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Abstract: Recent studies on genetic variability have revealed different patterns of genetic structure
among populations of marine decapod species with wide geographical distribution. The hermit
crab Clibanarius antillensis has a broad distribution along the western Atlantic Ocean, from south
Florida (United States) to Santa Catarina (Brazil). This factor, in addition to differences in larval
morphology and in adult coloration, makes this species a good model for studies on intraspecific
variations. Therefore, we evaluated the molecular and morphological variability of C. antillensis
along its distribution in order to check the levels of population structure. The results were based on
the morphological analyses of 187 individuals and 38 partial sequences of the mitochondrial gene 16S
rRNA and 46 of cytochrome c oxidase subunit I (COI) from specimens whose locations covered the
whole species distribution. The molecular analyses did not show any apparent population structure
of C. antillensis. This result was corroborated by the morphological analyses since the characters
analyzed did not show any pattern of variation. Our results may be explained by a set of factors,
such as the dispersive potential of the species and the absence of barriers that could prevent gene
flow. In addition, high genetic diversity was observed, mainly for COI, which may be explained
by the historical processes of the species, which seem to be in almost constant expansion in the last
700,000 years and experienced no genetic bottleneck. Apparently, this species was little affected
by the climate fluctuations of Pleistocene. Additionally, our morphological analyses allowed us to
present herein a redescription of the studied species since we noted differences from the characters in
the diagnosis.

Keywords: cytochrome c oxidase subunit I (COI); larval dispersal; mitochondrial genes; molecular
data; 16S rRNA; redescription

1. Introduction

Species and their populations are constantly changing. Their history, as well as details
from their current stage of genetic structure, are a combination of different past events [1],
which may be understood by investigating their genetic processes [2]. Gene flow, for
example, is essential to maintain genetic homogeneity or heterogeneity among populations
of a species [3,4].

For most marine invertebrate species, planktonic larvae and their life span influence
their dispersion process which allows them to interconnect populations by reaching long
distances [5,6]. Therefore, long larval stages are usually related to high dispersal capac-
ity and levels of gene flow and reduced population genetic structure [7–9]. However,
some studies revealed that high levels of connectivity and genetic homogeneity were not
necessarily related to the duration of planktonic stages [10–12]. In addition, gene flow
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may also be influenced by marine currents circulation, local oceanic conditions, physical
barriers, food availability, ecological interactions, as well as past geological events and
recent history [8,10,13–22].

Therefore, each marine species has its own patterns of gene flow and genetic differ-
ences along its distribution [14,23]. This occurs because each individual has a unique way
to respond to different factors at specific moments [14]. Gene flow patterns may be revealed
by studies on genetic variability of populations [24], which might show different levels of
geographic structure and genetic diversity [25].

Many studies have revealed geographic structure on marine decapod crustaceans
with wide distribution. As examples, the hermit crabs Calcinus tibicen Herbst, 1791 [26]
and Clibanarius vittatus Bosc, 1802 [27] exhibited different patterns of population structure
along their distribution in the western Atlantic Ocean.

The hermit crab Clibanarius antillensis Stimpson, 1859 (Figure 1) occurs in Bermuda,
Florida (US), Gulf of Mexico, Belize, Costa Rica, Panama, Antilles, north of South America
and Brazil (in Atol das Rocas and from the state of Piauí to Santa Catarina) (Figure 2) [28–32].
It is found in intertidal zones, shallow waters, over rocks, coral reefs, and banks of Halod-
ule [30,33]. The species has a larval development of five to six stages that require at least 43
days to complete [34,35].
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Figure 2. Distribution of Clibanarius antillensis Stimpson, 1859 (blue line). Colored dots indicate collecting sites where we 
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indicates only sequences of 16S rRNA obtained. Abbreviations: TM: Tamaulipas; VE: Veracruz; TB: Tabasco; QR: 
Quintana Roo; PI: Piauí; CE: Ceará; RN: Rio Grande do Norte; PE: Pernambuco; AL: Alagoas; BA: Bahia; ES: Espírito 
Santo; RJ: Rio de Janeiro; SP: São Paulo; SC: Santa Catarina. 

Some morphological differences were found between larvae from Brazil and Pana-
ma and Mexico populations, such as the number of antennular aesthetascs, the number of 
denticles of crista dentate of the third maxilliped, the development of the external lobe of 
the maxillule and endopod of the maxilla [34–36]. Additionally, distinct coloration pat-
terns were found among adults from different localities [37]. 

Additional investigations on genetic variability may contribute to a better compre-
hension of biogeographic processes, population differentiation and biodiversity along 
groups/families of hermit crabs in the western Atlantic. Additionally, it may allow 
checking if there is an evolutive signal among them. Based on the reported scenario, the 
wide distribution of C. antillensis, its larval stage duration and the context previously 
described, this hermit crab is a suitable species for investigations on genetic variability 
and morphological analyses. Therefore, the aim of this study was to: (1) check the levels 
of population structure along C. antillensis distribution; (2) analyze morphological and 
molecular variations, and (3) analyze, preliminarily, demographic factors related to its 
current diversification pattern. 

  

Figure 2. Distribution of Clibanarius antillensis Stimpson, 1859 (blue line). Colored dots indicate collecting sites where we
sampled specimens whose partial sequences of 16S rRNA and cytochrome c oxidase subunit I (COI) were obtained. *
indicates only sequences of 16S rRNA obtained. Abbreviations: TM: Tamaulipas; VE: Veracruz; TB: Tabasco; QR: Quintana
Roo; PI: Piauí; CE: Ceará; RN: Rio Grande do Norte; PE: Pernambuco; AL: Alagoas; BA: Bahia; ES: Espírito Santo; RJ: Rio de
Janeiro; SP: São Paulo; SC: Santa Catarina.

Some morphological differences were found between larvae from Brazil and Panama
and Mexico populations, such as the number of antennular aesthetascs, the number of
denticles of crista dentate of the third maxilliped, the development of the external lobe of
the maxillule and endopod of the maxilla [34–36]. Additionally, distinct coloration patterns
were found among adults from different localities [37].

Additional investigations on genetic variability may contribute to a better compre-
hension of biogeographic processes, population differentiation and biodiversity along
groups/families of hermit crabs in the western Atlantic. Additionally, it may allow check-
ing if there is an evolutive signal among them. Based on the reported scenario, the
wide distribution of C. antillensis, its larval stage duration and the context previously
described, this hermit crab is a suitable species for investigations on genetic variability
and morphological analyses. Therefore, the aim of this study was to: (1) check the levels
of population structure along C. antillensis distribution; (2) analyze morphological and
molecular variations, and (3) analyze, preliminarily, demographic factors related to its
current diversification pattern.
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2. Materials and Methods
2.1. Sample Collection

Most individuals were obtained from the Crustacean Collection of the Department
of Biology, University of São Paulo, Brazil (CCDB). In order to cover most part of the
species distribution (Figure 2), we also analyzed specimens obtained by means of loans or
donations from the following collections: University of Louisiana at Lafayette Zoological
Collection, LA, USA (ULLZ—recently transferred to the National Museum of Natural
History, Smithsonian Institution, Washington, DC, USA. USNM; both catalog numbers
are used, as specimens are now permanently cross-referenced under both numbers at the
USNM); Florida Museum of Natural History, University of Florida, FL, USA (UF); United
States National Museum, Smithsonian National Museum of Natural History, Washington,
DC, USA (USNM); American Museum of Natural History, NY, USA (AMNH); Natural
History Museum of Los Angeles County, CA, USA (NHMLA); Colección Nacional de
Crustáceos, Universidad Autónoma de Mexico, Mexico (CNCR). Before the analyses, the
identification of specimens was confirmed based on previous morphological characters
established in the literature [28,30,31,38,39].

