On non－arithmetic discontinuous groups

佐武 一郎（Ichiro Satake）

In this talk，we will give a survey on arithmetic and non－arithmetic lattices in a semisimple algebraic group．After giving some basic results on the subject，we＇ll forcus our attention to more recent results，mainly due to Mostow and Deligne，on non－arithmetic lattices in the（projective）unitary group $P U(n, 1)(n \geq 2)$ ．（For more details on these topics as well as the closely related rigidities of lattices，see［S 04］）．
1．To begin with，we first fix our settings，giving basic definitions and notations．Let X denote a symmetric Riemannian space of non－compact type（with no flat or compact factors）and let $G=I(X)^{\circ}$ be the identity connected component of the isometry group of X ．Then，as is well known， G is a connected semisimple Lie group of non－compact type，which is of adjoint type，i．e．，with the center reduced to the identity 1 ．This implies that，denoting by g the Lie algebra of G ，one has $G=(\text { Aut } g)^{\circ}\left({ }^{\circ}\right.$ denoting always the identity connected component）．The group G acts transitively on X and for any $x_{0} \in X$ the stabilizer $K=G_{x_{0}}$ is a maximal compact subgroup；thus one has $X \cong G / K$ ．In this manner，G and X determine one another uniquely（up to isomorphisms）．
More generally，let G^{\prime} denote a connected semisimple linear Lie group， which becomes automatically＂real algebraic＂in the sense that there exists a linear algebraic group \mathcal{G} defined over \mathbf{R}（uniquely determined up to \mathbf{R}－ isomorphisms）such that $G^{\prime}=\mathcal{G}(\mathbf{R})^{o}$ ．As typical examples，one has $G^{\prime}=$ $S L(n, \mathbf{R}), S O(p, q)^{o}$ ，etc．Let K^{\prime} be a maximal compact subgroup of G^{\prime} ，and K_{0}^{\prime} the maximal compact normal subgroup of G^{\prime} ．Then one has

$$
G^{\prime} \supset K^{\prime} \supset K_{0}^{\prime} \supset\left(\text { center of } G^{\prime}\right) .
$$

Therefore，setting

$$
G=G^{\prime} / K_{0}^{\prime}, \quad K=K^{\prime} / K_{0}^{\prime}, \quad X=G / K=G^{\prime} / K^{\prime}
$$

one obtains a pair (G, X) as described in the beginning；in particular，one has $G=G^{\prime}$ if K_{0}^{\prime} reduces to the identity group $\{1\}$ ．We keep these notations throughout the paper．

When $G^{\prime}=\mathcal{G}(\mathbf{R})^{o}$ ，the common dimension r of the maximal \mathbf{R}－split tori in \mathcal{G} is called the \mathbf{R}－rank of G^{\prime} and written as $r=\mathbf{R}$－rank G^{\prime} ．It is well known that，if $\boldsymbol{g}^{\prime}=\boldsymbol{k}^{\prime}+\boldsymbol{p}^{\prime}$ is a Cartan decomposition of $\boldsymbol{g}^{\prime}=$ Lie G^{\prime} ，then
r coincides with the maximal dimension of the (abelian) subalgebras of \boldsymbol{g}^{\prime} contained in \boldsymbol{p}^{\prime}. Thus one has \mathbf{R}-rank $G^{\prime}=\mathbf{R}$-rank G.

When the algebraic group \mathcal{G} is defined over \mathbf{Q}, G^{\prime} is said to have a \mathbf{Q} structure and the \mathbf{Q}-rank of G^{\prime} (with this \mathbf{Q}-structure) is the common dimension r_{0} of the maximal \mathbf{Q}-split tori in $\mathcal{G} . G^{\prime}$ is called \mathbf{Q}-anisotropic when $r_{0}=0$.
2. A subgroup Γ of G^{\prime} is called a lattice in G^{\prime} if Γ is discrete and the covolume $\operatorname{vol}\left(\Gamma \backslash G^{\prime}\right)$ (with respect to the Haar measure of G^{\prime}) is finite. A lattice Γ is called uniform if, in particular, the quotient space $\Gamma \backslash G^{\prime}$ is compact.

