
ABSTRACT 

BABAEE, SAMANEH. The Potential Role of Plug-in Electric Vehicles in the U.S. and their 

Effect on Emissions through Mid-Century. (Under the direction of Dr. Joseph F. DeCarolis.) 
 

Concerns about oil security and availability, greenhouse gas (GHG) emissions, and 

degraded air quality motivate interest in alternative fuels and vehicles. Plug-in vehicles 

(PEVs), which include plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles 

(BEVs), have received significant attention from the government, research community, and 

automotive industry. These vehicles have the potential to increase the security of US fuel 

supply, improve air quality, and reduce GHG emissions by displacing some or all of the 

gasoline or diesel fuels with electricity and shifting emissions out of dense urban areas to 

more remotely located power plants. 

Increasing PEV deployment will shift market shares in the light duty vehicle (LDV) 

sector, which can affect prevailing energy prices, technology deployment and utilization, and 

emissions throughout the energy system. The efficacy of using PEVs to reduce air emissions 

will depend on a broad set of underlying system-wide conditions that unfold over time. This 

research employs a bottom-up energy system model (TIMES), along with a U.S. dataset 

(NUSTD) I developed, to meet the following objectives: (1) identify the conditions under 

which electric drive vehicles (EDVs; which include PEVs and hybrid electric vehicles) 

achieve high LDV market penetration in the U.S. and quantify the associated change in CO2, 

SO2, and NOX emissions through mid-century; (2) quantify the incremental impact of PEV 

deployment on national U.S. CO2 emissions through mid-century under alternative electric 

sector scenarios; and (3) examine the potential impact of different time-of-day PEV charging



 
 

scenarios on system-wide CO2 emissions, electricity prices, and technology deployment in 

the electric and LDV sectors.  

To address future uncertainty and examine PEV deployment within the LDV market 

through 2050, varying assumptions related to crude oil and natural gas prices, a CO2 policy, a 

federal renewable portfolio standard, and vehicle battery cost were combined to create a large 

set of 108 scenarios. Furthermore, several policy options that could promote dramatic 

changes in the future electric sector mix were considered to quantify system-wide PEV 

emissions benefits and test the model response to different PEV charging patterns.  

The model results suggest the following high-level insights. First, oil price and battery 

cost exert the greatest influence on EDV deployment across the modeled scenarios. Second, 

the model results do not demonstrate a clear and consistent trend towards lower system-wide 

emissions of CO2, SO2, and NOX in the U.S. as EDV deployment increases. Higher electric 

sector emissions associated with PEV charging and shifting emissions in other energy sectors 

can partially offset the lower tailpipe emissions from PEVs. Third, the incremental CO2 

emissions benefit associated with PEV deployment largely depends on marginal changes in 

electricity generation mix required to charge PEVs. Fourth, time-of-day PEV charging does 

not produce a significant impact on electricity prices, PEV deployment, or total system-wide 

CO2 emissions in the U.S. through 2050. In summary, the net effect of PEVs over time on 

national emissions will depend on a variety of factors beyond vehicle deployment numbers, 

including the introduction of new energy and environmental policies, prevailing fuel prices, 

and technology innovation across the energy system. Policymakers should pay careful 

attention to prevailing system-wide conditions, as simply incentivizing the purchase of PEVs 

will not automatically lead to emissions reductions. 
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Chapter 1: Introduction 

Transportation accounts for 70% of U.S. petroleum use and contributes 34% of U.S. CO2 

emissions (EIA, 2014). Internal combustion engines operating on petroleum-based fuels have 

powered most vehicles for the past century. However, high oil costs, concerns about energy 

security and availability, greenhouse gas (GHG) emissions, and air quality are driving 

national interest in alternative fuels and vehicles. Plug-in electric vehicles (PEVs)—plug-in 

hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs)—have the potential to 

reduce emissions and dependence on oil. In recent years, improved technologies and 

government tax incentives have helped increase PEV adoption (DOE, 2014; DOE, 2010). 

Combined U.S. sales of PHEVs and BEVs have increased from 345 in 2010 to approximately 

97,000 in 2013. Since 2007, more than 230,000 PEVs have been sold in the U.S. (EDTA, 

2014).  

