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On non-arithmetic discontinuous groups

=R —BB (Ichiro Satake)

In this talk, we will give a survey on arithmetic and non-arithmetic lattices
in a semisimple algebraic group. After giving some basic results on the
subject, we’ll forcus our attention to more recent results, mainly due to
Mostow and Deligne, on non-arithmetic lattices in the (projective) unitary
group PU(n,1) (n > 2). (For more details on these topics as well as the
closely related rigidities of lattices, see [S 04]).

1. To begin with, we first fix our settings, giving basic definitions and
notations. Let X denote a symmetric Riemannian space of non-compact
type (with no flat or compact factors) and let G = I(X)° be the identity
connected component of the isometry group of X. Then, as is well known,
G is a connected semisimple Lie group of non-compact type, which is of
adjoint type, i.e., with the center reduced to the identity 1. This implies
that, denoting by g the Lie algebra of G, one has G = (Aut g)° (° denoting
always the identity connected component). The group G acts transitively
on X and for any zo € X the stabilizer K = G, is a maximal compact
subgroup; thus one has X & G/K. In this manner, G and X determine one
another uniquely (up to isomorphisms).

More generally, let G’ denote a connected semisimple linear Lie group,
which becomes automatically ”real algebraic” in the sense that there exists
a linear algebraic group G defined over R (uniquely determined up to R-
isomorphisms) such that G' = G(R)°. As typical examples, one has G' =
SL(n,R), SO(p,q)° etc. Let K’ be a maximal compact subgroup of G', and
K the maximal compact normal subgroup of G'. Then one has

G' D K' D K D (center of G').
Therefore, setting
G= G'/K,, K= K'|/K;,, X= G/K= G'/K',

one obtains a pair (G, X) as described in the beginning; in particular, one
has G = G' if K| reduces to the identity group {1}. We keep these notations
throughout the paper.

When G’ = G(R)°, the common dimension r of the maximal R-split tori
in G is called the R-rank of G’ and written as 7 = R-rank G'. It is well
known that, if g’ = k' + p’ is a Cartan decomposition of g' = Lie G’, then
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r coincides with the maximal dimension of the (abelian) subalgebras of g’
contained in p’. Thus one has R-rank G’ = R-rank G.

When the algebraic group G is defined over Q, G’ is said to have a Q-
structure and the Q-rank of G’ (with this Q-structure) is the common di-
mension 7 of the maximal Q-split tori in G. G’ is called Q-anisotropic when
ro =0,

2. A subgroup I' of G’ is called a lattice in G’ if T is discrete and the covolume
vol(T\G") (with respect to the Haar measure of G') is finite. A lattice I' is
called uniform if, in particular, the quotient space I'\G' is compact.

Two subgroups I" and I of G’ are said to be commensurable if the indices
[[: TNT'] and [I' : T NI'] are both finite, and one then writes T' ~ I'. As
is easily seen, this is an equivalence relation.

A lattice T in G is said to be reducible if there exists a non-trivial direct
decomposition G = G X G3 such that ' ~ (I' N Gy) x (I' N G2); otherwise,
T is called irreducible. Every lattice in G is commensurable to the direct
product of irreducible ones in the direct factors of G.

When G' = G(R)° is given a Q-structure, a subgroup I’ of G’ commensu-
rable with G(Z) is called arithmetic; the projection of an arithmetic subgroup
of G’ in G = G'/Kj] is called arithmetic in a wider sense. It is clear that
arithmetic subgroups (in a wider sense) are discrete.

The following theorem is fundamental.

Theorem 1 (Borel-Harish-Chandra [BHC 62], Mostow-Tamagawa [MT 62])
If T is an arithmetic subgroup of G in a wider sense, then T is a lattice in
G. Moreover, T is uniform (i.e., cocompact in G) if and only if G' is Q-
anisotropic (i.e., Q-rank G' = 0).

Note that, when I in G is arithmetic only in a wider sense, the Q-rank of
G’ being = 0, T is uniform. In the early 1960s it was conjectured by Selberg
and others that the converse of Theorem 1 would also be true, if the R-rank
of G is high. Actually, we now have ‘

Theorem 2 (Margulis, 1973, [Ma 91]) Suppose that the R-rank of G is > 2.
Then any irreducible lattice T' in G is arithemetic in a wider sense (for a
certain choice of G' with a Q-structure).

