferred separately onto 1/2 PDA. 

If bitunicate ascomata were present, a small piece of the lesion bearing ascomata was placed on a drop of 

sterile water in an upside-down plate of CPDA. Ascospores discharged forcibly and impinged on the agar 

surface. After 2–5 h single germinating ascospores were transferred to fresh plates of 1/2 PDA. 

If non-bitunicate ascomata were present, the isolation methods followed were similar to those used when 

conidiomata were found. 

For all specimens, isolations were also made directly from lesions. Pieces of tissue 1–2 mm2 were cut 

from the edge of the lesions, surface sterilized in 5% sodium hypochlorite for 1 min, rinsed in three changes 

of sterile water and blotted dry on sterile filter paper. Five leaf fragments were plated onto CPDA and 
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incubated for 24 h until discrete colonies developed (2–7 d). The sterilization efficiency was controlled by 

impressing the leaf fragments several times (Schulz et al., 1998) and inoculating the last sterile water change 

in a plate of CPDA. A piece of healthy tissue from the same leaflet or segment, subjected to the same 

sterilization process, was also plated onto CPDA to validate the isolation of fungal records only from diseased 

tissue. The fungi were subcultured onto 1/2 PDA and single spore isolates established when possible. 

2.4. Morphological observation and characterization 

The pure cultures on 1/2 PDA were examined periodically to determine culture characteristics as well as 

the development of microscopic structures. Microscopic structures were mounted in 100% lactic acid and 

examined by differential interference contrast (DIC) microscopy (Chomnunti et al., 2014). Sections 10 µm 

thick of some reproductive structures were made with a Bright 5040 Rotary Retracting Microtome with a 

solid state freezer stage (Bright Instruments, UK). Observations on micromorphological features were made 

with Leica MZ9.5 and Leica DMR microscopes (Leica Microsystems GmbH, Germany) and digital images 

were recorded with Leica DFC300 and Leica DFC320 cameras (Leica Microsystems GmbH, Germany), 

respectively. Measurements were made with the measurement module of the Leica IM500 Image 

Management System (Leica Microsystems GmbH, Germany). Mean, standard deviation (SD) and 95% 

confidence intervals were calculated from measurements of 50 structures, unless stated otherwise with 

n = total of measured structures. Measurements are given as minimum and maximum dimensions with mean 

and SD in parenthesis. Infrequent measurements are also given in parenthesis along with the minimum and 

maximum dimensions. Photoplates were prepared with Adobe Photoshop CS6 (Adobe, USA). Isolates were 

identified to genus level when possible by reference to the available literature (e.g. Sutton, 1980; 

Seifert et al., 2011a; Wijayawardene et al., 2016). 

2.5. Culture storage and preservation 

Isolates were stored on 1/4 PDA slants about 2 cm in its widest part in 5 ml graduated microtubes and 

kept at 4 °C, and at room temperature after being covered with 2 ml of sterile mineral oil. 

2.6. DNA extraction 

Genomic DNA (gDNA) was extracted from cultures of all isolates following a modified and optimized 

version of the guanidium thiocyanate method described by Pitcher et al. (1989). The isolates were grown on 

PDA in darkness at 20 °C until a suitable amount of mycelium growth was observed. The mycelium was then 

scraped off and collected in 2 ml microtubes with 100 µl of autoclaved glass microspheres (425–600 μm 

diam) and 250 µl of lysis buffer (250 mM NaCl, 50 mM Tris, 50 mM EDTA, 0.3% (w/v) SDS, pH 8.0). The 

tubes were incubated on ice for 10 min, vortexed three to six times for 2 min at maximum velocity, incubated 

for 30 min at 65 ℃ and revortexed for 2 min at maximum velocity. If necessary, a pellet pestle was used to 

assist in breaking the cell walls. Two consecutive steps of incubation on ice for 10 min were performed, the 

first upon the addition of 250 µl of GES reagent (5 M guanidium thiocyanate, 100 mM EDTA, 0.5% (v/v) 

sarkosyl, pH 8.0), which was mixed by inversion, and the second after the addition of 250 μl of cold 10 M 

ammonium acetate. To separate organic and aqueous phases, 1 ml of chloroform:isoamyl alcohol (24:1) (v/v) 

was added, mixed by vigorous agitation and then centrifuged at 14 000 rpm for 20 min. The aqueous phase 

was transferred to a new 1.5 ml tube and the nucleic acids precipitated by the addition of an equal volume of 

cold absolute isopropanol and mixed by inversion. The tubes were centrifuged again at 14 000 rpm for 

20 min, the supernatant discarded and the pellets washed with 1 ml of cold 70% (v/v) ethanol. After a further 

centrifugation at 14 000 rpm for 20 min, the supernatant was discarded and the pellets dried at room 

temperature with the tubes open in an inverted position for 5–10 min. After ensuring that all ethanol was 

removed, the pellets were dissolved in 100 μl of TE buffer (10 mM Tris, 1 mM EDTA, pH 8.0) and 

stored at 4 ℃. 

Quality and quantity of the gDNA were evaluated by agarose gel electrophoresis. Thus, 5 μl of each DNA 

extract were submitted to electrophoresis in a 0.8% (w/v) agarose (Invitrogen, UK) gel, with 0.5× TBE buffer 

(40 mM Tris, 45 mM Boric acid, 1 mM EDTA, pH 8.3) and a constant voltage of 5.6 V cm-1 for 
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1 h. The gel was stained with 2.5 µg ml-1 ethidium bromide solution, visualized with an Alliance 4.7 UV 

transilluminator (UVITEC Cambridge, UK) and the image recorded with Alliance software version 15.15 

(UVITEC Cambridge, UK). The molecular weight marker used was the 1 kb Plus DNA Ladder (Invitrogen, 

UK). gDNA concentrations were estimated using ImageJ software version 1.52a (Schneider et al., 2012). 

2.7. MSP-PCR 

MSP-PCR profiles were generated following a modified version of the protocol of 

Ramírez-Castrillón et al. (2014), using csM13 (5’ – GAGGGTGGCGGTTCT – 3’) (Vassart et al., 1987; 

Ryskov et al., 1988) and (GTG)5 (5’ – GTGGTGGTGGTGGTG – 3’) (Walmsley et al., 1989; Lieckfeldt 

et al., 1993) primers. Both PCR-fingerprintings were performed in a final volume of 25 µl per reaction, 

containing 1× PCR buffer (Invitrogen, UK), 3 mM MgCl2, 25 pmol of the respective primer, 0.2 mM of each 

dNTP, 1 U of Taq DNA Polymerase (Invitrogen, UK) and 50 ng of template DNA. Amplification was 

performed in a TGradient Thermocycler (Biometra, Germany), with the following cycling conditions: initial 

denaturation at 95 °C for 5 min, followed by 40 cycles of denaturation at 95 ℃ for 1 min, annealing at 60 ℃ 

for 2 min and elongation at 72 ℃ for 2 min, and a final elongation step at 72 ℃ for 5 min. The amplicons 

were separated by agarose gel electrophoresis, along with the 1 kb Plus DNA Ladder (Invitrogen, UK). 

Subsequently, 5 µl of reaction mixture was subjected to electrophoresis in 1% (w/v) agarose (Invitrogen, 

UK) gel, with 0.5× TBE buffer (40 mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8.3) and a constant voltage 

of 3.4 V cm-1 for 5 h. The gel was stained and visualized as described previously (subsection 2.6). 

Isolates were clustered based on their csM13- and (GTG)5-PCR profiles in a consensus dendrogram built 

with BioNumerics software version 6.6 (Applied Maths, Belgium), using Pearson’s correlation coefficient to 

generate the similarity matrix and Unweighted Pair Group Method with Arithmetic Mean (UPGMA) as the 

clustering method. The reproducibility cut-off level was calculated as the mean value of the reproducibility 

obtained for each primer independently. For this purpose, and for each primer, 10% of the isolates were 

chosen randomly and their profiles redone (Sneath and Johnson, 1972). A dendrogram constructed based on 

these duplicates was used to estimate the reproducibility cut-off level and to calculate the optimization and 

curve smoothing parameters, 1.5% and 2.5% (for csM13) and 1.5% and 1.25% (for [GTG]5) respectively, 

that better paired the repeats for each primer. A conservative estimate of the reproducibility cut-off level was 

established at 95%, above which isolates cannot be distinguished using this technique. 

2.8. Biodiversity and ecological observations data analysis 

Although biodiversity measures are usually used at species level, in this dissertation they were used at 

genus level, since most of the isolates were not identified to species level with modern Mycology methods 

(i.e. sequence of appropriate gene barcodes) (Jeewon and Hyde, 2016). Considering that morphological 

observation is usually sufficient to identify the isolates to genus, to diminish the report of uncertain results 

all biodiversity analyses were done at genus level.  

2.8.1. Percentage abundance and frequency of occurrence calculation 

Fungal records are presented in terms of their percentage of frequency of occurrence, frequency of 

co-occurrence and abundance of occurrence. Frequency of occurrence (FO) was computed following 

equation (2.1). 

FO =  
number of samples on which a given taxon occurred

total number of samples examined
× 100 (2.1) 

Frequency of co-occurrence (FCO) was computed following equation (2.2). 

FCO =  
number of other fungal genera with which a particular fungal genus has co  occurence

total number of genera recorded
× 100 (2.2) 

- 
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Abundance of occurrence (AO) was computed following equation (2.3). Based on the abundance of 

occurrence of different genera they were grouped as very frequent (>10%), frequent (>5–10%), infrequent 

(>1–5%) or rare (≤1%). 

AO =  
number of occurrences of a given taxon

total number of occurrences of all taxa
× 100 (2.3) 

2.8.2. Diversity indices calculation 

Genera diversity of fungal communities was evaluated according to Mangurran (2004) using Simpson 

index of diversity, Shannon index of diversity and evenness index along with Margalef species richness index 

and Chao1 species richness estimator assessed for each genus, collection site or palm species, when 

applicable. 

Simpson index of diversity (D) (Simpson, 1949) was computed from equation (2.4). 

D =  1 − ∑
𝑛𝑖(𝑛𝑖 − 1)

𝑁(𝑁 − 1)
 (2.4) 

where ni is the number of individuals (isolates) in the ith genus, and N is the total number of isolates. Simpson 

index of diversity was computed in its complement form (1 – D) to ensure that the index increases with 

increasing diversity. 

Shannon index of diversity (H’) (Shannon, 1948) was computed from equation (2.5). 

H′ = − ∑(𝑝𝑖  log 𝑝𝑖) (2.5) 

where pi (ni/N) is the proportional abundance of the ith genus and log is the common log (base 10). 

Evenness index (J’) (Pielou, 1966) was computed from equation (2.6). 

J′ =
H′

Log S
 (2.6) 

where S is the genera richness (i.e. total number of genera) and log is the common log. Log S is equivalent 

to H’max, considering equation (2.5) for Shannon index of diversity. 

Shannon index of diversity (H’) and evenness index (J’) were also applied to molecular fingerprinting 

data, establishing a cluster cut-off at 70% to define groups. In this context ni is the number of individuals 

(isolates) in the ith group, pi is the proportional abundance of the ith group and S is the total number of 

groups. A specific terminology was adopted to distinguish the application of these indexes (when applied 

together) to both morphological and molecular data. Shannon index of diversity was referred to as IDm 

(morphological index of diversity) when applied to morphological data and as IDg (genetic index of diversity) 

when applied to molecular fingerprinting data. Evenness index was referred to as Em (morphological 

evenness) when applied to morphological data and as Eg (genetic evenness) when applied to molecular 

fingerprinting data. 

Margalef species richness index (DMg) (Margalef, 1958) was computed from equation (2.7). 

DMg =
(S − 1)

Ln 𝑁
 (2.7) 

where S is the genera richness, N is the total number of isolates and ln is the natural log (base e). 

Chao1 species richness estimator (SChao1) (Chao, 1984) was computed from equation (2.8). 

SChao1 = Sobs +
𝑎2

2𝑏
 (2.8) 
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where Sobs is the number of genera observed (equivalent to S), a is the number of observed genera represented 

by a single individual (singletons) and b is the number of observed genera represented by two individuals 

(doubletons). 

2.8.3. Colonization and isolation rates calculation 

Fungal isolation was evaluated using colonization and isolation rates. Colonization rate (CR) was 

computed from equation (2.9). Colonization rates are widely used in the literature and are usually expressed 

as percentages (Taylor et al., 1999; Fröhlich et al., 2000a). 

CR =  
total number of samples yielding ≥ 1 isolate

total number of samples in a given collection site/palm species
 (2.9) 

Isolation rate (IR) was computed from equation (2.10). Isolation rates (number of isolates per sample) 

were not expressed as percentages and were calculated to demonstrate the degree of multiple colonization 

from the samples, so it can be used as a measure of fungal richness in a given collection site or palm species. 

IR =  
total number of isolates yielded in a given collecting site/palm species

total number of samples in a given collection site/palm species
 (2.10) 

2.8.4. Genera-abundance distribution and collector’s effort curve 

Genera-abundance distribution was constructed to assess the pattern of genera abundances obtained for 

the leaf spotting fungal community by plotting the abundance of occurrence of each genus in the sample set 

on a logarithmic scale against genus rank from most to least abundant. 

Collector’s effort curve was constructed to estimate whether the sampling was thorough by plotting the 

cumulative number of genera recovered against the number of samples examined (selected at random) for 

each parish and for the overall sample set. 

3. Results and Discussion 

3.1. Overall morphological diversity: what fungal genera are there? 

A collection of 457 isolates associated with foliar lesions of palms was established. A total of 57 genera 

were recorded. This included 32 coelomycetes (38% of all records), 19 hyphomycetes (53%), five 

ascomycetes and one basidiomycete (5%). In addition, 16 isolates (4%) failed to sporulate (Table 3.1, 

Figure 3.1). An overview of the distribution of all fungal genera recorded is presented in Figure 3.1. Patterns 

of diversity and abundance can be examined qualitatively by comparing the taxonomic distribution of fungal 

taxa. The percentage abundance and frequency of occurrence of all collections of all genera are presented 

in Table 3.2. 

Table 3.1  Distribution of fungal records per fungal types. Absolute frequencies of fungal isolates found associated with the 

foliar lesions of palms are distributed per different fungal types. Ascomycetes and basidiomycetes correspond to those isolates 

where only the sexual morph was observed. Sterile mycelium corresponds to those isolates where no sporulation was observed. 

Type Number of isolates Number of genera 

Coelomycetes 173 32 

Hyphomycetes 243 19 

Ascomycetes 24 5 

Basidiomycetes 1 1 

Sterile mycelium 16 NA* 

*NA, not applicable. 
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The most common taxa were Alternaria (21% of all records), Cladosporium (12%) and Phoma (10%) 

with at least 40 isolates recorded. Thus, these genera were regarded as very frequent (Figure 3.1, 

Table 3.2). 

 
Figure 3.1  Distribution of fungal records per fungal genera. Relative abundance of the main genera of fungal isolates found 

associated with the foliar lesions of palms examined. Genera with a percentage abundance of occurrence < 0.5% (less than 

three isolates recorded) were excluded. Colours are according to fungal types and fungal genera. 

Only one genus, Neosetophoma (5% of all records) can be regarded as frequent, while 15 genera can be 

regarded as infrequent with an abundance of occurrence ranging from five to just over 20 isolates. The 

remaining 38 genera were represented by less than five records and can be regarded as rare. Most of them 

corresponded to coelomycete genera (Table 3.2). A total of 35 fertile isolates remained unidentified to genus 

level, although it was possible to establish different “morphological groups” based on their culture and 

micromorphological characters. Thus, 6 hyphomycetes and 5 coelomycetes unnamed genera are presented 

just as different genera based on their morphological characters. A similar approach was used for the isolates 

regarded as Diatrypaceae genus, Sordariomycetes genus 1, Sordariomycetes genus 2 and 

Teratosphaeriaceae genus 1, although molecular information has also been used to establish their 

“morphological groups”. Nevertheless, most of these isolates were represented by a single record and account 

for the rare fungal assemblage of foliar lesions of the palms examined (Table 3.2). 

The overall composition of the fungal community associated with the foliar lesions shows a 

well-defined pattern of dominance by few genera – Alternaria, Cladosporium and Phoma – along with a 
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remarkable profusion of infrequent and rare genera (Figure 3.1, Table 3.2). More than 66% of the genera 

recorded have an abundance of occurrence less than 1%. Furthermore, besides the high abundance of 

occurrence, the dominant genera also showed a high frequency of occurrence, being recorded in almost 50% 

of the samples analysed (Table 3.2). Thus, Alternaria, Cladosporium and Phoma are not only the genera with 

the greatest number of isolates, but also the genera that are most frequently found associated with the foliar 

lesions. Although this study is focused on the biodiversity observations at genus level, the community pattern 

observed is commonly reported in nature. In fact, the pattern of a few very common species and a wide array 

of species with only one or two occurrences is common in investigations of plant, animal and fungal diversity 

and have been reported in studies of both palmicolous endophytes and saprobes (Fröhlich et al., 2000a; 

Pinnoi et al., 2006; Pinruan et al., 2007). Considering the morphological and molecular fingerprinting 

characters obtained for each genus, a similar result for community pattern is expected at species level, 

especially considering the csM13-(GTG)5 clustering profile of Alternaria isolates, which is later discussed 

(subsection 3.5).  

This fungal community pattern is well evidenced by the genera-abundance distribution plot 

(Supplementary Figure A.2), which is best described by a log-series model (May, 1975). The log-series 

model occurs when one or a few factors control species distribution and when the intervals between arrivals 

of species into a habitat are random, resulting in only a few taxa becoming dominant (Zak and Willig, 2004). 

The observed steep slopes in the genera-abundance distribution plot are indicative of an assemblage with 

high dominance, just as the one recorded on the foliar lesions. Thus, the leaf spotting fungal assemblage of 

palms could be shaped by few factors concerning the establishment of the symptoms, which should be related 

with the interaction between the fungal individuals and the plant tissue. Once the symptoms are established 

by the primary pathogens, the subsequent mycota can arrive regularly and occupy the already damaged tissue 

with a limited portion of nutrients available. In fact, log-series model predicts that dominant species preempts 

largest portion of limiting resource (Mangurran, 2004). Consequently, a nonequilibrium assemblage arises, 

where Alternaria, Cladosporium and Phoma are present with an abundance of occurrence several orders of 

magnitude higher than the remaining infrequent and rare assemblages. Although the genera-abundance 

distribution clearly evidences a community with a dominance pattern, any approach for fitting the model was 

followed, since it is out of the scope of this dissertation. The observed tendency can be expressively changed 

when isolates are identified at species level. Additionally, the sterile isolates of fungi obtained from the 

samples should have been sorted into morphological genera groups based on macromorphological and 

micromorphological characteristics expressed when grown on different media, since when plotting species- 

-abundance distribution, the same taxonomic units must be applied for all ecological units (Zak and Willig, 

2004). A biased result is not expected with the identification of sterile mycelium isolates because their 

abundance of occurrence is remarkably low (Table 3.1). 

Different aspects could be related with the dominance of Alternaria, Cladosporium and Phoma (more 

than 40% of all fungal records) in the community (Table 3.2). These three genera are unlikely to be the main 

cause of the palm leaves symptoms surveyed. Although they are reported as common fungal genera in leaf 

spot diseases, including palms (Broschat et al., 2014, 2015; Pegg and Manners, 2017; Elliott, 2018a), usually 

they are observed as opportunistic fungi causing secondary infections. Infection of the plant tissue by primary 

pathogens may cause changes in the nutrient availability on the leaf surface, which stimulates the already 

present saprophytic fungi to grow on it and inhabit it as secondary minor pathogens (Abdel-Hafez et al., 

2015). Secondly, these genera are common fungal saprobes, and consequently could be recorded only as 

surface contaminants due to an inefficient surface sterilization process (Hyde and Soytong, 2008).  

Considering the overall diversity of the fungal communities of foliar lesions, in terms of both genera 

richness and abundance of occurrence, isolates may be classified into three groups: (a) well-known and 

important pathogens of foliar lesions, such as most of the coelomycetes recorded; (b) commonly abundant 

phylloplane fungi which are considered primary saprobes and secondary minor pathogens, such as most of 

the Alternaria, Cladosporium and Phoma isolates recorded; (c) occasionally occurring fungi that were 

possibly isolated only as contaminants and could not usually integrate the foliar lesions communities, such 

as some of the rare occurring genera. 
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The fungal assemblage associated with the foliar lesions of palms examined have a broad taxonomic 

distribution, although at least 20 of the 57 genera (35%) are members of the order Pleosporales. This includes 

most of the genera with the highest percentage abundance of occurrence. In fact, most of the isolates recorded 

were members of the order Pleosporales, with a remarkable contribution from the genera Alternaria and 

Phoma. Nevertheless, Cladosporium arises as an exception, since it was the second most abundant genus in 

the community, although it is a member of the order Capnodiales. The remaining genera are dispersed 

through a wide range of fungal orders and, especially families, that occur rarely. Recent reports of 

palmicolous fungi have described a series of Botryosphaeriales, including members of the genera 

Botryosphaeria, Phyllosticta and Neodeightonia (Liu et al., 2010, 2012; Wulandari et al., 2011) as common 

fungal genera found on palms. Members of this order, comprising five different genera in the family 

Botryosphaeriaceae, namely Neodeightonia, Fusicoccum, Neofusicoccum and Diplodia, and 

Phyllostictaceae, namely Phyllosticta, were recorded in the present study. Concerning higher taxa, as 

expected, Sordariomycetes (at least 14 in 57 genera) and Dothideomycetes (at least 28 in 57 genera) were the 

best represented classes found associated with foliar lesions of palms in Portugal. 

A pattern has emerged from previous studies of a group of fungi, mainly ascomycetes, consistently 

associated with palms, which are referred to as palm fungi or palmicolous fungi (Hyde et al., 1997c; 

Fröhlich and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003). Although the most representative group 

of leaf spotting palmicolous fungi found was the ascomycetes, noteworthy differences in the taxonomy 

of the foliar lesions’ assemblage were found compared to what has been reported. The assemblage 

of palmicolous fungi associated with foliar lesions in Portugal differs from the assemblages of palmicolous 

fungi reported in tropical regions. While Xylariaceae was found to be the best represented family on tropical 

palms (Zhang et al., 2019), in the present study the best represented families were the Pleosporaceae in the 

hyphomycetes and the Phaeosphaeriaceae in the coelomycetes. These results were expected, since climatic 

influences are one of the factors that shape palmicolous fungal communities (Taylor et al., 2000).  

Fungal host and family specificity are often reported on palm trees in the tropics (Hyde et al., 2007). 

However, fungi associated with palms in their native habitat are not necessarily the same ones reported when 

they are moved into temperate regions (Broschat et al., 2014). In fact, the assemblage of leaf spotting fungi 

associated with ornamental palms in Portugal seems to be composed of ubiquitous genera frequently reported 

as foliar pathogens, including palms, such as Alternaria, Arthrinium, Botrytis, Colletotrichum, Fusarium, 

Neopestalotiopsis, Nigrospora, Stemphylium, Pithomyces, Phoma, Phyllosticta, Epicoccum and several 

coelomycete genera. This pattern has already been reported in ecological studies on palmicolous fungi. 

Taylor et al. (2000) demonstrated that while the fungi associated with many palm species in their native 

habitat were a characteristic and consistent assemblage, especially in the tropics, the fungi associated with 

these same palms outside of tropical regions were composed of fungi considered to be relatively ubiquitous 

with a much wider plant family host range. In addition, studies carried out by Hyde et al. (2000) on the fungal 

assemblage of the temperate climate palm Chamaerops humilis in Europe showed that more temperate and 

widespread taxa are recorded, consistent with the results from the present study. 

What is the composition of the hyphomycete and coelomycete genera assemblage? 

A great diversity of hyphomycete and coelomycete genera were recorded (Figure 3.1, Supplementary 

Figure A.8, Supplementary Figure A.9), however most genera were represented by a small number of isolates 

and can be regarded as infrequent or rare (Table 3.2). Although abundance of occurrence of hyphomycete 

assemblage was higher than coelomycete assemblage (53% to 38%), a different result was recorded in terms 

of genera richness. Genera richness of coelomycetes was almost twice that hyphomycetes (32 to 19; 

Table 3.1). Thus, diversity of the coelomycetes was higher compared to that of hyphomycetes, both in terms 

of genera richness and evenness (Table 3.3). These two components play a key role in shaping the diversity 

of these fungal assemblages and, subsequently, of all fungal communities associated with palm foliar lesions. 

The most representative hyphomycete genera recorded were Alternaria (21% of all records), 

Cladosporium (12%), Epicoccum (5%) and Stemphylium (5%). Thus, the main families of the hyphomycete 

assemblage associated with foliar lesions of palms were Pleosporaceae, Didymellaceae, in the order 



 

PART I     Microfungal communities of palm foliar lesions: from biodiversity to ecological observations 

21 

 

Pleosporales, and Cladosporiaceae in the order Capnodiales, although several other orders and families were 

also recorded with a much smaller number of isolates (Figure 3.1, Table 3.2).  

Table 3. 2  Distribution of fungal genera per frequency groups. Genera are grouped based on their abundance of occurrence 

as very frequent (>10%), frequent (>5–10%), infrequent (>1–5%) or rare (≤1%). Percentage of abundance of occurrence and 

frequency of occurrence is given next to each genus. 

Frequency group Genera (AO*; FO#) Frequency group Genera (AO, FO) 

Very frequent Alternaria (21.03; 48.72) Rare Cytospora (0.22; 1.28) 

 Cladosporium (12.04; 44.87)  Diatrypaceae genus (0.22; 1.28) 

 Phoma (10.28; 41.03)  Diplodia (0.22; 1.28) 

Frequent Neosetophoma (5.03; 15.38)  Foliophoma (0.22; 1.28) 

Infrequent Botrytis (1.09; 6.41)  Fusarium (0.88; 3.85) 

 Coniothyrium (1.97; 6.41)  Fusicoccum (0.44; 2.56) 

 Diaporthe (1.53; 7.69)  Graphiola (0.22; 1.28) 

 Didymocyrtis (1.09; 5.13)  Hyphomycete genus 1 (0.44; 2.56) 

 Epicoccum (4.81; 16.67)  Hyphomycete genus 2 (0.22; 1.28) 

 Keissleriella (1.97; 6.41)  Hyphomycete genus 3 (0.66; 3.85) 

 Libertasomyces (2.63; 8.97)  Hyphomycete genus 4 (0.44; 2.56) 

 Nigrospora (1.75; 6.41)  Hyphomycete genus 5 (0.22; 1.28) 

 Paraconiothyrium (1.31; 3.85)  Hyphomycete genus 6 (0.22; 1.28) 

 Penicillium (1.97; 10.26)  Lophiostoma (0.88; 5.13) 

 Sclerostagonospora (1.75; 8.97)  Monilia (0.22; 1.28) 

 Septoria (1.09; 6.41)  Morinia (0.88; 5.13) 

 Sordariomycetes genus 1 (3.06; 10.26)  Neodeightonia (0.66; 3.85) 

 Sordariomycetes genus 2 (1.09; 5.13)  Neofusicoccum (0.44; 2.56) 

 Stemphylium (4.60; 17.95)  Neopestalotiopsis (0.44; 2.56) 

Rare Arthrinium (0.88; 5.13)  Parastagonospora (0.88; 2.56) 

 Ascochyta (0.22; 1.28)  Phaeosphaeria (0.66; 2.56) 

 Aspergillus (0.66; 3.85)  Phyllosticta (0.22; 1.28) 

 Bartalinia (0.22; 1.28)  Pithomyces (0.66; 1.28) 

 Chaetomium (0.66; 2.56)  Plenodomus (0.66; 3.85) 

 Coelomycete genus 1 (0.22; 1.28)  Pseudoconiothyrium (0.22; 1.28) 

 Coelomycete genus 2 (0.22; 1.28)  Stachybotrys (0.22; 1.28) 

 Coelomycete genus 3 (0.22; 1.28)  Stagonosporopsis (0.22; 1.28) 

 Coelomycete genus 4 (0.22; 1.28)  Teratosphaeriaceae genus 1 (0.22; 1.28) 

 Colletotrichum (0.66; 2.56) Total number of genera = 57 

Total number of identified genera = 43 

Total number of unidentified genera (“morphogroups”) = 14 

Total number of isolates = 457 
*AO, abundance of occurrence (%). 
#FO, frequency of occurrence (%). 

The most representative genera of coelomycetes recorded were Phoma (10% of all records) and 

Neosetophoma (5%). Thus, the main families of the coelomycete assemblage found with foliar lesions of 

palms were Didymellaceae and Phaeosphaeriaceae in the order Pleosporales. Most of coelomycete genera 

recorded were represented by a small number of isolates and, although a vast array of families was recorded, 

most of the isolates fit within the order Pleosporales. Nevertheless, members of the order Botryosphaeriales 

were also common (Figure 3.1, Table 3.2).  
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Coelomycete assemblage had the highest diversity index, with a remarkably high evenness index 

(Table 3.3). This reflects the fact that there were fairly few dominant genera and a high proportion of 

infrequently collected genera. Although hyphomycete assemblage had a considerably high diversity index, 

it had an evenness index just over 0.6 (Table 3.3). This reflects the high dominance of Alternaria and 

Cladosporium genera, which together represent more than 60% of the hyphomycete assemblage, while in the 

coelomycete assemblage Phoma dominance had less than 30% the total. The fact that Simpson index of 

diversity was very similar in both assemblages (Table 3.1) also expresses this dominance pattern. In fact, this 

diversity index gives more weight to the more abundant species in a sample and the addition of rare species 

cause only small changes (Mangurran, 2004). Consequently, the dominance of Phoma in the coelomycete 

assemblage reduces its diversity and Simpson index of diversity becomes relatively blind to the vast array of 

infrequent genera. Thus, diversity patterns are more expressive in the Shannon index of diversity value. It 

must be noted that both assemblages have a substantial number of infrequently recorded genera, but the 

relative proportion of these genera to the abundance of the dominant ones makes the hyphomycete 

assemblage much less even. 

Table 3.3  Biodiversity measures of hyphomycete and coelomycete assemblages. Simpson index of diversity (D), Shannon 

index of diversity (H’) and evenness index (J’) were computed considering the number of genera and the number of isolates 

recorded in both hyphomycete and coelomycete assemblages. 

Index of diversity Coelomycetes Hyphomycetes 

D 0.89 0.78 

H’ 1.20 0.84 

J’ 0.80 0.66 

Considering the overall distribution pattern of the community of palmicolous leaf spotting fungi recorded, 

which follows a log-series model (Supplementary Figure A.2), the hyphomycete assemblage contributes 

more to the steeper slopes expressing the high dominance, while the coelomycete assemblage contributes 

more to the shallower slopes expressing the profusion of the infrequent mycota. The coelomycete records 

were one of the differences detected by Taylor et al. (2000) concerning the biogeographical distribution 

of microfungi associated with palms from tropical and temperate habitats. Besides the few common palm 

fungi encountered in temperate regions, coelomycetes appeared to be more abundant. The present results 

confirm Taylor’s findings, since the high abundance of hyphomycetes is probably biased due to the records 

of Alternaria and Cladosporium. Excluding the dominant mycota in both assemblages, coelomycetes present 

a higher abundance compared to the hyphomycetes (49% to 35%), so coelomycetes are expected to be more 

abundant in the fungal mycota associated with palm foliar lesions in Portugal. The ratio between relative 

abundances of coelomycetes and hyphomycetes found in this dissertation is similar to that found by 

Taylor et al. (2000) for temperate regions (1.4 and 1.3, respectively). This is particularly interesting, 

considering that these ratios were obtained from relatively different contexts: (a) while the present study used 

different palm host species as ornamentals in a country with temperate climate (Chazarra et al., 2011), 

Taylor’s conclusions were based only on Trachycarpus fortunei as a model to study biodiversity on palms 

from temperate regions; (b) while the present study analysed fungal communities living on palm foliar 

lesions, Taylor studied fungal communities living on different decaying palm parts; (c) while in the present 

study collections were made during the end of the dry season (ending of the summer of 2018) 

(Chazarra et al., 2011), Taylor’s study included collections made during the wet season. 

3.2. Fungal assemblages and host species: are different hosts harbouring different fungal genera 

communities? 

A total of 50 trees in eight different palm species were examined for associated foliar lesions. These 

included one Chamaedorea elegans, two Phoenix reclinata, three Washingtonia filifera, five Trachycarpus 

fortunei, six Dypsis lutescens, six Phoenix dactylifera, 13 Chamaerops humilis and 14 Phoenix canariensis. 

Chamaedorea elegans, Phoenix reclinata and Washingtonia filifera were excluded from the biodiversity 
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analyses, since the number of trees examined and, thus, the number of foliar lesions collected (less than five) 

were too small for any supported trends observation. 

All palm host species examined were found to support a considerable wealth of diseased foliar tissue. In 

general, the greater the number of trees examined, the greater the number of different foliar lesions collected. 

As stated by Elliott (2018a), all palms should be considered hosts for leaf spots and leaf blights. Nevertheless, 

in proportion to the number of trees examined, Phoenix dactylifera, Phoenix canariensis and Chamaerops 

humilis presented a higher number of different foliar lesions than Trachycarpus fortunei and Dypsis lutescens 

(Figure 3.2 A, B). 

