UNIVERSIDAD PERUANA UNIÓN

FACULTAD DE INGENIERÍA Y ARQUITECTURA

Escuela Profesional de Ingeniería Ambiental

"Evaluación de la productividad primaria neta de los fustes y del dosel en un bosque húmedo Pre Montano Tropical (bh-PT) del Área de Conservación Regional Cordillera Escalera, región San Martín"

> Presentado para optar el Título Profesional de Ingeniero Ambiental

> > Autor Zamora López, Segundo Absalón

Asesor: Ing. Carmelino Almestar Villegas

Tarapoto, diciembre del 2018

DECLARACIÓN JURADA DE AUTORIA DEL INFORME DE TESIS

Ing. CARMELINO ALMESTAR VILLEGAS, de la Facultad de Ingeniería y Arquitectura, Escuela Profesional de Ingeniería Ambiental, de la Universidad Peruana Unión.

DECLARO:

Que el presente informe de investigación titulado: "Evaluación de la productividad primaria neta de los fustes y del dosel en un bosque húmedo Pre Montano Tropical (bh-PT) del Área de Conservación Regional Cordillera Escalera, región San Martín" constituye la memoria que presenta el Bachiller SEGUNDO ABSALÓN ZAMORA LÓPEZ para aspirar al título de Profesional de INGENIERO AMBIENTAL ha sido realizada en la Universidad Peruana Unión bajo mi dirección.

Las opiniones y declaraciones en este informe son de entera responsabilidad del autor, sin comprometer a la institución.

Y estando de acuerdo, firmo la presente constancia en TARAPOTO, a los 26 DIAS DEL MES DE DICIEMBRE DEL 2018

Ing. Carmelino Afriestar Villegas

ASESOR

"Evaluación de la productividad primaria neta de los fustes y del dosel en un bosque húmedo Pre Montano Tropical (bh-PT) del Área de Conservación Regional Cordillera Escalera, región San Martín"

TESIS

Presentada para optar el título profesional de Ingeniero Ambiental

JURADO CALIFICADOR

Ing. Ivone Vásquez Briones Presidente

Ing. Jessica Quipas Pezo

Ing. Manuel Nemesio Toribio Yalico Segretario

Ing. Carmelino Almestar Villegas Asesor

Dedicatoria

A Dios en primer lugar por su amor y cuidado constante, y a mis padres y hermanos por el apoyo incondicional en cada momento.

Agradecimiento

A Dios por su amor y cuidado constante.

A Eurídice Honorio por la oportunidad, la confianza depositada para realizar el presente estudio, también por el asesoramiento constante en el desarrollo de la tesis.

A John del Águila por el apoyo constante en la elaboración y procesamiento de datos del presente estudio.

Al Ing. Carmelino Almestar por el asesoramiento durante la redacción del informe de tesis.

A Hugo Sandoval, Heydi Marlo, Diego Sinti, Cindy Torres, Klinton Erazo, Jhonatan Vásquez, Jhonatan Alcantara y a todas las personas que de una u otra forma apoyaron en las mediciones de campo y en el tratamiento de muestras en laboratorio.

Índice

Dedicatoria	ii
Agradecimiento	V
Índice de Figuras	X
Índice de Tablas	XI
Índice de Anexos	XII
Resumen	13
Abstract	14
Capítulo 1. Introducción	15
1.1 Planteamiento del problema	16
1.1.1 Identificación y determinación del problema	16
1.1.2 Formulación del problema	17
1.2 Objetivos	17
1.2.1 Objetivo General	17
1.2.2 Objetivos Específicos	
1.3 Justificación	18
1.4 Presuposición filosófica	19
Capítulo 2. Revisión de literatura	20
2.1 Fundamentos del objeto de estudio	20
2.1.1 Ciclo del carbono	20
2.1.2 Cambio climático	21
2.1.2.1 Efecto Invernadero	21
2.1.2.2 Gases de efecto invernadero	21
2.1.2.3 Importancia de los bosques ante el cambio climático	22
2.1.3 El ciclo de carbono en los bosques tropicales	
2.1.4 Secuestro de carbono	
2.1.4.1 El stock de carbono	
2.1.4.2 Los flujos de carbono	
2.2 Definición de términos	24

a.	Bosque pre-montano	24
b.	Dióxido de carbono (CO2)	24
c.	Biomasa	25
d.	Necromasa	25
e.	Productividad primaria neta (PPN)	25
f.	Diámetro de altura de pecho (DAP)	25
g.	Herbario	26
2.3	Antecedentes	26
Capítulo	3. Materiales y métodos	33
3.1	Área de estudio	33
3.1.1	Parcela permanente de muestreo (PPM)	33
3.1	1.1.1 Accesibilidad	34
3.1.2	Clima	35
3.1.3	Fisiografía	35
3.1.4	Vegetación	36
3.2	Población y muestra	36
3.2.1	Población	36
3.2.2	2 Muestra	36
3.3	Diseño de la investigación	36
3.3.1	Equipos y materiales	37
3.4	Formulación de hipótesis	38
3.4.1	Hipótesis nula	38
3.4.2	P. Hipótesis alterna	38
3.5	Identificación de variables	38
3.6	Operacionalización de variables	38
3.7	Instrumentos de recolección de datos	39
3.8	Técnicas de recolección de datos y validación de instrumentos	39
3.8.1	Técnicas de recolección de datos	39
2 9 2	Validación de instrumentos	30

3.9 Plan de procesamiento de datos	39
3.9.1 Ecuaciones utilizadas en el análisis de datos	39
3.9.1.1 Composición florística y estructura horizontal del bosque	39
3.9.1.2 Productividad primaria neta del fuste	40
3.9.1.3 Productividad primaria neta del dosel	43
3.9.2 Análisis estadístico	44
3.9.2.1 Composición florística y estructura del bosque	44
3.9.2.2 Productividad Primaria Neta de los fustes	44
3.9.2.3 Productividad Primaria Neta del dosel	45
3.10 Procedimiento de la investigación	45
3.10.1 Composición florística y estructura horizontal del bosque	45
3.10.2 Estimación de la Productividad Primaria Neta de fustes por clases	
diamétricas	45
3.10.3 Estimación de la Productividad Primaria Neta del dosel	47
Capítulo 4. Resultados y discusión	49
4.1. Resultados	
4.1.1. Composición florística y estructura del bosque	
4.1.2. Estimación de la Productividad Primaria Neta del dosel	
4.1.2.1. Estimación de la PPN de los fustes para los años 2016 y 2017	
4.1.2.2. Estimación de la PPN de los Fustes por meses	
4.1.3. Estimación de la PPN del dosel por componentes	
4.1.3.1. Estimación de la PPN en Hojas para el 2016 y 2017	
4.1.3.2. Estimación de la PPN ramas para el 2016 y 2017	
4.1.3.3. Estimación de la PPN Flores para el 2016 y 2017	
4.1.3.4. Estimación de la PPN en Frutos y Semillas para el 2016 y 2017	
4.1.3.5. Estimación de la PPN en otros (material no identificado) para el 20	16 y
2017 57	-
4.1.4. Estimación de la PPN del dosel entre los meses en los años de muestr	eo 58
4.2. Discusión	59
4.2.1. Análisis de la composición florística y la estructura del bosque	
4.2.2. Análisis de la estimación de la PPN de los fustes	
4.2.3. Análisis de la estimación de la PPN del dosel	

Capítul	Capítulo 5. Conclusiones y recomendaciones	
5.1.	Conclusiones	62
5.2.	Recomendaciones	63
Referen	icias	64
Anexos		. 68

Índice de Figuras

Figura 1. Ciclo del carbono	21
Figura 2. Stocks y flujos de carbono en un bosque tropical	23
Figura 3. Diseño de la parcela permanente de muestreo ESC-01	34
Figura 4. Mapa de ubicación de la parcela permanente de muestreo (PPM)	. 35
Figura 5. Esquema de un dendrómetro	. 46
Figura 6. Distribución del número de individuos en función a las clases diamétricas	51

Índice de Tablas

Tabla 1. Coordenadas UTM de los vértices de la parcela permanente de muestreo CES-01
Tabla 2. Operacionalización de las variables
Tabla 3. Indice de valor de importancia de la especies florísticas
Tabla 4. Valores de la PPN para los años 2016 y 2017
Tabla 5. Valores de la Productividad Primaria Neta en los años 2016 y 2017 52
Tabla 6. Comparación de la PPN en Hojas para el 2016 y 2017 53
Tabla 7. Prueba de Rangos Múltiples de Duncan para la PPN en hojas
Tabla 8. Comparación de la PPN en Ramas para el 2016 y 2017 54
Tabla 9. Prueba de Rangos Múltiples de Duncan para la PPN en Ramas 55
Tabla 10. Comparación de la PPN en Flores para el 2016 y 2017 55
Tabla 11. Comparación de la PPN en Frutos y Semillas para el 2016 y 2017 56
Tabla 12. Prueba de Rangos Múltiples de Duncan para la PPN en Frutos y Semillas 56
Tabla 13. Comparación de la PPN en otros para el 2016 y 2017 57
Tabla 14. Prueba de Rangos Múltiples de Duncan para la PPN en otros
Tabla 15. Comparación de PPN del dosel para el 2016 y 2017
Tabla 16. Prueba de Rangos Múltiples de Duncan para la PPN

Índice de Anexos

Anexo 1. Formato para recolección de datos de la PPN del dosel	69
Anexo 2. Datos de incremento diamétrico de los fustes por especie	70
Anexo 3. Medición del incremento diamétrico	71
Anexo 4. Canastillas para colectar (Hojas, Flores, Ramas, Frutos y Semillas, Otros)	72
Anexo 5. Información de Especies, Género y Familias de la PPM	73

Resumen

El objetivo de la presente investigación fue evaluar la productividad primaria neta (PPN) de

fustes y del dosel en el Bosque Húmedo Pre montano Tropical en el Área de Conservación

Regional Cordillera Escalera (ACR-CE), durante los años 2016 y 2017. Para ello consideró

una parcela permanente de muestreo (PPM) del Bosque Húmedo Pre montano Tropical (bh-

PT) dentro de la ACR-CE. Para la composición florística y la estructura horizontal, y la PPN

de fuste, la muestra estuvo conformada por los árboles en la PPM de 1 hectárea. Asimismo,

para la PPN del dosel, la muestra estuvo conformada por los árboles en la PPM, con

dimensiones de colector de 50 x 50 cm. Las especies con mayor índice de valor de

importancia (IVI) fueron: Brosimum utile (lechoso), 17.22%, Virola pavonis (cumala

blanca), 14.45% y Senefeldera inclinata (Huangana caspi) 11.31%, las cuales tienen el

mayor peso ecológico e indica a su vez, que la estructura del bosque es diferenciada.

Asimismo, las clases diamétricas de las especies tuvieron una distribución en forma de "J"

invertida, lo cual indica la presencia de individuos juveniles, o sea el bosque está en

constante regeneración. De igual maner, las clases diamétricas inferiores (10 - 20 cm),

presentaron mayor PPN de fuste, que las mayores, este comportamiento se presentó en los

dos años de estudio. Finalmente, la PPN del dosel fue mayor en el mes de setiembre para los

años 2016 y 2017, mientras que los meses de mayo y abril presentaron el menor valor de la

PPN en los dos años de estudio.

Palabras clave: Productividad primaria neta, Fuste, Dosel, Carbono, Bosque húmedo pre

montano tropical

13

Abstract

The objective of the present investigation was to evaluate the net primary productivity (PPN)

of stems and canopy in the Tropical Pre-montane Humid Forest in the Cordillera Escalera

Regional Conservation Area (ACR-CE), during the years 2016 and 2017. Considered a

permanent sampling plot (PPM) of the Tropical Pre-montane Humid Forest (bh-PT) within

the ACR-CE. For the floristic composition and the horizontal structure, and the stem PPN,

the sample consisted of the trees in the PPM of 1 hectare. Also for the PPN of the canopy,

the sample consisted of the trees in the PPM, with collector dimensions of 50 x 50 cm. The

species with the highest value index of importance (IVI) were Brosimum utile (milky),

17.22%, Virola pavonis (white cumala), 14.45% and Senefeldera inclinata (Huangana caspi)

11.31%, which have the greatest ecological weight and it indicates, in turn, that the structure

of the forest is differentiated. Likewise, the diameter classes of the species had an inverted

"J" distribution, which indicates the presence of juvenile individuals, that is, the forest is in

constant regeneration. Likewise, the lower diameter classes (10 - 20 cm), had higher stem

PPN, than the larger ones, this behavior was presented in the two years of study. Finally, the

PPN of the canopy was greater in the month of September for the years 2016 and 2017, while

the months of May and April presented the lowest value of the PPN in the two years of study.

Key words: Net primary productivity, Fuste, Canopy, Carbon, Humid pre montane tropical

forest

14

Capítulo I

Introducción

Conocer el funcionamiento y la dinámica de los bosques a nivel del trópico ha cobrado gran interés durante las últimas décadas, ya que han sido objeto de estudio para comprender los procesos naturales que permiten la coexistencia del alto número de especies que los caracterizan, sin embargo son difíciles de estudiar y entender ya que dentro de ellos ocurren un gran número de interacciones (Vallejo *et al.*, 2005).

Denman *et al.*, citado en Honorio & Baker (2010) menciona que los bosques tropicales juegan un rol importante en el ciclo del carbono global porque contribuyen a regular la concentración de dióxido de carbono en la atmósfera y, por lo tanto, la tasa del cambio climático.

En ese sentido la Productividad Primaria Neta (PPN) se define como la diferencia entre la fotosíntesis total (productividad primaria bruta - PPB) y la respiración total de las plantas en un ecosistema, Clark *et al.*; citado en Mosquera et al. (2007).

Por medio de la PPN, se genera para el ecosistema todo el material orgánico que se almacena en un área y en un período de tiempo determinado, entre éstos el incremento en biomasa (hojas, incremento en tronco, ramas, etc.), además materiales reproductivos (flores, inflorescencias, frutos, semillas y néctar) y material radicular y asociaciones como micorrizas Clark *et al.*; citado en Mosquera *et al.* (2007). Así mismo Granados & Corner (2006) mencionan que las estimaciones precisas de productividad primaria neta constituyen la base fundamental para el entendimiento referente a la capacidad de los ecosistemas para almacenar biomasa; y que además su importancia radica en su relación directa con el

incremento de CO₂ atmosférico, debido al rol que cumplen los bosques como sumideros y reservorios de carbono.

En la región San Martín no se ha encontrado estudios de productividad primaria neta; por tal motivo se tuvo como objetivo Evaluar la composición florística y la estructura horizontal además de la productividad primaria neta (PPN) de fustes y del dosel dentro de la Parcela Permanente Muestreo, en las inmediaciones del Centro de Investigación de la Universidad Nacional de San Martín dentro del Área de Conservación Regional Cordillera Escalera (ACR-CE). Las condiciones que ofrece el lugar son características de un Bosque Húmedo Pre montano Tropical (bh-PT).

1.1 Planteamiento del problema

1.1.1 Identificación y determinación del problema

En los últimos años el monitoreo del ciclo del carbono en los bosques tropicales ha cobrado gran importancia dado al papel que estos desempeñan como almacenes de carbono y consecuentemente como reductores de los gases de efecto invernadero (CO₂). Para Vallejo *et al.* (2005), los bosques tropicales contienen aproximadamente el 40% del contenido total de carbono del planeta y el 36% de la productividad primaria neta (PPN).

El aumento en la concentración de CO2 atmosférico y los cambios en el clima podrían tener un efecto significativo en el ciclo del carbono en este bioma; lo cual tiene importancia a escalas regionales y globales, puesto que cambios pequeños en la relación entre la fotosíntesis y la respiración pueden afectar el balance del carbono en la biosfera Clark citado por Kloeppel, Harmon, & Fahey (2007)

Mediante la productividad primaria neta (PPN), se genera para el ecosistema todo el material orgánico que se almacena en un área y en un periodo determinado entre estos, el incremento de la biomasa (hojas del dosel, tronco, ramas, etc.), además materiales

reproductivos (flores, frutos, semillas). En ese sentido Prause *et al.* (2003) dice que la producción de hojarasca representa un componente fundamental de la PPN en ecosistemas arbóreos en un estado dinámico estable, puede contribuir con 20 a 30% de la productividad total del bosque.

Es por ello que las estimaciones precisas de PPN constituye la base fundamental para el entendimiento referente a la capacidad de almacenamiento de biomasa en los ecosistemas; además, son importantes por su relación directa con el incremento de CO2 atmosférico, debido al papel que los bosques tienen como sumideros y reservorios de carbono.

La productividad del dosel es relativamente fácil de medir y cuantificar dentro del bosque. A pesar de que existen algunos estudios de la productividad primaria en bosques montanos y bosques de la llanura baja en la amazonia peruana usando parcelas permanentes de monitoreo intensivo, hasta hoy en día no existen muestreos realizados en un bosque pre montano. Por lo tanto, se desconoce la contribución de la hojarasca en la productividad total de estos bosques, siendo la prioridad del presente estudio. Por otro lado, cabe mencionar que los bosques pre montanos son importantes por ser ecosistemas de transición ya que contienen alta diversidad de plantas y son áreas críticas para el refugio de especies.

1.1.2 Formulación del problema

¿Cuál es la productividad primaria neta (PPN) de fustes y del dosel en el Bosque Húmedo Pre montano Tropical en el Área de Conservación Regional Cordillera Escalera, durante los años 2016 y 2017?

1.2 Objetivos

1.2.1 Objetivo General

Evaluar la productividad primaria neta (PPN) de fustes y del dosel en el Bosque Húmedo Pre montano Tropical en el Área de Conservación Regional Cordillera Escalera, durante los años 2016 y 2017.

1.2.2 Objetivos Específicos

- Evaluar la composición florística y la estructura horizontal del bosque dentro de la parcela permanente de una hectárea.
- Estimar la productividad primaria neta de fustes por clases diamétricas durante los años 2016 y 2017.
- Estimar y comparar la productividad primaria neta del dosel arbóreo entre periodos mensuales durante los años de muestreo.

1.3 Justificación

El incremento atmosférico de dióxido de carbono podría influenciar en la fisiología de las plantas y los ecosistemas. Una de las respuestas más claras de las plantas, al incremento de la concentración de CO₂ en la atmosfera, es el efecto o estimulante que este ejerce sobre la actividad fotosintética, Bazzaz citado en Granados & Corner (2006).

Los bosques tropicales constituyen alrededor del 7% de la superficie terrestre, participan de forma importante en el balance de carbono global, contribuyen a regular la concentración de dióxido de carbono en la atmósfera, debido a la gran cantidad de carbono que almacenan (aprox. 55% de las reservas actuales de carbono en los ecosistemas boscosos del mundo, Pan et al. (2011) y a los grandes flujos de carbono que estos bosques procesan cada año, fijan aprox. 33% de la productividad primaria neta terrestre global, del Grosso et al. citado en Pallqui *et al.* (2014).

Por lo tanto, el estudio de la dinámica de la biomasa y el carbono es fundamental para comprender el papel que éstos bosques desempeñan en el ciclo global de este elemento (Clark et al., 2001). Así mismo teniendo en cuenta que existe una gran variedad de tipos de bosque, es importante estudiar su capacidad a una escala más regional y/o paisajística.

La biomasa, la productividad primaria y la captura de carbono son variables ecológicas elementales, no sólo porque son medidas de la entrada de energía y asimilación

de CO2 en los ecosistemas, sino porque son igualmente un importante indicador del estado de los ecosistemas y del estatus de un amplio rango de procesos ecológicos. Por lo tanto, estimar las reservas de biomasa de los bosques es una herramienta útil para valorar la cantidad de carbono que se almacena en las estructuras vivas en un momento dado, lo cual es importante para evaluar su contribución al ciclo del carbono (Brown, 1997).

Es por esta razón que el propósito de esta investigación se centra en evaluar la composición florística, la estructura horizontal del bosque así como también la productividad primaria neta de los fustes y del dosel en una parcela permanente de muestreo, en un bosque húmedo pre montano tropical dentro del Área de Conservación Regional "Cordillera Escalera"; para lo cual se aplicarán protocolos estandarizados por el Instituto de Investigaciones de la Amazonia Peruana como parte de su trabajo con la Red Amazónica de Inventarios Forestales (RAINFOR). De esta manera se podrá mejorar el entendimiento del ciclo del carbono en este tipo de bosque y complementar a la información ya existente.

1.4 Presuposición filosófica

En Génesis 2: 15, la palabra de Dios afirma "Tomó, pues, Jehová Dios al hombre, y lo puso en el huerto de Edén, para que lo labrara y lo guardase". En este contexto el Señor creó todo lo que existe para que el ser humano lo cuidadara. Asimismo, las plantas fueron creadas por Dios para que sirvan de alimento a los seres humanos y animales. Las plantas son los seres vivos autótrofos, es decir producen su propio alimento. Esta función pueden cumplirla través del almacenamiento de energía (biomasa).

Capítulo II

Revisión de literatura

2.1 Fundamentos del objeto de estudio

2.1.1 Ciclo del carbono

En la naturaleza podemos encontrar el carbono por doquier, como carbonatos en el agua y como CO2 en el aire. Además todos los seres vivos están constituidos por compuestos de carbono, lo cual se obtiene del resultado de los procesos metabólicos que se lleva a cabo en las etapas de crecimiento y desarrollo los mismos que se liberan cuando muere. Según Smith *et al.*, citado por Ordoñez (1999) el 50% del peso seco de cualquier organismo es carbono aproximadamente.

El ciclo del carbono se inicia con la fijación del CO₂ atmosférico mediante el proceso de la fotosíntesis, la cual se realiza por las plantas y ciertos microorganismos. En este proceso, el CO₂ y el agua reaccionan para formar carbohidratos y liberar oxígeno en forma simultánea, que pasa a la atmósfera. Parte del carbohidrato se consume directamente para suministrar energía a la planta, y el anhídrido carbónico así formado se libera a través de sus hojas o de sus raíces. Otra parte es consumida por los animales, que también respiran y liberan CO₂. Finalmente al morir las plantas y animales, son descompuestos por microorganismo del suelo, lo cual hace que en ese proceso el carbono de sus tejidos se oxide en CO₂ y retorne a la atmosfera Smith *et al.*, citado en Ordoñez (1999).

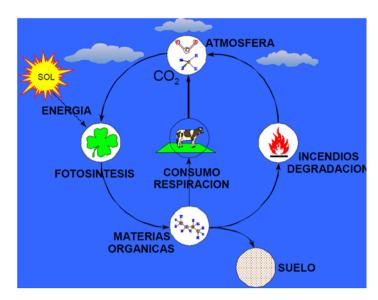


Figura 1. Ciclo del carbono

Fuente: Ordoñez (1999)

2.1.2 Cambio climático

Es el cambio del clima por la alteración de la composición de la atmosfera mundial, la cual se suma a la variación natural del clima, la cual es atribuida directa e indirectamente a las actividades antrópicas; por otro lado se dice que los cambios que ocurran en el transcurso del tiempo es a consecuencia de la actividad humana por las grandes emisiones de gases de efecto invernadero (Minsiterio del Ambiente, 2010).

