An L,theorem of the Helmholtzy decomposition
of wvector fields

By Daisuke FUJIWARA and Hiroko MORIMOTO

Let 2 be 3 hounded domain in R* with smooth boundary. We consider the
Stokes eguations

—dut+grado=f in 2,
0.1} divu=0 in 2,
Uoo=0 on 02.

It is convenient to analyse these equations in the space X3(2) which is the closure
in Ly(R) of all C= solenoidal functions with eompact support in Q. This space is
written as H,(2) in Fujita-Kato [2]. Since X,(2) is a closed subspace of the Hilbert
space L,(2), there is an orthogonal projection P, from L,(2) onto X,(£2). With it,
(0.1) can be transformed into the abstract functional equation Au=f in X,(0),
where A, denotes the Stokes operator.

Recently M. McCracken [7] investigated this projection in L,(2) where 1<r<co
and 2 is {(#&y, %2 %s) € R?]23<0}, and proved that the Stokes operator generates an.
analytic semigroup in X,(2).

In this paper, we construct the projection P, from L.(2) onto X,(2) and give
its fundamental properties (Theorem 1). For its proof we use the existence of the
boundary value of the normal eomponent of functions  in L,(Q2)={L,.(Q)}" satisfying
divue L,(02), and the results on the elliptic boundary value problem. In virtue of
this projection, we can show a decomposition theorem of L.(2) (Theorem 2). An
application to the Stokes operator is stated in Theorem 3.

Professor Inoue pointed out kindly that our discussions are parallel to those of
Temam [10] who studies the case r=2. But in some details, a little difference
will be found. (For instances, see the proof of Lemma 1 and Lemma 7.)

81. Notations.

0 is a bounded domain in R* with the smooth boundary I'=082. C7(2) denotes
the set of all C~-vector fields in 2 with compact supports. C§,(R) denotes the sub-
set of CT(Q) consisting of those vector fields u which satisfy div«=0.
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For any u€ C(Q), we have the norm
ifr .
Ly nuuL,mF(j et de)”,  1sr<oo,
Q

where |u(x)| denotes the (Euclidean) length of the vector u{z). L.(Q) is the com-
pletion of CF(2) with this norm. WL{2) denotes the Sobolev space of scalar valued
functions, of order I. WUQ) denotes the Sobolev space of vector valued functions,

of order L. Let fe L,(Q) and g€ L.(2), —i—-}-%:l, 1<r<oo. Then

1.2 , g>=gg (Pl gla)dda

is the duality, where <, > denotes the Euclidean inner product of two vectors f(x)

and g(@).

§2. The fundamental lemma.
The lemma which is erucial to our results is the following one.

LEMMA 1. Let v be in L.(2) such that divve L,.(Q), 1<r<oco. Suppose that
2 has the smooth boundary 8Q2=I. Then the boundary value v,|r of the normal
component to I' exists and belongs to W7i(I"). Moreover, there exists a positive
constant C independent of v such that

2.1) A IFHW;UT(F) LC{ll L +divolz,wm).

ProOOF. TFor any point z€ R?, we put

W)_{ dis @, ) if zcd

22 T\—dis(@ I if z¢0.

Then ¢{z) is a C= function of  in some neighbourhood of I'. Moreover o(x) enjoys
the following properties; 1) o(@=0 on I', 2 Q={xc R*|ox)>0, 3 R*—0=
{re R™|plx) <0}, 4) |grad ¢(z)|=1 in some neighbourhood of I.