3. Thanks to the above result of Margulis, in order to study the arithmeticity
of a lattice I', we may restrict ourselves to the case R-rank G = 1, which



naturally implies that G is R-simple. According to the classification of R-
simple Lie groups (due to E. Cartan), we have only the following possibilities
for (G, X) :

G = PU(D;n,1)° = U(D;n,1)°/(center), n>2, (n=2for D= 0),

X = H} (the hyperbolic n-space over D),

D denoting a division composition algebra over R, i.e.,
D= R, C, H (Hamilton’s quaternions), O (Cayley’s octonions),

and U(D;n, 1) denoting the unitary group of the standard D-hermitian form
of signature (n,1). In the case D = O, which is non-associative, the projec-
tive unitary group is defined to be the automorphism group of the (split)
exceptional Jordan algebra Her3(O;2,1); hence G is of type Fq;.

For D = R, one has G = SO(n,1)° (Lorentz group) and X = Hp, is the
"Lobachevsky space”, i.e., the Riemannian n-space of constant curvature
k = —1, which can be realized by the hyperbolic hypersurface in R**! (with
the Lorentz metric):

n
{(z:) e R™| wa — 22, = -1, T, >0}

=1

In particular, H3 (= H§) can be identified with the upper half-plane in C
and the lattices in G = SO(2,1)°(= SL(2,R)/{+£1}) are so-called Fuchsian
groups. In this case, it is classical that there are continuous families of non-
arithmetic lattices.

For X = HE, n > 3, non-arithmetic lattices, especially reflection groups,
have been studied intensively by E. B. Vinberg and his school since 1965 (see
e.g., [V 85, [V 90]). More recently, it was shown by Gromov and Piatetski-
Shapiro [GPS 88] that for any n > 2 one can construct infinitely many
non-arithmetic (uniform) lattices as the fundamental group of the "hybrid”
of two quotient spaces I''\ X and I';\X for non-commensurable arithmetic
subgroups I'; and I'; of G.

On the other hand, for the case D = H and O, Corlette [C 92] and Gromov
and Schoen [GS 92] have shown that there exist no non-arithmetic lattices in
G by a differential geometric method (harmonic maps), extending the idea
of Margulis.

4. In the rest of the paper, we concentrate to the case D = C, i.e., the
- case where G = PU(n,1) and X = Hg, studied mainly by G. D. Mostow
since the early 1970s.
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The complex hyperbolic space HE can be realized by the unit ball in C" as
follows. The unitary group U(n, 1) acts on C™*! and hence on the projective
space P"(C) = (C**! — {0})/C* in a natural manner. The orbit of en41 =
(0,...,0,1) (mod C*) in P*(C) is

n
{z=(z) e C™| D |af® - |znl* <0}/C%,
=1
which, in the inhomogeneous coordinates 2! = 2;/zp41 (1 < @ < n), is ex-
pressed by the unit ball

{Z=(z)eC ) |4 <1}.
i=1

The stabilizer of en41 in U(n, 1) is U(n)xU(1). Hence H = U(n, 1) /U(n)xU(1)
is identified with the unit ball in C", on which G = PU (n,1) acts as linear
fractional transformations.

We denote by <> the standard hermitian inner product of signature (n,1)
on C"t!, For a € C"*!, < a,a > >0 and ¢ € C, |£] = 1, we define (after
Mostow) a ”complex reflection” on C™*! by

<a,z>
a

(z € C™t1).
<a,a>

ae ¢ 2z + (E-1)

Then, for £, € C, €| = |n| =1, one has
R,;oR,,

in particular, if £ is a root of unity: £™ = 1, then one has (R; f)"" =1. We
denote the image of R; ; in G = PU(n,1) by Reog.
In [M 80] Mostow studied the groups

'
R a,€n?

[=< R (i=1,2,3)>
generated by 3 reflections, where (, = €*"*/? with p =3 or 4 or 5 and
eCM! <ee;>=1, <e,e>=<eye3 >=< €3,€; >= —a,

a= (2sin%)_1, o= e/’

with ¢t € R. Mostow gave a criterion for I" to be a lattice in G, and found 17
cases, showing that 7 among them are non-arithmetic (i.e., not arithmetic in
a wider sense). The non-arithmetic cases are given by

[p,t] = [3,1/12], [3,1/30], [3,5/42], [4,1/12], [4,3/20],



[5,1/5], [5,11/30].