2.2. DNA Extraction, Amplification and Sequencing

For DNA extraction, we used muscle tissue from pereiopods or abdomen and followed
saline protocols described by Schubart et al. [40], with modifications from Mantelatto
et al. [41], and Chelex® resin [42]. Some adaptations were made to suit our material.

The fragments were amplified by polymerase chain reaction (PCR) [43] in a Veriti 96-Well
Thermal Cycler® (Applied Biosystems, Foster City, CA, USA). The molecular markers 16S
rRNA and cytochrome c oxidase subunit I (COI) were chosen, since these mitochondrial
genes have been widely used and effective on studies that contribute to our comprehension of
Decapod diversity [40,41,44,45]. Of all primers used in this study (Table 1), we designed one
pair of each marker in Primer-Blast (National Center for Biotechnology Information, Bethesda,
MD, USA) [46]: 16SLClib and 16SHClib; COILClib and COIHClib, due to amplification
difficulties. For this purpose, we based the design on the alignment of two 16S rRNA
GenBank sequences (KF182529 and DQ369941) and new sequences of 16S rRNA and COI.

Table 1. Sequences of primers used for amplification of 16S rRNA and cytochrome c oxidase subunit
I (COI) by means of PCR.

Gene Primers Sequence

16S rRNA

16SL2 5′-TGCCTGTTTATCAAAAACAT-3′ [40]
16SH2 5′-AGATAGAAACCAACCTGG-3′ [40]

16SLClib 5′-TTTGACCTGCCCACTGAA-3′ [Present study]
16SHClib 5′-GAAACCAACCTGGCT CACG-3′ [Present study]

COI

COL6b 5′-ACAAATCATAAAGATATYGG-3′ [47]
COL6b2 5′-ACWAAYCAYAAAGAYATYGG-3′ [48]

COIAL2o 5′-ACGCAACGATGATTATTTTCTAC-3′ [48]
COIAL1m 5′-GAGCTTGAGCYGGRATAGTAGG-3′ [48]

COH6 5′-TADACTTCDGGRTGDCCAARAAYCA-3′ [47]
COIAH2m 5′-GACCRAAAAATCARAATAAATGTTG-3′ [48]
COIAH1m 5′-CTCCWGCRGGGTCAAAGAAAGA-3′ [48]
COILClib 5′-GCGTGAGCAGGAATAGTAGGT T-3′ [Present study]
COIHClib 5′-AAAACAGGGTCTCCTCCTC-3′ [Present study]

Each PCR was performed with 25 µL total volume, containing ultrapure water, betaine
(5 M), DNTPs (10 mM), PCR Buffer (10×), MgCl2 (25 mM), bovine serum albumin (BSA)
1% solution, primers (10 µM each), Thermus aquaticus (Taq) DNA polimerase (5 U/µL) and
previously calculated extracted DNA. The thermal cycle consisted of: 16S rRNA—initial
denaturing for 4 min at 95 ◦C; annealing for 40 cycles of 45 s at 95 ◦C, 45 s at 54 ◦C and
1 min at 72 ◦C; final extension for 6 min at 72 ◦C; COI—initial denaturing for 5 min at
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95 ◦C; annealing for 40 cycles of 1 min at 95 ◦C, 1 min at 38–48 ◦C and 75 s at 72 ◦C; final
extension for 6 min at 72 ◦C. PCR products were electrophoresed on 1.5% agarose gel for
confirmation, purified using the SureClean Plus® kit (Bioline, Tauton, MA, USA), following
the manufacturer’s instructions, and sequenced with the ABI BigDye Terminator Mix (Applied
Biosystems, Foster City, CA, USA) in an ABI 3730 XL DNA Analyzer (Applied Biosystems
automated sequencer, Foster City, CA, USA), following the manufacturers’ protocol.

The forward and reverse obtained sequences were edited and used to construct a con-
sensus sequence in BioEdit 7.2.5 (Ibis Therapeutics, Carlsbad, CA, USA) [49]. The identity
of the consensus was confirmed with BLAST (Basic Local Alignment Search Tool) [50] by
comparisons to accessioned sequences of GenBank database. COI consensus were checked
for the occurrence of pseudogenes at the online Translate tool on SIB ExPASy [51]. Multiple
sequences were aligned for each gene using MUSCLE (Multiple Sequence Comparison by
Log-Expectation, European Molecular Biology Laboratory–The European Bioinformatics
Institute, Hinxton, UK) [52].

Besides the sequences we obtained, which were all submitted to GenBank (National
Center for Biotechnology Information, Bethesda, MD, USA), we also included two 16S
rRNA sequences of C. antillensis retrieved from GenBank (Table 2). For genetic distance
and phylogenetic analyses, we added five 16S rRNA and 13 COI sequences of other species
of the genus Clibanarius (Table 3); the following outgroup sequences, based on Bracken-
Grissom et al. [53]: Calcinus laevimanus Randall, 1840 (GenBank: 16S rRNA–FJ620175;
COI–FJ620271), C. osbcurus Stimpson, 1859 (GenBank: 16S rRNA–FJ620216; COI–FJ620314),
C. tibicen (GenBank: 16S rRNA–FJ620220; COI–FJ620318), Isocheles pilosus Holmes, 1900
(GenBank: 16S rRNA–AF436057), I. sawayai Forest and Saint Laurent, 1968 (GenBank: 16S
rRNA–DQ369938), and I. wurdemanni Stimpson, 1859 (GenBank: 16S rRNA–KF182530).

Table 2. Specimens of Clibanarius antillensis Stimpson, 1859 used in molecular analyses, sampling
localities, museum catalog number, and GenBank accession numbers. New sequences are in bold.
AMNH: American Museum of Natural History. CCDB: Crustacean Collection of the Department
of Biology—Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo.
CNCR: Colección Nacional de Crustáceos, Universidad Autónoma de Mexico. UF: Florida Museum
of Natural History, University of Florida. ULLZ: University of Louisiana at Lafayette Zoological
Collection. USNM: United States National Museum, Smithsonian National Museum of Natural
History. (-): missing sequences.

Locality Catalog Number GenBank

16S rRNA COI

Florida, United States of America ULLZ 4683–USNM 1540491 DQ369941 −

Florida, United States of America ULLZ 9433–USNM 1544313

KF182529 −
MG264431
MG264432
MG264433

−
MG264468
−

Florida, United States of America CCDB 6267 MG264434 MG264469

Andros Island, Bahamas AMNH 18726 MG264435 MG264470

Barra del Tordo, Mexico ULLZ 15019–USNM
1548156 MG264436 −

Veracruz, Mexico CNCR 24702 MG264438
MG264439

MG264471
MT740091

Veracruz, Mexico CNCR 22223 MG264437 MG264472

Tabasco, Mexico CNCR 18624 MG264440 −
Quintana Roo, Mexico CNCR 3729 MG264441 −
Carrie Bow Cay, Belize USNM 1277880 MG264442 MG264473
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Table 2. Cont.