Let I, be the open interval (—g,d), >0, and Q,={xc R*|o@)c I}. If § is
sufficiently small, then ¢(z) is smooth in 2, and for any xz¢ 2; there exists only
one point z(x) € I" such that |x—<(z)|=dis (z, ). The line segment from z{z) to
is normal to I" at <(x) and this coincides with the integral curve of the gradient
veetor field of ¢(x). We obtain the diffeomorphism @ of 2, to I, xI" as follows:
D; Q5220 =(px), r(@) e LXI. If te I, the submanifold I',={zx e 2;]o) =t}

2

£, is diffeomorphic to I" under the mapping ,, the restriction of z to I',. Let do?
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be the Riemannian structure of I', induced by the natural embedding I',— R™
Besides the natural Riemannian structure dsi of 2, as an open submanifold of R,
we shall make use of the Riemannian structure ds? of £, which is induced by the
diffeomorphism @, where I is equipped with do. Let do? be the Riemannian strue-
ture of I', induced by the latter Riemannian structure ds? of 2. Clearly the
mapping 7,; (", de®)—(I, dof) is an isometry.

Now we illustrate the above mentioned two metrics by means of local coordi-
nates expressions: Let &£=(&, &, ---, &) be a local coordinate functions of a point
which is valid in some open set U of I'. Then

2.3) O UL U) 30— &, &) =(p), Ez@)) € LX R
is a local coordinates of a point z in @I, xU). Since ds} is induced by @,
2.4) dst=dt*+do*
where dazziéz g:;(8)d&.dg;. By the natural metrie dsj, the vector field grad ¢lz) =
9/ot is the unit normal to I',. Hence, we have
dsi=dt*+do}

(2.5) n
dG%:“ZLZ 9t g)dede;.

Clearly, we have g;{0,&)=g.;(). Let e, (u, v) and h,(u, v) denote the inner products
defined by the metric do? and do?, respectively, of two vectors u, v tangent to I",
at xeI",. Then there exists a linear mapping Alx)=A(, €) of tangent vector space:
T.T,=T, sl to I', at 2=, &) € I', such that

(2.6) hy(u, v)=¢,(u, Alx)v) vu, ve T, ;.

Clearly A(z)™! exists and both A(z) and A(z)™* depend smoothly on z. For any
1<r<oo and any smooth function ¢ defined on I';, we can define two norms

21) T =[Lt g@rdr]”

2.9 1lz, et =[Srt 86 1 dr]”',

where dy, and dy are the volume elements of I", with respect to the metrics do?
and ds?, respectively. Clearly, we have

dz=dtdy,.
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By the coordinates expression
2.9) dri=vglt, & déudts - - - d&,, g(t, &) =det (g;;(¢, &)
(2'10) d7’=*/g(0, E) d52d$3 s dsm g(ov E):det (gzy(Oy E))-
These two norms (2.7), (2.8) are equivalent, because

dr. _ [9t & dr \/ 900,98

{2.11 — == /=2 gand = a /2

) dr g0, dre g(t, 8
are smooth functions. Completing the space CP(I",) by these norms, we obtain
two Banach spaces L.(I", do?) and L.(I",,do?. These are isomorphic as locally con-
vex spaces but have different norms. Similarly, we have two types of Sobolev
spaces Wiy, do?) and Wi(l',, do? of scalar functions defined on I",. W3(I",, do?) =
WiI',, do®) as topological vector spaces but they have different norms || | Wi, dod
and | [ wsr,.e0h, respectively.

Let w(¢) be a smooth vector field on I",. Then we can define two norms as
follows;

@2.12) Ml oo =HF e i), u(&))fﬂdn]”r
and ‘
(2.13) uuuL,(pt,dazFUF h(ule), u(&))fﬂdr]”'.
Since ‘
rie — ri2 ﬂ_
.14 L ho((E), ul@)"! dr—jrt e (ul8), Alt, Dulg)r! ( o )dn,

these two norms are equivalent. Completing C=(I",, TI",)=the space of smooth
tangent vector fields of I', by these norms, we obtain two Banach spaces L.(I", do?
and L.(I"y, do?), respectively. L.(I",, do?)=L,([, do? as topological vector spaces but
they have different norms. Similarly, we have two types of Sobolev spaces
Wil dof) and Wi(I', do? of tangent vector fields on I',. WiI,, do?) =W, do?)
as locally convex vector spaces but they have different norms | lws,.e% and
I lwsw,.a0%, respectively.