Two subgroups Γ and Γ^{\prime} of G^{\prime} are said to be commensurable if the indices $\left[\Gamma: \Gamma \cap \Gamma^{\prime}\right]$ and $\left[\Gamma^{\prime}: \Gamma \cap \Gamma^{\prime}\right]$ are both finite, and one then writes $\Gamma \sim \Gamma^{\prime}$. As is easily seen, this is an equivalence relation.

A lattice Γ in G is said to be reducible if there exists a non-trivial direct decomposition $G=G_{1} \times G_{2}$ such that $\Gamma \sim\left(\Gamma \cap G_{1}\right) \times\left(\Gamma \cap G_{2}\right)$; otherwise, Γ is called irreducible. Every lattice in G is commensurable to the direct product of irreducible ones in the direct factors of G.

When $G^{\prime}=\mathcal{G}(\mathbf{R})^{o}$ is given a Q -structure, a subgroup Γ of G^{\prime} commensurable with $\mathcal{G}(\mathbf{Z})$ is called arithmetic; the projection of an arithmetic subgroup of G^{\prime} in $G=G^{\prime} / K_{0}^{\prime}$ is called arithmetic in a wider sense. It is clear that arithmetic subgroups (in a wider sense) are discrete.

The following theorem is fundamental.
Theorem 1 (Borel-Harish-Chandra [BHC 62], Mostow-Tamagawa [MT 62]) If Γ is an arithmetic subgroup of G in a wider sense, then Γ is a lattice in G. Moreover, Γ is uniform (i.e., cocompact in G) if and only if G^{\prime} is \mathbf{Q} anisotropic (i.e., Q-rank $G^{\prime}=0$).

Note that, when Γ in G is arithmetic only in a wider sense, the Q-rank of G^{\prime} being $=0, \Gamma$ is uniform. In the early 1960 s it was conjectured by Selberg and others that the converse of Theorem 1 would also be true, if the \mathbf{R}-rank of G is high. Actually, we now have

Theorem 2 (Margulis, 1973, [Ma 91]) Suppose that the \mathbf{R}-rank of G is ≥ 2. Then any irreducible lattice Γ in G is arithemetic in a wider sense (for a certain choice of G^{\prime} with a \mathbf{Q}-structure).
3. Thanks to the above result of Margulis, in order to study the arithmeticity of a lattice Γ, we may restrict ourselves to the case R -rank $G=1$, which
naturally implies that G is \mathbf{R}-simple. According to the classification of \mathbf{R} simple Lie groups (due to E. Cartan), we have only the following possibilities for (G, X) :

$$
\begin{gathered}
G=P U(D ; n, 1)^{o}=U(D ; n, 1)^{o} /(\text { center }), \quad n \geq 2,(n=2 \text { for } D=0) \\
X=\mathrm{H}_{D}^{n} \quad(\text { the hyperbolic } n \text {-space over } D)
\end{gathered}
$$

D denoting a division composition algebra over \mathbf{R}, i.e.,

$$
D=\mathbf{R}, \mathbf{C}, \mathbf{H} \text { (Hamilton's quaternions), } \mathbf{O} \text { (Cayley's octonions), }
$$

and $U(D ; n, 1)$ denoting the unitary group of the standard D-hermitian form of signature ($n, 1$). In the case $D=\mathbf{O}$, which is non-associative, the projective unitary group is defined to be the automorphism group of the (split) exceptional Jordan algebra $\operatorname{Her}_{3}(\mathbf{O} ; 2,1)$; hence G is of type $\mathrm{F}_{4,1}$.

