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On non-arithmetic discontinuous groups

佐武一郎 (Ichiro Satake)

In this talk, we will give a survey on arithmetic and non-arithmetic lattices
in a semisimple algebraic group. After giving some basic results on the
subject, we 11 forcus our attention to more recent results, mainly due to
Mostow and Deligne, on non-arithmetic lattices in the (projective) unitary
group PU$(n, 1)$ $(n\geq 2)$ . (For more details on these topics as well as the
closely related rigidities of lattices, see $[\mathrm{S}04])$ .
1. To begin with, we first fix our settings, giving basic definitions and
notations. Let $X$ denote a symmetric Riemannian space of non-compact
type (with no flat or compact factors) and let $G=I(X)^{o}$ be the identity
connected component of the isometry group of $X$ . Then, as is well known,
$G$ is a connected semisimple Lie group of non-compact type, which is of
adjoint type, i.e., with the center reduced to the identity 1. This implies
that, denoting by $g$ the Lie algebra of $G$ , one has $G=$ $($Aut $g)^{o}(^{o}$ denoting
always the identity connected component). The group $G$ acts transitively
on $X$ and for any $x_{0}\in X$ the stabilizer $K=G_{x_{0}}$ is a maximal compact
subgroup; thus one has $X\cong G/K$ . In this manner, $G$ and $X$ determine one
another uniquely (up to isomorphisms).

More generally, let $G’$ denote a connected semisimple linear Lie group,
which becomes automatically “real algebraic” in the sense that there exists
a linear algebraic group $\mathcal{G}$ defined over $\mathrm{R}$ (uniquely determined up to R-
isomorphisms) such that $G’=\mathcal{G}(\mathrm{R})^{o}$ . As typical examples, one has $G’=$

$SL(n, \mathrm{R})$ , SO$(p, q)^{o}$ , etc. Let $K’$ be a maximal compact subgroup of $G’$ , and
$K_{0}’$ the maximal compact normal subgroup of $G’$ . Then one has

$G’\supset K’)$ $K_{0}’\supset$ (center of $G’$).

Therefore, setting

$G=G’/K_{0}’$ , $K=K’/K_{0}’$ , $X=G/K=G’/K’$ ,

one obtains a pair $(G, \mathrm{X})$ as described in the beginning; in particular, one
has $G=G’$ if $K_{0}’$ reduces to the identity group {1}. We keep these notations
throughout the paper.

When $G’=\mathcal{G}(\mathrm{R})^{o}$ , the common dimension $r$ of the maximal $\mathrm{R}$-split tori
in $\mathcal{G}$ is called the $\mathrm{R}$-rank of $G’$ and written as $r=\mathrm{R}$-rank $G’$ . It is well
known that, if $g’=k’+p’$ is a Cartan decomposition of $q’=$ Lie $G’$ , then
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$r$ coincides with the maximal dimension of the (abelian) subalgebras of $g’$

contained in $p’$ . Thus one has $\mathrm{R}$-rank $G’=\mathrm{R}$-rank $G$ .
When the algebraic group $\mathcal{G}$ is defined over $\mathrm{Q}$ , $G’$ is said to have a Q-

structure and the $\mathrm{Q}$-rank of $G’$ (with this $\mathrm{Q}$-structure) is the common di-
mension $r_{0}$ of the maximal $\mathrm{Q}$-split tori in (;. $G’$ is called $\mathrm{Q}$-anisotropic when
$r_{0}=0.$

2. A subgroup $\Gamma$ of $G’$ is called a lattice in $G’$ if $\Gamma$ is discrete and the covolume
$\mathrm{v}\mathrm{o}\mathrm{l}(\Gamma\backslash G’)$ (with respect to the Haar measure of $G’$ ) is finite. A lattice $\Gamma$ is
called uniform if, in particular, the quotient space $\Gamma\backslash G’$ is compact.