Let flx)=f{t, &) be a scalar function defined in Q2,. Then @*f=fod ! is a
function defined on I;xI". And we have

@.15) Sa_,,dt Lf @71, E)dro=jiadt Lt Fit, &)dy

:j‘; dt Srt 1,8 %drﬁj% f (x)<;l—;t>dw-
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Suppose that % and v are vector fields on 2, such that at any ot & el ult,é)
and (t, &) are tangent to I',. Then & u and @4v are vector fields on I;XI' which
is tangent to I'. There holds the equality

Sa dtg &o(Dant, Q*v)dro=56
-3 I

=8

dt g hafult, &), vlt, £)dr
Pt
_(? dr
2.16) _S_a dt L, e lult, 8), Alt, S, &))( ) ar.

=S Culw), Al <)> La
2;

where <, ) is the Euclidean inner product of T,2,. Similarly, for any ue L.(25)
which is tangent to T77,,

& »/2 — r ]2 ..(17;_

This implies that L,(; L.(I"))=L,(2s as locally convex spaces and that two norms
I le,u,iz,an and | iz, are equivalent.

Let 9,=2;N2 and 2,=02—0,,N2. Let {x1, x2} be a partition of unity of class
C* subordinate [to the open covering 2,UR2,=2. For any ve€ L,(2), we put v=
u+w where u=x» and w=xzw. Clearly, ve Wi(®) if and only if ue Wi(Q2y) and
we WiQ,). There exists a positive constant C such that
(2.18) CHllz, < ullL, @+ wlz, 0 <C vl @.
If divve L,(9), then divuc L,(£2,), because

div x1(@)v{e) =<grad x.(), v{))+ 2. (@) div v(2).

There exists a positive constant C independent of » such that
(2.19) [div ulz,w0p <CvllL, @+ 1div o]z, ).
At any point ze€ 2,, we decompose the vector u(x) into two components: wu{x)=
(%) +u4 (%), where u,(x) is normal (in both of two Riemannian structures of £2.)
to I", and u,(x) is tangent to I,. Thus we can write uo(x)=zl(ac)—a%, where z,{x)=

2,(t, &) is a globally defined scalar valued function in ;. By local coordinates

system,
2.20) i) =ult, 8= 3, 26,8
Let flz)=f, &)=divulx). Then
@.21) F@)=11t, &)= —%—1(——5)—+a(t, 8zat, £)+Aiv’ gl 8),

ot
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1 n
Vgt &) P2y 6&

field u,(t, §) of I', which is equipped with ‘the Riemannian structure da, and

where div’ u,(t, &)= (Vg(t, & zit, &) is the divergence of the vector

1
Vgt § o

The scalar valued function 3(t, & =z,00-1(¢, &) is a function of {t, &€ (0,0} XI". We
shall prove that

alt, &= 9 Vol B= —~—logg<t 8.

(2.22) Z,€ L,((0, c0); L, (1)),
and
(2.23) %zl € L,((0, o) ; WiL(I)).

Making use of (2.15), we have

Bl wseyin = 1200801 e

o (4

(Y
=|=! d7t>

r

Ly

Thus there is a positive constant C such that
(2.24) 122017, 0,000 2, o SCO%oll7, 0y SCIOIL, 0+

Thus %, ¢ L.{{0, 0); L.(I") is proved.
Before proving (2.23) we have to clarify the definition of @*'div’ %, as a dis-
tribution on I, XI'. If u, is sufficiently smooth, then for any ¢e 9)((0, o) X1,

S“’ d j O div’ uy(t, ) (8, &)dyo= r dt j div’ ualt, ¢, &)dr
0 r 0

Ty

=§°° dt j div’ ule, 62, 8- Ty,
0 r, d?’z _

where ¢(t, &)=¢-@(t, £). This is equal to

r dt SF {uatt, &), grad (5—; @)t &)} dre

where grad’ p=3% 90
i=2 65

7] o
{, }; is the inner product of tangent and cotangent vectors.

dg; is the_covariant gradient vector field of p on I', and
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Therefore,

(2.25) r dt

0

O*Hdiv’ u,(t, £))9(, £)dre

r

o dy
:50 dtS {rt*ul(t &), Ty t*¥ ?{t grad’( ar, }odro.