Locality Catalog Number GenBank

16S rRNA COI

Tortola Island, British Virgin Islands USNM 1277883 MG264444 −
Saint Martin, French Antilles UF 32041 MG264443 −
Grande-Terre, Guadeloupe USNM 1277879 MG264445 −

Playa Puerto Viejo, Costa Rica CCDB 550
MG264446
MG264447
−

MG264474
MG264475
MG264476

Bocas del Toro, Panama CCDB 3578 MG264448
MG264449

MG264477
MG264478

Isla Margarita, Venezuela CCDB 1810 MG264450
−

MG264479
MG264480

Luís Correia, Piauí, Brazil CCDB 4158 MG264451
−

MG264481
MG264482

Trairi, Ceará, Brazil CCDB 2651 MG264452
MG264453

MG264483
MG264484

Fortaleza, Ceará, Brazil CCDB 4274 − MG264485

Touros, Rio Grande do Norte, Brazil CCDB 3366 MG264454 MG264488

Touros, Rio Grande do Norte, Brazil CCDB 3367 − MG264486

Touros, Rio Grande do Norte, Brazil CCDB 3373 − MG264487

Ipojuca, Pernambuco, Brazil CCDB 1727

MG264455
MG264456
−
−
−

MG264489
MG264490
MG264491
MG264492
MG264493

Maragogi, Alagoas, Brazil CCDB 4920 MG264457
MG264494
MG264495
MG264496

Ilhéus, Bahia, Brazil CCDB 2597 − MG264498

Ilhéus, Bahia, Brazil CCDB 2610 − MG264500

Porto Seguro, Bahia, Brazil CCDB 585
MG264458
MG264459
−

MG264497
−

MG264499

Guarapari, Espírito Santo, Brazil CCDB 2243
MG264460
MG264461
−

MG264501
MG264502
MG264503

Búzios, Rio de Janeiro, Brazil CCDB 497 MG264462 MG264504

Búzios, Rio de Janeiro, Brazil CCDB 761 MG264463 −

Búzios, Rio de Janeiro, Brazil CCDB 5656 −
−

MG264505
MG264506

Ubatuba, São Paulo, Brazil CCDB 2906 MG264464 MG264508

São Sebastião, São Paulo, Brazil CCDB 5061 MG264465 −

São Sebastião, São Paulo, Brazil CCDB 5062
− MG264507
− MG264509

Itajaí, Santa Catarina, Brazil CCDB 1876
MG264466
−
−

MG264510
MG264511
MG264512



Diversity 2021, 13, 56 7 of 28

Table 3. Specimens of Clibanarius spp. used in molecular analyses, sampling locality, museum catalog number, and GenBank
accession numbers. New sequence is in bold. CBM-ZC: Natural History Museum and Institute, Zoology Crustacea.
CCDB: Crustacean Collection of the Department of Biology—Faculty of Philosophy, Sciences and Letters at Ribeirão Preto,
University of São Paulo. ULLZ: University of Louisiana at Lafayette Zoological Collection. USNM: United States National
Museum, Smithsonian National Museum of Natural History. (−): missing data.

Species Locality CatalogNumber
Gen Bank

16S rRNA COI

Clibanarius albidigitus Nobili, 1901 Panama City, Panama − AF425323 −
Punta Morales, Costa

Rica CCDB 1711 − JN671591

Clibanarius clibanarius Herbst, 1791 − − - JX676177

Clibanarius corallinus H. Milne Edwards, 1848
Tuamotus, French

Polynesian
ULLZ 10121–USNM

1544831 KF182528 −

Okinawa, Japan CBM-ZC 9622 − AB507374

Clibanarius erythropus Latreille, 1818 Cádiz, Spain CCDB 488 − JN671592

Clibanarius lineatus H. Milne Edwards, 1848 Porosi, Nicaragua CCDB 2444 − JN671594

Clibanarius longitarsus De Haan, 1849 Okinawa, Japan CBM-ZC 9583 − AB496944

Clibanarius rhabdodactylus Forest, 1953 Okinawa, Japan CBM-ZC 9593 − AB496946

Clibanarius sclopetarius Herbst, 1796 São Sebastião, SP, Brazil CCDB 2961 JN671523 JN671584

Clibanarius signatus Heller, 1861 Iran CCDB 3694 − JN671590

Clibanarius symmetricus Randall, 1840 Paraty, RJ, Brazil CCDB 2237 JN671529 JN671548

Clibanarius tricolor Gibbes, 1850 Quintana Roo, Mexico CCDB 504 MG264467 JN671593

Clibanarius virescens Krauss, 1843 Okinawa, Japan CBM-ZC 9587 − AB496948

Clibanarius vittatus Bosc, 1802

Florida, United States of
America CCDB 3783 − JX238506

Texas, United States of
America CCDB 1185 JN671527 −

2.3. Genetic Distance Analyses

Genetic distances were calculated to determine intra and interspecific variation rates
with the software MEGA 6.06 [54], using the Kimura 2-parameters substitution model [55].
Two genetic distances histograms were constructed in Microsoft Excel 2010, with interval
ranges of 0.2%.

2.4. Phylogenetic Analyses

Maximum likelihood (ML) analyses [56] were conducted in RAxML—HPC Black Box
8.2.4 (Randomized Axelerated Maximum Likelihood, Heidelberg Institute for Theoretical
Studies, Heidelberg, Germany) [57], implemented at the online platform Cyber Infrastruc-
ture for Phylogenetic Research (CIPRES). We used the default parameters for RAxML and
the evolution model GTR + Γ + I [General Time Reversible [58] + Gama + Invariables sites]
and the consistency of the topologies was measured by bootstrap method (1000 replicates).
The topologies were visualized and edited using FigTree 1.4.2 (University of Edinburgh,
Edinburgh, UK) [59]; only values >50% were reported.

2.5. Genetic Variability Analyses

The genetic variability analyses were conducted for both 16S rRNA and COI. The
genetic diversity indexes, such as number of haplotypes (H), haplotype diversity (Hd),
nucleotide diversity (π) and average number of nucleotide differences (K), were calculated
in DnaSP 5.10.1 [60]. Haplotype networks were constructed using statistical parsimony
method with TCS 1.21 [61]. In case of ambiguous connections, the criteria proposed by
Excoffier and Langaney [62] were considered. Analyses of Molecular Variance (AMOVA)
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were conducted using the software Arlequin 3.5.2.2 (University of Bern, Bern, Switzer-
land) [63] to calculate the variance within and between previously established groups and
the fixation index values (FST).

2.6. Demographic Analyses

Demographic analyses were conducted for both 16S rRNA and COI. Demographic
history was inferred by the neutrality tests Tajimas’ D [64] and Fu’s Fs [65] using Arlequin
3.5.2.2 (University of Bern, Bern, Switzerland) [63]. In addition, pairwise mismatch distri-
bution were analyzed to test population expansion [66]. The graphic was created in DnaSp
5.10.1 [60] and the sum of squared deviations (SSD) [67] and Harpending raggedness index
(HRI) [68] were calculated using Arlequin 3.5.2.2 [63].

The Bayesian skyline plot (BSP) [69] analyses was conduct only for COI and it was
used to infer the demographic history of the species under coalescent model. First, the sub-
stitution model HKY + I + G [Hasegawa-Kishino-Yano [70] + Invariable sites + Gama] was
selected using jModelTest 2.1.10 (Free Software Foundation, Inc., Boston, MA, USA) [71]
with Bayesian information criterion (BIC). Afterwards, some parameters were selected in
BEAUti (Bayesian Evolutionary Analysis Utility, University of Auckland, Auckland, New
Zealand) to create the input file in BEAST 1.8.4 (Bayesian Evolutionary Analysis Sampling
Trees, University of Auckland, Auckland, New Zealand). The divergence rate was 1.4% per
million years [72], the number of Markov chain Monte Carlo interactions was 10 million, at
every 1000 chains, with a 10% burn-in. Then, the output was analyzed using Tracer [69],
and a graphic was created.

2.7. Morphological Assessment

Morphological data was accessed to compare specimens of C. antillensis from dif-
ferent localities. We adopted all diagnostic characters found in the taxonomic litera-
ture [28,30,31,38,39]. Therefore, we measured length of shield (sl), rostrum, lateral projec-
tions, left ocular peduncle, right chelae, dactyl, propodus, carpus, merus and ischium of
the left second pereiopod; width of front and right chelae. We also analyzed shape and
disposition of tufts of setae of shield; shape of rostrum, front and telson lobes; shape and
number of spines of ocular acicle; number and disposition of spines of antennal acicle;
number and disposition of spines and tufts of setae of right cheliped; coloration and num-
ber and disposition of spines of second and third pair of pereiopods. A redescription of the
species was made, since we noted differences between some characters observed in this
study in comparison to literature descriptions.