Major automobile manufacturers have introduced plug-in electric vehicles (PEVs) into 

the global market as part of a strategy to develop alternative fuel and vehicle technology 

options. For example, Toyota, Chevrolet, and Ford have PHEVs on the market; Nissan, Tesla 

Motors, Mitsubishi, and Fiat have introduced BEVs into the market (PIA, 2014). Research, 

development, and deployment of the technologies and infrastructure required to enable the 

widespread deployment of PEVs is also ongoing. Home and workplace electric charging 

options for PEVs are rapidly expanding and public infrastructure is steadily growing, with 

8500 stations and 20,000 outlets operating in cities, suburbs, and along highways nationwide 
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(EDTA, 2014). A projected 1.5 million charging locations will be available by 2017 (EDTA, 

2013). 

A large market penetration of PEVs will couple the transportation and electric sectors, 

changing the system-wide supply of energy and emissions. Electrification of the 

transportation sector could increase electric generation capacity and shift emissions from 

millions of individual vehicle tailpipes to large, centralized power plants. Increasing PEV 

deployment will shift market shares in the light duty vehicle (LDV) sector, which can affect 

prevailing energy prices, technology deployment and utilization, and emissions throughout 

the energy system. In this thesis, I utilize an energy system model along with a U.S. dataset I 

developed, to provide policy-relevant insights related to the interaction of PEVs with the rest 

of the U.S. energy system through mid-century. This thesis specifically addresses the 

following questions:   

 What effect does electric drive vehicle (EDV) deployment have on the net 

system-wide emissions of CO2, SO2, and NOX under a variety of different 

future scenarios? 

 What is the incremental change in national CO2 emissions associated with 

high PEV deployment levels under several plausible policy scenarios focused 

on clean electricity? 

 How might variation in PEV time-of-day charging affect electricity prices, 

PEV deployment, and total system-wide CO2 emissions in the U.S.? 

The research in this dissertation is organized into five chapters. Chapters 2-4 each address 

one of the questions above and represent a self-contained journal article. Chapter 2 is more 
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broadly focused on electric drive vehicles (EDVs), which include hybrid electric vehicles 

(HEVs) in addition to PHEVs and BEVs. In Chapter 2, an energy system model was utilized 

to examine 108 scenarios in order to identify the conditions under which EDVs achieve high 

market penetration in the U.S. LDV sector through 2050. The resultant system-wide changes 

in U.S. CO2, SO2, and NOX emissions were quantified. Because we did not observe a clear 

and consistent decline in emissions as a function of EDV deployment across the 108 

scenarios tested, we decided to focus on quantifying PEV emissions benefits under different 

clean electricity scenarios, which is the focus of Chapter 3. For simplicity, Chapters 2 and 3 

assume that vehicle charging through the year is constant. Chapter 4 presents the potential 

impact of different time-of-day PEV charging scenarios on electricity prices, technology 

deployment, and total system-wide CO2 emissions under conditions favorable to PEV 

deployment. The dissertation closes with Chapter 5, which presents key observations and 

insights drawn from all three analyses as well as directions for future research. The 

development of a TIMES-compatible dataset represented a large effort underlying the model-

based analysis, which is documented in the appendices. 
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Chapter 2: How Much Do Electric Drive Vehicles Matter to Future U.S. 

Emissions? 

 

2.1 INTRODUCTION 

Increasing concerns over U.S. oil imports, anthropogenic climate change, and urban air 

quality motivate interest in alternative fuels and vehicles. Among existing options, electric 

drive vehicles (EDVs)—hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles 

(PHEVs), and battery electric vehicles (BEVs)—are receiving increased attention from 

government, industry, and academia. Current U.S. policies designed to promote EDVs 

include President Obama’s pledge to deploy 1 million BEVs by 2015 (The White House, 

2011), a $7500 federal tax credit for BEVs and PHEVs (DOE, 2010), and numerous state-

level incentives (DOE, 2014). In addition, the recent passage of aggressive new Corporate 

Average Fuel Economy (CAFE) standards that will roughly double fuel economy and halve 

the greenhouse gas emissions produced by cars and light duty trucks in model year 2025 

(EPA Federal register, 2012) make the prospect for EDV deployment even more promising.  