Two subgroups $\Gamma$ and $\Gamma’$ of $G’$ are said to be commensurable if the indices
$[\Gamma : \Gamma\cap\Gamma’]$ and $[\Gamma’ : \Gamma\cap\Gamma’]$ are both finite, and one then writes $\Gamma\sim\Gamma’$ . As
is easily seen, this is an equivalence relation.

A lattice $\Gamma$ in $G$ is said to be reducible if there exists a non-trivial direct
decomposition $G=G_{1}\cross G_{2}$ such that $\Gamma\sim(\Gamma\cap G_{1})\cross(\Gamma\cap G_{2})$ ; otherwise,
$\Gamma$ is called irreducible. Every lattice in $G$ is commensurable to the direct
product of irreducible ones in the direct factors of $G$ .

When $G’=\mathcal{G}(\mathrm{R})^{o}$ is given a $\mathrm{Q}$-structure, a subgroup $\Gamma$ of $G’$ commensu-
rable with $\mathcal{G}(\mathrm{Z})$ is called arithmetic; the projection of an arithmetic subgroup
of $G’$ in $G=G’/K_{0}’$ is called arithmetic in $a$ ider sense. It is clear that
arithmetic subgroups (in a wider sense) are discrete.

The following theorem is fundamental.

Theorem 1 (Borel-Harish-Chandra [BIEIC 62], Mostow-Tamagawa [MT 62])

If $\Gamma$ is an arithmetic subgroup of $G$ in $a$ ider sense, then $\Gamma$ is a lattice in
G. Moreover, $\Gamma$ is uniform ( $i.e.f$ cocompact in $G$ ) if and only if $G’$ is Q-
anisotropic ( $i.e.$ , $\mathrm{Q}$ -rank $G’=0$).

Note that, when $\Gamma$ in $G$ is arithmetic only in a wider sense, the $\mathrm{Q}$-rank of
$G’$ being $=0$ , $\Gamma$ is uniform. In the early $1960\mathrm{s}$ it was conjectured by Selberg
and others that the converse of Theorem 1 would also be true, if the R-rank
of $G$ is high. Actually, we now have

Theorem 2 (Margulis, 1973, [Ma 91]) Suppose that the $\mathrm{R}$-rank of $G$ $is\geq 2.$

Then any irreducible lattice $\Gamma$ in $G$ is arithemetic in $a$ ider sense (for $a$

certain choice of $G’$ with a Q-structure).

3. Thanks to the above result of Margulis, in order to study the arithmeticity
of a lattice $\Gamma$ , we may restrict ourselves to the case $\mathrm{R}$-rank $G=1,$ which
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naturally implies that $G$ is $\mathrm{R}$-simple. According to the classification of R-
simple Lie groups (due to E. Cartan), we have only the following possibilities
for $(G, X)$ :

$G=PU(D;n, 1)^{o}=U(D;n, 1)^{o}/(\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{e}\mathrm{r})$ , $n\geq 2$ , ($n=2$ for $D=\mathrm{O}$ ),

$X=$ H7 (the hyperbolic $n$-space over $D$),

$D$ denoting a division composition algebra over $\mathrm{R}$ , i.e.,

$D=$ R, $\mathrm{C}$ , $\mathrm{H}$ (Hamilton’s quaternions), $\mathrm{O}$ (Cayley’s octonions),

and $U(D;n, 1)$ denoting the unitary group of the standard $D$-hermitian form
of signature $(n, 1)$ . In the case $D=$ O, which is non-associative, the projec-
tive unitary group is defined to be the automorphism group of the (split)
exceptional Jordan algebra $\mathrm{H}\mathrm{e}\mathrm{r}_{3}(\mathrm{O};2,1)$ ; hence $G$ is of type F44.