3. Results
3.1. Genetic Distance Analyses

The automated sequencing protocols to obtain two fragments of mitochondrial genes
resulted in ~1170 base pairs (bp). The alignment of 16S rRNA with 530 bp included
38 sequences of C. antillensis and 12 sequences from other species of Diogenidae. The
intraspecific divergence for C. antillensis varied from 0–0.99%, whereas interspecific values
ranged from 1.48–24.98%, with the first value corresponding to the divergence between
sequences of C. vittatus and C. symmetricus (Figure 3a). An interspecific gap was not evident
for this marker. The alignment of COI with 640 bp included 46 sequences of C. antillensis
and 16 sequences from other species of Diogenidae. In this case, the interspecific gap was
evident, since the intraspecific divergence for C. antillensis varied from 0–2.90% and the
interspecific values ranged from 5.80–22.80% (Figure 3b).
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3.2. Phylogenetic Analyses

Both phylogenetic trees, generated by ML analyses, indicated the monophyly of C.
antillensis in clades with bootstrap values of 87% for 16S rRNA (Figure 4) and 79% for
COI (Figure 5). There were no pattern dividing groups that could reveal genetic structure.
Additionally, in both trees, C. tricolor was closer to C. antillensis than other congeneric
species.
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3.3. Genetic Variability Analyses

The population alignment of 16S rRNA consisted of 396 bp with 38 specimens from
20 localities. Seven haplotypes were detected, haplotype diversity was 0.417, total nu-
cleotide diversity was 0.00241, the average number of nucleotide differences was 0.506,
and the number of polymorphic sites was five.

The COI alignment had 524 bp with 46 specimens from 17 localities. Forty-two
haplotypes were detected, haplotype diversity was 0.995, total nucleotide diversity was
0.01253, the average number of nucleotide differences was 6.564, and the number of
polymorphic sites was 63. Genetic diversity index for each locality are in Table 4.

Table 4. Values of number of specimens (N), polymorphic sites (S), number of haplotypes (H), haplotype diversity (Hd),
nucleotide diversity (π), and average number of nucleotide differences (K) for each sampled locality of Clibanarius antillensis
Stimpson, 1859 distribution for 16S rRNA and cytochrome c oxidase subunit I (COI) mitochondrial genes.

16S rRNA COI

Locality N S H Hd π K N S H Hd π K

United States 6 2 3 0.6 0.00168 0.66667 2 5 2 1.0 0.00954 5.00000
Bahamas 1 − − − − − 1 − − − − −
Mexico 6 2 3 0.6 0.00189 0.66667 3 10 3 1.0 0.01272 6.66667
Belize 1 − − − − − 1 − − − − −
Antilles 3 0 1 0.0 0.00000 0.00000 − − − − − −
Costa Rica 2 0 1 0.0 0.00000 0.00000 3 2 3 1.0 0.00254 1.33333
Panama 2 1 2 1.0 0.00252 1.00000 2 12 2 1.0 0.02290 12.0000
Venezuela 1 − − − − − 2 0 1 0.0 0.00000 0.00000
Brazil–Piauí 1 − − − − − 2 2 2 1.0 0.00382 2.00000
Brazil–Ceará 2 1 2 1.0 0.00281 1.00000 3 14 3 1.0 0.01781 9.33333
Brazil–Rio Grande do Norte 1 − − − − − 3 11 3 1.0 0.01399 7.33333
Brazil–Pernambuco 2 3 2 1.0 0.00758 3.00000 5 12 5 1.0 0.01202 6.30000
Brazil–Alagoas 1 − − − − − 3 9 3 1.0 0.01145 6.00000
Brazil–Bahia 2 0 1 0.0 0.00000 0.00000 4 10 4 1.0 0.01081 5.66667
Brazil–Espírito Santo 2 0 1 0.0 0.00000 0.00000 3 5 3 1.0 0.00636 3.33333
Brazil–Rio de Janeiro 2 0 1 0.0 0.00000 0.00000 3 13 3 1.0 0.01654 8.66667
Brazil–São Paulo 2 0 1 0.0 0.00000 0.00000 3 11 3 1.0 0.01399 7.33333
Brazil–Santa Catarina 1 − − − − − 3 5 3 1.0 0.00636 3.33333

For 16S rRNA, a central haplotype (H1) was shared by 29 individuals from 18 localities,
two haplotypes were shared by two (H2) and three (H3) individuals from different localities,
and four were singletons. This network did not show any genetic structure (Figure 6a).
For COI, two of 41 detected haplotypes were shared by two individuals from different
localities of Brazil (H2 and H3); one (H1) by two specimens from Venezuela and one from
Costa Rica; the others were singletons. The network did not show any genetic structure;
however, there was high genetic diversity for this gene (Figure 6b).

For 16S rRNA, AMOVA revealed that the variance component within localities
(102.02%) exceeded the variance component among localities (−2.02%), with negative
and no significant FST-value (FST = −0.0202; p > 0.05), which suggested low or absence of
genetic differentiation between localities. For COI, even though FST-value was positive,
moderate (0.05 < FST < 0.15) [73] and significant (FST = 0.1231; p < 0.05), which suggested
genetic differentiation among localities, variance component within localities (87.69%) was
higher than that found among localities (12.31%).
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3.4. Demographic Analyses

Tajima’s D and and Fu’s Fs values were significant and negative for both 16S rRNA
(D = −1.64246, p < 0.05; Fs = −4.64238, p < 0.02) and COI (D = −1.91472, p < 0.05;
Fs = −25.14949, p < 0.02) genes, which indicated the rejection of the null hypothesis
of population neutrality. Mismatch distribution graphics revealed a unimodal distribution
pattern for both genes, which were compatible with the sudden population expansion
model (p values for SSD and HRI statistics > 0.05) (Figure 7). Therefore, the null hypothesis
of population expansion may not be rejected. The BSP for COI gene showed an increase in
effective population size, suggesting that the species had expanded over the past 700,000
years, with a period of stabilization between 450,000 and 250,000 years ago, yet there was
no evidence of genetic bottleneck (Figure 8).
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Figure 8. Bayesian skyline plot for cytochrome c oxidase subunit I gene showing demographic history of Clibanarius
antillensis Stimpson, 1859. Black line represents the variation of average effective population size over time (years ago). Blue
lines represent highest posterior density (95%). The population size (y-axis) is the product of the effective population size
and the generation time.

3.5. Morphological Assessment

We analyzed 187 specimens of C. antillensis (121 males, 33 females and 33 ovigerous
females) from 17 localities (covering the entire distribution) and with sl ranging from 1.40
to 5.65 mm. We found some variations on the number of spines of ocular acicles, antennal
acicles and dorsaldistal surface of carpus of second pereiopod (Table 5). These variations
did not show any pattern of morphological distinction between geographic groups; how-
ever, they differed from literature descriptions. Therefore, we made a redescription of the
species, as follows.
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Taxonomy

Family Diogenidae Ortmann, 1892
Genus Clibanarius Dana, 1852
Clibanarius antillensis Stimpson, 1859 (Figures 1 and 9)
Clibanarius brasiliensis Dana, 1852: 467 [75].
Clibanarius antillensis Stimpson, 1858: 235 [nomen nudum] [76]; 1859: 85 [38].
Clibanarius antillensis.—Smith, 1869: 18, 39 [77].—Nobili, 1897: 4 [78].—Rathbun, 1900:

144 [79].—Benedict, 1901: 142 [74].—Moreira, 1901: 29, 87 [80].—Schmitt, 1924: 79 [81]; 1935:
199 [82]; 1936: 375 [83].—Provenzano, 1959: 368 [39]; 1960: 119 [84]; 1961: 152 [85].—Forest
and Saint Laurent, 1967: 99 [28].—Coelho and Ramos-Porto, 1972: 169 [86]; 1987: 51 [29].—
Rieger, 1998 [87]: 421.—Melo, 1999: 48 [31].—McLaughlin et al., 2010: 19 [88].—Nucci and
Melo, 2015: 331 [31].