(S

Let g’r';m denote the cotangent vector field of I' defined by

o~ )
grad p=7F" Ay grad’ —~ Ay Q*p.
dy dys
Then g/I;;l is the differential operator of order 1 which contains only tangential
derivatives to I'. Thus we have

{2.26) ngad ¢lz,, o, o SCIPlL 000, L, e

As a consequence of (2.25) and the fact u; € L.(2)=L,((0, ); L,(I')), the definition
of o* 1 div/ u, is

2.27) (@ div’ uy, )= S‘” dt S fewinlt, €), grad ghodrs
0 r

where (,) denotes the duality of 4)'((0,c0)XI") and D0, =) xI). It follows
from (2.26) and (2.27), that

)

228 [(@* div'ul,»qslsc[g dtS eolemsttalt, &), Tontiall €5 fdro]

0
1

X Uw dt S grad o, grad )"y, ]

A

dr 1}r
CS ), Ale)n()y 3 dx] 10 ot 9
2, 7t " r

<Cllall g, 0191z, oL -
Now we can prove that —gt—zl(t, &) € L,((0, 0o}, W7HI). From (2.21) we have
(2.29) <<iz%~§)— so>>:<<@*“1(f —a-z,—div’ w), @)
:S:’ dt SF O Fm a2 8, Bt Edyo— (0% &V s, 9.

The last term of the right hand side of (2.29) can be treated by (2.28). As a con-
sequence of (2.15), the first term is equal to
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dr

dz.
dr,

|, vt o—at a1t 0
2
This can be majorized by

@30 Clf N, 0p s, @ 191, 0y SCUL N,y +Nerly o el 0

Therefore,

(2.31)

<< {;ztl ’ SD>’SC(HJ’”L,<91> Flallz, 0)I¢lz,,0p +Cllwd o, Wl a0,
<C(|div ?JHLT(Q)‘F]lvlll,r(m)ll@“f,r,<(o,oo),w},(z’)>'
Since the dual space of L,{(0, ), W1,(I) is L,((0, o), WiLI")) for 1<r<oo, (2.81)

proves that %zleL,((O, o), W;YI')) and moreover

(2.32) U—%—zl

L SCdiv ol g+, )
L,(@0), wrH)

(cf. Phillips [8]). Thus we proved (2.22) and (2.23).

Lions’ interpolation theory applied to (2.22) and (2.23) asserts that the boundary
value 2;],-0=2, ;= exists in the trace space T(r,0;L,(I"), r,0, W;Y(I")) (Lions-Peetre
[6]). This trace space coincides with W) (Lions-Magenes [4]). This proves
that 2;|..y=v,]r€ W;X"(I'). Moreover it follows from (2.24) and (2.81) that

{2.33) v, irl W;_‘l/'(p) SC(HdIV ’v”LT(Q) + ”v”Lr(Q))‘

Thus Lemma 1 has been proved.
Let Y,={ue L,(Q)|divuc L, (2)}. Y, becomes a Banach space with the norm

(2.34 s fully, = (g, + | div ], )2,
LEMMA 2. C=(QUT} is dense in Y,.
PROOF. Let v€ Y,. As in the proof of Lemma 1 we have
vV=u+w

where u=7y,v and w=y,0. We know that %, we Y, and supp uCQ,, supp wC2,.
Let p(x) be a C¢ function such that plx)>0, s. np(x)dac:l and p(x}=0 if {z|>1.
Let p,=k"o(kx). Then the convolution p*w beloggs to C*(QUT) and converges to
w in Y,. Thus we have only to construct g sequence of functions f, in C*(QUTI)
such that fi—»u in Y,. We consider u as a vector field u(t, & in [0,8)XI". Let



L.-theorem of the Helmholtz decomposition 693

3>0 and g.(¢, E)=u<—5j_—s {t—38) +9, E). Then 2,(t, &) is defined for tef—s, &)

g, — w in L'r([oy 6) XF) as S—>0.
Since

3 :,._6_ -a_ __5.__ — tr?
div g, s+5<atu> St 6>+a,s>+a<t)gs+dw gt &),

div g,—divu in L.([0,0)XI") as s—0. For any k>s™', we define
Jor=0gs*0s.