For $D=\mathbf{R}$, one has $G=S O(n, 1)^{o}$ (Lorentz group) and $X=\mathrm{H}_{\mathbf{R}}^{n}$ is the "Lobachevsky space", i.e., the Riemannian n-space of constant curvature $\kappa=-1$, which can be realized by the hyperbolic hypersurface in \mathbf{R}^{n+1} (with the Lorentz metric):

$$
\left\{\left(x_{i}\right) \in \mathbf{R}^{n+1} \mid \sum_{i=1}^{n} x_{i}^{2}-x_{n+1}^{2}=-1, x_{n+1}>0\right\}
$$

In particular, $\mathrm{H}_{\mathbf{R}}^{2}\left(=\mathrm{H}_{\mathbf{C}}^{1}\right)$ can be identified with the upper half-plane in \mathbf{C} and the lattices in $G=S O(2,1)^{\circ}(\cong S L(2, \mathbf{R}) /\{ \pm 1\})$ are so-called Fuchsian groups. In this case, it is classical that there are continuous families of nonarithmetic lattices.

For $X=H_{\mathbf{R}}^{n}, n \geq 3$, non-arithmetic lattices, especially reflection groups, have been studied intensively by E. B. Vinberg and his school since 1965 (see e.g., [V 85], [V 90]). More recently, it was shown by Gromov and PiatetskiShapiro [GPS 88] that for any $n \geq 2$ one can construct infinitely many non-arithmetic (uniform) lattices as the fundamental group of the "hybrid" of two quotient spaces $\Gamma_{1} \backslash X$ and $\Gamma_{2} \backslash X$ for non-commensurable arithmetic subgroups Γ_{1} and Γ_{2} of G.

On the other hand, for the case $D=\mathbf{H}$ and \mathbf{O}, Corlette [C 92] and Gromov and Schoen [GS 92] have shown that there exist no non-arithmetic lattices in G by a differential geometric method (harmonic maps), extending the idea of Margulis.
4. In the rest of the paper, we concentrate to the case $D=\mathbf{C}$, i.e., the case where $G=P U(n, 1)$ and $X=\mathrm{H}_{\mathbf{C}}^{n}$, studied mainly by G. D. Mostow since the early 1970s.

The complex hyperbolic space $\mathrm{H}_{\mathbf{C}}^{n}$ can be realized by the unit ball in \mathbf{C}^{n} as follows. The unitary group $U(n, 1)$ acts on C^{n+1} and hence on the projective space $\mathrm{P}^{\boldsymbol{n}}(\mathbf{C})=\left(\mathbf{C}^{n+1}-\{0\}\right) / \mathbf{C}^{\times}$in a natural manner. The orbit of $e_{n+1}=$ $(0, \ldots, 0,1)\left(\bmod \mathbf{C}^{\times}\right)$in $\mathrm{P}^{n}(\mathbf{C})$ is

$$
\left\{z=\left.\left(z_{i}\right) \in \mathbf{C}^{n+1}\left|\sum_{i=1}^{n}\right| z_{i}\right|^{2}-\left|z_{n+1}\right|^{2}<0\right\} / \mathbf{C}^{\times}
$$

which, in the inhomogeneous coordinates $z_{i}^{\prime}=z_{i} / z_{n+1}(1 \leq i \leq n)$, is expressed by the unit ball

$$
\left\{z^{\prime}=\left.\left(z_{i}^{\prime}\right) \in \mathbf{C}^{n}\left|\sum_{i=1}^{n}\right| z_{i}^{\prime}\right|^{2}<1\right\}
$$

The stabilizer of e_{n+1} in $U(n, 1)$ is $U(n) \times U(1)$. Hence $\mathrm{H}_{\mathrm{C}}^{n}=U(n, 1) / U(n) \times U(1)$ is identified with the unit ball in \mathbf{C}^{n}, on which $G=P U(n, 1)$ acts as linear fractional transformations.