(It has turned out that actually the I' corresponding to [5,11/30] is arith-
metic.)

5. Mostow then studied, in collaboration with Deligne, the analytic construc-
tion of lattices in PU(n,1). They consider a system of differential equations
of Fuchsian type in n variables, studied for n =2 by Picard and in general by
Lauricella (1893). The solution space of such equations is & C™*!, spanned
by the period integrals generalizing the classical Euler integral:

g, ($1, .. IB") = / H(u_x) —HiLy ﬂ'n+1(u_1) Bnt2 du

i=1
where
n+2
u= (p'ls ---,-Mn+3) ECn+3, Hni3 = 2 - Zﬂ"l
=1

is the parameter, which we will restrict to the so-called ”disc (n+3)-tuple”
satisfying the condition 0 < u; <1 (1 <i<n+3), and

gheM= {z = (21, ..., Zn,0,1,00)| z; € C — {0,1}, z; # z; for i # j}.

Let M be the universal covering space of M. Then there exists a natural
map from M to P*(C), the space of non-zero solutions modulo C*, which is
equivariant with respect to the actions of the fundamental group on M and
the projective monodromy group, denoted by I',,, on P*(C). It is also shown
that there exists a hermitian inner product of signature (n, 1) on the solution
space such that T, is in PU(n, 1).

In [DM 86] it was shown that the following condition (INT) is sufficient
for '), to be a lattice in G = PU(n,1).

(INT) If y; + pj < 1 with i # j, then one has (1 — p; — p;)™' € 2.

Actually, for n = 2, this condition is equivalent to the one given by Picard
in 1885, so that the 27 lattices obtained in this manner are called ”Picard
lattices”. (In counting the lattices I', we disregard the order of y;’s because
it is not essential.) There are 9 more w’s satisfying the condition (INT) for
3 < n <5, the longest one being 7 (1,1,1,1,1,1,1,1).

In [M 86] Mostow showed that the following weaker condition (XINT) is
sufficient to yield the same conclusion.

(ZINT) One can choose a subset S of {1, ...,n+ 3} such that u; = p; for
i,j € ) and that, if g; + p; < 1 with i # j, one has (1 — p; — p;) ™! € 32
when 1,7 € S; and € Z otherwise.
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In particular, taking S; with |S;| = 3, one obtains I, commensurable to a
lattice generated by 3 reflections, including all lattices constructed in [M 80].

In [M88] Mostow showed further that the converse of the above result is
also true in the following sense. First, all I, which is discrete is a lattice
in PU(n,1) (Prop. 5.3) and if n > 3 the condition (XINT) is necessarily
satisfied (Th. 4.13). For n = 2,3 there are 10 exceptional lattices I';, with p
not satisfying (ZINT). The list of all 94 u’s satisfying the condition (XINT)
is given in [M88], in which the longest one is 1(1,1,1,1,1,1,1,1,1,1,1,1)
with n =9.

6. As for the arithmeticity of 'y, the following criterion was first given in
[DM 86] under the assumption (INT):

(A) Let d be the least common denominator of the y;’s. Then, for all
AcZ 1<A<d—-1, (Ad) =1, one has

n+3
Z <Ap; > = lorn+2,

i=1
where < z >= 1 — [z] for z € R, [z] being the symbol of Gauss.

It was finally established in [M 88] (Prop. 5.4) that, without any additional
assumption, the condition (A) is necessary and sufficient for 'y to be an
arithmetic lattice in PU(n, 1).

Summing up the above results, we obtain the following

Theorem 3 (Mostow, 1988) The projective monodromy group T',, is a lattice
in PU(n,1) if and only if the condition (XINT) is satisfied, except for the
10 ezceptional lattices T, with n = 2,3 not satisfying the condition (XINT).
The group T, is an arithmetic lattice (in a wider sense) if and only if the
condition (A) is satisfied.

In the list of the u’s satisfying (¥INT) in [M 88], those giving non-arithmetic
lattices are marked as NA. (However, this list still seems containing some
misprints and erroneous markings.) We give below a (corrected) list of non-
arithmetic lattices T, in PU(n, 1), in which the numbering of the u's is the
one given in [M 88].




