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a b s t r a c t

The ecology and evolution of Caribbean anoles are well described, yet little is known about mainland anole
species. Lack of phylogenetic information limits our knowledge about species boundaries, morphological
evolution, and the biogeography of anoles in South America. To help fill this gap, we provide an updated
molecular phylogeny of the Dactyloa (Dactyloidae), with emphasis on the punctata species group. By
sampling understudied Amazonian taxa, we (i) assess the phylogenetic placement of the ‘odd anole’,
D. dissimilis; (ii) infer the relationships of the proboscis-bearing D. phyllorhina, testing the hypothesis of
independent nasal appendage evolution within the anole radiation; and (iii) examine genetic and dewlap
color variation in D. punctata and D. philopunctata. Combining multiple nuclear loci with a review of the fos-
sil record, we also (iv) estimate divergence times within the pleurodont iguanian clade of lizards, including
Amazonian representatives of Dactyloa and Norops (Dactyloidae) and of Polychrus (Polychrotidae). We
recover the five Dactyloa clades previously referred to as the aequatorialis, heteroderma, latifrons, punctata
and roquet species groups, as well as a sixth clade composed of D. dissimilis and the non-Amazonian D.
neblinina and D. calimae. We find D. phyllorhina to be nested within the punctata group, suggesting indepen-
dent evolution of the anole proboscis. We consistently recover D. philopunctata nested within D. punctata,
and report limited genetic divergence between distinct dewlap phenotypes. The most recent common
ancestor of Dactyloa, Anolis and Norops dates back to the Eocene. Most Amazonian taxa within both Dactyloa
and Norops diverged in the Miocene, but some diversification events were as old as the late Eocene and late
Oligocene. Amazonian Polychrus diverged in the Pliocene. Our findings have broad implications for anole
biogeography, disputing recent suggestions that modern dactyloid genera were present in the Caribbean
region during the Cretaceous.

� 2014 Elsevier Inc. All rights reserved.

1. Introduction

Caribbean anole lizards have been central to studies of adaptive
radiation and evolutionary ecology for more than half a century
(Losos, 2009). However, most of the diversity in the anole family
(Dactyloidae) is, in fact, continental (Nicholson et al., 2012). In
contrast to the island forms, little is known about the biology

and evolution of mainland anoles. Within the species-rich Dactyloa
radiation (83 recognized species; Castañeda et al., 2014), unclear
phylogenetic affinities limit inferences about species boundaries,
morphological evolution, and biogeographic patterns. We help fill
this gap by combining morphological and DNA sequence data from
four species of previously unsampled or undersampled Amazonian
anoles. Based on new information of D. punctata, D. philopunctata,
D. phyllorhina, and D. dissimilis, we also provide an updated molec-
ular phylogeny of the Dactyloa.

The Dactyloa radiation is composed of five main clades that
define groups of species often referred to as ‘species series’
(Castañeda and de Queiroz, 2013). Most Amazonian Dactyloa
anoles are currently assigned to the punctata group, which includes
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ca. 20 taxa, some of which exhibit wide ranges in South America
(Castañeda and de Queiroz, 2013). Dactyloa punctata (Daudin,
1802), the ‘spotted’ or ‘green Amazon’ anole (Fig. 1a), is one such
example that occurs throughout the Amazon basin, the Andean
foothills, the Guiana Shield, and the Atlantic Forest of coastal
Brazil. A previous assessment of population genetic structure in
this morphologically conserved lizard was limited to four localities
(Glor et al., 2001). To assess the biological and taxonomic implica-
tions of genetic variation within D. punctata, we combine observa-
tions of dewlap color patterns with new sequence data from a
representative portion of the species’ range.

Molecular evidence may improve the delimitation of species
within the punctata group, which has often been challenging
(Ugueto et al., 2007; Williams, 1982). In this study, we focus partic-
ularly on D. philopunctata Rodrigues (1988) (Fig. 1b), a name given
to anole populations restricted to central Amazonia that are
morphologically distinguishable from D. punctata solely based on
the coloration of the dewlap in male specimens. The dewlap of D.
punctata presents rows of small whitish scales on an orange back-
ground, while that of D. philopunctata has large scattered black
spots on a similar dewlap background (Fig. 1). The typical orange
dewlap of D. punctata has been described as nearly invariable
throughout this species’ distribution (Avila-Pires, 1995;
Rodrigues, 1988; Williams, 1982). However, at least one popula-
tion in southern Brazilian Amazonia presents white dewlaps
(Rodrigues et al., 2002). Because there are no records of D. punctata
and D. philopunctata occurring in sympatry and females of the two
species cannot be distinguished based on their extremely reduced
dewlaps, the validity of D. philopunctata has been questioned
(Avila-Pires, 1995). Making matters more complex, a recent phylo-
genetic assessment based on morphological data of D. philopuncta-
ta recovered this species not within the punctata group but closely
related to the latifrons group, albeit with low support (Castañeda
and de Queiroz, 2013). Using sequence data, we assess the phylo-
genetic placement of D. philopunctata relative to D. punctata, asking
whether dewlap color pattern is a robust diagnostic character in
the face of genetic variation within D. punctata.