 

Figure 3.2  General biodiversity patterns of fungal records per host species. A, B. Graphical representation of the absolute 

frequency of isolates and genera yielded, and foliar lesions (samples) and trees examined for each host species. The absolute 

frequency of isolates was plotted separately due to marked differences in scale values that would impair data visualization if 

all variables were plotted together. C. Percentage abundance of occurrence of each fungal type for each host species. D. Venn 

diagram of genera nicheness by host species. Host species with an absolute frequency of less than five foliar lesions examined 

were excluded due to sampling effort bias. In C colours are according to fungal types. In D colours are according to host 

species. Dl = Dypsis lutescens, Tf = Trachycarpus fortunei, Pd = Phoenix dactylifera, Pc = Phoenix canariensis, 

Ch = Chamaerops humilis. 

Although this could be biased due to the sampling effort and the age of the trees examined, the 

environment from where these trees were sampled may also have influenced their degree of infection. 

Trachycarpus fortunei and Dypsis lutescens were always found in private gardens or indoor environments. 

Naturally, these are less aggressive than outdoor environments where weather conditions and its changes can 

influence leaf health and facilitate fungal infections. Climatic events, such as wind, frost, rain or drought, 

may cause injuries on the leaf blades. These, in turn, can render the palm trees more vulnerable and increase 

their susceptibility to fungal infections by providing physical entries, such as already verified in some fungal 

outbreaks (Kim et al., 2015). Additionally, such environmental conditions, especially temperature, humidity 

and rainfall, also widely affect fungal spore production, dispersal, germination and infection (Agrios, 2005; 
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Pegg and Manners, 2017), favoring foliar lesions development in outdoor environments. Furthermore, palms 

in private gardens and indoor environments are usually treated by their owners to maintain their aesthetic 

value and their function as decorative elements. This often implies the use of disease management strategies 

that aim to eliminate or prevent leaf spots and leaf blights (Pegg and Manners, 2017). 

In general, the greater the number of different foliar lesions collected, the greater the number of fungal 

isolates and fungal genera recorded. Phoenix dactylifera arises as an exception, since it was one of the host 

species with a smaller number of trees and foliar symptoms examined but was the host species with the 

highest genera richness (27 of all genera records), followed by Phoenix canariensis and Chamaerops humilis. 

Chamaerops humilis was the host species with the highest number of isolates recorded (144 of all fungal 

records) (Figure 3.2 A, B). The biodiversity pattern in each host species was similar to the pattern observed 

in the overall community (Supplementary Figure A.2, Supplementary Figure A.3). Thus, a high profusion of 

infrequent and rare genera was recorded, along with few very frequent genera (Supplementary Figure A.3). 

These very frequent genera – Alternaria, Cladosporium and Phoma – were the only three of the 57 genera 

recorded that were found in all host species (Figure 3.2 D). The main difference between the fungal 

assemblages of different host species is in the composition of infrequent and rare genera, since most of them 

are represented by one or two isolates contributing for the exclusive genera composition recorded on each 

host (Supplementary Figure A.3, Figure 3.2 D). The host species with higher number of exclusive genera 

was Phoenix dactylifera (eight of total genera records), followed by Chamaerops humilis, Dypsis lutescens 

and Phoenix canariensis (each with six exclusive genera). Trachycarpus fortunei was the host species with 

the lowest number of exclusive genera (three of total genera records). Phoenix canariensis and Phoenix 

dactylifera were the host species that shared the higher number of fungal genera that occur only in two host 

species (five of total genera records) (Figure 3.2 D). 

Considering that the fungal assemblages associated with foliar lesions are being studied as fungal 

communities, if outdoor and indoor environments can influence fungal infections, it is expected that 

differences in biodiversity of fungal assemblages can arise from this. In fact, this could be the reason why 

Phoenix dactylifera was shown to be one of the species with the highest genera richness and number of 

isolates recorded even though it was one of the species with a smaller number of trees and foliar lesions 

examined, just such as Dypsis lutescens and Trachycarpus fortunei. Additionally, the last two were the 

species with the lowest genera richness and number of isolates. Therefore, outdoor versus indoor 

environments could explain in part the differences found in the degree of foliar infections shown by different 

palm host species. The potential phytopathogenic microbial load in outdoor environments, such as streets, 

boulevards and public gardens may be higher, since it can flow through different trees associated with 

different spore spreading agents, like animals or the wind, increasing the possibility of plant infection. In this 

sense, Dypsis lutescens and Trachycarpus fortunei, preferentially sampled from indoor environments, such 

as buildings’ lobbies, were possibly less exposed to fungal infections and, consequently, a smaller number 

of fungal isolates and genera were recorded from the leaf spotting communities of these hosts species. 

Although the overall fungal assemblage pattern is similar in all host species, substantial differences in the 

assemblages of coelomycetes and hyphomycetes were found (Supplementary Figure A.3, Figure 3.2 C). Such 

as verified in the overall community, the percentage abundance of occurrence of hyphomycetes was higher 

than coelomycetes in all host species, except Phoenix canariensis, which presented a slightly higher 

percentage of coelomycete occurrences. Dypsis lutescens and Trachycarpus fortunei were the host species 

more enriched in hyphomycetous fungi. Dypsis lutescens was particularly impoverished in coelomycetous 

fungi.  

The differences between hyphomycete and coelomycete assemblages in all host species can be seen not 

only in their percentage abundance of occurrence, but also in the composition of their main genera 

(Supplementary Figure A.3, Figure 3.2 C, Figure 3.3). 

Alternaria was the most abundant hyphomycete genus in all host species, along with Cladosporium and 

Epicoccum. However, this trend was not followed in Dypsis lutescens, whose most important hyphomycete 

genera include Penicillium and Pithomyces, besides Alternaria. In Chamaerops humilis the third most 

important hyphomycete genus was Stemphylium. Besides these differences, in general, the hyphomycete 
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assemblage and the respective percentage abundance of occurrence for each main genus was relatively 

similar in all host species (Figure 3.3). 

Phoma was the most abundant coelomycete genus in all host species, except in Chamaerops humilis 

where Neosetophoma was the most abundant. Compared to the hyphomycete assemblage, the differences in 

the main coelomycete genera between different host species were more relevant. Each host species, where 

percentage abundance of occurrence of coelomycete assemblage was relevant, was found to have a specific 

group of most abundant coelomycetous fungi in Pleosporales, besides Phoma (Figure 3.3). 

 

Figure 3.3  Main hyphomycete and coelomycete genera per host species. Percentage abundance of occurrence of 

hyphomycete and coelomycete assemblages and their corresponding three most important genera found associated with the 

foliar lesions of palms examined for each host species. Four genera are presented in Trachycarpus fortunei since the third and 

the fourth most important genera in each assemblage of this host species were reported with the same percentage abundance of 

occurrence. Colours are according to fungal types and fungal genera. 

While hyphomycete assemblages are homogeneous in most of the hosts surveyed, coelomycete 

assemblages seem to be more heterogeneous (Figure 3.2 C, Figure 3.3). Thus, coelomycetes are the main 

cause of the differences detected in the mycota of different host species, since they include most of the rare 

and infrequent genera recorded. Although Phoma was the most frequent coelomycete genus for the overall 

fungal assemblage, contrary to Alternaria for the hyphomycetes, it is not the most frequently occurring genus 

in all the hosts surveyed. In Chamaerops humilis, Neosetophoma seems to be more frequently associated 

with the foliar lesions, while Phoma was recorded with the same percentage abundance of occurrence as 

Libertasomyces. Libertasomyces were only occasionally recorded in two other hosts and seems to be 

particularly abundant in C. humilis. It is interesting that these differences are occurring on the only palm host 

surveyed that display not only a temperate climate native range, but also a Mediterranean climate native 

range (Dransfield et al., 2008; Gilman et al., 2018), which is typical in Portugal. Somehow, mycota from 

Chamaerops humilis is displaying differences that could be related to the climatic constrains for this host in 

a similar extent to that differences reported in mycota of palms from tropical regions. It appears that a typical 

temperate palm mycota may exist that is expressed mainly in the coelomycete assemblage. This may 

justify why Taylor et al. (2000) reported that coelomycetes account for more of the fungi recorded from 
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palms in temperate regions, as well as why the pattern was also consistent with the present results. More 

intensive studies on wild representatives of C. humilis would probably clarify this pattern. Other evident 

differences on the main genera of coelomycetes found include Neosetophoma and Keissleriella recorded on 

Phoenix canariensis and Coniothyrium and Paraconiothyrium recorded on Phoenix dactylifera, which 

account for the high diversity of the fungal assemblage reported from these hosts. 

Trachycarpus fortunei and, especially, Dypsis lutescens were shown to be particularly depauperate in the 

coelomycete assemblage. Sampling effort may be generating artificial differences, since Dypsis lutescens 

and Trachycarpus fortunei were the hosts with the lowest number of samples collected. In fact, considering 

that the coelomycete assemblage are mainly composed by rare and infrequent genera, its abundance and 

composition are highly affected by the sampling effort. 

The differences between fungal assemblages recorded on different host species can also be quantified 

using biodiversity measures. Colonization rate, isolation rate, Simpson index of diversity, Shannon index of 

diversity and evenness index for the fungal assemblage associated with the foliar lesions of each host species 

are listed in Table 3.4. The ratio between the number of genera/number of samples (number of genera per 

sample) was also included, since genera is the principal component of the biodiversity analyses and 

ecological observations in this dissertation. This ratio can be used as a biodiversity measure, since it expresses 

how many different genera can be expected to be found per host species sample. Thus, this ratio is an indirect 

measure of the genera richness for a given host species and it is normalized with the number of samples 

examined, which can diminish sampling effort biases. 

Table 3.4  Biodiversity measures of fungal assemblages per host species. Colonization rate (CR) and isolation rate (IR) 

were computed considering the number of samples examined from each host species and the correspondent number of isolates 

yielded. Number of genera per sample (foliar lesion) was calculated as the number genera recorded in each host species divided 

by the correspondent number of samples examined. Simpson index of diversity (D), Shannon index of diversity (H’) and 

evenness index (J’) were computed considering the number of genera and the number of isolates recorded for each host species. 

Host species with an absolute frequency of less than five samples examined were excluded due to sampling effort bias. 

Host CR IR Number of genera per sample D H’ J’ 

Chamaerops humilis 100% 6.86 1.14 0.90 1.14 0.83 

Dypsis lutescens 100% 4.57 2.00 0.92 1.06 0.92 

Phoenix canariensis 100% 3.77 1.00 0.91 1.17 0.83 

Phoenix dactylifera 100% 8.00 2.25 0.92 1.22 0.85 

Trachycarpus fortunei 100% 7.83 2.00 0.77 0.79 0.74 

All the samples examined from each host species yielded at least one isolate. Thus, colonization rate was 

100% in all host species. However, differences in isolation rate were found, as well as for the number of 

genera per sample (Table 3.4). Isolation rate is equivalent to the number of isolates yielded per sample, so it 

is an indirect measure of the degree of multiple colonization from the samples (Fröhlich et al., 2000a). Dypsis 

lutescens and Phoenix canariensis were two of the hosts whose samples presented the lowest isolation rate 

(4.6 and 3.8, respectively). A low isolation rate may indicate a low fungal richness. Thus, Dypsis lutescens 

and Phoenix canariensis were the host species with the lowest fungal richness per sample. Considering that 

from the set of the hosts examined, these present a tropical to subtropical native range (Dransfield et al., 

2008; Broschat, 2017; Friedman et al., 2019a), growing them on a temperate climate may impoverish their 

mycobiota. As Taylor et al. (2000) showed with the studies on the tropical palm Archontophoenix 

alexandrae, tropical palms outside their natural habitat may be depauperate in palm fungi. The present results 

suggest that tropical and subtropical palms, such as Dypsis lutescens and Phoenix canariensis, introduced 

outside their natural range have a generally impoverished mycota. This phenomenon of depauperate fungal 

assemblages accruing on hosts growing outside of their native geographical range has been noted previously 

for pathogens of weed plants, such as Chromolaena odorata (Barreto and Evans, 1994), Mikania micrantha 

(Barreto and Evans, 1995) and Lantana camara (Barreto et al., 1995). Outside their native geographical 

range, these hosts showed assemblages composed of nonspecific, opportunistic pathogens. A similar result 
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can be found in the present study where the fungal assemblage recorded was mainly composed by widespread 

leaf spotting fungi. 

A very different pattern is observed in typical temperate climate palm host species, such as Chamaerops 

humilis and Trachycarpus fortunei. Samples from these two palms showed a fungal richness per sample (7.8 

and 6.9, respectively) almost twice as high as those from Dypsis lutescens and Phoenix canariensis, which 

is concomitant with the fact that these palms are adapted to temperate climate and, consequently, to its typical 

mycobiota. This may suggest that the low proportions of fungi associated with samples from Dypsis lutescens 

and Phoenix canariensis could be due to the lack of tropical palms in temperate regions which could “share” 

fungi with these hosts. It is important to highlight that the mechanisms behind the distribution of palm fungi 

are uncertain and only speculations can be made (Taylor et al., 2000). Not only were Dypsis lutescens and 

Phoenix canariensis impoverished in typical palm fungi, but these hosts were depauperate of fungi in general, 

since their foliar lesions were shown to yield a smaller number of plurivorous fungi per sample than the other 

palm host species examined, such as Chamaerops humilis and Trachycarpus fortunei, which are considered 

temperate palms (Dransfield et al., 2008; Gilman and Watson, 2014; Gilman et al., 2018). It seems clear that 

climatic requirements play a role in shaping fungal richness in different palm hosts species, although the 

pattern are not easy to clarify with the data obtained. A systematic survey of the mycota from wild stands of 

the temperate palm Chamaerops humilis, the only native palm in Portugal, would provide more definitive 

information to establish well-supported comparisons. 

Phoenix dactylifera presented the highest isolation rate between all the host species analysed. In terms of 

climatic requirements, P. dactylifera is best adapted to dry and desert climates (Dransfield et al., 2008; 

Friedman et al., 2019b). Thus, compared with the remaining host species, it shows a native climate range 

between the wet tropical regions and the warm temperate ones. The high fungal richness recorded in this host 

could possibly be related to this intermediate climate context. Following the trends previously discussed, 

P. dactylifera might be able to “share” its mycobiota with temperate palms, which may be the reason why its 

fungal richness was comparatively greater than other palm host species with a native climate range different 

from the temperate climate, such as D. lutescens and P. canariensis, even if the number of samples collected 

was not very substantial. This pattern is also followed by the ratio number of genera/number of samples, 

since P. dactylifera was the palm host species with the highest value for this ratio. This indicates that it was 

not only the host with the highest number of isolates per sample, but also the host with the highest genera 

richness per sample. Some hypothesis here presented as trends could be tested with growth studies at different 

temperature regimes of isolates of palmicolous fungi, which would provide a direct method for testing some 

of their biological constrains. 

The number of genera per sample is not easy to analyse, since it seems not to be directly related with the 

number of isolates. However, this could be biased by the percentage abundance of occurrence of each genus. 

If a given genus is very frequent on the samples of a certain host, it will decrease the corresponding number 

of genera per sample. Thus, while a high value of genera richness per sample could be directly related with 

biodiversity, a low value may only reveal the presence of very frequent genera in a great number of samples 

from that host. As can be seen in Table 3.4, the number of genera per sample do not vary enough to explain 

patterns of biodiversity, since it ranges from one to just over two genera per sample. Additionally, it seems 

that no association exists between the host native climate range and the number of genera per sample. 

Analysis of fungal biodiversity in different hosts was also carried out using diversity indices, such as the 

Simpson index of diversity and the Shannon index of diversity, as well as the evenness index. Differently 

from genera richness per sample, that only considers the number of genera recorded, diversity indices 

combine genera richness and abundance into a single value. Although more informative, this also makes 

interpretation difficult as diversity indices with the same value may arise from various combinations of genera 

richness and abundance. Thus, values for diversity indices presented in Table 3.4 should be interpreted 

with care.  

To aid interpretation, a measure of abundance was estimated using an evenness index based on the 

Shannon index of diversity. The closer the value is to one, the more evenly spread the individuals are between 

the different genera recorded and, consequently, more diverse is the fungal community. Apparently, in all 
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the hosts analysed, the fungal communities recorded showed a similar biodiversity. However, it is interesting 

that Dypsis lutescens seems to be relatively more diverse, since its evenness index was higher than the other 

hosts. Although impoverished in fungi, Dypsis lutescens maintains a fungal community with a relatively high 

diversity. This is directly related with the fact that this palm host is particularly depauperate in coelomycetes 

and all the coelomycetes recorded are represented by a very low number of individuals, consequently 

increasing the evenness of the fungal community. 

Another interesting case is the lower values for diversity indices recorded in Trachycarpus fortunei. In 

this case, the diversity is particularly affected by the high number of isolates of Alternaria recorded. The 

dominance of this genus not only decreases the values for the diversity indices, but also decreases the 

equitableness of the fungal community, which is represented in 50% of all records by Alternaria isolates. 

It is not surprising that the diversity indices mostly revealed similar levels of the diversity of the fungal 

communities surveyed for each host. 

First, as noted, all the plants surveyed are ornamentals and are subjected to the same climate constrains, 

the warm temperate Portuguese climate. Secondly, the distribution of the genera is very alike in all hosts 

surveyed (Supplementary Figure A.3). Assessing the absolute frequency for each genus occurrences, it is 

possible to verify that, although different genera compose each host fungal assemblage, the pattern is very 

alike in all of them: few dominant genera and a wealth of rare genera that contributes for the homogeneity of 

the community, especially in the coelomycete assemblage. So, differences in the fungal assemblage of each 

host are particularly related with the presence of different rare genera, some of them only appearing in a 

specific host (exclusive genera) and thus contributing to increase the diversity of the fungal assemblage 

recorded in that host. The number of exclusive genera was higher in Phoenix dactylifera and lower in 

Trachycarpus fortunei (Figure 3.2 D), which is concomitant with the previous discussed results. 

3.3. Fungal assemblages and parishes: are different parishes harbouring different fungal genera 

communities? 

Different sampling sites were assessed to search for foliar lesions on ornamental palm trees, including 

Oeiras and five Lisbon parishes, namely Alvalade, Areeiro, Marvila, Parque das Nações and São Vicente. A 

different number of samples was collected in each site (Figure 2.1, Figure 3.4 A). While in Oeiras and São 

Vicente only two and three foliar lesions were collected, respectively, a greater number of samples was 

collected in the remaining parishes, including seven in Areeiro, 17 in Alvalade, 20 in Marvila and 29 in 

Parque das Nações. Oeiras and São Vicente were excluded from the biodiversity analyses, since the number 

of trees examined and, consequently, the number of foliar lesions collected (less than five) were too small to 

support any trend observations. Note that a great diversity of foliar lesions types and palm tree species were 

collected and examined in each parish, except for Areeiro, where most of the trees examined were Phoenix 

canariensis (Supplementary Table A.4, Supplementary Table A.5). 

Following the trends already observed at the palm host species level, in general, the greater the number 

of samples collected, the greater the genera and fungal richness recorded. Thus, Parque das Nações was the 

parish with the highest number of genera and isolates recorded. Although the number of samples collected 

in Marvila was slightly higher than the number of samples collected in Alvalade, the number of isolates 

recorded was similar in both parishes and the number of genera was higher in Alvalade. Areeiro showed a 

considerably small number of isolates and genera, concomitant with the low number of samples collected in 

this parish. Nevertheless, to include the results obtained in Areeiro in the present analysis is important, since 

it can reveal some biases from the sampling effort (Figure 3.4 A). 

In each parish the number of samples that yielded more than two isolates were considerably higher than 

the number of samples that yielded both one and two isolates. Nevertheless, proportionally, Parque das 

Nações showed a greater number of samples with multiple fungal colonization, which is concomitant with 

the isolation rate computed for samples from this parish (Figure 3.4 B, Table 3.5). 

Differences in hyphomycete and coelomycete assemblages can be found in each parish (Supplementary 

Figure A.5). While Marvila was the parish with the lowest relative percentage of coelomycetes (just over 

20%), Areeiro was the Parish that showed the highest relative percentage of coelomycetes (more than 40%). 
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Parque das Nações and Areeiro presented a similar percentage of coelomycetes and hyphomycetes, contrary 

to Marvila and Alvalade, where hyphomycetes seem to be the main fungal assemblage (Figure 3.4 C). 

 

Figure 3.4  General biodiversity patterns of fungal records per parish. A. Graphical representation of the relative frequency 

of isolates and genera yielded, and foliar lesions collected for each parish. Each variable was normalized by its maximum value, 

so all three variables could be plotted together, otherwise differences in scale values between the number of isolates and the 

remaining variables would impair data visualization. B. Graphical representation of the number (%) of samples that yielded 1 

isolate (N = 1), the number of samples that yielded 2 isolates (N = 2) and the number of samples that yielded more than 2 

isolates (N > 2) for each parish. C. Percentage abundance of occurrence of each fungal type for each parish. D. Venn diagram 

of genera richness by parish. Parishes with an absolute frequency of less than five foliar lesions examined were excluded due 

to sampling effort bias. In A, B and D colours are according to parishes. In C colours are according to fungal types. 

n = number of samples, N = number of isolates, S = genera richness. 

A different perspective arises when evaluating the number of genera of each assemblage per parish. In 

Parque das Nações the genera richness of coelomycetes was almost three times higher than that of 

hyphomycetes, contrary to what was recorded in the remaining parishes, where the genera richness of both 

assemblages was quite similar (Figure 3.5 A). Additionally, as can be seen in Figure 3.5 B, the coelomycete 

assemblage was more even in their genera abundances of occurrence than hyphomycetes assemblage, where 

Alternaria dominance was always remarkable. Nevertheless, this genus was particularly dominant on 

Marvila, where it composes more than 30% of the fungal community. In Areeiro, both assemblages were 

quite even and Alternaria co-dominate the hyphomycete community with Cladosporium and Stemphylium. 

This co-dominance, with the addition of Epicoccum, was also observed in Parque das Nações, although not 

so evident due to the increase in Alternaria records. The number of residual genera was higher in Parque das 

Nações and Alvalade (Figure 3.5 A, Supplementary Figure A.5). 

Concomitant with the previous results, Parque das Nações was the parish with the highest number of 

exclusive genera (13 of all genera records), followed by Alvalade (9) and Marvila (5). The number of genera 
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shared between Parque das Nações and Marvila or Alvalade was quite similar and higher than the number of 

genera shared between Marvila and Alvalade (Figure 3.4 D). 

 

 

Figure 3.5  Genera richness and abundance of hyphomycete and coelomycete assemblages per parish. A. Number of 

genera of coelomycetes and hyphomycetes found associated with the foliar lesions collected from each parish. Colours are 

according to parishes. B. Pie-charts representing the percentage abundance of occurrence of each fungal genus found associated 

with the foliar lesions collected from each parish. Slices’ fill colours are according to parishes, while slices’ line colours are 

according to fungal types, where blue represents coelomycetes genera and orange represents hyphomycetes genera. 

All these patterns can be evaluated numerically with the diversity indices computed and are presented in 

Table 3.5. All the samples examined from each parish yielded at least one isolate. Thus, colonization rate 

was 100% in all parishes. However, differences in isolation rate were found. Parque das Nações was the 

parish with the highest isolation rate, followed by Alvalade, Marvila and Areeiro. A different result was 

found for the number of genera per sample. Although Alvalade presented a slightly higher genera richness 

per sample, it was very similar in all parishes (Table 3.5). 

Table 3.5  Biodiversity measures of fungal assemblages per parish. Colonization rate (CR) and isolation rate (IR) were 

computed considering the number of samples examined in each parish and the correspondent number of isolates yielded. 

Number of genera per sample (foliar lesion) was calculated as the number of genera recorded in each parish divided by the 

correspondent number of samples examined. Simpson index of diversity (D), Shannon index of diversity (H’), evenness index 

(J’) and Margalef species richness index (DMg) were computed considering the number of genera and the number of isolates 

recorded in each parish. Chao1 species richness estimator (SChao1) was computed considering the number of singletons and 

doubletons genera recorded in each parish, along with the genera richness. Parishes with an absolute frequency of less than five 

samples examined were excluded due to sampling effort bias. 

Parish CR IR Number of genera per sample DMg SChao1 D H’ J’ 

Alvalade 100% 5.47 1.76 6.40 54.50 0.94 1.29 0.87 

Areeiro 100% 4.29 1.60 2.94 13.67 0.89 0.93 0.89 

Marvila 100% 4.60 1.20 5.09 56.67 0.83 1.02 0.74 

Parque das Nações 100% 8.00 1.34 7.00 63.50 0.92 1.30 0.82 

Margalef species richness index and Chao1 species richness estimator were as high or higher in Parque 

das Nações and Alvalade compared to the remaining parishes, which seems to predict that these parishes 

presented a higher potential fungal community diversity. This was concomitant with the values computed for 

the diversity indices, which indicate that, in general, the diversity and equitableness of Alvalade and Parque 

das Nações fungal communities were higher. The evenness index for Marvila fungal community was lower 

compared to Areeiro, pointing to its decreased diversity. Shannon index of diversity differences between 

parishes were higher than those presented by Simpson index of diversity, showing clearly that fungal 
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diversity in Parque as Nações and Alvalade was higher than the fungal diversity found in Marvila and Areeiro 

(Table 3.5). 

The overall results obtained may indicate that Alvalade and Parque das Nações were the sampling sites 

with the highest fungal community diversity. Although these results may be, in part, biased due to sampling 

effort, trends can be pointed out when the variables are compared considering the number of samples 

examined. The number of isolates and the genera richness were considerably higher in Parque das Nações 

compared to the other parishes (Figure 3.4 A). This was not only a bias product of the sampling effort, since 

isolation rate and Margalef index also show the highest value in the fungal community from Parque das 

Nações (Table 3.5). Margalef species index richness attempts to compensate for sampling effects by dividing 

richness by the total number of individuals recorded (Mangurran, 2004). Thus, although still strongly 

influenced by sampling effort, Margalef index seems to be a more reasonable measure for genera richness in 

the present study, and Parque das Nações is here reported as the parish which fungal community present the 

highest genera richness. This is concomitant with the isolation rate recorded for this parish, which was almost 

2 times higher than the isolation rate recorded for the remaining parishes. Note that, isolation rate can be used 

as a measure of the fungal richness, thus Parque das Nações was the collecting site that showed not only the 

highest genera richness, but also the highest fungal richness. Alvalade and Marvila also presented a 

considerably high value for genera richness, which were similar in both parishes (Figure 3.4 A). 

Nevertheless, Margalef index was higher in Alvalade fungal community than in Marvila, with a value close 

to that one computed for Parque das Nações (Table 3.5). In this sense, taking into account that the number of 

samples collected in Alvalade was smaller than in Parque das Nações, Alvalade seems to present a genera 

richness as high or higher as that in Parque das Nações. In fact, the number of genera recorded per sample 

was slightly higher in Alvalade than in Parque das Nações (Table 3.5). Areeiro was included in this analysis 

to unveil the possible bias associated with the sampling effort, since the number of samples collected in this 

parish was seven, which is only two samples above the limit below which the parishes were excluded from 

the analysis. This bias could be seen, for example, comparing the number of genera per sample and the 

Margalef index obtain to this parish. While the Margalef index reveals a very low genera richness, as expected 

considering that the number of samples examined was too small, the number of genera per sample greatly 

increases for the same reason. This kind of bias should, however, be decreased for the remaining parishes, 

where a considerable number of samples have been examined assuaging these effects. 

Parque das Nações lies on a strip of land 5 km long by the river Tejo and a third part of which is made up 

of green spaces (Portal das Nações, 2014). All the sampling sites in Parque das Nações were located near the 

river and all these sites had a high concentration of trees of different species. This humid location by the Tejo 

estuary, along with the high concentration of trees, may be playing a decisive role in the diversity of the 

fungal communities due to the generation of an optimal microclimate for fungal growth, sporulation, 

dispersal, germination and infection (Agrios, 2005). This could be one of the reasons why palm foliar lesions 

from Parque das Nações showed a 2 times higher isolation rate than the other parishes (Table 3.5), which is 

concomitant with the high number of foliar lesions that yielded more than 2 isolates (Figure 3.4 B). The 

influence of relative humidity due to evaporation (Zhu et al., 2017) on the sporulation of leaf spotting fungi 

and the expansion of leaf spot lesions were reported several times in the literature (Jhorara et al., 1998; Talley 

et al., 2002; Paul and Munkvold, 2005; Shrestha et al., 2010; Chowdhury and Hossain, 2011; Selvamani et 

al., 2014; Rowlandson et al., 2015). In addition, the leaf spotting fungal community recorded from this parish 

presented a higher diversity in different aspects, which comprises from the genera richness to the fungal 

richness and the number of exclusive genera (Figure 3.4 A, B and D). 

The amount of diseased foliar tissue observed in Parque das Nações seems to be another factor supporting 

the previous hypothesis, since it was clearly greater than in the remaining parishes. In fact, it has been already 

reported that the number of leaf spots observed on palms in nurseries tend to be much greater than in the 

forests due to the crowded nursery conditions (Fröhlich et al., 1997). Palms in Parque das Nações were 

always found in crowded green spaces, with several different plant species, to create an exotic landscape 

architecture. The proximity between different trees may have facilitated the flow of fungal spores, which 

combined with the moisture conditions may have potentiated a greater development of foliar lesions. 
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Although the previous analysis has been done to Parque das Nações, a similar effect is expected to be 

occurring in Alvalade. In fact, the fungal diversity recorded in Alvalade was also remarkably high and in 

some biodiversity measures very similar to that recorded in Parque das Nações (Table 3.5). Most of the 

sampling sites in Alvalade also included several palms near the lake of Jardim Mário Soares. Thus, the effect 

of increased humidity due to evaporation (Zhu et al., 2017) may also be playing a decisive role in the high 

diversity of the fungal community recorded in Alvalade. 

Parque das Nações was the only parish where the genera richness of coelomycete assemblage greatly 

surpasses the genera richness of hyphomycetes assemblage (Figure 3.5 A). As previously discussed, 

coelomycetes assemblage is possible the main composition of the palm fungal mycobiota in temperate 

regions and in the present study is the main assemblage contributing to the great biodiversity recorded. Most 

of the rare and infrequent genera, that greatly increase the biodiversity of the fungal community, are present 

in the coelomycete assemblage and almost all the coelomycete genera recorded in the present study are 

represented in the coelomycete assemblage from the foliar lesions collected from Parque das Nações (more 

than 81% of all coelomycete genera records) (Supplementary Figure A.5). This is one of the main differences 

between the diversity recorded in Alvalade and in Parque das Nações, since most of the hyphomycete genera 

recorded in the present study were found in Alvalade, thus the diversity of Alvalade’s fungal community may 

be mainly related with its hyphomycete assemblage (Supplementary Figure A.5). While in all the other 

parishes both assemblages are quite even in their genera richness, the geographical conditions previously 

described seem to potentiate the development of a more diverse and coelomycetous fungal community in 

Parque das Nações, although the percentage abundance of occurrence of hyphomycetes was higher in all 

parishes (Figure 3.4 Cg). 

The fungal community in Parque das Nações seem to be more even in their genera distributions 

(Figure 3.5 B), although this is not expressed by the evenness index computed probably due to the abundance 

of Alternaria isolates (Table 3.5). It is interesting to note that the number of different foliar lesions types 

collected in this parish was quite similar and this is probably another reason why the fungal community was 

shown to be so diverse and even (Supplementary Table A.5). In fact, while the coelomycetes assemblage are 

coming mostly from tip die-back diseases and large leaf spots (44% of all the foliar lesions collected from 

Parque das Nações), the hyphomycetes assemblage are coming mostly from small leaf spots and pinpoints 

and punctuations (66%), which justifies the high coelomycetous genera richness, as well as the high 

abundance of hyphomycetous records. A similar result was observed in Alvalade. However, the percentage 

abundance of occurrence of Phoma was much higher than that recorded in Parque das Nações (Figure 3.5 

B), what consequently decreases the evenness of the coelomycetes assemblage and the diversity in general. 

It is interesting to note that in Parque das Nações, the hyphomycetes assemblage shows a co-dominance 

pattern of four different genera – Alternaria, Cladosporium, Stemphylium and Epicoccum – contrary to what 

is observed in the remaining parishes, where Alternaria isolates clearly dominates the fungal assemblage 

(Figure 3.5 B). This is another aspect that unveils the great diversity of the fungal assemblage in the foliar 

lesions collected from this parish. A similar co-dominance pattern, excepted for the absence of Epicoccum, 

was observed in Areeiro, but the number of foliar lesions examined was too small to consider it a pattern of 

biodiversity (Figure 3.4 A, Figure 3.5 B). 

Evaluating the sampling process: how far from the truth? 

In order to evaluate whether enough samples were taken at each sampling site, it was necessary to examine 

the relationship between increasing the sample size and recovery of genera. Thus, a genera-accumulation 

curve was generated for each parish and for the overall fungal community surveyed from all the foliar lesions 

examined (Supplementary Figure A.4). In each case, the genera-accumulation curve did not reach an 

asymptote, insomuch that the slopes of the curves were only declining momentarily with the increasing 

number of samples. Thus, it was not possible to predict the number of samples at which the slopes would 

become near zero, which would predict the expected number of genera possible to find at each parish or for 

the overall fungal community.  
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The overall number of genera recorded in each sampling site was different, which suggests that their 

genera richness may be also different (Table 3.5). Nevertheless, genera-accumulation curve can also help to 

unveil these biodiversity patterns by evaluating the steep gradient of each curve. The steep gradient for the 

genera-accumulation curve of Alvalade is higher than that for Parque das Nações and Marvila, both with a 

very similar slope, although different sampling effort should be taking into consideration. 