List of non-arithmetic lattices I';, in PU(n, 1)

n=3

9P  5(3,3,3,3,5 7

n=2

69P (3, 3,3, 7, 8) [4, 1/12] NA1
1P £(3,3,56,7) (not uniform) NA2
3P 1(4,4,4,5,7) [6, 1/6] NA3
74P (4, 4, 5, 5, 6) NAl
78P (4, 6, 6, 6, 8) [10, 4/15] NA4
80 £(2, 7,7, 7, 13) [9, 11/18] NA5
D7 L(4, 5, 5 11, 11) NA5
84 (7, 7,717, 8) NA5
85P (5, 5, 5, 11, 14) [4, 3/20] NA6
86 (6, 6, 6, 9, 13) [5, 1/5] NA7
87 L(6, 6, 9, 9, 10) NA6
D8 L4, 8, 10, 10, 10) - NA9
88 (4, 4, 4,17, 19) 3, 1/12] NAS
D9 L(5, 10, 11, 11, 11) NAS
89P (7,9, 9,9, 14) 8, 7/24] NAS
91 (5, 5, 5, 22, 23) [3, 1/30] NA4
D10 (7, 13, 13, 13, 14) NA4
93 &7, 7, 7, 29, 34) [3, 5/42] NA9

94  L(13, 15, 15, 15, 26) [7, 13/42] NA9

Remark 1. ”P” indicates a Picard lattice, i.e. a lattice satisfying (INT).
” D” indicates an exceptional lattice, i.e. a lattice not satisfying (XINT). For
n = 2, there are 54 lattices (41-94) satisfying (XINT) (including 27 Picard
lattices) and 9 exceptional lattices (D2-D10).

Remark 2. T, with g = (p1,..., 5), S1 = {1, 2,43}, pa < ps is com-
mensurable with a reflection group with [p, t], where p = 2(1 — 2p;)™!, t =
Hs — H4.

7. We say that two subgoups I" and IV of G are conjugate commensurable

if I" is commensurable with a conjugate of I''. This kind of relations between
the T',’s was studied in [M 88], [DM 93]. Some of their results are listed
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below, where we write pu = p' if ', is conjugate commensurable with I',s. It
turns out that the 19 non-arithmetic lattices I',, for n = 2 are divided into 9
conjugate commensurability classes (NA1—-NA9).

It is still an open problem to decide whether or not there exist non-
arithmetic lattices not conjugate commensurable to any of Iy, especially
such lattices for n > 4. It would also be interesting to study the arithmetic
properties of the non-arithmetic lattices ', e.g., the corresponding automor-
phic representations.

(A) ([DM 93], §10) Fora,b>0, 1/2<a+b <1, one has

1

(a, a, b, b, 2—2a—-2b) =~ (1 -0, 1—a, a+b——;-, a+b—2

, 1—a—1b).
In particular, for a = b,

1 1
(a, a, a, a, 2—4a) = (1 —aq, 1 —a, 2a—-2-, 2a—§, 1— 2a)

1
z(—2-—2a, a, a, a, 5—-0,).

Ezample.
L 7.7,7,7,8) ~ 2 (11,11,5,5,4) ~ —(13,7,7,7,2)
18 18 ' 18 .
(i.e., 84~ D7 = 80).
For a +b=3/4,
(a, a, b, b, %)w(l—b, 1—a, —i—, 211-, %)
Ezamples.

1 1 :
544,5,5,6)~ 5(7,8,3,3,3) (ie, T4 69),

1 1 .
55(6/6:9,9,10) & 55(11,14,5,5,5) (ie., 87 ~ 85).

(B) For m, p, o with 1/m+ 1/p+ 1/0 = 1/2, set

ll
w2

+

N
DN =t
} |
|
DN | ==
+
N |
|
Q|
p—

| -

1 1 1
[I.(ﬂ',p, 0') - (5 - "7;, '2'
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Then ([M 88], Th. 5.6) for 1/p+ 1/0 = 1/6, one has

w3, p, o) = ulp, 3, o) = ulo, 3, p).

Ezamples.
p=10, c=15: 3-15(5, 5,5,22,23) ~ 11—5(6,6,6,4, 8) ~ %(13, 13,13,7,14)

(z.e., 91 =~ 78 =~ D10),

p=8,0=24: £(4,4,4,17,19) = £(9,9,9,7,14) = 5;(11,11,11,5,10)
(i.e., 88 = 89 ~ D9),

p=T,0=42: L(7,7,7,29,34) =~ L(15,15,15,13,26) = 5; (10,10,10,4,8)

(i.e., 93 =~ 94 ~ D8).
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