For $D=$ R, one has $G=SO(n, 1)^{o}$ (Lorentz group) and $X=\mathrm{H}_{\mathrm{R}}^{n}$ is the
“Lobachevsky space, i.e., the Riemannian $n$-space of constant curvature
$\kappa=-1$ , which can be realized by the hyperbolic hypersurface in $\mathrm{R}^{n+1}$ (with
the Lorentz metric) :

$\{(x_{i})\in \mathrm{R}^{n+1}|.\cdot\sum_{=1}^{n}x_{i}^{2}-x_{n+1}^{2} =-1, x_{n+1}>0\}$.

In particular, $\mathrm{H}_{\mathrm{R}}^{2}(=\mathrm{H}_{\mathrm{C}}^{1})$ can be identified with the upper half-plane in $\mathrm{C}$

and the lattices in $G=SO(2,1)^{o}(\cong SL(2,\mathrm{R})/\{\pm 1\})$ are s0-called Fuchsian
groups. In this case, it is classical that there are continuous families of non-
arithmetic lattices.

For $X=\mathrm{H}_{\mathrm{R}}^{n}$ , $n\geq 3,$ non-arithmetic lattices, especially reflection groups,
have been studied intensively by E. B. Vinberg and his school since 1965 (see
e.g., $[\mathrm{V}85]$ , $[\mathrm{V}90])$ . More recently, it was shown by Gromov and Piatetski-
Shapiro [GPS 88] that for any $n\geq 2$ one can construct infinitely many
non-arithmetic (uniform) lattices as the fundamental group of the “hybrid”
of two quotient spaces $\Gamma_{1}\backslash X$ and $\Gamma_{2}\backslash X$ for non-commensurable arithmetic
subgroups $\Gamma_{1}$ and $\Gamma_{2}$ of $G$ .

On the other hand, for the case $D=\mathrm{H}$ and $\mathrm{O}$ , Corlette $[\mathrm{C}92]$ and Gromov
and Schoen [GS 92] have shown that there exist no non-arithmetic lattices in
$G$ by a differential geometric method (harmonic maps), extending the idea
of Margulis.

4. In the rest of the paper, we concentrate to the case $D=$ C, i.e., the
case where $G=PU(n, 1)$ and $X=\mathrm{H}_{\mathrm{C}}^{n}$ , studied mainly by G. D. Mostow
since the early $1970\mathrm{s}$ .
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The complex hyperbolic space $\mathrm{H}_{\mathrm{C}}^{n}$ can be realized by the unit ball in $\mathrm{C}^{n}$ as
follows. The unitary group $U(n, 1)$ acts on $\mathrm{C}^{n+1}$ and hence on the projective
space $\mathrm{P}^{n}(\mathrm{C})=(\mathrm{C}^{n+1}-\{0\})/\mathrm{C}^{\mathrm{x}}$ in a natural manner. The orbit of $e_{n+1}=$

(0, ..., 0, 1) (mod $\mathrm{C}^{\mathrm{x}}$ ) in $\mathrm{P}^{n}(\mathrm{C})$ is

$\{z=(z_{})\in \mathrm{C}^{n+1}|\sum_{\dot{\iota}=1}^{n}|\mathrm{Z}\mathrm{g}|^{2}-|z_{n+1}|^{2}<0\}/\mathrm{C}^{\mathrm{x}}$ ,

which, in the inhomogeneous coordinates $z_{\dot{l}}’=z_{i}/z_{n+1}(1\leq i\leq n)$ , is ex-
pressed by the unit ball

$n$

$\{z’=(z_{\dot{1}}’)\in \mathrm{C}^{n}|\mathrm{p} |z;|^{2}<1\}$ .
$j=1$

The stabilizer of $e_{n+1}$ in $U(n, 1)$ is $U(n)\mathrm{x}U(1)$ . Hence $\mathrm{H}_{\mathrm{C}}^{n}=U(n, 1)/U(n)\mathrm{x}U(1)$

is identified with the unit ball in Cn, on which $G=PU(n, 1)$ acts as linear
fractional transformations.