Due to possible sampling bias, no best curve-fitting model was tested to predict the inflection point of 

each curve. Nevertheless, considering that their steep gradients never expressively level off, each curve was 

tested for linearity and slope significance of the regression (Zar, 2010). Given that the values obtained for 

the determination coefficient (R2) were above 0.97, the calibration curves for the genera-accumulation curves 

for Alvalade, Marvila and Parque das Nações were accepted. This revealed that the sampling process was 

still in a constant rate increasing phase in terms of genera richness and far from attaining an eventual plateau. 

The sampling effort for Areeiro was too low to predict its genera-accumulation curve, although it is presented 

along with the others, but the R2 of its calibration curve was too low to be accepted and nothing should be 

concluded using these data (Supplementary Figure A.4). 

Evaluating the adequacy of sampling size is highly important on the present study, considering that all 

the biodiversity patterns and ecological observations here presented may be a product of biased sampling. 

Most of the collections were made randomly both in terms of collection sites and host species examined. 

Although ornamental palms are broadly present throughout Portuguese cities, their canopies are not always 

accessible to search for the presence of foliar lesions due to the height of the trees. None of the curves had 

levelled-off, which indicates that many fungal representatives remain to be isolated and identified. 

Besides the fact that genera-accumulation curve can be used to indicate the adequacy of the fungal survey, 

it can also be used to estimate the number of genera in a particular area. However, a best curve-fitting model 

would be necessary to predict the asymptote for each curve, since this value would be equal to the number 

of genera present in the community (genera richness) (Thompson and Withers, 2003; Thompson et al., 2003). 

Nevertheless, the diversity of the fungal communities of each parish can be compared also with the genera-

accumulation curve. It is known that sites with high diversity have steeper initial slopes for their collector’s 

effort curves (Thompson and Withers, 2003). The genera-accumulation curve for Alvalade has a steeper 

slope gradient then that for Parque das Nações and Marvila. In this sense, contrary to the previous analysis, 

Alvalade seems to have a more diverse fungal community and it is expected to potentially contain a higher 

plethora of unrecorded genera. 

Since no best curve-fitting model was tested, Chao1 species richness estimator was used to estimate the 

richness of each parish and to predict how far from the true value of the genera richness is the present survey. 

Chao1 is a nonparametric method that calculates the expected genera richness value based on the observed 

genera richness as a measure of estimating the number of genera in a community (Chao, 1984). This estimator 

is based on the concept that rare genera infer the most information about the number of missing genera (Kim 

et al., 2017). Thus, it seems reasonable to use this estimator to predict the number of genera that were not 

recorded in the present study, since it is particularly useful for data sets skewed towards the low-abundance 

species (Hughes et al., 2001). The values obtained for Chao1 species richness estimator was 55 for Alvalade, 

57 for Marvila and 64 for Parque das Nações. The value obtained for Chao1 species richness estimator was 

97 for the overall community, i.e., 97 genera are expected to exist in the leaf spotting fungal community from 

the foliar lesions of palms in Portugal. Considering that only 57 genera were recorded in the present study, 

this means that only just over 50% of the potential leaf spotting mycota was recorded. Although this study 

revealed a plethora of fungal diversity capable of unveiling certain ecological traits, it is far from the true 

diversity that exists in the foliar lesions from palms.  

It is likely that many fungal taxa were present on the foliar lesions surveyed but were not isolated, such 

as: (a) obligate biotrophs; (b) fungi that are difficult to isolate without the use of selective media; (c) fungi 

that were possibly killed during the surface sterilization protocol; (d) seasonal transients, i.e., fungi that are 

present in the leaf spotting fungal communities at times other than those of sampling 

(Fröhlich and Hyde, 1999). 
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3.4. Foliar lesions types: an artificial concept or a new way of unveiling fungal communities’ 

ecology? 

A well-defined sample unit is of utmost importance in biodiversity studies (Zak and Willig, 2004), since 

it will ensure the diminishing of possible bias that could compromise the correct interpretation and 

establishment of ecological patterns and trends. The sample unit in the present study corresponds to the foliar 

lesion, which has been defined as a set of discretely localized spots on the host leaves. In this sense, several 

morphological characteristics were assessed to characterize each foliar lesion and a randomly selected 

representative spot was chosen to study its fungal community. 

A total of 78 foliar lesions were collected and examined for associated fungi. Four different foliar lesions 

types – tip die-back, large leaf spots, small leaf spots, and pinpoints and punctuations – were defined 

according to their general abaxial and adaxial surfaces morphological characteristics (Figure 3.6), namely 

shape, margin topography, colour and its evolution over time (when possible), presence or absence of a 

distinctive border, halo or occasional coalescence, overall distribution on the leaflet, and the size 

(if applicable).  

Tip die-back (TDB; Figure 3.6 A,a,b) foliar lesions were extensive necrosis on leaflets or leaf segments 

beginning at their tips and advancing toward their bases. Morphologically they were irregular, with rounded 

ends, with different length depending on the lesion age, identical on both surfaces, occasionally paler on the 

abaxial surface, pale-grey, pale-brown to brownish centre, usually becoming greyish and fragile or brittle, 

often with a dark-brown border (< 1 to 3 mm wide, rarely < 5 mm wide), rarely surrounded by an 

inconspicuous to visible yellowish, light-brown to light-green halo, distributed on the edge of the leaflet. 

Usually in mature lesions contained several immersed to subimmersed or erumpent fruiting bodies, found on 

both surfaces, usually in a lower number on the abaxial surface, or only on the adaxial surface. 

Large leaf spots (LLS; Figure 3.6 B,c,d) were extensive blotches, rarely with necrotic tissue, that were 

not exclusively associated with foliar tips. Morphologically they were ellipsoidal to irregular, > 10 cm in 

length, often bigger due to coalescence, with rounded to angular ends, identical on both surfaces, occasionally 

paler on the abaxial surface, pale-brown to brown, yellowish to greyish centre with dark-brown border 

(< 1 mm to 2 mm wide, occasionally thicker, darker and up to 10 mm wide), rarely becoming fragile or 

brittle, occasionally surrounded by an inconspicuous pale-whitish, yellowish to brownish halo, frequently 

with conspicuous concentric growth lines, often acquiring the appearance of overlapping layers, randomly 

distributed on the leaflet. Rarely in mature lesions contained immersed to subimmersed fruiting bodies, which 

often developed on sunken tissue regions. 

Small leaf spots (SLS; Figure 3.6 C,e,f) were small discrete lesions on the foliar tissue. Morphologically 

they were subglobose to broadly ellipsoidal or fusiform, often becoming irregular, 1 to 5 cm in length, often 

larger, with rounded to angular ends, identical on both surfaces, occasionally paler on the abaxial surface, 

brown-grey, pale-brown, yellowish to greyish, sometimes blackish, centre with dark-brown border 

(up to 1 mm wide), rarely becoming brittle on the abaxial surface, surrounded by a conspicuous, rarely 

inconspicuous, paler, brown to yellowish halo, occasionally coalescing, randomly distributed on the leaflet, 

rarely found along the main vain. Rarely in mature lesions contained several immersed to subimmersed 

fruiting bodies, more often found only on the adaxial surface, or several conidiophores associated with 

stomatal apertures on the abaxial surface. 

Pinpoints and punctuations (PP; Figure 3.6 D,g,h) were very small discrete lesions dispersed along the 

foliar tissue. Morphologically they were oval, globose to subglobose, ellipsoidal to fusiform, often irregular, 

< 1 cm in length, rarely up to 1.5 cm, with rounded to angular ends, identical on both surfaces, pale to 

yellowish, brown to blackish, usually surrounded by a conspicuous to inconspicuous brownish, yellowish to 

light-green halo, rarely absent, occasionally coalescing, randomly distributed along the leaflet, rarely found 

along the main vain or along the leaflet margins. 
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Figure 3.6  General morphology of foliar lesions types. A. Illustrative scheme of TDB lesions morphology, a. Sample 

HDP 006, b. Sample HDP 041. B. Illustrative scheme of LLS lesions morphology, c. Sample HDP 009, d. Sample HDP 042. 

C. Illustrative scheme of SLS lesions morphology, e. Sample HDP 033/02, f. Sample HDP 050. D. Illustrative scheme of PP 

lesions morphology, g. Sample HDP 004/01, h. Sample HDP 049. Scale bars: 1 cm. 

Although the foliar lesions types were defined as “morphogroups”, analyses of their associated mycota 

seems to indicate that these groups are not an artificially concept. In fact, it is known that several traits 

observed as symptoms in the foliar lesions are a consequence of the fungal mycota damaging the plant tissue, 

the defence mechanisms mediated by the plant and the interaction between these two components 

(Agrios, 2005). Thus, different morphological characteristics observed in the foliar lesions of palms can be 

attributed to the fungal growth and the subsequent plant response mechanisms. Three relevant examples, 

namely the size, the halo and the shape, are discussed below.  

Foliar lesions size was one of the main traits use to defined types. While TDB and LLS were large, usually 

unmeasurable and occupying entire leaflets or leaf segments, SLS and PP were smaller, attaining a more or 

less specific and measurable size. Foliar lesions sizes may be dependent on the host and the fungal 

assemblage with them associated. For example, leaf spots caused by Septoria species vary widely in size 

from barely visible to spots that affect up to one-third of the leaf area, depending on the host and fungus 

species (Agrios, 2005). Thus, foliar lesions size is an essential trait to characterize, since it may be associated 

with the composition of the fungal community that is inhabiting the damaged plant tissue. Differences in the 

fungal community are expected to reflect differences in this morphological trait. In addition, if in the fungal 

community there are elements capable of infecting large areas of leaf tissue, this may influence their entire 

composition, since a greater amount of dead tissue and nutrients may become accessible to other fungal 

elements. In fact, considering that a larger foliar lesion damage encompasses a larger amount of nutrients 

available, this may strongly affect the respective fungal community. Nutrient acquisition is one of the key 

factors that determine the success of colonization during a parasitism lifestyle. Besides this, the pathogen’s 
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fitness is also constrained by the plant defences, which contradicts the fungal growth and spread (Hedge and 

Fluhr, 2007; Fernandez et al., 2014; Maupetit et al., 2018). Thus, considering that foliar lesions correspond 

to localized lesions on the host leaves consisting of dead and collapsed cells, the size of these lesions may 

influence or be related to the fungal community lying there and the plant response to its spread.  

In several foliar lesions, particularly in PP type, a more or less conspicuous yellowish to light-green halo 

surrounding the damaged tissue was observed. These halos represent tissue chlorosis and are formed due to 

chlorophyll destruction or failure of chlorophyll formation. Different leaf spotting fungi are known for 

producing these chlorotic halos as a consequence of toxin production (Agrios, 2005). For example, leaf spots 

caused by Alternaria spp. are often associated with the development of a chlorotic halo surrounding the 

necrotic tissue due to the production of toxins (Dewdney, 2013; Meena and Samal, 2019). Given that, the 

presence or absence of a chlorotic halo is expected to be associated with the fungal community on the foliar 

lesions examined. Differences in that fungal community are in turn expect to reflect differences in this 

morphological trait. Only PP were consistently associated with chlorotic halos surrounded the dead plant 

tissue, which can indicate that these foliar lesions were often associated with fungal elements capable of 

producing toxins. Whether these toxins are being produced by one or more fungal elements that compose the 

fungal community (which may or not have been isolated) would only be possible to determine through 

pathogenicity tests. 

The shape of the foliar lesions was often less informative than the other morphological characters, since 

in general all foliar lesions showed similar globose to ellipsoidal shapes. Nevertheless, very few cases 

presented consistently a much greater length than width, acquiring fusiform shapes. Other cases presented 

angular, instead of rounded, ends. According to Agrios (2005), xylem vessels block the spread of some fungal 

pathogens, giving rise to various angular-shaped leaf spots due to their spread only into areas between veins. 

In the present study, fusiform-shaped leaf spots were particularly found localized near the main vein, possibly 

as a result of the plant defense mechanisms. Thus, the plant response to the pathogen growing will determine 

the shape of the lesion, which will subsequently spread in different directions avoiding the defence 

mechanisms. Given that, foliar lesions shape is clearly a consequence of the fungal colonization and the plant 

response in preventing its spread. Differences in that fungal community may reflect differences in this 

morphological trait, although in general shape has shown to be a more or less constant morphological 

character.  

These three examples show that foliar lesions types may function as “morphogroups” of different fungal 

communities and its applicability may not be artificial. Foliar lesions are being interpreted as fungal 

communities, i.e. a set of fungi from one or more genera, interacting with the plant tissue. Thus, the symptoms 

and signs observed are expected to arise directly from this host-fungus interaction. In fact, how quickly the 

plant recognizes the pathogen and mobilize its defences determines how rapidly the infection will spread and 

establish. Subsequently, this determines how much the pathogens will develop and how severe will be its 

symptoms (Agrios, 2005). The observed morphological characteristics, namely the size, the halo and the 

shape, are then considered the expression of this interaction. It is important to note that these “morphogroups” 

did not take into consideration the host where the fungal community was thriving. A different and more 

complete perspective may probably arise if the palm species have been added to the equation. For example, 

Dypsis lutescens leaves were depauperated in coelomycetes probably because its leaves are softer and thinner 

compared to the other hosts surveyed. Thus, differences in foliar lesion morphology may arise from different 

palm hosts, although the present study did not consider their influence since no standardized sampling process 

was followed. 

Is there any association between lesion types and their mycobiota? 

In general, a similar number of all the foliar lesions types were found in each host species and parish, 

except for some particular cases (Supplementary Table A.3, Supplementary Table A.4). Yellow faded or 

translucent areas were frequently detected on leaves of Chamaerops humilis, but numerous attempts failed 

to isolate any possible fungal cause. These lesions were excluded from the foliar lesions set, firstly because 

they were associated with only one of the hosts surveyed, and second because they were not discrete spots 
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on the leaves, but rather faded areas that were difficult to define and not fitting within the initial defined 

concept. 

Differences in the fungal communities isolated from each foliar lesion type were found and are 

summarized in Figure 3.7. A similar number of the different foliar lesion types were collected, including 19 

TDB, 18 LLS, 17 SLS and 24 PP. While the number of genera found in each foliar lesion type was similar, 

the number of isolates varied substantially in part due to the collection effort, since a higher number of isolates 

were obtained from PP (Figure 3.7 A). Nevertheless, assessing the number of isolates (fungal richness) per 

sample, it is possible to verify that TDB lesions yielded the greatest number of isolates per sample, followed 

by PP. The number of genera (genera richness) per sample was similar in all four types of foliar lesion 

(Figure 3.7 C). 

 

Figure 3.7  General biodiversity patterns of fungal records per foliar lesion type. A. Number of isolates and number of 

genera yielded, along with the number of samples examined per each foliar lesion type. B. Venn diagram of genera richness 

by foliar lesion type. C. Graphical representation of fungal richness and genera richness yielded per sample. D. Graphical 

representation of the absolute frequency of hyphomycetes and coelomycetes isolated from each foliar lesion type. In B colours 

are according to foliar lesion types. In D colours are according to fungal types. TDB = tip die-back, LLS = large leaf spot, 

SLS = small leaf spot, PP = pinpoints and punctuations. 

The main difference between the fungal communities isolated from each foliar lesion type lies in the 

coelomycete and hyphomycete assemblages. While TDB lesions yielded mainly coelomycete isolates, LLS 

and PP yielded mainly hyphomycete isolates. SLS yielded a similar number of coelomycetes and 

hyphomycetes, although the hyphomycete assemblage was more expressive due to very frequent genera high 

abundance of occurrence (Figure 3.7 D). In all four types of foliar lesion were found exclusive genera, 

although this number was slightly higher in TDB lesions. These exclusive genera were mainly coelomycetes 

and were not directly related to the hyphomycete and coelomycete assemblages distribution previously 

reported. Thus, the exclusive genera in TDB and PP were mainly coelomycetes and included coelomycetes 
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genera 2, 3 and 4, Stagonosporopsis, Pseudoconiothyrium, Parastagonospora, Bartalinia, Foliophoma and 

Phyllosticta, while the exclusive genera in LLS and SLS included an equal number of coelomycete and 

hyphomycete genera, as well as other fungal taxa, such as Graphiola and Teratosphaeriaceae genus 1. 

Exclusive hyphomycete genera were found in all four types of foliar lesion and included hyphomycetes 

genera 2, 5 and 6, Pithomyces, Monilia and Stachybotrys. A total of eight genera were shared by all the foliar 

lesions types, including the very frequent genera Alternaria, Cladosporium, Phoma and other frequent and 

infrequent genera such as Neosetophoma, Epicoccum, Penicillium, Stemphylium and Sordariomycetes 

genus 1 (Figure 3.7 B). 

Regarding TDB lesions it is likely that their occurrence is facilitated by abiotic factors that damage the 

tips of leaflets and segments, generating physical entries for the establishment of parasitic fungi. 

Coelomycetes seems to better colonize these lesions, where pycnidia development may be easier due to the 

existence of a previous damage tissue. This could also be associated with the fact that fungal richness per 

sample was higher in TDB lesions. In fact, the existence of a pre-damage tissue, either by abiotic or biotic 

(primary pathogens) factors, exposes plant tissue to easier colonization by secondary weakly parasitic 

microorganisms, which easily rupture and invade necrotic cells (Agrios, 2005). 

Although four different foliar lesions types were defined as representatives of a set of morphological 

characters, differences between each foliar lesion can be observed and were evident. Considering that each 

foliar lesion analysed within each type represents a fungal community interacting with the diseased plant 

tissue, these differences were plotted and can be assessed in Figure 3.8. To plot these differences two 

components were considered, namely the diversity of the fungal community of each foliar lesion (expressed 

with their morphological and genetic indices of diversity and evenness) and the symptoms and signs observed 

as possible result of the growth of that fungal community (expressed through the size, the distribution, the 

presence of halo and the presence of fruiting bodies). 

Component of symptoms and signs was more variable in TDB lesions and LLS, particularly in the 

presence or absence of halo and fruiting bodies, while component of fungal community was similarly variable 

in all foliar lesion types. Nevertheless, most of this variability lies within the indices of diversity between 

different foliar lesions within each type, since the evenness of the different fungal communities was shown 

to be very similar and high. Differences in the evenness values are more expressive in PP than the remaining 

foliar lesion types. In general, excepting certain cases, morphological and genetic indices of diversity showed 

a quite similar value in each foliar lesion, although genetic index of diversity tend to show higher values 

(Figure 3.8). This may indicate that if the isolates were identified to species level, a different pattern could 

be found for the composition of fungal communities. 

How many isolates can be found in a single foliar lesion? 

The fungal richness that can be found in a single foliar lesion was investigated using boxplots of the 

number of isolates against foliar lesion types and against the overall foliar lesions (Figure 3.9 A). The measure 

of central tendency used in the present analysis is the median and not the mean, since the first is less strongly 

affect by the extreme or discrepant values (outliers) on an asymmetric distribution (Zar, 2014). Discrepant 

values for the number of isolates were found in all foliar lesion types, but all of them were above the 

maximum value (Figure 3.9 A). These should be considered as extraordinary outliers, since they are so 

aberrant that lay at least 3 times the interquartile range from the box (Zar, 2014). TDB lesions boxplot showed 

a higher number of outliers than the other foliar lesion types (Figure 3.9 A). 

The median number of isolates was quite similar in all foliar lesion types and in the overall sample (around 

4 to 5 isolates). Nevertheless, evident differences in the dispersion of the number of isolates were found 

(Figure 3.9 A). In general, all foliar lesion types displayed a great variability in the number of isolates yielded. 

However, fungal richness in PP was more variable compared to the remaining foliar lesion types, while TDB 

samples were shown to be more homogeneous in their fungal richness (Figure 3.9 A, B). 

None of the foliar lesion types data sets was symmetrical, however the skewness was different between 

TDB lesions and the remaining types. While TDB lesions presented a left-skewed data set, the remaining 

foliar lesion types and the overall sample presented a right-skewed data set, which means that 50% of the 
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samples yielded a relatively low number of isolates, and some of the remaining samples yielded much more 

than six isolates skewing the data to the right (Figure 3.9 A, B). 

 

 

Figure 3.8  Graphical representation of the variation of each foliar lesion morphology and respective fungal community. 

Variation on foliar lesion morphology (left side of each graph) was assessed considering a three-values scale code (0, 0.5 and 

1) for four different characteristics, namely the presence of fruiting bodies (no = 0, yes = 1), the distribution along the leaflet 

or segment (random = 0, specific region = 0.5, at the tip = 1), the size of the foliar lesion (PP = 0, SLS = 0.5, LLS/TDB = 1) 

and the presence of halo (no = 0, yes = 1). Variation on the fungal community recorded in each foliar lesion (right side of each 

graph) was assessed through their morphological and genetic index of diversity and evenness, both computed using the Shannon 

index of diversity applied to the genera richness and its composition and MSP-PCR fingerprintings, respectively. Samples with 

a relative frequency of isolates < 1% (less than five isolates) were excluded. Colours are according to foliar lesion types. 

IDm = morphological index of diversity, IDg = genetic index of diversity, Em = morphological evenness, Eg = genetic 

evenness, TDB = tip die-back, LLS = large leaf spot, SLS = small leaf spot, PP = pinpoints and punctuations. 

LLS, SLS and PP, as well as the overall sample, presented their median further from the middle of the 

boxplot, and an right tail much longer than the left tail, which also indicates that the distribution of the number 

of isolates for these foliar lesion types was skewed towards a higher number of isolates than the distribution 
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found for TDB (Figure 3.9 A), thus the number of isolates varies more widely in those types. The boxplot 

for TDB lesions is comparatively short, which suggests that the set of samples for this foliar lesion type 

yielded a relatively similar number of isolates, thus the distribution was less variable than for the remaining 

foliar lesion types (Figure 3.9 A, B). The left tail for TDB lesions was relatively longer, suggesting that the 

number of isolates for this foliar lesion type was more skewed towards a lower number of isolates, which 

results from the fact that most of the samples yielded around five to six isolates and all of the samples that 

yielded a number of isolates greater than six were outliers (Figure 3.9 A, B). Similarly, the boxplot for PP is 

comparatively long, which suggests that the number of isolates yielded from the set of samples for this foliar 

lesion type was highly variable, insomuch that only one sample was an outlier corresponding to the only 

sample that yielded more than 25 isolates (Figure 3.9 A, B). 

 

Figure 3.9  Distribution patterns of the fungal richness per sample according to foliar lesion type. A. Boxplots showing 

the distribution of the number of isolates per sample according to foliar lesion type. A boxplot for the overall set of samples 

was included. The lower and upper boundaries of each boxplot enclose 25–75% of the data. The line within the boxplots shows 

the median value, the bar lines above and below the boxplots indicate minimum and maximum values, × indicates the mean 

value and • indicates outliers. B. Number of isolates in each sample per foliar lesion type. Samples are ranked from the least to 

the highest fungal richness yielded. C. Number of isolates in each sample for the overall set of samples. Dashed line is relative 

to the median number of isolates. Dotted line is relative to the mean number of isolates. Colours are according to foliar lesion 

types. TDB = tip die-back, LLS = large leaf spot, SLS = small leaf spot, PP = pinpoints and punctuations. 
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Boxplot of overall sample was more similar to SLS boxplot than any other foliar lesion type boxplot, 

except for the maximum value, since some of the outliers in TDB lesions were not outliers when considering 

the distribution of the number of isolates for the overall sample. Nevertheless, no remarkable changes were 

observed in the boxplot for the overall sample compared with the distributions of each foliar lesion type 

(Figure 3.9 A). Considering the median and mean number of isolates (4 and 6, respectively) for the overall 

sample, the average number of isolates expected to be found in a single foliar lesion is here reported as five 

(Figure 3.9 A, C). However, the number of samples that yielded one, two, three, four, five and six isolates 

were approximately the same (Figure 3.9 C, Supplementary Table A.6). 

Although the average number of isolates that is expected to be found in a foliar lesion of palms is five 

(Figure 3.9 A), different scenarios can be found when assessing the number of isolates recorded in a single 

foliar lesion. Further collections and isolation replicates would help to assess a more reliable value. 

Interestingly, the distribution pattern of the fungal richness per sample was remarkably similar in all four 

types of foliar lesions (Figure 3.9 A). This seem to indicate that the number of effectives that inhabit the 

foliar lesion is not entirely dependent on the composition of the fungal community and may be more related 

with the constrains mediated by the plant defences and the availability of nutrients. 

Some samples presented discrepant values for the number of isolates, insomuch that a total of 15–28 

isolates per sample was recorded. This was particularly relevant in samples from TDB and PP types. 

In TDB lesions, the necrotic tissue was always largely spread through the leaves, and in some cases, they 

should probably be considered as dead material, which can explain the higher number of fungi that was 

reported from TDB lesions. The succession that phyllosphere fungal communities undergoes, particularly at 

phylloplane level, during the death of the leaves has already been showed (e.g. Stone, 1987; Osono, 2002; 

Voříšková and Baldrian, 2013). Frequently this succession encompasses an increase of fungal diversity, since 

after senescence, the phylloplane fungi readily gain access to the available nutrients in dead leaves biomass 

(Stone, 1987; Voříšková and Baldrian, 2013). Furthermore, after leaves senesce, certain taxa may change 

from endophytic to a saprotrophic life strategy, contributing for the increasing in fungal diversity (Osono, 

2002; Koide et al., 2005; Promputtha et al., 2007; Voříšková and Baldrian, 2013). A similar scenario is 

expected to be occurring in highly necrotic LLS and SLS, where brittle tissue was found always to support 

an atypical high fungal richness per sample. 

In PP, which were never found to present necrotic tissue, the high fungal richness detected in some 

samples may be due to the isolation of fungal communities from different foliar lesions, since in this case the 

concept of discrete units was difficult to apply. These foliar lesions were frequently minutely in size, 

dispersed along the leaves and aggregated in sets of several symptoms close together. Consequently, between 

the morphological types defined, PP was the most heterogenous, since it included several foliar lesions where 

the main morphological character was the presence of minute hardly defined spots. This heterogenicity was 

well expressed by its distribution patterns of the fungal richness per sample (Figure 3.9 A) and may have 

contributed to a high fungal richness in several samples, insomuch that the sample that showed the highest 

fungal richness (28 isolates) belongs to PP type. 

Fungal genera “co-occurrence” and “phytopathogenic complex” concepts: a way of unveiling biotic 

relationships? Can they be applied? What are the limitations? 

The fungal genera recorded from the fungal community associated with foliar lesions of palms presented 

substantial differences in their percentage abundance of occurrence. As mentioned previously, among the 57 

genera recorded, three were regarded as very frequent (more than 10% abundance of occurrence), one was 

regarded as frequent (more than 5% to 10%), 15 were regarded as infrequent (more than 1% to 5%) and 38 

were regarded as rare (less than 1%) (Table 3.2). Such percentage calculations and in turn converting them 

into different frequency groups may also help to verify whether a very frequent fungal genus also has a high 

frequency of co-occurrence with other fungal genera or not (Supplementary Table A.7).  

Examination of 78 samples of foliar lesions of palms revealed that 10 samples showed any single fungal 

genus, 10 samples presented a single fungus inhabiting the foliar lesions examined and at least two fungal 

isolates were recorded and interpreted as fungal communities in all the other samples (Table 3.6, 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3578564/#bib33
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Supplementary Table A.6), with most of them yielding around 2–4 fungal genera and the mean value for the 

number of genera per foliar lesion being around 4. 

Considering that the fungal records were isolated from foliar lesions, one may ask if these fungal 

communities are phytopathogenic complexes. To evaluate this hypothesis, it would be necessary not only to 

explore the evolution of the leaf spotting fungal communities over time, but also to analyse the corresponding 

healthy tissue. In fact, to consider that the fungal communities associated with the foliar lesions of palms 

represent phytopathogenic complexes is taking the concept to far from what the present analysis allows. 

Table 3.6  Distribution of fungal genera occurrences on foliar lesions of palms. Number of samples supporting n fungal 

genera records per sample.  

Fungal genera records (n) per sample Break-up of number of samples examined 

n = 1 10 

n = 2 18 

n = 3 15 

n = 4 14 

n = 5 7 

n = 6 5 

n = 7 3 

n = 8 5 

n = 9 1 

Most of the genera records found with a great representativity within the foliar lesions of palms, such as 

Alternaria, Phoma and Cladosporium, are commonly reported genera both as saprophytes and as leaf spotting 

fungi. Thus, to assume that these records are involved in a phytopathogenic complex, it would first be 

necessary to confirm their pathogenicity through pathogenicity tests. As pointed out by Broschat et al. (2014), 

this is a common issue for palms, especially ornamental palms, since there are several reports of potential 

pathogens isolated from diseased palm tissue, but no pathogenicity test have followed-up on healthy palms. 

For example, while Cocoicola californica and Serenomyces spp. are considered the primary pathogens of 

petiole or rachis blight, other fungal pathogens with an extensive host range beyond Arecaceae are often 

isolated from the diseased tissue, such as Diplodia, Dothiorella, Fusicoccum, Macrophoma, Phoma and 

Diaporthe, and regarded as potential pathogens, although their pathogenicity has not been tested 

(Broschat et al., 2014, 2015). 

Potential plant pathogens and non-pathogens are a natural part of the palm environment at the phylloplane, 

so it is easy to isolate these fungi rather than the actual pathogen causing the observed symptoms. According 

to Agrios (2005), when plants are negatively affected by an environmental factor, such as low moisture, 

nutrient deficiency and air pollution, they are weakened and predisposed to infection by one or more weakly 

parasitic pathogens, what can be seen, for example, in the annual predisposition that plants show to Alternaria 

infections. Interestingly, this was one of the main genera found in the present study, which seems to 

corroborate the hypothesis that several fungal records are secondary minor pathogens and not the principal 

cause of the foliar lesions. In addition, it has been reported that chlorotic and necrotic tissue resulting from 

nutritional disorders of palms are often colonized by leaf spotting pathogens acting as saprobes or 

opportunistic pathogens. These fungi become established on the dead tissue, sporulate and the spores then 

spread to healthy palm leaf tissue (Broschat et al., 2014, 2015). Thus, the phytopathogenic complex concept 

has its limitations and should not be applied concerning the present analysis. In this sense, it seems more 

reasonable to evaluate fungal genera co-occurrences between different foliar lesions as a way of unveiling 

biotic relationships. The fungal co-occurrence concept was recently explored on palms in studies concerning 

Nypa fruticans at Brunei (Sarma and Hyde, 2018). 

The percentage of abundance of occurrence and comparison of each genus occurring singly or in 

co-occurrence with other fungal genera is presented in Supplementary Table A.7. Of a total of 57 fungal 

genera occurring in this study only seven fungal genera occurred singly, namely Colletotrichum (in one 
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sample), Neosetophoma (in one sample), Phoma (in one sample), Cladosporium (in three samples), 

Alternaria (in one sample), Didymocyrtis (in one sample), Teratosphaeriaceae genus 1 (in one sample) and 

Morinia (in one sample). Of these seven fungal genera, only one fungal genus (Teratosphaeriaceae genus 1) 

never occurred with other fungal genera, although its percentage abundance of occurrence was too low (only 

one isolate was reported). The remaining fungal genera were mostly observed to have a co-occurrence with 

one or more than one fungal genus (Supplementary Table A.6). Thus 50 fungal genera had co-occurrence 

with other fungal genera in different combinations. 

The most important examples of the co-occurrence shown by the samples in the present study were as 

follows (from the most to least abundant): (a) Alternaria-Cladosporium-Phoma; (b) Alternaria- 

-Cladosporium-Phoma-Epicoccum; (c) Alternaria-Cladosporium-Phoma-Epicoccum-Stemphylium; 

(d) Alternaria-Cladosporium-Stemphylium; (e) Alternaria-Cladosporium; (f) Cladosporium-Phoma; 

(g) Neosetophoma-Phoma; (h) Neosetophoma-Sclerostagonospora. 

Remarkable cases of fungal genera co-occurrence were positively related with fungal genera with high 

abundance of occurrence. Alternaria had co-occurrence with 45 of the 57 fungal genera recorded but on 

different samples and with different combinations, as outlined above, comprising from one fungal genus to 

a total of eight fungal genera co-occurring with Alternaria within a single foliar lesion. This pattern was also 

observed in other genera, such as Cladosporium which had co-occurrence with 39 fungal genera and Phoma 

which had co-occurrence with 34 fungal genera. This was followed by Stemphylium which had co-occurrence 

with 27 fungal genera and Epicoccum which had co-occurrence with 24 fungal genera. The remaining fungal 

genera showed co-occurrence with less than 25 but more than two fungal genera, excepting for the referred 

case of Teratosphaeriaceae genus 1 (Supplementary Table A.7). It is interesting to note that several 

infrequent and rare genera often co-occurred with several fungal genera, showing even a higher percentage 

abundance of co-occurrence than Neosetophoma, which was regarded as a frequent genus. Neosetophoma 

had co-occurrence with 18 fungal genera, a smaller number comparing with infrequent genera such as 

Stemphylium, Sordariomycetes genus 1 and Epicoccum. In addition, the presence of Neosetophoma was often 

followed by the absence of Cladosporium, although this was one of the genera with higher percentage of 

abundance of occurrence, frequency of occurrence and frequency of co-occurrence (Supplementary 

Table A.7). 

Interactions between organisms and environmental effects on co-existence within biological communities 

are often explored in ecology through co-occurrence patterns (Williams et al., 2014). These co-occurrence 

patterns can reflect the ecological processes that drives the coexistence and diversity maintenance within 

biological communities (HilleRisLambers et al., 2012). 