Type locality—Barbados.

Table 5. Comparison of analyzed characters of Clibanarius antillensis Stimpson, 1859 that differed
from literature descriptions [30,31,39,74].

Characters Literature Present Study

Ocular acicles: spines up to 6 3–9
Antennal acicles: spines up to 7 5–9
Second pereiopod: carpus spines 1 or 2 1–4

Material Examined

UNITED STATES OF AMERICA: Florida—Miami, Biscayne Bay, CCDB 6267, 15
June 2017, coll. H. Bracken-Grissom, 1 ovigerous female (sl 3.55 mm). BAHAMAS:
Andros Island—Blanked Sound, Forfar Field Station, AMNH 18726, 29 August 2000, coll.
P.M. Mikkelsen, G. Hendler and C.B. Boyko, 1 male (sl 3.20 mm). MEXICO: Veracruz—
Actopan, CNCR 24702, 20 April 2006, coll. Y. de los Santos, 2 males (sl 1.56 mm; 2.15 mm)—
San Andrés Tuxtla, CNCR 22223, 15 July 2002, coll. A. Argüelles and M. Maldonado, 5
males (sl 1.70–3.37 mm), 1 ovigerous female (sl 1.90 mm). Tabasco—Tacotalpa, CNCR 18624,
14 May 1996, coll. F. Alvarez and R. Robles, 3 males (sl 2.61–2.70 mm). Quintana Roo—
Felipe Carrillo Puerto, CNCR 3729, 16 January 1985, coll. J.C. Nates, J.L. Villalobos and
A. Cantu, 5 males (sl 2.10–3.03 mm), 1 ovigerous female (sl 2.20 mm). SAINT MARTIN:
Le Galion, UF 32041, 15 April 2012, coll. J. Slapcinsky, M. Bernis and A. Anger, 1 male
(sl 2.80 mm). COSTA RICA: Talamanca—Cahuita, NHMLA 555-3, 15 July 1977, coll. K.
Nelson and D. Hedgecock, 2 males (sl 3.17 mm; 3.19 mm)—Puerto Vargas, CCDB 4131, 14
February 2009, coll. F.L. Mantelatto and I. Wehrtmann, 1 male (sl 1.72 mm), 2 females (sl
1.58 mm; 2.56 mm), 1 ovigerous female (sl 2.27 mm)—Puerto Vargas, CCDB 4160, 23 May
2010, coll. F.L. Mantelatto, M. Terossi, D.F. Peiró and I. Wehrtmann, 2 males (sl 2.24 mm;
3.03 mm), 1 female (sl 2.48 mm)—Puerto Viejo, Playa Puerto Viejo, CCDB 550, 05 April
2007, coll. F.L. Mantelatto et al., 4 males (sl 2.30–3.39 mm), 1 female (sl 2.95 mm). PANAMA:
Bocas del Toro—Bocas del Toro, CCDB 3578, 03 August 2011, coll. F.L. Mantelatto, 3 males
(sl 2.67–2.96 mm), 2 females (sl 2.35 mm; 3.25 mm), 1 ovigerous female (sl 2.85 mm)—Bocas
del Toro, Playa Paunch, CCDB 3575, 05 August 2011, coll. F.L. Mantelatto, M.P. Negri,
N. Rossi and T. Magalhães, 4 males (sl 2.07 –2.81 mm), 2 ovigerous females (sl 2.29 mm;
2.52 mm)—Bocas del Toro, Playa Bluff, CCDB 4164, 17 February 2009, coll. F.L. Mantelatto,
M. Terossi, I. Miranda and A. Baeza, 1 male (sl 3.23 mm). VENEZUELA: Nueva Esparta—
Porlamar, Isla Margarita, Playa Valdez, CCDB 1810, 27 August 2006, coll. F.L. Mantelatto
and L.G. Pileggi, 3 males (sl 3.56–4.77 mm), 1 female (sl 2.96 mm), 3 ovigerous females
(sl 2.88–3.20 mm). BRAZIL: Piauí—Luís Correia, Praia do Coqueiro, CCDB 4158, 01 July
2006, coll. J.M. Góes, 2 males (sl 3.87 mm; 4.40 mm), 1 ovigerous female (sl 3.55 mm).
Ceará—Trairi, Praia Flecheiras, CCDB 2651, 20 May 2008, coll. M. Terossi and I. Miranda, 8
males (sl 1.94–5.65 mm)—Trairi, Praia Flecheiras, CCDB 4273, 20 May 2008, coll. M. Terossi,
2 males (sl 1.44 mm; 2.01 mm), 1 female (sl 2.53 mm)—Paracuru, Praia da Pedra Rachada,
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CCDB 5923, 14 November 2015, coll. F.L. Mantelatto, L. Bezerra and A. Almeida, 6 males
(sl 3.10–4.51 mm)— Caucaia, Praia do Pacheco, CCDB 4503, 12 February 2013, coll. F.L.
Mantelatto, L. Bezerra and F. Bezerra, 4 males (sl 2.35–4.41 mm), 1 female (sl 2.73 mm)—
Fortaleza, Praia Meireles, CCDB 4274, 22 May 2008, coll. M. Terossi and I. Miranda, 3 males
(sl 2.47–3.51 mm), 2 females (sl 2.60 mm; 2.84 mm). Rio Grande do Norte—Touros, Praia
de Perobas, CCDB 3366, 10 June 2011, coll. L.G. Pileggi and R. Robles, 1 male (sl 2.92 mm)—
Touros, Praia de Perobas, CCDB 3367, 10 June 2011, coll. L.G. Pileggi and R. Robles, 1 male
(sl 4.64 mm)—Touros, Praia de Perobas, CCDB 3373, 10 June 2011, coll. L.G. Pileggi and R.
Robles, 1 female (sl 2.40 mm). Pernambuco—Ipojuca, Praia de Serrambi, CCDB 1727, 25
July 2012, coll. F.L. Mantelatto and F.B. Mantelatto, 5 males (sl 2.53–5.12 mm), 2 females (sl
2.23 mm; 2.98 mm), 4 ovigerous females (sl 2.11–2.04 mm)—Ipojuca, Praia de Serrambi,
CCDB 5762, 21 July 2015, coll. F.L. Mantelatto, F.B. Mantelatto and R.B. Mantelatto, 4
males (sl 2.84–3.13 mm), 2 females (sl 1.91 mm; 2.53 mm). Alagoas—Maragogi, CCDB
4920, 5 October 2013, coll. F.L. Mantelatto and F.B. Mantelatto, 9 males (sl 2.80–3.71 mm), 1
ovigerous female (sl 3.30 mm)—Maragogi, Praia do Bitingui, CCDB 5586, 10 January 2015,
coll. F.L. Mantelatto, F.B. Mantelatto, R.B. Mantelatto and H. Mantelatto, 4 males (sl 2.20–
3.60 mm), 1 female (sl 2.30 mm), 3 ovigerous females (sl 2.46 mm–2.51 mm). Bahia—Lauro
de Freitas, Praia do Ipitanga, 22 July 2011, coll. F.L. Carvalho and E.A. Souza-Carvalho,
1 male (sl 3.30 mm), 1 female (sl 2.70 mm)—Salvador, Ilha dos Frades, CCDB 4139, 17
July 2003, coll. M. Terossi, 1 male (sl 2.91 mm)—Salvador, Praia do Forte, CCDB 4133, 18
December 2003, coll. M. Terossi, 1 male (sl 2.21 mm)—Salvador, Praia do Forte, CCDB 4137,
18 December 2003, coll. M. Terossi, 1 male (sl 2.62 mm)—Salvador, Praia do Forte, CCDB
4138, 18 December 2003, coll. M. Terossi, 1 male (sl 1.94 mm)—Salvador, Praia de Ondina,
CCDB 4135, 14 December 2003, coll. M. Terossi, 2 males (sl 3.63 mm; 4.10 mm), 1 female
(sl 3.02 mm), 2 ovigerous females (sl 2.22 mm; 2.93 mm)—Ilhéus, Olivença, Praia Back
Door, CCDB 2610, 18 July 2003, coll. A.O. Almeida and J.T.A. Santos, 2 males (sl 4.26 mm;
4.29 mm)—Ilhéus, Praia da Maramata, CCDB 2597, 31 March 2009, coll. F.L. Mantelatto
and A.O. Almeida, 2 males (sl 3.05 mm; 4.44 mm), 1 ovigerous female (sl 2.96 mm)—Porto
Seguro, Arraial D’Ajuda, CCDB 4193, 08 January 2012, coll. F.L. Carvalho and E.A. Souza-
Carvalho,1 female (sl 2.50 mm)—Porto Seguro, Praia da Pitinga, CCDB 585, 29 January
2001, coll. F.L. Mantelatto and R. Garcia, 5 males (sl 2.90–3.67 mm), 2 ovigerous females (sl
3.40 mm; 3.67 mm). Espírito Santo—Vitória, Ilha do Frade, CCDB 4118, 21 June 2012, coll.
F.L. Carvalho, R. Robles and D.F. Peiró, 1 male (sl 3.91 mm), 3 females (sl 3.40–3.74 mm), 2
ovigerous females (sl 3.01 mm; 3.32 mm)—Guarapari, Canal de Guarapari, CCDB 2243, 04
November 2006, coll. F.L. Mantelatto, D.F. Peiró, and E.C. Mossolin, 2 males (sl 3.30 mm;
3.91 mm), 3 ovigerous females (sl 3.28 mm–3.63 mm)—Anchieta, Praia de Iriri, CCDB 4012,
19 June 2012, coll. F.L. Carvalho, R. Robles and D.F. Peiró, 1 male (sl 3.74 mm), 1 female
(sl 3.32 mm)—Piúma, Praia de Piúma, CCDB 4072, 15 June 2012, coll. F.L. Carvalho, R.
Robles and D.F. Peiró, 1 male (sl 1.82 mm), 1 female (sl 3.90 mm), 1 ovigerous female (sl
3.33 mm). Rio de Janeiro—Búzios, Praia da Tartaruga, CCDB 5655, 20 May 2015, coll. N.
Rossi, 1 male (sl 4.97 mm)—Búzios, Porto da Barra, CCDB 5902, 24 April 2006, coll. R. Bispo,
R. Johnsson, W. Santana and F. Faria, 3 males (sl 2.95–5.34 mm), 2 females (sl 2.74 mm;
3.11 mm). São Paulo—Ubatuba, Praia do Perequê Mirim, CCDB 2906, 19 November 2002,
coll. F.L. Mantelatto, 3 males (sl 4.16–4.90 mm), 1 female (sl 3.92 mm)—Ubatuba, Saco do
Codó, CCDB 2813, 01 May 2002, coll. F.L. Mantelatto, 1 male (sl 2.68 mm)—São Sebastião,
Mangue do Araçá, CCDB 1462, 18 July 2004, coll. F.L. Mantelatto, 1 male (sl 3.60 mm)—São
Sebastião, Mangue do Araçá, CCDB 5061, 10 September 2013, coll. F.L. Mantelatto et al.,
1 male (sl 4.24 mm)—São Sebastião, Mangue do Araçá, CCDB 5062, 10 September 2013,
coll., F.L. Mantelatto et al., 2 males (sl 3.29 mm; 3.76 mm), 5 females (sl 2.76–3.76 mm), 2
ovigerous females (sl 2.81 mm; 3.53 mm). Santa Catarina—Itajaí, Praia Cabeçudas, CCDB
1876, 19 June 2007, coll. F.L. Mantelatto, L.G. Pileggi, L.S. Torati and E.C. Mossolin, 2 males
(sl 4.89 mm; 4.90 mm), 1 ovigerous female (sl 4.40 mm).
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Diagnosis