We denote by $<>$ the standard hermitian inner product of signature $(n,1)$

on $\mathrm{C}^{n+1}$ . For $a\in \mathrm{C}^{n+1}$ , $<a$ , $a>>0$ and $4\in \mathrm{C}$ , $|4|=1,$ we define (after
Mostow) a “complex reflection” on $\mathrm{C}^{n+1}$ by

$R_{a,\zeta}’$ : $z \vdash*z+(\xi-1)\frac{<a,z>}{<a,a>}a$ $(z\in \mathrm{C}^{n+1})$ .

Then, for $\xi,$ $\eta\in \mathrm{C}$ , $|4|=|7/|=1,$ one has

$H_{a}$ ,C $\mathrm{o}R_{a,\eta}’=R_{a,\xi\eta}’$ ;

in particular, if 4 is a root of unity: $\xi^{m}=1,$ then one has $(R_{a\xi}’)^{m}=1.$ We
denote the image of $R_{a}’$ ,4 in $G=PU(n, 1)$ by $R_{a,\xi}$ .

In $[\mathrm{M}80]$ Mostow studied the groups

$\Gamma=<R_{e.,\zeta_{\mathrm{p}}}$ $(i= 1, 2, 3)>$

generated by 3 reflections, where $\zeta_{\mathrm{p}}=e^{2\pi}:/\mathrm{r}$ with $p=3$ or 4 or 5 and

$e_{\dot{l}}\in \mathrm{C}^{n+1},$ $<e:$ , $e_{i}>=1,$ $<e_{1}$ , $e_{2}>=<e_{2}$ , $e_{3}>=<e_{3},e_{1}>=$ -$0(4$ ,

$\alpha=(2\sin\frac{\pi}{p})^{-1}$ , $\varphi=e^{\pi}$
:t/3

with $t$ $\in$ R. Mostow gave a criterion for $\Gamma$ to be a lattice in $G$ , and found 17
cases, showing that 7 among them are non-arithmetic (i.e., not arithmetic in
a wider sense). The non-arithmetic cases are given by

$[\mathrm{p}, t]=[3$ , 1/12$]$ , [3, 1/30], [3, 5/42], [4, 1/12], [4, 3/20],
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[5, 1/5], [5, 11/30].

(It has turned out that actually the $\Gamma$ corresponding to [5, 11/30] is with
metic.)

5. Mostow then studied, in collaboration with Deligne, the analytic construc-
tion of lattices in PU$(n, 1)$ . They consider a system of differential equations
of Puchsian type in $n$ variables, studied for $n=2$ by Picard and in general by
Lauricella (1893). The solution space of such equations is $\cong \mathrm{C}^{n+1}$ , spanned
by the period integrals generalizing the classical Euler integral:

$F_{g,h}(x_{1}, \ldots, x_{n})=\int_{g}^{h}\prod_{\dot{l}=1}^{n}(u-x_{i})^{-\mu:}$ . $u^{-\mu_{n+1}}(u-1)^{-\mathrm{A}+\mathit{2}}$ du,

where
$n+2$

$\mu=(\mu_{1}, \ldots, \mu_{n+3})\in \mathrm{C}^{n+3}$ , $\mu_{n+3}=2-\mathrm{E}$ $\mu_{i}$

$:=1$

is the parameter, which we will restrict to the s0-called “disc $(\mathrm{n}+3)$-tuple”
satisfying the condition $0<\mu_{*}$. $<1(1\leq i\leq n+3)$ , and

$g$ , $h\in M=$ {$x=(x_{1}$ , ..., $x_{n}$ , 0, 1, $\infty$) $|x_{i}\in \mathrm{C}-\{0,1\}$ , $x_{i}\neq x_{j}$ for $i\neq j$ }.