EDVs offer three key benefits over competing vehicle technologies: (1) reduced 

consumption of petroleum-based fuels (GREET, 2012), (2) lower refueling infrastructure 

costs compared to alternatives such as H2 and compressed natural gas (AEO, 2012), and (3) a 

shift in energy production from vehicles to the electricity grid, where emissions from large, 

centralized facilities are cheaper and easier to control (Sioshansi et al., 2010; Peterson et al., 

2011). While previous work has applied different methodologies and models to quantify the 
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environmental benefits of EDVs, several consistent insights have emerged. First, HEVs 

produce less emissions than conventional vehicles (Traut et al., 2012; Shiau et al., 2010; 

Samaras and Meisterling, 2008).
 
Second, PHEVs with smaller battery packs are more likely 

to deliver emissions benefits and reduced gasoline consumption at lower lifetime cost 

compared to those with large battery packs in the short term (Michalek et al., 2011; Peterson 

and Michalek, 2013; Shiau et al., 2009; ANL, 2009).
 
Third, significant emissions benefits, 

particularly from vehicles with large battery packs, only begin to accrue with clean electricity 

(Traut et al., 2012; Samaras and Meisterling, 2008; Michalek et al., 2011; Kammen et al., 

2009; Hawkins et al., 2012; EPRI, 2007).
 
Fourth, CO2 prices as high as 100 $/tonne do not 

provide sufficient incentive for vehicle electrification (Traut et al., 2012; Shiau et al., 2010; 

Michalek et al., 2011; Shiau et al., 2009; Kammen et al., 2009).  

While these studies (along with Wang
 
et al., 2011; Hadley

 
and

 
Tsvetkova, 2009; Wu and 

Aliprantis, 2013; NRC, 2013) have made significant contributions to the literature, they only 

consider a single point in time or employ sector-specific models or calculations that ignore 

the interaction of EDVs with the rest of the energy system over time. Recent analyses based 

on energy system models mainly focus on CO2 emissions and have been run with a limited 

set of scenarios (AEO, 2012; Yeh et al., 2008; Karplus et al., 2010), which make it difficult 

to draw insight specific to EDVs.  

This paper employs an energy system model to meet the following objectives: (1) 

identify the conditions under which EDVs achieve high market penetration in the U.S. light 

duty vehicle (LDV) sector through 2050, and (2) quantify the system-wide changes in CO2, 

SO2, and NOX emissions at the national level. The model minimizes the system-wide cost of 
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energy over time and links all sectors of the economy together through a consistent set of 

energy prices. Therefore, rather than characterizing the rest of the energy system through 

exogenous inputs and isolating the effects of EDV deployment, application of an energy 

system model can help characterize the broader impacts due to dynamic interactions across 

the energy system. As such, this paper adds to the existing literature by addressing a 

fundamental question: Does EDV deployment produce a consistent and measurable decline 

in emissions relative to other changes that may be induced throughout the system in response 

to a common set of scenario drivers? This analysis places particular emphasis on the long-run 

emissions changes that may be produced in the U.S. by 2050. To address future uncertainty, 

we examine the effect of 5 factors on EDV deployment: crude oil and natural gas prices, a 

federal CO2 policy, a federal renewable portfolio standard (RPS), and EDV battery cost. To 

characterize possible EDV deployment over the next half century, assumed values associated 

with each factor are blended to create a large set of 108 scenarios that capture a wide range of 

potential outcomes. Given the highly uncertain role of consumer choice in future vehicle 

adoption, this analysis is focused on the economic and environmental performance of EDVs 

assuming minimal behavioral barriers to vehicle adoption. Strong and persistent reluctance 

on the part of consumers to adopt EDVs will dampen or eliminate the EDV-related effects 

presented here. 

 

2.2 MODEL DESCRIPTION 

The model used for this analysis consists of two components: The Integrated MARKAL-

EFOM System (TIMES) (Loulou et al., 2005), which serves as a generic energy optimization 
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framework and operates on the National U.S. TIMES Dataset (NUSTD), a TIMES-

compatible dataset constructed specifically for this analysis. 