Shield subrectangular. Second and third pair of pereiopods with dactyl shorter than
propodus, lateral surface of merus with a dark stripe on light background and lateral
surfaces of carpus, propodus and dactyl with a light stripe on dark background; dactyl
with orange distal region.

Description

Shield (Figures 1 and 9a) subrectangular, longer than broad, with cervical suture and
linea transversalis well developed; anterior margin between rostrum and lateral projections
straight; lateral margins slightly sloping; dorsal surface plain, lateral region with 2–5 tufts
of long setae and anterior region with few scattered setae. Rostrum triangular, twice as
long as lateral projections.

Ocular peduncles (Figures 1 and 9a) as long as frontal width, cylindrical, slightly
broader at the base, left slightly longer than right; dorsal surface with scattered tufts of
short setae. Corneas slightly dilated. Ocular acicles (Figure 9a,b) subrectangular, long,
closely set; dorsodistal margin with 39 spines, spines shorter in middle region; dorsal
surface plain and slightly concave; dorsodistal margin with few setae.

Antennular peduncles (Figure 9a) long, occasionally exceeding distal margin of left
cornea when extended. Last segment with short, scattered dorsal setae. Penultimate
segment with long, scattered dorsal setae.

Antennal peduncles (Figures 1 and 9a,c) barely reaching distal margin of cornea. Fifth
segment dorsal surface with tufts of short setae, lateral margin with tufts of long setae.
Fourth segment dorsolateral region of distal margin with one spine and setae. Third
segment ventrodistal margin with one spine and setae. Second segment dorsodistal and
laterodistal margins with tufts of setae; laterodistal margin with one spine; lateral margins
occasionally with projections. First segment unarmed. Flagella long, slender, reaching
to dactyl of first pair of pereiopods, with short setae. Antennal acicle lateral and dorsal
surfaces with long, scattered setae; lateral and dorsal surfaces with 59 spines.

Chelipeds subequal, right slightly larger than left. Chela (Figures 1 and 9d) twice as
long as broad; dorsal surface with short spines; ventral surface with tubercles and tufts of
setae; palm and fixed finger with scattered setae; fixed finger lateral surface with tufts of
short setae; fixed finger and dactyl ending in spoon-shaped corneous tip. Carpus short,
lateral and mesial surfaces with scattered tubercles and long setae, similar to chela; dorsal
surface mesial angle with row of spines and long setae; few dorsodistal spines; ventral
surface unarmed. Merus long, dorsal surface with small tubercles, long setae and some
dorsodistal spines; ventromesial margin with row of short spines; ventral surface with few
tufts of setae and few lines. Ischium unarmed.