Limited phylogenetic information also constrains inferences
regarding morphological evolution within the anole radiation, as
is the case of the poorly understood rostral proboscis observed in
D. phyllorhina (Myers and Carvalho, 1945) (Fig. 1c), D. laevis (Cope,
1876), and D. proboscis (Peters and Orces, 1956). Based on the pos-
session of the proboscis, Williams (1979) grouped these three taxa
in the laevis species group. However, they present highly disjunct
distributions, as D. laevis occupies the eastern Andean foothills in
Peru, D. proboscis occurs in the western slopes of the Ecuadorian
Andes, and D. phyllorhina is found in southern Amazonian lowlands
in Brazil. To date, D. proboscis has been the only proboscis-bearing
anole studied under a phylogenetic framework. Based on morpho-
logical characters, it has been consistently grouped with taxa in
the heteroderma species group (Castañeda and de Queiroz, 2013;
Nicholson et al., 2012; Poe, 2004; Poe et al., 2012). By contrast, mor-
phological examinations suggested D. phyllorhina as related to the
punctata group (Rodrigues et al., 2002; Yánez-Muñoz et al., 2010).
If D. phyllorhina is in fact more closely related to D. punctata than
to the remaining proboscis-bearing species, anole rostral append-
ages have evolved at least twice. By uncovering the phylogenetic
affinities of D. phyllorhina, we evaluate the hypothesis of indepen-
dent nasal appendage evolution within the anole family.

The paucity of anole studies in South America also limits our
knowledge about species distributions. For almost 50 years,
Dactyloa dissimilis Williams (1965) (Fig. 1d) was known solely from
its type locality in the upper Madre de Dios River (Peru). Williams
(1965, 1974, 1982) has suggested that this ‘odd anole’ was related
to the punctata species group. This assignment was supported by
phylogenetic analyses incorporating morphological evidence, but
the low support of the resulting trees and conflicting topologies
rendered it tentative (Castañeda and de Queiroz, 2013). Recently,
D. dissimilis was found in Brazil (Freitas et al., 2013). We found this
species to be common in a Southwestern Amazonian site
(Melo-Sampaio et al., 2013), where it is associated with clumps
of open bamboo forest (Guadua spp.) within dense rainforest. By
incorporating D. dissimilis in our analysis, we test for its presumed
affinity with the punctata species group.

Fig. 1. Dewlap coloration patterns of our focal Amazonian anole lizards. (A) Dactyloa punctata. (B) D. philopunctata. (C) D. phyllorhina. (D) D. dissimilis.
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Finally, to lay the groundwork for forthcoming phylogeographic
studies, we combine multi-locus sequence data with a critical
review of the available fossil information, providing a new dated
phylogeny of the pleurodont iguanian clade that includes repre-
sentatives of both the Dactyloa and Norops radiations of anoles,
as well as bush anoles (Polychrus). By performing improved estima-
tions of divergence times, we provide a temporal framework for
Amazonian anole diversification.

Throughout this paper, we follow Nicholson et al.’s (2012) pro-
posal of splitting Anolis sensu lato, and recognize Dactyloa and Nor-
ops as genera. We do so for the following reasons. First, we find
classification schemes more meaningful when they correlate to,
and therefore inform about, aspects of the evolution, biogeography,
and morphological variation of a group, and therefore subdivisions
may prove instrumental. We also feel that subdivision of
Dactyloidae is warranted, as suggested by the widespread use of
informal ranks (e.g., ‘species series’, ‘section’) and unranked desig-
nations, which sometimes correspond to invalid names (e.g.,
Phenacosaurus, Chamaeleolis) (Castañeda and de Queiroz, 2013;
Castañeda et al., 2014; Nicholson, 2002; Poe, 2004). Despite con-
cerns about taxonomic instability resulting from the split of Anolis
(Poe, 2013), every comprehensive molecular study of the group has
recovered the eight clades proposed as genera by Nicholson et al.
(2012) (reviewed in Nicholson et al., 2014). We are aware of some
of the caveats associated with the taxonomy of Nicholson et al.
(2012), as originally proposed (Poe, 2013; Castañeda and de
Queiroz, 2013). However, their scheme has been modified to
accommodate our yet limited knowledge about the phylogenetic
placement of a few problematic taxa (Nicholson et al., 2014).