In the present study, Alternaria (21% of all records), Cladosporium (12%) and Phoma (10%) which were 

very frequently recorded genera, occurred both with other fungi and singly. However, their occurrence singly 

was minimal when compared to their frequency of co-occurrence. This may indicate a mutualistic 

association. Previous studies have shown that under controlled condition, dominant fungi, especially primary 

decayers, influence other fungi growing together with them. For example, species richness and composition 

of fungal communities were shown to be affected by Fomitopsis pinicola in Picea abies logs recovered from 

an old-growth mountain spruce forest in the Bohemian Forest, Czech Republic (Pouska et al., 2013). A 

similar pattern was recorded on Avicennia officinalis colonized by the dominant fungus Lignincola laevis in 

a south-western mangrove of India (Maria & Sridhar, 2017). More recently, a similar pattern was reported 

for Linocarpon bipolaris and L. appendiculatum colonizing Nypa fruticans in Tutong River, Brunei (Sarma 

and Hyde, 2018). Thus, it can be hypothesized that isolates of Alternaria, Cladosporium and Phoma were 

not only the dominant colonizers of foliar lesions of palms, but also accommodative for other fungi with 

which they live in a mutualistic association. The present analysis does not allow to predict if the isolates of 

these genera are dependent on other fungi, as a fungal community, to colonize the foliar lesions, i.e., to infect 

and damage the cells of the leaves. Only laboratory experiments will unveil if these isolates are 

phytopathogenic or need others to create suitable conditions for their subsequent colonization. Furthermore, 

these laboratory experiments may unveil other biotic relationships, such as competition and antagonism, 

which may exclude other fungi from colonization. For example, previous studies by Fryar et al. (2001, 2005) 
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revealed in situ and in vitro patterns of competitive hierarchy between fungal species living on submerged 

wood at Hong Kong and Brunei. 

Only 7 fungal genera were found to occur singly. Nevertheless, their percentage abundance of occurrence 

singly was far too low to attribute an antagonistic potential in preventing other fungi from colonization. In 

addition, some of these genera were regarded as very frequent or frequent. Again, to predict these biotic 

relationships, it must be proven through in vitro experiments whether these particular isolates have some 

antagonistic potential. Sarma and Hyde (2018) found a similar pattern of single occurrences on a survey from 

Nypa fruticans at Brunei, and no prediction in terms of antagonism relationship was undertaken due to low 

fungal percentage of occurrence. However, other studies, such as those of Sarma and Raghukumar (2013) in 

manglicolous fungi from Goa, had reported antagonistic lifestyle based on a high percentage of singly 

occurrences. Although in the present study, it cannot be assumed that the singly occurrences were due to an 

antagonistic lifestyle, an interesting pattern was observed between the occurrences of genera Cladosporium 

and Neosetophoma. These two genera rarely occurred together, even though they were regarded as very 

frequent and frequent, respectively. It is likely that one of these genera (or both) presents antagonistic 

potential and in vitro experiments should be undertaken to evaluate it.  

As referred, almost all the genera that occur singly and that were regarded as very frequent or frequent, 

presented a much higher percentage frequency of co-occurrence. Thus, none of these genera can be 

considered commensals, i.e., fungal genera which their association with other genera is not necessarily 

dependent on others. Hyde and Sarma (2018) pointed out that three species, Oxydothis nypae, 

Astrosphaeriella striatispora and Linocarpon nypae, could be considered commensals in the fungal 

communities recorded from Nypa fruticans due to the equal proportion observed in their occurrences singly 

and with other fungi. A similar pattern was also observed in those referred studies by Sarma and Raghukumar 

(2013). 

3.5. Overall genetic diversity: what degree of fungal genomic diversity is there? 

An analysis based on csM13 and (GTG)5 MSP-PCR genomic fingerprintings profiles was done to assess 

genetic diversity within the collection of isolates established from diseased palm leaves. This approach 

yielded highly reproducible and complex genomic fingerprints, with several bands ranging from 200 to 3500 

bp. Based on these genomic fingerprints, all 457 isolates were clustered in a consensus dendrogram (data not 

shown). A review of the available literature suggests that genomic DNA fingerprints have never been applied 

to evaluate genetic diversity within fungal communities from palms.  

The reproducibility system: towards a concept of isolation redundancy? 

A 95% conservative cut-off level was established, above which isolates cannot be discriminated using 

this technique. This was based on the reproducibility level calculated according to the percentage similarity 

between the duplicates (Supplementary Figure A.6, Supplementary Figure A.7). The fingerprints obtained 

with csM13 were in general more complex and discriminatory than those obtained with the (GTG)5 primer. 

Nevertheless, the combined analysis of both profiles presented a higher discriminatory power and allowed to 

resolve some clusters that were not discriminated at genus level when the primers were used individually. 

This was expected, since the discriminatory power of each primer is dependent on the taxonomic group that 

is being analysed and polyphasic approaches usually present a greater capacity for differentiation among 

microbial isolates. 

The overall clustering pattern allowed to determine an isolation redundancy rate around 6%. This was 

calculated considering the isolates of the same genus and from the same foliar lesion that paired above the 

95% similarity cut-off level. These isolations were considered redundant, since they probably corresponded 

to independent isolations of the same organisms inhabiting a certain foliar lesion. The value found for the 

isolation redundancy rate was considerably low, accounting only 27 isolates. Furthermore, most of these 

isolates were from a single genus, Alternaria. Thus, it is possible to assume that the previous ecological 

observations pointed out were effectively based on different isolates and that the associated error was 

negligible. Even considering that some of the isolates of Alternaria came from redundant isolations, the 
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number of different isolates of Alternaria recorded continue to demonstrate that this genus was the most 

frequently and abundantly found in the fungal communities surveyed. Thus, isolation redundancy rate 

calculation based on genomic fingerprints seems to be an interesting tool to apply in ecological studies. With 

the appropriate molecular markers, isolation redundancy rate can function as a fine-tuning tool while 

analysing the structure of fungal communities. 

Genetic diversity patterns: are genomic types different between host species and parishes? 

To further analyse the genetic diversity patterns, new dendrograms were constructed for subsets of isolates 

grouped according to a characteristic of interest, such as host species or parishes where they were isolated 

from, and fungal genera to which they belong (data not shown). Only fungal genera with a percentage 

abundance of occurrence of at least 1.5% were considered in the present analysis to avoid any biased result 

due to lack of information. It was possible to verify that genomic types (clusters) for each genus encompass 

a wide distribution of different host species and parishes. Thus, as a preliminary result, apparently there was 

no association between genomic types per genera and their distribution among host species or parishes. 

Nevertheless, further sampling may be able to unveil a different pattern, especially for genera regarded as 

rare, since these were excluded from the present analysis. 

The results obtained through these subsets allowed to compare the genetic biodiversity patterns of fungal 

communities with those obtained for the morphological analysis. The genetic diversity was calculated using 

the Shannon index of diversity, considering a cut-off level of 70% similarity to generate clusters. Results 

obtained were then compared with the same calculations made for the morphological analysis (Figure 3.10). 

This was already presented and discussed in the previous subsections (3.1, 3.2, 3.3 and 3.4) and the 

calculations were made considering fungal richness and their composition in terms of number of isolates. 

 

Figure 3.10  Graphical representation of morphological and/or genetic biodiversity patterns per host species, parish 

and fungal genera. Biodiversity patterns of the fungal community surveyed from each host species, parish and fungal genus 

was assessed through their morphological and/or genetic index of diversity and evenness, both computed using the Shannon 

index of diversity applied to the genera richness and its composition and MSP-PCR fingerprintings, respectively. 

IDm = morphological index of diversity, IDg = genetic index of diversity, Em = morphological evenness, Eg = genetic 

evenness, Dl = Dypsis lutescens, Tf = Trachycarpus fortunei, Pd = Phoenix dactylifera, Pc = Phoenix canariensis, 

Ch = Chamaerops humilis, Al = Alvalade, Ar = Areeiro, PN = Parque das Nações, M = Marvila. 

It was verified that in all host species, as well as in all parishes, genetic diversity was as high or higher 

compared to the morphological diversity (Figure 3.10). This was particularly relevant in Chamaerops humilis 

and Trachycarpus fortunei, which is coherent with the previous analysis concerning the morphological 

diversity. In fact, these two hosts species are typical temperate climate palms and their climatic constrains 

and requirements seem to be playing a role in the genetic diversity of fungal communities. The relative higher 

genetic diversity found on C. humilis and T. fortunei may be associated with the fact that these palms are 

adapted to temperate climate and, subsequently, to its typical mycobiota. In addition, their ability to share 

fungal isolates with other typical temperate hosts may increase the potential genetic diversity among the 

fungal communities. Contrastingly, Phoenix canariensis and Dypsis lutescens presented a genetic diversity 

almost equal to the morphological diversity previously assessed. This suggests that genera within their fungal 
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communities were quite homogeneous concerning their genomic fingerprints. Considering that these two 

host species are typical tropical and subtropical palms, their introduction into temperate climates may lead to 

a decrease on the diversity of their fungal communities. 

In all parishes, the genetic diversity was also higher than the morphological diversity. In Parque das 

Nações and Alvalade, the genetic diversity was found to be particularly high, what is according to the 

previous observations regarding the morphological analysis. Thus, the greater availability of moisture in the 

sampling sites within these two parishes seems to also influence the genetic structure of the fungal 

communities. Since moisture positively influences fungal proliferation and sporulation, it is not surprising 

that the genetic structure within these two parishes were found to be much more variable and complex. 

Although differences between genetic and morphological biodiversity patterns were found, genetic and 

morphological eveness were quite similar. This suggests that genomic types within fungal communities are 

similarly well distributed between the different genera (Figure 3.10). Moreover, biodiversity differences 

within the fungal communities seems to rely more on the genomic types present (which are directly related 

to the genetic diversity) than on their relative distribution. 

Morphological traits and cultural characteristics have been often difficult characters to use in the 

differentiation of strains of filamentous fungi (Meyer et al., 1993a). In the present analysis the morphological 

characters have been used to identify the isolates to genera, but within the same genus, excluding particular 

cases, it was not possible to reach further differentiation. In this sense, genomic fingerprints are an 

exceptional tool for microbial genotypic characterization and, subsequent, differentiation (Jeffreys et al., 

1985; Rademaker and de Bruijn, 1997). The discriminatory power, as well as high reproducibility, of 

MSP-PCR (Olive and Bean, 1999) was well evident in the present analysis. In fact, the fungal communities 

of diseased palm leaves revealed a remarkable high level of genetic diversity, which allowed to differentiate 

isolates with very similar micromorphology. However, the contribution of different genera for the genetic 

diversity of fungal communities was distinct (Figure 3.10, Figure 3.11). For example, while Alternaria was 

found to be highly homogeneous concerning its genomic profiles, Cladosporium was found to be highly 

diverse. This is particularly substantial considering that the fungal richness for Alternaria was much higher 

than the fungal richness for Cladosporium. One would expect that the analysis of a larger number of isolates 

would support greater genetic diversity, nevertheless the present analysis suggests that this may not be true. 

These patterns and small nuances show how complex ecological analyses can be when several approaches 

are taken into consideration. 

Only an integrated approach with both morphological and molecular data may reveal in full how microbial 

communities are shaped. Considering the three most abundant genera here recorded, i.e., Alternaria, 

Cladosporium and Phoma, it is clear that biodiversity within fungal communities relies on much more factors 

than only the richness of genera and fungal isolates. Most isolates of Alternaria recorded were found to 

cluster within the same genomic type (cluster I, Figure 3.11 A), which probably represents different strains 

of the same species. A similar pattern was found in Phoma isolates, since most of them also fall within the 

same genomic type (cluster V, Figure 3.11 B). However, a very distinct pattern was found in Cladosporium 

isolates, where a greater number of genomic types were found (clusters I–XI, Figure 3.11 C) harbouring, in 

general, a more or less similar number of isolates. Thus, considering the distribution of the number of isolates 

per cluster, the genetic structure of Cladosporium assemblage seems to be much more even than what was 

recorded for Alternaria and Phoma. These last two genera were found to be much more homogeneous 

regarding their genetic diversity. If these differences are related with the presence of several species or only 

with the existence of a wide range of genomic variation among Cladosporium isolates cannot be predicted 

with the present study. Similarly, it cannot be assumed that Alternaria and Phoma assemblages are composed 

by mainly one species, but mainly a certain genomic type. Further studies including genomic profiles of 

reference strains or through sequencing of appropriate DNA barcodes for representative isolates may clarify 

in deep the ecological and biodiversity patterns here observed. 
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Figure 3.11  Genomic diversity among the most abundant fungal genera recorded. Simplified composite dendrograms at 

a cut-off level of 70% to generate clusters (coloured triangles). Dendrograms were based on csM13 and (GTG)5 MSP-PCR 

profiles performed in BioNumerics using Pearson’s correlation coefficient and UPGMA. A. Simplified dendrogram for 

Alternaria isolates. B. Simplified dendrogram for Phoma isolates. C. Simplified dendrogram for Cladosporium isolates. 

Besides the differences regarding fungal genera and fungal communities surveyed from different palm 

species and parishes, differences for the genetic diversity within hyphomycetes and coelomycetes were also 

observed (data not shown). The genetic diversity within coelomycetes assemblage was much higher than that 

found within hyphomycetes assemblage, comprising 28 clusters highly coherent with the morphological 

analysis and highly even (from 2 to 11 isolates per cluster, except for a cluster of Phoma that comprised 28 

isolates). Hyphomycetes assemblage comprised 26 clusters, but the isolates distribution between clusters 

were highly uneven, since 95 out of 243 isolates fell within the same cluster, where almost all Alternaria 

isolates were found. In addition, several of these clusters were not coherent with the morphological analysis 

used to identify the isolates at genus level. This may suggest that the molecular markers used are more 

appropriate to discriminate coelomycete than hyphomycete genera, since the congruence between 

fingerprinting profiles and taxonomic positioning was remarkable among coelomycete genera. It is to be 

noted that coelomycete assemblage presented a much broader taxonomic range within fungal families than 

hyphomycetes and this may also justify the congruence found in fingerprints. A broader taxonomic range 

certainly implies phylogenetic differences that may be also expressed in the target repeated sequences used 

to assess the genomic profiles. 

A subset of the overall coelomycetes dendrogram can be seen in Figure 3.12. This subset shows clearly 

the already mentioned congruence between fingerprinting profiles and taxonomic positioning. The extent of 

this congruence was observed even within the same genus. For example, two clusters were observed for 
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Neosetophoma isolates (Neosetophoma I and Neosetophoma II, Figure 3.12), which were coherent with 

morphological differences observed in spores septation and colour.  

 

Figure 3.12  Genomic diversity among coelomycetes assemblage. Composite dendrogram based on csM13 and (GTG)5 

profiles performed in BioNumerics using Pearson’s correlation coefficient and UPGMA. The vertical dashed line corresponds 

to the reproducibility level (95%). Clusters coherent with the morphological analysis are coloured and named with the 

corresponding genus, which was assessed through sequencing of ITS region and subsequent BLAST against GenBank database. 

Paraconiothyrium I

Parastagonospora

Keissleriella I

Libertasomyces I

Coniothyrium

Neosetophoma I

Sclerostagonospora I

Lophiostoma

Neosetophoma II

Phaeosphaeria

Didymocyrtis I

Plenodomus

Libertasomyces II

Keissleriella II

Didymocyrtis II

Sclerostagonospora II

Paraconiothyrium II

99.0

72.5

91.6

90.4

82.9

78.3

65.5

95.0

86.5

83.3

93.1

90.7

74.5

63.6

77.5

72.8

59.5

94.0

96.0

96.9

94.9

92.6

94.4

90.2

81.0

61.9

85.1

78.0

92.4

90.9

90.5

92.0

84.8

88.2

80.6

77.1

65.9

77.6

69.6

65.4

61.2

51.6

93.9

79.8

73.9

47.9

93.0

83.4

95.6

97.9

93.3

92.0

89.1

99.1

84.3

80.1

76.1

72.0

98.4

84.3

70.9

81.0

71.2

56.7

51.8

99.5

69.0

86.6

81.5

87.2

76.5

93.3

81.6

73.7

63.5

50.8

67.9

72.1

60.4

86.1

92.0

89.5

82.2

63.0

61.7

55.5

48.7

47.0

99.3

81.4

41.2

32.8

15.9

M13-(GTG)5

1
0
0

9
0

8
0

7
0

6
0

5
0

4
0

3
0

2
0

M13 GTG5

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample

HDP 050

HDP 050

HDP 046

HDP 008

HDP 008

HDP 011

HDP 011

HDP 028

HDP 033

HDP 045

HDP 004

HDP 041

HDP 041

HDP 041

HDP 033

HDP 034

HDP 034

HDP 038

HDP 028

HDP 045

HDP 028

HDP 045

HDP 041

HDP 041

HDP 012

HDP 041

HDP 012

HDP 038

HDP 039

HDP 034

HDP 034

HDP 022

HDP 034

HDP 008

HDP 034

HDP 024

HDP 034

HDP 035

HDP 039

HDP 038

HDP 004

HDP 034

HDP 041

HDP 008

HDP 011

HDP 041

HDP 008

HDP 033

HDP 033

HDP 033

HDP 004

HDP 012

HDP 008

HDP 024

HDP 024

HDP 034

HDP 024

HDP 024

HDP 035

HDP 035

HDP 034

Sample subtype

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Isolate

CDP 270

CDP 274

CDP 283

CDP 154

CDP 155

CDP 220

CDP 216

CDP 143

CDP 415

CDP 410

CDP 119

CDP 370

CDP 375

CDP 496

CDP 414

CDP 450

CDP 453

CDP 347

CDP 020

CDP 412

CDP 142

CDP 405

CDP 367

CDP 376

CDP 230

CDP 379

CDP 248

CDP 346

CDP 055

CDP 455

CDP 459

CDP 190

CDP 456

CDP 146

CDP 452

CDP 199

CDP 458

CDP 318

CDP 056

CDP 350

CDP 120

CDP 451

CDP 372

CDP 144

CDP 222

CDP 374

CDP 151

CDP 424

CDP 425

CDP 421

CDP 124

CDP 231

CDP 150

CDP 198

CDP 201

CDP 457

CDP 195

CDP 197

CDP 316

CDP 317

CDP 448

Host

P. reclinata 2

P. reclinata 2

P. dactylifera 5B

P. canariensis 3C

P. canariensis 3C

P. dactylifera 1A

P. dactylifera 1A

C. humilis 6A

P. canariensis 13A

P. dactylifera 4C

P. canariensis 1C

P. reclinata 1

P. reclinata 1

P. reclinata 1

P. canariensis 13A

C. humilis 7

C. humilis 7

C. humilis 10B

C. humilis 6B

P. dactylifera 4C

C. humilis 6A

P. dactylifera 4C

P. reclinata 1

P. reclinata 1

P. dactylifera 2

P. reclinata 1

P. dactylifera 2

C. humilis 10B

C. humilis 11A

C. humilis 7

C. humilis 7

P. canariensis 9A

C. humilis 7

P. canariensis 3B

C. humilis 7

C. humilis 2A

C. humilis 7

C. humilis 8B

C. humilis 11A

C. humilis 10B

P. canariensis 1C

C. humilis 7

P. reclinata 1

P. canariensis 3B

P. dactylifera 1B

P. reclinata 1

P. canariensis 3C

P. canariensis 13A

P. canariensis 13B

P. canariensis 13B

P. canariensis 1B

P. dactylifera 2

P. canariensis 3C

C. humilis 2A

C. humilis 2B

C. humilis 7

C. humilis 2A

C. humilis 2A

C. humilis 8B

C. humilis 8B

C. humilis 7

Locality

P. Nações

P. Nações

P. Nações

Alvalade

Alvalade

Alvalade

Alvalade

Marvila

P. Nações

P. Nações

São Vicente

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

Marvila

P. Nações

Marvila

P. Nações

P. Nações

P. Nações

Alvalade

P. Nações

Alvalade

P. Nações

P. Nações

P. Nações

P. Nações

Areeiro

P. Nações

Alvalade

P. Nações

Marvila

P. Nações

P. Nações

P. Nações

P. Nações

São Vicente

P. Nações

P. Nações

Alvalade

Alvalade

P. Nações

Alvalade

P. Nações

P. Nações

P. Nações

São Vicente

Alvalade

Alvalade

Marvila

Marvila

P. Nações

Marvila

Marvila

P. Nações

P. Nações

P. Nações
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Preliminary ID

Paraconiothyrium

Paraconiothyrium

Paraconiothyrium

Parastagonospora

Parastagonospora

Parastagonospora

Parastagonospora

Sclerostagonospora

Keissleriella

Keissleriella

Keissleriella

Keissleriella

Keissleriella

Keissleriella

Keissleriella

Libertasomyces

Libertasomyces

Libertasomyces

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Coniothyrium

Libertasomyces

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Foliophoma

Sclerostagonospora

Sclerostagonospora

Pseudoconiothyrium

Cryptocoryneum

Cryptocoryneum

Cryptocoryneum

Cryptocoryneum

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Neosetophoma

Didymocyrtis

Phaeosphaeria

99.0

72.5

91.6

90.4

82.9

78.3

65.5

95.0

86.5

83.3

93.1

90.7

74.5

63.6

77.5

72.8

59.5

94.0

96.0

96.9

94.9

92.6

94.4

90.2

81.0

61.9

85.1

78.0

92.4

90.9

90.5

92.0

84.8

88.2

80.6

77.1

65.9

77.6

69.6

65.4

61.2

51.6

93.9

79.8

73.9

47.9

93.0

83.4

95.6

97.9

93.3

92.0

89.1

99.1

84.3

80.1

76.1

72.0

98.4

84.3

70.9

81.0

71.2

56.7

51.8

99.5

69.0

86.6

81.5

87.2

76.5

93.3

81.6

73.7

63.5

50.8

67.9

72.1

60.4

86.1

92.0

89.5

82.2

63.0

61.7

55.5

48.7

47.0

99.3

81.4
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HDP 024

HDP 035
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HDP 036

HDP 038

HDP 038

HDP 041

HDP 044

HDP 016

HDP 050

HDP 044

HDP 027

HDP 028

HDP 038

HDP 038

HDP 038

HDP 011

HDP 024

HDP 008

HDP 008

HDP 041

HDP 025

HDP 007

HDP 024

HDP 039

HDP 008

HDP 033

HDP 034
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CDP 197

CDP 316

CDP 317

CDP 448

CDP 454

CDP 431

CDP 329

CDP 340

CDP 378

CDP 354

CDP 041

CDP 271

CDP 351

CDP 178

CDP 141

CDP 348

CDP 345

CDP 349

CDP 229

CDP 200

CDP 152

CDP 145

CDP 371

CDP 207

CDP 136

CDP 196

CDP 050

CDP 148

CDP 427

CDP 449

CDP 383

CDP 114

CDP 217

CDP 218

CDP 219

CDP 343

CDP 404

C. humilis 2A

C. humilis 8B

C. humilis 8B

C. humilis 7

C. humilis 7

C. humilis 9

C. humilis 10A

C. humilis 10A

P. reclinata 1

P. dactylifera 3A

W. robusta 1

P. reclinata 2

P. dactylifera 3A

C. humilis 5B

C. humilis 6A

C. humilis 10B

C. humilis 10B

C. humilis 10B

P. dactylifera 1B

C. humilis 2A

P. canariensis 3C

P. canariensis 3B

P. reclinata 1

C. humilis 3A

D. lutescens 3

C. humilis 2A

C. humilis 11B

P. canariensis 3B

P. canariensis 13B

C. humilis 7

P. dactylifera 4B

P. canariensis 7A

P. dactylifera 1A

P. dactylifera 1A

P. dactylifera 1A

C. humilis 10B

P. dactylifera 4C

Marvila

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

P. Nações

Areeiro

P. Nações

P. Nações

Marvila

Marvila

P. Nações

P. Nações

P. Nações

Alvalade

Marvila

Alvalade

Alvalade

P. Nações

Marvila

Alvalade

Marvila

P. Nações

Alvalade

P. Nações

P. Nações

P. Nações

Marvila

Alvalade

Alvalade

Alvalade

P. Nações

P. Nações
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Neosetophoma

Neosetophoma

Didymocyrtis

Phaeosphaeria

Phaeosphaeria

Phaeosphaeria

Didymocyrtis

Didymocyrtis

Stagonosporopsis

Ascochyta

Plenodomus

Plenodomus

Plenodomus

Libertasomyces

Libertasomyces

Libertasomyces

Libertasomyces

Libertasomyces

Libertasomyces

Libertasomyces

Libertasomyces

Keissleriella

Keissleriella

Didymocyrtis

Didymocyrtis

Sclerostagonospora

Sclerostagonospora

Sclerostagonospora

Sclerostagonospora

Sclerostagonospora

Coelomycete genus 1

Coelomycete genus 2

Paraconiothyrium

Paraconiothyrium

Paraconiothyrium

Coelomycete genus 3

Coelomycete genus 4

95% similarity
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Genomic fingerprinting was the technique used in the present study to identify highly morphological 

similar coelomycetes to genus level. For this purpose, representative isolates from each cluster formed around 

60% to 70% similarity and, when possible, isolates from different parishes and palm species within the same 

cluster were selected for sequencing of ITS region. Figure 3.12 presents the result obtained from this 

preliminary analysis, and the closest-hit genus and species for each isolate sequenced can be accessed in 

Supplementary Table A.13. 

Some of the isolates here sequenced as a preliminary approach were selected for in-depth analyses to 

determine if they account for some of the undescribed global mycota (see Part II). 

4. Global Discussion and Final Remarks 

Biodiversity measures are highly dependent on the sampling effort, as well as on all subsequent analyses 

and methods used to study the fungal assemblages. Therefore, the present approach should be considered as 

a snapshot assessment of the biodiversity of palm leaf spotting fungal communities, and not as a statistically 

validated model; nonetheless, in this work, the foliar lesions have been studied as fungal communities. In 

this sense, several biodiversity and ecological tendencies have been pointed out, although most of them have 

not been subjected to statistical analyses. 

Several questions arose as the main objectives of this approach, and the obtained answers are here 

presented and summarized, along with other considerations. 

The diversity trends 

No typical palm fungi genera (i.e., Oxydothis, Anthostomella, Astrocystis, Astrosphaeriella, Linocarpon, 

Neolinocarpon, Fasciatispora, and Capsulospora) were recorded in the present study. Instead, ubiquitous 

and common temperate genera were found. These included Alternaria, Phoma and Cladosporium as the main 

assemblages, followed by a plethora of less representative genera. The fungal community pattern was well-

evidenced by the genera abundance distribution plot, which can be well-fitted by a log-series model. For this, 

coelomycete genera presented a greater contribution, with a higher number of infrequent and rare genera. 

Taxonomically, the fungal community had a broad distribution, with the most represented order being 

Pleosporales and Capnodiales. Except for Graphiola, a basidiomycete exclusively found on palm hosts 

(Piepenbring et al., 2012), all isolates belong to phylum Ascomycota. This result is in accordance to previous 

works on palm fungi (Fröhlich and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003). This result was 

in line with the studies on temperate palms by Taylor et al. (2000) concerning the relative proportion of 

hyphomycetes and coelomycetes inhabiting palm tissues. This was particularly interesting, since these results 

were found in different contexts. Nevertheless, this analysis was based on a relatively small number of 

samples, and the conclusions obtained may be biased due to sampling effort. Future studies should aim further 

sampling, to establish more supported results about the fungal community patterns that inhabits palm foliar 

lesions in Portugal. 

A matter of host and parish  

No specific and recurrent pattern between fungal genera and different palm hosts or parishes was 

observed. Nevertheless, several ecological and biodiversity trends were detected. Relative humidity played 

an important role on fungal diversity. This was particularly evident in Parque das Nações and Alvalade. In 

addition, climate requirements were found to be important in shaping fungal richness in different host species. 

Tropical palms, namely Dypsis lutescens and Phoenix canariensis, presented a depauperate mycobiota when 

compared to the temperate palms Chamaerops humilis and Trachycarpus fortunei. No wild representatives 

of palms were studied, and the fungal assemblages recorded may reflect this. Although climate requirement 

is an influential factor, a survey of the fungal assemblage of wild representatives of warm temperate palms 

in Portugal, would be essential to establish a well-supported data pattern. Future studies should aim a 

systematic survey of the mycota from wild stands of the temperate palm C. humilis. 
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Co-occurrence in foliar lesions  

In this study, a mean of 5 isolates per palm foliar lesion was found. This number seems to be independent 

of the lesion type. The found isolates were evaluated through their patterns of co-occurrence. These patterns 

can be used as a tool to unveil certain biotic relationships, irrespective of the fact that there are many factors 

that may influence these co-occurrences, and that most of them were not considered in this approach. In fact, 

as previously discussed, the host species as an environment, and the moisture availability, highly affect the 

composition and diversity of fungal communities. Thus, it would be noteworthy to verify if these patterns 

are different when analysing fungal communities from different host species, and from different parishes. 

The present study provides preliminary data on the co-occurrence patterns on foliar lesions of palms in 

Portugal. Future in vitro studies, i.e., culture dependent experiments, may unfold more specific fungal 

interactions, such as mutualism, commensalism, and antagonism. Moreover, the patterns of co-occurrence in 

the samples examined may be further clarified if the isolates are identified to species level. 

An (in-)adequate sampling size 

This study revealed a high fungal diversity inhabiting foliar lesions in palms. Nevertheless, biodiversity 

analyses through the combined application of genera-accumulation curves, and the Chao1 species richness 

estimator, predicted that just over 50% of the potential leaf spotting fungal mycobiota was found. Although 

the accessed curves did not level-off, the number of samples was large enough to obtain representative results 

that expressed certain ecological and biodiversity trends. The remaining genera to be recorded are expected 

to be infrequent and rare genera, since it was clear that the communities followed a log-series model, with a 

long tail of infrequently recorded genera. Possibly, a lot of these genera will be coelomycetous fungi, given 

that the assemblage of this fungal type comprised most of the infrequent and rare genera, and are the main 

assemblage that contributes for the high fungal diversity reported. 

A genetic diversity through genomic traits 

Differences in the morphological and genetic diversity of the fungal communities of each foliar lesion 

were evident. In general, as expected, genetic diversity was found to be higher than morphological diversity, 

since genomic analyses allow to discriminate isolates in the same genus (Meyer et al., 1993a). Genomic 

fingerprinting profiles highlighted the future need to identify the isolates at species level. In fact, genomic 

types revealed that the biodiversity patterns for some genera are highly complex. Consequently, reducing 

these genera to a single 'morphogroup' may lead to misinterpretations on the biodiversity structure that lies 

on the foliar lesions of palms. 

The reliability of diversity indices 

Several biodiversity patterns were studied and evaluated taking into consideration diversity indices, 

especially Simpson and Shannon indices of diversity. These indices were more efficient in revealing 

differences when applied to the coelomycete and hyphomycete assemblages, than when applied to different 

host species and to different parishes. This result was expected, as it relies on the sample size that was used 

in each analysis. Gimaret-Carpentier et al. (1998) showed that Simpson index of diversity reaches a 

stable value at low sample sizes, while Shannon index of diversity is more affected by the addition of rare 

species with increasing sample size. Both aspects can be seen in the present study. Simpson index of diversity 

rarely revealed differences between the fungal assemblages of different hosts or parishes but was reasonably 

efficient in revealing diversity differences between the coelomycete and hyphomycete assemblages. This 

occurred because the dominance of the very frequent and frequent genera rapidly stabilized the value of the 

diversity index in small-sized samples. In this case, the Simpson index of diversity becomes blind to the 

addition of rare genera and assumes a value that is close to the relative abundance of the dominant ones. A 

similar effect is observed in the Shannon index of diversity, although it usually performed better in revealing 

differences. This occurs because the main differences in the fungal assemblages recorded rely in the 

infrequent and rare genera, especially those of coelomycetes. Both diversity indices are sensitive to genera 
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abundance distribution but give different weigh to rare genera. Thus, Shannon index of diversity seems to be 

more adequate to evaluate the diversity of the leaf spotting fungal community, since it follows a log-series 

distribution model, becoming rich due to the high profusion of infrequent and rare genera. The integrated 

analysis of the diversity indices also highlights the fact that coelomycete assemblage may be the main 

palmicolous fungal community in temperate regions, since the hyphomycete assemblage was composed 

mainly by highly abundant and plurivorous genera. 

 

The results of this study are preliminary observations of the fungal communities on foliar lesion from 

different palm species and parishes in Lisbon, Portugal. Only the palms at some parishes were examined. If 

palms from other sites were included, the results might be more conclusive. These preliminary results, do 

however, show that fungal communities on foliar lesions of palms are diverse and dynamic ecological units 

with several biodiversity patterns. This is consistent with the large number of fungi known to occur on palms 

and may account for some of the missing fungal diversity, which is the scope of Part II of this work. 