If we choose s, sufficiently small and put
Je=Fopr

then, f, restricted to £ converges to # in Y,. Since f,€ C=(QUT), this proves
the lemma.

LEMMA 3. Let uc Y, and let ¢ be a function in CUQ). Then there holds
Green’s formula

(2.35) SQ u(r) grad ¢(@)dz= ~5 div w(x)p(@)dz+{ualr, 01,

Q

where {u,lr, ¢lry is the duality between Witi"(I') and WY (I).

Proor. Green’s formula holds if € C=(Q). Both sides of (2.35) are continuous
functional of uec Y,. Since C*(2) is dense in Y,, (2.35) holds for any u¢ Y,.
§3. Construction of P, and its properties.

Now we are going to construct the operator P, on L,(2). Let u be any ele-

ment in L,(2). We consider the boundary value problem:

3.1) {A(plzdiv % in 2,

¢,=0 on I'.

Since divw is in W;rHQ), it is well known (Lions-Magenes [4]) that there is the
unique solution ¢, of (3.1) in I/f/’}([)) (=closure of CP(R2) in Wi(2)) and the estimate

“9’1“ W1<Q>§lediv u”w:l(g)
holds for some constant C independent of u. Thus we have
(3~2) Hgol‘lW}‘(Q)SC!luHLT(Q)!

3.3 u—grad ¢, € L.(2)
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and
(8.4) div (u—grad ¢,) =div u— 4o, =0.

According to Lemma 1, the normal componet of u—grad ¢, has the boundary value
in W;HY"(I"). Consider the Neumann boundary value problem:

4972:0 in Q,

3.5
%zuﬂ— 99y on I'.
ot ot

It is known that the problem (3.5) has the unique solution ¢, satisfying the estimate

_ o9
ot

”502” Wi(g) <C Uy

-1
v

(Lions-Magenes [5]). Using Lemma 1 and (3.2), we have
(3.6) el 1o <C'lu—grad oifl, o, <C" flull, -

Now we are ready to define P,. For any % in L), we take the solution of the
problem (3.1) and then that of (3.5), and put o=¢,+¢,. We define P,u=u—grad o.
We should notice that ¢ is in Wi(®). It is easy to verify that divPu=0 in 2,
and (Pu),=0 on I'. Conversely, if divu=0 and u%,=0, then the solution of (3.1)
is zero and the solution of (3.5) is also zero. So, grad ¢=0, and we have Pau=u.
At the same time, we get the relation Pu=wu for all % in P,L.(2). The operator
P, thus defined is a bounded operator in L.(2), because

1Pl o <lul, o+ lerad ol o
S P 7 S
<Nl o+ 194l 100y H 12l
<C"lully,

where we have used (3.2) and (8.6). The next lemma is easily shown, and the
proof is omitted.

LEMMA 4. P,L.(Q) is a closed subspace of L.(S).

For the dual operator P¥ of P,, we have
. 1.1
LEMMA 5. P¥=P, <7+;=1, 1<¢<oo>.

PrROOF. We have already shown P, is a bounded operator in L,(f2). Since the
dual space L.(2)* of L.(2) is L,.(Q), the dual operator P¥ of P, is a bounded linear
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operator in L,)2). Because C{(Q2) is dense in L,,(2), we have only to show P, v=
Py for any v in CP(@). Let u,v be any element in C7(2). By the definition of
P,,, we have the expression

v=P,v+grad ¢
for some ¢. Since

(P, v—P.v)=(Pu, grad ¢)
~ S (P,u) o — S (div Pu)gde
232 2
=0—0=0,

(P, v)=(Pu, P,v) holds. Similarly we can show (u, P,,v)=(Pu, P,v). Therefore
{P,u, v)=(u, P,,v) holds for any u,v in CF(). Since P, is a bounded operator in
L,(2), and C3(2) is dense in L,.(2), we have (P,u,v)=(u, P,v) for any u in L,.(2).
Consequently v belongs to D(P¥) (=the domain of the operator P¥ and Pfv=P, v
holds. Lemma 5 is thus proved and we obtain the following theorem.