Our analysis incorporates molecular data generated by a recent
phylogenetic assessment of the Dactyloa (Castañeda and de
Queiroz, 2011), yet we do not reexamine the group’s systematics
beyond our target Amazonian taxa. Instead, we refer to the much
more extensive work of Castañeda and de Queiroz (2013).

2. Material and methods

2.1. Sampling of molecular data

We generated DNA sequences of six D. phyllorhina specimens
(three collection sites, Fig. 2), three D. dissimilis (one site), two D.
philopunctata (two sites), 12 D. punctata with orange dewlaps (10
Amazonian and two Atlantic Forest sites), one Amazonian D. punc-
tata specimen with a white dewlap, one specimen of D. transversa-
lis, one of each of four Amazonian species of Norops anoles (N.
fuscoauratus, N. ortonii, N. tandai and N. trachyderma), and one indi-
vidual of the bush anole Polychrus liogaster (Polychrotidae). All
samples were collected in Brazil (see online Supplementary data
1 for a list of voucher numbers, locality information and GenBank
accession numbers). Because the examination of preserved speci-
mens (including the type series of D. philopunctata) demonstrated
that dewlap patterns remain promptly discernible even after
27 years of fixation (Fig. 3), we only sampled tissues from localities
where the dewlap pattern is known, based on direct observation of
live or preserved specimens.

For phylogenetic inference within Dactyloa, we matched avail-
able datasets (Castañeda and de Queiroz, 2011) with new
sequences of the mitochondrial gene NADH dehydrogenase subunit
2 (ND2) and the flanking tryptophan transfer RNA (tRNA-Trp) gene,
following Jezkova et al. (2009). Yet, sequences obtained in Genbank
often included four additional tRNAs flanking the ND2 gene (tRNA-
Ala, tRNA-Asx, tRNA-Cys, tRNA-Tyr) (Castañeda and de Queiroz,
2011), which were also used in our final alignments (see Section
2.2). Additionally, we generated sequences of the nuclear
recombination-activating gene 1 (RAG1), as per Gartner et al.

(2013). For divergence time estimation within pleurodont igua-
nians, we sampled the nuclear genes BTB and CNC homology 1
(BACH1), dynein axonemal heavy chain 3 (DNAH3), megakaryoblastic
leukemia 1 (MKL1), nerve growth factor beta polypeptide (NGFB) and
synuclein alpha interacting protein (SNCAIP), as per Townsend et al.
(2008, 2011). Sequences were edited and aligned using Geneious
Pro 6 (Biomatters, Auckland).

We used Geneious’ plugin Find Heterozygotes with a 0.90 over-
lap threshold to identify heterozygous positions. For the coales-
cent-based phylogenetic analyses (see Section 2.2), we ran
nuclear sequences through PHASE 2.1.1 (Stephens and Donnelly,
2003) to estimate the haplotypic phase of heterozygotes, after
preparation of input files in SeqPHASE (Flot, 2010). We ran PHASE
for ten independent times, using a 0.90 probability threshold and a
parent-independent mutation model. Models of nucleotide evolu-
tion and best-fit partition schemes, including partitions by codon
position, were determined with Partition Finder 1.1.1 (Lanfear
et al., 2012), implementing PhyML for likelihood estimation
(Guindon and Gascuel, 2003) and the Akaike information criterion
for model selection (Akaike, 1974). The short length of the five
tRNAs markers (�70 bp) prevented Partition Finder from properly
estimating substitution parameters for those regions. As a result,
we treated all tRNAs (397 base pairs total) as a single partition. A
concatenated dataset was generated in Sequence Matrix (Vaidya
et al., 2011).

2.2. Inferring phylogenetic relationships

For phylogenetic analyses, we combined our sequences with a
subset of the Dactyloa molecular dataset generated by Castañeda
and de Queiroz (2011). We only included sequences from speci-
mens with traceable voucher numbers. To meet the requirements
of the coalescent-based analyses, we only used data for species
that had both the mitochondrial and the nuclear fragments
sequenced. Also, we did not combine gene fragments of different
individuals in chimeric sequences. These criteria ensured that the
exact same dataset was used for both coalescent-based and concat-
enated analyses (see below). Our final dataset was composed of 77
specimens of 33 Dactyloa species.