We denote by $<>$ the standard hermitian inner product of signature $(n, 1)$ on \mathbf{C}^{n+1}. For $a \in \mathbf{C}^{n+1},\langle a, a\rangle>0$ and $\xi \in \mathbf{C},|\xi|=1$, we define (after Mostow) a "complex reflection" on \mathbf{C}^{n+1} by

$$
R_{a, \xi}^{\prime}: \quad z \mapsto z+(\xi-1) \frac{\langle a, z\rangle}{\langle a, a\rangle} a \quad\left(z \in \mathbf{C}^{n+1}\right)
$$

Then, for $\xi, \eta \in \mathbf{C},|\xi|=|\eta|=1$, one has

$$
R_{a, \xi}^{\prime} \circ R_{a, \eta}^{\prime}=R_{a, \xi \eta}^{\prime}
$$

in particular, if ξ is a root of unity: $\xi^{m}=1$, then one has $\left(R_{a, \xi}^{\prime}\right)^{m}=1$. We denote the image of $R_{a, \xi}^{\prime}$ in $G=P U(n, 1)$ by $R_{a, \xi}$.

In [M 80] Mostow studied the groups

$$
\Gamma=<R_{e_{i}, \zeta_{p}}(i=1,2,3)>
$$

generated by 3 reflections, where $\zeta_{p}=e^{2 \pi i / p}$ with $p=3$ or 4 or 5 and

$$
\begin{aligned}
e_{i} \in \mathbf{C}^{n+1},<e_{i}, e_{i}> & \left.\left.\left.=1,<e_{1}, e_{2}\right\rangle=<e_{2}, e_{3}\right\rangle=<e_{3}, e_{1}\right\rangle=-\alpha \varphi \\
\alpha & =\left(2 \sin \frac{\pi}{p}\right)^{-1}, \quad \varphi=e^{\pi i t / 3}
\end{aligned}
$$

with $t \in \mathbf{R}$. Mostow gave a criterion for Γ to be a lattice in G, and found 17 cases, showing that 7 among them are non-arithmetic (i.e., not arithmetic in a wider sense). The non-arithmetic cases are given by

$$
[p, t]=[3,1 / 12],[3,1 / 30],[3,5 / 42],[4,1 / 12],[4,3 / 20]
$$

$$
[5,1 / 5],[5,11 / 30] .
$$

(It has turned out that actually the Γ corresponding to $[5,11 / 30]$ is arithmetic.)
5. Mostow then studied, in collaboration with Deligne, the analytic construction of lattices in $P U(n, 1)$. They consider a system of differential equations of Fuchsian type in n variables, studied for $n=2$ by Picard and in general by Lauricella (1893). The solution space of such equations is $\cong \mathbf{C}^{n+1}$, spanned by the period integrals generalizing the classical Euler integral:

$$
F_{g, h}\left(x_{1}, \ldots, x_{n}\right)=\int_{g}^{h} \prod_{i=1}^{n}\left(u-x_{i}\right)^{-\mu_{i}} \cdot u^{-\mu_{n+1}}(u-1)^{-\mu_{n+2}} d u
$$

where

$$
\mu=\left(\mu_{1}, \ldots, \mu_{n+3}\right) \in \mathbf{C}^{n+3}, \quad \mu_{n+3}=2-\sum_{i=1}^{n+2} \mu_{i}
$$

is the parameter, which we will restrict to the so-called "disc ($\mathrm{n}+3$)-tuple" satisfying the condition $0<\mu_{i}<1(1 \leq i \leq n+3)$, and

$$
g, h \in M=\left\{x=\left(x_{1}, \ldots, x_{n}, 0,1, \infty\right) \mid x_{i} \in \mathbf{C}-\{0,1\}, x_{i} \neq x_{j} \text { for } i \neq j\right\}
$$