 

2.2.1 The TIMES model generator 

TIMES is a widely used bottom-up, technology rich energy system model, which represents 

an energy system as a network of technologies linked together via flows of energy 

commodities (Loulou et al., 2005). TIMES performs linear optimization to identify the least-

cost way to satisfy end-use demands, subject to user-imposed constraints such as emissions 

limits and maximum growth rates on technology capacity. Model outputs by future time 

period include the optimal installed capacity and utilization by technology, marginal energy 

prices, and emissions. TIMES assumes rational decision-making, with perfect information 

and perfect foresight, and optimizes over an entire set of multi-year modeling periods 

simultaneously. Appendix B provides a simplified algebraic formulation of the TIMES 

model. 

 

2.2.2 The National U.S. TIMES Dataset (NUSTD) 

We developed NUSTD, a TIMES-compatible input dataset containing fuel prices; 

technology cost and performance estimates; and end-use demands to represent the U.S. as a 

single region over the next four decades. We adhere to the adage that the best policy-relevant 

models are “small and simple” in order to maximize transparency (Morgan and Henrion, 

1992). As such, NUSTD represents a compromise between capturing enough technological 

detail to meet the goals of this analysis and eliminating superfluous information that makes 

the input dataset unnecessarily complex and difficult to manage. We describe the basic 
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design of NUSTD in this section, and provide detailed documentation in Appendices A and 

B. In addition, the workbooks containing the complete set of input data are publicly available 

(Energy Modeling, 2014), allowing verification of results by external parties. 

The model time horizon is 2010 to 2050, with 5-year time periods. Intra-annual variation 

in demand and renewable resource availability is represented by specifying 3 seasonal (i.e., 

summer, winter, and intermediate) and 4 diurnal (i.e., morning, mid-day, afternoon/evening, 

and night) time segments. The U.S. is modeled as a single region with no interregional trade. 

A 5% social discount rate is used to convert future expenditures into present cost. As 

described below, a 10% hurdle rate is applied to all alternative vehicle technologies.  

An overview of the energy system representation in NUSTD is provided in Figure A1 of 

Appendix A. Conceptually, NUSTD can be categorized into 4 parts: fuel supply, electric 

sector, transport sector, and the remaining end-use sectors (i.e., commercial, residential, 

industrial). Fuel supply is represented by a set of exogenously specified fuel prices drawn 

from the output to the Annual Energy Outlook (AEO) 2012 (EIA, 2012). This is in contrast 

to many other model datasets (Yeh et al., 2008; EIA, 2009; Shay et al., 2006; Sarica and 

Tyner, 2013), which specify supply curves that represent future fuel price and availability as 

a set of piece-wise continuous steps. While the AEO utilizes supply curves, a retrospective 

analysis indicates that the fuel price prediction error more than 1 decade in the future is often 

greater than 40% compared to the realized value (AEO Retrospective Review, 2011). In 

addition, a review of the AEO (EIA, 2012) indicates low cross-price elasticities over the next 

2 decades: an increase in one fuel price (e.g., coal) has a less than 10% effect on other fuel 

prices (e.g., oil, natural gas). Although the fuel price interaction effects are non-negligible, 
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the fuel price prediction errors are significantly larger. As a result, we make the simplifying 

assumption that fuel price trajectories are independent of one another. 

Given the focus on EDV deployment, the database contains significant technological 

detail in the transportation and electric sectors. The electric sector contains 32 generation 

technologies and 71 pollution control retrofits to reduce NOX and SO2 emissions from 

existing coal-fired power plants. Because the electric sector is modeled explicitly, the price 

of electricity is determined endogenously.  

The transportation sector includes light duty, heavy duty, and off highway vehicles. 

There are 85 light duty vehicle technologies, which consist of 7 vehicle size classes, 6 fuel 

types, and 13 vehicle types.  Much of the vehicle cost and performance data is derived from 

EPA (Shay et al., 2006), but vehicle cost information is updated based on AEO (EIA, 2012), 

and EDV performance data are drawn from the Greenhouse Gases, Regulated Emissions, and 

Energy Use in Transportation (GREET) Model (GREET, 2012). The following EDV 

technologies, ordered by their all-electric range (AER) in kilometers, are modeled: HEV, 

PHEV20, PHEV60, and BEV160. Hurdle rates are used to adjust the amortized cost of 

alternative fuel vehicles relative to conventional gasoline vehicles in order to partially 

capture non-market factors that may affect their deployment. We allow alternative vehicle 

shares to reach the same levels as in the AEO reference case without a hurdle rate, but 

additional deployment beyond AEO levels requires the use of alternative vehicles with a 

hurdle rate. 