2.1.2.1 Efecto Invernadero

Es un proceso natural que permite el equilibrio entre las temperaturas bajas y altas, lo cual hace posible el desarrollo de la vida en la tierra. A través de este proceso la atmosfera la cual rodea a la tierra deja que una parte de la energía del sol se almacene en la superficie de la tierra para mantener una temperatura de aproximadamente 15°C.

2.1.2.2 Gases de efecto invernadero

Los gases de efecto invernadero son componentes gaseosos de la atmósfera, naturales o antropogénicos, y su característica es que permiten que la radiación solar atraviese la

atmósfera pero también hacen que se retenga parte de la radiación infrarroja rebotada por el suelo.

Los más importantes están presentes en la atmósfera de manera natural, aunque su concentración puede verse modificada por la actividad humana, pero también entran en este concepto algunos gases artificiales, producto de la actividad industrial. dióxido de carbono (CO₂), metano (CH₄), óxido nitroso (N₂O), hidroclorofluorocarbonos (HFC), perfluorocarbonos (PFC) y hexafloruro de azufre (SF₆).

2.1.2.3 Importancia de los bosques ante el cambio climático

Vallejo et al. (2005) dice que los bosques tropicales son idóneos para almacenar más carbono respecto a cualquier otro ecosistema terrestre, ya que estos contribuyen con el 90% del flujo anual de carbono entre la atmósfera y el suelo. Además participan en la cuantificación de carbono, partiendo de las estimaciones de biomasa de un ecosistema forestal, ya que diferentes estudios demuestran que del total de biomasa vegetal el 50% es carbono. Así mismo se puede determinar la capacidad de almacenamiento de carbono en los bosques realizando diferentes análisis y observándolos en relación con determinadas variables ambientales.

2.1.3 El ciclo de carbono en los bosques tropicales

Los bosques cumplen un rol importante en el ciclo de carbono ya que el CO₂ presente en la atmósfera es incorporado en los procesos metabólicos de las plantas mediante la fotosíntesis y sea fijado en sus diferentes estructuras como el tronco, tallos, raíces; y por consecuencia permiten minimizar los efectos del cambio climático.

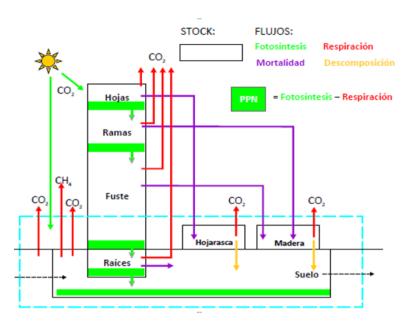


Figura 2. Stocks y flujos de carbono en un bosque tropical

Fuente: Honorio & Baker (2010).

2.1.4 Secuestro de carbono

El secuestro de carbono consiste en el almacenamiento de carbono en suelos, bosques y otros tipos de vegetación.

2.1.4.1 El stock de carbono

Se considera stock a la cantidad de carbono almacenado en un momento determinado, y se encuentra en diferentes componentes (Hojas, ramas, fustes y raíces) y se expresa en Mg ha⁻¹.

2.1.4.2 Los flujos de carbono

La dinámica del carbono se refiere a los cambios que se producen en las cantidades que se midieron en un momento inicial, con referencia a un periodo de tiempo. El carbono contenido en un bosque varia constantemente de la siguiente manera.

El carbono se acumula, a) en la biomasa debido al proceso de fotosíntesis y crecimiento de las plantas en su parte aérea (tallos, ramas, hojas) y subterránea (raíces gruesas y finas) y, b) en el suelo debido a la incorporación de materia orgánica

proveniente de la degradación de la biomasa producida por la muerte de las plantas o pérdida de sus órganos leñosos (ramas, raíces gruesas y raíces finas) y no leñosos (hojas).

 El bosque pierde carbono debido a los procesos de respiración de las plantas, el suelo y la materia orgánica muerta.

La cuantificación de las ganancias y pérdidas de carbono en los bosques es fundamental, pues permite evaluar si están funcionando como fuentes o sumideros de carbono.

2.2 Definición de términos

a. Bosque pre-montano

Son aquellas áreas que cuentan con una alta densidad de árboles y se encuentran entre los 650 y 1000 msnm (IIAP, 2013). En el Perú, los bosques pre-montanos están ubicados al lado oriental de la cordillera de los Andes y son importantes captadores de humedad por lo que se les considera moduladores de los flujos hidrológicos y ostentan una función tan determinante como importante, como es la de conservar el suelo en zonas de pendiente.

b. Dióxido de carbono (CO2)

Es uno de los gases de efecto invernadero más importantes y que ha ido aumentando considerablemente en un 80% entre los años 1970 y 2004, ya en el 2005 los valores de la concentración atmosférica de CO₂ y CH₄ fue de 379 y 1774 ppm respectivamente, excediendo por mucho el intervalo natural de los últimos 650.000 años. Y se estima que el aumento de la concentración mundial de CO₂ se debe al uso de combustibles fósiles y a los cambios de uso de tierra IPCC citado por Quinceno & Tangarife (2013).

Por otra parte Ávila et al. (2001) afirma que es el gas de efecto invernadero que más favorece al calentamiento global.

c. Biomasa

Según Dauber, Terán, & Guzmán (1992) la biomasa representa la cantidad total de carbono orgánico almacenado en las porciones aéreas y subterráneas del ecosistema. La biomasa aérea o peso seco del material vegetal de los árboles, incluye los fustes, la corteza, las ramas, hojas, semillas y flores, desde la superficie del suelo hasta la copa del árbol. La biomasa subterránea o debajo del suelo incluye las raíces de los árboles y el carbono en el suelo.

d. Necromasa

La necromasa incluye la materia orgánica almacenada en los componentes muertos del bosque tales como la madera muerta y la hojarasca. La madera muerta está constituido por todo material leñoso caído o muerto en pie, mientras la hojarasca es también conocida como el horizonte O, y es una capa de material orgánico constituida por hojas, ramillas, flores y frutos que caen de los árboles y cuyas formas se pueden reconocer a simple vista.

e. Productividad primaria neta (PPN)

Según Honorio & Baker (2010), se denomina productividad primaria neta (PPN) al incremento neto en la biomasa debido a la fotosíntesis, excluyendo el carbono utilizado en la respiración y se cuantifica midiendo el incremento del fuste y la producción de ramas, hojas y raíces.

Representa el aumento de la biomasa por unidad de tiempo y se obtiene restando de la producción bruta la energía consumida en el proceso respiratorio de auto mantenimiento (R) en una unidad eco sistémica: PPN = PPB – R.

f. Diámetro de altura de pecho (DAP)

Diámetro a la altura del pecho o diámetro normal, es el diámetro en pie a 1.30 metros de altura sobre el nivel del suelo.

g. Herbario

En botánica, un herbario (del latín herbarium) es una colección de plantas o partes de plantas, desecadas, preservadas, identificadas y acompañadas de información sobre el sitio de colección, (País, provincia, departamento, localidad, fecha, datos de coordenadas, observaciones de la planta y/o del sitio de colección) nombre común y usos. Tal colección en general representa a la flora, o patrimonio vegetal, de una localidad, región o país. También se conoce como herbario al espacio físico donde se encuentra depositada esta colección. Su función principal es servir de referencia o patrón en la investigación botánica.

2.3 Antecedentes

Quinto, Ramos & Abadia (2007) cuantificaron la caída de hojarasca como medida de la productividad primaria neta en un bosque pluvial tropical en Choco-Colombia. El estudio lo realizó durante un periodo de seis meses; donde seleccionaron dos sub parcelas instalando en cada una de ellas quince colectores de hojarasca haciendo un total de 30, ubicadas sistemáticamente en el área de muestreo cada 30 metros teniendo en cuenta variadas áreas del bosque. El material colectado se separó cuidadosamente en varios componentes (hojas, ramas con < 2cm de diámetro, frutos, flores, semillas, vegetación asociada y restos no identificados) para obtener su peso fresco y seco hasta alcanzar un peso constante, todo el proceso se realizó con una balanza analítica de precisión y se secó a 60° durante 24 horas en un horno de secado. La producción de hojarasca fue de 7.2 Mg C ha⁻¹ año⁻¹; representada en: 60.7% hojas, 29.8% tallos, 3.37% frutos, 0.84% flores, 0.56% semillas, 0.56% vegetación asociada y 4.18% material indeterminado. Además observaron que no existe relación significativa entre el aumento en la precipitación y la producción de hojarasca (r² = 5.8; p = 0.45). La relación entre las características de vegetación (área basal, diámetro, altura, número de árboles) con la producción de hojarasca (r² = 20.78; p = 0.3135) fue baja.

Cruzado (2010) realizó un estudio para determinar el carbono almacenado en la biomasa aérea de los bosques alto andinos de la Concesión para conservación Alto Huayabamba (CCAH), ubicada en el distrito de Huicungo, provincia de Mariscal Cáceres, departamento de San Martín; para lo cual estableció cuatro parcelas rectangulares de 0,5 ha, con sub parcelas anidadas para realizar el inventario y registro dasometrico de la vegetación arbórea, sotobosque y herbáceas; además se evaluó la madera muerta y hojarasca. La estimación de biomasa aérea la realizó mediante el empleo de ecuaciones alométricas. En promedio, estimo que la biomasa aérea almacenada en los bosques alto andinos de la CCAH es 167,11 ± 25,8 Mgha⁻¹, donde la biomasa arbórea viva, que incluye el componente arbóreo (DAP ≥ 10 cm), sotobosque (2,5 cm ≥ diámetro < 10 cm), herbáceas (1cm ≥ diámetro < 2,5 cm) y el dosel representa el 83,5 % y la necromasa (donde se incluye la necromasa mayor y hojarasca), representa el 16,5 % del total. Existiendo una variación que oscila entre 85,49 Mgha⁻¹ y 248,67 Mgha⁻¹, con un coeficiente de variación de 30,6 %.

Pallqui et al. (2014) evaluaron los cambios en la biomasa aérea almacenada y su dinámica en el tiempo en 9 parcelas permanentes pertenecientes a la red de parcelas de RAINFOR, ubicados dentro del bosque húmedo tropical de la Reserva Nacional de Tambopata en la llanura amazónica. Los datos tomados en campo se realizaron bajo la metodología estandarizada RAINFOR. Y para estimar la biomasa se aplicó la ecuación de Chave et al. (2005) para bosques húmedos tropicales. El análisis de la dinámica de la biomasa se realizó separando los datos por periodos entre censos a partir del año 2003 hasta el 2011. Se registraron 64 familias, 219 géneros y 531 especies. La composición florística es muy similar en todas las parcelas excepto en la parcela de pantano. Se pudo evidenciar dos grupos levemente distintos y aparentemente relacionados a la edad de las antiguas terrazas fluviales de la zona. La tasa de mortalidad y reclutamiento de individuos presentaron valores promedio de 2.12 ± 0.52% y 1.92 ± 0.49%, respectivamente. La tasa de reemplazo

es 2.02% anual. La biomasa aérea almacenada fue de 296.2 ± 33.9 Mgha⁻¹ en promedio. La dinámica de la biomasa mostró una ganancia neta total de 1.96, 1.69 y -1.23 Mgha⁻¹ para cada periodo respectivamente. Antes de la sequía de 2010 se encontró un cambio en la biomasa de 1.88 Mgha⁻¹ año⁻¹ y post sequía fue -0.18 Mgha⁻¹ año⁻¹ en promedio, sin embargo las diferencias no fueron significativas.

Návar & Jurado (2009) midieron la caída de hojas y ramas desde enero a junio del 2004 en 16 comunidades forestales del noreste de México, utilizando 75 trampas de 1 x 1 m suspendidas sobre el suelo, con tres repeticiones al menos. Donde la productividad de hojarasca promedio (\pm intervalo de confianza $\alpha=0.05$) fue de 3.79 Mgha⁻¹a⁻¹ (\pm 1.43); destacan las comunidades de Cupressus spp. (9.25 \pm 2.58), el matorral espinoso tamaulipeco en el derramadero (7.23 \pm 2.09) y una plantación de Pinus pseudostrobus (5.27 \pm 0.93), mientras que el resto de los bosques tuvieron valores inferiores a 4.05 Mgha⁻¹.año⁻¹. Las variaciones encontradas se asocian con la cantidad de biomasa aérea presente. Los valores que corresponde a la hojarasca siguieron una tendencia estacional contrastante entre comunidades subtropicales y templadas; se definió que, cuantitativamente, es tan importante como la productividad maderable de muchos ecosistemas, por lo que no se debe obviar en los balances de masas y energía.

Pardo et al. (2014) obtuvieron los datos de densidad, altura total e incremento diamétrico mensual de árboles con DAP ≥ 10 cm en dos parcelas de 1 ha (100 x 100 m) en un bosque húmedo (BH) y bosque seco (BS) en Kenia, Guarayos (Santa Cruz, Bolivia). Se usaron ecuaciones alométricas donde se introdujeron los datos obtenidos para estimar la biomasa y luego obtener la productividad de biomasa aérea (PBA), comparándola entre un año húmedo (2009) y uno seco (2010); asimismo se contrastó entre sus estaciones (húmeda, semiseca, seca, semihúmeda), también se analizó su relación con la precipitación y temperatura. La PBA interanual fue significativamente mayor en el año húmedo (BH = 40.16

kg/árbol/año; BS = 24.21 kg/árbol/año) respecto al año seco (BH = 35.97 kg/árbol/año; BS = 17.71 kg/árbol/año) (p < 0.05), mientras que la PBA interestacional fue mayor en la estación húmeda/2009 y la menor en la seca/2010, un escenario observado en ambos tipos de bosque. En cuanto a la relación de los factores climáticos con la PBA estacional, se evidenció que la precipitación pluvial tuvo una alta relación con la productividad (BH: rs = 0.91; p < 0.05); (BS: rs = 0.88; p < 0.05). Finalmente se concluyó que los periodos con sequias afectan de manera significativa la productividad de biomasa aérea, afirmándose que el clima juega un rol fundamental en la dinámica de estos bosques.

Rodríguez, Chang & Goti (2012) determinaron la producción de hojarasca en un estudio del manglar de Rhizophora mangle L. del refugio de vida silvestre Isla de Cañas distrito de Tonosi, Provincia de Los Santos en el pacifico panameño en tres parcelas de 10 m x 100 m, entre enero y abril, época seca, entre julio y octubre, época lluviosa de 2007. Donde instalaron 14 canastas colectoras de hojarasca por parcela, de 8 cm de alto, 50 cm de largo por 50 de ancho, con un área de (0.25 m²). La productividad de hojarasca estuvo conformada principalmente por hojas. Para la estación seca las hojas constituyen el 63,62 % del peso seco total mientras que en la lluviosa el 72,16 %. Los valores de productividad total de hojarasca no presentan diferencias significativas entre las estaciones secas y lluviosas, y su tasa promedio de producción anual fue de a 12629 Kg/ha/año.

Quinto & Moreno (2011) cuantificaron la biomasa aérea (BA) en un bosque maduro de salero (choco Biogeográfico), mediante ecuaciones diseñadas para bosques húmedos tropicales, a partir de datos de densidad de madera, diámetro (DAP) y altura de árboles (con DAP = 10 cm) medidos en dos sub-parcelas permanentes ("E" y "U") de 1 ha, las cuales se monitorearon en los años 1998, 2005 y 2008. La BA fue 237,31 Mgha⁻¹, 259,99 Mgha⁻¹ y 217,97 Mgha⁻¹ respectivamente en la sub-parcela "E". Mientras que en la "U" fue de 178,94 Mgha⁻¹ y 179,17 Mgha⁻¹ en los años 2005 y 2008; las diferencias de BA a través del tiempo

fueron no significativas. Los incrementos promedios anuales de BA de sobrevivientes fueron 4,42 y 3,18 Mg.ha⁻¹.año⁻¹ en las sub-parcelas "E" y "U" respectivamente. Además, en sub-parcela "E" en condiciones no perturbadas, se presentó una tasa de incremento neto de la BA (TINBA) de 2,61 Mgha⁻¹ año⁻¹, en concordancia con la hipótesis del incremento en la BA en los bosques húmedos tropicales. La productividad primaria neta aérea (PPNA) en Salero de carbono fue de 5,21 Mgha⁻¹ año⁻¹, por lo tanto los resultados no apoyaron la hipótesis de la disminución en la productividad de los bosques tropicales con el incremento en la precipitación.

Sanchez et al. (2003) determinaron la producción de hojarasca durante un año en un bosque semideciduo situado en el municipio de Potirendaba, Estado de Sao Paulo, Brasil. Donde utilizaron 15 colectores de 0.25 m² de superficie. Las colectas lo realizaron mensualmente, desde junio de 1999 hasta mayo del 2000. Todo el material colectado lo clasificaron en 5 componentes y se obtuvo su peso seco en una estufa a 80°C. El total anual que calcularon fue de 8719.5 kg/ha; donde el 64% correspondió a hojas, 23% a ramas, 6% a elementos reproductivos, 1% a corteza, mientras que el 6% restante fue catalogado como miscelánea (fragmentos no identificados). La caída de hojarasca se produjo durante todo el año y se observaron 2 picos, el primero en septiembre de 1999 (1213.9 kg/ha) correspondiente a la estación seca y debido al stress hídrico. El segundo pico se registró en marzo del 2000 (1153.6 kg/ha) durante la estación lluviosa, y se atribuye al efecto mecánico de las lluvias y a la acción de los vientos intensos registrados en este período.

Araujo et al. (2014), establecieron dos parcelas de 1ha de 100 x100 m² dividas en 25 sub parcelas en Guarayos, provincia de Santa Cruz, Bolivia en 2009. La parcela con suelo poco profundo lo denominaron Kenia-seca; y la otra parcela con suelo más profundo lo denominaron Kenia-Húmedo. Ambas parcelas se encuentran en la zona de transición entre el bosque húmedo del Amazonas y el bosque de transición chiquitano y difieren en cuanto a

su fisonomía y composición florística. Para calcular la PPN del fuste instalaron dendrómetros en todos los árboles mayores de 10 cm de DAP en cada parcela. Esto les permitió determinar la variación espacio-temporal y estacional en el crecimiento mediante mediciones mensuales. La biomasa fue calculada utilizando la ecuación alométrica de Chave et al. (2005) para los bosques húmedos tropicales : AGB = 0,0509 × (ρD H) donde AGB es biomasa aérea (kg) , ρ es la densidad (g cm -3), de madera , D es DAP (cm) y H es la altura (m) . Para convertir los valores de biomasa en carbono asumieron que la biomasa del tallo seco es 47,4 % de carbono (Martin y Thomas 2011). Como resultado Kenia húmedo tuvo un valor de 2.71 MgCha⁻¹ año⁻¹ mientras que Kenia-seca obtuvo un valor de 2.10 MgCha⁻¹ año⁻¹. De este total Kenia-húmedo mostró un pico en el crecimiento leñoso en enero con 0.43 Mg C ha-1 mes-1 y un mínimo en agosto con 0.10 MgCha⁻¹ mes⁻¹. Mientras que Kenia-seco mostró un pico en el crecimiento leñoso en enero con 0.53 MgCha⁻¹ mes⁻¹ y un mínimo en agosto esencialmente sin crecimiento (-0.05 MgCha⁻¹ mes⁻¹)

Así mismo, Araujo et al. (2014), estimaron la PPN de la hojarasca mediante la recopilación mensual de éstas en colectores de 0.25 m² -ubicados en 25 puntos de cada una de las parcelas. Las muestras colectadas fueron secados y pesados, estimándose que un 49,2% del peso es carbono. En ambos sitios alcanzó la mayor productividad de hojarasca entre abril y setiembre. La PPN total del dosel para Kenia - húmedo fue de 5.65 ± 0.65 MgCha⁻¹ año⁻¹ en, mientras que para Kenia - seca fue de 4.23 ± 0.57 MgCha⁻¹ año⁻¹. En Kenia - húmeda se promedió un 0.66 MgCha⁻¹ mes⁻¹en el mes pico y 0.30 MgCha⁻¹ mes⁻¹ para los otros meses; mientras que en Kenia - seca se promedió 0.49 MgCha⁻¹ mes⁻¹ en el mes pico y 0.22 MgCha⁻¹ mes⁻¹ para los otros meses. De este total, la proporción de hojas, ramas y órganos reproductivos fue de 52:13:24 para la parcela húmeda y 53:12:26 para la parcela seca.

Malhi et al. (2014), realizaron estudios en 2 parcelas que se encuentran en la reserva Tambopata Candamo, en la región de Madre de Dios, basado en parcelas de inventario forestal 1 ha a largo plazo que se establecieron en la década de 1980 (Gentry 1988), que ahora forman parte de la red de inventario forestal RAINFOR, estas parcelas fueron denominadas TAM 05 y TAM 06 respectivamente, cabe mencionar que estas parcelas a pesar de su relativa proximidad, los suelos difieren en términos de la historia geológica. TAM 05 está situado en una terraza del pleistoceno (<100.000 años), mientras que TAM 06 está situado en una Holoceno reciente llanura de terraza (< 10.000 años de edad; con parte de la parcela todavía ocasionalmente inundado bajo condiciones de agua muy altas), así mismo TAM 05 tiene un alto contenido de arena (40%), mientras que en TAM 06 predomina arcilla y limo (2% arena). Se estimó la productividad primaria neta (PPN) de hojarasca, para ello se colecto el material (hojas, flores, frutos, semillas, ramas y otros) en trampas o colectores de 0.25 m² (50 cm x 50 cm) colocados a 1 m por encima del suelo en el centro de cada una de las 25 tramas secundarias en cada parcela, el material colectado ya separado en componentes se secó en estufa a 80° C. Las tasas de hojarasca fueron altas en ambos lotes: $5,39 \pm 0,35$ y $4,94 \pm 0,40$ MgCha⁻¹ año⁻¹ para TAM; la caída de hojarasca mostro estacionalidad sustancial en ambas parcelas, comenzando a subir a mediados de la temporada seca (julio) y llegando al final de la temporada/ arranque en seco de la temporada de lluvias (septiembre/octubre).

Capítulo III

. Materiales y métodos

3.1 Área de estudio

Este estudio se desarrolló en las inmediaciones del Área de Conservación Regional Cordillera Escalera (ACR-CE), que está ubicado en el departamento de San Martín.

3.1.1 Parcela permanente de muestreo (PPM)

La parcela se encuentra dentro de los límites del Centro Académico, Investigación y Ecoturismo – Biodiversidad, a la altura del km 16 de la carretera Tarapoto – Yurimaguas, a una altitud de 950 msnm; dicho centro pertenece a la Universidad Nacional de San Martín.

La parcela permanente de muestreo (PPM) es de una hectárea, la cual fue instalada en marzo del año 2013 por el Instituto de Investigaciones de la Amazonia Peruana, a la que se denominó ESC-01 siguiendo el protocolo de la Red Amazónica de Inventarios Forestales (RAINFOR); su altitud varía de entre los 945 y 960 msnm.

La parcela tiene una forma cuadrada y sus dimensiones son de 100m x 100m y está dividida en 25 sub parcelas de 400 m² (20m x 20m) cada una (Figura 3). La parcela cuenta con 382 especímenes de herbario relacionados a los árboles y utilizados para la actualización de la determinación de las especies. Dentro de la parcela, se instalaron 834 bandas dendrométricas para evaluar el incremento diamétrico de los fustes y 25 colectores de hojarasca para evaluar la PPN del dosel. Las coordenadas de sus vértices se describen en la Tabla 1.