Let \hat{M} be the universal covering space of M. Then there exists a natural map from \hat{M} to $\mathrm{P}^{n}(\mathbf{C})$, the space of non-zero solutions modulo \mathbf{C}^{\times}, which is equivariant with respect to the actions of the fundamental group on \hat{M} and the projective monodromy group, denoted by Γ_{μ}, on $\mathrm{P}^{n}(\mathbf{C})$. It is also shown that there exists a hermitian inner product of signature $(n, 1)$ on the solution space such that Γ_{μ} is in $P U(n, 1)$.
In [DM 86] it was shown that the following condition (INT) is sufficient for Γ_{μ} to be a lattice in $G=P U(n, 1)$.
(INT) If $\mu_{i}+\mu_{j}<1$ with $i \neq j$, then one has $\left(1-\mu_{i}-\mu_{j}\right)^{-1} \in \mathbf{Z}$.
Actually, for $n=2$, this condition is equivalent to the one given by Picard in 1885, so that the 27 lattices obtained in this manner are called "Picard lattices". (In counting the lattices Γ_{μ} we disregard the order of μ_{i} 's because it is not essential.) There are 9 more μ 's satisfying the condition (INT) for $3 \leq n \leq 5$, the longest one being $\frac{1}{4}(1,1,1,1,1,1,1,1)$.
In [M 86] Mostow showed that the following weaker condition (EINT) is sufficient to yield the same conclusion.
(Σ INTT) One can choose a subset S_{1} of $\{1, \ldots, n+3\}$ such that $\mu_{i}=\mu_{j}$ for $i, j \in S_{1}$ and that, if $\mu_{i}+\mu_{j}<1$ with $i \neq j$, one has $\left(1-\mu_{i}-\mu_{j}\right)^{-1} \in \frac{1}{2} \mathbf{Z}$ when $i, j \in S_{1}$ and $\in \mathbf{Z}$ otherwise.

In particular, taking S_{1} with $\left|S_{1}\right|=3$, one obtains Γ_{μ} commensurable to a lattice generated by 3 reflections, including all lattices constructed in [M 80].

In [M88] Mostow showed further that the converse of the above result is also true in the following sense. First, all Γ_{μ} which is discrete is a lattice in $P U(n, 1)$ (Prop. 5.3) and if $n>3$ the condition ($\Sigma I N T$) is necessarily satisfied (Th. 4.13). For $n=2,3$ there are 10 exceptional lattices Γ_{μ} with μ not satisfying (Σ INT). The list of all 94μ 's satisfying the condition (Σ INT) is given in [M88], in which the longest one is $\frac{1}{6}(1,1,1,1,1,1,1,1,1,1,1,1)$ with $n=9$.
6. As for the arithmeticity of Γ_{μ}, the following criterion was first given in [DM 86] under the assumption (INT):
(A) Let d be the least common denominator of the μ_{i} 's. Then, for all $A \in \mathbf{Z}, 1<A<d-1,(A, d)=1$, one has

$$
\left.\sum_{i=1}^{n+3}<A \mu_{i}\right\rangle=1 \text { or } n+2
$$

where $\langle x\rangle=x-[x]$ for $x \in \mathbf{R},[x]$ being the symbol of Gauss.
It was finally established in [M 88] (Prop. 5.4) that, without any additional assumption, the condition (A) is necessary and sufficient for Γ_{μ} to be an arithmetic lattice in $P U(n, 1)$.

Summing up the above results, we obtain the following

Theorem 3 (Mostow, 1988) The projective monodromy group Γ_{μ} is a lattice in $P U(n, 1)$ if and only if the condition (SINT) is satisfied, except for the 10 exceptional lattices Γ_{μ} with $n=2,3$ not satisfying the condition ($\Sigma I N T$). The group Γ_{μ} is an arithmetic lattice (in a wider sense) if and only if the condition (A) is satisfied.

In the list of the μ 's satisfying ($\Sigma \mathrm{INT}$) in [M 88], those giving non-arithmetic lattices are marked as NA. (However, this list still seems containing some misprints and erroneous markings.) We give below a (corrected) list of nonarithmetic lattices Γ_{μ} in $P U(n, 1)$, in which the numbering of the μ 's is the one given in [M 88].