Studies conducted using surveys have estimated hurdle rates for alternative vehicle 

purchases in the range of 20-50%, with most estimates closer to the low end of this range 
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(Peterson and Michalek, 2013; Mau et al., 2008; Horne et al., 2005). However, applying a 

20% hurdle rate to all alternative vehicle technologies resulted in zero market share across 

the 108 scenarios tested. While interesting, we view this result as implausible, as hurdle rates 

are uncertain and likely to decrease over time as technology improves, market penetration 

increases, and recharging infrastructure becomes more available. Therefore, in the absence of 

literature quantifying how hurdle rates may change over time, we simply employ a constant 

10% hurdle rate, which is large enough to keep additional alternative vehicles out of the 

reference case (i.e., reference case fuel prices and battery cost as well as no new policy). As a 

result, we assume that consumers make decisions based largely on vehicle cost-effectiveness. 

Details on the hurdle rate calculation are provided in Section A2 of Appendix A. We note 

that while sophisticated consumer choice models exist and are used to predict future vehicle 

deployment (NRC, 2013; Lin and Greene, 2010; Heckmann et al., 2013), incorporation of 

such methodology into an energy system model is beyond the scope of the current analysis. 

The remaining end-use sectors (commercial, industrial, residential) each contain a single 

aggregate energy demand with no explicit representation of demand devices. Instead, base 

year 2010 fuel consumption is constrained to historical shares, and the projected AEO (EIA, 

2012) fuel shares serve as the basis for lower bound fuel share constraints that are gradually 

relaxed over time (Figures A2-A4 and Equations B.20 and B.21). Because there are 

minimum required electricity shares in these end-use sectors, the resultant price for 

electricity is affected not only by transportation demand, but by demand in the other end-use 

sectors as well. While the lack of technology detail is a key simplification, we assume that 
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technology switching in these end use sectors will have a limited effect on vehicle 

deployment. 

 

2.3 SCENARIO DESCRIPTION  

For decades, scenario analysis has been used as a way to generate insights about the future 

that lead to improved strategic management (Schwartz, 1996). Scenarios provide a way to 

systematically organize our perceptions about the future to see how they might play out 

(Schwartz, 1996). The resultant model-based scenarios can then be used to challenge and 

inform our mental models about the future (Schwartz, 1996; Kates et al., 1985). 

While scenarios provide a self-consistent way to explore future outcomes, a small set of 

highly detailed scenarios can create compelling storylines that are prone to cognitive biases, 

which often leads to systematic overconfidence in the presented results (Morgan and Keith, 

2008). We try to mitigate the effect of cognitive biases by examining a large number of 

composite scenarios based on 5 factors likely to affect the cost-effectiveness of EDVs 

relative to other vehicle technologies: natural gas price, crude oil price, EDV battery cost, a 

federal cap on CO2 emissions, and a federal RPS. A key simplifying assumption is that these 

factors only interact weakly, and therefore can be treated independently. Figure C1 in 

Appendix C represents an influence diagram that illustrates how scenario parameters affect 

the marginal price of fuel and electricity, which affect technology deployment and utilization, 

and ultimately emissions. The total number of modeled scenarios is 108, which represents 

every combination of assumptions specified in Table 2.1 For example, 1 of the 108 scenarios 

involves low natural gas prices, high oil prices, a CO2 policy, a federal RPS, and reference 
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case EDV battery cost. The assumptions made in each set of scenarios are outlined in the 

subsections below. Table C3 in Appendix C provides a complete enumeration of scenarios. 