Phylogenetic inference based on multiple loci traditionally
involves a concatenation strategy, in which different markers are
juxtaposed in a single alignment with the implicit assumption that
the different genes have a common genealogy. Yet, gene trees are
often discordant and fail to reflect the real relationships among
species because stochasticity in the coalescent process may pre-
vent complete fixation and reciprocal monophyly of alleles
(Kubatko and Degnan, 2007). By incorporating population parame-
ters such as ancestral population sizes and divergence times, coa-
lescent-based species tree methods account for ancestral
polymorphism and incomplete lineage sorting (Edwards, 2009).
We implemented a coalescent-based approach using the ⁄BEAST
tool (Heled and Drummond, 2010) of the BEAST 1.8 package
(Drummond et al., 2012), applying five independent runs of 100
million generations each and sampling every 10,000 steps. We
manually edited the xml files to ensure a single mitochondrial tree
while implementing distinct substitution models for ND2 and the
tRNA genes, and used phased data for the nuclear RAG1 gene.
Because ⁄BEAST analyses consistently failed to reach stationarity
when partitioning protein-coding genes by codon position, sug-
gesting model over-parameterization, we implemented gene parti-
tions only in our coalescent-based analyses. ⁄BEAST requires a
priori assignment of individuals to species; because concatenated
analyses and individual gene trees consistently found D. philopunc-
tata to be nested within D. punctata (see Section 3.1), we
treated both as a single species (D. punctata) to avoid specifying
paraphyletic taxa for coalescent-based phylogenetic inference.
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We compared ⁄BEAST’s results to trees generated under a con-
catenated approach, using both maximum likelihood and Bayesian

inference. We ran maximum likelihood analyses in Garli 2.0
(Zwickl, 2006), with 100 replicates for tree search and 1000 boot-
straps to assess clade support. We summarized bootstraps on the
best resulting tree with the SumTrees tool of the DendroPy 3.12
Python package (Sukumaran and Holder, 2010). Additionally, we
estimated a Bayesian tree with MrBayes 3.2.1 (Ronquist et al.,
2012) through three independent runs and four Markov chains of
20 million generations each, sampling every 1000 steps. In both
MrBayes and Garli analyses, we partitioned protein-coding genes
by codon position as indicated by Partition Finder.

For the Bayesian analyses (⁄BEAST and MrBayes), we assessed
convergence and stationarity of model parameters using Tracer
1.5, combined runs in LogCombiner 1.8 (with a 25% burn-in), and
summarized a maximum clade credibility tree in TreeAnnotator
1.8 (Drummond et al., 2012). In all analyses, we unlinked parame-
ters of substitution rates and nucleotide frequencies between par-
titions. The resulting topologies were visualized in FigTree 1.4
(available from http://tree.bio.ed.ac.uk/software/figtree/).

For descriptive purposes, we also estimated Tamura-Nei cor-
rected pairwise genetic distances (Tamura and Nei, 1993) for the
mitochondrial DNA fragment of the newly sampled Dactyloa spec-
imens, using the APE 3.1 package (Paradis et al., 2004) of the R 3.0.2
platform (R Core Team, 2014).

2.3. Divergence time estimation

A recent phylogenetic assessment of the Dactyloidae estimated
divergence times for Amazonian anole species (Nicholson et al.,
2012), yet with a few caveats. For instance, the phylogenetic

Fig. 2. Collection sites of new Dactyloa samples included in this study. Orange: D. punctata with orange dewlaps. White: D. punctata with white dewlaps. Purple: D.
philopunctata. Red: D. phyllorhina. Green: D. dissimilis. Blue: D. transversalis. Abbreviations of sampled states in Brazil are indicated. 1. Fazenda Experimental Catuaba, Acre
(AC): D. dissimilis UFAC0075, UFAC0084, UFAC0089, D. punctata MTR28593, D. transversalis MTR28583; 2. Serra do Divisor National Park, AC: D. punctata MTR28048; 3. Porto
Velho, Rondônia (RO), D. punctata H1907; 4. Pacaás Novos National Park, RO: D. punctata MTR26005; 5. Itapuru, Amazonas (AM): D. punctata MTR18550; 6. Coari, AM: D.
punctata MPEG26911; 7. Novo Aripuanã, AM: D. phyllorhina MTR14041; 8. Colniza, Mato Grosso (MT): D. phyllorhina MTR977398, MTR977423, MTR977628, MTR977664, D.
punctata MTR967985; 9. Jacareacanga, Pará (PA): D. phyllorhina PJD002; 10. Manaus, AM: D. philopunctata MTR21474; 11. Presidente Figueiredo, AM: D. philopunctata
Galo132; 12. Urucará, AM: D. punctata MPEG29316; 13. Oriximiná, PA: D. punctata MPEG24758; 14. Juruti, PA: D. punctata MPEG28489; 15. Afuá, PA: D. punctata MPEG29591;
16. Camacan, Bahia (BA): D. punctata MTR16109; and 17. Linhares, Espírito Santo (ES): D. punctata MTR12509. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Dewlap coloration of preserved Dactyloa punctata (top) and D. philopunctata.
Both patterns remain promptly discernible even after at 27 years of fixation.
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placement of the semi-fossils used for node calibration has been
uncertain (Castañeda et al., 2014; de Queiroz et al., 1998; Lazell,
1965). Moreover, the divergence time estimates presented by
Nicholson et al. (2012) were based on a single mitochondrial mar-
ker, yet mitochondrial genes are known to mislead deep diver-
gence time estimation due to substitution saturation (Brandley
et al., 2011; Lukoschek et al., 2012; Mulcahy et al., 2012), some-
times resulting in 3–10-fold overestimations (Zheng et al., 2011).
To improve estimates of divergence times for Amazonian anoles,
we built a dated phylogeny for the pleurodont iguanian clade
(sensu Wiens et al., 2012) using five nuclear genes and well-known
fossils for calibration points. For that, we combined newly gener-
ated sequences of Amazonian lizards in the genera Dactyloa and
Norops (Dactyloidae) and Polychrus (Polychrotidae) with published
sequences of 12 other pleurodont taxa, emphasizing the South
American genera (see online Supplementary data 2 for taxa, vou-
cher and Genbank accession numbers).