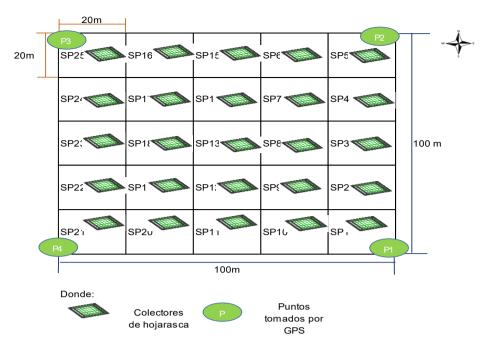


Figura 3. Diseño de la parcela permanente de muestreo ESC-01

Fuente: Elaboración propia

En la Figura 3 se muestra las dimensiones de las sub parcelas y de la parcela en general, así como también la distribución de las canastillas en cada sub parcela.

Tabla 1. Coordenadas UTM de los vértices de la parcela permanente de muestreo CES-01

Vértice —	Proyección U	ΓM (m)	Elevación
vertice —	N	Е	(msnm)
P1	357436	9285329	945
P2	357526	9285334	950
P3	357528	9285436	960
P4	357430	9285424	945

Fuente: Elaboración propia

En la Tabla 1 se muestra las coordenadas UTM de ubicación de la parcela, la cual se ubica en la zona 18S.

3.1.1.1 Accesibilidad

Para acceder a la parcela permanente de muestreo, es necesario hacer uso del transporte terrestre, dirigiéndonos hasta el km 16 de la carretera Tarapoto – Yurimaguas. A partir de allí se camina 15 minutos hasta el Centro de Investigación de la Universidad

Nacional de San Martín (Biodiversidad), para luego trasladarnos hacia la PPM ubicada a 2 minutos de dicho lugar.

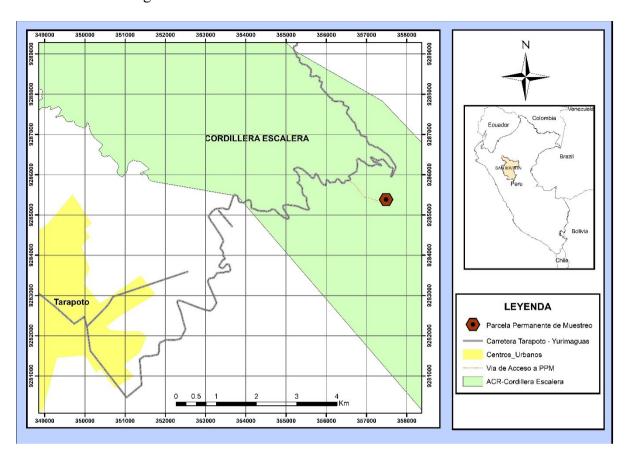


Figura 4. Mapa de ubicación de la parcela permanente de muestreo (PPM).

Fuente: Elaboración propia.

3.1.2 Clima

En términos de precipitación, el Área de Conservación Regional – Cordillera Escalera puede dividirse en dos grandes zonas: la vertiente oriental que tiene un rango de 2500 mm a 3500, y la vertiente occidental con precipitaciones que van desde 1500 a 2000 mm; en esta última se encuentra ubicada la parcela permanente donde se realizó el estudio

3.1.3 Fisiografía

Siguiendo la clasificación de zonas de vida de Holdridge la zona de muestreo se cataloga como bosque húmedo Pre montano Tropical (bh-PT), y se encuentra entre los 650 y 1000 msnm, encontrándose colinas altas, depresiones laderas y montañas.

3.1.4 Vegetación

La comunidad vegetal natural más importante que existe en el ACR–CE es el Bosque Denso Perennifolio, constituido por un bosque mixto de especies latifoliadas siempre verdes, que varía localmente en cuanto a densidad, altura y composición de especies, de acuerdo a las condiciones medioambientales del hábitat. Este bosque contiene gran cantidad de especies arbóreas y una gran diversidad de bejucos, lianas, arbustos y hierbas, así como epífitas; es muy dinámico, estando en constante regeneración por el sistema natural de claros creados por la caída de árboles, debido generalmente a los fuertes vientos existentes en la región (ACR-CE, 2007).

3.2 Población y muestra

3.2.1 Población

La población está constituida por el bosque Húmedo Pre montano Tropical (bh-PT) dentro del área del Área de conservación Regional Cerro Escalera.

3.2.2 Muestra

Para la composición florística y la estructura horizontal, así como para la PPN de fuste, la muestra estuvo conformada por los árboles en la PPM de 1 hectárea. Mientras que, Para el estudio de la PPN del dosel, la muestra estuvo conformada por los árboles en la PPM de 1 hectárea, con dimensiones de colector de 50 x 50 cm.

3.3 Diseño de la investigación

Para el desarrollo de la investigación, se selecciónó un diseño no experimental, longitudinal y de tipo panel. Según Hernandez, Fernandez & Baptista (2010) los diseños no experimentales se realizan sin manipular intencionadamente las variables. Es decir, se trata de estudios donde no se hace variar en forma intencional las variables independientes. Lo

que se hace en la investigación no experimental es observar fenómenos tal como se dan en su contexto natural, para posteriormente analizarlos.

Longitudinal: Estudios que recaban datos en diferentes puntos del tiempo, para realizar inferencias acerca de la evaluación, sus causas y efectos.

De panel: los mismos sujetos o individuos son medidos u observados en todos los tiempos o momentos. Así mismo Hernandez, Fernandez & Baptista (2010) menciona que en este tipo de diseño se tiene la ventaja de que además de conocer los cambios grupales, se conocen los cambios individuales; sirve para estudiar poblaciones o grupos más específicos y es conveniente cuando se tienen poblaciones relativamente estáticas.

3.3.1 Equipos y materiales

a. Equipos

- Laptop DELL Core i5
- Scanner (HP deskejt 1535)
- Microsoft Office 2013
- Estufa

b. Materiales

- Papel periódico
- Fichas de recolección de datos
- Formatos de campo
- Marcadores indelebles
- Bolsas plásticas

Cinta de embalaje

- Flagging

3.4 Formulación de hipótesis

3.4.1 Hipótesis nula

La Producctividad primaria neta del dosel en el año 2016 es menor que la PPN del dosel del año 2017.

3.4.2 Hipótesis alterna

La Producctividad primaria neta del dosel en el año 2016 es mayor o igual que la PPN del dosel del año 2017.

3.5 Identificación de variables

Las variables de estudio de la presente investigación son

a. Productividad primaria neta

La productividad primaria neta, se mide en Tn/ha.año. La PPN se midió para el fuste y para el dosel arbóreo.

b. Periodo de muestreo

El periodo de muestreo, está referido a los años 2016 y 2017. Así mismo, se considera periodo de muestreo a los meses de cada año en que se analiza la PPN.

3.6 Operacionalización de variables

En la Tabla 2 se muestra la operacionalización de las variables.

Tabla 2. Operacionalización de las variables

Variable	Valor final	Tipo de variable
Periodo de muestreo	Mes Año	Categórica nominal
Productividad primaria neta	MgC/ha*año MgC/ha*mes	Numérica

Fuente: Elaboración propia

3.7 Instrumentos de recolección de datos

Para el desarrollo del estudio, se utilizó los siguientes instrumentos:

a. Balanza Analítica

Se utilizó una balanza CQT 202, con precisión d=0.01g y capacidad máxima de 200g

b. Vernier

Se utilizó un Vernier Kossodo con precisión de 0.02mm

c. Wincha

Se utilizó una Wincha de 5m

d. Wincha

Para georreferenciar los puntos de la parcela permanente de muestreo, se utilizó un GPS, marca ETREX.

3.8 Técnicas de recolección de datos y validación de instrumentos

3.8.1 Técnicas de recolección de datos

Para la recolección de datos se utilizó la técnica observacional. De acuerdo con Hernández, Fernández y Baptista (2014), en la observación científica se utiliza los sentidos para recolectar los datos.

3.8.2 Validación de instrumentos

En la presente investigación, se utilizaron instrumentos mecánicos, los cuales fueron calibrados por el fabricante.

3.9 Plan de procesamiento de datos

3.9.1 Ecuaciones utilizadas en el análisis de datos

3.9.1.1 Composición florística y estructura horizontal del bosque

La Abundancia Relativa (AR) porcentual, de las especies vegetales presentes en l parcela, se calculó con la Ecuación 1.

$$AR(\%) = \frac{N^{\circ} \text{ de Individuos de una especie}}{N^{\circ} \text{ Total de individuos}} x100$$
 (1)

Asimismo, la Dominancia Relativa (DR), se calculó con la Ecuación 2.

$$DR(\%) = \frac{\text{Area Basal de una Especie}}{\text{Area Basal Total de todas las especies}} \times 100$$
 (2)

La Ecuación 3, se utilizó para el cálculo de la Frecuencia Relativa (FR)

$$FR (\%) = \frac{Frecuencia Absoluta de una Especie}{Suma de las Frecuencias de todas las Especies} x100$$
 (3)

El área basal, se calculó con la Ecuación 4

Area Basal (m²) =
$$(DAP)^2 x \frac{\pi}{4}$$
 (4)

Para representar las especies de mayor importancia ecológica calculamos el índice de valor de importancia (IVI), a través de la Ecuación 5.

$$IVI = AR + DR + FR \tag{5}$$

También se construyeron gráficos del número de árboles (N/ha) por clase diamétrica.

3.9.1.2 Productividad primaria neta del fuste

Para estimar el stock y flujo de carbono en este componente se procedió a calcular la biomasa sobre el suelo (considera tallo, copa y discrimina raíces) de cada uno de los individuos en estudio.

Para ello, se utilizó la Ecuación 6, indicada por Chave *et al.*, 2014, validada para bosques húmedos tropicales con un rango de 1500 – 3500 mm de precipitación anual. Esta es en cada árbol medido dentro de la parcela.

Se calculó la biomasa de fuste para cada individuo usando:

BSS =
$$\frac{0.0673*(\rho D^2 H)^{0.976}}{1000}$$
 (6)

Donde

BSS: Biomasa de fustes (Mg/ha)

ρ: Densidad de madera (g/cm³)

D: Diámetro (cm)

H: Altura del árbol (m)

La ecuación se aplicó a todos los árboles trimestralmente. Los valores obtenidos con el vernier no presentan el diámetro sino la longitud del arco de circunferencia, por lo tanto se tendrá que realizar cálculos para obtener la variable de interés. Los datos obtenidos con el vernier están en mm y la unidad final que se requerirá será cm/año.

Para obtener el D^2 se deberá convertir la medida obtenida con el vernier (mm) en incremento de diámetro (cm):

Incremento de diámetro (
$$\Delta$$
 Diámetro) = $\frac{Dendrómetro}{\pi}$

Para obtener la altura del individuo se generara una ecuación que relacione las variables de altura y diámetro usando la sub muestra por clase diamétrica de 15 individuo, de los cuales se obtuvo su altura total en campo, mediante regresión logarítmica, que fue la que obtuvo el mayor r² (0.85). La ecuación del modelo es la Ecuación 7

Altura =
$$10.054 \ln(D) - 10.674$$
 (7)

Para los valores de densidad de madera se utilizara la base de datos Global Wood Density Databasde estabelecida por Zanne et al., (2009) que considera una densidad expresada en g/cm3 para espécies, géneros y famílias representativas de bosques tropicales, así mismo cabe mencionar que cuando no se encontró la densidad de una especie en dicha

base, se asumió el valor del género, si no se encontró el valor de ninguno, se asumió el valor promedio para árboles de bosques tropicales, el cual es de 0.64 g/cm³.

Se puede estimar el contenido de carbono de un componente del bosque determinando su peso seco (Honorio C & Baker, 2010, p 12), pero Elias & Potvin, (2003) mencionan que existe una gran variación con respecto al peso seco y la cantidad de carbono de las diferentes especies tropicales, sin embargo, está aceptado asumir que el 50% del peso seco es carbono (Pearson, Sarah, & Brown, 2005). Por lo tanto este factor fue usado para convertir la biomasa sobre el suelo en equivalentes de carbono. La Ecuación 8, permite carcular el carbono sobre el suelo.

$$CSS = \frac{BSS}{2}$$
 (8)

Donde

BSS: Biomasa sobre el suelo (Mg/ha)

CSS: Carbono sobre el suelo (Mg C/ha)

Para calcular el stock de carbono se calculó el CSS al inicio del muestreo, es decir DPOM (diámetro inicial medido a la altura del punto óptimo de medición), se sumó los valores de todos los individuos pertenecientes a cada grupo de análisis. El CSS total se calculó con la Ecuación 9

$$SCSS = SC_1 + SC_2 + \dots + SC_3 \tag{9}$$

Donde

SCSS: stock de carbono sobre el suelo (Mg C/ha)

SC: stock de carbono sobre el suelo (Mg C/ha) de cada individuo perteneciente al grupo

Para conocer el flujo de carbono (PPN) se restó el carbono sobre el suelo de cada individuo entre muestreos y se dividió por el periodo de tiempo considerado. Para ello se aplicó la Ecuación 10.

$$PPN = \frac{CSS_{n+1} - CSS_n}{t_{n+1} - t_n} \tag{10}$$

Donde

FCSS (PPN): flujo de carbono sobre el suelo (Mg C/ha*año)

CSS_n: arbono sobre el suelo (Mg C/ha)

t_n: tiempo entre muestreos (años)

3.9.1.3 Productividad primaria neta del dosel

La estimación de la productividad primaria neta del dosel se determinó de la siguiente manera:

Después del secado de las muestras (hojas, ramas, flores, frutos y semillas, otros) en la estufa obtuvimos el peso final de las mismas, ese valor esta expresado en unidad de masa sobre área g/m²; por lo tanto se convirtió esos valores a Mgha-¹.

$$PS_a = \frac{PS_b}{0.25m^2} * \frac{10}{1000}$$
 (11)

Donde

PSa: Peso seco (Mg/ha)

PS_b: Peso seco (g/m²)

Para expresar los valores obtenidos en equivalentes de carbono se consideró a (Pearson et al., 2005) quien menciona que está aceptado asumir que el 50% del peso seco es carbono. La masa de carbono por hectárea, se calculó con la ecuación 12.

$$EqC = \frac{PS_a}{2} \tag{12}$$

Donde

EqC: Equivalente de Carbono (MgC/ha)

PS_a: Peso seco (Mg/ha)

Finalmente para obtener la PPN se considera el equivalente de carbono, el tiempo que duro el muestreo y el tiempo en el que se colectaron las muestras, para ello se usó la ecuación 13:

$$PPN = \frac{EqC*T_1}{T_2} \tag{13}$$

Donde

PPN: Productividad primaria neta (MgC/ha*año)

EqC: Equivalente de Carbono (MgC/ha)

 T_1 : Tiempo de muestreo (1 año = 365 dias)

T₂: Tiempo transcurrido entre cada colecta (15 días)

Asimismo, la PPN se puede mostrar mensualmente, para ello solo hace falta dividir el resultado final entre 12 (1 año igual a 12 meses)

Finalmente hay que tener en cuenta que se utilizó los valores de las muestras de las canastillas para estimar la PPN del dosel, ya que se asume que el promedio de hojarasca que cae en un año es la misma que se está produciendo en el dosel.

3.9.2 Análisis estadístico

3.9.2.1 Composición florística y estructura del bosque

Para el comportamiento de la estructura horizontal del bosque, utilizó tablas de frecuencias del número de individuos y las clases diamétricas.

3.9.2.2 Productividad Primaria Neta de los fustes

Los individuos estudiados ya pertenecían a los grupos de análisis, por lo que sólo fue necesario identificar a cual pertenecían. Por otro lado cabe resaltar que, para este componente nos centramos en evaluar el comportamiento de la PPN en intervalos de tiempo

(muestreo). Para ello se utilizó el análisis de varianza. Con respecto a la estadística descriptiva se aplicó medidas de tendencia central a los datos como la media, y medidas de dispersión como la desviación estándar.

3.9.2.3 Productividad Primaria Neta del dosel

Para analizar el comportamiento de la PPN en intervalos entre los años 2015 y 2016, se utilizó el análisis de varianza.

3.10 Procedimiento de la investigación

Como unidad de estudio, se consideró una parcela permanente de muestreo (PPM) que se había establecido en un proyecto anterior, donde ya se han instalados los componentes a evaluar.

3.10.1 Composición florística y estructura horizontal del bosque

El registro de especies fue obtenido de la base de datos *Forestplots.net*, donde se mantiene actualizada la información de la determinación de los especímenes de herbario de la parcela, realizada por un botánico de la ciudad de Iquitos. Los nombres científicos se encuentran estandarizados, utilizando especímenes de herbario y bibliografía tales como monografías y revisiones botánicas.

La estructura del bosque fue representada utilizando la distribución de los individuos en clases diamétricas, agrupándolos en intervalos de 10 cm utilizando los datos del último censo realizado en el año 2017. Asimismo, utilizamos variables como abundancia, dominancia (área basal) y frecuencia de las especies presentes.

3.10.2 Estimación de la Productividad Primaria Neta de fustes por clases diamétricas

Para la estimación de la PPN de fustes se realizó las mediciones cada tres meses durante un año. Las mediciones se realizaron en los meses de febrero, mayo, agosto y noviembre de los años 2016 y 2017.

En la Parcela Permanente de Muestreo, los árboles mayores a 10 cm de diámetro a la altura de pecho (DAP) se encuentran identificados a nivel de familia, género e inclusive especie, además todos los individuos están plaqueados y cuentan con un dendrómetro. El dendrómetro es un dispositivo que permite medir los cambios de diámetro de un árbol, en períodos de tiempo cortos. Este dispositivo consiste en una cinta de plástico (zuncho) que se ajusta al tronco y un resorte de metal que se acopla a la cinta, la cual se elonga o se contrae, según aumente o disminuya el diámetro respectivamente.

La elongación o contracción del diámetro se midió con un vernier, desde la cinta (zuncho) superior hasta la línea de corte. Cabe mencionar que la medición será positiva si la cinta se aleja del corte, significa que hay un incremento de diámetro y si la cinta tapa el corte hay una disminución del diámetro (Ver Figura 5).

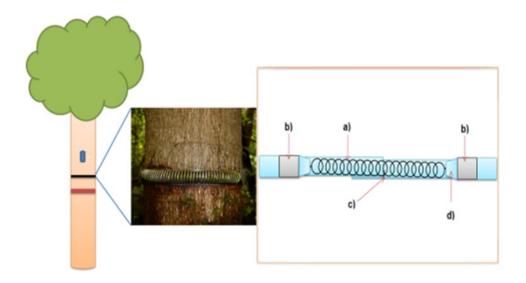


Figura 5. Esquema de un dendrómetro

Fuente: Hidalgo & Del Aguila (2013)

Nota: Resorte de metal (a), grapas (b), corte de referencia (c) y zuncho (d).

Así mismo para el análisis correspondiente de los datos obtenidos de las mediciones, se procedió a establecer grupos de análisis, en este caso por clases diamétricas, las cuales fueron las que se mencionan a continuación:

- Clase diamétrica 1: árboles con diámetro entre 10 y 20 cm
- Clase diamétrica 2: árboles con diámetro entre 20 y 30 cm
- Clase diamétrica 3: árboles con diámetro entre 30 y 40 cm
- Clase diamétrica 4: árboles con diámetro entre 40 cm a más

3.10.3 Estimación de la Productividad Primaria Neta del dosel

Se evaluó la producción de hojarasca durante dos años, realizando mediciones quincenales. El trabajo consistió en colectar la hojarasca de 25 colectores ubicados en la parcela, siguiendo estos pasos:

- Para este componente fueron instalados 25 colectores de hojarasca en el centro de cada sub parcela dentro de la PPM, el colector o trampa consistió en una malla de 50 x 50 cm a 1m desde el suelo soportado por cuatro tubos (PVC) previamente armados, donde se retuvo la necromasa aérea (hojas, flores, ramas, frutos, semillas y otros) proveniente de los árboles de alrededor.
- Los colectores o trampas se vaciaron cada 15 días, donde todo el material colectado se colocó en una bolsa de papel periódico debidamente rotulados, y se dejó allí por un tiempo de 24 a 48 horas para una primera evaporación de la humedad.
- El material colectado de cada trampa se denomina muestra; a las mismas que se separaron en distintos componentes: hojas, flores, ramas, frutos o semillas y otros, finalmente las muestras separadas en componentes fueron colocados en bolsas de papel.
- Posteriormente las muestras fueron secadas en la estufa a 80 ° C por un lapso de 24
 horas. Finalmente se realizó el pesado de los componentes de cada muestra, para ello se

utilizó una balanza analítica de precisión 0.01g; todos datos obtenidos del peso fueron llenados en un formato previamente elaborado para su posterior análisis.

Capítulo IV

Resultados y discusión

4.1. Resultados

4.1.1. Composición florística y estructura del bosque

En la Tabla 3, se muestra la composición florística de la parcela estudiada, la que está conformada por 192 especies arbóreas, correspondientes a 115 géneros y 46 familias. Las familias más diversas fueron Lauraceae (24 especies), Sapotaceae (22 especies) y Fabaceae (17 especies), y las más abundantes fueron Sapotaceae con 93 individuos (11%), Apocynaceae con 75 individuos (9%), Euphorbiaceae con 72 individuos (9%), Moraceae con 62 individuos (8%), Lauraceae con 59 individuos (7%) y Myristicaceae con 57 individuos (7%). Asimismo, los géneros más diversos fueron Ocotea con 15 especies y Pouteria con 14, y los más abundantes fueron *Brosimum* con 54 individuos (6.3%), *Virola* con 44 individuos (5.1%), *Senefeldera* con 42 individuos (7%), *Pouteria* con 40 individuos (5 %), *Aspidosperma* con 39 individuos (5%) y *Protium* con 38 individuos (5%). Las especies con mayor importancia ecológica, debido a su abundancia, dominancia y frecuencia fueron: *Brosimum utile*, *Virola pavonis*, *Senefeldera inclinata*, *Aspidosperma schultesii*, *Chrysophyllum sanguinolentum*, *Socratea salazarii* y *Protium paniculatum*.