 

 

 

Table 2.1 Scenario assumptions in 2050 

Factor Low Reference High 

Natural gas prices ($/GJ)
1
 4.5 7.8 8.7 

Crude oil prices ($/bbl)
1
 62 145 200 

Battery Cost ($/kWh)
1
 304 135 700 

 No Yes  

Federal CO2 cap
2
 NA 40% reduction below 2010 levels 

Federal RPS
2
 NA 20% renewables  

                            1 Drawn from AEO2012 (EIA, 2012) 
                            2 See Appendix C for more details. 

 

 

 

2.3.1 Baseline Assumptions 

Several assumptions regarding the domestic U.S. energy market are consistent through all 

108 scenarios. Twenty-nine states currently have legal binding renewable portfolio standards 

(Equation B.10), which require a minimum percentage of electricity to come from renewable 

sources (DSIRE RPS, 2013). The overall minimum share of renewable energy for all states is 

2% in 2010 and it gradually increases to 13% by 2025 (EIA, 2012). The new CAFE standard 

and the corresponding greenhouse gas (GHG) emissions rate limit (EPA Federal register, 

2012) are described by Equations B.17 and B.18 and included in the base case assumptions.  

LDVs are expected to reach a fleet-wide average fuel economy of 49.6 miles per gallon and 

GHG emissions of 163 grams CO2 per mile in model year 2025, per the NHTSA and EPA 

requirements, respectively (AEO, 2012). Consistent with AEO (AEO, 2012), the NHTSA 
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standard of 49.6 miles per gallon is multiplied by a degradation factor of 80% to approximate 

on-road fuel economy. To factor out the effects of improved air conditioning which we do 

not model, the EPA standard is implemented as 185 grams CO2 per mile to only capture the 

effects of improved energy efficiency. 

The upper bound constraints on SO2 and NOx emissions from the electric sector 

(Equation B.9) are based on AEO (EIA, 2012) and include implementation of the Mercury 

and Air Toxics Standards (MATS) (U.S. EPA, 2012) and the Cross-State Air Pollution Rule 

(CSAPR) (U.S. EPA, 2013). The renewable fuel requirements in the transportation sector 

(Equations B.14, B.15, and B.16) are based on the Energy Independence and Security Act of 

2007 (EPA RFS, 2013). The upper bound on cellulosic ethanol availability from 2015-2020 

is obtained from the Renewable Fuel Standard
 
(RFS, 2013) and held constant from 2025 to 

2050, while the lower bound is based on AEO projections to 2035 (EIA, 2012) and linearly 

extrapolated to 2050. Finally, the effect of existing fuel subsidies and tax credits for new 

vehicles, drawn from AEO (AEO, 2012), are included in the baseline cost assumptions.  

 

2.3.2 Natural gas prices 

The future price of natural gas is a key factor that will affect future U.S. energy system 

development. In particular, the recent boom in shale gas exploration has dramatically 

increased the proved reserves of wet natural gas, rising from approximately 6 trillion m
3
 in 

2007 to 9 trillion m
3
 in 2010 (AEO, 2012). In the AEO (AEO, 2012), the impacts of total 

recoverable shale gas resources are examined by defining 4 scenarios in which the estimated 

ultimate recovery (EUR) and well density are varied. To limit the number of scenarios but 
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also explore the full range of projected natural gas prices, we adopt the resultant AEO natural 

gas prices from the Low EUR, Reference, and High Total Recoverable Resources (TRR) 

scenarios. Additional information is provided in Appendix C. 

 

2.3.3 Oil Prices 

A key determinant of future vehicle deployment in the U.S. will be the prevailing price of 

crude oil. To explore the effect of different oil price trajectories, we adopt the resultant crude 

oil price trajectories produced in the Low, Reference, and High Oil Price cases of the AEO 

(EIA, 2012). The price differences between the three scenarios stem from demand 

uncertainty in non-OECD countries, the cost of non-OPEC supply, OPEC investment and 

production decisions, and the economics of alternative liquid fuel supplies (AEO, 2012).  

 

2.3.4 CO2 policy  

A federal cap-and-trade system for greenhouse gas emissions has the potential to produce 

large impacts throughout the U.S. energy system. While several bills have been introduced in 

the U.S. Congress, none have been signed into law (U.S. EPA legislative analyses, 2013). 