We used three fossils for node calibration: (1) Saichangurvel
davidsoni, from the late Cretaceous (Conrad and Norell, 2007),
calibrated the node defining Pleurodonta, (2) Suzanniwana sp.
(Corytophanidae), from the early Eocene (Smith, 2009, 2011),
was placed at the stem of the clade defined by Corytophanes and
Basiliscus, and (3) Afairiguana avius (Leiosauridae), from the early
Eocene (Conrad et al., 2007), was placed at the stem of the clade
defined by Leiosaurus and Urostrophus. In the latter case, we con-
servatively treated A. avius as a stem leiosaurid because Conrad
et al. (2007) found the relationships between A. avius and extant
leiosaurids to be unresolved. Following best practices for diver-
gence time estimation (Parham et al., 2012), we did not incorpo-
rate most of the pleurodont fossils used as calibration points to
date (e.g. Townsend et al., 2011) due to the lack of phylogenetic
analyses or explicit synapomorphies for fossil placement (e.g.,
Holman, 1972, 1987; Smith, 2006; Yatkola, 1976). In fact, some
of those fossils cannot be unambiguously assigned to any iguanian
group (Sullivan and Holman, 1996). Because setting maximum age
bounds for calibration priors is challenging in the face of the
incompleteness and uncertainty of the fossil record (Ho and
Phillips, 2009), we conservatively assigned long tails to the proba-
bility distribution of lognormally distributed calibration priors.
Calibration prior settings, including median values and the 95%
highest posterior density intervals, are presented in Table 1.

We performed simultaneous phylogenetic reconstruction and
divergence time estimation by implementing an uncorrelated log-
normal relaxed clock (Drummond et al., 2006) under a concatena-
tion approach in BEAST. We implemented a uniform prior
distribution (interval = 0–1) to the mean rate of the molecular
clock (ucld.mean parameter), while using default settings for the
parameters relative to substitution rates, nucleotide frequencies,
and the Yule tree prior. Because the use of codon partitions consis-
tently prevented proper Markov chain mixing, we only partitioned
the dataset by gene when running the dating analyses. We ran five
independent chains of 100 million steps, sampling every 10,000
steps. After assessing stationarity and convergence of model
parameters in Tracer, we applied a 25% burn-in, combined the
runs, and summarized results into a maximum clade credibility
tree as described in Section 2.2.

3. Results

3.1. Phylogenetic relationships of Amazonian Dactyloa

Both the coalescent-based (Fig. 4) and the concatenated (Fig. 5)
analyses recovered six main clades within Dactyloa. Five of them
correspond to the previously recognized aequatorialis, heteroderma,
latifrons, punctata and roquet species groups, with nearly the same
species composition as listed by Castañeda and de Queiroz (2013)
(exceptions were the phylogenetic placement of D. fitchi and D.
philopunctata, see below). The sixth recovered clade is composed
of D. calimae, D. neblinina, and the newly sampled D. dissimilis. This
clade was highly supported in both the coalescent-based (⁄BEAST)
and Bayesian concatenated (MrBayes) analyses (posterior proba-
bilities P.98), yet weakly supported in the maximum likelihood
(Garli) tree (bootstrap support = 68%). The two concatenated anal-
yses (MrBayes, Garli) recovered the same topology for the entire
Dactyloa phylogeny.

Relationships among these six major clades were poorly sup-
ported and inconsistent across analyses. For instance, the punctata
species group was inferred as the sister of the remaining Dactyloa
in the coalescent-based phylogeny (Fig. 4), but not in the trees gen-
erated through a concatenation approach (Fig. 5). Dactyloa fitchi,
the only species assigned to different main clades across our anal-
yses, was recovered with low support as the sister of the clade
composed by D. dissimilis, D. neblinina, and D. calimae in the coales-
cent-based phylogeny (Fig. 4). Yet, in the concatenated analyses, D.
fitchi was placed as closely related to the aequatorialis group
(Fig. 5), a relationship previously recovered by Castañeda and de
Queiroz (2013).