THEOREM 1. The operator P, is a bounded operator in L.(Q) and its dual

operator PF is P, where %-!——;—/:1, 1<r<<eoo.

The space X, is defined as the closure of C§,(Q) in L,(2). This space is con-
tained in P,L.(Q). In the following we shall show that X,=P.L.(2). Put
G,={grad ¢ o€ Wi(Q).

By the definition of P,, any element of L.(2) is uniquely written as the sum of
elements of P,L.(2) and G,. Let

(P,L Q) ={uec L, (Q)]|(u,v)=0 for any v in P,L(Q2)}.
LEMMA 6. (P.L(Q)" =G, (%ﬂ%,:l, 1<r<00>.
PROOF. Let u be any element of G,.. Then u=grad ¢ for some ¢ in WL (Q).
Let v be an arbitrary element in P,L,(2). Since Pv=v, we have
(u, v)=(grad ¢, P,v)
_—_S @(P,v)ndo—s o div (Pv)dz
8g Q
=0—0=0.

Therefore u belongs to (P,L,(2))t. Conversely, let % be any element in (P.L,(2))*.
We can write =P, u+grad ¢ for some ¢. Then for any » in L.(£2), we have
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0=(u, P,v)=(P,u, v)={u—grad ¢, v).

Here we have used Lemma 5. Since v is arbitrary, u—grad ¢ must be zero, that
is u=grad ¢ € G,. The proof is completed.

LEMMA 7. Xi=G,, <%+%=1, 1<r<oo>.
T

PROOF. Let u be any element in G,.. For any v in Cy,{£), we have
3.7 {u, v)=(grad ¢, v) = — (o, div v) =0.

Since C§,(R) is dense in X,, we have (u,v)=0 for any v in X,, and consequently
% belongs to X}, that is, G,,c X+ holds. Inverse inclusion G, DX} holds if we
show X} NP, L,(2)={0). This follows from Théoréme 17’ of de Rham [9] p. 114.
However, we shall present a proof of lemma for the sake of reader’s convenience.
Let % be any element in X} NP, .L,.(Q). Take p_(%:ﬂ functions w;; € C(Q) 1<i<
J<m), and put

v=(0y, -+, V)

izl dws;

OW:;
V=2, -z =

i=1 0w; =it 9x;

j:]_, cee, .

%izo, that is, ve CF,(Q). Since ue X}, (u,v)

J

Simple caleulation shows div vzi

i=

must be zero. Therefore,

where (, ) denotes the duality between §)'(2) and 9)(Q). Consequently we have

G 0 g 1<ici<n
ox; axj
as distributions. Moreover
20U,
1 =0
Z ox;

1=1
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as distribution, beeause # is in P, L, (2). We then have Ju=0 as distribution.
According to the theory of elliptic differential equations, u is of class C* in the
interior of Q. Now we take and fix any closed curve C in 2, and consider the
line integral

jc ,é ¢;{x)de;

of ¢={¢;, -+, ¢,) in CF(Q). This integral can be regarded as a distribution T
which has the compact support C in £, that is 7€ £/{Q). Since our function u is
in C*(), there exists the value of T at u. Let h be any element in C=(2). By
the definition of T, we have

{div T, hy=— (T, grad h)
=—S ah dw1+"‘+ ah

¢ 0%y ax,,

dz,
=0.