Based on a review of 4 proposed federal climate policies, which are outlined in Appendix C, 

we chose to model a cap on national CO2 emissions level that requires a 40% reduction in the 

2010 energy-related emissions level by 2050 (Equation B.22). For simplicity, we omit 

consideration of current state-level GHG targets such as California’s AB32 (CEPA, 2013) or 

the Regional Greenhouse Gas Initiative (RGGI) (RGGI, 2013). The federal CO2 cap enters 

into force with a 5% reduction in the 2015 model period, and we assume uniform, linear 

reductions each 5-year period until a 40% reduction is achieved in 2050.  
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2.3.5 Renewable portfolio standard (RPS)  

The federal renewable portfolio standard modeled in this study is based on a recent proposal 

contained in Title I of the American Clean Energy and Security Act of 2009 (H.R. 2454), 

which sets forth renewable energy purchase requirements (ACESA, 2009). Because the 

proposed federal standard is more aggressive than the aggregation of existing state policies 

(DSIRE state incentives, 2013), we adopt the percentages associated with H.R. 2454 as the 

lower bound constraint on renewable electricity generation in the RPS scenario and extend 

the required renewable share in 2039 to 2050 (ACESA, 2009). See Appendix C and Equation 

B.10 for more details. 

 

2.3.6 Battery Development 

Assumptions about the pace and scale of battery innovation will be a key determinant of 

EDV cost-effectiveness relative to other vehicle technologies. We adopt high, reference, and 

low battery cost assumptions. The high battery cost scenario assumes constant EDV cost over 

the entire model time horizon. The reference battery cost scenario is drawn from the AEO 

Reference case, which assumes a battery cost of 304 $/kWh in 2035 (AEO, 2012). The low 

cost battery scenario considers attainment of program goals set forth by the DOE’s Office of 

Energy Efficiency and Renewable Energy, which assumes a battery cost of 135 $/kWh in 

2035 (EIA Today In Energy, 2013). We only include effects on battery investment cost, not 

increased efficiency or reduced EDV weight over time, given the uncertainty inherent in such 

estimates.  
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2.4 RESULTS AND DISCUSSION 

The insights discussed below are drawn from analysis of the 108 scenario results. For 

reference, the scenario-specific EDV deployment as well as CO2, SO2, and NOX emissions 

are included in Appendix C (Table C3).  

 

2.4.1 Technology Deployment in Two Extreme Scenarios  

Figure 2.1 displays results from the electric and LDV sectors for 2 of the 108 scenarios: the 

lowest EDV deployment (left) and the highest EDV deployment (right). The lowest EDV 

deployment corresponds to high natural gas prices, low oil prices, no RPS, no CO2 policy, 

and high battery cost. Without a CO2 policy or RPS, the electric sector is driven largely by 

generation from combined-cycle natural gas, coal steam, and light water nuclear reactors. 

The combination of low oil prices and high battery cost prevent EDV deployment. 
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Figure 2.1 Electric generation by plant type (top) and travel demand met by different light duty 

vehicle types (bottom) over time for the lowest EDV deployment scenario (left) and the highest EDV 

deployment scenario (right). The lowest EDV deployment corresponds to low oil prices, high natural 

gas prices, no CO2 cap or RPS, and high battery cost. The highest EDV deployment corresponds to 

high oil prices, low natural gas prices, a CO2 cap and RPS, and low battery cost. 

 

 

 

By contrast, the highest deployment of EDVs corresponds to low natural gas prices, high 

oil prices, the RPS, the CO2 policy, and low battery cost. In the electric sector, the existing 

coal power plants are retired by 2040 in favor of natural gas and renewables due to the 

combined effect of the CO2 cap and the RPS. In the LDV transportation sector, a 

combination of BEV160, diesel, and diesel hybrids meet growing demand and replace retired 

vehicles by 2050. In this scenario, dramatic reductions in battery cost coupled with low 

electricity prices relative to liquid fuels make BEV160s and PHEV60s the most cost-
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effective EDV alternatives in the long run. In the remaining end use sectors (i.e., commercial, 

industrial, and residential), the fuel shares gradually shift from fossil fuel combustion to low 

carbon electricity.  