Let $\hat{M}$ be the universal covering space of $M$. Then there exists a natural
map from $\hat{M}$ to $\mathrm{P}^{n}(\mathrm{C})$ , the space of non-zero solutions modulo $\mathrm{C}^{\mathrm{x}}$ , which is
equivariant with respect to the actions of the fundamental group on $\hat{M}$ and
the projective monodromy group, denoted by $\Gamma_{\mu}$ , on $\mathrm{P}^{n}(\mathrm{C})$ . It is also shown
that there exists a hermitian inner product of signature $(n, 1)$ on the solution
space such that $\Gamma_{\mu}$ is in PU$(n, 1)$ .

In [DM 86] it was shown that the following condition (INT) is sufficient
for $\Gamma_{\mu}$ to be a lattice in $G=PU(n, 1)$ .

(INT) If $\mu$
. $+\mu_{j}<1$ with $i\neq j,$ then one has $(1-\mu_{1}. -\mu_{j})^{-1}\in$ Z.

Actually, for $n=2,$ this condition is equivalent to the one given by Picard
in 1885, so that the 27 lattices obtained in this manner are called “Picard
lattices”. (In counting the lattices $\Gamma_{\mu}$ we disregard the order of $\mu_{/}$.’s because
it is not essential.) There are 9 more $\mu$’ssatisfying the condition (INT) for
$3\leq n\leq 5,$ the longest one being $\frac{1}{4}$ (1, 1, 1, 1, 1, 1, 1, 1).

In $[\mathrm{M}86]$ Mostow showed that the following weaker condition (SINT) is
sufficient to yield the same conclusion.

(EINT) One can choose a subset $S_{1}$ of $\{1, \ldots, n+3\}$ such that $\mu$
. $=\mu j$ for

$i,j\in S_{1}$ and that, if $\mu_{\dot{l}}+\mu_{j}<1$ with $it$ $j$, one has $(1- \mu\dot{.}-\mu j)^{-1}\in\frac{1}{2}\mathrm{Z}$

when $i,j\in S_{1}$ and $\in \mathrm{Z}$ otherwise.
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In particular, taking $S_{1}$ with $|S_{1}|=3,$ one obtains $\Gamma_{\mu}$ commensurable to a
lattice generated by 3 reflections, including all lattices constructed in $[\mathrm{M}80]$ .

In [M88] Mostow showed further that the converse of the above result is
also true in the following sense. First, all $\Gamma_{\mu}$ which is discrete is a lattice
in PU$(n, 1)$ (Prop. 5.3) and if $n>3$ the condition (SINT) is necessarily
satisfied (Th. 4.13). For $n=2,3$ there are 10 exceptional lattices $\Gamma_{\mu}$ with $\mu$

not satisfying (EINT). The list of all 94 $\mu$ ’s satisfying the condition (EINT)
is given in [M88], in which the longest one is $\frac{1}{6}(1,1,1,1,1,1,1,1,1,1,1, 1)$

with $n=9.$

6. As for the arithmeticity of $\Gamma_{\mu}$ , the following criterion was first given in
[DM 86] under the assumption (INT):

(A) Let $d$ be the least common denominator of the $\mu$.’s. Then, for all
$\mathrm{A}\in \mathrm{Z}$ , $1<A<d-1$ , $(A, d)=1,$ one has

$n+3$

$E$ $<Api$ $>=1$ or $n+2,$
$:=1$

where $<x>=x-[x]$ for $r\in \mathrm{R}$, $[x]$ being the symbol of Gauss.

It was finally established in $[\mathrm{M}88]$ (Prop. 5.4) that, without any additional
assumption, the condition (A) is necessary and sufficient for $\Gamma_{\mu}$ to be an
arithmetic lattice in PU(n, 1)

Summing up the above results, we obtain the following

Theorem 3 (Mostow, 1988) The projective monodromy group $\Gamma_{\mu}$ is a lattice
in PU(n, 1) if and only if the condition (SINT) is satisfied, except for the
10 exceptional lattices $\Gamma_{\mu}$ with $n=2,3$ not satisfying the condition (EINT).
The group $\Gamma_{\mu}$ is an arithmetic lattice (in a wider sense) if and only if the
condition (A) is satisfied.