Second and third pereiopods (Figures 1 and 9e) similar, long and slender. Dactyl about
0.8 length of propodus, ending in a sharp, curved corneous claw; dorsal and ventral surfaces
with tufts of setae; ventral surface with row of spines; left third pereiopod flattened, with
dorsolateral ridge. Propodus about 1.5 as long as carpus; surfaces with tufts of scattered
setae; laterodistal and ventrodistal margins with short spines; left third pereiopod flattened,
with dorsolateral ridge. Carpus about 0.7 length of merus; second pair of pereiopods
with dorsal row of tufts of short setae; third pair of pereiopods with row of tufts of long
setae; lateral and mesial surfaces with few tufts of setae; second pair of pereiopod with 1–4
dorsodistal spines, third pair with one dorsodistal spine. Merus ventral and dorsal surfaces,
and dorsodistal and dorsoventral margins with row of tufts of setae, with distoventral
short spines and one distolateral spine. Ischium with tufts of setae.

Fourth pereiopod (Figures 1 and 9f) semichelate; dorsal and ventral surfaces with long
setae. Dactyl ending in corneous claw, ventrolateral row of small spines. Propodal rasp
well developed. Carpus with dorsodistal spine.

Fifth pereiopod (Figures 1 and 9g) chelate, with scattered tufts of long setae. Propodal
rasp well developed, covering about one third of propodus lateral surface.
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Uropods asymmetrical, left larger than right. Endopodal and exopodal rasps well
developed, dorsolateral margins with setae.

Telson (Figure 9h) asymmetrical, left lobe larger than right. Distal margin of posterior
lobes rounded, with row of short spines and long setae; lobes separated by distinct median
cleft; lateral margins with long setae and indentations distinct.

Color (Fresh Specimen)

Shield with small white spots and darker anterior region. Ocular peduncles greenish-
blue with a brown area on dorsal surface. Antennular peduncles orange with a bluish color
on distal region of the segment; antennular flagella orange. Antennal peduncles orange
with a yellowish color on first two segments; Antennal flagella orange. Chelipeds olive to
rusty brown with white spines and white tubercles; chela with a lighter color. Second and
third pair of pereiopods with a dark stripe on light background on lateral surface of merus;
a light stripe on dark background on lateral surfaces of carpus, propodus and dactyl; dactyl
with orange distal region. Figure 1 shows a preserved specimen with the original color
pattern and supplements the above description.

Distribution

Western Atlantic: Bermuda, Florida, Gulf of Mexico, Belize, Costa Rica, Panama,
Antilles, north of South America, and Brazil (Atol das Rocas, Piauí, Ceará, Rio Grande do
Norte, Paraíba, Pernambuco, Alagoas, Bahia, Espirito Santo, Rio de Janeiro, São Paulo, and
Santa Catarina). Usually intertidal and found in shallow waters, over rocks, coral reefs and
banks of Halodule [28–32].

Remarks

The similarity between C. brasiliensis and C. antillensis was first noted by Stimpson [38];
however, Forest and Saint Laurent [28] later stated that the description of C. brasiliensis
and the original figure of Dana [75] corresponded to C. antillensis. Although the name C.
brasiliensis had priority, Forest and Saint Laurent [28] did not reestablish it, because it was
not mentioned since Moreira [80]; therefore, the valid name is C. antillensis. The holotype
of C. antillensis was collected by Theo Gill and it should be at the National Museum of
Natural History, Smithsonian Institution, at United States of America; however, it seems
to be lost, according to Provenzano [39]; according to the database of WoRMS edited by
Lemaitre and McLaughlin [89], the syntype is deposited in the Naturhistorisches Museum,
Switzerland (catalogue NHM 61.44), but not checked by us.

Clibanarius tricolor and C. antillensis are very close morphologically and it is hard to
distinguish them when they are preserved and lost their original color. C. antillensis is
found from the USA (Florida) to the south of Brazil (Santa Catarina) and C. tricolor is
found from the USA (Florida) to the southeast of Brazil (Espírito Santo) [29,30,32]. Both
are the only species of the genus Clibanarius from the Western Atlantic that have dactyls of
second and third pair of pereiopods shorter than propodi. They are easily distinguishable
by their second and third pair of pereiopods original color pattern, once C. tricolor has
transverse orange bands on proximal margins of segments, which, except for white or
yellow background dactyl, is otherwise blue with dark punctae; C. antillensis has broad
longitudinal stripes on dark background, as described above. When preserved in alcohol,
the blue on pereiopods of C. tricolor fades, remaining only orange bands and punctae; on C.
antillensis, they become orange with lighter stripes [39].
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Figure 9. Clibanarius antillensis Stimpson, 1859: male, sl 4.97 mm. CCDB 5655, Praia das Tartarugas, Búzios, Rio de Janeiro, 
Brazil. (a): cephalothoracic shield and cephalic region, dorsal view; (b): right ocular acicle, dorsal view; (c): right antennal 
peduncle, dorso-mesial view; (d): right chela, dorsal view; (e): right third pereiopod, lateral view; (f): right fourth 
pereiopod, lateral view; (g): right fifth pereiopod, lateral view; (h): telson, dorsal view. Some setae were removed for a 
better observation of structures. 

Figure 9. Clibanarius antillensis Stimpson, 1859: male, sl 4.97 mm. CCDB 5655, Praia das Tartarugas, Búzios, Rio de
Janeiro, Brazil. (a): cephalothoracic shield and cephalic region, dorsal view; (b): right ocular acicle, dorsal view; (c): right
antennal peduncle, dorso-mesial view; (d): right chela, dorsal view; (e): right third pereiopod, lateral view; (f): right fourth
pereiopod, lateral view; (g): right fifth pereiopod, lateral view; (h): telson, dorsal view. Some setae were removed for a
better observation of structures.
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4. Discussion
4.1. Genetic Structure

Based on our analyses for 16S rRNA and COI genes, we found no genetic structure
for C. antillensis along its distribution. The intraspecific divergence was lower than the
interspecific variability for both genes, without an evident interspecific gap for 16S rRNA
(Figure 3). This occurred due to the proximity between the intraspecific divergence of C.
antillensis (0.99%) and the interspecific divergence between Clibanarius vitattus and C. sym-
metricus (1.48%), two species that possibly went through recent divergence processes [44].
Besides that, there was no gap within intraspecific variability of C. antillensis, which in-
dicated the absence of population structure. Additionally, the phylogenetic trees, as well
as the haplotype networks, did not show any grouping pattern that may indicate genetic
structure (Figures 4–6). This was also evidenced by AMOVA, as within localities variance
components were higher than among localities.

Many marine species have populations widely distributed with low genetic differ-
entiation and habitats interconnected by gene flow [8]. Some examples among decapods
distributed along the western Atlantic can be mentioned: the slipper lobsters Scyllarides
brasiliensis Rathbun, 1906 [90], the mangrove crab Ucides cordatus Linnaeus, 1763 [24,91],
the swimming crab Callinectes danae Smith, 1869 [22] and the congeneric species Clibanarius
sclopetarius [27]. The absence of genetic structure within these species, as well as among
specimens of C. antillensis from different localities, may be explained by the lack of physical
barriers restricting gene flow and by their larval dispersive capacity [92].

In general, many marine species have planktonic larval stages, and their wide dispersal
may happen during their first development weeks. In this period, a large number of
larvae are released and passively transported by marine currents system, through which
individuals might reach long distances and promote genetic and demographic connectivity
among populations [18,93–95]. Along the western Atlantic, there is the South Equatorial
Current, which reaches the Brazilian coast (9–15◦ S) and bifurcates into north (Northern
Brazilian Current) and south (Brazil Current) [96]. This bifurcation has different effects
on the genetic structure of many marine species, acting as a barrier to gene flow [97,98] or
not [45,90,91]. These currents may not prevent gene flow of C. antillensis, in fact, they may
facilitate the dispersion of its larvae. Current systems are associated with long-distance
connectivity and long duration of larval stages [3,99]. C. antillensis larvae go through five
to six stages of development, which altogether take at least 43 days [34,35].