New sequence data provide important information about
relationships within the D. punctata group. All samples of
D. phyllorhina were deeply nested within this clade, with high sup-
port (Figs. 4 and 5). This species was recovered as D. punctata’s
sister taxon in all analyses, with pairwise corrected genetic dis-
tances between D. phyllorhina and D. punctata ranging 19–25%
(see online Supplementary data 3 for pairwise genetic distances
between all newly sampled Dactyloa).

A clade comprised of samples of D. punctata, which have orange
dewlaps, and of D. philopunctata, which have spotted dewlaps, was
consistently highly supported (Fig. 5). Although our two samples of
D. philopunctata composed a clade, the analyses found this species
to be nested within D. punctata. Corrected pairwise genetic dis-
tances between D. philopunctata samples and closely related
D. punctata were relatively small, between 3.4% and 5.1%
(Supplementary data 3). By contrast, Amazonian populations of
D. punctata presenting the orange dewlap pattern often exhibited
higher pairwise genetic distances, from 3.4% to 12%. Relationships
within the D. punctata + D. philopunctata clade were poorly sup-
ported. Interestingly, those samples of D. punctata collected in
the Atlantic Forest (Camacan, Linhares) were nested among
Amazonian ones (Fig. 5).

Similar to the D. philopunctata individuals, the only sample of
D. punctata with a white dewlap (MTR967985) was recovered
nested among D. punctata specimens exhibiting orange dewlaps
(Fig. 5). The lowest genetic distance separating this individual

Table 1
Median values and 95% highest posterior density intervals (in millions of years) of lognormally distributed calibration priors applied in dating analyses, based on fossil data.
Settings for calibration prior mean, standard deviation and offset are provided. MRCA = most recent common ancestor.

Fossil Calibrated node Median 95% HPD lower 95% HPD upper Prior mean Prior st. dev. Prior offset

Saichangurvel davidsoni MRCA of Pleurodonta 77.39 71.54 105.4 2 0.8 70
Suzanniwana sp. Stem of Basiliscus and Corytophanes 62.39 56.54 90.44 2 0.8 55
Afairiguana avius Stem of Leiosaurus and Urostrophus 57.39 51.54 85.44 2 0.8 50
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from a sample presenting the typical D. punctata pattern
was 6.4%.

3.2. Divergence times between Amazonian lizards

Dating analyses suggest that lineage diversification within the
pleurodont iguanian clade dates back to the late Cretaceous
(Fig. 6) (see online Supplementary Figure and Supplementary data
4 for a complete list of estimated node ages within Pleurodonta).
We estimated the most recent common ancestor (MRCA) of sam-
pled pleurodonts to have lived at approximately 82 million years
ago (Mya) (median value; 95% of the highest posterior density
[HPD] = 71–99 Mya). On the other hand, some of the divergences
between Neotropical genera are as recent as the Middle Miocene
(e.g., Basiliscus and Corytophanes, Urostrophus and Leiosaurus, Mor-
unasaurus and Enyalioides). Our analyses recovered Dactyloidae as
the sister of all other sampled pleurodonts.

Among extant anoles, our analyses suggest that Dactyloa
diverged from the MRCA of Anolis and Norops during the middle
Eocene (49 Mya, HPD = 38–63 Mya). The MRCA of Amazonian
species within Dactyloa, which corresponds to the split between
D. dissimilis and the remaining Dactyloa taxa, dated back to the late
Eocene (35 Mya, HPD = 25–47 Mya). The MRCA of Norops, which
corresponds to the divergence of N. tandai from the other sampled
Norops, dated back to the late Oligocene (24 Mya, HPD = 16–
32 Mya). The remaining diversification events between Amazonian
taxa within both Dactyloa and Norops happened during the Mio-
cene (Fig. 6). For instance, the MRCA of D. punctata and D. phyllorh-
ina was dated around 12 Mya (HPD = 7–17 Mya), while the most
recent common ancestor of N. fuscoauratus and N. trachyderma
was dated around 12 Mya (HPD = 7–17 Mya). Within Amazonian

bush anoles, the dating analyses suggest that Polychrus liogaster
and P. marmoratus diverged in the Pliocene (6 Mya, HPD =
3–11 Mya).