 

 

 

 

 

 

 

 

 

 

PART II 

 

Case studies on microfungi from palm foliar lesions: 

sizing up potentially new taxa 

 

 

Case study I. Diaporthe chamaeropsicola sp. nov., a new Diaporthe species 

from palms in Portugal 

Case study II. Morinia trachycarpae sp. nov. and Morinia phoenicicola sp. 

nov., two new Sporocadaceae species from palms in Portugal 

Case study III. Arecamyces humilianae gen. et sp. nov., a new 

Teratosphaeriaceae genus and species from palms in Portugal
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Case study I. Diaporthe chamaeropsicola sp. nov., a new Diaporthe species from 

palms in Portugal 

1. Introduction 

Diaporthe Nitschke, syn. Phomopsis Sacc. & Roum. (Saccardo and Roumeguère, 1884), species are 

known as important plant pathogens, endophytes and saprobes on a variety of economically important crops, 

ornamentals and trees (Santos and Phillips, 2009; Santos et al., 2011, 2017; Udayanga et al., 2011, 2015; 

Huang et al., 2013; Hyde et al., 2014; Dissanayake et al., 2015, 2017a,c; Guarnaccia et al., 2018). Along 

with its diverse host ranges and worldwide distribution, the interest in this genus has grown over the years 

due to its recurrent association with plant diseases. Common diseases caused by Diaporthe species include 

leaf spots, blights, seed decay, cankers, dieback and wilt (Mostert et al., 2001a,b; van Rensburg et al., 2006; 

Diogo et al., 2010; Santos et al., 2011; Thompson et al., 2011, 2015; Diaz et al., 2017; Manawasinghe et al., 

2019). Since the implementation of international phytosanitary measures relies on the correct identification 

of the phytopathogenic fungi (Santos and Phillips, 2009; Udayanga et al., 2011; Wingfield et al., 2012), the 

taxonomy of Diaporthe has often been re-evaluated to construct a natural framework. In the last decade, four 

major taxonomic revisions of the taxonomy of genus have been published (see Gomes et al., 2013; Gao et 

al., 2017; Dissanayake et al., 2017b; Marin-Felix et al., 2019b). However, each study has used different 

combinations of gene loci to resolve species boundaries.  

The genus Diaporthe, based on Diaporthe eres Nitschke collected in Germany from Ulmus sp., was 

introduced by Nitschke (1870) and resides in the family Diaporthaceae, order Diaporthales, in class 

Sordariomycetes (Maharachchikumbura et al., 2015, 2016). For many years taxonomy of Diaporthe species 

was based on host association (Uecker, 1988; Udayanga et al., 2011), which led to a proliferation of species 

names. Although several species are known to be host-specific, most can be found on more than one host 

(Mostert et al., 2001a; Santos and Phillips, 2009; Diogo et al., 2010; Udayanga et al., 2014a,b; Guarnaccia 

et al., 2016). The genus Diaporthe is highly complex, comprising several cryptic species, many of which are 

well-described, and their phylogeny well-resolved (e.g. Gomes et al., 2013; Udayanga et al., 2014a,b, 2015; 

Guarnaccia and Crous, 2017). Since morphology is of limited value in defining species (Hyde et al., 2011), 

currently the circumscription of Diaporthe species relies on molecular phylogenies based on different loci. 

The most used loci for Diaporthe species include the rRNA region (ITS) and partial sequences of the 

translation elongation factor 1-alpha (TEF1), the β-tubulin (TUB2), the calmodulin (CAL) and the 

histone H3 (HIS3) genes (Udayanga et al. 2012a,b, Gomes et al. 2013; Hang et al., 2013; Tan et al., 2013; 

Hyde et al., 2014; Gao et al., 2017; Yang et al., 2018; Hyde et al., 2019a). All the older species names in 

Diaporthe or Phomopsis for which cultures and DNA sequence data are not available, cannot be considered 

to be reliable, and should be disregarded until they are re-collected and epityfied. The currently accepted 

Diaporthe species and their respective DNA barcodes can be assessed on Marin-Felix et al. (2019b). 

A survey of the literature suggests that no intensive study with proper molecular data has been carried out 

to resolve the complex of Diaporthe species occurring on palms. Although several Diaporthe species have 

been described from palms, most of them were based mainly on account of their unique palm hosts but 

without molecular data to confirm their phylogenetic position. Subsequently, most of these species have not 

been transferred to Diaporthe and remain in Phomopsis (Fröhlich et al., 1997; Taylor and Hyde, 2003). 

Nevertheless, this genus name is no longer used since dual nomenclature for pleomorphic fungi was abolished 

(Rossman and Samuels, 2005; Santos and Phillips, 2009; Rossman et al., 2015). Fröhlich et al. (1997) 

provided a synopsis of Diaporthe (as Phomopsis) species known from palms and several other species have 

been reported by Taylor and Hyde (2003). Herein, a new synopsis of Diaporthe species from palms is 

presented considering the currently accepted and phylogenetically validated Diaporthe names. 

In this study, one new species of Diaporthe associated with foliar lesions of palms in Lisbon, Portugal, 

Diaporthe chamaeropsicola DS Pereira & AJL Phillips, is described based on morphological characters and 

phylogenetic data derived from sequences of ITS, TEF1, TUB2 and CAL. Furthermore, four new records of 

Diaporthe species from palms are presented. These include two new records from Arecaceae for the first 
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time with the isolation of D. foeniculina (Sacc.) Udayanga & Castl. and D. pyracanthae L Santos & A Alves 

from Chamaerops humilis and D. foeniculina from Trachycarpus fortunei, along with the isolation of D. 

pseudophoenicicola RR Gomes, C Glienke & Crous from C. humilis. 

2. Materials and Methods 

A schematic overview of the workflow used in the present work is presented in Supplementary Figure A.1. 

2.1. Specimen collection and examination 

Diseased palm leaflets and leaf segments were collected from Oeiras and Lisbon during September and 

October 2018. Specimens were transported to the laboratory, examined with a Leica MZ9.5 stereo 

microscope for observations on lesion morphology and for the presence of fungi. Morphological details of 

lesions were observed on both adaxial and abaxial surfaces. 

2.2. Culture media and growth conditions 

Cultures were grown on 1/2 PDA and, unless stated otherwise, incubated in ambient light at room 

temperature (18–20 ℃). To stimulate sporulation, isolates were cultured on 2% WA with healthy doubled 

autoclaved Populus sp. twigs or palm leaflet pieces on the agar surface. Cultures were incubated at 25 ℃ 

under black light. 

2.3. Fungal isolation 

Leaflets and segments were first examined with a stereomicroscope for the presence of spore-producing 

structures. If no signs of sporulation were seen the specimens were incubated for 1–3 weeks in a moist 

chamber and examined daily with a stereomicroscope for signs of sporulation. When possible, isolations 

were made by direct transfer of conidia or ascospores onto CPDA. Isolations were also made directly from 

lesions after sterilization of pieces of tissue 1–2 mm2 in 5% sodium hypochlorite for 1 min. These were then 

plated onto CPDA. Fungi were subcultured onto 1/2 PDA and single spore isolates established when possible. 

2.4. Morphological observation and characterization 

Microscopic structures were mounted in 100% lactic acid and examined by DIC microscopy. 

Observations on micromorphological features were made with Leica MZ9.5 and Leica DMR microscopes 

and digital images were recorded with Leica DFC300 and Leica DFC320 cameras, respectively. 

Measurements were made with the measurement module of the Leica IM500 Image Management System. 

Mean, SD and 95% confidence intervals were calculated from measurements of 50 structures, unless stated 

otherwise with n = total of measured structures. Measurements are given as minimum and maximum 

dimensions with mean and SD in parenthesis. Infrequent measurements are also given in parenthesis along 

with the minimum and maximum dimensions. Photoplates were prepared with Adobe Photoshop CS6. 

2.5. Culture storage and preservation 

Isolates were stored on 1/4 PDA slants about 2 cm in its widest part in 5 ml graduated microtubes and 

kept at 4 °C, and at room temperature after being covered with 2 ml of sterile mineral oil. Holotypes will be 

lodged at the herbarium of University of Aveiro (code AVE). Ex-type cultures will be deposited in the CBS 

collection at Westerdijk Institute, Utrecht, the Netherlands. 

2.6. DNA extraction 

Genomic DNA (gDNA) was extracted by a modified guanidium thiocyanate method. Isolates were grown 

on PDA in darkness at 20 °C until a suitable amount of mycelium growth was observed. The mycelium was 

then scraped off and collected in 2 ml microtubes with 100 µl of autoclaved glass microspheres and 250 µl 

of lysis buffer. The tubes were incubated on ice for 10 min, vortexed several times, incubated for 30 min at 

65 ℃ and revortexed. If necessary, a pellet pestle was used to break the cell walls. Firstly 250 µl of GES 
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reagent was added, mixed by inversion and the tubes kept on ice for 10 min. Then 250 μl of cold 10 M 

ammonium acetate was added and the tubes returned to the ice bath for 10 min. To separate organic and 

aqueous phases, 1 ml of chloroform:isoamyl alcohol was added, mixed by vigorous agitation and then 

centrifuged (14 000 rpm, 20 min). The aqueous phase was transferred to a new 1.5 ml tube and the nucleic 

acids precipitated by adding an equal volume of cold absolute isopropanol and mixing by inversion. The 

tubes were centrifuged again (14 000 rpm, 20 min), the supernatant discarded and the pellets washed with 1 

ml of cold 70% (v/v) ethanol. After a further centrifugation (14 000 rpm, 20 min), the supernatant was 

discarded and the pellets dried at room temperature with the tubes open in an inverted position. After ensuring 

that all the ethanol was removed, the pellets were resuspended in 100 μl of TE buffer and stored at 4 ℃. 

Quality and quantity of the gDNA were evaluated by agarose gel electrophoresis. The gel was stained 

with 2.5 µg ml-1 ethidium bromide solution, visualized with an Alliance 4.7 UV transilluminator and the 

image recorded with Alliance software version 15.15. DNA concentrations were estimated using ImageJ 

software version 1.52a. 

2.7. PCR amplification and sequencing 

PCR reactions were carried out with Taq polymerase, nucleotides, primers, PCR-water (ultrapure 

DNase/RNase-free distilled water) and buffers supplied by Invitrogen (UK). PCR reaction mixtures and 

cycling conditions were optimized for each primer pair, with the addition of 5% DMSO or 0.01% BSA to 

improve the amplification of some difficult DNA templates. In some cases where amplification was not 

accomplished within a suitable range of concentrations adequate for sequencing, a second PCR was 

performed using as template 5 µl of the first PCR amplification. All amplification reactions were performed 

in a TGradient Thermocycler (Biometra, Germany). Amplified PCR products were purified and sequenced 

by Eurofins (Germany). 

Primers ITS5 and NL-4 were used to amplify part of the cluster of rRNA genes, including the nuclear 

5.8S rRNA gene and its flanking ITS1 and ITS2 regions, along with the first two domains of the large-subunit 

rRNA gene (ITS-D1/D2 rDNA region) (Table 2.1). The PCR reaction mixture consisted of 50–100 ng of 

gDNA, 1× PCR buffer, 50 pmol of each primer, 200 μM of each dNTP, 2 mM MgCl2, 1 U Taq DNA 

polymerase and was made up to a total volume of 50 μl with PCR-water. The following cycling conditions 

were used: initial denaturation at 95 ℃ for 5 min, followed by 40 cycles of denaturation at 95 ℃ for 1 min, 

annealing at 52 ℃ for 30 s and elongation at 72 ℃ for 1.5 min, and a final elongation step at 72 ℃ for 10 

min. The ITS region was sequenced only in the forward direction using the primer ITS5; the D1/D2 region 

(LSU) was sequenced only in the forward direction using the primers ITS5 and NL1 

(5’ – GCATATCAATAAGCGGAGGAAAAG – 3’) (O’Donnell, 1993). If the forward sequencing did not 

resolve the sequence sufficiently, ITS region was also sequenced in the reverse direction using the primer 

ITS4 (5’ – TCCTCCGCTTATTGATATGC – 3’) (White et al., 1990). Consensus sequences were produced 

with BioEdit version 7.0.5.3 (Hall, 1999). 

The primers EF1-688F and EF1-1251R were used to amplify part of the translation elongation factor 

1-alpha gene (TEF1), while the primers T1 and Bt2b were used to amplify part of the β-tubulin gene (TUB2) 

and the primers CAL-228F and CAL-737R were used to amplify part of the calmodulin gene (CAL) (Table 

2.1). The PCR reaction mixture for each primer pair consisted of 50–100 ng of gDNA, 1× PCR buffer, 25 

pmol of each primer, 200 μM of each dNTP, 3 mM MgCl2, 1 U Taq DNA polymerase and was made up to a 

total volume of 25 μl with PCR-water. The following cycling conditions were used: initial denaturation at 95 

℃ for 5 min, followed by 40 cycles of denaturation at 95°C for 30 s, annealing at 55 ℃, 52 ℃, 50 ℃ for 30 

s (for TEF1, TUB2 and CAL, respectively) and elongation at 72 ℃ for 1 min, and a final elongation step at 

72 ℃ for 10 min. All amplicons were sequenced in both directions, using the same primers as used for the 

DNA amplification, except for the TEF1 fragment, which was sequenced only in forward direction using the 

primer EF1-688F. 

To assess PCR amplification, 5 μL of each PCR product was subjected to electrophoresis in a 0.8% (w/v) 

agarose (Invitrogen, UK) gel, with 0.5× TBE buffer (40 mM Tris, 45 mM boric acid, 1 mM EDTA, pH 8.3) 
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and a constant voltage of 5.6 V cm-1 for 1 h. The molecular weight marker used was the 1 kb Plus DNA 

Ladder (Invitrogen, UK). The gel was stained and visualized as described above (subsection 2.6). 

Table 2.1  Primer sets and corresponding amplification targets. Amplicon size represents the expected size in nucleotides 

for the amplified products considering the literature available, although small variations may be detected. 

Gene/region Primer Sequence (5’ – 3’) Amplicon size (nt*) Reference 

ITS-D1/D2 ITS5 GGAAGTAAAAGTCGTAACAAGG 1200 White et al., 1990 

NL4 GGTCCGTGTTTCAAGACGG O’Donnell, 1993 

TEF1 EF1-688F# CGGTCACTTGATCTACAAGTGC 326 Alves et al., 2008 

EF1-1251R# CCTCGAACTCACCAGTACCG 

CAL CAL-228F GAGTTCAAGGAGGCCTTCTCCC 500 Carbone and Kohn, 1999 

CAL-737R CATCTTTCTGGCCATCATGG 

TUB2 T1 AACATGCGTGAGATTGTAAGT 500 O’Donnell and Cigelnik, 1997 

Bt2b ACCCTCAGTGTAGTGACCCTTGGC Glass and Donaldson, 1995 

*nt, nucleotides. 
#F, forward primer; R, reverse primer. 

2.8. Sequence alignment and phylogenetic analyses 

Sequences were edited with BioEdit version 7.0.5.3 (Hall, 1999) and aligned with ClustalX version 2.1 

(Thompson et al., 1997) using the following parameters: pairwise alignment parameters (gap opening = 10, 

gap extension = 0.1) and multiple alignment parameters (gap opening = 10, gap extension = 0.2, DNA 

transition weigh = 0.5, delay divergent sequences = 25%). Additional sequences included in the alignments 

were obtained by subjecting the sequences for each gene region to megablast searches to identify closely 

related sequences from National Center for Biotechnology Information’s (NCBI) GenBank sequence 

database (Benson et al., 2013) using Basic Local Alignment Search Tool (BLAST) (Altschul et al., 1990). 

Alignments were checked and manual adjustments were made where necessary using BioEdit version 7.0.5.3. 

Terminal regions with missing data in some of the isolates were excluded from the analysis. 

Maximum Likelihood (ML) and Maximum Parsimony (MP) were used for phylogenetic inferences of 

single gene sequence alignments and the concatenated alignments. The individual gene trees were assessed 

for clade conflicts between the individual phylogenies. ML and MP inferences were implemented on the 

Cyberinfrastructure for Phylogenetic Research (CIPRES) Science Gateway (CSG) portal version 3.3 (Miller 

et al., 2010) using Randomized Axelerated Maximum Likelihood for High Performance Computing 

(RAxML-HPC2) version 8.2.12 (Stamatakis, 2014) and Phylogenetic Analysis Using Parsimony (PAUP) 

version 4.0a165 (Swofford, 2002), respectively. The resulting trees were plotted using TreeView version 

1.6.6 (Page, 1996). 

MP analyses were performed using the heuristic search option with 1000 random taxa additions and Tree 

Bisection and Reconnection (TBR) as the branch-swapping algorithm. All molecular characters were 

unordered and of equal weight, and alignment gaps were treated as missing data. Maxtrees were set to 1000 

or 10000, branches of zero length were collapsed and all multiple, equally parsimonious trees were saved. 

Clade stability and robustness of the most parsimonious trees was assessed using bootstrap analysis with 

1000 pseudoreplicates, each with 10 replicates of random stepwise addition of taxa (Felsenstein, 1985; Hillis 

and Bull, 1993). Descriptive tree statistical measures for parsimony calculated included tree length (TL), 

homoplasy index (HI), consistency index (CI) (Kluge and Farris, 1969), retention index (RI) and rescaled 

consistency index (RC) (Farris, 1989). 

ML analyses were performed using a General Time Reversible (GTR) nucleotide substitution model 

(Tavaré, 1986) including a discrete gamma distribution (Yang, 1994) and estimation of proportion of 

invariable sites (Shoemaker and Fitch, 1989) (GTR+G+I) to accommodate variable rates across sites. Clade 

stability and robustness of the branches of the best-scoring ML tree were estimated by conducting a rapid 

bootstrap analysis with iterations halted automatically by RAxML. 
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Phylogenetic analyses were done on a matrix of concatenated ITS, TEF1, TUB2 and CAL sequences of 

representative species in Diaporthe. These were retrieved from GenBank according to the BLAST result for 

ITS locus and to the recent available literature on Diaporthe, such as Gomes et al. (2013), Gao et al. (2017), 

Dissanayake et al. (2017b) and Marin-Felix et al. (2019b). Sequences obtained from GenBank are listed by 

their accession numbers, while newly generated sequences are listed by their isolate number and can be 

accessed in Supplementary Table A.10. The newly generated sequences will be deposited in GenBank. 

Sequences of Diaporthe toxica PM Will., Highet, W Gams & Sivasith were used as the outgroup taxon. 

3. Results 

3.1. Phylogenetic analyses 

ITS, TUB2, TEF1 and CAL sequences of 64 strains of Diaporthe species, either sequenced in this study 

or retrieved from GenBank, were included in the phylogenetic analysis. The concatenated ITS, TUB2, TEF1 

and CAL alignment of 63 ingroup and 1 outgroup taxa comprised 2248 characters including alignment gaps. 

Of the 2248 characters, 1229 were constant and 141 variable characters were parsimony-uninformative. MP 

analysis of the remaining 878 parsimony-informative characters resulted in 2496 equally parsimonious trees 

of 2546 steps with a low level of homoplasy as indicated by a CI of 0.616, a RI of 0.899, a HI of 0.384 and 

a RC of 0.554. The topology of the trees differed from one another only in the position of the isolates within 

terminal groupings, particularly within the clade that includes the species D. phyllanthicola, D. loropetali 

and D. pseudophoenicicola. Trees resulting from maximum parsimony and maximum likelihood analyses 

had similar topologies, except for the phylogenetic relationships between the same species in the previous 

referred clade. The ML tree is shown in Figure 3.14 with bootstrap support above the branches. It is to be 

noted that the phylogenetic position of D. ceratozamiae also differed in the two analyses. While in the MP 

tree it is more closely related to D. arecae, in the ML tree it is more closely related to D. phyllanthicola. In 

both phylogenies, however, this was not supported by a significant bootstrap value. 

The seven isolates obtained in this study clustered in three different clades within Diaporthe, which are 

referred to as clade I, clade II and clade III (Figure 3.14). Only clades I and II received high bootstrap support 

(≥ 70%). Among these seven isolates, six corresponded to known Diaporthe species, namely D. pyracanthae, 

in clade I, D. foeniculina, in clade II, and D. pseudophoenicicola, in clade III. One isolate represented a 

previously undescribed species also included in clade III and closely related to D. ceratozamiae, D. 

phyllanthicola and D. loropetali. Herein this isolate is described as D. chamaeropsicola. Nevertheless, the 

phylogenetic position of taxa within clade III, including D. chamaeropsicola, generally received low 

bootstrap support (< 50%). Nevertheless, Diaporthe chamaeropsicola differs from D. ceratozamiae, D. 

phyllanthicola and D. loropetali in 13, 9 and 13, respectively, nucleotide positions in the ITS locus 

(Supplementary Table A.8). 

3.2. Taxonomy 

Based on morphological characteristics as well as DNA phylogeny, one of the isolates of Diaporthe 

collected from foliar lesions of palms was distinct from the previously known Diaporthe species and is 

described here as a new species. A description for this new species is provided below. 

 

Diaporthe chamaeropsicola DS Pereira & AJL Phillips sp. nov.   (Figure 3.13) 

MycoBank: MBXXXX 

 

Etymology: named after the host genus from which it was collected, Chamaerops humilis. 

 

Sexual morph: unknown. Asexual morph: Conidiomata pycnidial, solitary, occasionally aggregated, 

subglobose, dark-brown to black, thick-walled, up to 4 mm diam, covered with hyphal outgrows, superficial, 

lacking an ostiole, dehiscent by irregular fissures on pycnidial wall, exuding a creamy mucoid mass of 

conidia. Pycnidial wall pseudoparenchymatous of dark-brown textura angularis, cells thick-walled in outer 
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layers, becoming thin-walled and hyaline towards the inner layers. Conidiophores reduced to conidiogenous 

cells. Conidiogenous cells straight, hyaline, smooth- and thin-walled, cylindrical, occasionally ampulliform, 

tapering towards the apex, aseptate or 1–3-septate, unbranched or branched, collarette up to 1 µm long, lining 

the entire cavity, often intermingled with paraphyses, variable in length, dimorphic, short conidiogenous 

cells, 4.9–19.4 × 0.9–2.6 µm (mean ± SD = 13.66 ± 3.68 × 1.75 ± 0.39 µm), long conidiogenous cells, 15.2–

49.2 × 1.1–2.7 µm (mean ± SD = 29.54 ± 7.28 × 1.75 ± 0.36 µm), enteroblastic proliferating at the same 

level giving rise to periclinal thickenings, occasionally enteroblastic proliferating percurrently giving rise to 

1–2 annellations. Paraphyses straight, flexuous, hyaline, smooth- and thin-walled, cylindrical, tapering 

towards the apex, with 1–2–(3) basal septa, unbranched or branched below, often one of the branches later 

functioning as a conidiogenous cell, extending above conidiogenous cells, 26.6–78.8 µm (mean ± SD = 53.57 

± 12.72 µm) long. Alpha conidia cylindrical to ellipsoidal, mostly with rounded apex and obtuse to slightly 

truncate base, hyaline, smooth- and thin-walled, aseptate, biguttulate, with a conspicuous guttule at each end, 

occasionally with several minute scattered guttules, straight to slightly curved, 5.6–9.4 × 1.7–3.0 µm (mean 

± SD = 7.53 ± 0.89 × 2.31 ± 0.30 µm); mean ± SD conidium length/width ratio = 3.33 ± 0.73. Beta and 

gamma conidia not seen. 

 

Figure 3.13  Diaporthe chamaeropsicola (ex-type CDP 460/01). A, B. Conidiomata formed on 1/2 PDA. Conidia are oozing 

in creamy mucoid masses. C, D. Long conidiogenous cells. E – G. Short conidiogenous cells (white arrows point collarette) 

H. Conidia. I, J. Paraphyses (black arrow points a branch that are functioning as conidiogenous cell). Scale bars: A, B = 1 mm, 

C – J = 5 μm. 

Culture characteristics: colonies on PDA, rapid growth, 60 mm diam after 7 d (n = 3). Surface flat, sparse 

aerial mycelium, often growing with concentric zones, with filiform margin, circular shape, pearl white to 

dirty white, opaque to slightly translucent. Reverse luteous, pale brown towards the centre. No diffusible 

pigment. Conidiomata black, scattered over the surface of the colony. 

 

Material examined: Portugal, Lisbon, Parque das Nações, Jardins da Água, near Oceanário de Lisboa, on 

foliar lesions of segments of Chamaerops humilis (Arecaceae), 16 October 2018, Diana S Pereira (specimen 

HDP 034, holotype a dried culture of CDP 460, ex-type culture CDP 460/01, ITS sequence SDP 460/01, 

TUB2 sequence SDP 460/02, TEF1 sequence SDP 460/03, CAL sequence SDP 460/04). 

 

Distribution: Lisbon, Portugal. 

 

Notes: Diaporthe chamaeropsicola was found associated with foliar lesions of Chamaerops humilis, but 

pathogenicity has not been tested. The phylogenetic position of D. chamaeropsicola among accepted 

Diaporthe species is still not clearly resolved. Nevertheless, this species is phylogenetically related but 

distinct from D. ceratozamiae, D. phyllanthicola and D. loropetali (Figure 3.14). Diaporthe chamaeropsicola 

is morphologically similar to D. ceratozamiae (Figure 3.13), producing globose pycnidia, whose internal 

cavity is lined with cylindrical conidiogenous cells intermingled with long cylindrical, septate and branched 

paraphyses (Crous et al., 2011). However, D. chamaeropsicola has larger conidiomata than D. ceratozamiae 
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(up to 4 mm diam vs. 300 µm diam), lacks conidiophores, and alpha conidia have a different shape 

(cylindrical/ellipsoidal vs. fusiform). In addition, they differ in 13 nucleotide positions in the ITS locus 

(Supplementary Table A.8). Diaporthe chamaeropsicola differs from D. phyllanthicola and D. loropetali in 

9 and 13, respectively, nucleotide positions in the ITS locus (Supplementary Table A.8). No TUB2, TEF1 

and CAL sequences are yet available for D. ceratozamiae, D. phyllanthicola or D. loropetali. 

 

Figure 3.14  Phylogenetic position of Diaporthe isolates. ML tree generated by RAxML with GTR+G+I nucleotide 

substitution model using the combined four loci ITS-TEF1-TUB-CAL. ML bootstrap support values (> 50%) are shown above 

the branches. The isolates from this study are listed in blue. The scale bar represents the expected number of nucleotide changes 

per site. Diaporthe toxica (CBS 534.93) was included as outgroup. Ex-type (T)/ex-epitype (ET)/ex-isotype (IT)/ex-neotype 

(NT) cultures are marked in bold. 
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New host records of Diaporthe foeniculina, D. pseudophoenicicola and D. pyracanthae associated with 

foliar lesions of palms are also reported, along with a new insight into the distribution of D. 

pseudophoenicicola. 

 

Diaporthe pseudophoenicicola RR Gomes, C Glienke & Crous, Persoonia 31: 30, 2013.  

 

Type: Spain, Mallorca, Can Pastilla, dead tops of green leaves on Phoenix dactylifera (Arecaceae), 27 May 

1969, HA van der Aa (holotype CBS H-21106, culture ex-type CBS 462.69). 

 

Sexual morph not reported. See Gomes et al. (2013) for illustrations and descriptions of asexual morph. 

 

Material examined: Portugal, Lisbon, Parque das Nações, Jardins da Água, Pomar do Mediterrâneo,  on foliar 

lesions of segments of Chamaerops humilis (Arecaceae), 16 October 2018, Diana S Pereira (specimen HDP 

039/02, living culture CDP 047, ITS sequence SDP 047/01, TUB2 sequence SDP 047/02, TEF1 sequence 

SDP 047/03, CAL sequence SDP 047/04); Portugal, Lisbon, Parque das Nações, on foliar lesions of leaflets 

of Phoenix dactylifera (Arecaceae), 16 October 2018, Diana S Pereira (specimen HDP 044/01, living culture 

CDP 358, ITS sequence SDP 358/01, TUB2 sequence SDP 358/02, TEF1 sequence SDP 358/03, CAL 

sequence SDP 358/04). 

 

Distribution: China (Gao et al., 2017), Iraq (Shalt El Arab), Spain (Mallorca) (Gomes et al., 2013), Portugal 

(Lisbon) (present study). 

 

Hosts: Chamaerops humilis (present study), Mangifera indica, P. canariensis (Gao et al., 2017), Phoenix 

dactylifera (Gomes et al., 2013; present study). 

 

Notes: Two isolates of D. pseudophoenicicola were recorded from foliar lesions of palms, but pathogenicity 

has not been tested. This is the first time this Diaporthe species is reported from Portugal. One of the isolates 

was recorded from C. humilis and represents a new host record. The other isolate was recorded from P. 

canariensis and was already reported in the same host in collections from China (Gao et al., 2017). The 

present study confirms that D. pseudophoenicicola has a wide host range. 

 

Diaporthe foeniculina (Sacc.) Udayanga & Castl., Persoonia 32: 95, 2014.  

 

Type: Portugal, Madeira, Serra da Água, at base of 2-yr-old stem of Foeniculum vulgare (Apiaceae), August 

2001, AJL Phillips (epitype LISE 94791, culture ex-type CBS 111553 = DP0391) 

 

Sexual morph and asexual morph have been reported. See Phillips (2003) and Udayanga et al. (2014a) for 

illustrations and descriptions. 

 

Material examined: Portugal, Lisbon, Parque das Nações, Jardins Garcia d’Orta, Talhão do Coloane, on foliar 

lesions of segments of Trachycarpus fortunei (Arecaceae), 5 October 2018, Diana S Pereira (specimen HDP 

013/02, living culture CDP 022, ITS sequence SDP 022/01, TUB2 sequence SDP 022/02, TEF1 sequence 

SDP 022/03); Portugal, Lisbon, Marvila, Ferreira de Castro Street, near Casa dos Direitos Sociais, on foliar 

lesions of segments of Chamaerops humilis (Arecaceae), 13 October 2018, Diana S Pereira (specimen HDP 

025/02, living culture CDP 209, ITS sequence SDP 209/01, TUB2 sequence SDP 209/02, TEF1 sequence 

SDP 209/03); Portugal, Lisbon, Parque das Nações, Jardins da Água, near Oceanário de Lisboa, on foliar 

lesions of segments of Chamaerops humilis (Arecaceae), 16 October 2018, Diana S Pereira (specimen HDP 

035/02, living culture CDP 315, ITS sequence SDP 315/01, TUB2 sequence SDP 315/02, TEF1 sequence 

SDP 315/03). 
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Distribution: Argentina, Australia, Europe (Greece, Portugal, Spain, Italy), New Zealand, South Africa, USA 

(California) (Udayanga et al., 2014a; Lawrence et al., 2015; Annesi et al., 2016; Guarnaccia et al., 2016; 

present study). 

 

Hosts: Acacia spp., Acer spp., Actinidia deliciosa, Aspalathus linearis, Bougainvillea spectabilis, Camellia 

sinensis, Castanea spp., Chamaerops humilis, Citrus limon, C. limonia, Crataegus spp., Diospyros spp., 

Foeniculum vulgare, Fuchsia spp., Hydrangea spp., Juglans spp., Malus spp., Olea spp., Persea americana, 

Prunus spp., Pyrus spp., Quercus spp., Rhus spp., Ribes spp., Salix sp., Trachycarpus fortunei, Vitis vinifera, 

Wisteria sinensis (Udayanga et al., 2014a; Lawrence et al., 2015; Annesi et al., 2016; Guarnaccia et al., 2016; 

present study). 

 

Notes: Three isolates of D. foeniculina were recorded from foliar lesions of palms, but pathogenicity has not 

been tested. This is the first time this Diaporthe species is reported from Arecaceae, representing a new host 

record. Two of the isolates were recorded from C. humilis, another isolate was recorded from Trachycarpus 

fortunei. Thus, the present study gives a new insight into the wide host range already reported for 

D. foeniculina. 

 

Diaporthe pyracanthae L Santos & A Alves, Mycosphere 8: 493, 2017. 

 

Type: Portugal, Aveiro, from branch canker of Pyracantha coccinea (Rosaceae), March 2012, A Alves, 

(holotype LISE 96313, culture ex-type CBS142384 = CAA483). 

 

Sexual morph not reported. See Santos et al. (2017) for illustrations and descriptions of asexual morph. 

 

Material examined: Portugal, Lisbon, Parque das Nações, Jardins Garcia d’Orta, Talhão do Coloane, on foliar 

diseases of segments of Chamaerops humilis (Arecaceae), 16 October 2018, Diana S Pereira (specimen HDP 

039/02, living culture CDP 052, ITS sequence SDP 052/01, TUB2 sequence SDP 052/02, TEF1 sequence 

SDP 052/03, CAL sequence SDP 052/04). 

 

Distribution: Portugal (Aveiro, Lisbon) (Santos et al., 2017; present study). 

 

Hosts: Pyracantha coccinea (Santos et al., 2017), Chamaerops humilis (present study). 

 

Notes: One isolate of D. pyracanthae was recorded from foliar lesions of palms, but pathogenicity has not 

been tested. This is the first time this Diaporthe species is reported from Arecaceae, namely Chamaerops 

humilis, representing a new host record.  

Review of Diaporthe names reported from Arecaceae 

A search of the US National Fungus Collections Fungus-Host Database (Farr and Rossman, 2019) 

revealed 31 species of Diaporthe/Phomopsis associated with hosts in the family Arecaceae. These names 

were verified against MycoBank and Index Fungorum databases (Robert et al., 2005; Index Fungorum 

Partnership, 2009) as well as the available literature, including the most recent overviews of the taxonomy 

of the genus Diaporthe (e.g. Gomes et al., 2013; Gao et al., 2017; Dissanayake et al., 2017b; Marin-Felix et 

al., 2019b), which reduced the number to five Diaporthe species. Table 3.7 lists all current accepted names 

of Diaporthe species associated with Arecaceae, their respective hosts and countries from which they were 

recorded. Diaporthe arctii was described from Trachycarpus fortunei by Taylor and Hyde (2003) in 

Switzerland and the United Kingdom based solely on morphology. Since morphology is of limited value in 

defining species in Diaporthe (Hyde et al., 2011), the valid name for these isolates cannot be confirmed and 

thus the report was excluded from the list of species recorded on Arecaceae (Table 3.7). Diaporthe eres was 

recorded from diseased leaves of Rhapis subtilis by Gao et al. (2016). Nevertheless, Gao et al. (2006) 
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regarded its phylogenetic position as a species complex, since many of the isolates evaluated revealed 

ambiguous clades with short branches and moderate bootstrap support. Thus, the correct name for the species 

recorded on R. subtilis needs to be clarified. Udayanga et al. (2012a,b) recorded another Diaporthe species 

from Rhapis sp. in Thailand. Although this species is supported with molecular data, no morphological 

information was included, the species remained unnamed and was simply regarded as Diaporthe sp. 