Tabla 3. Indice de valor de importancia de la especies florísticas

Familia	Especie	Ab	Do	Fr	IVI%
Moraceae	Brosimum utile	53	8.83	23	17.22
Myristicaceae	Virola pavonis	43	6.88	23	14.45
Euphorbiaceae	Senefeldera inclinata	42	4.53	16	11.31
Apocynaceae	Aspidosperma schultesii	27	4.51	18	9.80
Sapotaceae	Chrysophyllum sanguinolentum	24	5.83	13	9.68
Arecaceae	Socratea salazarii	34	2.97	14	8.78
Burseraceae	Protium paniculatum	21	3.16	15	7.51
Nyctaginaceae	Neea spruceana	23	2.52	11	6.59
Apocynaceae	Lacmellea peruviana	18	3.19	11	6.52
Euphorbiaceae	Hevea pauciflora	16	3.65	10	6.48
Apocynaceae	Parahancornia peruviana	14	2.84	12	5.92
Chrysobalanaceae	Licania JAP306	14	3.04	11	5.92
Anacardiaceae	Tapirira guianensis	12	2.35	10	4.96
Clusiaceae	Tovomita weddelliana	12	1.50	11	4.45
Fabaceae	Macrolobium limbatum	12	1.67	9	4.26
Sapotaceae	Pouteria cuspidata	11	1.81	7	3.92
Sapotaceae	Chrysophyllum prieurii	9	1.70	9	3.91
Myristicaceae	Osteophloeum platyspermum	8	2.02	8	3.89
Chrysobalanaceae	Licania canescens	11	1.30	9	3.84
Burseraceae	Protium grandifolium	10	1.82	6	3.64
Ochnaceae	Ouratea polyantha	10	1.51	7	3.56
Sapotaceae	Micropholis guyanensis	9	1.30	8	3.43
	Otras 169 especies	392	56.47	352	149.97
Total	-	825	125.40	613	300.00

Elaboración propia

En la Figura 6, se muestra la distribución del número de individuos en función a las clases diamétricas. Se puede apreciar la forma de "J" invertida, lo cual significa que esta población está en equilibrio, ya que gran parte de la población son individuos juveniles.

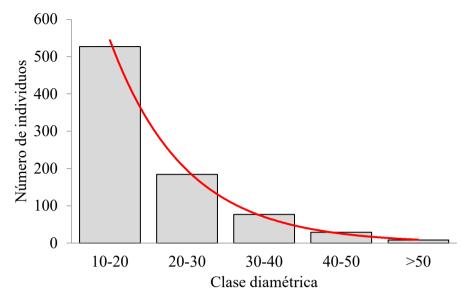


Figura 6. Distribución del número de individuos en función a las clases diamétricas Elaboración propia

4.1.2. Estimación de la Productividad Primaria Neta del dosel.

4.1.2.1. Estimación de la PPN de los fustes para los años 2016 y 2017

En la Tabla 4 se muestran los valores de Productividad Primaria Neta por clases diamétricas para los años 2016 y 2017 respectivamente CD1: 2.90 ± 0.01 y 3.80 ± 0.01 ; CD2: 2.60 ± 0.02 y 3.98 ± 0.02 ; CD3: 2.23 ± 0.03 y 3.08 ± 0.04 ; CD4: 1.30 ± 0.06 y 1.94 ± 0.08 MgC/ha*año. Se observa que los valores de PPN, en las clases diamétricas inferiores CD1 y CD2 son más elevados que en las CD3 y CD4, esto podría deberse a que en las primeras dos clases diamétricas fueron 478 y 166 el número de individuos muestreados a diferencia de las CD3 y CD4, cuyo número de individuos fue 74 y 34, respectivamente.

Tabla 4. Valores de la PPN para los años 2016 y 2017

Clase diamétrica	N° individuos -	P	PN (M	gC/ha*año	\hat{n} no, promedio \pm DS)			
(cm)	iv marviagos -	2016			2017			
CD1 (10-20)	478	2.90	±	0.01	3.80	±	0.01	
CD2 (20-30)	166	2.60	\pm	0.02	3.98	\pm	0.02	
CD3 (30-40)	74	2.23	\pm	0.03	3.08	\pm	0.04	
CD4 (>40)	34	1.30	\pm	0.06	1.94	\pm	0.08	

Fuente: Elaboración propia

4.1.2.2. Estimación de la PPN de los Fustes por meses

En la Tabla 5, se observa que los valores de productividad varían entre 1.45±0.07 y 4.13±0.05 MgC/ha. El valor mínimo de la PPN para el 2016, se obtuvo en noviembre y el máximo en el febrero. Mientras que para el 2017 los valores de productividad varían entre 1.92±0.06 y 4.55±0.07 MgC/ha. El valor mínimo corresponde al mes de noviembre lo que muestra una similitud a lo obtenido en el año anterior, sin embargo el valor más alto se obtuvo en mayo. Finalmente la PPN para el 2016 y 2017 fue respectivamente de 9.03±0.02 y 12.80±0.03 MgC/ha*año.

Tabla 5. Valores de la Productividad Primaria Neta en los años 2016 y 2017

Mes	PPN (MgC/ha*me	PPN (MgC/ha*mes, promedio \pm DS)				
	2016	2017				
Febrero	4.13 ± 0.07	4.55 ± 0.07				
Mayo	1.79 ± 0.05	$4.65 \hspace{0.1cm} \pm \hspace{0.1cm} 0.07$				
Agosto	1.72 ± 0.03	$1.68 \hspace{0.1cm} \pm \hspace{0.1cm} 0.08$				
Noviembre	1.45 ± 0.05	1.92 ± 0.06				
Total	9.03 ± 0.02	12.8 ± 0.03				

Fuente: Elaboración propia

4.1.3. Estimación de la PPN del dosel por componentes

4.1.3.1. Estimación de la PPN en Hojas para el 2016 y 2017

El análisis de varianza de la Tabla 6, indica que en los meses de evaluación, al menos uno de ellos difiere de los demás (p<0,01), con lo cual se acepta la hipótesis alterna, indicando que existe diferencia significativa de la PPN en hojas entre los meses en estudio. El Coeficiente de Determinación (R²) explica esta relación en 25,6% y 31,1% para el 2016 y 2017 respectivamente, asimismo.

Tabla 6. Comparación de la PPN en Hojas para el 2016 y 2017

F.V.	G.L.	MgC/ha*n	MgC/ha*mes 2016		mes 2017
	U.L.	S.C.	Sig.	S.C.	Sig.
Tratamientos	11	1.115	0.000 **	1.556	0.000 **
Error experimental	588	3.232		3.440	
Total	599	4.347		4.995	
		$R^2 = 25.6\%$	$S\overline{x} = 0.07$	$R^2 = 31.1\%$	$S\overline{x} = 0.077$

La Prueba de Rangos Múltiples de Duncan (P<0.05) de la PPN en hojas por meses se muestra en la Tabla 7. En el mes de Setiembre (año 2016) se obtuvo el mayor promedio con 0.4396 MgC/ha*mes en Hojas. Asimismo, la PPN de hojas en los meses de noviembre, agosto, octubre, febrero y diciembre fueron estadísticamente iguales. Asimismo, la PPN para los meses de mayo y junio fue estadísticamente igual, siendo estos meses los que alcanzaron el menor valor de la PPN.

Por otro lado, para el 2017, en los meses de agosto y setiembre se obtuvo el mayor valor de la PPN en hojas; siendo estadísticamente iguales. Asimismo, la PPN para los meses de abril y marzo fue estadísticamente igual, siendo estos meses los que alcanzaron el menor valor de la PPN.

Tabla 7. Prueba de Rangos Múltiples de Duncan para la PPN en hojas

Meses(2016)	Promedio (MgC/ha*mes)	Interpretación	Meses(2017)	Promedio (MgC/ha*mes)	Interpretación
Junio	0.1029	a	Abril	0.1156	a
Mayo	0.1185	a	Marzo	0.1238	a
Abril	0.1376	ab	Julio	0.1288	ab
Enero	0.1950	bc	Junio	0.1355	ab
Julio	0.1951	bc	Enero	0.1734	abc
Marzo	0.1966	bc	Diciembre	0.1957	bcd
Diciembre	0.1943	c	Mayo	0.2125	cd
Febrero	0.2030	c	Noviembre	0.2176	cd
Octubre	0.2220	c	Febrero	0.2320	cd
Agosto	0.2249	c	Octubre	0.2571	d

Noviembre	0.1852	c	Setiembre	0.4209	e
Setiembre	0.4396	d	Agosto	0.4283	e

4.1.3.2. Estimación de la PPN ramas para el 2016 y 2017

El análisis de varianza de la Tabla 8, indica que en los meses de evaluación, al menos uno de ellos difiere de los demás (p<0,01), con lo cual se acepta la hipótesis alterna, indicando que existe diferencia significativa de la PPN en ramas entre los meses en estudio. El Coeficiente de Determinación (R²) explica esta relación en 3,8% y 3,3% para el 2016 y 2017 respectivamente.

Tabla 8. Comparación de la PPN en Ramas para el 2016 y 2017

F.V.	G.L.	MgC/ha*	MgC/ha*mes 2016		mes 2017
Γ. V.	U.L.	S.C.	Sig.	S.C.	Sig.
Tratamientos	11	0.159	0,018 *	0.043	0.045 *
Error experimental	588	4.032		1.255	
Total	599	4.191		1.299	
		$R^2 = 3.8\%$	$S\overline{x} = 0.083$	$R^2 = 3.3\%$	$S\overline{x} = 0.044$

Fuente: Elaboración propia

La Prueba de Rangos Múltiples de Duncan (P<0.05) de la PPN en ramas por meses se muestra en la Tabla 9. En el mes de diciembre (año 2016) se obtuvo el mayor promedio con 0.1136 MgC/ha*mes en ramas. Asimismo, la PPN para los meses de mayo, enero, julio, marzo, octubre, agosto, abril, setiembre y junio fue estadísticamente igual, siendo estos meses los que alcanzaron el menor valor de la PPN.

Por otro lado, para el 2017, en el mes de noviembre se obtuvo el mayor valor de la PPN en ramas. Asimismo, la PPN para el mes de abril se obtuvo el menor valor de la PPN.

Tabla 9. Prueba de Rangos Múltiples de Duncan para la PPN en Ramas

Meses(2016)	Promedio (MgC/ha*me s)	Interpretació n	Meses(2017)	Promedio (MgC/ha*me s)	Interpretació n
Mayo	0.023	a	Julio	0.0069	a
Enero	0.028	a	Agosto	0.0239	ab
Julio	0.0296	a	Junio	0.0319	abc
Marzo	0.034	a	Enero	0.0314	abc
Octubre	0.0378	a	Octubre	0.035	abc
Agosto	0.0443	a	Abril	0.0387	abc
Abril	0.0526	a	Mayo	0.0391	abc
Setiembre	0.0666	a	Marzo	0.0407	abc
Junio	0.0678	a	Febrero	0.0543	bc
Noviembre	0.0743	ab	Setiembre	0.0577	bc
Febrero	0.0806	ab	Diciembre	0.0607	bc
Diciembre	0.1136	b	Noviembre	0.0725	c

4.1.3.3. Estimación de la PPN Flores para el 2016 y 2017

El análisis de varianza de la Tabla 10, indica que en los meses de evaluación, se obtuvo un p>0.05, con lo cual se acepta la hipótesis nula, indicando que no existe diferencia significativa de la PPN en ramas entre los meses en estudio. El Coeficiente de Determinación (R²) explica esta relación en 2.5% y 2.6% para el 2016 y 2017 respectivamente.

Tabla 10. Comparación de la PPN en Flores para el 2016 y 2017

F.V.	G.L.	MgC/ha*	MgC/ha*mes 2016		mes 2017
	U.L.	S.C.	Sig.	S.C.	Sig.
Tratamientos	11	0.011	0,190 N.S.	0.036	0.162 N.S.
Error experimental	588	0.448		1.362	
Total	599	0.459		1.398	
		$R^2 = 2.5\%$	$S\overline{x} = 0.031$	$R^2 = 2.6\%$	$S\overline{x} = 0.044$

Fuente: Elaboración propia

4.1.3.4. Estimación de la PPN en Frutos y Semillas para el 2016 y 2017

El análisis de varianza de la Tabla 11, indica que en los meses de evaluación, al menos uno de ellos difiere de los demás (p<0,01), con lo cual se acepta la hipótesis alterna, indicando que existe diferencia significativa de la PPN en frutos y semillas entre los meses

en estudio. El Coeficiente de Determinación (R²) explica esta relación en 3.3% y 5.2% para el 2016 y 2017 respectivamente.

Tabla 11. Comparación de la PPN en Frutos y Semillas para el 2016 y 2017

F.V.	G.L.	MgC/ha*	MgC/ha*mes 2016		MgC/ha*mes 2017	
Γ. V.	U.L.	S.C.	Sig.	S.C.	Sig.	
Tratamientos	11	0.157	0.045 *	0.051	0.001 **	
Error experimental	588	4.582		0.934		
Total	599	4.739		0.985		
		$R^2 = 3.3\%$	$S\overline{x} = 0.089$	$R^2 = 5.2\%$	$S\overline{x} = 0.044$	

Fuente: Elaboración propia

La Prueba de Rangos Múltiples de Duncan (P<0.05) de la PPN en ramas por meses se muestra en la Tabla 12. En el mes de febrero (año 2016) se obtuvo el mayor promedio con 0.1362 MgC/ha*mes en frutos y semillas. Asimismo, la PPN para los meses de octubre, noviembre, diciembre, setiembre, agosto, julio y junio fue estadísticamente igual, siendo estos meses los que alcanzaron el menor valor de la PPN.

Por otro lado, para el 2017, el mes con mayor PPN en frutos y semillas fue noviembre. Los demás meses tuvieron una PPN estadísticamente igual.

Tabla 12. Prueba de Rangos Múltiples de Duncan para la PPN en Frutos y Semillas

Meses(2016	Promedio	Interpretació	Meses(2017	Promedio	Interpretació
)	(MgC/ha*me	n)	(MgC/ha*me	n
	s)			s)	
Octubre	0.0233	a	Junio	0.0048	a
Noviembre	0.0241	a	Abril	0.0119	a
Diciembre	0.0271	a	Julio	0.0129	a
Setiembre	0.0328	a	Enero	0.0133	a
Agosto	0.0329	a	Diciembre	0.0139	a
Julio	0.0481	a	Noviembre	0.0177	a
Junio	0.0579	a	Mayo	0.0181	a
Mayo	0.0649	ab	Octubre	0.0207	a
Marzo	0.0729	ab	Agosto	0.022	a
Enero	0.081	ab	Setiembre	0.0233	a
Abril	0.0852	ab	Marzo	0.0607	b
Febrero	0.1362	b	Febrero	0.0665	b

Fuente: Elaboración propia

4.1.3.5. Estimación de la PPN en otros (material no identificado) para el 2016 y 2017

El análisis de varianza de la Tabla 13, indica que en los meses de evaluación, al menos uno de ellos difiere de los demás (p<0,01), con lo cual se acepta la hipótesis alterna, indicando que existe diferencia significativa de la PPN en material no identificado entre los meses en estudio. El Coeficiente de Determinación (R²) explica esta relación en 8,3% y 12,0% para el 2016 y 2017 respectivamente.

Tabla 13. Comparación de la PPN en otros para el 2016 y 2017

F.V.	G.L.	MgC/ha	a*mes 2016	MgC/ha*mes 2017		
Γ. V.	U.L.	S.C.	Sig.	S.C.	Sig.	
Tratamientos	11	0.010	0.000 **	0.005	0.000 **	
Error experimental	588	0.112		0.037		
Total	599	0.122		0.042		
		$R^2 = 8.3\%$	$S\overline{x} = 0.0013$	$R^2 = 12.0\%$	$S\overline{x} = 0.0079$	

Fuente: Elaboración propia

La Prueba de Rangos Múltiples de Duncan (P<0.05) de la PPN en material no identificado por meses se muestra en la Tabla 14. En el mes de octubre (año 2016) se obtuvo el mayor promedio con 0.0340 MgC/ha*mes en material no identificado. Asimismo, la PPN para el mes de mayo alcanzó el menor valor 0.0113 MgC/ha*mes.

Por otro lado, para el 2017, los meses con mayor PPN de material no identificado fueron enero y febrero, siendo estos estadísticamente iguales. Mientras que los meses de noviembre, diciembre, marzo, junio y abril, tuvieron una PPN estadísticamente igual, y fue la menor de todas.

Tabla 14. Prueba de Rangos Múltiples de Duncan para la PPN en otros

Meses(2016)	Promedio (MgC/ha*mes)	Interpretación	Meses(2017)	Promedio (MgC/ha*mes)	Interpretación
Mayo	0.0113	a	Noviembre	0.0016	a
Abril	0.0122	ab	Diciembre	0.0020	a
Julio	0.0157	ab	Marzo	0.0029	a
Agosto	0.0159	ab	Junio	0.0033	a
Febrero	0.0161	ab	Abril	0.0042	a
Diciembre	0.0162	ab	Julio	0.0068	ab
Junio	0.0170	ab	Mayo	0.0069	ab
Marzo	0.0186	abc	Agosto	0.0097	abc
Enero	0.0197	bcd	Octubre	0.0139	bcd
Noviembre	0.0253	cde	Setiembre	0.0155	cd
Setiembre	0.0314	de	Febrero	0.0166	e
Octubre	0.0340	e	Enero	0.0180	e

4.1.4. Estimación de la PPN del dosel entre los meses en los años de muestreo

El análisis de varianza de la Tabla 15, indica que en los meses de evaluación, al menos uno de ellos difiere de los demás (p<0,01), con lo cual se acepta la hipótesis alterna, indicando que existe diferencia significativa de la PPN del dosel entre los meses en estudio. El Coeficiente de Determinación (R²) explica esta relación en 8.3% y 19.3% para el 2016 y 2017 respectivamente.

Tabla 15. Comparación de PPN del dosel para el 2016 y 2017

EV	CI	MgC/ha*	mes 2016	MgC/ha*r	mes 2017
F.V.	G.L.	S.C.	Sig.	S.C.	Sig.
Tratamientos	11	1.329	0.000 **	2.036	0.000 **
Error experimental	588	14.610		8.492	
Total	599	15.939		10.528	
		$R^2 = 8.3\%$	$S\overline{x} = 0.158$	$R^2 = 19.3\%$	$S\overline{x} = 0.118$

Fuente: Elaboración propia

La Prueba de Rangos Múltiples de Duncan (P<0.05) de la PPN en material no identificado por meses se muestra en la Tabla 16. En el mes de setiembre (año 2016) se obtuvo el mayor promedio con 0.578 MgC/ha*mes en el dosel. Asimismo, la PPN para el mes de mayo alcanzó el menor valor 0.246 MgC/ha*mes.

Por otro lado, para el 2017, los meses con mayor PPN del dosel fueron agostoy setiembre, siendo estos estadísticamente iguales. Mientras que los meses de abrily julio, alcanzaron un menor valor de la PPN del dosel y fueronestadísticamente iguales.

Tabla 16. Prueba de Rangos Múltiples de Duncan para la PPN

Meses(2016) Promedio (MgC/ha*mes)		Interpretación	Meses(2017)	Promedio (MgC/ha*mes)	Interpretación	
Mayo	0.246	a	Abril	0.172	a	
Junio	0.263	ab	Julio	0.173	a	
Julio	0.298	ab	Junio	0.209	ab	
Abril	0.306	ab	Marzo	0.229	abc	
Octubre	0.322	ab	Enero	0.241	abc	
Agosto	0.331	ab	Mayo	0.279	bcd	
Enero	0.344	abc	Diciembre	0.324	cde	
Marzo	0.348	abc	Noviembre	0.471	cde	
Noviembre	0.341	bc	Octubre	0.362	de	
Diciembre	0.382	bc	Febrero	0.390	e	
Febrero	0.468	cd	Agosto	0.498	f	
Setiembre	0.578	d	Setiembre	0.549	f	
Total	4.226			3.897		

Fuente: Elaboración propia

4.2. Discusión

4.2.1. Análisis de la composición florística y la estructura del bosque

La riqueza florística de la parcela, 192 especies por hectárea, es media con respecto a los bosques más diversos de la Amazonía baja donde se reportan 250 a 300 especies por hectárea, pero podemos decir que aún es una riqueza alta comparada con otros bosques que se encuentran a más de 1,000 msnm donde la riqueza no supera las 169 especies (López Vargas *et al.*, 2015).

Las especies ecologicamente importantes encontradas en la parcela son características de bosques amazónicos sobre suelos pobres de la Amazonía baja, como los suelos de arena blanca o franco arenoso, tales como *Brosimum utile*, *Virola pavonis*, *Chrysophyllum sanguinolentum* y *Protium paniculatum*. Asimismo, se reporta una alta diversidad de Lauráceas y algunas pocas especies que son más importantes en zonas altas tales como *Elaeagia* JAP117 (Rubiaceae) y *Tovomita weddelliana* (Clusiaceae).

El gran número de individuos por hectárea (825 individuos) supera los reportados en la zona baja donde existen un promedio de 550 individuos (Hidalgo & del Aguila, 2013). Esto podría explicarse por la presencia de suelos arenosos en la parcela que debido a los bajos nutrientes del suelo, los individuos son de menor diámetro y más abundantes. Una densidad alta de individuos se reporta también en los bosques de arena blanca de la Amazonía baja (Gallardo Gonzáles, 2015). Asimismo, la la distribución del número de individuos en función a las clases diamétricas (Figura 6) tomaron forma de "J" invertida, donde el mayor número de individuos se concentra en las clases diamétricas de menor grosor y disminuye en la medida que el diametro aumenta de tamaño y Según Lamprech citado en (Perla & Tórrez, 2008) desde el punto de vista de su ordenación y estructura, este tipo curva corresponde a bosques heterogeneos trópicales; por otro lado Tenorio *et al* 2009 citado en (Perla & Tórrez, 2008) menciona que este tipo de curva permite asegurar la viabilidad de la población de especies, ya que los individuos con diámetros menores con el tiempo pasan a ocupar las clases diamétricas mayores renovando asi la población.

4.2.2. Análisis de la estimación de la PPN de los fustes

La Productividad Primaria Neta en la clase diamétrica 1 fue de 2.90 ± 0.01, 3.80 ± 0.01 MgC/ha*año para el 2016 y 2017 respectivamente, sin embargo los valores de PPN para las clases diamétricas 2 y 3 obtuvieron valores similares a la antes mencionada a comparación de la CD4 el valor de la PPN fue de 1.30 ± 0.06, 1.94 ± 0.08 MgC/ha*año para el 2016 y 2017, este comportamiento muestra que los valores de Productividad va disminuyendo a medida que las clases diamétricas aumentan. Este comportamiento muestra similitud con lo reportado con Hui, Wang, Le, Shen, & Ren (2012) quienes indican que la productividad fue mayor en la clase diamétrica inferior (10 – 20 cm) y fue disminuyendo en las clases diamétricas superiores. No obstante difiere con Hidalgo & del Aguila (2013) reportó valores más altos de productividad en la clase diamétrica superior CD4 (2.394 ±

0.549 MgC/ha*año) la cual fue casi dos veces mayor respecto a las clases diamétricas inferiores; también con Valencia *et al* (2009) quien reporto que el mayor incremento de productividad se muestra en los arboles de la clase diamétrica superior (diámetro mayor a 30 cm) mientras que las calases diamétricas inferiores muestran un baja productividad.

Los valores de Productividad Primaria Neta para los años 2016 y 2017 fue de 9.03±0.02 y 12.80±0.03 MgC/ha*año, donde podemos ver que las diferencias entre los valores del primer y segundo año de evaluación fueron considerables. Así mismo podemos ver que los valores de productividad son más altas a lo encontrado por Hidalgo & del Aguila (2013) en 2 parcelas estudiadas en la Reserva Nacional Allpahuayo Mishana (Loreto, Perú). Además son mucho más altos que los valores reportados por Quinto & Moreno (2011) para el bosque pluvial tropical de Salero, Colombia (1.56 Mg C/ha*año).