4. Discussion

4.1. The phylogenetic affinities of Dactyloa dissimilis

Our analyses suggest that D. dissimilis is closely related to D.
neblinina and D. calimae, two species distributed outside the
Amazon basin and presenting highly disjunct distributions. While
D. dissimilis occurs in southwestern Amazonia, D. calimae is
restricted to the western Colombian Andes, and D. neblinina is a
narrow endemic within the Guiana Shield. Together, they
composed a sixth Dactyloa clade that received low to maximum
support in our analyses. Similar to our study, Castañeda and de
Queiroz (2011) have previously recovered D. neblinina and
D. calimae as sister taxa, yet independent of the five main Dactyloa
clades. By contrast, Ayala et al. (1983) suggested that D. dissimilis
and D. calimae are related to the punctata species group, while
Nicholson et al. (2012) proposed D. neblinina to be a member of
the heteroderma group.

Due to limited genetic sampling of mainland Dactyloa, it is pos-
sible that the closest relatives of these three highly geographically
separated taxa have not been included in our investigation.
Morphological traits suggest unsampled continental taxa that
may be closely related to these species; for instance, D. deltae
shares unique tail crests with D. dissimilis, while D. caquetae, D.
santamartae and D. deltae exhibit a very large interparietal scale
in contact with the semicircles, as seen in D. dissimilis (Williams,
1982). On the other hand, there has been no evident close relative

Fig. 4. Coalescent-based phylogeny of Dactyloa inferred using ⁄BEAST. Posterior probabilities = 1 are indicated with an asterisk. Species groups follow Castañeda and de
Queiroz (2013). Picture credits: Julián Velasco (D. calimae).
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for D. calimae (Ayala et al., 1983). To further verify whether the
clade composed by D. dissimilis, D. calimae and D. neblinina repre-
sents a natural group, it will be key to continue improving the
genetic sampling of mainland anoles.

4.2. Independent evolution of nasal appendages in anole lizards

We found that D. phyllorhina is a member of the punctata
species group, and more specifically the sister species of the

broadly sympatric D. punctata. Interestingly, with the exception
of the proboscis and a red dewlap, D. phyllorhina differs from
D. punctata by only a few quantitative morphological traits. The
identification of females, which lack both the proboscis and a
developed dewlap, is indeed difficult (Rodrigues et al., 2002).

Our data suggest that rostral appendages, found in D. phyllorh-
ina, D. proboscis and D. laevis, have evolved at least twice within the
anole radiation. Based on morphological comparisons, Yánez-
Muñoz et al. (2010) also challenged the hypothesis of a close

Fig. 5. Phylogeny of Dactyloa based on a concatenated dataset. Bayesian (MrBayes) and maximum likelihood (Garli) analyses recovered the same topology. Node values
represent posterior probability/bootstrap support values. Posterior probabilities = 1 and bootstrap values = 100 are indicated with an asterisk. Species groups follow
Castañeda and de Queiroz (2013). Picture credits: Alejandro Arteaga, Tropical Herping (D. proboscis), Pedro Peloso (D. transversalis), Renato Recoder (D. punctata), Bret
Whitney (D. phyllorhina).
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relationship between D. phyllorhina and D. proboscis. Although no
genetic data are currently available for D. proboscis or D. laevis,
recent phylogenetic studies based on combined molecular and
morphological evidence suggest that D. proboscis is closely related
to the heteroderma species group (Castañeda and de Queiroz, 2013;
Nicholson et al., 2012; Poe, 2004; Poe et al., 2012). Morphological
comparisons, in turn, led Williams (1979) to suggest D. laevis to
be closely related to D. heteroderma (Williams, 1979). As a result,
the laevis group, a name used to refer to the three anole species
with a rostral proboscis (Williams, 1979), is not supported as a
monophyletic group. Marked structural differences in the probos-
cises of D. phyllorhina, D. proboscis and D. laevis (Williams, 1979)
also support the view that these structures are not homologous
(Yánez-Muñoz et al., 2010).

4.3. Genetic and phenotypic divergence between D. punctata and D.
philopunctata

Our results indicate paraphyly of D. punctata relative to
D. philopunctata, which is nested among geographically close pop-
ulations of D. punctata from central Amazonia. We recovered short
branches and low genetic distances between individuals with
distinct dewlap patterns, including those with spotted
(D. philopunctata), orange (D. punctata), and white (D. punctata)
dewlaps. Given the documented role of anole dewlaps in species
recognition and presumably reproductive isolation (e.g., Losos,
1985; Macedonia et al., 1994; Macedonia and Stamps, 1994;
Sigmund, 1983), these results may indicate that D. philopunctata
is still in its very first stages of speciation. A vast number of studies
have documented paraphyly among animal species that are pheno-
typically and often ecologically distinct (e.g., Brown and Twomey,
2009; Johnson et al., 2005; McKay and Zink, 2010; Omland et al.,
2000), including anoles (Thorpe and Stenson, 2003). From the

perspective of allele coalescence, the speciation process inherently
starts with paraphyly in gene genealogies, and the probability of
achieving reciprocal monophyly increases with time since popula-
tion divergence (Knowles and Carstens, 2007).