Subsequently, this species was also disregarded from the present listing of Diaporthe names reported from 

Arecaceae. 

Table 3.7  List of accepted Diaporthe names associated with Arecaceae. The Diaporthe species considered were only those 

described with both morphological and molecular data. Currently valid Diaporthe names that were described on palms based 

solely on morphological data were disregarded. 

Species Host Country Reference 

Diaporthe arecae Areca catechu India Gomes et al., 2013 

Diaporthe arengae Arenga engleri China Gomes et al., 2013 

Diaporthe chamaeropis Chamaerops humilis Greece Gomes et al., 2013 

Diaporthe chamaeropsicola sp. nov. Chamaerops humilis Portugal Present study 

Diaporthe eres Rhapis subtilis China Gao et al., 2016 

Diaporthe foeniculina Chamaerops humilis Portugal Present study 

 Trachycarpus fortunei Portugal Present study 

Diaporthe pseudophoenicicola Chamaerops humilis Portugal Present study 

 Phoenix canariensis China Gao et al., 2017 

 Phoenix dactylifera Spain Gomes et al., 2013 

 Phoenix dactylifera Portugal Present study 

Diaporthe pyracanthae Chamaerops humilis Portugal Present study 

4. Discussion 

In the present study four Diaporthe species were identified from diseased foliage of Arecaceae hosts. Of 

these, one was introduced as a new species, D. chamaeropsicola. Phylogenetically it forms a distinct lineage 

sister to D. ceratozamiae. Morphologically these two species are similar but the larger pycnidia, lack of 

conidiophores and cylindrical/ellipsoidal conidia differentiate it from D. ceratozamiae, which produces 

fusiform conidia in smaller pycnidia lined with aggregated, cylindrical conidiophores (Crous et al., 2011). 

Furthermore, a new insight into Diaporthe species associated with Arecaceae is present, with three new host 

reports for D. foeniculina, D. pseudophoenicicola and D. pyracanthae. 

The phylogenetic position of D. chamaeropsicola is not fully resolved because of the low bootstrap 

support for this clade (Clade III in Figure 3.14). This lack of support is most likely because no sequences for 

TUB2, TEF1 and CAL are available for the other species in this clade. Nevertheless, from both ML and MP 

analyses, it is clear that this taxon represents a separate linage within the D. pseudophoenicicola clade. 

Furthermore, most of the base pairs differences found in D. chamaeropsicola were unique in this clade, which 

confirms the novelty. Despite the phylogenetic uncertainty, D. chamaeropsicola and D. ceratozamiae are 

morphologically similar tending to confirm that they form sister lineages. Diaporthe phyllanthicola and 

D. loropetali are also closely related to D. chamaeropsicola but also with low bootstrap support. 

The phylogenetic uncertainty of D. chamaeropsicola due to lack of DNA sequence data of its nearest 

neighbours highlights the problems associated with applying the phylogenetic species concept to Diaporthe. 

This should be based on appropriate DNA barcodes that can give phylogenetic support to the clades and help 

to resolve species complexes. For example, Udayanga et al. (2014b) addressed this issue while assessing the 

species delimitation in the D. eres complex using a phylogenetic approach with multi-loci and clearly 
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resolved nine distinct phylogenetic species. Although revised several times (Gomes et al., 2013; Gao et al., 

2017; Dissanayake et al., 2017b; Marin-Felix et al., 2019b), the taxonomy of Diaporthe continues to be 

confused and the genus urgently needs to be reassessed. 

Case study II. Morinia trachycarpae sp. nov. and Morinia phoenicicola sp. nov., two 

new Sporocadaceae species from palms in Portugal 

1. Introduction 

The genus Morinia Berl. & Bres., based on Morinia pestalozzioides Berl. & Bres. from dried stems of 

Artemisia camphorata, was introduced by Berlese and Bresadola (1889) to accommodate species with 

appendage-bearing, muriform conidia developing in acervular conidiomata. In a later collection on the same 

host, Passerini (1891) described the fungus as Pestalozia artemisiae Pass. and assigned it to a new subgenus, 

Pestalozziana Pass. Saccardo (1892a,b) synonymized Pestalozziana under Morinia and P. artemisiae under 

M. pestalozzioides. These synonymies were accepted by Guba (1961) and Nag Raj (1993). Nieuwland (1916) 

considered that the Linnaean angiosperm genus Morina rendered Morinia a homonym. He introduced a new 

name Rinomia Nieuwl. to which he transferred the epithet pestalozzioides as Rinomia pestalozzioides Nieuwl. 

However, R. pestalozzioides is currently considered as an obligate or homotypic synonym of M. 

pestalozzioides (Kirk et al., 2001). 

Morinia was a monotypic genus until 2006, when Collado et al. (2006) isolated and described the new 

species Morinia longiappendiculata Collado & Platas from healthy living stems and leaves of Calluna 

vulgaris, Santolina rosmarinifolia, Helichrysum stoechas and Thymus mastichina based on both 

morphological and molecular data. Compared with M. pestalozzioides, M. longiappendiculata produces 

larger and more fusiform conidia, with larger basal and apical appendages, generated on filiform, instead of 

cylindrical, conidiogenous cells. In the same studies, the type species M. pestalozzioides was redescribed 

based on an authentic specimen (BPI 453814) that was designated as the lectotype, since no holotype was 

designated for this type species (Berlese and Bresadola, 1889; Guba, 1961; Nag Raj, 1993). Collado et al. 

(2006) also designated an epitype for M. pestalozzioides isolated from living stems of Sedum sediforme. The 

ITS sequence analyses by Collado et al. (2006) placed Morinia in a monophyletic clade together with 

Bartalinia and Truncatella species within the Sporocadaceae (as Amphisphaeriaceae), which includes other 

morphologically similar genera of coelomycetes, such as Pestalotiopsis and Seiridium (Jeewon et al., 2002; 

Hongsanan et al., 2017). 

In recent years, multi-locus phylogenetic analyses aimed at basing the taxonomy of Sporocadaceae within 

a natural classification have revealed two new species of Morinia characterized by only transverse conidia, 

such as Morinia acaciae (Crous) F Liu, L Cai & Crous and Morinia crini F Liu, L Cai & Crous (Liu et al., 

2019). Liu et al. (2019) also emended the generic circumscription of Morinia. Zetiasplozna acaciae Crous 

was described by Crous et al. (2014) from leaves of Acacia melanoxylon due to its general morphological 

resemblance to Zetiasplozna thuemenii (Speg.) Nag Raj (Nag Raj, 1993). However, it was later transferred 

to Morinia as M. acaciae due to the lack of any sequences of the generic type Zetiasplozna unicola (Berk. & 

MA Curtis) Nag Raj. In addition, M. crini was introduced as a new species on Crinum bulbispermum. Both 

species are morphologically similar and phylogenetically related to M. pestalozzioides and M. 

longiappendiculata (Liu et al., 2019). 

Two interesting Bartalinia-like fungi were isolated from foliar lesions on palms in Lisbon, Portugal. 

These fungi fit well within the current concept of Morinia and can be distinguished from Bartalinia by 

characteristics of the centric basal appendage and axial and lateral appendages on the apical cell. 

Morphological examination and phylogenetic analyses showed that these two fungi differ from all other 

previously described species in Morinia (Berlese and Bresadola, 1889; Collado et al., 2006; Crous et al., 

2014; Liu et al., 2019) and are therefore described here as Morinia trachycarpae DRP Pereira & AJL Phillips 

and Morinia phoenicicola DRP Pereira & AJL Phillips spp. nov. 
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2. Materials and Methods 

All the methods used here were the same as those described in Case Study I except that only ITS and LSU 

loci were included in the phylogenetic analyses. 

Phylogenetic analyses were done on a matrix of concatenated ITS and LSU sequences of representative 

genera and species in Sporocadaceae. These were retrieved from GenBank according to the BLAST result 

for each locus and to the recent available literature on Sporocadaceae, such as Hongsanan et al. (2017) and 

Liu et al. (2019). Sequences obtained from GenBank are listed by their accession numbers, while newly 

generated sequences are listed by their isolate number and can be accessed in Supplementary Table A.11 The 

newly generated sequences will be deposited in GenBank. Sequences of Clypeosphaeria mamillana (Fr.) 

Lambotte and Lepteutypa sambuci Jaklitsch & Voglmayr were used as the outgroup taxa. 

3. Results 

Four strains with the general morphological features of Morinia were isolated from foliar lesions of palms. 

ITS and/or LSU were sequenced and included in phylogenetic analyses to determine their relationship with 

known species. 

3.1. Phylogenetic analyses 

The ITS and LSU sequences of 32 strains of Sporocadaceae family, either sequenced in this study or 

retrieved from GenBank sequences database, were included in the phylogenetic analysis. The concatenated 

ITS and LSU alignment of 32 ingroup and 2 outgroup taxa comprised 1105 characters including alignment 

gaps. Of the 1105 characters, 853 were constant and 112 variable characters were parsimony-uninformative. 

MP analysis of the remaining 140 parsimony-informative characters resulted in 2994 equally parsimonious 

trees of 407 steps with a low level of homoplasy as indicated by a CI of 0.732, RI of 0.823, HI of 0.152 and 

RC of 0.602. Topology of the trees differed from one another only in the positions of the isolates within 

terminal groupings and between the clade of Hymenopleella and the remaining clades. Tree topologies 

resulting from maximum parsimony and maximum likelihood analyses were similar, except for the 

Heterotruncatella and Truncatella clade, and only the former is shown in Figure 3.15 with bootstrap support 

values above the branches. 

Isolates obtained in this study clustered in the Morinia clade with high bootstrap support (> 90%) and 

were distinct from Bartalinia and Truncatella clades, as well as from other Sporocadaceae genera clades 

close to Morinia, such as Heterotruncatella and Hymenopleella. The isolates obtained from foliar lesions of 

palms formed two different sister groups. Two isolates (CDP 191 and CDP 192) formed a group sister to M. 

acaciae while CDP 097 and CDP 232 formed a group sister to M. crini within the Morinia clade with 

moderate bootstrap support (69% and 63%, respectively) (Figure 3.15). The clade composed of M. acaciae 

and CDP 191 and CDP 192 is closer to the clade composed of M. longiappendiculata and M. pestalozzioides 

than the clade composed of M. crini and CDP 097 and CDP 232 with moderate bootstrap support (75%).  

Although the ML analysis resulted in a tree with similar topology to the MP tree, most of the internal 

nodes received low bootstrap support but in general the clades constituting the genera received high bootstrap 

support, with 89% for Morinia clade, where M. trachycarpae and M. phoenicicola clustered in groups sister 

to the previous known species of Morinia in a similar way as noted for the MP analysis. ML bootstrap values 

for the phylogenetic relationships between the isolates obtained in this study and Morinia species were as 

high or higher comparatively to the MP bootstrap values (74% for the group sister with CDP 097 and CDP 

232 and 70% for the group sister with CDP 191 and CDP 192). 

3.2. Taxonomy 

Based on morphological characteristics as well as phylogenetic analysis, the fungi collected from foliar 

diseases of palms were considered to be distinct from all previously described Morinia species. Therefore, 

they are introduced as new and descriptions are provided below, along with an emendation of the genus 

description. 
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Figure 3.15  Phylogenetic position of Morinia isolates. One of 2994 equally parsimonious phylogenetic trees obtained from 

the combined ITS and LSU sequence alignment (TL = 407 steps, CI = 0.732, RI = 0.823, HI = 0.152 and RC = 0.602). Bootstrap 

support values (> 50%) for MP and ML analyses are shown above the branches as MP/ML. Isolates from this study are listed 

in blue. Branch marked in red is not present in the ML tree. The scale bar represents the expected number of nucleotide changes 

per site. Clypeosphaeria mamillana (CBS 140735) and Lepteutypa sambuci (CBS 131707) were included as outgroups. 

Ex-type (T)/ex-epitype (ET)/ex-neotype (NT) cultures are marked in bold.  
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Morinia Berl. & Bres., Annuario Società Alpinisti Tridentini 14: 82, 1889 [1887–1888], emend. DS Pereira 

& AJL Phillips. 

 

Type species: Morinia pestalozzioides Berl. & Bres., Annuario Società Alpinisti Tridentini 

14: 82, 1889. 

 

Description: Sexual morph: unknown. Asexual morph: Conidiomata acervular, stromatic, pycnidioid or 

pycnidial, superficial or semi-immersed, erumpent, scattered, solitary or aggregated, globose or subglobose, 

glabrous pale brown, brown or dark, ostiolate or non-ostiolate. Stroma and wall of brown textura angularis, 

cells globose, oblong to angular, thick-walled and brown in outer layers, becoming thin-walled and 

subhyaline to pale brown or hyaline towards the inner layers. Conidiophores arising from all around the 

cavity of conidioma from the innermost wall layer, aseptate and unbranched or septate and branched, or 

reduced to conidiogenous cells, hyaline, smooth- and thin-walled, invested in mucus or not. Conidiogenous 

cells ampulliform, cylindrical, subcylindrical or lageniform, hyaline or pale brown, smooth- and thin-walled. 

Conidia fusiform, ellipsoidal, subcylindrical or lunate, transversely septate, muriformly septate or not, 

straight to slightly curved, smooth or verruculose-walled, thin-walled, with or without constriction at the 

septa, median cells pale brown to brown or hyaline, end cells hyaline or pale brown, apical cell hemispherical 

or wedge-shaped, bearing appendages at both ends; appendages attenuated or not, unbranched, aseptate, 

tubular, filiform or cylindrical, flexuous or not; appendages on apical cell several, inserted at different loci; 

basal appendage single, rarely two or more, centric or excentric. 

 

Distribution: France, Germany, Italy, New Zealand, Poland, Portugal and Spain. 

 

Hosts: Acacia melanoxylon, Artemisia camphorata, Calluna vulgaris, Crinum bulbispermum, Helichrysum 

stoechas, Phoenix canariensis, Phoenix dactylifera, Santolina rosmarinifolia, Trachycarpus fortunei and 

Thymus mastichina. 

 

Notes: Morinia is characterized by muriform or transverse and appendage-bearing conidia in acervular, 

stromatic or pycnidioid conidiomata (Liu et al., 2019) and previously included four asexual species, 

M. pestalozzioides, M. longiappendiculata, M. acaciae and M. crini. In this study, two species characterized 

by only transverse conidia are incorporated in this genus, one of which producing enclosed pycnidia in culture 

and for this reason the generic description is emended. 

 

Morinia trachycarpae DS Pereira & AJL Phillips sp. nov.   (Figure 3.16) 

MycoBank: MBXXXX 

 

Etymology: named after the host genus from which it was collected, Trachycarpus fortunei. 

 

Sexual morph: unknown. Asexual morph: Conidiomata pycnidial, non-stromatic, solitary, occasionally 

aggregated, globose to subglobose, glabrous, often covered with hyphal outgrows, superficial, lacking an 

ostiole, light-brown to dark-brown, thin-walled, variable in size, up to 300 µm diam. Pycnidial wall of brown 

textura angularis, cells thick-walled and brown in outer layers, becoming thin-walled and paler or hyaline 

towards the inner layers. Conidiophores arising all around the cavity of conidioma from the innermost wall 

layer, with a supporting narrow cell, often reduced to conidiogenous cells, hyaline, smooth- and thin-walled, 

cylindrical to subcylindrical or doliiform, variable in size, 2.5–9.1 × 2.0–7.7 µm (mean ± SD = 5.40 ± 1.67 

× 3.75 ± 1.44 µm). Conidiogenous cells hyaline, smooth- and thin-walled, mostly cylindrical, subcylindrical, 

sometimes lageniform, rarely 1-septated, with a small branch below the septum, variable in size, 2.4–14.2 × 

1.4–9.2 µm (mean ± SD = 8.06 ± 2.66 × 2.44 ± 1.21 µm), enteroblastic proliferating at the same level giving 

rise to periclinal thickenings or proliferating percurrently giving rise to 2–3 annellations near the apex. 

Conidia subcylindrical, sometimes lunate, widest in the upper region, straight to slightly curved, 4-septate, 
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septa often inconspicuous, not-constricted at the septa, often becoming slightly to highly constricted with 

age, with minute to big, pigmented, light-brown to pale guttules, often located near the septa, bearing 

appendages on both ends, 18.5–25.9 × 3.4–5.6 µm (mean ± SD = 22.60 ± 1.57 × 4.47 ± 0.52 µm); basal cell 

hyaline, smooth- and thin-walled, obconical with truncate, rarely obtuse, base, 3.6–5.6 × 2.1–3.8 µm (mean 

± SD = 4.57 ± 0.53 × 2.85 ± 0.33 µm); three median cells hyaline, rarely subhyaline, pale-brown or goldish, 

smooth- and thin-walled, subcylindrical, guttulate, together 11.3–16.4 × 9.8–16.4 µm (mean ± SD = 14.35 ± 

1.14 × 12.57 ± 1.49 µm), ± equal in the first two median cells from apex, third cell longer, each 3.8–5.5 × 

3.3–5.5 µm (mean ± SD = 4.78 ± 0.38 × 4.19 ± 0.50 µm); apical cell hyaline, rarely subhyaline to pale-

brown, smooth- and thin-walled, wedge-shaped, 2.4–5.4 × 2.4–4.4 µm (mean ± SD = 3.68 ± 0.65 × 3.38 ± 

0.39 µm); basal and cells usually devoid of contents; apical appendages, 2–3, rarely 1, arising laterally and 

axially, hyaline, smooth- and thin-walled, unbranched, attenuated, filiform, tubular, flexuous, 10.3–24.3 µm 

(mean ± SD = 16.56 ± 3.10 µm) long; basal appendage, single, centric, rarely uncentred, hyaline, smooth- 

and thin-walled, unbranched, attenuated, filiform, tubular, erect, 3.0–18.1 µm (mean ± SD = 9.39 ± 3.16 µm) 

long; mean ± sd conidium length/width ratio = 5.11 ± 0.62. 

 

Figure 3.16  Morinia trachycarpae (ex-type CDP 097/01). A, B. Growth appearance and conidiomata formed on 1/2 PDA. C 

– F. Conidiogenous cells with periclinal thickenings (black arrows) or annellations (white arrows). G – J. Conidia. Scale bars: 

A, B = 1 mm, C – J = 5 μm. 

Culture characteristics: colonies on PDA, moderate rapid growth, 37 mm diam after 7 d (n = 3). Surface flat, 

glabrous to velvety, with filiform to entire margin, circular shape, dirty white to grey, successively pale 

luteous-straw to the margin, opaque. Reverse concolorous, peanut brown to buff, paler to the margin. No 

diffusible pigment. Conidiomata covered with mycelium growth and not visible through the surface of 

colony. 

 

Material examined: Portugal, Lisbon, Parque das Nações, Jardins da Água, Pomar do Mediterrâneo, on foliar 

diseases of leaflets of Trachycarpus fortunei (Arecaceae), 16 October 2018, Diana S Pereira (specimen HDP 

042, holotype a dried culture of CDP 097, ex-type culture CDP 097/01, ITS sequence SDP 097/01, LSU 

sequence SDP 097/02); Portugal, Lisbon, Alvalade, Campo Grande, on foliar diseases of leaflets of Phoenix 

dactylifera (Arecaceae), 5 October 2018, Diana S Pereira (specimen HDP 012, living culture CDP 232, ITS 

sequence SDP 232/01, LSU sequence SDP 232/02). 

 

Distribution: Lisbon, Portugal. 

 

Notes: Morinia trachycarpae was found associated with foliar diseases of Trachycarpus fortunei and Phoenix 

dactylifera, but pathogenicity has not been proved. Although M. trachycarpae is closely related to M. crini 

(Figure 3.15), it resembles M. acaciae in morphology (Figure 3.16, Table 3.8), producing subcylindrical, 
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widest in the upper region, transversely-septate conidia with one lateral and one axial appendages in an apical 

wedge-shaped cell (Crous et al., 2014). However, M. trachycarpae differs from M. acaciae in  the  length  of 

Table 3.8  Comparative morphological data on species of Morinia. 

Characters  
Morinia 

pestalozzioides1 

Morinia 

longiappendiculata2 
Morinia acaciae3  Morinia crini4 

Morinia 

 trachycarpae 

Morinia 

phoenicicola 

Conidia       

Shape Fusiform, 

ellipsoid, 

pyriform 

Fusiform, 

ellipsoid, 

pyriform 

Subcylindrical, 

widest in the 

upper region 

Cylindrical, 

subcylindrical, 

lunate 

Subcylindrical, 

sometimes 

lunate, widest 

in the upper 

region 

Fusiform to 

ellipsoidal, 

subcylindrical 

Colour End cells hyaline, 

median cells 

brown 

End cells hyaline, 

median cells brown 

Subhyaline, basal 

cell hyaline 

End cells 

hyaline to pale 

brown, median 

cells pale brown 

Hyaline End cells 

hyaline, 

median cells 

pale brown 

Size (µm) 20–25 × 6–8 25–31 × 9–11 (31–)33–37(–41) 

× 4(–5)  

18–22 × 4–5 19–26 × 3–6 21–35 × 3–9 

Transverse 

septa 

(5–)6–7 5–6 4 4 4 3 

Vertical septa 1–2 (1–)2(–3) – – – – 

Oblique septa 1–2 (1–)2 – – – – 

Median cells 

length (µm) 

15–17 17–20 – 10–15 11–16 10–18 

No. of apical 

appendages 

(2–)3 (2–)3 2 2 (1–)2–3 (2–)3(–4) 

Apical 

appendages 

length (µm) 

9–11 14–26 12–27 8–12 10–24 10–24 

No. of basal 

appendages, 

position 

0(–1–2), centric 1, centric or 

excentric 

1, centric 1(–2), centric or 

excentric 

1, centric 1(–2–4), 

centric 

Basal 

appendages 

length (µm) 

3 15–25 2–8 4–9 3–18 6–22 

       

Conidiogenous 

cells 

      

Shape Cylindrical Filiform Ampulliform Mostly 

cylindrical, 

subcylindrical, 

sometimes 

lageniform 

Subcylindrical, 

sometimes 

lageniform 

Cylindrical to 

subcylindrical 

Branching Yes Yes No No Rarely Rarely 

Size (µm) 10–29 × 2–3 23–42 × 2–3 7–12 × 3–4 6–21 × 2–3 2–14 × 1–9 5–17 × 1–6 

Septation Yes Yes No No Rarely Rarely 

Colour Hyaline Hyaline Hyaline Hyaline Hyaline Hyaline, 

subhyaline to 

pale brown 
1Description according to Berlese and Bresadola (1889) and Collado et al. (2006). 
2Description according to Collado et al. (2006) 
3Description according to Crous et al. (2014). 
4Description according to Liu et al. (2019). 
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conidia (19–26 µm vs. 33–37 µm) and basal appendage (3–18 µm vs. 2–8 µm) and in the number of apical 

appendages (2–3 vs. 2). In addition, M. trachycarpae conidia are hyaline, while M. acaciae conidia are 

subhyaline with a basal hyaline cell. M. trachycarpae differs widely from M. crini in several 

micromorphological characteristics, such as the shape and the colour of conidia (subcylindrical hyaline vs. 

cylindrical hyaline to pale brown), the number of apical appendages (2–3 vs. 2) and the length of apical (10–

24 µm vs. 8–12 µm) and basal appendages (3–18 µm vs. 4–9 µm), comprising in general much longer and 

wider conidia. M. trachycarpae also resembles Zetiasplozna thuemenii (on leaves and fruit of diverse hosts) 

(Nag Raj, 1993), except that it has relatively shorter but wider conidia (19–26 × 3–6 vs. 20–32 × 4–5) and a 

relatively smaller mean conidium length/width ratio (5.11 ± 0.62 vs. 5.7 ± 1). Two strains of M. trachycarpae 

were isolated from foliar lesions of palms, namely CDP 097/01 (ex-type) and CDP 232. They exhibited a 

similar colony morphology when cultured on 1/2 PDA and the nucleotide sequence similarity between them 

was 100% for ITS and 100% for LSU. No relevant variation in micromorphology was observed between 

these strains. M. trachycarpae and M. crini differ in several nucleotide positions in the following loci: ITS 

(10 nt) and LSU (6 nt) (Supplementary Table A.9). 

 

Morinia phoenicicola DS Pereira & AJL Phillips sp. nov.   (Figure 3.17) 

MycoBank: MBXXXX 

 

Etymology: named after the host genus from which it was collected, Phoenix canariensis. 

 

Sexual morph: unknown. Asexual morph: Conidiomata acervular, with a basal discoid stroma of textura 

angularis compose of globose, oblong to angular, subhyaline to pale-brown, thin-walled cells, globose to 

subglobose, solitary or aggregated, dark-brown to black, partially immersed to superficial, variable in size, 

up to 600 µm diam, filled with ochraceous, dark-brown to black globose mucoid mass of conidia. 

Conidiophores reduced to conidiogenous cells. Conidiogenous cells hyaline, subhyaline to pale brown, 

smooth- and thin-walled, cylindrical to subcylindrical, aseptate to 1-septate, with a small branch below the 

septum, variable in size, 4.8–16.6 × 1.4–5.5 µm (mean ± SD = 8.26 ± 2.74 × 2.90 ± 0.92 µm), enteroblastic 

proliferating at the same level giving rise to periclinal thickenings or proliferating percurrently giving rise to 

1–3 annellations near the apex. Conidia fusiform to ellipsoidal, subcylindrical, straight to slightly curved, 3-

septate, highly constricted at the septa, eguttulate, rarely with big, pigmented, light-brown guttules in median 

cells, bearing appendages on both ends, 20.7–34.9 × 3.2–9.0 µm (mean ± SD = 27.62 ± 2.79 × 6.69 ± 1.17 

µm); basal cell hyaline, rarely subhyaline to pale brown, smooth- and thin-walled, obconical, with obtuse 

base, 2.4–7.3 × 2.3–7.0 µm (mean ± SD = 3.66 ± 0.74 × 3.39 ± 0.72 µm); two media cells pale brown, smooth 

and thin-walled, subcylindrical to doliiform, guttulate, together 9.6–17.6 × 6.0–17.9 µm (mean ± SD = 13.61 

± 1.79 × 12.82 ± 2.35 µm), first median cell from apex slightly longer and wider, each 4.8–8.8 × 3.0–8.9 µm 

(mean ± sd = 6.80 ± 0.89 × 6.41 ± 1.18 µm); apical cell hyaline, smooth- and thin-walled, conical, with 

obtuse apex, 2.6–4.6 × 2.2–3.9 µm (mean ± SD = 3.55 ± 0.43 × 3.15 ± 0.43 µm); apical appendages, 2–4, 

mostly 3, arising laterally and axially, hyaline, smooth- and thin-walled, attenuated or not-attenuated, 

filiform, tubular, flexuous, 10.2–23.9 µm (mean ± SD = 15.14 ± 2.66 µm) long; basal appendage wider, up 

to 2 µm wide, mostly single, occasionally 2–4, centric, hyaline, smooth- and thin-walled, not-attenuated, 

cylindrical, tubular, erect to flexuous, 6.1–22.2 µm (mean ± SD = 13.14 ± 3.80 µm) long; mean ± SD 

conidium length/width ratio = 4.22 ± 0.62. 

 

Culture characteristics: colonies on PDA, moderate slow growth, 22 mm diam after 7 d (n = 3). Surface flat, 

velvety, wrinkled, with lobate to undulate margin, irregular shape, grey olivaceous to glaucous grey, opaque. 

Reverse concolorous, dark-brown to black. Presence of yellowish to deep-orangish diffusible pigment. 

Conidiomata black, gregarious to successively scattered to the margin. 

 

Material examined: Portugal, Lisbon, Areeiro, Humberto da Cruz street, on foliar diseases of leaflets of 

Phoenix canariensis (Arecaceae), 6 October 2018, Diana S Pereira (specimen HDP 022/02, holotype a dried 
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culture of CDP 192, ex-type culture CDP 192/01, ITS sequence SDP 192/01; specimen HDP 022/01, living 

culture CDP 191, ITS sequence SDP 191/01). 

 

Distribution: Lisbon, Portugal. 

 

Figure 3.17  Morinia phoenicicola (ex-type CDP 192/01). A. Conidiomata formed on 1/2 PDA. Conidia are oozing in dark 

brown to black mucoid masses. B – F. Conidiogenous cells with periclinal thickenings (black arrows) or annellations (white 

arrows). G – J. Conidia. Scale bars: A = 1 mm, B – J = 5 μm. 

Notes: Morinia phoenicicola was found associated with foliar diseases of Phoenix canariensis, but 

pathogenicity has not been proved. Although M. phoenicicola is closely related to M. acaciae (Figure 3.15), 

it resembles M. pestalozzioides and M. longiappendiculata in morphology (Figure 3.17, Table 3.8), 

producing fusiform to ellipsoidal conidia with mostly 2 lateral and 1 axial apical appendages (Collado et al., 

2006). However, M. phoenicicola differs from both M. pestalozzioides and M. longiappendiculata in the 

septation of conidia (only transversely septate vs. muriformly septate) and in the size of conidiogenous cells 

(5–17 × 1–6 vs. 10–29 × 2–3 and 23–42 × 2–3, respectively). Morphologically, M. phoenicicola is more 

similar to M. longiappendiculata than M. pestalozzioides. While M. pestalozzioides conidia mostly lack basal 

appendage, M. phoenicicola conidia mostly present a long basal appendage and are larger similar to what is 

found on M. longiappendiculata (20–25 × 6–8 µm for M. pestalozzioides and 25–31 × 9–11 and 21–35 × 3–

9 for M. longiappendiculata and M. phoenicicola, respectively). M. phoenicicola differs from all the other 

Morinia species in having a smaller number of transverse septa (3 vs. 4 in M. trachycarpae, M. crini and M. 

acaciae, 5–6 in M. longiappendiculata and 6–7 in M. pestalozzioides). Two strains of M. phoenicicola were 

isolated from foliar lesions of palms, namely CDP 191 and CDP 192/01 (ex-type). They exhibited a minute 

degree of variation in colony morphology when cultured on 1/2 PDA and the nucleotide sequence similarity 

between them was 99.80% for ITS, which results from a single nucleotide position difference, i.e., an 

additional G in the beginning of ITS sequence in CDP 192/01. Colony morphology variation is expressed 

only in the fact that CDP 192/01 produced consistently a higher number of gregarious conidiomata through 

the surface of the colonies. No relevant variation in micromorphology was observed between these strains. 

Morinia phoenicicola and M. acaciae differ in 12 nucleotide positions in the ITS locus (Supplementary Table 

A.9). No LSU sequences for M. phoenicicola are yet available. 

4. Discussion 

In the present study, two new species are introduced in Morinia, namely M. trachycarpae and 

M. phoenicicola. Morphological characters distinguished them from each other and from all the other known 

species in the genus. In addition, phylogenetic analyses based on ITS and LSU sequences confirmed these 

novelties. These species are the first report of Morinia in Portugal and also the first time that Morinia species 

have been reported on palm trees (Arecaceae). 
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A survey of the literature suggests that Morinia is a rare genus previously known from a few specimens 

of angiosperms from Italy, Spain, France, Poland, Germany and New Zealand (Berlese and Bresadola, 1889; 

Collado et al., 2006; Adamska, 2007; Weber et al., 2007; Crous et al., 2014; Liu et al., 2019). In these reports, 

several families of flowering plants were shown to be hosts of Morinia species, such as Amaryllidaceae, 

Asteraceae, Crassulaceae, Ericaceae, Lamiaceae and Fabaceae. Most of these families are present in 

European temperate countries. However, the present study reports this genus from Arecaceae, a family of 

angiosperms typical of tropical and subtropical climates. This included three different palm trees species, 

namely Phoenix canariensis, Phoenix dactylifera and Trachycarpus fortunei. In addition, the present report 

adds a new insight into the distribution of Morinia in Europe, where most of the previous collections were 

done, reporting it for the first time from Portugal. The presence of Morinia species on palm trees in Portugal 

suggests that this genus may be widespread in Europe. Although palms are typical tropical and subtropical 

plants, in the present study only ornamental palms growing in a temperate climate were sampled. It is 

expected that new collections of angiosperms in Portugal may reveal new Morinia species. This would help 

to populate the phylogenetic delimitation of this genus within the Sporocadaceae. 

Only six species are described in Morinia and only a few strains of each species have been isolated since 

it was first reported in 1889. In the present study only two strains of both M. trachycarpae and M. 

phoenicicola were isolated from palms. Although its phylogenetic position is solid, a greater number of 

sequences should be added to the sequences database, which will strengthen the generic boundaries between 

Morinia and phylogenetic related genera. This is particularly important considering that the intergeneric 

relationships in Sporocadaceae have been subject to multiple rearrangements in the past decades, in part due 

to the limited sampling of the majority of genera and, subsequently, inadequate molecular data (Jeewon et 

al., 2002; Barber et al., 2011; Tanaka et al., 2011; Senanayake et al., 2015; Jaklitsch et al., 2016; 

Wijayawardene et al. 2016; Hongsanan et al., 2017; Liu et al., 2019). In addition, some generic complexes 

in Sporocadaceae, such as Pestalotiopsis-Truncatella-Morinia and Seimatosporium-Sarcostroma-

Diploceras, possess similar morphological characters of conidia and appendages, which caused difficulties 

in the intergeneric classification based on morphology, highlighting the importance of acquiring molecular 

data from a larger number of strains (Liu et al., 2019). 