4.2.3. Análisis de la estimación de la PPN del dosel

Los valores de productividad primaria neta del dosel para el 2016 y 2017 fue de 4.226 y 3.897 MgC/ha respectivamente, donde podemos ver que no hay mucha diferencia entre lo encontrado en el primer y segundo año de evaluación (Tabla 15); así mismo estos valores de productividad son más altos que los reportados por Varela & Vargas (2007) para un bosque de niebla de la Reserva Natural La Planada, Nariño – Colombia) donde encontró que la productividad fue de 3.135 MgC/ha*año y también a lo reportado por Mosquera et al. (2007) en un bosque pluvial tropical en Salero, Chocó, Colombia, donde la PPN fue de 3.6 MgC/ha*año.

Capítulo V

Conclusiones y recomendaciones

5.1. Conclusiones

Las especies con mayor índice de valor de importancia (IVI) fueron: Brosimum utile (lechoso), 17.22%, Virola pavonis (cumala blanca), 14.45% y Senefeldera inclinata (Huangana caspi) 11.31%, las cuales tienen el mayor peso ecológico e indica a su vez, que la estructura del bosque es diferenciada.

Asimismo, las clases diamétricas de las especies tuvieron una distribución de "J" invertida, lo cual indica hay mayor presencia de individuos juveniles, o sea el bosque está en constante regeneración. Las clases diamétricas inferiores (10 – 20 cm), presentaron mayor PPN de fuste, que las mayores, este comportamiento se presentó en los dos años de estudio.

La productividad primaria neta del dosel fue mayor en el mes de setiembre para los años 2016 y 2017, mientras que para los meses de mayo y abril se obtuvo un menor valor de la PPN en los dos años de estudio.

Finalmente, la PPN del dosel para el año 2016 fue 4.226 Mg C/ha, mientras que para el año 2017 fue en los dos años de estudio 3.897 Mg C/ha. Al realizar la prueba la prueba T, se obtuvo un p-valor de 0.554, el cual no es significativo. Por lo tanto, no existe diferencia significativa de la PPN, para los dos años de estudio.

5.2. Recomendaciones

Se recomienda utilizar los resultados de esta investigación para promover la mitigación del cambio climático, mediante la valoración del bosque en la mejora del ciclaje de nutrientes, principalmente el carbono, ya que las especies vegetales que tienen por hábitat estos bosques, son eficientes en la conversión de CO₂ en biomasa y energía para la candena alimentaria.

Asimismo, se recomienda realizar las evaluaciones de la PPN para periodos de tiempo más largos (mayor de dos años) para disminuir el sesgo de los datos y obtener mayor confiabilidad de los resultados.

Realizar otros otras invesyigaciones que permitan analizar los diferentes factores que afectan el comportamiento de la productividad primaria neta como la precipitación pluvial y la temperatura.

Referencias

- Araujo, A., Doughty, C. E., Metcalfe, D. B., Silva-Espejo, J. E., Arroyo, L., Heredia, J. P., ... Malhi, Y. (2014). The productivity, allocation and cycling of carbon in forests at the dry margin of the Amazon forest in Bolivia. *Plant Ecology & Diversity*, 7(1–2), 55–69. https://doi.org/10.1080/17550874.2013.798364
- Ávila, G., Jiménez, F., Beer, J., Gómez, M., & Ibrahim, M. (2001). Almacenamiento, fijación de carbono y valoración de servicios ambientales en sistemas agroforestales en Costa Rica. *Agroforestería En Las Américas*, 8(30), 4. Retrieved from ftp://ftp.fao.org/docrep/nonfao/lead/x6349s/x6349s00.pdf
- Cruzado, L. A. (2010). Determinacion de las reservas de carbono en la biomasa aerea de los bosques altoandinos de la concesión para conservación alto Huayabamba-San Martín. Universidad NAcional Agraria de la Selva.
- Dauber, E., Terán, J., & Guzmán, R. (1992). Estimaciones de biomasa y carbono en bosques naturales de Bolivia. *Revista Forestal Iberoamericana*, *I*(1), 1–10. Retrieved from http://www.forest.ula.ve/rforibam/archivos/DOC2.pdf
- Elias, M., & Potvin, C. (2003). Assessing inter- and intra-specific variation in trunk carbon concentration for 32 neotropical tree species, *1045*, 1039–1045. https://doi.org/10.1139/X03-018
- Gallardo, G. P. (2015). Estructura y diversidad florística de un bosque sobre arena blanca (varillal) en la Reserva Nacional Allpahuayo Mishana, Iquitos- Perú. Universidad Nacional de la Amazonia Peruana. Retrieved from http://repositorio.unapiquitos.edu.pe/handle/UNAP/3617
- Granados, J., & Corner, C. (2006). Respuesta de las selvas tropicales al incremento de CO 2 en la atmósfera. *Revista Forestal Iberoamericana*, 1, 63–70.
- Hernandez, R., Fernandez, C., & Baptista, P. (2010). Metodología de la Investigación. 5ta

- Edición. Journal of Chemical Information and Modeling (Vol. 53). https://doi.org/10.1017/CBO9781107415324.004
- Hidalgo, C. G., & del Aguila, J. (2013). Patrones de crecimiento diametrico y flujo de carbono arbóreo en un bosque de penillanura de la Reserva Nacional Allpahuayo Mishana, Loreto, Perú. Universidad Nacional de la Amazonia Peruana.
- Honorio C, E. N., & Baker, T. R. (2010). Manual para el monitoreo del ciclo de carbono en bosques amazonicos. https://doi.org/4267147
- Hui, D., Wang, J., Le, X., Shen, W., & Ren, H. (2012). Influences of biotic and abiotic factors on the relationship between tree productivity and biomass in China. *Forest Ecology and Management*, 264, 72–80. https://doi.org/10.1016/j.foreco.2011.10.012
- Instituto de Investigaciones de la Amazonía Peruana. (2013). Diagnostico y marco estrategico de la biodiversidad para la promoción del ecoturismo y zonas potenciales en la región San Martín.
- Kloeppel, B. D., Harmon, M. E., & Fahey, T. J. (2007). Estimating Aboveground Net
 Primary Productivity in Forest-Dominated Ecosystems. *Principles and Standards for Measuring Primary Production*, 63–81.
 https://doi.org/10.1093/acprof:oso/9780195168662.003.0005
- López, L. E., Becoche, J. M., Pinto, D. J., Ruiz Montoya, K., Velasco Reyes, A., & Pineda, S. (2015). Estructura y composición florística de la Reserva Forestal Institución Educativa Cajete, Popayán (Cauca). Revista Luna Azul, 131–151. https://doi.org/DOI: 10.17151/luaz.2015.41.8
- Malhi, Y., Farfán, F., Doughty, C. E., Silva-Espejo, J. E., Girardin, C. a. J., Metcalfe, D. B.,
 ... Phillips, O. L. (2014). The productivity, metabolism and carbon cycle of two lowland tropical forest plots in south-western Amazonia, Peru. *Plant Ecology & Diversity*, 7(September 2015), 85–105. https://doi.org/10.1080/17550874.2013.820805

- Ministerio del Ambiente. (2010). Plan de acción de adaptación y mitigación frente al cambio climático (Vol. 1). Lima-Perú. https://doi.org/10.1017/CBO9781107415324.004
- Mosquera, H., Ramos Palacios, Y. A., & Abadía Bonilla, D. (2007). Cuantificación de la caída de hojarasca como medida de la productividad primaria neta en un bosque pluvial tropical en Salero, Chocó, Colombia. *Revista Institucional Universidad Tecnológica Del Chocó*, 26(26), 28–41. https://doi.org/10.18636/BIODESARROLLO.V26I1.464
- Návar, J., & Jurado, E. (2009). Productividad foliar y radicular en ecosistemas forestales del noreste de México. *Revista Ciencia Forestal En México*, *34*, 89–106.
- Ordoñez, J. A. (1999). Captura de carbono en un bosque templado: el caso de San Juan Nuevo, Michoacán. (S. A. de C. V. Desarrollo Gráfico Editorial, Ed.), Director (1era ed.). México D.F.
- Pallqui, N. C., Monteagudo, A., Phillips, O. L., Lopez-Gonzalez, G., Cruz, L., Galiano, W., ... Vasquez, R. (2014). Dinámica, biomasa aérea y composición floristica en parcelas permanentes Reserva Nacional Tambopata, Madre de Dios, Perú. *Revista Peruana de Biologia*, 21(3), 235–242. https://doi.org/10.15381/rpb.v21i3.10897
- Pardo-toledo, E., Araujo-Murakami, A., Arroyo Padilla, L., Heredia, J. P., Rojas-Landívar,
 V. D., Flores-Valencia, M., ... Moreno, L. (2014). Productividad interanual e interestacional de la biomasa aérea en la Chiquitanía transicional a la Amazonía (
 Guarayos, Bolivia). Ecología En Bolivia, 49(2), 77–92.
- Pearson, T., Sarah, W., & Brown, S. (2005). Sourcebook for Land Use, Land-Use Change and Forestry Projects.
- Perla, C., & Tórrez, J. (2008). Caracterización de la vegetación forestal, usos y diversidad de especies de la vegetación forestal en la Reserva Privada Escameca Grande, San Juan del Sur, Rivas. Universidad Nacional Agraria.

- https://doi.org/10.1155/2017/5627062
- Quinto, H., & Moreno, F. (2011). Dinámica de la Biomasa Aérea en un Bosque Pluvial Tropical del Chocó Biogeográfico. *Revista Facultad Nacional de Agronomia-Medellín*, 64(1), 5917–5936.
- Rodríguez, E. A., Chang, J. C., & Goti, I. (2012). Productividad primaria del manglar de Rhizophora mangle L. en el canal estuarino Isla de Cañan, provincia de Los Santos, República de Panamá. *Tecnociencia*, *14*(2), 85–99.
- Sanchez, M., Prieto, D., Peral, F. C., Tamburi, C. A. ., Casen, R., & Berazain, R. (2003).

 Producción de hojarasca en un bosque semideciduo São Pedro, Potirendaba, estado de São Paulo, Brasil. *Revista Del Jardin Botanico Nacional*, 24, 1–2.
- Valencia, R., Condit, R., Muller-Landau, H. C., Hernandez, C., & Navarrete, H. (2009).

 Dissecting biomass dynamics in a large amazonian forest plot. *Journal of Tropical Ecology*, 25(5), 473–482. https://doi.org/10.1017/S0266467409990095
- Vallejo, M., Londoño, A., López, R., Galeano, G., Álvarez, E., & Devia, W. (2005). Establecimiento de parcelas permanentes en bosques de Colombia. Métodos para estudios ecológicos a largo plazo. (I. de I. de R. B. A. von Humboldt, Ed.). Bogotá D.C.
- Varela, A., & Vargas Parra, L. (2007). Producción de Hojarasca de un Bosque de Niebla en la Reserva Natural la Planada (Nariño, Colombia). Revista de la Facultad de Ciencias Pontificia Universidad Javeriana, 12, 35–49.
- Zanne, A.E., Lopez-Gonzalez, G.*, Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., Swenson, N.G., Wiemann, M.C., and Chave, J. (2009). 2

 GlobalWoodDensityDatabase. Retrieved from http://hdl.handle.net/10255/dryad.235.

ANEXOS

Anexo 1. Formato para recolección de datos de la PPN del dosel

N°	Mes	Día	Año	Colector	Muestreo	Hojas (g)	Flores (g)	Frutos y semillas (g)	Otro (g)
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									

Anexo 2. Datos de incremento diamétrico de los fustes por especie

Plot	Plot Name: ESC - 01					10/05/2016	19/08/2016	19/11/2016	19/02/2017	12/05/2017	12/05/2017 4/08/2017 29/11/2017		
Tag N	T w	X	Y Family	Genero	Species	D F1 2015. ▼ 2015.3 ▼	D Notas D	→ Notas →	D Wotas U	D Notas D	▼ Notas ▼ D	▼ Notas ▼ D	Notas
2	1	1.2	4.4 Apocynaceae	Parahancornia	Parahancornia p	199 a	-1.15	-0.9	-0.92	-0.9	-0.22	-1	-1
3	1	2.3	3.9 Lauraceae	Persea	Persea areolatoo	226 a	12.15	11.46	14.04	17.3	18.5	15	20.6
4	1	2.7	5.4 Euphorbiaceae	Hevea	Hevea pauciflora	558 q	9.35	9.8	10.06	12.2	15.23	11	16.6
5	1	3.4	4.1 Anacardiaceae	Tapirira	Tapirira guianens	211 a	14.38	17.05	17.05	19.9	20.4	15	25.9
7	1	3.4	9.7 Euphorbiaceae	Senefeldera	Senefeldera sku	119 a	7.8 era 1.8	6.8	6.53	7.8	0.88	9.18	9.4
8	1	5	10 Moraceae	Brosimum	Brosimum utile	211 a	14.18	13.33	14.03	14.66	16.44	19.3	25.8
9	1	5.2	9.9 Olacaceae	Chaunochiton	Chaunochiton ka	395 a	8.73	9.26	9.79	11.88	12.24	13.8	15.3
10	1	4.8	0.6 Apocynaceae	Aspidosperma	Aspidosperma s	134 c	0.66	2.04	3.02	5	6.48	6.6	6.86
11	1	5.3	0.9 Euphorbiaceae	Senefeldera	Senefeldera incli	120 c	1.13 era 2.04, e	1.27	1.67	2.1	2.16	2.4	3.06
12	- 1	7.4	0.4 Fabaceae	Cassia	Cassia JAP245	198 a	1.22 E	1.25 E	1.25 E	6.82 E	8.45	9.3	12.5
15	1	13	2.2 Anacardiaceae	Tapirira	Tapirira guianens	142 a	4.8	5.83	6.9	9.27	9.55	11.3	10.1
17.1	1	8.9	1.9 Apocynaceae	Aspidosperma	Aspidosperma e	101 a	1	3.69	3.7	5.8	9.3	10.9	10.1
18	- 1	11.9	3.8 Chrysobalanaceae	e Licania	Licania micrantha	151 a	6.5	9.59	11.1	15.08	17.83	15	20
21	- 1	12.3	5.5 Euphorbiaceae	Hevea	Hevea pauciflora	268 a	4.5	5.6	5	7.55	7.1	4	8.6
22	- 1	10	12.7 Myristicaceae	Osteophloeum	Osteophloeum pl	237 a	5.84	6.19	6.79	9.05	12.34	14	14.34
23	1	12.3	11.1 Lauraceae	Ocotea	Ocotea aciphylla	186 c	35.3	35	38	45.1	51.63	51.3	55.86
23.1	1	11.7	12.5 Sapotaceae	Micropholis	Micropholis guya	106 a	4.9	6.28	5.6	6.07	7.23	6.4	6.77
24	1	9.1	9.2 Lecythidaceae	Cariniana	Cariniana multiflo	184 a	0.7	1.59	1	1.6	2.5	2.2	2.2
25	1	7.9	10.9 Myristicaceae	Virola	Virola pavonis	255 cs	1.3	1.42	1.6	3.5	6.44	7.8	7.7
26	1	7.9	11.8 Sapotaceae	Pouteria	Pouteria cuspida	114 a	0	0.46	1	1.7	2.05	2.2	2.4
27	1	8.3	11.7 Moraceae	Brosimum	Brosimum utile	176 a	2.2	4.14	5.5	9.7	11.5	11.5	12
29	1	18.9	18 Apocynaceae	Aspidosperma	Aspidosperma s	121 c	1.2	3.42	3.11 era 0.7, es	2.8	4.5	4.37	3.9
30	1	14.3	18 Apocynaceae	Parahancornia	Parahancornia p	196 a	26.58	27.3	28.77	36.9	38.32	41.3	42.84
31	1	11.8	19.6 Clusiaceae	Tovomita	Tovomita wedde	128 a	4.77	3.56	4	7.6	7.45	7	10.5
32	1	12.5	16.6 Chrysobalanaceae	e Licania	Licania canesce	106 a	1	0.79	0.68	0.49	0	0	0.8
33	1	9.8	16.7 Fabaceae	Inga	Inga JAP259	162 a	0.98	1.16	1.54	2.81	4.9	4	6.2
34	1	6.1	13.4 Sapotaceae	Chrysophyllum	Chrysophyllum s	117 a	0	0.24	0.69	1.42	2.16	6	3.63
35	- 1	1.4	12.6 Chrysobalanaceae	e Licania	Licania JAP306	212 a	10.4	12.01	12.48	14	15	16.6	19
36	1	0.1	10.4 Chrysobalanaceae	e Licania	Licania JAP306	150 a	12.39	12.6	13.65	16.7	17.41	21.5	20.6
37	1	0.1	15.3 Malvaceae	Pachira	Pachira JAP59	178 a	-4.08	-4.2	-4.44	-4.3	-4	-4.2	-4.15
38	1	2.7	16.8 Sapotaceae	Chrysophyllum	Chrysophyllum s	298 a	12.92	15.2	16.49	19.5	22.78	25.3	28.9
39	2	5.8	8 Apocynaceae	Aspidosperma	Aspidosperma e	259 e	-6.81	-6.6	-6.89	-6.7	-7	-7	-7
40	2	4.9	8.5 Malvaceae	Pachira	Pachira JAP59	202 c	0	0.6	0	0	1	0	0.9
41	2	5	9.2 Apocynaceae	Aspidosperma	Aspidosperma s	150 a	0	0	0	0	1.3	0	0
43	2	9.8	3.8 Icacinaceae	Calatola	Calatola costario	315 cq	1.44 era 13.86,	1.6	2.37	2.9	3.1	4.4	4.5
44	2	11.6	6 Apocynaceae	Aspidosperma	Aspidosperma e	232 ce	0	0	0	0	0	0.85	0
45	2	12.3	6.2 Chrysobalanaceae		Licania JAP306	329 a	9.41	9.9	10.05	10.35	10.13	13.45	11.7
46	_		1.6 Ochnaceae	Cespedesia	Cespedesia spat	134 a	13.92	16.36	16.74	18.7	20.58	21.9	25.4

Anexo 3. Medición del incremento diamétrico

Anexo 4. Canastillas para colectar (Hojas, Flores, Ramas, Frutos y Semillas, Otros)

Anexo 5. Información de Especies, Género y Familias de la PPM

Plot Code: ESC-01

Tag No	T1	T2	X	Y	Family	Genero	Species	Old Tree Notes	D 2014.4	POM 2014.4	F1 2014.4
2	1		1.2	4.4	Apocynaceae	Parahancornia	Parahancornia peruviana		198	1300	a
3	1		2.3	3.9	Lauraceae	Persea	Persea areolatocostae		223	1300	a
4	1		2.7	5.4	Euphorbiaceae	Hevea	Hevea pauciflora	same as 21	556	1300	a
5	1		3.4	4.1	Anacardiaceae	Tapirira	Tapirira guianensis		205	1300	a
7	1		3.4	9.7	Euphorbiaceae	Senefeldera	Senefeldera skutchiana		116	1300	a
8	1		5	10	Moraceae	Brosimum	Brosimum utile	same as 70	215	1300	a
9	1		5.2	9.9	Olacaceae	Chaunochiton	Chaunochiton kappleri		395	1300	a
10	1		4.8	0.6	Apocynaceae	Aspidosperma	Aspidosperma schultesii		132	1300	c
11	1		5.3	0.9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		119	1300	c
12	1		7.4	0.4	Fabaceae	Cassia	Cassia JAP245		197	2900	c
15	1		13	2.2	Anacardiaceae	Tapirira	Tapirira guianensis		141	1300	c
17.1	1		8.9	1.9	Apocynaceae	Aspidosperma	Aspidosperma excelsum		100	1300	an
18	1		11.9	3.8	Chrysobalanaceae	Licania	Licania micrantha		149	1300	a
21	1		12.3	5.5	Euphorbiaceae	Hevea	Hevea pauciflora	same as 4	266	1300	a
22	1		10	12.7	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		235	1300	a
23	1		12.3	11.1	Lauraceae	Ocotea	Ocotea aciphylla	cf	179	2500	a
23.1	1		11.7	12.5	Sapotaceae	Micropholis	Micropholis guyanensis		102	1300	an
24	1		9.1	9.2	Lecythidaceae	Cariniana	Cariniana multiflora		184	1500	a
25	1		7.9	10.9	Myristicaceae	Virola	Virola pavonis		244	1800	S
26	1		7.9	11.8	Sapotaceae	Pouteria	Pouteria cuspidata		112	1890	a
27	1		8.3	11.7	Moraceae	Brosimum	Brosimum utile	same as 70	173	1300	a
29	1		18.9	18	Apocynaceae	Aspidosperma	Aspidosperma schultesii		121	1300	с

30	1	14.3	18	Apocynaceae	Parahancornia	Parahancornia peruviana		192	1300	a
31	1	11.8	19.6	Clusiaceae	Tovomita	Tovomita weddelliana		126	2030	a
32	1	12.5	16.6	Chrysobalanaceae	Licania	Licania canescens		106	1300	a
33	1	9.8	16.7	Fabaceae	Inga	Inga JAP259		160	1300	a
34	1	6.1	13.4	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		115	1300	a
35	1	1.4	12.6	Chrysobalanaceae	Licania	Licania JAP306		210	1300	a
36	1	0.1	10.4	Chrysobalanaceae	Licania	Licania JAP306		145	1300	a
37	1	0.1	15.3	Malvaceae	Pachira	Pachira JAP59		177	1300	a
38	1	2.7	16.8	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		294	1720	a
39	2	5.8	8	Apocynaceae	Aspidosperma	Aspidosperma excelsum		259	1300	e
40	2	4.9	8.5	Malvaceae	Pachira	Pachira JAP59		199	1350	a
41	2	5	9.2	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	147	1300	a
43	2	9.8	3.8	Icacinaceae	Calatola	Calatola costaricensis	cf	308	2580	a
44	2	11.6	6	Apocynaceae	Aspidosperma	Aspidosperma excelsum		232	1300	ce
45	2	12.3	6.2	Chrysobalanaceae	Licania	Licania JAP306		327	1300	a
46	2	14.5	1.6	Ochnaceae	Cespedesia	Cespedesia spathulata		130	1300	a
47	2	21	3.6	Burseraceae	Protium	Protium paniculatum	same as 53	207	1300	c
47.1	2	17.6	3.4	Moraceae	Helicostylis	Helicostylis tomentosa		100	1300	an
48	2	17.4	12.7	Clusiaceae	Tovomita	Tovomita JAP302		165	1300	a
49	2	16.2	15.2	Nyctaginaceae	Neea	Neea spruceana		111	1300	c
50	2	14.9	19.7	Burseraceae	Protium	Protium grandifolium		203	2100	a
51	2	14.1	16.7	Sapotaceae	Ecclinusa	Ecclinusa lanceolata		217	1300	a
52	2	12.3	13.9	Myristicaceae	Virola	Virola pavonis		117	1300	a
54	2	11.9	12.3	Chrysobalanaceae	Licania	Licania JAP306		421	3400	a
55	2	13.5	17.1	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	106	1300	a
56	2	10.4	15.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		170	1300	c
57	2	9.2	16.7	Nyctaginaceae	Neea	Neea spruceana		125	1300	с
58	2	7.2	15.3	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii		387	1300	a
59	2	6.2	14.4	Stemonuraceae	Discophora	Discophora guianensis		105	1300	с
60	2	7.4	11.5	Burseraceae	Protium	Protium paniculatum		180	2500	a
61	2	5.2	12.3	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	exd. Blanco	227	1300	a