Let J; be mollifier, and put ¢;=J,7. Since T is in £’(Q), ¢; belongs to CF{2).
Moreover,

div g,=div J;T=J,(div T)=0,

that is, ¢;€ C3,(R). Because uc X3, (J:T, u)=(ds, w)=0. Since {J,T, u) converges
to {T,u) as & tends to zero, (T, u)=0. This shows

S uldw1+ e +undx,,=0
c
for any closed curve C in 2. Now we put

ga(m):Y Wdz+ - -+ +u,do,, re R
]
where 1z, is a fixed point in 2. As we have mentioned above, the right hand side
does not depend on the path and define a one valued function of class C=. It is
evident that

grad o=1u.

That is, % belongs to G,,. But as we supposed, % is also in P,,L,,(2). Therefore u
must be zero, and the proof of lemma is completed.
Now we can give the theorem on the decomposition of L.(2).

THEOREM 2.
1) X,=P,L,(2) and L (2)=X.0G,



698 Daisuke FuJiwara and Hiroko MoRMOTO
* 1.1
2) X¥=X,, —+—,_1, 1<r<oo ),
r r

Proor. 1) follows from Lemmas 6 and 7.
2) Since G, is closed subspace of L.(2) (Lemma 4), the dual space of the quotient
space L.(2)/G, is G+ (e.g. Bourbaki [1]). By 1) L.(2)/G.,=X,, and by Lemma 7,
Gir=X}5t=X,. So we obtain 2).

REMARK. By the definition of the operator P, and Theorem 2 1), we have

X.=uecL(Q); divu=0in 2, u,=0 on I'}.

§4. Application.

In this section, we suppose n=3. We shall give some results on the Stokes
operator A4,. Let DA )=Wi2nNWi2)NX, Forwin D(A,), A,u=f is equivalent
to the following system of equations:

—dutgrad p=f in 2,
(4.1} divu=0 in 2,
u=0 on I,

where p is some scalar valued function. A, has many properties resembling to
that of the Laplace operator. For example, it is known that A, is densely defined
closed operator in X, and is one to one from D(4,) onto X, (Ladyzhenskaya [3]).
Let B, be the Laplace operator with zero boundary condition. More precisely, let
DB)=WX2) N P;/i(Q), and Bu=f is equivalent to the equations:

{—Au=f in 2,

“2) =0 on I'.

It is easy to verify that A,u=P,Bu for u in D(4,). We know that the dual
operator B¥ of B, is B,. For the Stokes operator we have

THEOREM 3 (M. McCracken [7]).
A¥=A4,, <l+%=1, 1<r<00).
r r

ProoF. Let us recall that D(A}) consists of all v in X* for which, there exists
some w such that (4,u,v)=(u, w) holds for all u in D(4,). According to Theorem
2, XF coincides with X,,, so A¥ is densely defined closed operator in X.. Let v
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be any element of D(A,). Then we have
(A,u, v)=(P,Bu,v)

(B, P,v) (by Lemma 5)
(Byu, v) (vve DA,)CX,).

Since D(A,)=D(B,)NX,, and B¥=B,,, we see v belongs to D(B¥) and we have

(B, v) = (u, B,v)
={u, P,,B,.v)
=(u, A,v).

Therefore (4,4, v)=(u, A,v) for any u in D(A,). Thus we proved D(4,)CD(A¥)
and A, v=A%v for ve D(A,,). Let v be any element of D(A¥). Since A¥ is a closed
operator in X¥=2X,, A¥v belongs to X,,. Because A, is surjective, we can find
v, of D(A,) such that A, v, =AFv holds. Take an arbitrary element u of D(A,),
and we have

(Au, v)=(u, AFv)=(u, 4,v,)=(u, Afv,).

In the last equality, we have used the first step of the proof. So, (4,u,v—7v,)=0
holds for any % in D(4,). Recalling A, maps D(4,) onto X,, we see v—v; belongs
to X+ which is, according to Theorem 2, equal to G,,.. On the other hand, v—o,
is in X,,. Theorem 2 asserts that v—v;=0, that is, v belongs to D{4,). The proof
is accomplished.

REMARK. In the case Q=a half space of R?, this theorem was proved by
M. McCracken [7].
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