Salinity is another feature limiting the dispersal of species. It is relevant especially
in estuarine areas and other coastal environments, since it presents high and constant
variations, which affect the physiology and ecology of organisms [19]. It may influence
biochemical composition, growth, survival and development of larvae [100,101], feeding
activity [19], carbon accumulation rates [102], as well as osmoregulatory activities [103]. In
fact, salinity has been described as a barrier for dispersion and gene flow of some decapod’s
species [22,26,104,105]. In those studies, the absence of gene flow between populations
resulted from the incapacity of their larvae to traverse the Amazon River plume at the
Atlantic Ocean, where the volume of water discharged changes the local salinity.

On the other hand, the outflow of the Amazon River has not been a barrier for the
dispersal of other decapods [22,91] since the larvae may be more tolerant to low salinity.
This might be the case of C. antillensis larvae, which can develop at salinity levels of
29–35 ppt [34,35]. However, adults probably are not able to establish on conditions where
the salinity is reduced, since there is a gap along their distribution [28,30,31], which
corresponds to the north region of Brazil, where the Amazon river ends and promote
salinity influence.

Genetic connectivity may also be influenced by behavioral site fidelity and local
retention of larvae [11,20]. Hence, even if the larvae present high dispersal potential, if
they are retained next to their natal populations for many generations, populations might
undergo through enough differentiation, resulting on genetic structure [11]. In addition,
there are many other features interfering on genetic structure, such as the biology and
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life cycle, habitat, local oceanic conditions, local adaptation, ecological and geographic
limitations, past geological events, and recent history. Together, they may influence gene
flow at specific directions or moments [8,10,14,106–108]. Therefore, even if different species
have similar dispersal capacity, it is not easy to establish genetic structure patterns, since
they are influenced by different factors at the same time [8,23,109].

4.2. Genetic Diversity

In addition to the lack of genetic structure in C. antillensis, a high genetic diversity was
found, especially for the COI gene, which presented a total nucleotide diversity of 0.01253
and haplotype diversity of 0.995. The former value is considered high when π > 0.005 [110]
and the closeness of the latter to 1 indicates high number of singletons, which corresponds
to an individual sequence of certain gene [111]—as observed in the haplotype network for
COI (Figure 6b). The high number of low-frequency haplotypes, as well as high values
of nucleotide and haplotype diversities might be related to large and stable populations
with long evolutionary history and high mutation rates or with secondary contact between
different lineages [110,112]. High diversity indexes using the same gene were also found on
studies of Opecarcinus hypostegus (Hd = 0.9994, π = 0.02558) [113], U. cordatus (Hd = 0.9820,
π = 0.005862) [91] and Callinectes ornatus (Hd = 0.9570, π = 0.01360) [22], which may indicate
that their populations have been stable through time or undergone through a slightly
recent expansion [22,91]. For C. antillensis, the BSP recovered a long demographic history
from 700,000 years ago, with periods of stabilization and small population expansion
(Figure 8). Demographic expansion was also evidenced by significant and negative values
of neutrality tests for both genes [114] and by mismatch distribution, with a unimodal
distribution pattern and non-significant SSD and HRI values [66] (Figure 7).

These results may reflect historical processes, such as past geological events and the
demographic history, which could influence current geographical distribution and genetic
variation of marine individuals. The high genetic diversity is common to many marine
species [115–117]. It might be preserved by long-distance dispersal during expansion [116],
or many migrations among close areas, generating a higher number of new haplotypes
than others that are lost [118,119].

The demographic history and distribution of many marine species were influenced by
climatic fluctuations that occurred during Pleistocene (~2.6 million–10,000 years ago) [120,
121]. During glacial periods, many populations of marine species used to refuge on low
latitude regions, possibly resulting in genetic drift. When the climate became warmer, they
would recolonize other areas and reestablish populations that had disappeared during the
previous glacial event [122–125]. Consequently, genetic diversity would be considerably
higher in areas where colonizers came from different refuges compared to those originated
from a single population source [126,127]. Some haplotypes were exclusive because they
may have not participated in recolonization [124].

Nonetheless, each species had a unique response to climatic oscillations during glacia-
tion [17]. There are many marine species that were not strongly affected by glacial periods,
consequently, their populations probably continued to expand during these periods, re-
sulting in lack of genetic structure [89,125,128,129]. This might be the case of C. antillensis.
The almost continuous expansion with periods of stabilization indicated by the BSP anal-
yses for the last 700,000 years, associated with high values of haplotype and nucleotide
diversities, do not indicate that this species went through any genetic bottleneck followed
by expansion. Therefore, if the species had refuged during Pleistocene, there would not
have been sufficient isolation to cause a reduction on genetic diversity or its populations
would have isolated themselves in many refuges, maintaining the diversity on periods
when population growth was more stable.

4.3. Morphological Variations

Morphological analyzes have also corroborated the absence of genetic structure. Al-
though some features presented variability, they have not shown any pattern related to
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geographic groups, and in some cases, specimens from the same locality presented differ-
ences in characters. Intraspecific morphological variations without any pattern have been
reported for other decapods with wide distribution [130–132]. These differences, as well as
the distinct coloration patterns found among adults [37], may be related to environmental
conditions (habitat, wave action, food supply, and salinity), local selection pressures and
intra or interspecific interactions that may affect each organism differently [133–135].

Among the characters analyzed, the number of spines of the ocular acicles, antennal
acicles and second pereiopod carpus presented the largest variation. They also differed
from the literature descriptions (Table 5).

In the present study, ocular acicles had three to nine spines on dorsodistal margin,
in which seven to nine spines were found on 30 specimens, mainly on male, followed by
ovigerous females and females from different localities. According to the literature, the
number of spines was: three or four [30,74], six [39], and up to six [31].

In the present study, antennal acicles had five to nine spines on lateral and dorsal
surfaces, in which eight or nine spines were found on 34 specimens, mainly on male,
followed by female and ovigerous females from different localities. According to the
literature, the number of spines was up to seven [31].

In the present study, the carpus of the second pereiopod had one to four spines, in
which three or four spines were found only on five males and one ovigerous female from
Mexico and four Brazilian states. According to the literature, the number of spines was one
or two [39].

The importance of including detailed variations on a redescription of the species is
to assure that some traits are not neglected and to facilitate the differentiation of closely
related taxon [130]. Hermit crabs are usually hard to be distinguished by a unique character,
especially if they have lost their original color [130]. C. vittatus and C. symmetricus, for
example, only differ by the color pattern of their pereiopods [44], as well as C. antillensis
and C. tricolor. Therefore, if preserved specimens have lost their color, the availability of a
set of characters is required to facilitate their distinction.

It is important to define the genetic diversity of marine species once it allows us to
understand how historical processes and contemporary environmental conditions have in-
fluenced their populations along their distribution. In addition, they may reveal aspects of
gene flow, evolution, genetic differentiation, and spatial population boundaries [136]. Such
studies, consequently, provide information about biodiversity and conservation strategies
of species [137,138]. The present study enables the understanding of marine phylogeo-
graphic patterns along the western Atlantic Ocean. Overall, our mitochondrial data for
both 16S rRNA and COI genes and morphological comparisons did not reveal structure
patterns, related or not to geographical patterns, among populations of C. antillensis. These
results may be explained by a set of factors including planktonic larval duration of the
species and the absence of effective barriers to gene flow. Besides, there were high genetic
diversity for COI gene and signs of population expansion in neutrality tests, mismatch dis-
tribution and Bayesian skyline plot. This last analysis revealed small population effective
size expansion in the last 700,000 years, with some periods of stabilization, and no evidence
of bottleneck effect. Therefore, the species might not have been strongly influenced by
Pleistocene climatic oscillations.
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