List of non-arithmetic lattices Γ_{μ} in $P U(n, 1)$

$n=3$			
$39 P$	$\frac{1}{12}(3,3,3,3,5,7)$		
$n=2$			
$69 P$	$\frac{1}{12}(3,3,3,7,8)$	NA1	
$71 P$	$\frac{1}{12}(3,3,5,6,7)$	(not uniform)	NA2
$73 P$	$\frac{1}{12}(4,4,4,5,7)$	$[6,1 / 6]$	NA3
$74 P$	$\frac{1}{12}(4,4,5,5,6)$		NA1
$78 P$	$\frac{1}{15}(4,6,6,6,8)$	$[10,4 / 15]$	NA4
80	$\frac{1}{18}(2,7,7,7,13)$	$[9,11 / 18]$	NA5
$D 7$	$\frac{1}{18}(4,5,5,11,11)$		NA5
84	$\frac{1}{18}(7,7,7,7,8)$		NA5
$85 P$	$\frac{1}{20}(5,5,5,11,14)$	$[4,3 / 20]$	NA6
86	$\frac{1}{20}(6,6,6,9,13)$	$[5,1 / 5]$	NA7
87	$\frac{1}{20}(6,6,9,9,10)$		NA6
$D 8$	$\frac{1}{21}(4,8,10,10,10)$		NA9
88	$\frac{1}{24}(4,4,4,17,19)$	$[3,1 / 12]$	NA8
$D 9$	$\frac{1}{24}(5,10,11,11,11)$		NA8
$89 P$	$\frac{1}{24}(7,9,9,9,14)$	$[8,7 / 24]$	NA8
91	$\frac{1}{30}(5,5,5,22,23)$	$[3,1 / 30]$	NA4
$D 10$	$\frac{1}{30}(7,13,13,13,14)$		NA4
93	$\frac{1}{42}(7,7,7,29,34)$	$[3,5 / 42]$	NA9
94	$\frac{1}{42}(13,15,15,15,26)$	$[7,13 / 42]$	NA9

Remark 1. "P" indicates a Picard lattice, i.e. a lattice satisfying (INT). $" D$ " indicates an exceptional lattice, i.e. a lattice not satisfying ($\Sigma I N T$). For $n=2$, there are 54 lattices (41-94) satisfying ($\Sigma I N T$) (including 27 Picard lattices) and 9 exceptional lattices ($D 2-D 10$).

Remark 2. Γ_{μ} with $\mu=\left(\mu_{1}, \ldots, \mu_{5}\right), S_{1}=\left\{\mu_{1}, \mu_{2}, \mu_{3}\right\}, \mu_{4} \leq \mu_{5}$ is commensurable with a reflection group with $[p, t]$, where $p=2\left(1-2 \mu_{1}\right)^{-1}, t=$ $\mu_{5}-\mu_{4}$.
7. We say that two subgoups Γ and Γ^{\prime} of G are conjugate commensurable if Γ is commensurable with a conjugate of Γ^{\prime}. This kind of relations between the Γ_{μ} 's was studied in [M 88], [DM 93]. Some of their results are listed
below, where we write $\mu \approx \mu^{\prime}$ if Γ_{μ} is conjugate commensurable with $\Gamma_{\mu^{\prime}}$. It turns out that the 19 non-arithmetic lattices Γ_{μ} for $n=2$ are divided into 9 conjugate commensurability classes (NA1-NA9).

It is still an open problem to decide whether or not there exist nonarithmetic lattices not conjugate commensurable to any of Γ_{μ}, especially such lattices for $n \geq 4$. It would also be interesting to study the arithmetic properties of the non-arithmetic lattices Γ_{μ}, e.g., the corresponding automorphic representations.
(A) ([DM 93], §10) For $a, b>0,1 / 2<a+b<1$, one has
$(a, a, b, b, 2-2 a-2 b) \approx\left(1-b, 1-a, a+b-\frac{1}{2}, a+b-\frac{1}{2}, 1-a-b\right)$.
In particular, for $a=b$,

$$
\begin{gathered}
(a, a, a, a, 2-4 a) \approx\left(1-a, 1-a, 2 a-\frac{1}{2}, 2 a-\frac{1}{2}, 1-2 a\right) \\
\approx\left(\frac{3}{2}-2 a, a, a, a, \frac{1}{2}-a\right)
\end{gathered}
$$

Example.

$$
\begin{gathered}
\frac{1}{18}(7,7,7,7,8) \approx \frac{1}{18}(11,11,5,5,4) \approx \frac{1}{18}(13,7,7,7,2) \\
(\text { i.e., } 84 \approx D 7 \approx 80)
\end{gathered}
$$