In the list of the $\mu$’s satisfying (EINT) in $[\mathrm{M}88]$ , those giving non-arithmetic
lattices are marked as $\mathrm{N}\mathrm{A}$ . (However, this list still seems containing some
misprints and erroneous markings.) We give below a (corrected) list of non-
arithmetic lattices $\Gamma_{\mu}$ in PU$(n, 1)$ , in which the numbering of the $\mu$’s is the
one given in $[\mathrm{M}88]$ .
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List of non-arithmetic lattices $\Gamma_{\mu}$ in PU(n, 1)

$n=3$
$39P$ $\frac{1}{12}(3,3,3,3,5,7)$

$n=2$
$69P$ $\frac{1}{12}(3,3,3,7,8)$ [4, 1/12] NA1
$71P$ $\frac{1}{12}(3,3,5,6,7)$ (not uniform) NA2
$73P$ $\frac{1}{12}(4,4,4,5,7)$ [6, 1/6] NA3
$74P$ $\frac{1}{12}$ (4, 4, 5, 5, 6) NA1
$78P$ $\frac{1}{15}(4,6,6,6,8)$ [10, 4/15] NA4
80 $\frac{1}{18}$ (2, 7, 7, 7, 13) [9, 11/18] NA5
$D7$ $\frac{1}{18}(4,5,5,11,11)$ NA5
84 NA5
$85P$ $\frac{1}{20}(5,5,5,11,14)$ [4, 3/20] NA6
86 $\frac{1}{20}(6,6,6,9,13)$ [5, 1/5] NA7
87 NA6
D8 NA9
88 $\frac{1}{24}(4,4,4,17,19)$ [3, 1/12] NA8
$D9$ $\frac{1}{24}(5,10,11,11,11)$ NA8
$89P$ $\frac{1}{24}(7,9,9,9,14)$ [8, 7/24] NA8
91 $\frac{1}{30}(5,5,5,22,23)$ [3, 1/30] NA4
$D10$ $\frac{1}{30}(7,13,13,13,14)$ $\mathrm{N}\mathrm{A}4$

$93$ $\frac{1}{42}(7,7,7,29,34)$ [3, 5/42] NA9
94 $\frac{1}{42}$ (13, 15, 15, 15, 26) [7, 13/42] NA9

Remark 1. ” $P$” indicates a Picard lattice, i.e. a lattice satisfying (INT).
$)’ D$” indicates an exceptional lattice, i.e. a lattice not satisfying (EINT). For
$n=2,$ there are 54 lattices (41-94) satisfying (EINT) (including 27 Picard
lattices) and 9 exceptional lattices $(D2-D10)$ .

Remark 2. $\Gamma_{\mu}$ with $\mu=$ $(\mu_{1}, \ldots, \mu_{5})$ , $\mathrm{S}_{1}$ $=\{\mu_{1}, \mu_{2}, \mu_{3}\}$ , $\mu_{4}\leq\mu_{5}$ is com-
mensurable with a reflection group with $[\mathrm{p},t]$ , where $p=2(1-2\mu_{1})^{-1}$ , $t=$

$\mu_{5}-\mu_{4}$ .

7. We say that two subgoups $\Gamma$ and $\Gamma’$ of $G$ are conjugate commensurable
if $\Gamma$ is commensurable with a conjugate of $\Gamma’$ . This kind of relations between
the $\Gamma_{\mu}$ ’s was studied in $[\mathrm{M}88]$ , [DM 93]. Some of their results are listed
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below where we write $\mu\approx\mu’$ if $\Gamma_{\mu}$ is conjugate commensurable with $\Gamma_{\mu’}$ . It
turns out that the 19 non-arithmetic lattices $\Gamma_{\mu}$ for $n=2$ are divided into 9
conjugate commensurability classes (NAI-NA9).