Alternatively, our findings are also consistent with the
hypothesis that the names D. philopunctata and D. punctata do
not correspond, in fact, to distinct species (Avila-Pires, 1995). The
degree of dewlap dissimilarity that disrupts species recognition
and mating in dactyloids is unclear (Ng and Glor, 2011; Stapley
et al., 2011). In addition to the dewlap, anoles rely on a range of
visual signals, including body coloration and stereotyped head
bobbing displays (Jenssen and Gladson, 1984; Losos, 1985;
Macedonia and Stamps, 1994; Muñoz et al., 2013). Other studies
have also found low genetic differentiation between distinct dew-
lap phenotypes (D’Angiolella et al., 2011; Lambert et al., 2013; Ng
and Glor, 2011; Stapley et al., 2011). Within some anole taxa,
divergence in sexual signals has not prevented high levels of con-
temporary gene flow between populations (Muñoz et al., 2013),
which might also be the case of D. punctata and D. philopunctata.

Because of the paraphyly of D. punctata relative to D. philopunc-
tata, and given the low genetic distances among some of their indi-
viduals, we tentatively consider the name D. philopunctata as a
synonym of D. punctata. However, spatially-dense sampling, along
with a comprehensive analysis of morphological and genetic
variation, are needed for a detailed taxonomic evaluation of
D. philopunctata, and of the often highly genetically divergent pop-
ulations within D. punctata.

4.4. The age of Amazonian anoles

We found that most Amazonian taxa within both Dactyloa and
Norops diverged in the Miocene, but some diversification events
were as old as the late Eocene and late Oligocene. Furthermore,

Fig. 6. Divergence times between selected pleurodont iguanian lizards, based on five nuclear markers (4082 base pairs) and inferred using BEAST. Red circles denote
calibrated nodes. Posterior probabilities = 1 are indicated with an asterisk. Bars represent the 95% highest posterior densities (HPD). See online Supplementary Figure and
Supplementary data 4 for a complete list of estimated median ages and HPDs. Picture credits: Pedro Peloso (N. trachyderma). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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Amazonian Polychrus diverged in the Pliocene. Importantly, our
divergence time estimates contradict the predictions of the
Pleistocene Refugia Hypothesis (Haffer, 1969; Vanzolini and
Williams, 1970), one of the first models of Amazonian diversifica-
tion. By examining distribution patterns and morphological
variation within the Norops chrysolepis species group, Vanzolini
and Williams (1970) suggested that cycles of forest contraction
and expansion during the Quaternary would have triggered
repeated population isolation and divergence, promoting in situ
allopatric speciation. However, our results disagree with the tem-
poral framework implied in that model, since we recovered much
older divergences between Amazonian anoles. Glor et al. (2001)
also inferred pre-pleistocenic splits between the Amazonian anoles
D. punctata, N. chrysolepis, N. fuscoauratus, N. ortonii, N. scypheus
and N. tandai. A scenario of Amazonian anole diversification pre-
ceding the Quaternary is consistent with molecular estimates
emerging from a wide range of Amazonian organisms, because
most crown-group ages date back to the Neogene (reviewed in
Antonelli et al., 2010; Hoorn et al., 2010).

Our inferred divergence times between Amazonian anole spe-
cies are considerably younger than the most recent estimates
(Nicholson et al., 2012), however. Nicholson et al. (2012) recovered
the most recent common ancestor (MRCA) of N. chrysolepis,
N. fuscoauratus, N. ortonii, and N. trachyderma at approximately
51.6 million years ago, more than twice our median estimate for
the same node. They also found the MRCA of Dactyloa and Norops
to be around 95 million years old, nearly two times older than
our estimate. Our analyses indicate that the lineages leading to
modern Dactyloa and Norops did not diverge until the Eocene, in
disagreement with the suggestion that all modern anole genera
were present in the Caribbean region by the late Cretaceous.
Although an evaluation of dactyloid biogeography is beyond the
scope of this work, our results suggest that existing hypotheses
will benefit from the use of multiple nuclear markers, and of
improved fossil data for node calibration.

4.5. Concluding remarks

Building on the Dactyloa molecular dataset of Castañeda and de
Queiroz (2011), we provide new information about the phyloge-
netic placement of rare Amazonian anoles. The data reveal dewlap
variation among genetically close forms within the punctata spe-
cies group, dispute the monophyly of the laevis group by support-
ing independent evolution of the anole proboscis, provide
additional evidence for a sixth main clade within Dactyloa, and
oppose the view that all modern anole genera were present in
the Caribbean region by the late Cretaceous. The findings lead us
to new research questions about the taxonomy, evolution and bio-
geography of dactyloid lizards, which will build from denser sam-
pling of continental species and more extensive molecular
datasets.
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