62	2		4.3	11.4	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		375	1300	a
63	2	2	2.5	14.1	Apocynaceae	Parahancornia	Parahancornia peruviana		209	1300	a
64	2		3	16.7	Nyctaginaceae	Neea	Neea spruceana		145	1300	c
65	2		2	17.2	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	105	1750	a
66	2		1.2	18.7	Annonaceae	Guatteria	Guatteria arenicola		209	1300	a
67	2	(0.1	19.3	Stemonuraceae	Discophora	Discophora guianensis		131	1300	c
68	2	3	3.4	18.6	Nyctaginaceae	Neea	Neea spruceana	same as 49	134	1300	c
69	2		10	19.6	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	125	1300	a
70	3	3	3.5	1	Moraceae	Brosimum	Brosimum utile		186	1300	a
71	3	4	4.6	1.7	Fabaceae	Diplotropis	Diplotropis purpurea		195	1300	a
72	3	2	2.4	8.4	Malvaceae	Pachira	Pachira JAP59	same as 40	167	1300	a
73	3	(6.4	7.2	Ochnaceae	Ouratea	Ouratea polyantha		107	2170	a
74	3		7.5	6.3	Chrysobalanaceae	Licania	Licania canescens		165	1300	a
75	3		7.8	5.6	Araliaceae	Schefflera	Schefflera JAP68		142	1300	a
76	3		7.2	11.7	Sapotaceae	Micropholis	Micropholis venulosa		142	1300	a
77	3	1	2.5	2.4	Burseraceae	Protium	Protium paniculatum		334	1300	a
78	3	1	3.1	2.1	Stemonuraceae	Discophora	Discophora guianensis		147	1300	c
78.1	3	1	4.6	1.2	Chrysobalanaceae	Licania	Licania canescens		101	1300	an
79	3	1	4.1	4.4	Apocynaceae	Parahancornia	Parahancornia peruviana	same as 2	314	1300	a
80	3	1	9.4	2.5	Chrysobalanaceae	Licania	Licania JAP306		158	1300	a
81	3	1	8.4	0.4	Euphorbiaceae	Mabea	Mabea speciosa		125	1300	a
82	3	2	20.4	1.8	Moraceae	Brosimum	Brosimum utile	same as 70	136	1300	a
83	3		15	7.4	Myristicaceae	Virola	Virola pavonis		238	1300	a
83.1	3	1	5.6	8.6	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa		105	1300	an
84	3	1	3.4	7.1	Lauraceae	Ocotea	Ocotea JAP281		429	1300	a
85	3	1	0.7	9.8	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	154	1300	a
86	3	1	1.1	13.4	Myristicaceae	Virola	Virola pavonis		326	2610	a
87	3	1	2.3	15.2	Lauraceae	Ocotea	Ocotea JAP281		181	1300	a
89	3	1	8.7	19.6	Sapotaceae	Pouteria	Pouteria JAP37		132	1300	a
90	3	1	3.8	16.6	Anacardiaceae	Tapirira	Tapirira retusa		184	1300	e
91	3		6.9	13.8	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	130	2320	c

92	3	13.7	11	Rubiaceae	Elaeagia	Elaeagia JAP117		113	1300	c
93	3	8.2	19.5	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	394	1300	a
94	3	4.4	13.2	Clusiaceae	Garcinia	Garcinia madruno		288	1300	a
95	3	5.4	15.4	Aquifoliaceae	Ilex	Ilex aggregata		142	1300	a
96	3	3.5	15.1	Rubiaceae	Amaioua	Amaioua glomerulata		105	1300	c
97	3	2.3	10.8	Moraceae	Brosimum	Brosimum utile	same as 70	150	1300	a
98	3	1.1	12	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	103	1300	a
99	3	1	14.3	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	162	1300	a
100	3	2.3	16.7	Moraceae	Pseudolmedia	Pseudolmedia laevigata		143	1300	c
101	4	0.3	2.2	Myristicaceae	Virola	Virola pavonis		117	1300	a
102	4	1.7	2.7	Nyctaginaceae	Guapira	Guapira noxia		122	1300	a
103	4	1.2	10	Fabaceae	Clathrotropis	Clathrotropis nitida		141	1300	a
104	4	2.6	7.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		154	1300	a
105	4	3.2	7.7	Lauraceae	Ocotea	Ocotea JAP194		131	1300	a
106	4	6.2	5.6	Meliaceae	Trichilia	Trichilia JAP282		111	1300	a
108	4	5.7	1	Moraceae	Brosimum	Brosimum utile		179	1300	a
109	4	6.5	0.2	Apocynaceae	Parahancornia	Parahancornia peruviana		257	1300	a
110	4	9.1	1.4	Rubiaceae	Amaioua	Amaioua glomerulata	same as 96	111	1300	a
111	4	11.7	7.1	Myrtaceae	Myrcia	Myrcia JAP131		127	1300	a
112	4	10.9	4.7	Apocynaceae	Aspidosperma	Aspidosperma schultesii		331	1300	a
113	4	12.2	3.3	Clusiaceae	Tovomita	Tovomita stigmatosa		143	2860	g
114	4	19.2	4.3	Combretaceae	Buchenavia	Buchenavia viridiflora		360	1800	a
115	4	19.3	8.8	Sapotaceae	Pouteria	Pouteria JAP191		168	1300	a
118	4	15.7	15.7	Sapotaceae	Pouteria	Pouteria JAP106		243	1300	a
121	4	16.7	17.2	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		214	2730	a
122	4	19.7	19.2	Apocynaceae	Aspidosperma	Aspidosperma excelsum		102	1300	ce
123	4	19.2	17.2	Moraceae	Brosimum	Brosimum utile	same as 70	118	1300	a
124	4	16.2	18.3	Bignoniaceae	Tabebuia	Tabebuia obscura		130	1300	a
125	4	12.3	16.2	Olacaceae	Cathedra	Cathedra acuminata		157	1300	a
127	4	10.3	11.3	Meliaceae	Trichilia	Trichilia JAP282	same as 106	124	1300	a
128	4	8.8	8.1	Meliaceae	Trichilia	Trichilia JAP282	same as 106	107	1300	a

129	4	7.	10	Myrtaceae	Myrcia	Myrcia JAP131		274	1750	1
130	4	10.	5 15	Sapotaceae	Pouteria	Pouteria indet		119	1300	a
131	4	8.3	18.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		126	1300	a
132	4	8	14.6	Salicaceae	Casearia	Casearia pitumba		152	1300	a
133	4	8	14.6	Burseraceae	Protium	Protium calendulinum		111	1300	a
134	4	4	12.2	Malvaceae	Sterculia	Sterculia frondosa		211	1300	a
135	4	4.2	14.2	Rubiaceae	Remijia	Remijia JAP116	same as 88	101	1300	a
136	4	1.3	13.8	Rubiaceae	Elaeagia	Elaeagia JAP117		115	1300	a
138	4	2.9	16.1	Melastomataceae	Mouriri	Mouriri nigra		166	1300	a
141	5	3.0	6.1	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	187	1300	a
142	5	4.0	1.8	Lauraceae	Persea	Persea areolatocostae		208	1300	a
143	5	9.	1.4	Annonaceae	Unonopsis	Unonopsis spectabilis		168	1300	a
144	5	10.	2 3.9	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 166	175	1300	a
145	5	9.	6.2	Sapotaceae	Pouteria	Pouteria indet		235	1300	a
147	5	1	16.2	Clusiaceae	Dystovomita	Dystovomita JAP169		121	1300	a
148	5	0.8	16.6	Burseraceae	Dacryodes	Dacryodes sclerophylla		109	1300	a
149	5	1.2	16.3	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		145	2820	a
150	5	3.	17	Burseraceae	Protium	Protium paniculatum	same as 77	382	1300	a
152	5	6.3	12.8	Rubiaceae	Remijia	Remijia JAP116	same as 88	104	1300	a
153	5	8.4	19.9	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	148	1250	a
154	5	8.	17.1	Burseraceae	Protium	Protium paniculatum		136	1300	a
155	5	7.9	14.4	Fabaceae	Swartzia	Swartzia JAP246		102	1300	a
156	5	7.8	14	Myristicaceae	Virola	Virola pavonis		105	1300	a
157	5	10.	2 17.5	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	396	1300	a
158	5	9.2	16.1	Apocynaceae	Aspidosperma	Aspidosperma excelsum		198	1300	e
159	5	6.:	11.6	Moraceae	Brosimum	Brosimum utile		157	1300	a
160	5	10.	9 14.6	Apocynaceae	Aspidosperma	Aspidosperma excelsum		147	1300	e
161	5	14.	1 17.5	Sapotaceae	Elaeoluma	Elaeoluma glabrescens		219	1300	a
162	5	13.	7 13.1	Myristicaceae	Virola	Virola pavonis		114	1350	a
163	5	13.	9 11.9	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	341	1790	a
164	5	12.	5 10.5	Fabaceae	Inga	Inga marginata		205	1300	a

165	5	11.8	9.6	Fabaceae	Macrolobium	Macrolobium limbatum		201	1300	a
166	5	14.1	6.4	Clusiaceae	Tovomita	Tovomita stigmatosa		117	1300	a
167	5	8.9	6.4	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	238	1300	a
169	5	10.4	5.1	Anacardiaceae	Tapirira	Tapirira retusa	same as 90	253	1300	e
170	5	9.1	3.9	Lauraceae	Persea	Persea peruviana		111	1300	a
171	5	17.6	4.3	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 515	112	1300	a
172	5	19.4	4.5	Apocynaceae	Aspidosperma	Aspidosperma excelsum		113	1300	e
173	6	19.6	19.3	Euphorbiaceae	Senefeldera	Senefeldera inclinata		109	1300	a
175	6	18.2	19.5	Moraceae	Brosimum	Brosimum utile		168	1300	a
176	6	15.1	19.2	Chrysobalanaceae	Licania	Licania JAP306		498	1300	a
177	6	15	18.4	Burseraceae	Protium	Protium paniculatum	same as 77	227	2320	a
178	6	12	19.4	Clusiaceae	Garcinia	Garcinia madruno		196	1300	a
179.1	6	10.3	18.8	Apocynaceae	Macoubea	Macoubea sprucei		108	1300	an
180	6	13.7	16	Chrysobalanaceae	Licania	Licania canescens	same as 74	126	1300	a
181	6	13.4	14.4	Moraceae	Brosimum	Brosimum utile	same as 70	286	1450	a
182	6	15.5	14.3	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	117	1300	a
183	6	19.7	15.6	Salicaceae	Casearia	Casearia pitumba		134	1300	с
184	6	17.8	12.8	Euphorbiaceae	Aparisthmium	Aparisthmium cordatum		105	1300	a
185	6	19.2	9	Olacaceae	Chaunochiton	Chaunochiton kappleri	olor caramelo licor	226	1300	a
186	6	17.5	7.4	Malvaceae	Eriotheca	Eriotheca macrophylla		333	1300	c
187	6	11.8	8	Sapotaceae	Pouteria	Pouteria procera		139	1500	a
188	6	19.2	2	Sapotaceae	Pouteria	Pouteria indet		109	1300	a
189	6	19.5	1.87	Myristicaceae	Virola	Virola pavonis	same as 162	196	1300	a
190	6	19.8	0.7	Apocynaceae	Aspidosperma	Aspidosperma excelsum		337	1300	e
191	6	17.8	1.6	Apocynaceae	Aspidosperma	Aspidosperma excelsum		123	1300	a
192	6	16.7	1.8	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		494	2670	q
193	6	15.4	0.3	Myristicaceae	Virola	Virola pavonis		145	1300	a
194	6	12.8	4.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		125	1300	a
195	6	11.4	3.4	Euphorbiaceae	Senefeldera	Senefeldera inclinata		144	1300	a
196	6	10.4	4.6	Lauraceae	Licaria	Licaria guianensis		158	1300	a
197	6	9.5	2.1	Moraceae	Brosimum	Brosimum utile	same as 70	157	1750	a

198	6	5.8	4.8	Rubiaceae	Kutchubaea	Kutchubaea sericantha		217	1300	a
199	6	5.4	2	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum		137	1300	a
200	6	5.1	0.2	Chrysobalanaceae	Licania	Licania JAP306		233	1300	a
202	6	4.5	4.1	Cardiopteridaceae	Dendrobangia	Dendrobangia boliviana		101	1300	a
203	6	4.6	5.5	Apocynaceae	Lacmellea	Lacmellea klugii		204	1300	c
204	6	5.8	6.9	Anacardiaceae	Tapirira	Tapirira guianensis		169	1300	a
205	6	4.4	7.9	Lauraceae	Ocotea	Ocotea JAP281		118	1300	c
206	6	5.8	9.6	Burseraceae	Trattinnickia	Trattinnickia peruviana		136	1500	a
207	6	9.3	18.3	Moraceae	Trymatococcus	Trymatococcus amazonicus		108	1300	a
208	6	7.6	11.4	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	174	1300	a
209	6	0.6	10.9	Sapotaceae	Micropholis	Micropholis egensis		168	1300	a
210	6	1	14.1	Euphorbiaceae	Croton	Croton JAP48		203	1300	a
211	6	0.6	15	Moraceae	Brosimum	Brosimum utile		203	1300	c
212	6	6.1	15	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	185	1300	q
213	6	4.3	16.4	Chrysobalanaceae	Licania	Licania canescens	same as 74	107	1300	a
214	6	2.9	18.3	Myrtaceae	Myrcia	Myrcia JAP131		152	1300	a
215	6	0.1	20	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 58	177	1300	a
216	7	0.1	3.4	Apocynaceae	Lacmellea	Lacmellea peruviana		183	1300	e
217	7	0.5	6.3	Sapotaceae	Pouteria	Pouteria cuspidata		114	1300	d
218	7	2.3	11.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		110	1300	a
219	7	5.4	9.8	Melastomataceae	Miconia	Miconia JAP138		290	1810	a
220	7	6	8.4	Sapotaceae	Pouteria	Pouteria cuspidata		162	1300	a
221	7	6.9	3.9	Myristicaceae	Virola	Virola pavonis		337	2150	a
222	7	7.1	2.8	Lauraceae	Ocotea	Ocotea JAP218		227	1400	a
223	7	10.1	1	Rubiaceae	Remijia	Remijia JAP116		113	1300	c
224	7	10.2	1.1	Rubiaceae	Amaioua	Amaioua glomerulata		176	1300	e
225	7	10.7	4.9	Burseraceae	Protium	Protium paniculatum	same as 77	196	1800	a
226	7	9.5	6	Podocarpaceae	Podocarpus	Podocarpus magnifolius		186	1300	a
227	7	9.5	7.1	Fabaceae	Inga	Inga marginata		170	2000	a
228	7	12.6	8.3	Sapotaceae	Pouteria	Pouteria bilocularis		101	1300	c
229	7	14.8	8.6	Clusiaceae	Garcinia	Garcinia madruno	same as 178	148	1300	a

230	7	1	2.5	1.34	Chrysobalanaceae	Licania	Licania canescens	same as 74	180	1300	a
231	7		16	1.2	Lauraceae	Persea	Persea JAP273		170	1300	a
232	7	1	8.4	2.2	Clusiaceae	Garcinia	Garcinia madruno	same as 273	116	1360	a
233	7	1	7.1	5.4	Fabaceae	Diplotropis	Diplotropis purpurea		108	1300	c
234	7	1	8.5	5.3	Lauraceae	Ocotea	Ocotea JAP272		139	1300	a
235	7	1	8.8	6.4	Euphorbiaceae	Hevea	Hevea pauciflora		415	1300	a
236	7	1	8.9	9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		118	1350	c
237	7	1	5.2	9.3	Clusiaceae	Clusia	Clusia lineata		167	1300	a
238	7	1	5.1	11.5	Moraceae	Pseudolmedia	Pseudolmedia laevigata	same as 100	166	1300	a
239	7		17	11.7	Clusiaceae	Tovomita	Tovomita JAP156		112	1300	a
240	7	1	9.4	12.8	Clusiaceae	Dystovomita	Dystovomita JAP169		128	1300	a
241	7	1	7.2	15.5	Sapotaceae	Pouteria	Pouteria cuspidata		300	2400	a
242	7	1	5.6	15.6	Lauraceae	Ocotea	Ocotea JAP151		126	1300	a
243	7	1	3.7	14.1	Annonaceae	Xylopia	Xylopia benthamii		121	1300	a
244	7	1	4.4	18.7	Myristicaceae	Virola	Virola pavonis	same as 162	228	1500	a
245	7	1	2.8	16.5	Moraceae	Brosimum	Brosimum utile	same as 70	145	1300	a
246	7	1	1.6	13	Sapotaceae	Pouteria	Pouteria oblanceolata	same as 179	202	1300	a
247	7	1	2.3	10.2	Rubiaceae	Elaeagia	Elaeagia JAP117		106	1300	a
248	7	1	0.1	10.6	Fabaceae	Diplotropis	Diplotropis purpurea		156	1300	c
249	7	7	7.7	12.3	Lauraceae	Ocotea	Ocotea aciphylla	cf	115	1300	c
250	7	4	5.2	16.1	Moraceae	Brosimum	Brosimum utile	same as 70	162	1300	a
251	7		4.9	17.2	Rubiaceae	Remijia	Remijia JAP116	same as 88	129	1830	a
252	7	3	3.1	15.4	Rubiaceae	Remijia	Remijia JAP116	same as 88	150	1300	a
254	7	(0.6	16.4	Apocynaceae	Macoubea	Macoubea sprucei		340	1300	a
255	7	2	2.5	18.7	Podocarpaceae	Podocarpus	Podocarpus magnifolius	same as 226	177	1300	a
257	8]]	1.5	2.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		182	1250	c
258	8	1	1.4	1.9	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		474	2470	a
259	8	2	2.2	6.6	Burseraceae	Protium	Protium calendulinum		229	1300	a
260	8	3	3.6	6.8	Euphorbiaceae	Hevea	Hevea pauciflora		466	1300	a
262	8		7.9	6.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		137	1300	a
263	8		7.1	6.3	Lauraceae	Ocotea	Ocotea JAP218		94	1300	a

264	8	9	4.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		188	1300	a
265	8	10.4	4.9	Anacardiaceae	Tapirira	Tapirira guianensis		403	1940	a
267	8	9.4	0.7	Sapotaceae	Micropholis	Micropholis venulosa		135	1300	a
268	8	11.2	2.7	Sapotaceae	Pouteria	Pouteria procera	ssp cuspidata	339	1890	a
269	8	13.1	2.25	Euphorbiaceae	Senefeldera	Senefeldera inclinata		166	1300	a
270	8	13.3	2.3	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	107	1300	a
271	8	14.2	0.9	Moraceae	Brosimum	Brosimum utile		284	1300	a
272	8	14.5	3.5	Sapotaceae	Pouteria	Pouteria cuspidata		228	1400	c
273	8	14.4	4.1	Clusiaceae	Garcinia	Garcinia madruno		280	1300	a
274	8	16.1	2.3	Clusiaceae	Tovomita	Tovomita JAP156	same as 239	139	1300	c
275	8	18.3	3.1	Lauraceae	Ocotea	Ocotea JAP151		298	1300	a
277	8	16.5	8.88	Lauraceae	Ocotea	Ocotea JAP203		135	1350	a
278	8	16.4	11.4	Sapotaceae	Pouteria	Pouteria aubrevillei		182	1300	a
279	8	18.7	15.7	Myristicaceae	Virola	Virola pavonis		319	1850	c
280	8	18.5	16.1	Nyctaginaceae	Neea	Neea spruceana		111	1300	a
281	8	16.4	2.81	Euphorbiaceae	Senefeldera	Senefeldera inclinata		136	1490	a
282	8	17	19.9	Burseraceae	Dacryodes	Dacryodes JAP229		154	1300	a
283	8	15.1	17	Clusiaceae	Tovomita	Tovomita JAP156	same as 239	128	1300	c
284	8	13.5	19.5	Sapotaceae	Pouteria	Pouteria cuspidata		187	1300	a
287	8	8.8	15.1	Fabaceae	Inga	Inga JAP255		168	1300	a
288	8	7.8	12.6	Fabaceae	Hymenaea	Hymenaea oblongifolia		259	1350	a
289	8	7.9	19.4	Monimiaceae	Mollinedia	Mollinedia JAP121		111	1300	c
290	8	6.7	12.1	Lauraceae	Ocotea	Ocotea JAP208		234	1300	a
291	8	6	11.4	Burseraceae	Protium	Protium spruceanum		185	1300	a
292	8	3	11.2	Burseraceae	Protium	Protium grandifolium		199	1300	a
293	8	4.8	13.9	Apocynaceae	Parahancornia	Parahancornia peruviana		143	1300	a
294	8	6.1	18.5	Euphorbiaceae	Senefeldera	Senefeldera inclinata		113	1300	a
295	8	5.2	19.4	Fabaceae	Diplotropis	Diplotropis JAP261		290	1300	a
296	8	8.7	9.2	Myristicaceae	Virola	Virola pavonis		118	1300	a
297	8	11.3	9.5	Lauraceae	Licaria	Licaria cannella		120	1300	a
298	8	12.7	12	Sapotaceae	Micropholis	Micropholis guyanensis		162	1300	a

299	8	10.9	14	Moraceae	Brosimum	Brosimum utile		450	1300	a
300	8	10.3	14.2	Chrysobalanaceae	Licania	Licania JAP306	same as 200	169	1300	a
302	9	1.1	3.2	Moraceae	Helicostylis	Helicostylis tomentosa		122	1300	a
303	9	2.5	6.9	Malvaceae	Theobroma	Theobroma subincanum	same as 347	154	1300	a
304	9	2.1	7.7	Moraceae	Brosimum	Brosimum utile		116	1300	a
305	9	2.4	11.7	Peraceae	Pera	Pera citriodora	same as 201	266	1300	a
306	9	2.6	11.8	Myristicaceae	Virola	Virola pavonis		120	1300	a
307	9	5.1	18.5	Euphorbiaceae	Senefeldera	Senefeldera inclinata		142	1300	a
308	9	4.9	18.8	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	208	1300	a
309	9	6.3	19.7	Moraceae	Brosimum	Brosimum utile		185	1300	a
311	9	9.5	5	Chrysobalanaceae	Licania	Licania heteromorpha		119	1400	a
313.1	9	14.9	0.9	Fabaceae	Tachigali	Tachigali JAP324		104	1300	an
314	9	18.4	3.1	Myristicaceae	Compsoneura	Compsoneura JAP24		111	1300	a
315	9	19.2	9.3	Salicaceae	Casearia	Casearia JAP264		109	1400	a
316	9	17.5	11.1	Moraceae	Trymatococcus	Trymatococcus amazonicus		194	1300	a
317	9	17.3	11.3	Moraceae	Brosimum	Brosimum utile		105	1300	a
318	9	18.9	16.5	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa		114	1300	a
319	9	18.8	17.4	Euphorbiaceae	Senefeldera	Senefeldera inclinata		104	1300	a
320	9	17.5	17.7	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	175	1300	a
321	9	16.9	19.4	Lauraceae	Persea	Persea peruviana		145	1400	a
322	9	16.3	15.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		105	1300	a
325	9	14.8	13.2	Apocynaceae	Parahancornia	Parahancornia peruviana		398	1300	a
326	9	14.7	10.3	Rutaceae	Pilocarpus	Pilocarpus JAP332		142	1300	a
327	9	10.6	9.8	Fabaceae	Diplotropis	Diplotropis JAP261		193	1300	a
328	9	12.6	11.5	Euphorbiaceae	Hevea	Hevea pauciflora		368	1800	a
330	9	9.5	14.9	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	170	1300	a
331	9	9.2	15.4	Fabaceae	Abarema	Abarema JAP252		221	1300	a
332	9	8.4	15.9	Chrysobalanaceae	Licania	Licania JAP306	same as 200	270	1230	a
334	10	18	5.1	Apocynaceae	Lacmellea	Lacmellea peruviana		126	1300	e
335	10	17.5	5.7	Melastomataceae	Miconia	Miconia dichrophylla		157	1300	a
336	10	6.2	1	Rutaceae	Pilocarpus	Pilocarpus JAP332		129	1300	a