For $a+b=3 / 4$,

$$
\left(a, a, b, b, \frac{1}{2}\right) \approx\left(1-b, 1-a, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)
$$

Examples.

$$
\begin{aligned}
\frac{1}{12}(4,4,5,5,6) & \approx \frac{1}{12}(7,8,3,3,3) \quad(i . e ., 74 \approx 69) \\
\frac{1}{20}(6,6,9,9,10) & \approx \frac{1}{20}(11,14,5,5,5) \quad(i . e ., 87 \approx 85)
\end{aligned}
$$

(B) For π, ρ, σ with $1 / \pi+1 / \rho+1 / \sigma=1 / 2$, set

$$
\mu(\pi, \rho, \sigma)=\left(\frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}+\frac{1}{\pi}-\frac{1}{\rho}, \frac{1}{2}+\frac{1}{\pi}-\frac{1}{\sigma}\right)
$$

Then ([M 88], Th. 5.6) for $1 / \rho+1 / \sigma=1 / 6$, one has

$$
\mu(3, \rho, \sigma) \approx \mu(\rho, 3, \sigma) \approx \mu(\sigma, 3, \rho)
$$

$$
\begin{array}{cc}
\text { Examples. } & \\
\rho=10, \sigma=15: & \frac{1}{30}(5,5,5,22,23) \approx \frac{1}{15}(6,6,6,4,8) \approx \frac{1}{30}(13,13,13,7,14) \\
\rho=8, \sigma=24: & \frac{1}{24}(4,4,4,17,19) \approx \frac{1}{24}(9,9,9,7,14) \approx \frac{1}{24}(11,11,11,5,10) \\
(\text { i.e., } 88 \approx 89 \approx D 8), \\
\rho=7, \sigma=42: & \frac{1}{42}(7,7,7,29,34) \approx \frac{1}{42}(15,15,15,13,26) \approx \frac{1}{21}(10,10,10,4,8) \\
& (\text { i.e., } 93 \approx 94 \approx D 8) .
\end{array}
$$

References

[BHC 62] A. Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. 75 (1962), 485-535.
[MT 62] G. D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Ann. of Math. 76 (1962), 446-463.
[M 80] G. D. Mostow, On a remarkable class of polyhedra in complex hyperbolic spaces, Pacif. J. of Math. 86 (1980), 171-276.
[V 85] E. B. Vinberg, Hyperbolic reflection groups, Usp. Math. Nauk 40 (1985), $29-66 ;$ = Russian Math. Surveys 40 (1985), 31-75.
[DM 86] P. Deligne and G. D. Mostow, Monodromy of hypergeometric functions and non-lattice integral monodromy groups, Publ. Math. IHES 63 (1986), 5-90.
[M 86] G. D. Mostow, Generalized Picard lattices arising from half-integral conditions, ibid. 91-106.
[M 88] G. D. Mostow, On discontinuous action of monodromy groups on the complex n-balls, J. of AMS 1 (1988), 555-586.
[GPS 88] M. Gromov and I. Piatetski-Shapiro, Non arithmetic groups in Lobachevsky spaces, Publ. Math. IHES 66 (1988), 93-103.
[V 90] E. B. Vinberg, Encyclopedia of Math. Sci., Geometry II, Springer-Verlag. 1990.
[Ma 91] G. Margulis, Discrete Subgroups of Semisimple Lie Groups, SpringerVerlag, 1991.
[C 92] K. Corlette, Archimedian superrigidity and hyperbolic geometry, Ann. of Math. 135 (1992), 165-182.
[GS 92] M. Gromov and R. Schoen, Harmonic maps into singular spaces and p adic superrigidity for lattices in groups of rank one, Publ. Math. IHES 76 (1992), 165-246.
[DM 93] P. Deligne and G. D. Mostow, Commensurabilities among lattices in $P U(1, n)$, Ann. of Math. St. 132, Princeton Univ. Press, 1993.
[S 04] I. Satake, Mostow (in Japanese), Sugaku Seminar 2/2004, 66-73.