It is still an open problem to decide whether or not there exist non-
arithmetic lattices not conjugate commensurable to any of $\Gamma_{\mu}$ , especially
such lattices for $n\geq 4.$ It would also be interesting to study the arithmetic
properties of the non-arithmetic lattices $\Gamma_{\mu}$ , e.g., the corresponding automor-
phic representations.

(A) $([\mathrm{D}\mathrm{M}93], \S 10)$ For $a$ , $b>0,1/2<a+$J $<1$ , one has

$(a, a, b, b, 2-2a-2b)\approx$ ($1-b,$ $1-a,$ $a+b- \frac{1}{2},$ $a+b- \frac{1}{2}$ , l-a-b).

In particular, for $a=b,$

$(a, a, a, a, 2-4a)\approx$ ( $1-a,$ 1-a, $2a- \frac{1}{2},2a-\frac{1}{2},1-2a$)

$\approx(\frac{3}{2}-2a, a, a, a, \frac{1}{2}-a)$ .
Example.

$\frac{1}{18}(7,7,7,7,8)\approx\frac{1}{18}(11,11, 5,5,4)\approx\frac{1}{18}(13,7,7,7,2)$

(i.e., $84\approx D7\approx 80$) .

For $a+b=3/4$,

$(a, a, b, b, \frac{1}{2})\approx(1-b, 1-a, \frac{1}{4}, \frac{1}{4}, \frac{1}{4})$ .

Examples.

$\frac{1}{12}(4,4,5,5,6)\approx\frac{1}{12}(7,8,3,3,3)$ (i.e., $74\approx 69$),

$\frac{1}{20}(6,6,9,9,10)\approx\frac{1}{20}(11,14,5,5, 5)$ (i.e., $87\approx 85$).

(B) For $\pi$ , $\rho$ , awith $1/\pi+1/\rho+1/\sigma=1/2$ , set

$\mu(\pi, " \sigma)=(\frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}-\frac{1}{\pi}, \frac{1}{2}+\frac{1}{\pi}-\frac{1}{\rho}, \frac{1}{2}+\frac{1}{\pi}-\frac{1}{\sigma})$ .
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Then ( $[\mathrm{M}88]$ , Th. 5.6) for $1/\rho+1/\sigma=1/6$ , one has

$\mu(3, \rho, \sigma)\approx\mu(\rho, 3, \sigma)\approx\mu(\sigma, 3, ’)$ .

Examples.
$\rho=10$ , $\sigma=15$ : $\mathrm{i}$ $(5,5,5,22,23) \approx\frac{1}{15}(6,6, 6,4, 8)\approx\frac{1}{30}(13,13,13,7, 14)$

$(i.e., 91\approx 78\approx D10)$ ,

$\rho=8,$ $\sigma=24$ : $\frac{1}{24}(4,4,4,17,19)\approx\frac{1}{24}(9,9,9,7,14)\approx\frac{1}{24}(11,11,11,5,10)$

(i.e., $88\approx 89\approx D9$),

$\rho=7$ , a $=42$ : $4(7,7,7,29,34) \approx\frac{1}{42}(15,15,15,13,26)\approx$ $\mathrm{i}(10, 10, 10, 4, 8)$

(i.e., $93\approx 94\approx D8$ ) .

$\rho=8,$ $\sigma=24$ : $\frac{1}{24}(4,4,4,17,19)\approx\frac{1}{24}(9,9,9,7,14)\approx\frac{1}{24}(11,11,11,5,10)$

(i.e., $88\approx 89\approx D9$),

$\rho=7$ , $\sigma=42$ : $\frac{1}{42}(7,7,7,29,34)\approx\frac{1}{42}(15,15,15,13,26)\approx\frac{1}{21}(10, 10,10,4,8)$

$(i.e., 93\approx 94\approx D8)$ .
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