337	10		3	2.1	Peraceae	Pera	Pera citriodora	same as 201	173	1300	a
338	10		1.1	4.8	Annonaceae	Unonopsis	Unonopsis spectabilis	same as 143	173	1300	a
339	10		1	7.9	Rubiaceae	Elaeagia	Elaeagia JAP117	same as 136	105	1300	a
340	10		1.8	9.9	Bignoniaceae	Jacaranda	Jacaranda macrocarpa		113	1300	a
341	10		2.5	7.9	Euphorbiaceae	Hevea	Hevea pauciflora		218	1300	a
342	10		3.7	6.9	Simaroubaceae	Simarouba	Simarouba amara		283	3300	a
344	10		5.4	6.1	Lauraceae	Ocotea	Ocotea JAP218		156	1300	a
345	10		6.6	4.6	Sapotaceae	Pouteria	Pouteria JAP321		276	2350	a
346	10		6.9	5.7	Rubiaceae	Posoqueria	Posoqueria JAP127		169	1300	a
347	10		7.4	4.4	Malvaceae	Theobroma	Theobroma subincanum		186	1300	a
348	10		8.3	4.2	Sapindaceae	Toulicia	Toulicia reticulata		162	1300	a
349	10		7.1	6.7	Apocynaceae	Parahancornia	Parahancornia peruviana		305	1910	a
350	10		14	5	Sapotaceae	Micropholis	Micropholis venulosa		114	1300	a
351	10	1	14.5	7.3	Fabaceae	Pterocarpus	Pterocarpus rohrii		223	1300	a
352	10	1	15.2	9.3	Melastomataceae	Miconia	Miconia JAP135	same as 116	98	1300	a
354	10	1	12.4	14.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		108	1300	a
355	10	1	12.7	10.3	Moraceae	Brosimum	Brosimum utile	same as 70	222	1300	a
356	10	1	12.6	8.8	Apocynaceae	Lacmellea	Lacmellea peruviana		208	1300	e
357	10		9.1	11.7	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	124	1300	g
358	10		8.1	9.6	Myristicaceae	Virola	Virola pavonis	same as 376	116	1300	a
363	10		9.8	16.9	Euphorbiaceae	Hevea	Hevea pauciflora		353	1830	a
366	10		7.4	16.5	Myristicaceae	Virola	Virola pavonis	same as 162	183	2200	a
368	10		8.3	19	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	183	2310	a
369	10		2.7	19	Burseraceae	Protium	Protium paniculatum		170	1800	a
370	10		2	16.3	Euphorbiaceae	Mabea	Mabea speciosa		135	1300	a
371	10		2.3	14.5	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	261	1300	c
372	10		0.9	11.9	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	212	1300	a
373	10		4.6	10.4	Annonaceae	Duguetia	Duguetia spixiana		109	1300	a
374	11		1.4	2.7	Chrysobalanaceae	Licania	Licania canescens		142	1300	a
375	11		1.7	3.7	Lauraceae	Ocotea	Ocotea JAP199		227	1300	a
376	11		0.9	5.9	Myristicaceae	Virola	Virola pavonis		239	1300	a

377	11	2.1	5.6	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	154	1300	a
378	11	6.2	5	Burseraceae	Protium	Protium paniculatum		132	1300	a
379	11	4.3	3.1	Sapotaceae	Micropholis	Micropholis guyanensis	same as 298	156	1300	a
380	11	4.2	1.9	Lauraceae	Ocotea	Ocotea JAP281		335	1300	c
381	11	6.1	2.7	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	345	1300	a
382	11	7.7	1.1	Moraceae	Brosimum	Brosimum utile		155	1300	a
383	11	9.8	3.3	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	222	1300	a
384	11	10.2	4.6	Lecythidaceae	Eschweilera	Eschweilera coriacea		125	1300	a
385	11	9.2	5.7	Myristicaceae	Virola	Virola pavonis	same as 306	281	1930	a
389	11	14.1	4.5	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	same as 318	153	1300	a
390	11	14.4	5.2	Malvaceae	Pachira	Pachira aquatica		189	1300	a
391	11	17.2	1	Apocynaceae	Lacmellea	Lacmellea peruviana		146	1300	a
393	11	10.1	11.2	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	385	1300	a
394	11	14.7	12.6	Moraceae	Helicostylis	Helicostylis tomentosa		193	1300	a
395	11	15.9	13.4	Apocynaceae	Lacmellea	Lacmellea peruviana		104	1300	a
397	11	16	15.9	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	535	3500	a
398	11	12.2	11.2	Apocynaceae	Lacmellea	Lacmellea peruviana		327	1300	e
399	11	11.5	13	Chrysobalanaceae	Licania	Licania JAP306	same as 176	277	1300	a
400	11	10.4	12.6	Myristicaceae	Virola	Virola pavonis		106	1300	c
401	11	11.8	16.3	Sapotaceae	Pouteria	Pouteria cuspidata		147	1300	e
402	11	9.6	15.8	Myristicaceae	Virola	Virola pavonis	same as 306	114	1300	a
403	11	9.2	17.2	Araliaceae	Schefflera	Schefflera JAP68		136	1300	a
404	11	7	19	Apocynaceae	Lacmellea	Lacmellea peruviana		220	1300	e
405	11	7.4	14.1	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	165	2270	c
406	11	5.8	15.8	Anacardiaceae	Tapirira	Tapirira guianensis		365	1950	a
408	11	4.6	14.7	Sapotaceae	Pouteria	Pouteria cuspidata	same as 217	129	1300	a
409	11	2.6	17.1	Burseraceae	Protium	Protium calendulinum		187	1300	a
410	11	3.3	18.9	Burseraceae	Protium	Protium spruceanum		245	1300	a
411	12	1.5	0	Burseraceae	Protium	Protium spruceanum		181	1300	a
412	12	3.6	4.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		163	1300	c
413	12	2	7.7	Sapotaceae	Pouteria	Pouteria JAP263		412	1300	1

414	12	:	2.2	9.2	Fabaceae	Tachigali	Tachigali chrysaloides	same as 329	245	1300	ce
415	12		1.8	10.5	Euphorbiaceae	Hevea	Hevea pauciflora		403	2350	a
417	12		2.9	10.1	Euphorbiaceae	Senefeldera	Senefeldera inclinata		166	1300	a
419	12		4.6	8.4	Clusiaceae	Symphonia	Symphonia globulifera		284	1300	a
420	12		7.7	5.2	Sapotaceae	Pouteria	Pouteria JAP106		158	1300	c
421	12		9	3.5	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		474	1300	c
422	12		8.4	6.4	Fabaceae	Inga	Inga JAP258		121	1300	a
424	12	1	0.1	7.1	Nyctaginaceae	Neea	Neea spruceana		143	1300	c
425	12		11	6.4	Anacardiaceae	Tapirira	Tapirira guianensis		440	1300	a
426	12	1	14.6	9.3	Annonaceae	Tetrameranthus	Tetrameranthus umbellatus		147	1300	a
427	12	1	6.4	6.5	Chrysobalanaceae	Licania	Licania JAP306	same as 300	191	1300	a
428	12	1	18.8	5.8	Moraceae	Brosimum	Brosimum utile	same as 70	106	1300	a
430	12	1	14.9	9	Sapotaceae	Pouteria	Pouteria oblanceolata		118	1300	a
431	12	1	19.3	13.4	Apocynaceae	Parahancornia	Parahancornia peruviana	same as 325	310	1300	a
432	12	1	17.5	16.2	Euphorbiaceae	Mabea	Mabea speciosa	same as 81	122	1300	a
433	12	1	16.8	16.8	Anacardiaceae	Tapirira	Tapirira guianensis		105	1300	a
434	12		14	19.4	Moraceae	Brosimum	Brosimum utile	same as 70	195	1300	a
435	12	1	13.3	17.5	Euphorbiaceae	Senefeldera	Senefeldera inclinata		195	1300	a
436	12	1	13.1	17.6	Nyctaginaceae	Neea	Neea spruceana		108	1300	a
437	12		12	15.6	Combretaceae	Buchenavia	Buchenavia congesta		362	2860	a
438	12	!	9.8	18.9	Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	126	1840	a
439	12	1	10.3	16	Myristicaceae	Virola	Virola pavonis	same as 101	189	1300	a
441	12		10	12.3	Podocarpaceae	Podocarpus	Podocarpus magnifolius		308	1300	a
442	12		8.3	16.1	Moraceae	Brosimum	Brosimum utile	same as 70	326	1300	a
443	12		5.9	15.3	Myristicaceae	Virola	Virola pavonis		213	4040	a
444	12		5.8	14.6	Sapotaceae	Pouteria	Pouteria JAP51		107	1300	a
445	12		2.9	13	Burseraceae	Protium	Protium grandifolium		103	1300	a
446	12		2.9	13.7	Sapotaceae	Ecclinusa	Ecclinusa lanceolata		125	1300	a
447	12	2	2.95	13.8	Sapindaceae	Toulicia	Toulicia reticulata		212	1300	a
448	12		3	17.7	Euphorbiaceae	Hevea	Hevea pauciflora		140	1300	a
450	13		1.4	10.5	Apocynaceae	Lacmellea	Lacmellea peruviana		185	1500	e

451	13		3.8	9.5	Euphorbiaceae	Senefeldera	Senefeldera inclinata		109	1300	a
452	13		3.7	7.7	Malvaceae	Mollia	Mollia gracilis		171	1300	a
453	13		6.8	5.7	Sapotaceae	Pouteria	Pouteria JAP191		174	2550	a
454	13		6.7	3.5	Nyctaginaceae	Neea	Neea spruceana	same as 436	110	1300	a
455	13		9.9	2.4	Nyctaginaceae	Guapira	Guapira JAP275		359	2600	S
458	13		7.9	7.4	Araliaceae	Scheflera	Scheflera JAP349		142	1300	a
459	13		7.4	8.7	Sapotaceae	Pouteria	Pouteria JAP20		183	1300	a
460	13	1	11.1	10	Sapotaceae	Pouteria	Pouteria cuspidata	same as 220	161	2050	a
461	13	1	12.5	11	Moraceae	Brosimum	Brosimum utile	same as 70	268	1300	a
462	13	1	12.7	12	Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	156	1300	a
463	13	1	13.7	7.6	Myristicaceae	Virola	Virola pavonis	same as 101	195	1300	a
465	13	1	14.9	5.9	Meliaceae	Trichilia	Trichilia JAP282	same as 106	105	1300	a
467	13	1	17.3	5.8	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 644	162	2020	a
468	13	1	18.6	9.3	Burseraceae	Protium	Protium paniculatum		110	1300	c
469	13	1	18.4	13.2	Rubiaceae	Remijia	Remijia JAP116	same as 88	161	1640	a
470	13	1	15.9	12.3	Euphorbiaceae	Hevea	Hevea pauciflora		101	1300	a
471	13	1	19.9	17.6	Euphorbiaceae	Alchorneopsis	Alchorneopsis floribunda		328	2630	a
472	13	1	17.4	16.2	Urticaceae	Pourouma	Pourouma cecropiifolia		136	1750	a
473	13	1	14.7	13.1	Anacardiaceae	Tapirira	Tapirira retusa	same as 90	104	1300	a
474	13	1	14.3	18	Rubiaceae	Alseis	Alseis JAP115		122	1300	a
475	13	1	10.6	15.1	Melastomataceae	Miconia	Miconia JAP135	same as 116	103	1300	a
476	13		8.5	17.2	Sapotaceae	Pouteria	Pouteria cuspidata	same as 220	164	1300	a
477	13		5.7	13.5	Burseraceae	Protium	Protium grandifolium		279	1850	a
478	13		1.1	13.2	Siparunaceae	Siparuna	Siparuna pachyantha		373	2300	a
479	13		1.5	15	Euphorbiaceae	Senefeldera	Senefeldera inclinata		140	1750	a
480	13		1.4	15	Euphorbiaceae	Hevea	Hevea pauciflora		159	1300	a
481	13		4.9	18.8	Sapotaceae	Pouteria	Pouteria JAP321		234	2350	a
483	14		3.8	10.4	Burseraceae	Protium	Protium grandifolium		167	1300	a
484	14		4.4	4.2	Burseraceae	Protium	Protium grandifolium		196	1300	a
485	14		7.1	1.9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		163	1300	a
486	14		7.9	3.5	Myristicaceae	Virola	Virola pavonis	same as 376	304	2850	a

487	14	1	10.5	2.3	Rutaceae	Zanthoxylum	Zanthoxylum JAP176		269	1300	a
488	14	1	11.4	2.2	Myristicaceae	Virola	Virola pavonis	same as 306	107	1300	a
489	14	1	10.9	3.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		123	1300	a
490	14	1	11.4	5.3	Lauraceae	Aniba	Aniba firmula		195	1300	a
491	14	1	10.4	8.5	Myristicaceae	Virola	Virola pavonis	same as 306	224	2140	a
492	14	1	10.1	8.7	Burseraceae	Protium	Protium grandifolium		199	1300	a
493	14		9.8	9.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		118	1500	a
494	14	1	12.8	5.1	Sapotaceae	Pouteria	Pouteria cuspidata	same as 217	220	1300	a
495	14		15	4.5	Euphorbiaceae	Senefeldera	Senefeldera inclinata		101	1300	a
496	14	1	15.5	8.1	Myristicaceae	Iryanthera	Iryanthera paradoxa	same as 518	152	1300	a
497	14	1	15.7	10.6	Peraceae	Pera	Pera citriodora	same as 201	218	3500	a
498	14	1	14.6	10.5	Sapotaceae	Micropholis	Micropholis guyanensis	same as 298	142	1300	a
500	14	1	13.6	11.4	Indet	Indet	Indet indet		370	1300	a
501	14	1	12.8	13.8	Anacardiaceae	Tapirira	Tapirira guianensis	same as 620	169	1300	a
502	14]]	18.5	16.6	Siparunaceae	Siparuna	Siparuna pachyantha	same as 478	213	1300	a
503	14	1	19.4	19.7	Myristicaceae	Compsoneura	Compsoneura JAP24		227	1300	a
504	14		15	17	Annonaceae	Xylopia	Xylopia micans		235	1300	a
505	14	1	12.9	18	Chrysobalanaceae	Licania	Licania micrantha		426	2600	a
506	14	1	13.3	19.7	Sapotaceae	Pouteria	Pouteria JAP321		115	1300	a
507	14	1	10.2	16.2	Lauraceae	Aniba	Aniba firmula	same as 490	226	1300	a
508	14		8.8	10.9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		109	1300	a
509	14		6.8	12.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		139	1300	a
510	14	1	1.25	12	Burseraceae	Protium	Protium grandifolium	same as 484	222	1800	a
511	14		3.3	15.5	Moraceae	Brosimum	Brosimum utile	same as 70	108	1300	a
513	14		3.9	18.7	Sapotaceae	Pouteria	Pouteria JAP263		103	1300	a
514	15		2.4	2.2	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	392	1300	a
515	15		2.8	6.6	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii		235	1300	S
516	15		2.1	8.4	Euphorbiaceae	Senefeldera	Senefeldera inclinata		135	1650	a
517	15		5.8	9.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		129	1300	a
518	15		6.2	8.3	Myristicaceae	Iryanthera	Iryanthera paradoxa		137	1300	a
519	15		7.6	2.8	Lauraceae	Ocotea	Ocotea aciphylla		136	1350	a

520	15	11.1	3.3	Sapotaceae	Micropholis	Micropholis egensis	same as 209	259	2550	a
521	15	12	5.3	Lauraceae	Aniba	Aniba firmula		113	1300	a
522	15	9.5	11.3	Burseraceae	Protium	Protium grandifolium		600	2450	a
523	15	12.7	8.9	Sapotaceae	Micropholis	Micropholis guyanensis	ssp cuspidata	272	1300	a
524	15	12.8	10.1	Fabaceae	Albizia	Albizia niopoides		214	1300	a
525	15	13.8	4.3	Urticaceae	Pourouma	Pourouma cecropiifolia		123	1300	a
526	15	15.1	6.1	Lauraceae	Ocotea	Ocotea JAP151		113	1530	a
528	15	18.4	8.9	Euphorbiaceae	Hevea	Hevea pauciflora		318	2000	S
529	15	15.8	10	Chrysobalanaceae	Licania	Licania micrantha	same as 505	391	2550	c
530	15	13.2	11.8	Burseraceae	Protium	Protium paniculatum	same as 77	196	1300	a
531	15	14	13.5	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 644	118	1300	a
532	15	0.3	11	Moraceae	Brosimum	Brosimum utile		108	1300	a
533	15	0.9	11.5	Anacardiaceae	Tapirira	Tapirira guianensis		332	1300	a
534	15	4.3	12.7	Moraceae	Brosimum	Brosimum rubescens		121	1300	a
535	15	0	16	Burseraceae	Protium	Protium grandifolium		131	1300	a
536	15	4.4	16.2	Euphorbiaceae	Senefeldera	Senefeldera inclinata		150	1300	a
537	15	4.2	18.1	Apocynaceae	Aspidosperma	Aspidosperma desmanthum		144	1300	1
540	15	4.1	19.2	Sapotaceae	Micropholis	Micropholis guyanensis		383	1300	S
541	15	4.4	19.5	Moraceae	Trymatococcus	Trymatococcus amazonicus		131	1300	1
542	15	4.9	19.3	Lauraceae	Ocotea	Ocotea aciphylla		126	1400	a
542.1	15	5.9	18.9	Myristicaceae	Iryanthera	Iryanthera juruensis		102	1300	an
543	15	7	14.6	Sapotaceae	Pouteria	Pouteria reticulata		194	1300	a
544	15	12.5	14.8	Sapindaceae	Matayba	Matayba JAP23		215	1880	c
545	15	12	14.5	Annonaceae	Guatteria	Guatteria hyposericea		236	2100	e
546	15	14.4	13.9	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		289	1300	c
547	15	15.4	14.4	Euphorbiaceae	Hevea	Hevea pauciflora		132	1300	S
548	15	13.7	19.2	Myristicaceae	Virola	Virola pavonis	same as 296	165	1740	a
549	15	16.5	19.3	Lauraceae	Ocotea	Ocotea JAP151	same as 242	130	2230	S
550	16	18.9	17	Euphorbiaceae	Senefeldera	Senefeldera inclinata		150	1300	a
551	16	15.8	14.7	Moraceae	Brosimum	Brosimum utile	same as 175	210	1400	a
552	16	19.5	11.7	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	147	1300	a

553	16	10	6.9	7.6	Lauraceae	Ocotea	Ocotea JAP151		108	1300	a
556	16	1:	5.8	1.8	Sapotaceae	Pouteria	Pouteria JAP351		112	1300	c
557	16	14	4.6	0.8	Myristicaceae	Virola	Virola multinervia		205	1300	a
558	16	10	0.8	1.5	Chrysobalanaceae	Licania	Licania micrantha	same as 505	318	2000	a
559	16	9	9.4	0.6	Lauraceae	Licaria	Licaria cannella	same as 297	249	1300	a
560	16	7	7.9	9.7	Burseraceae	Protium	Protium spruceanum	same as 291	116	1300	a
561	16		9	10.1	Meliaceae	Trichilia	Trichilia JAP282	same as 106	115	1300	a
562	16	2	2.9	7.8	Ochnaceae	Cespedesia	Cespedesia spathulata		437	1800	a
563	16	2	2.1	6.2	Lauraceae	Ocotea	Ocotea JAP199	same as 375	203	1300	a
564	16	1	1.2	7.3	Caryocaraceae	Caryocar	Caryocar glabrum	same as 579	203	1300	a
565	16	0	0.6	12.1	Sapotaceae	Micropholis	Micropholis guyanensis	ssp cuspidata; same as 523	219	2020	a
566	16	2	2.9	15.2	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		224	1300	a
567	16	6	5.9	15.1	Lauraceae	Ocotea	Ocotea JAP207		220	2350	a
568	17	1	1.8	0	Simaroubaceae	Simaba	Simaba polyphylla		237	1770	a
569	17	3	3.7	1	Melastomataceae	Miconia	Miconia JAP135	same as 116	107	1300	a
570	17	4	1.3	1.3	Myristicaceae	Virola	Virola pavonis	same as 279	113	1300	a
571	17	1	1.5	8.9	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	190	1300	e
572	17	8	3.9	5.5	Lauraceae	Ocotea	Ocotea gracilis		136	1300	a
573	17	10	0.3	7.6	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	290	1300	c
574	17	10	0.3	0.9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		126	1300	a
575	17	12	2.9	7.9	Euphorbiaceae	Senefeldera	Senefeldera inclinata		118	1300	a
576	17	14	4.7	6.8	Lauraceae	Ocotea	Ocotea JAP218		107	1400	c
577	17	1	7.2	7.2	Rubiaceae	Schizocalyx	Schizocalyx condoricus	same as 787	103	1300	a
578	17	1:	5.3	8.9	Myristicaceae	Virola	Virola pavonis	same as 376	299	2050	a
579	17	1:	5.2	11.5	Caryocaraceae	Caryocar	Caryocar glabrum		289	1300	a
580	17	1:	5.2	11.8	Lauraceae	Ocotea	Ocotea argyrophylla		237	1300	a
581	17	1:	5.5	12.6	Malpighiaceae	Byrsonima	Byrsonima JAP316	same as 783	102	1300	a
585	17	10	0.2	15.2	Apocynaceae	Lacmellea	Lacmellea klugii		106	1300	a
586	17	10	0.6	16.4	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	128	1300	a
587	17	1	12	18.6	Rubiaceae	Ladenbergia	Ladenbergia oblongifolia		247	1300	a
588	17	10	0.2	16.9	Euphorbiaceae	Alchorneopsis	Alchorneopsis floribunda	same as 471	378	2300	a