Besides the molecular data, the new morphological characters reported in this study also reveal further 

distinctions within Morinia and from other genera in Sporocadaceae. Morinia trachycarpae produces 

globose enclosed pycnidial structures that have not previously been reported in the genus. Liu et al. (2019) 

suggested that Morinia, along with Heterotruncatella and Hymenopleella, was one of the most equivocal 

generic concepts in Sporocadaceae due to its interspecific variable morphological characters. This 

morphological plasticity was found in M. trachycarpae and M. phoenicicola, which were particularly 

heterogeneous with respect to conidial morphology. While M. trachycarpae has subcylindrical hyaline 

transversely septate conidia with a wedge-shaped apical cell resembling M. acaciae, M. phoenicicola has 

fusiform versicoloured transversely septate conidia with a hemispherical-shaped apical cell and apical 

appendages disposition resembling M. longiappendiculata and M. pestalozzioides, although these two 

species have muriformly septate conidia. The present results, along with the previous ones, on these 

morphological characters regarding the conidial septation and apical cell shape suggest the existence of two 

morphological groups within Morinia, although they are not supported by phylogenetic data. In fact, 

phylogenetically ITS and LSU sequences data suggest that the M. acaciae-M. phoenicicola clade is closer to 

the M. longiappendiculata-M. pestalozzioides clade than to the M. crini-M. trachycarpae clade.  

Considering the previous status of Morinia as mostly an endophytic fungus, its association with foliar 

lesions may reveal Morinia as a latent pathogen in angiosperms. In fact, M. pestalozzioides has been reported 

causing spots on dead stems of Artemisia campestris in Poland (Adamska, 2007). Since Morinia is a member 

of Sporocadaceae, where many antifungals have been discovered (Wang et al., 2016), including Morinia 

(Basilio et al., 2006; Vicente et al., 2009), the description of two new Morinia species in this study may 

represent a major step to screen for novel metabolites in future studies.  
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Key to species in Morinia 

1. Conidia muriform  ......................................................................................................................................  2 

1. Conidia with transverse septa  ....................................................................................................................  3 

2. Basal appendages ≤ 10 µm long  ......................................................................  Morinia pestalozzioides 

2. Basal appendages > 10 µm long  ...............................................................  Morinia longiappendiculata 

3. Conidia hyaline to subhyaline  ...................................................................................................................  4 

3. Conidia versicoloured  ...............................................................................................................................  5 

4.Conidia hyaline and < 30 µm long  .......................................................................  Morinia trachycarpae 

4. Conidia subhyaline and ≥ 30 µm long  .........................................................................  Morinia acaciae 

5. Conidia 4-septate  ....................................................................................................................  Morinia crini 

5. Conidia 3-septate  .......................................................................................................  Morinia phoenicicola 

Case study III. Arecamyces humilianae gen. et sp. nov., a new Teratosphaeriaceae 

genus and species from palms in Portugal 

1. Introduction 

Dothideomycetes OE Erikss. & Winka (Eriksson and Winka, 1997) comprises heterogeneous and 

phylogenetically diverse range of fungi characterized by bitunicate asci, with fissitunicate dehiscence 

(Schoch et al. 2009; Videira et al., 2017). Many of these fungi have a global distribution, occurring in a wide 

range of habitats and lifestyles, from saprobes to phytopathogens and endophytes (Hyde et al., 2013; Vicente 

et al., 2017). Currently Dothideomycetes includes more than 25 orders, 100 families and over 1500 genera 

(Schoch et al. 2009; Hyde et al. 2013; Crous et al., 2015; Hernández-Restrepo et al., 2016; Krisai-Greilhuber 

et al., 2017; Videira et al., 2017; Liu et al., 2018; Crous et al., 2019). Among them, the order Capnodiales 

Woron. (Woronichin, 1925) includes 9 families (Videira et al., 2017), one of which is Teratosphaeriaceae 

Crous & U. Braun (Crous et al., 2007). 

Teratosphaeriaceae was established by Crous et al. (2007) to accommodate the type genus 

Teratosphaeria Syd. & P. Syd. (Sydow and Sydow, 1912) previously included in Mycosphaerellaceae 

Lindau (Engler and Prantl, 1897). This was based on morphological characters, distinct asexual morphs and 

molecular data. Presently, Teratosphaeriaceae encompasses several genera of saprobes, opportunistic human 

pathogens and lichens (Quaedvlieg et al., 2014). Several genera of extremophiles have been linked to this 

family, including rock-inhabiting fungi (Ruibal et al., 2009; Hyde et al., 2013; Egidi et al., 2014; Trovão et 

al., 2019) and heat-treated and extreme acidic soils fungi (Seifert et al., 2011b; Hujslová et al., 2013). 

Furthermore, species of Teratosphaeriaceae, along with Mycosphaerellaceae, represent important leaf 

spotting pathogens and are often reported as Teratosphaeriaceae leaf diseases (TLD) and 

Mycosphaerellaceae leaf diseases (MLD) (Hunter et al., 2006; Crous et al., 2008, 2009a; Pérez et al., 2009, 

2013; Taylor et al., 2012; Quaedvlieg et al., 2014). 

The phylogeny of Teratosphaeriaceae has been frequently re-evaluated (Crous et al., 2009b,c,d; Videira 

et al., 2016), but many lineages remain unresolved and are treated as Teratosphaeria sp. or 

Teratosphaeriaceae (Ruibal et al., 2009, 2011; Egidi et al., 2014). Most recently, Quaedvlieg et al. (2014) 

applied the consolidated species concept (CSC) via a polyphasic approach to circumscribe most 

Teratosphaeriaceae clades and other closely associated and unclassified families, initially regarded as 

Teratosphaeriaceae “1” and “2”. Subsequently, two new families have been introduced to accommodate 

these taxa, Neodevriesiaceae Quaedvl. & Crous and Extremaceae Quaedvl. & Crous, which were further 

arranged and expanded by Crous et al. (2015), Isola et al. (2016), Wang et al. (2017), and Delgado et al. 

(2018). Further collections may add additional morphological characters to the unnamed generic clades in 

Teratosphaeriaceae, many of which remain poorly understood and greatly undersampled. 

In the present study, an interesting Mycosphaerella-like fungus was found associated with leaf spot 

symptoms on Chamaerops humilis in Oeiras, Portugal. The aim of this study was to characterize the fungus 

in terms of morphology and determine its phylogenetic position in Teratosphaeriaceae based on analysis of 

ITS and LSU sequence data. 
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2. Materials and Methods 

All the methods used here were the same as those described in Case Study I except that only ITS and LSU 

loci were included in the phylogenetic analyses. 

Phylogenetic analyses were done on a matrix of concatenated ITS and LSU sequences of representative 

genera in Teratosphaeriaceae. These were retrieved from GenBank according to the BLAST result for each 

locus and to the recent available literature on Teratosphaeriaceae, such as Quaedvlieg et al. (2014), 

Isola et al. (2016), Wang et al. (2017) and Delgado et al. (2018). Sequences obtained from GenBank are 

listed by their accession numbers, while newly generated sequences are listed by their isolate number and 

can be accessed in Supplementary Table A.12. The newly generated sequences will be deposited in GenBank. 

Sequences of Capnodium coffeae Pat. were used as the outgroup taxon. 

3. Results 

3.1. Phylogenetic analyses 

The available ITS and LSU sequences of 81 strains of Capnodiales, either sequenced in this study or 

retrieved from GenBank, were included in the phylogenetic analysis. The concatenated ITS and LSU 

alignment of 81 ingroup and 1 outgroup taxa comprised 1156 characters including alignment gaps. Of the 

1156 characters, 653 were constant and 139 variable characters were parsimony-uninformative. MP analysis 

of the remaining 364 parsimony-informative characters resulted in 140 equally parsimonious trees of 2181 

steps and a relatively high level of homoplasy as indicated by a CI of 0.381, a RI of 0.693, a HI of 0.619 and 

a RC of 0.264. The topology of the trees differed from one another only in the position of the isolates within 

the terminal groupings of the Teratosphaeria clade. All the other clades were consistent in their phylogenetic 

positions. Tree topologies resulting from maximum parsimony and maximum likelihood analyses were 

similar and both presented well-resolved clades for each genus included in the analyses, supported by a high 

bootstrap value (≥ 70%). The ML tree is shown in Figure 3.18, with bootstrap support values above the 

branches. Although well-resolved, the phylogenetic position among the different clades within 

Teratosphaeriaceae received low bootstrap support (≤ 50%). Nevertheless, Teratosphaeriaceae and 

Neodevriesiaceae were well-separated, insomuch that the later represents a clade with 100% bootstrap 

support, which confirms the phylogenetic difference that supports these two families. 

The Mycosphaerella-like isolate obtained in this study clustered in a completely separate and previously 

undescribed lineage among the selected genera in Teratosphaeriaceae and Neodevriesiaceae. Nevertheless, 

its placement between these two families received a low bootstrap support. Considering the results from both 

MP and ML analyses, this fungus clusters closer to Teratosphaeriaceae genera. A total of 9 and 5 unique 

base pairs differences in the ITS and LSU loci, respectively, among the 81 isolates included in the 

phylogenies, confirms the novel lineage as a new genus here introduced in Capnodiales. 

3.2. Taxonomy 

Based on DNA phylogeny, the Mycosphaerella-like isolate collected from foliar diseases of palms was 

distinct from the previous Mycosphaerellaceae and Teratosphaeriaceae genera described. The present data 

indicate that this fungus resides in Teratosphaeriaceae as a new genus and new species and descriptions are 

provided below. Furthermore, a new TLD from Chamaerops humilis is reported. 

 

Arecamyces DS Pereira & AJL Phillips gen. nov. 

MycoBank: MBXXX 

 

Etymology: named after the host family from which it was collected, Arecaceae. 

 

Type species: Arecamyces humilianae DS Pereira & AJL Phillips sp. nov. 
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Figure 3.18  Phylogenetic position of Arecamyces humilianae. ML tree generated by RAxML with GTR+G+I nucleotide 

substitution model using the combined two loci ITS-LSU. ML bootstrap support values (> 50%) are shown above the branches. 

The isolate from this study is listed in blue. The scale bar represents the expected number of nucleotide changes per site. 

Capnodium coffeae (CBS 147.52) was included as outgroup. Ex-type (T)/ex-epitype (ET) cultures are marked in bold. 
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Ascomata pseudothecial, amphigenous, subepidermal, immersed to erumpent, scattered or clustered, globose 

to subglobose, dark-brown, ostiolate. Ostiole circular, aperiphysate. Peridium thin-walled, composed of cells 

forming a textura angularis, outer layer composed of thick-walled, dark-brown to brown cells, inner layers 

composed of thin-walled, hyaline cells. Pseudoparaphyses absent. Asci bitunicate, fissitunicate, pyriform to 

obovoid, slightly curved, broader at the apex, well-developed ocular chamber, smooth-walled, hyaline, 8-

spored, biseriate. Ascospores broadly ellipsoidal to cylindrical, with rounded ends, smooth- and thin-walled, 

medianly 1-septate, not constricted at the septum. 

 

Arecamyces humilianae DS Pereira & AJL Phillips sp. nov.   (Figure 3.19) 

MycoBank: MBXXXX 

 

Etymology: named after the host genus from which it was collected, Chamaerops humilis. 

 

Leaf spots sunken, circular to broadly ellipsoidal, 3–7 × 2–3 mm (mean ± SD = 4.67 ± 1.06 × 2.52 ± 0.51 

mm), identical on both leaf surfaces, brown-grey to yellowish center, later becoming greyish and fragile, with 

dark-brown border (ca. 1 mm wide), surrounded by a conspicuous brown to red-brown halo, occasionally 

coalesce, randomly distributed. Mature spots contain several immersed ascomata. Ascomata pseudothecial, 

amphigenous, subepidermal, immersed to erumpent, scattered or clustered in groups of 2 or 3, globose to 

subglobose, dark-brown, up to 90 µm diam (n = 6), ostiolate. Ostiole circular, up to 21 µm diam (n = 6), 

aperiphysate. Peridium thin-walled, composed of cells forming a textura angularis, outer layer composed of 

thick-walled, dark-brown to brown cells, inner layers composed of thin-walled, hyaline cells. 

Pseudoparaphyses absent, but pseudoparenchymatous, cellular hamathecium remnant present. Asci 

bitunicate, outer wall up to 2 µm thick, fissitunicate, pyriform to obovoid, slightly curved, broader at the 

apex, well-developed ocular chamber, smooth-walled, hyaline, 8-spored, biseriate, 21.4–57.9 × 8.2–13.2 µm 

(mean ± SD = 32.25 ± 14.99 × 10.76 ± 2.21 µm, n = 5). Ascospores broadly ellipsoidal to cylindrical, with 

rounded ends, occasionally slightly curved, smooth- and thin-walled, medianly 1-septate, not constricted at 

the septum, 9.5–17.9 × 2.8–4.0 µm (mean ± SD = 14.41 ± 2.49 × 3.35 ± 0.31 µm, n = 22); mean ± SD 

ascospore length/width ratio = 4.31 ± 0.71 (n = 22).  

 

Figure 3.19  Arecamyces humilianae (ex-type CDP 001). A. Leaf spots on segments of Chamaerops humilis. B – E. 

Appearance of ascomata on host surface. F, G. Asci, cellular hamathecium remnants (black arrows) and ascospores. Scale bars: 

A = 10 mm, B, C = 1 mm, D – E = 15 μm, F, G = 10 μm. 

Material examined: Portugal, Oeiras, União das Freguesias de Algés, Linda-a-Velha e Cruz Quebrada – 

Dafundo, National Sports Centre of Jamor, on leaf spots of Chamaerops humilis (Arecaceae), 20 September 

2018, Alan JL Philips (specimen/holotype HDP 003, ex-type culture CDP 001, ITS sequence SDP 001/01, 

LSU sequence SDP 001/02). 

 

Distribution: Oeiras, Portugal.  
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Hosts: Chamaerops humilis. 

 

Notes: Arecamyces humilianae was found associated with leaf spots of Chamaerops humilis, but 

pathogenicity has not been tested. Nevertheless, there is evidence that this species represents an obligate 

biotroph causing a new disease on C. humilis. The fungus barely grew on culture, attaining 1 mm diam after 

1 month of incubation. Furthermore, this growth corresponded to a black, amorphous mass of globose sterile 

mycelium, which could hardly be referred to as a colony. Although phylogenetically closer to 

Teratosphaeriaceae genera (Figure 3.18), and thus here included in this family, A. humilianae highly 

resembles Mycosphaerella Johanson (Johanson, 1884) sexual morphs (Figure 3.19), with small, 

inconspicuous, roughly globose ascomata which become erumpent or immersed in the host tissue, bitunicate 

asci, absence of pseudoparaphyses and hyaline, medianly 1-septate ascospores (Fröhlich and Hyde, 1998a). 

4. Discussion 

In the present study, a new species in Teratosphaeriaceae, Arecamyces humilianae, is described and a 

new genus is established to accommodate this fungus. Phylogenetic analyses based on ITS and LSU 

sequences revealed that Arecamyces represents a separate lineage close to several Teratosphaeriaceae 

genera, as well as to Neodevriesiaceae. The evidence gained from unique nucleotide differences among the 

several genera included in the phylogeny supports this novelty at genus-level. 

Morphologically Arecamyces humilianae resembles Mycosphaerellaceae and Teratosphaeriaceae as 

characterized by small, inconspicuous ascomata immersed in the host tissue, which produce pyriform asci 

with 8, hyaline, ellipsoidal and medianly 1-septate ascospores. The presence of pseudoparenchymatal 

remnants in ascomata of Arecamyces and the absence of paraphyses place it within Teratosphaeriaceae since 

Crous et al. (2007) used these characters to separate Teratosphaeriaceae from Mycosphaerellaceae. This 

was confirmed by the phylogenetic analyses, which showed that A. humilianae is closer to 

Teratosphaeriaceae and Neodevriesiaceae genera than to Mycosphaerellaceae genera. Nevertheless, the low 

bootstrap support for the branches leading to A. humilianae suggest that future studies may reveal a different 

phylogenetic position for this taxon. Genera in Teratosphaeriaceae and Mycosphaerellaceae are often 

defined based not only on DNA sequence data, but also on morphology of their asexual morphs. However, 

A. humilianae barely grew in culture and no signs of asexual sporulation could be detected. This is common 

in Mycosphaerella, and Teratosphaeria species, which are cultivated with difficulty (Crous et al., 2007). 

The phylogenetic position of A. humilianae is still undetermined and no accurate nearest neighbours can 

be point out in this analysis. Sequences from only two loci, ITS and LSU, were used in the present study and 

thus the uncertainty of phylogenetic position may be related to the lack of molecular data. Most recent studies 

that aimed to clarify Teratosphaeriaceae, as well as Mycosphaerellaceae, clades used a combination of 

additional loci to ITS and LSU, which include for example the actin-like protein (ACT), the translation 

elongation factor 1-alpha (TEF1) and the β-tubulin (TUB2) genes (e.g. Hunter et al., 2006; Pérez et al., 2013; 

Crous et al., 2018, 2019). Thus, it is possible that the use of other DNA barcodes may help to clarify the 

phylogenetic position of Arecamyces among other genera in Teratosphaeriaceae. In addition, a high level of 

homoplasy was detected with MP analysis. This is not surprising, considering that most genera within 

Teratosphaeria are polyphyletic and within Capnodiales are paraphyletic (Crous et al., 2007). In fact, 

convergence is observed in several genera especially concerning the morphology of asexual morphs (Crous 

et al., 2007, 2009b; Ruibal et al., 2008; Quaedvlieg et al., 2014). 

Although it is not assumed as a new family in the present study due to lack of data, especially concerning 

a greater number of isolates, the phylogenetic analyses in this study predicts that Arecamyces will be. Besides 

the DNA phylogenetic data, A. humilianae lacks several morphological characters that are diagnostic for 

Teratosphaeria, the type genus of Teratosphaeriaceae. These include ascospores that turn brown and 

verruculose while still in the ascus as well as the presence of mucoid sheaths around the ascospores 

(Quaedvlieg et al., 2014). Thus, Arecamyces represents another new genus within Capnodiales, where 

several phylogenetic lineages remain poorly resolved due to limited sampling (Quaedvlieg et al., 2014). 
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However, its position within Teratosphaeriaceae cannot be confirmed and it is possible that future studies 

with greater taxon sampling may eventually split Arecamyces from Teratosphaeriaceae.  

Arecamyces was collected from diseased foliage of Chamaerops humilis and represents a new insight into 

the Teratosphaeriaceae leaf diseases (TLD) and Mycosphaerellaceae leaf diseases (MLD). Although the 

pathogenicity of A. humilianae has not been tested, its extremely slow growth rate and almost lack of growing 

on agar may suggest that this fungus presents highly specific requirements and can be reported as an obligate 

biotroph. This extremely slow growth rate is often reported in important leaf spotting fungal within 

Capnodiales (Crous et al., 2008) and it seems clearly that Arecamyces humilianae represents a new record 

of a phytopathogenic fungi. The report of a new leaf spotting fungi in Capnodiales represents a significant 

advance in the TLD and MLD knowledge, since these fungi are important phytopathogens in various plant 

hosts, such as Eucalyptus (Hunter et al., 2006; Crous et al., 2009a; Pérez et al., 2009, 2013; Taylor et al., 

2012; Quaedvlieg et al., 2014). Furthermore, several species within Capnodiales families, especially 

Teratosphaeriaceae, are of quarantine importance to many countries in Europe (Crous et al., 2009a; 

Quaedvlieg et al., 2012). Future studies should aim to better understand the ecology and physiology of 

Arecamyces in order to assess its pathogenicity traits as a phytopathogen. Its geographical distribution is, for 

now, confined to a single plant in Portugal. Therefore, further sampling is essential to understand its 

geographical and ecological range.  

Global Discussion and Final Remarks 

Palm trees continue to present a diverse assemblage of fungi, many of which are new to science (Fröhlich 

and Hyde, 2000; Hyde et al., 2000; Taylor and Hyde, 2003; Pinnoi et al., 2006; Pinruan et al., 2007; 

Rungjindamai et al., 2008; Konta et al., 2016c; Zang et al., 2018, 2019). In that respect, it is not surprising 

that Diaporthe chamaeropsicola, Morinia trachycarpae, Morinia phoenicicola and Arecamyces humilianae 

have been found as new species on the palms in Portugal. Although this study was based on a relatively small 

sampling, it clearly confirms the already reported high diversity of palm mycobiota. 

To search for new fungal species is of utmost importance. Although fungi are an essential and useful 

group of organisms with an enormous biotechnological potential for industrial exploitation, they are 

relatively understudied (Hyde et al., 2019b). Considering the actual estimates of global fungal species – 2.2 

to 3.8 million – and that only about 120 000 species are presently known and named, less than 10% of the 

worldwide mycota is described (Hawksworth and Lücking, 2017). Moreover, pondering that over the past 40 

years new fungal species were reported at an average rate of 1 300 to 1 800 per year, it is expected that it will 

take more than 2 000 years before all the missing fungi are named (Hawksworth and Lücking, 2017). 

Therefore, the world has a huge wealth of undiscovered and unexploited microfungi that could hold great 

potential for mankind. A representative example is discussed to illustrate this potential. 

Morinia, along with Pestalotiopsis and Bartalinia, is a member of Sporocadaceae, a family of particular 

interest because of their production of secondary metabolites (Basilio et al., 2006; Collado et al., 2006; Liu 

et al., 2019). For example, Pestalotiopsis fici was shown to possess a great number of gene clusters involved 

with the synthesis of bioactive compounds (Wang et al., 2016). Considering that genera in Sporocadaceae 

share the same evolutionary history, other species in this family are expected to have a high potential to 

produce secondary metabolites similar to that found in Pestalotiopsis. Thus, many novel metabolites might 

be hidden and await discovery in members of Sporocadaceae (Vicente et al., 2009; Liu et al., 2019) and this 

include Morinia species. In fact, Basilio et al. (2006) reported a new antifungal compound produced by M. 

pestalozzioides, moriniafungin, a sordarin with a broad antifungal spectrum not found in any other member 

of Sporocadaceae or any other fungal family (Vicente et al., 2009). In addition, one of the sequences retrieved 

from GenBank belonged to an isolate of M. phoenicicola that was previously isolated from living plant 

material as an endophyte (Weber et al., 2007). This isolate was accommodated in Morinia phoenicicola in 

the present study and it is known to be a producer of arundifungin. Thus, it is probable that the Morinia 

phoenicicola isolates from the present work are also capable of producing bioactive compounds of this kind. 

This example emphasizes how important it is to look for new fungal species, especially concerning the 

bioactive compounds that these unknown microorganisms can hold. Considering that only 3% of the isolates 
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in the present study have been fully characterized, more novel species are expected to be found if the other 

isolates are studied in-depth.
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Appendix A. Taxonomic diversity of palmiculous fungi 

 

Supplementary Table A.1  Genera with common representatives found on palms. 

Genera References 

Anthostomella Hyde, 1994f, 1996c; Hyde et al., 1998b 

Appendicospora Hyde, 1995g; Yanna et al., 1997 

Appendispora Hyde, 1994a, 1999a 

Arecomyces Hyde, 1996g 

Arecophila Hyde, 1996f 

Astrosphaeriella Hyde, 1992a, 1993d, 1994e, 2000; Hyde and Fröhlich, 1997 

Capsulospora Hyde, 1996d 

Fasciatispora Hyde, 1991b, 1995c; Lu and Hyde, 1999 

Guignardia Hyde 1995e 

Helicascus Hyde, 1991a 

Leptosphaeria Hyde, 1992a 

Lignicola Hyde, 1992a 

Linocarpon Hyde, 1988, 1992a,b, 1997b; Hyde and Alias, 1999; Konta et al., 2017 

Mycosphaerella Hyde and Fröhlich, 1995b; Fröhlich and Hyde, 1998a 

Myelosperma Hyde, 1993f 

Neodeightonia Phillips et al., 2008; Liu et al., 2010; Konta et al., 2016a 

Neolinocarpon Hyde, 1992a; Hyde et al., 1998a; Hyde and Alias, 1999; Konta et al., 2017 

Nipicola Hyde, 1992d, 1994b 

Oxydothis Hyde KD and Nakagiri A, 1989; Hyde, 1993d, 1994c; Hidayat et al., 2006; Konta et al., 2016b 

Palmicola Hyde, 1993b; Goh and Hyde, 1996a 

Pemphidium Hyde, 1993a, 1996e 

Phomatospora Hyde, 1993d 

Seynesia Hyde 1995f 
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Supplementary Table A.2  Genera described as new to science and found on palms in the last three decades. 

Genera Host Region  Reference 

Acuminatispora Phoenix paludosa Thailand Zhang et al., 2018 

Apioclypea Livistona sp. Papua New Guinea Hyde, 1994f 

Appendicospora Corypha utan Philippines Hyde, 1995d 

Appendispora Oncosperma horridum Brunei Hyde, 1994a 

Arecacicola Calamus sp. Indonesia (Java) Taylor et al., 2001 

Arecomyces Arenga undulatifolia Brunei Hyde, 1996g 

Arecophila Gulubia costata Papua New Guinea Hyde, 1996f 

Asymmetricospora Calamus caryotoides  Australia (North 

Queensland) 

Fröhlich and Hyde, 1998b 

Baipadisphaeria Licuala longecalycata Thailand Pinruan et al., 2010b 

Bharatheeya Calamus thwaitesii India D'Souza and Bhat, 2002 

Brachysporiopsis Livistona chinensis Hong Kong Yanna et al., 2004 

Brunneiapiospora Daemonorops sp. Brunei Hyde et al., 1998b 

Cannonia Butia yatay Argentina Taylor and Hyde, 1999b 

Capsulospora Daemonorops sp. Brunei Hyde, 1996d 

Carinispora Nypa fruticans Brunei Hyde, 1992a 

Castanedospora Sabal palmetto USA (Florida) Delgado et al., 2018 

Caudatispora Phytelephas sp. Ecuador Fröhlich and Hyde, 1995a 

Cocoicola Cocos nucifera Papua New Guinea Hyde, 1995b 

Curvatispora Livistona spinosa Singapore Sarma and Hyde, 2001 

Durispora Elaeis guineensis Malaysia Hyde, 1994d 

Endosporoideus Phoenix hanceana Hong Kong Ho et al., 2005 

Ernakulamia Cocos nucifera  India Subramanian, 1996  

Fasciatispora Nypa fruticans Brunei Hyde, 1991b 

Fissuroma Arenga westerhoutii Thailand Liu et al., 2011b 

Flammispora Licuala longecalycata Thailand Pinruan et al., 2004d 

Fondispora Chamaerops humilis Italy Hyde, 1993d 

Frondicola Nypa fruticans Brunei Hyde, 1992a 

Guestia Mauritia flexuosa Ecuador Smith and Hyde, 2001 

Kalamarospora Sabal palmetto USA (Florida) Delgado, 2010 

Lockerbia Unknown palm specie Australia (North 

Queensland) 

Hyde, 1993h 

Longicorpus Nypa fruticans Thailand Zang et al., 2019 

Mackenziella (as Mackenziea) Oraniopsis appendiculate Australia (North 

Queensland) 

Yanna and Hyde, 2002 

Maculatifrondis Unknown palm specie Ecuador Hyde et al., 1996b 

Maculatipalma Linospadix microcaryus Australia (North 

Queensland) 

Fröhlich and Hyde, 1995d 

Manokwaria Unknown palm specie Indonesia (West Papua) Hyde, 1993g 

Neoastrosphaeriella Metroxylon sagu Thailand Liu et al., 2011b 

Neolinocarpon Nypa fruticans Brunei Hyde, 1992a 

Nipicola Nypa fruticans  Brunei Hyde, 1992d 

Nusia Scheelea insignis Malaysia (Singapore) Subramanian, 1993 
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Supplementary Table A.2  Continued. 

Genera Host Region Reference 

Ornatispora Calamus conirostris Australia (North 

Queensland) 

Hyde et al., 1999d 

Palmicola Archontophoenix 

alexandrae 

Australia (North 

Queensland) 

Hyde, 1993b 

Palmomyces Oraniopsis appendiculate Australia (North 

Queensland) 

Kevin et al., 1998b 

Phruensis Licuala longecalycata Thailand Pinruan et al., 2004c 

Polybulbophiale Licuala sp. Brunei Goh and Hyde, 1998c 

Pulmosphaeria Archontophoenix 

alexandrae 

Australia (North 

Queensland) 

Taylor et al., 1996 

Rachidicola Calamus sp. Hong Kong Hyde and Fröhlich, 1995a 

Sabalicola Sabal serrulate USA (Florida) Hyde, 1995a 

Stratiphoromyces Licuala sp. Brunei Goh and Hyde, 1998b 

Striatiguttula Nypa fruticans Thailand Zang et al., 2019 

Thailandiomyces Licuala longecalycata Thailand Pinruan et al., 2008 

Tirisporella Nypa fruticans Malaysia Jones et al., 1996 

Tretendophragmia Korthalsia sp. Malaysia (Singapore) Subramanian, 1992 

Tretocephala Oncosperma horridum  Malaysia (Singapore) Subramanian, 1995 

Unisetosphaeria Eleiodoxa conferta Thailand Pinnoi et al., 2003a 

Veramycella Sabal palmetto USA (Florida) Delgado, 2009 

Waihonghopes Oraniopsis appendiculate Australia (North 

Queensland) 

Yanna and Hyde, 2002 
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Appendix B. General workflow 

 

 
Supplementary Figure A.1  Schematic overview of the general workflow. 
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Appendix C. Genera-abundance distribution 

 

 

Supplementary Figure A.2  Abundance distributions for fungal genera associated with palm foliar lesions. The y-axis 

(log scale) represents the abundance of occurrence of each genus, which is the relative importance of each genus in the fungal 

assemblage as a percent. The sum of all relative importance values equals 100%. Each genus is ranked from the most abundant 

to least abundant along the x-axis.  
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Appendix D. Foliar lesions types of different host species 

 

Supplementary Table A.3  Absolute frequencies of foliar lesions types per host species. 

Host TDB* LLS# SLS† PP‡ 

Chamaerops humilis 6 3 2 10 

Dypsis lutescens 1 3 2 1 

Phoenix canariensis 6 4 8 8 

Phoenix dactylifera 1 4 2 5 

Trachycarpus fortunei 3 2 1 0 
*TDB, tip die-back. 
#LLS, large leaf spot. 
†SLS, small leaf spot. 

‡PP, pinpoints and punctuations. 
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Appendix E. Composition of host species fungal assemblages 

 

 

Supplementary Figure A.3  Absolute frequencies of the number of isolates per genus and per host species. 
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Appendix F. Collector’s effort curve 

 

 
Supplementary Figure A.4  Collector’s effort curve for the cumulative number of genera recovered from each parish 

and from the overall sample set. Incremental increase in the number of genera isolated plotted against the number of samples 

examined in each parish and for the overall sample set. Data from different parishes and for the overall sample set were plotted 

in random order. Solid lines represent the calibration curves for each genera-accumulation curve plotted and are shown along 

with the corresponding equation. Colours are according to parishes. 
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Appendix G. Composition of parishes fungal assemblage 

 

 

Supplementary Figure A.5  Absolute frequencies of the number of isolates per genus and per parish.
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Appendix H. Foliar lesions types and host species examined on 

different parishes 

 

Supplementary Table A.4  Absolute frequencies of foliar lesions types per parish. 

Host TDB* LLS# SLS† PP‡ 

Alvalade 5 5 4 3 

Areeiro 1 3 2 3 

Marvila 8 3 2 7 

Parque das Nações 5 7 6 9 
*TDB, tip die-back. 
#LLS, large leaf spot. 
†SLS, small leaf spot. 

‡PP, pinpoints and punctuations. 

 

Supplementary Table A.5  Absolute frequencies of trees from each host species per parish. 

Host Alvalade Areeiro Marvila Parque das Nações 

Chamaedorea elegans 1 0 0 0 

Chamaerops humilis 0 0 5 7 

Dypsis lutescens 5 0 0 0 

Phoenix canariensis 3 4 4 2 

Phoenix dactylifera 3 0 0 3 

Phoenix reclinata 0 0 0 2 

Trachycarpus fortunei 0 1 2 2 

Washingtonia filifera 0 1 1 1 
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Appendix I. Distribution of fungal occurrences on foliar 

lesions of palms 

 

Supplementary Table A.6  Distribution of fungal occurrences on foliar lesions of palms. Number of samples supporting n 

fungal isolates per sample and the corresponding absolute frequency of isolates. 

Fugal records (n) per sample Break-up of number of samples examined Total fungal occurrences* 

n = 1 10 10 

n = 2 12 24 

n = 3 8 24 

n = 4 10 40 

n = 5 10 50 

n = 6 8 48 

n = 7 2 14 

n = 8 3 24 

n = 9 2 18 

n = 10 1 10 

n = 12 3 36 

n = 14 1 14 

n = 15 3 45 

n = 16 2 32 

n = 17 1 17 

n = 23 1 23 

n = 28 1 28 
*Total fungal occurrences, number of samples × n. 
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Appendix J. Co-occurrence analyses 

 

Supplementary Table A.7  Patterns of fungal genera co-occurrence on palm foliar lesions. 

Genera 

Number of samples in which 

Total 

occurrences 
FO*; FCO# 

Number of other 

genera that 

co-occur with 

each genus 

a genus 

co-occurs 

a genus 

occurs singly 

Alternaria 37 1 38 48.72; 78.95 45 

Arthrinium 4 0 4 5.13; 22.81 13 

Ascochyta 1 0 1 1.28; 12.28 7 

Aspergillus 3 0 3 3.85; 10.53 6 

Bartalinia 1 0 1 1.28; 12.28 7 

Botrytis 5 0 5 6.41; 10.04 8 

Chaetomium 2 0 2 2.56; 7.02 4 

Cladosporium 32 3 35 44.87; 68.42 39 

Collectotrichum 1 1 2 2.56; 12.28 7 

Coniothyrium 5 0 5 6.41; 29.82 17 

Lophiostoma 4 0 4 5.13; 24.56 14 

Cytospora 1 0 1 1.28; 8.77 5 

Diaporthe 6 0 6 7.69; 26.32 15 

Didymocyrtis 3 1 4 5.13; 21.05 12 

Diplodia 1 0 1 1.28; 10.53 6 

Epicoccum 13 0 13 16.67; 42.11 24 

Foliophoma 1 0 1 1.28; 7.02 4 

Fusarium 3 0 3 3.85; 12.28 7 

Fusicoccum 2 0 2 2.56; 7.02 4 

Graphiola 1 0 1 1.28; 5.26 3 

Keissleriella 5 0 5 6.41; 29.82 17 

Libertasomyces 7 0 7 8.97; 24.56 14 

Monilia 1 0 1 1.28; 7.02 4 

Morinia 3 1 4 5.13; 12.28 7 

Neodeightonia 3 0 3 3.85; 12.28 7 

Neofusicoccum 2 0 2 2.56; 8.77 5 

Neopestalotiopsis 2 0 2 2.56; 12.28 7 

Neosetophoma 11 1 12 15.38; 31.58 18 

Nigrospora 5 0 5 6.41; 19.30 11 

Paraconiothyrium 3 0 3 3.85; 15.79 9 

Parastagonospora 2 0 2 2.56; 8.77 5 

Penicillium 8 0 8 10.26; 28.07 16 

Phaeosphaeria 2 0 2 2.56; 17.54 10 

Phoma 31 1 32 41.03; 59.65 34 

Phyllosticta 1 0 1 1.28; 1.75 1 

Pithomyces 1 0 1 1.28; 10.53 6 

Plenodomus 3 0 3 3.85; 19.30 11 

Pseudoconiothyrium 1 0 1 1.28; 12.28 7 
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Supplementary Table A.7  Continued. 

Genera 

Number of samples in which 

Total 

occurrences 
FO*; FCO# 

Number of other 

genera that 

co-occur with 

each genus 

a genus 

co-occurs 

a genus 

occurs singly 

Sclerostagonospora 7 0 7 8.97; 29.82 17 

Septoria 5 0 5 6.41; 29.82 17 

Stachybotrys 1 0 1 1.28; 5.26 3 

Stagonosporopsis 1 0 1 1.28; 12.28 7 

Stemphylium 14 0 14 17.95; 47.37 27 

Coelomycete genus 1 1 0 1 1.28; 1.75 1 

Coelomycete genus 2 1 0 1 1.28; 1.75 1 

Coelomycete genus 3 1 0 1 1.28; 7.02 4 

Coelomycete genus 4 1 0 1 1.28; 14.04 8 

Diatrypaceae genus 1 0 1 1.28; 7.02 4 

Teratosphaeriaceae genus 1 0 1 1 1.28; 0.00 0 

Hyphomycete genus 1 2 0 2 2.56; 12.28 7 

Hyphomycete genus 2 1 0 1 1.28; 3.51 2 

Hyphomycete genus 3 3 0 3 3.85; 10.53 6 

Hyphomycete genus 4 2 0 2 2.56; 15.79 9 

Hyphomycete genus 5 1 0 1 1.28; 8.77 5 

Hyphomycete genus 6 1 0 1 1.28; 10.53 6 

Sordariomycetes genus 1 8 0 8 10.26; 38.60 22 

Sordariomycetes genus 2 4 0 4 5.13; 15.79 9 
*FO, frequency of occurrence (%). 
#FCO, frequency of co-occurrence (%). 
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Appendix K. Reproductibility system of the genomic diversity 

 

 

Supplementary Figure A.6  Reproducibility gels for csM13 profiles. Dendrogram based on csM13 profiles performed in 

BioNumerics using Pearson’s correlation coefficient and UPGMA. The numbers of the isolates next to which (R) is written 

represent the replicates, while the others represent the original profiles obtained. 

89.0

96.3

85.0

99.2

77.5

91.1

72.2

95.4

97.9

93.9

93.0

89.8

97.4

74.7

68.9

95.0

92.6

89.2

93.7

74.1

58.4

96.9

98.5

95.4

98.5

80.0

98.1

76.5

95.1

97.2

91.2

98.0

87.7

98.5

79.7

66.4

97.0

99.5

95.0

99.0

79.9

97.9

98.5

83.6

77.9

63.9

97.2

94.4

97.0

91.0

98.0

94.7

89.8

95.8

98.9

93.2

72.6

61.8

54.0

95.7

99.1

79.2

94.4

67.4

47.8

97.9

98.3

78.4

97.3

58.0

42.8

97.6

97.8

69.9

99.7

98.3

96.7

59.4

97.1

93.5

89.8

52.6

41.0

85.7

29.2

M13

1
0
0

9
5

9
0

8
5

8
0

7
5

7
0

6
5

6
0

5
5

5
0

4
5

4
0

3
5

3
0

M13

Key

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample subtype

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Isolate

CDP 352

CDP 352 (R)

CDP 353

CDP 353 (R)

CDP 303

CDP 303 (R)

CDP 354

CDP 354 (R)

CDP 188 (R)

CDP 472 (R)

CDP 256

CDP 256 (R)

CDP 472

CDP 188

CDP 038

CDP 038 (R)

CDP 011 (R)

CDP 273

CDP 273 (R)

CDP 011

CDP 430

CDP 430 (R)

CDP 426

CDP 426 (R)

CDP 171

CDP 171 (R)

CDP 102

CDP 102 (R)

CDP 136

CDP 136 (R)

CDP 120

CDP 120 (R)

CDP 479

CDP 479 (R)

CDP 029

CDP 029 (R)

CDP 122

CDP 122 (R)

CDP 408

CDP 408 (R)

CDP 280

CDP 280 (R)

CDP 143

CDP 143 (R)

CDP 402

CDP 402 (R)

CDP 148

CDP 148 (R)

CDP 082

CDP 487 (R)

CDP 487

CDP 138

CDP 138 (R)

CDP 462

CDP 462 (R)

CDP 082 (R)

CDP 418

CDP 418 (R)

CDP 226

CDP 226 (R)



 

 

127 

 

 

 
Supplementary Figure A.6  Continued. 
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Supplementary Figure A.7  Reproducibility gels for (GTG)5 profiles. Dendrogram based on (GTG)5 profiles performed in 

BioNumerics using Pearson’s correlation coefficient and UPGMA. The numbers of the isolates next to which (R) is written 

represent the replicates, while the others represent the original profiles obtained. 
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Supplementary Figure A.7  Continued. 
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Appendix L. Nucleotide differences among taxa 

 

Supplementary Table A.8  Nucleotide differences between Diaporthe chamaeropsicola, D. ceratozamiae, 

D. phyllanthicola and D. loropetali. 

Locus Position D. chamaeropsicola D. ceratozamiae D. phyllanthicola D. loropetali 

ITS (502 bp*) 19 C ND# T T 

 23 – ND ND G 

 58 A – ND ND 

 60 C T ND ND 

 86 T ND C C 

 87 C T ND ND 

 89 T ND ND C 

 93 C ND T T 

 98 C T ND ND 

 101 – C C C 

 102 – C C C 

 104 C – – – 

 105 C – – – 

 158 C T ND ND 

 177 – ND ND A 

 363 T C ND ND 

 390 A ND ND T 

 393 A G C C 

 442 C T ND T 

 461 C T T ND 
*bp, base pairs. 
#ND, no differences. 
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Supplementary Table A.9  Nucleotide differences between Morinia trachycarpae and M. crini, and between 

M. phoenicicola and M. acaciae. 

Locus Position M. trachycarpae M. crini M. phoenicicola M. acaciae 

ITS (530 bp*) 9 G ND# G – 

 43 C T C ND 

 74 C G G ND 

 80 – T – ND 

 110 C ND C T 

 112 G ND G A 

 122 A ND A T 

 135 C ND C A 

 143 C T C ND 

 146 G ND G A 

 147 T C C ND 

 155 T C T ND 

 173 – ND – T 

 410 T C T ND 

 412 A G A ND 

 417 G ND G T 

 426 C ND C T 

 473 T ND T C 

 498 A ND A G 

 514 T A T ND 

 525 – A A ND 

 530 C ND C T 

LSU (571 bp) 461 G A 

NA† 

 468 – A 

 473 – T 

 490 A T 

 491 C T 

 563 G C 
*bp, base pairs. 
#ND, no differences. 
†NA, not available. 
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Appendix M. Details of the sequences 

 

Supplementary Table A.10  Isolates used in the phylogenetic analyses of Diaporthe. 

Taxon Culture1 Status2 
GenBank accession number3 

ITS* TUB2* TEF1* CAL* 
Diaporthe arecae CBS 161.64 IT KC343032 KC344000 KC343758 KC343274 

D. arecae CBS 535.75  KC343033 KC344001 KC343759 KC343275 

D. arecae PBMR345  MK111088 MK122810 MK117275 – 

D. arengae CBS 114979 T KC343034 KC344002 KC343760 KC343276 

D. aspalathi CBS 117168  KC343035 KC344003 KC343761 KC343277 

D. aspalathi CBS 117169 T KC343036 KC344004 KC343762 KC343278 

D. aspalathi CBS 117500  KC343037 KC344005 KC343763 KC343279 

D. baccae CBS 136972 T KJ160565 MF418509 KJ160597 – 

D. baccae CPC 30315  MG281014 MG281187 MG281535 MG281709 

D. beilharziae BRIP 54792 T JX862529 KF170921 JX862535 – 

D. caulivora CBS 127268 NT KC343045 KC344013 KC343771 KC343287 

D. caulivora CBS 178.55  KC343046 KC344014 KC343772 KC343288 

D. ceratozamiae CBS 131306 T JQ044420 – – – 

D. chamaeropsicola CDP 460/01 T SDP 460/01 SDP 460/02 SDP 460/03 SDP 460/04 

D. chimonanthi  SCHM 3614 T AY622993 – – – 

D. cytosporella AR5149  KC843309 KC843222 KC843118 KC843287 

D. cytosporella FAU461 ET KC843307 KC843221 KC843116 KC843141 

D. eucalyptorum CBS 132525 T JX069862 – – – 

D. foeniculina CBS 111553 T KC343101 KC344069 KC343827 KC343343 

D. foeniculina CBS 123209  KC343105 KC344073 KC343831 KC343347 

D. foeniculina CBS 187.27  DQ286287 JX275463 DQ286261 KC843122 

D. foeniculina CDP 022  SDP 022/01 SDP 022/02 SDP 022/03 – 

D. foeniculina CDP 209  SDP 209/01 SDP 209/02 SDP 209/03 – 

D. foeniculina CDP 315  SDP 315/01 SDP 315/02 SDP 315/03 – 

D. helianthi CBS 592.81 T KC343115 KC344083 KC343841 JX197454 

D. helianthi CBS 344.94  KC343114 KC344082 KC343840 KC343356 

D. hongkongensis CBS 115448 T KC343119 KC344087 KC343845 KC343361 

D. hongkongensis ZJUD74  KJ490609 KJ490430 KJ490488 – 

D. infecunda CBS 133812 T KC343126 KC344094 KC343852 KC343368 

D. infecunda CMT60  KP182394 KP182402 KP182384 KP182376 

D. infecunda LGMF 908  KC343127 KC343853 KC344095 KC343369 

D. leucospermi CBS 111980 T JN712460 KY435673 KY435632 KY435663 

D. liquidambaris SCHM 3621 T AY601919 – – – 

D. liquidambaris TW15  MH930416 – – – 

D. longicolla FAU599 T KJ590728 KJ610883 KJ590767 KJ612124 

D. longicolla FAU 644  KJ590730 KJ610885 KJ590769 KJ612126 

D. loropetali SCHM 3615 T AY601917 – – – 

D. musigena CBS 129519 T KC343143 KC344111 KC343869 KC343385 

D. musigena HKFZL006  MK050110 MK079660 MK054238 – 

D. novem CBS 127269  KC343155 KC343881 KC344123 KC343397 
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Supplementary Table A.10  Continued. 

Taxon Culture1 Status2 
GenBank accession number3 

ITS* TUB2* TEF1* CAL* 
D. novem CBS 127270 T KC343156 KC343882 KC344124 KC343398 

D. novem CBS 127271  KC343157 KC344125 KC343883 KC343399 

D. pascoei BRIP 54847 IT JX862532 KF170924 JX862538 – 

D. pascoei PBMR348  MK111093 MK122809 MK117276 – 

D. phaseolorum AR4203 ET KJ590738 KJ590739 KJ610893 – 

D. phaseolorum CBS 127465  KC343177 KC344145 KC343903 KC343419 

D. phyllanthicola SCHM 3680 T AY620819 – – – 

D. pseudomangiferae CBS 101339 T KC343181 KC344149 KC343907 KC343423 

D. pseudomangiferae CBS 388.89  KC343182 KC344150 KC343908 KC343424 

D. pseudophoenicicola CBS 176.77  KC343183 KC344151 KC343909 KC343425 

D. pseudophoenicicola CBS 462.69 T KC343184 KC344152 KC343910 KC343426 

D. pseudophoenicicola CDP 047  SDP 047/01 SDP 047/02 SDP 047/03 SDP 047/04 

D. pseudophoenicicola CDP 358  SDP 358/01 SDP 358/02 SDP 358/03 SDP 358/04 

D. pyracanthae CAA483 T KY435635 KY435666 KY435625 KY435656 

D. pyracanthae CAA487  KY435636 KY435667 KY435626 KY435657 

D. pyracanthae CDP 052  SDP 052/01 SDP 052/02 SDP 052/03 SDP 052/04 

D. rhusicola CBS 129528 T JF951146 KC843205 KC843100 KC843124 

D. sackstonii BRIP 54669b T KJ197287 KJ197267 KJ197249 – 

D. serafiniae BRIP 55665a T KJ197274 KJ197254 KJ197236 – 

D. serafiniae BRIP 54136  KJ197273 KJ197253 KJ197235 – 

D. sojae CBS 116019  KC343175 KC344143 KC343901 KC343417 

D. sojae DP0601  KJ590706 KJ610862 KJ590749 KJ612103 

D. sojae FAU635 ET KJ590719 KJ610875 KJ590762 KJ612116 

D. toxica CBS 534.93 T KC343220 KC344188 KC343946 KC343462 
1BRIP: Queensland Plant Pathology Herbarium, Brisbane, Australia, CBS = Culture Collection of the Westerdijk Fungal Biodiversity Institute, 

Utrecht, The Netherlands, CDP = Culture Collection of Diana Pereira, housed at the Lab Bugworkers | M&B-BioISI | Tec Labs – Innovation 

Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal, CPC = Culture Collection of Pedro Crous, housed at the Westerdijk 

Institute, FAU = Isolates in culture collection of Systematic.  
2Status of the strains, ET = ex-epitype, H = holotype, IT = ex-isotype, NT = ex-neotype, T = ex-type. 
3Newly generated sequences are in bold, – = no sequence available. 
*ITS = internal transcribed spacers and intervening 5.8S nrDNA, TUB2 = partial β-tubulin gene, TEF1 = partial elongation factor 1-alpha gene, 

CAL = partial calmodulin gene. 
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Supplementary Table A.11  Isolates used in the phylogenetic analyses of Morinia. 

Taxon Strain number1 Status2 
GenBank accession number3 

ITS* LSU* 

Bartalinia bella CBS 125525  GU291796 MH554214 

B. bella CBS 464.61 T MH554051 MH554264 

B. pini CBS 143891 T MH554125 MH554330 

B. pini CBS 144141  MH554170 MH554364 

B. robillardoides CBS 122615  MH553989 MH554207 

B. robillardoides CBS 122705 ET LT853104 KJ710438 

B. robillardoides CDP 377  SDP 377/01 SDP 377/02 

B. robillardoides CPC 25361  MH554133 MH554335 

B. rosicola MFLUCC 17-0645 T MG828872 MG828988 

Broomella vitalbae MFLUCC 13-0798 ET NR_153610 KP757749 

Clypeosphaeria mamillana CBS 140735 ET KT949897 MH554225 

Heterotruncatella spartii CPC 17945  MH554100 MH554310 

Hetero. spartii MFLUCC 15-0537 T KR092794 KR092783 

Hyalotiella spartii MFLUCC 13-0397 T KP757756 KP757752 

Hymenopleella austroafricana CBS 143886 T MH554115 MH554320 

Hymeno. hippophaëicola CBS 113687  MH553969 MH554188 

Hymeno. hippophaëicola CBS 140410 ET KT949901 MH554224 

Lepteutypa sambuci CBS 131707 T NR_154124 MH554219 

Morinia acaciae CBS 100230  MH553950 MH554174 

M. acaciae CBS 137994 T MH554002 MH554221 

M. acaciae E-000535696  JN545792 – 

M. crini CBS 143888 T MH554118 MH554323 

M. longiappendiculata CBS 117603 T AY929324 MH554202 

M. pestalozzioides ATCC No. PTA-3862 ET AY929325 – 

M. phoenicicola CDP 191  SDP 191/01 – 

M. phoenicicola CDP 192/01 T SDP 192/01 – 

M. phoenicicola E00175  DQ872671 – 

M. trachycarpae CDP 097/01 T SDP 097/01 SDP 097/02 

M. trachycarpae CDP 232  SDP 232/01 SDP 232/02 

Parabartalinia lateralis CBS 399.71 T MH554043 MH554256 

Truncatella angustata CBS 144025 NT MH554112 MH554318 

T. angustata CBS 338.32  MH554033 MH554250 

T. angustata CBS 393.80  MH554041 MH554254 

T. angustata CBS 449.51  MH554050 MH554262 
1ATCC = American Type Culture Collection, Virginia, USA, CBS = Culture Collection of the Westerdijk Fungal Biodiversity Institute, 

Utrecht, The Netherlands, CDP = Culture Collection of Diana Pereira, housed at the Lab Bugworkers | M&B-BioISI | Tec Labs – Innovation 

Centre, Faculty of Sciences, University of Lisbon, Lisbon, Portugal, CPC = Culture Collection of Pedro Crous, housed at the Westerdijk 

Institute, MFLU(CC) = Mae Fah Luang University Culture Collection. 
2Status of the strains, T = ex-type, ET = ex-epitype, NT = ex-neotype. 
3Newly generated sequences are in bold, – = no sequence available. 
*ITS = internal transcribed spacers and intervening 5.8S nrDNA, LSU = partial large-subunit rRNA gene. 
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Supplementary Table A.12  Isolates used in the phylogenetic analyses of Arecamyces humilianae. 

Taxon Strain number1 Status2 
GenBank accession number3 

ITS* LSU* 

Acrodontium pigmentosum CBS 111111 T KX287275 KX286963 

Arecamyces humilianae CDP 001 T SDP 001/01 SDP 002/02 

Batcheloromyces alistairii CBS 120035 T DQ885901 KF937220 

B. alistairii CPC 18251  JX556227 JX556237 

B. leucadendri CBS 114146  – EU707892 

B. proteae CBS 110696  JF746163 KF901833 

B. sedgefieldii CBS 112119 T EU707893 KF937222 

Camarosporula persooniae CBS 112494  JF770448 JF770460 

Capnodium coffeae CBS 147.52  MH856967 MH868489 

Devriesia staurophora CBS 375.81  KF442532 KF442572 

D. thermodurans CBS 115878 T MH862991 MH874549 

Eupenidiella venezuelensis CBS 106.75 T KF901802 KF902163 

Hortaea thailandica CBS 125423 T MH863702 MH875167 

H. werneckii CBS 107.67 T AJ238468 EU019270 

H. werneckii CBS 359.66  MH858825 MH870461 

Meristemomyces arctostaphylos CBS 141290 T KX228264 KX228315 

M. frigidus CBS 136109 T KF309971 GU250401 

Myrtapenidiella corymbia CBS 124769 T KF901517 KF901838 

M. eucalypti CBS 123246 T KF901772 KF902130 

M. tenuiramis CBS 124993 T KF937262 GQ852626 

Neodevriesia agapanthi CBS 132689 T KJ564346 JX069859 

N. coccolobae CBS 145064 T MK047432 MK047483 

N. coryneliae CBS 137999 T KJ869154 KJ869211 

N. hilliana CBS 123187 T MH863277 MH874801 

N. imbrexigena CAP1373 T JX915746 JX915750 

N. imbrexigena CAP1375  JX915748 JX915752 

N. knoxdaviesii CBS 122898 T EU707865 EU707865 

N. knoxdaviesii CPC 14905  EU707866 KJ564328 

N. lagerstroemiae CBS 125422 T GU214634 KF902149 

N. shakazului CBS 133579 T KC005776 KC005797 

N. stirlingiae CBS 133581 T KC005778 KC005799 

N. strelitziae CBS 122379 T EU436763 GU301810 

N. tabebuiae CBS 145065 T MK047433 MK047484 

N. xanthorrhoeae CBS 128219 T HQ599605 HQ599606 

Neophaeothecoidea proteae CBS 114129 T MH862955 KF937228 

Parapenidiella pseudotasmaniensis CBS 124991 T MH863440 MH874943 

Para. tasmaniensis CBS 111687 T KF901521 KF901843 

Penidiella carpentariae CBS 133586 T KC005784 KC005806 

Pen. columbiana CBS 486.80 T KF901630 KF901965 

Pseudotaeniolina globosa CBS 109889 T KF309976 KF310010 

Pseudoteratosphaeria flexuosa CBS 111012 T KF901755 KF902110 

Pseudo. flexuosa CBS 111048  KF901643 KF901978 

Pseudo. ohnowa CBS 112896 T KF901620 KF901946 
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Supplementary Table A.12  Continued. 

Taxon Strain number1 Status2 
GenBank accession number3 

ITS* ITS* 

Queenslandipenidiella kurandae CBS 121715 T KF901538 KF901860 

Readeriella dendritica CBS 120032 T KF901543 KF901865 

R. limoniforma CBS 134745 T KF901547 KF901869 

R. mirabilis CBS 125000 ET KF901549 KF901871 

Stenella araguata CBS 105.75 T MH860897 MH872633 

Zasmidium musae CBS 122477 T EU514291 – 

Z. musae CBS 121385  EU514293 – 

Teratosphaeria alboconidia CBS 125004 T KF901558 KF901881 

Ter. biformis CBS 124578 T KF901564 KF901887 

Ter. blakelyi CBS 120089 T KF901565 KF901888 

Ter. brunneotingens CPC 13303 T EF394853 EU019286 

Ter. complicata CBS 125216 T MH863461 MH874961 

Ter. complicata CPC 14535  KF901781 KF902139 

Ter. considenianae CBS 120087 T DQ923527 KF937238 

Ter. considenianae CPC 14057  KF901568 KF901892 

Ter. cryptica CBS 110975  KF901573 KF901897 

Ter. cryptica CBS 111679  KF901691 KF902037 

Ter. dimorpha CBS 120085  DQ923529 KF937240 

Ter. dimorpha CBS:124051  KF901575 KF901899 

Ter. encephalarti CBS 123540 T FJ372395 FJ372412 

Ter. encephalarti CPC 15466  FJ372401 FJ372418 

Ter. hortaea CBS 124156 T MH863358 MH874881 

Ter. hortaea CPC 15723  FJ790279 FJ790300 

Ter. macowanii CBS 122901 ET MH863257 MH874781 

Ter. macowanii CPC 1488  AY260096 FJ493199 

Ter. mareebensis CBS 129529 T JF951149 JF951169 

Ter. maxii CBS 120137 T DQ885899 KF937243 

Ter. maxii CBS 112496  EU707871 KF937242 

Ter. Micromaculata CBS 124582 T MH863390 MH874909 

Ter. Profuse CBS 125007 T KF901592 KF901916 

Ter. Profuse CPC 12821  FJ493196 FJ493220 

Ter. Rubidae CBS 124579 T MH863388 MH874907 

Ter. Rubidae MUCC659  EU300992 – 

Ter. sieberi CBS 144443 T MH327816 MH327852 

Ter. wingfieldii CBS 112163 T EU707896 – 

Teratosphaericola pseudoafricana CBS 114782 T KF901737 KF902084 

Terph. Pseudoafricana CBS 111168  KF901699 KF902045 

Teratosphaeriopsis pseudoafricana CBS 111171 T KF901738 KF902085 
1CAP = Culture Collection of Alan Phillips, housed at the Lab Bugworkers | M&B-BioISI | Tec Labs – Innovation Centre, Faculty of Sciences, 

University of Lisbon, Lisbon, Portugal, CBS = Culture Collection of the Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands, 

CDP = Culture Collection of Diana Pereira, housed at the Lab Bugworkers | M&B-BioISI | Tec Labs – Innovation Centre, Faculty of Sciences, 

University of Lisbon, Lisbon, Portugal, CPC = Culture Collection of Pedro Crous, housed at the Westerdijk Institute, MUCC = Murdoch 

University Culture Collection, Murdoch, Australia. 
2Status of the strains, T = ex-type, ET = ex-epitype. 
3Newly generated sequences are in bold. 
*ITS = internal transcribed spacers and intervening 5.8S nrDNA, LSU = partial large-subunit rRNA gene. 
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Appendix N. Coelomycetes presumptive identification details 

 

Supplementary Table A.13  Presumptive identification of the coelomycetes isolates. The closest-hit genus and species 

represent the most probable identification considering the results obtained from GenBank after BLAST with ITS sequence. 

Isolate Closest-hit genus Closest-hit species 

Sequence 

coverage 

(%) 

Sequence 

Identity 

(%) 

Expected 

value 

Sequence 

identity 

with type 

CDP 467 Colletotrichum Colletotrichum karstii 100 98.66 0 90 

CDP 152 Libertasomyces Libertasomyces platani 97 99.82 0 99.82 

CDP 055 Neosetophoma Neosetophoma italica 98 100 0 100 

CDP 146 Neosetophoma Neosetophoma italica 98 100 0 100 

CDP 020 Coniothyrium Coniothyrium palmarum 100 100 0 NA* 

CDP 150 Neosetophoma Neosetophoma italica 100 97.55 4×10-155 97.55 

CDP 139 –# – – – – – 

CDP 145 Keissleriella Keissleriella cladophila 97 99.82 0 99.82 

CDP 148 Sclerostagonospora Sclerostagonospora opuntiae 100 98.95 0 NA 

CDP 119 Keissleriella Keissleriella cladophila 97 98.36 0 98.36 

CDP 154 Parastagonospora Parastagonospora nodorum 98 98.21 0 NA 

CDP 217 Paraconiothyrium Paraconiothyrium variabile 100 99.83 0 99.31 

CDP 041 Plenodomus Plenodomus influorescens 94 99.62 0 99.62 

CDP 350 Foliophoma Foliophoma fallens 98 100 0 NA 

CDP 200 Libertasomyces Libertasomyces platani 97 99.82 0 99.82 

CDP 347 Libertasomyces Libertasomyces platani 97 99.82 0 99.82 

CDP 346 Libertasomyces Libertasomyces platani 97 100 0 100 

CDP 207 Didymocyrtis Didymocyrtis banksiae 97 100 0 100 

CDP 120 Sclerostagonospora Sclerostagonospora opuntiae 100 98.77 0 NA 

CDP 372 Pseudoconiothyrium 
Pseudoconiothyrium 

broussonetiae 
98 88.35 6×10-176 88.35 

CDP 378 Stagonosporopsis 
Stagonosporopsis 

cucurbitacearum 
98 99.80 0 NA 

CDP 424 Neosetophoma Neosetophoma italica 98 98.39 0 98.39 

CDP 316 Neosetophoma Neosetophoma italica 98 98.21 0 98.21 

CDP 454 Phaeosphaeria Phaeosphaeria podocarpi 100 99.61 0 99.61 

CDP 317 Didymocyrtis Didymocyrtis brachylaenae 96 99.28 0 99.28 

CDP 371 Keissleriella Keissleriella cladophila 97 100 0 100 

CDP 270 Paraconiothyrium Paraconiothyrium brasiliense 100 99.83 0 99.12 

CDP 283 Paraconiothyrium Paraconiothyrium brasiliense 100 99.66 0 98.95% 

CDP 050 Sclerostagonospora Sclerostagonospora opuntiae 100 99.12 0 NA 

CDP 370 Keissleriella Keissleriella cladophila 97 98 0 98 

CDP 354 Ascochyta Ascochyta sp. 100 98.27 0 - 

CDP 375 Keissleriella Keissleriella cladophila 97 98.36 0 98.36 

CDP 248 Coniothyrium Coniothyrium palmarum 92 100 0 NA 

CDP 195 Neosetophoma Neosetophoma italica 98 98.21 0 98.21 

CDP 199 Neosetophoma Neosetophoma italica 98 100 0 100 

CDP 143 Sclerostagonospora Sclerostagonospora opuntiae 100 99.77 0 NA 
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Supplementary Table A.13  Continued. 

Isolate Closest-hit genus Closest-hit species 

Sequence 

coverage 

(%) 

Sequence 

Identity 

(%) 

Expected 

value 

Sequence 

identity 

with type 

CDP 196 Sclerostagonospora Sclerostagonospora opuntiae 100 99.12 0 NA 

CDP 141 Libertasomyces Libertasomyces platani 97 100 0 100 

CDP 340 Didymocyrtis Didymocyrtis brachylaenae 96 99.28 0 99.28 

CDP 144 Lophiostoma Lophiostoma cynaroidis 93.45 100 0 93.45 

CDP 151 Lophiostoma Lophiostoma cynaroidis 93.45 100 0 93.45 
*NA, not available. 
# –, not possible to predict a closest-hit. 
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Appendix O. Overview of morphological diversity 
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Supplementary Figure A.8  Overview of morphological diversity of palmicolous hyphomycetes from palms in Portugal. 

A – N. Fusarium. O – R. Hyphomycete genus 1. S – V. Hyphomycete genus 2. W, X. Pithomyces. Y – Af. Alternaria. 

Ag – An. Cladosporium. Ao – Ar. Penicillium. As – Av. Aspergillus. Aw – Ay. Epicoccum. Az – Bc. Arthrinium. C, J, 

O – Q, S – W, Y, Z, Ab – Aj, Am, Ao, Aq, As, Au, Av, Ay – Bc. Conidiophores and conidiogenous cells. F, G, M, N, R, V, 

X, Z, Aa, Al, Ap, Ar, At, Aw, Ax, Ba. Conidia. A, H. Sporodochia formed on palm leaflet pieces. B, I. Optical section of 

sporodochia. C, J. Macroconidiogenous cells. D, F, K, M. Macroconidia. E, L. Microconidiogenous cells. G, N. Microconidia. 

Ak. Mycelial ropes. An. Mycelial coils. Scale bars: A, H = 0.5 mm, B, I, F, M, V, Y, Z, Ad – Af = 10 μm, C – E, G, J – L, N, 

O – U, W, X, Aa – Ac, Ag – Bc = 5 μm. 
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Supplementary Figure A.9  Overview of morphological diversity of palmicolous coelomycetes from palms in Portugal. 

A – G. Phoma. H – P. Neosetophoma. Q – V. Libertasomyces. W – Z. Plenodomus. Aa – Ag. Sclerostagonospora. 

Ah – Al. Coniothyrium. Am – Ap. Septoria. Aq – Bc. Colletotrichum. Bd – Bm. Neopestalotiopsis. Bn – Bs. Diplodia. 

Bt – By. Neodeightonia. Bz – Cd. Neofusicoccum. Ce – Ci. Phyllosticta. A, H, Aa, Ah, Ai, Am, Bd, Ce. Conidiomata formed 

on 1/2 PDA. Bn. Conidiomata formed on Populus sp. twig. Bt, Bz. Conidiomata formed on palm leaflet pieces. Aq. Acervulus 

formed on host tissue. B, C. Optical section of conidioma. J, W, Ac. Vertical section of conidioma. Ab. Section of conidioma 

wall. I, K, Q. Ostioles. D, N, V, Z, Af, Ag, Aj, An, Aw, Bj – Bm, Bq – Bs, Bw – By, Cc, Cd, Ch, Ci. Conidia. 

E – G, O, P, R – U, X, Y, Ad, Ae, Ak, Ao, Ap, As – Av, Be – Bi, Bo, Bp, Bu, Ca, Cb, Cf, Cg. Conidiogenous cells. 

Ax. Ascoma on host tissue. Ay – Bb. Asci. Bc. Ascospore. Bv. Chlamydospores. L, M, Al. Chlamydospore-like aerial hyphal 

swelling cells. Aq – As. Setae. Scale bars: H, Aa, Bd, Bt, Bz = 1 mm, Ah, Bn, Ce = 0.5 mm, Ai = 0.2 mm, A = 0.1 mm, 

Ac = 30 μm, C, I, J, W, Aq, Ax = 15 μm, B, Q, Ab, Ar = 10 μm, D – G, K – P, R – V, X – Z, Ad – Ag, Aj – Al, An – Ap, 

As – Aw, Ay – Bc, Be – Bm, Bo – Bs, Bu – By, Ca – Cd, Cf – Ci  = 5 μm. 
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