589	17	7.	8	19.7	Rubiaceae	Elaeagia	Elaeagia JAP117		179	1300	a
590	17	7.	4	17.7	Rubiaceae	Elaeagia	Elaeagia JAP117		126	1300	a
591	17	5.	7	14.7	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	136	1300	a
592	17	1.	4	12.4	Rubiaceae	Elaeagia	Elaeagia JAP117		109	1380	a
593	17	0.	8	12.3	Myristicaceae	Virola	Virola pavonis	same as 101	115	1300	c
594	17	4.	1	15.6	Euphorbiaceae	Alchorneopsis	Alchorneopsis floribunda		198	1300	a
595	17	1.	4	17.5	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	163	1360	a
596	17	0.	7	19.5	Apocynaceae	Lacmellea	Lacmellea peruviana		113	1360	a
597	18	()	2.3	Burseraceae	Protium	Protium paniculatum	same as 77	100	1300	a
598	18	1.	7	1.6	Moraceae	Brosimum	Brosimum utile		301	1300	a
599	18	3		6.1	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	410	2650	a
600	18	3.	6	6.1	Clusiaceae	Garcinia	Garcinia madruno		112	1300	a
601	18	3.	1	7.4	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	185	1300	a
602	18	1.	1	9.7	Araliaceae	Schefflera	Schefflera JAP68	same as 75	118	1300	a
603	18	5.	7	9.2	Chrysobalanaceae	Licania	Licania canescens	same as 74	268	1300	a
604	18	7.	7	8.6	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 644	144	2510	a
605	18	4	-	1.8	Nyctaginaceae	Neea	Neea spruceana	same as 436	106	1300	a
606	18	8.	3	4.1	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 644	114	1380	a
607	18	1	0	1.8	Euphorbiaceae	Mabea	Mabea speciosa	same as 81	106	1300	a
608	18	g)	1.1	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	143	1300	a
609	18	1	4	3.4	Apocynaceae	Lacmellea	Lacmellea peruviana		364	1300	ce
610	18	15	.6	3.4	Lauraceae	Ocotea	Ocotea JAP281	same as 380	116	1300	a
611	18	15	.5	1.1	Euphorbiaceae	Mabea	Mabea speciosa	same as 81	103	1300	c
613	18	18	.1	6.4	Apocynaceae	Parahancornia	Parahancornia peruviana		229	1300	a
614	18	18	.1	6.8	Apocynaceae	Lacmellea	Lacmellea peruviana		116	1300	ce
615	18	19	.8	11.3	Fabaceae	Hymenaea	Hymenaea oblongifolia	same as 288	339	1300	a
616	18	19	.5	15	Euphorbiaceae	Senefeldera	Senefeldera inclinata		151	1450	c
617	18	16	.7	17.3	Myrtaceae	Myrcia	Myrcia JAP131	same as 129	278	1250	a
618	18	16	.1	17.3	Calophyllaceae	Calophyllum	Calophyllum longifolium		208	1300	a
619	18	16	.1	17	Lauraceae	Aniba	Aniba firmula		304	1700	a
620	18	16	.5	15.4	Anacardiaceae	Tapirira	Tapirira guianensis		319	1300	a

621	18	:	13	12.4	Myristicaceae	Virola	Virola pavonis	same as 101	239	1300	s
622	18		11	10.2	Linaceae	Roucheria	Roucheria laxiflora	same as 58	456	1300	a
624	18	ç	9.6	13.6	Cardiopteridaceae	Dendrobangia	Dendrobangia boliviana		162	1300	a
625	18	7	7.3	12.9	Lauraceae	Ocotea	Ocotea JAP214		188	1300	a
626	18	7	7.6	15.3	Moraceae	Brosimum	Brosimum utile		425	1300	a
627	18		7	16	Apocynaceae	Lacmellea	Lacmellea peruviana		208	1300	ce
628	18		7	17.5	Nyctaginaceae	Neea	Neea spruceana	same as 436	117	1700	c
629	18	(6.6	15	Lauraceae	Persea	Persea JAP273		247	1300	a
630	18	2	2.2	14.1	Nyctaginaceae	Neea	Neea spruceana	same as 436	162	1630	c
631	18	2	2.2	14.1	Nyctaginaceae	Neea	Neea spruceana	same as 436	144	1300	c
632	18	(0.6	11.7	Moraceae	Brosimum	Brosimum utile		123	1300	a
633	18	(0.6	11.6	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	same as 318	121	1300	a
634	18	(0.2	12.5	Myristicaceae	Virola	Virola pavonis	same as 376	201	3500	a
635	18	(0.1	12.5	Sapotaceae	Chrysophyllum	Chrysophyllum colombianum		123	1300	a
636	18	1	1.4	18.9	Melastomataceae	Miconia	Miconia minutiflora		131	1300	a
637	19	(0.2	5.5	Simaroubaceae	Simaba	Simaba guianensis		336	1300	a
638	19	5	5.5	10.8	Moraceae	Brosimum	Brosimum utile		153	1300	a
639	19	1	2.6	3.6	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	250	1300	a
640	19		14	4.6	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	244	2520	a
641	19	1	3.4	0	Apocynaceae	Parahancornia	Parahancornia peruviana		317	1710	a
642	19	1	6.3	0	Myristicaceae	Virola	Virola pavonis	same as 306	139	1300	a
643	19	1	8.2	0.7	Burseraceae	Protium	Protium paniculatum		121	1300	a
644	19		19	4.7	Clusiaceae	Tovomita	Tovomita stigmatosa		134	1900	a
645	19		19	9.4	Sapotaceae	Micropholis	Micropholis venulosa	same as 267	365	2550	a
646	19		19	11.2	Sapotaceae	Pouteria	Pouteria bilocularis		415	4600	a
647	19	1	8.5	13.7	Apocynaceae	Aspidosperma	Aspidosperma cruentum		214	1300	a
648	19		20	17.4	Myristicaceae	Virola	Virola pavonis	same as 86	391	3550	a
649	19	1	8.2	18.4	Lauraceae	Ocotea	Ocotea JAP218	same as 222	169	1300	a
650	19		16	18	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	325	1300	a
651	19		14	18.1	Nyctaginaceae	Neea	Neea spruceana	same as 436	135	1300	a
652	19	1	2.5	12.6	Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	235	1300	a

653	19	10	0.9	16	Sapotaceae	Pouteria	Pouteria cuspidata	ssp dura	503	2700	a
654	19	10	0.8	16.7	Ochnaceae	Ouratea	Ouratea polyantha	same as 73	223	1300	a
655	19	1	10	18.6	Lauraceae	Persea	Persea areolatocostae		310	1300	a
656	19	9	0.5	19.8	Apocynaceae	Aspidosperma	Aspidosperma cruentum		105	1300	a
657	19	6	5.6	14.2	Apocynaceae	Lacmellea	Lacmellea peruviana		153	1300	e
658	19	6	5.6	16.7	Nyctaginaceae	Neea	Neea spruceana	same as 436	238	1250	a
659	19	4	1.6	17.3	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	490	4980	a
660	19	0	8.0	11.2	Chrysobalanaceae	Licania	Licania canescens	same as 74	160	2280	a
661	19	0).1	17	Moraceae	Brosimum	Brosimum utile		168	1300	a
662	19	1	.2	18.3	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	217	1300	a
663	20	0).7	2	Apocynaceae	Parahancornia	Parahancornia peruviana	same as 325	243	1300	a
664	20	4	1.3	6	Clusiaceae	Dystovomita	Dystovomita JAP169	same as 147	111	1300	a
665	20	4	1.7	0.9	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	102	1300	a
666	20	7	7.7	0	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	180	1300	a
667	20	7	'.4	10.5	Podocarpaceae	Podocarpus	Podocarpus magnifolius	same as 226	242	1750	a
668	20	7	7.5	11	Fabaceae	Inga	Inga marginata	same as 227	113	1410	a
669	20	1	1.2	4	Nyctaginaceae	Neea	Neea spruceana	same as 436	215	1300	с
670	20	4	1.5	5	Fabaceae	Inga	Inga marginata	same as 164	153	1300	a
671	20	12	2.4	4	Moraceae	Brosimum	Brosimum utile	same as 70	228	1300	a
672	20	14	4.7	7.1	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	319	1300	a
673	20	1'	7.3	2.6	Clusiaceae	Garcinia	Garcinia madruno	same as 178	164	1300	a
674	20	18	8.1	3.5	Burseraceae	Protium	Protium paniculatum	same as 77	175	1300	a
675	20	1′	7.2	5.5	Meliaceae	Trichilia	Trichilia JAP282	same as 106	117	1300	a
676	20	10	6.6	6.4	Apocynaceae	Parahancornia	Parahancornia peruviana		169	1480	a
677	20	18	8.1	6.4	Burseraceae	Dacryodes	Dacryodes JAP232		262	1300	a
678	20	19	9.7	7.8	Moraceae	Brosimum	Brosimum utile		293	1300	a
679	20	2	20	7.7	Moraceae	Brosimum	Brosimum utile	same as 159	130	1300	a
680	20	1'	7.7	12.6	Lauraceae	Persea	Persea peruviana	same as 170	309	1570	a
681	20	19	9.4	17.5	Lamiaceae	Vitex	Vitex triflora		100	1300	a
682	20	19	9.8	18.6	Burseraceae	Protium	Protium paniculatum	same as 77	257	1780	a
683	20	1	16	18.6	Clusiaceae	Tovomita	Tovomita weddelliana		151	1300	a

684	20	1	7	18	Moraceae	Brosimum	Brosimum utile		165	1300	a
685	20	1	6	17	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 58	178	1300	a
686	20	1	5 1	16.3	Myristicaceae	Virola	Virola pavonis	same as 86	377	3100	a
687	20	1	5 1	18.2	Araliaceae	Schefflera	Schefflera indet		110	1300	a
688	20	1	2 1	15.5	Malvaceae	Pachira	Pachira JAP59	same as 37	144	1300	a
689	20	1	2 1	15.8	Sapotaceae	Pouteria	Pouteria reticulata		106	1300	a
690	20	6.	4 1	12.4	Moraceae	Brosimum	Brosimum utile		195	1300	a
691	20	1.	1 1	12.7	Rubiaceae	Remijia	Remijia JAP116	same as 88	108	1300	a
692	20	() 1	16.6	Moraceae	Brosimum	Brosimum utile		225	1300	a
693	21	1.	3	2	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	404	4230	a
694	21	2.	2	2	Rubiaceae	Amaioua	Amaioua glomerulata		155	1250	a
695	21	3.	2	2	Lauraceae	Ocotea	Ocotea JAP203	same as 277	265	1300	a
696	21	4.	6	10	Apocynaceae	Lacmellea	Lacmellea peruviana		159	1300	e
697	21	$ $ ϵ	5	7	Moraceae	Brosimum	Brosimum utile	same as 70	244	1300	a
698	21	6.	6	5.9	Opiliaceae	Agonandra	Agonandra silvatica		119	1300	a
699	21	$ $ ϵ	5 :	3.3	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	366	2200	a
700	21	$ $ ϵ	5	2	Moraceae	Brosimum	Brosimum utile	same as 70	200	1300	a
701	21	8	: :	3.3	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 58	229	1300	a
702	21	8.	3	1.3	Nyctaginaceae	Neea	Neea spruceana		177	1250	d
703	21	9.	3	0	Myristicaceae	Virola	Virola pavonis	same as 279	135	1300	a
704	21	10	.6	1.6	Malvaceae	Pachira	Pachira aquatica	same as 390	118	1300	a
705	21	1	0	2.7	Moraceae	Brosimum	Brosimum utile		120	1300	a
706	21	1	3	6.8	Lauraceae	Licaria	Licaria JAP216		263	1300	a
707	21	1	5	5.1	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	342	2890	a
708	21	1	9	7.6	Simaroubaceae	Simaba	Simaba guianensis	same as 637	195	1300	c
709	21	15	.8	8.5	Lauraceae	Licaria	Licaria cannella		214	1300	c
710	21	14	.5	8.8	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	same as 318	135	1300	a
711	21	14	.1	9	Nyctaginaceae	Neea	Neea spruceana		129	1300	a
712	21	1	3 1	15.2	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	116	2050	a
712.1	21	1	5	15	Myristicaceae	Virola	Virola pavonis		100	1300	an
713	21	18	.9 1	14.6	Moraceae	Brosimum	Brosimum utile	same as 70	198	1300	a

714	21	16.6	18.6	Lauraceae	Persea	Persea peruviana	same as 170	222	1300	a
715	21	16.5	19	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	310	1600	a
717	21	12	13	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	178	1300	c
717.1	21	9	14.5	Nyctaginaceae	Neea	Neea spruceana		104	1300	cn
719	21	9	17	Burseraceae	Protium	Protium paniculatum		102	1400	c
720	21	8.5	19.6	Rubiaceae	Elaeagia	Elaeagia JAP117	same as 136	130	1750	a
721	21	6	12	Chrysobalanaceae	Licania	Licania JAP306	same as 176	397	1300	a
722	21	4.6	19.7	Burseraceae	Protium	Protium paniculatum	same as 77	188	2270	a
723	21	2	16	Chrysobalanaceae	Licania	Licania canescens	same as 74	144	1300	a
724	22	1.9	0.8	Araliaceae	Schefflera	Schefflera indet		104	1300	a
725	22	2.3	0.4	Sapindaceae	Matayba	Matayba arborescens		172	2900	a
726	22	4.6	2.1	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	same as 318	332	1300	a
727	22	4.6	3.9	Sapotaceae	Pouteria	Pouteria reticulata	same as 780	182	1300	a
728	22	3	7.5	Linaceae	Roucheria	Roucheria laxiflora		114	1350	a
729	22	1.1	12.4	Euphorbiaceae	Mabea	Mabea speciosa	same as 81	133	1300	a
730	22	6.2	7.2	Moraceae	Brosimum	Brosimum utile	same as 70	200	1300	a
732	22	7.1	7.5	Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	111	1300	a
733	22	8.5	4.5	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	264	1300	a
734	22	7	0.3	Moraceae	Brosimum	Brosimum utile	same as 70	130	1300	a
735	22	6.7	0.3	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	187	1300	a
736	22	12.2	1.3	Chrysobalanaceae	Licania	Licania canescens	same as 74	133	1730	S
737	22	13	0.9	Clusiaceae	Tovomita	Tovomita weddelliana	same as 31	109	1920	a
738	22	10.5	7.5	Fabaceae	Inga	Inga marginata	sames as 227	131	1300	a
739	22	14.3	10	Melastomataceae	Miconia	Miconia dolichorrhyncha		116	1460	a
740	22	7.8	5.3	Anacardiaceae	Tapirira	Tapirira retusa	same as 90	105	1300	a
741	22	17	6	Lauraceae	Persea	Persea JAP370		110	1300	ah
742	22	17	6	Indet	Indet	Indet indet		112	1300	ah
743	22	19	6	Aquifoliaceae	Ilex	Ilex aggregata		112	1300	ah
744	22	19	6	Aquifoliaceae	Ilex	Ilex aggregata		95	1300	ah
745	22	19.2	14.2	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	139	1480	ah
746	22	19.2	14.2	Fabaceae	Diplotropis	Diplotropis purpurea	same as 71	95	1300	ah

747	22	19.	5 1	Combretaceae	Buchenavia	Buchenavia macrophylla		114	1300	a
748	22	16.	6 18	6 Lauraceae	Ocotea	Ocotea oblonga		290	1630	a
749	22	15.	4 12	5 Rubiaceae	Ladenbergia	Ladenbergia amazonensis		185	1300	a
750	22	10	8 1	7 Anacardiaceae	Tapirira	Tapirira retusa	same as 90	155	1300	a
751	22	8.3	18	3 Rubiaceae	Ladenbergia	Ladenbergia oblongifolia		155	1300	c
752	22	5	13	2 Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	313	3800	a
753	23	3	0.	8 Araliaceae	Schefflera	Schefflera JAP68	same as 75	380	1300	a
754	23	3.:	5 1	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	219	3000	a
755	23	2.:	10) Lauraceae	Persea	Persea peruviana	same as 170	214	1300	a
756	23	2.:	1	Fabaceae	Inga	Inga marginata	sames as 227	198	1300	a
757	23	2.:	11	.5 Burseraceae	Protium	Protium paniculatum	same as 77	287	3200	a
758	23	7.3	3 11	.1 Apocynaceae	Lacmellea	Lacmellea peruviana		512	1300	e
759	23	9.	8.	5 Myristicaceae	Virola	Virola pavonis	same as 376	473	2440	a
760	23	7.4	5.	6 Lauraceae	Persea	Persea peruviana	same as 170	187	1780	a
761	23	9.3	6.	4 Moraceae	Brosimum	Brosimum utile	same as 532	295	1300	a
762	23	10	1 4.	7 Apocynaceae	Lacmellea	Lacmellea peruviana		224	1300	e
763	23	11.	5 1	Nyctaginaceae	Neea	Neea spruceana		129	1300	a
764	23	6	1.	4 Lauraceae	Ocotea	Ocotea oblonga	same as 748	125	1500	a
765	23	12	9.	4 Anacardiaceae	Tapirira	Tapirira guianensis	same as 620	155	1300	a
767	23	20	6.	4 Nyctaginaceae	Neea	Neea spruceana		109	1300	c
768	23	17.	3 7.	Buphorbiaceae	Alchorneopsis	Alchorneopsis floribunda	same as 471	229	1470	a
770	23	19.	6 12	5 Euphorbiaceae	Aparisthmium	Aparisthmium cordatum		110	1300	a
772	23	13.	5 1	6 Moraceae	Brosimum	Brosimum utile		780	2300	1
773	23	10	15	3 Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	257	2130	a
774	23	8	15	.5 Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	274	1300	a
775	23	8	19	.5 Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	270	2250	a
776	23	7	19	6 Clusiaceae	Dystovomita	Dystovomita JAP169	same as 147	136	1720	a
777	23	6.0	18	2 Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	202	1740	a
778	23	0.4	15	4 Sapotaceae	Pouteria	Pouteria reticulata	same as 780	181	1300	a
779	24	0	0.1	5 Euphorbiaceae	Mabea	Mabea speciosa		200	2600	a
780	24	1.3	2 4.	2 Sapotaceae	Pouteria	Pouteria reticulata		165	1300	a

781	24		0.5	8.8	Sapotaceae	Pouteria	Pouteria reticulata	same as 780	208	2020	a
783	24	4	4.7	6.68	Malpighiaceae	Byrsonima	Byrsonima JAP316		134	1300	a
784	24	:	5.9	6.62	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	186	1600	a
785	24	(6.2	1	Malpighiaceae	Byrsonima	Byrsonima JAP316	same as 783	163	1300	a
786	24	<i>'</i>	7.2	6.85	Lauraceae	Ocotea	Ocotea JAP281		169	1300	a
787	24		6	10.3	Rubiaceae	Schizocalyx	Schizocalyx condoricus		109	1300	a
788	24	1	0.9	11.1	Cardiopteridaceae	Dendrobangia	Dendrobangia boliviana		290	2200	a
789	24	1	1.3	10.5	Myristicaceae	Virola	Virola pavonis	same as 279	114	1450	a
790	24	1	1.4	9.4	Sapotaceae	Micropholis	Micropholis guyanensis	same as 298	134	1300	a
792	24	1	2.4	9.6	Lauraceae	Licaria	Licaria cannella		157	1300	a
793	24	1	4.4	9.5	Moraceae	Brosimum	Brosimum utile	same as 532	100	1300	a
794	24	1	8.3	4.7	Fabaceae	Macrolobium	Macrolobium limbatum	same as 165	255	1300	a
795	24	1	2.7	12.2	Rubiaceae	Elaeagia	Elacagia JAP117	same as 136	101	1300	c
796	24	1	4.5	12.5	Chrysobalanaceae	Licania	Licania JAP306	same as 176	421	3600	a
797	24	1	5.1	12.6	Myrtaceae	Myrcianthes	Myrcianthes prodigiosa	same as 318	177	1300	a
798	24	1	6.2	12.6	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	327	2500	a
799	24	1	6.7	18.5	Melastomataceae	Miconia	Miconia JAP136		100	1300	a
800	24	<i>'</i>	7.8	15.7	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 58	416	2000	a
801	24	<i>'</i>	7.5	12.9	Moraceae	Brosimum	Brosimum utile		307	2020	a
802	24		6.4	14.6	Apocynaceae	Parahancornia	Parahancornia peruviana	same as 325	239	1300	a
803	25		1.6	0.15	Rubiaceae	Kutchubaea	Kutchubaea sericantha	same as 198	119	1300	a
804	25		3.6	0	Sapotaceae	Micropholis	Micropholis venulosa	same as 267	301	3050	a
805	25	1	3.5	1.7	Clusiaceae	Tovomita	Tovomita stigmatosa	same as 644	133	1300	a
806	25		3.3	6	Apocynaceae	Lacmellea	Lacmellea peruviana		271	1300	e
807	25		6.2	7.7	Euphorbiaceae	Senefeldera	Senefeldera inclinata		126	2070	a
809	25		9	3.5	Apocynaceae	Aspidosperma	Aspidosperma schultesii	same as 112	129	1250	a
810	25	1	3.9	2	Sapotaceae	Pouteria	Pouteria bilocularis		132	3100	a
811	25	1	3.6	2.4	Chrysobalanaceae	Licania	Licania micrantha	same as 505	424	3950	1
812	25	1	0.9	2.6	Sapotaceae	Chrysophyllum	Chrysophyllum prieurii	same as 58	136	1300	a
813	25	1	0.5	5	Sapotaceae	Chrysophyllum	Chrysophyllum sanguinolentum	same as 192	263	2150	a
814	25	1	1.5	5.7	Moraceae	Brosimum	Brosimum utile	same as 70	205	1300	a

815	25	11.3	6.3	Lauraceae	Nectandra	Nectandra JAP211		293	1800	a
817	25	13.5	7	Nyctaginaceae	Neea	Neea spruceana		207	1700	bc
818	25	14.3	0.3	Rubiaceae	Elaeagia	Elaeagia JAP117	same as 136	121	1300	a
819	25	18.5	1.8	Burseraceae	Protium	Protium paniculatum		142	1300	d
821	25	17.7	3.35	Moraceae	Brosimum	Brosimum utile		111	1300	a
822	25	16.9	6.3	Malvaceae	Pachira	Pachira aquatica	same as 390	107	1300	a
823	25	18.7	10.6	Moraceae	Brosimum	Brosimum utile		167	1300	a
824	25	12.3	13.6	Sapotaceae	Pouteria	Pouteria oblanceolata		302	1500	a
825	25	13.1	17.3	Myristicaceae	Virola	Virola pavonis	same as 279	128	1300	a
826	25	11.5	18.9	Apocynaceae	Parahancornia	Parahancornia peruviana	same as 325	400	4250	a
828	25	7.9	15.5	Euphorbiaceae	Hevea	Hevea pauciflora		227	1300	a
829	25	7.2	6.9	Euphorbiaceae	Hevea	Hevea pauciflora		313	1300	a
832	25	5.8	17.4	Myristicaceae	Osteophloeum	Osteophloeum platyspermum		405	1300	a
833	25	4.1	19.5	Chrysobalanaceae	Licania	Licania JAP306	same as 176	109	1300	a
834	25	2.4	12.4	Euphorbiaceae	Senefeldera	Senefeldera inclinata		153	1300	a
835	25	2.7	11.6	Euphorbiaceae	Senefeldera	Senefeldera inclinata		102	1300	a
836	25	1.6	20	Moraceae	Brosimum	Brosimum utile	same as 70	390	1300	S