 

2.4.2 Effects of Scenario Drivers on EDV Deployment  

One metric to assess the role of EDVs is the total share of the LDV market in 2050 met by a 

combination of hybrid, plug-in hybrids, and electric vehicles. Figure 2.2 summarizes the 

results across all scenarios as a series of boxplots that represent the total EDV share within 

the LDV market when a particular scenario parameter is held fixed. For example, the box 

representing ‘NG-Low’ represents the EDV deployment across the 36 scenarios in which 

natural gas prices are assumed low. For each box, the circle represents the median, the edges 

of the box represent the 25th and 75th percentiles, and the whiskers extend to the maximum 

and minimum EDV deployment levels. The effects of oil price, battery cost, and CO2 policy 

are clearly discernible because the median, quartiles, and range shift as the associated 

parameter values change. By contrast, the range and median values associated with natural 

gas (NG) prices and the RPS do not change.  
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Figure 2.2 The projected range of 2050 EDV market share for each scenario parameter value. Each 

boxplot represents the variation in EDV market share when the given parameter value is held fixed 

but the others are allowed to vary. When the boxplots appear similar across all values for a given 

scenario parameter (i.e., natural gas price, RPS), it indicates that the effect of that scenario parameter 

is minimal. The β values represent the linear regression coefficients and express the fractional change 

in the EDV market share per unit change in each scenario parameter selected during the stepwise 

regression. 

 

 

 

No EDV deployment occurs with high battery costs, low oil prices, and no CO2 policy. 

At least 1 of these 3 scenario assumptions must change in order for EDVs to achieve some 

level of market penetration in 2050. As the scenario parameters shift to values more 

favorable to EDVs (i.e., ‘low’ to ‘high’ oil prices, ‘no’ to ‘yes’ on CO2 policy, ‘high’ to ‘low’ 

on battery cost), the median market shares increase. The maximum EDV market penetration 

is 16% with the low oil price assumption versus 42% with reference or high oil prices. 

Similarly, high and reference battery costs limit EDV penetration to a maximum of 34% and 

37%, respectively, whereas low battery costs enable the maximum market penetration of 
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42%. The maximum EDV market share is 42% because EDV deployment is largely limited 

to the compact and full size vehicle classes. EDVs in larger size classes are generally not 

cost-effective under the broad range of scenario assumptions we tested. The CO2 cap results 

in marginal CO2 prices of 37-125 $/tCO2, which all else equal, only increase EDV 

deployment by approximately 3%. This result is consistent with other studies demonstrating 

that CO2 prices less than 100 $/tCO2 have little effect on EDV deployment (Traut et al., 

2012; Shiau et al., 2010; Michalek et al., 2011; Shiau et al., 2009; Kammen et al., 2009).
 
 

A multivariate linear regression model was developed to further quantify the relative 

degree of scenario parameter influence on EDV deployment in 2050. All scenario parameters 

were converted into integer scores, starting with values of 0 for scenario parameters 

designated by ‘low’ or ‘no’. A stepwise linear regression was performed to identify the 

scenario parameters that improve model fit by increasing R
2
. The regression coefficients are 

presented in Figure 2.2. The order of parameter selection in the stepwise regression was oil 

price, battery cost, and CO2 cap, which were all significant at the 5% level. The resultant 

linear regression equation had an adjusted R
2
 of 0.86. The CO2 policy; however, increased 

the R
2
 value by less than 1% when included. These results are consistent with Kammen et al., 

2009 who found that battery cost and oil price are the two most significant factors driving 

EDV deployment. The natural gas price and RPS scenarios do not have a statistically 

significant influence on EDV deployment. 

Across all scenarios, the total EDV deployment ranges from 0–42% of the LDV market 

with an average value of 24%, which is broadly consistent with other projections. For 

comparison, AEO projects 7.5-19% EDVs in 2035 (EIA, 2012), Yeh et al., 2008 project 32-
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100% EDVs in 2050, and Wu et al., 2013 predict 100% EDVs in 2050. Within the EDV 

category, the average market share of HEVs, PHEVs, and BEVs in 2050 is 5%, 1%, and 

18%, respectively, across the 108 scenarios in this analysis. The relatively low HEV adoption 

rate is due in part to the use of conservative GREET EDV efficiency data compared to the 

higher AEO (AEO, 2012) efficiencies used for conventional gasoline vehicles. 

While the average market share of PHEVs and BEVs is roughly the same through 2030, 

BEV deployment begins to dominate post-2030. The long-run model preference for BEVs 

over PHEVs and HEVs is due to several factors: higher BEV efficiency, the generally lower 

cost for electricity compared to liquid fuels, and larger proportional benefits to BEVs 

associated with battery cost reductions. While the long-term trend towards BEVs differs 

somewhat from studies that focus on near term deployment (Michalek et al., 2011; Peterson 

and Michalek, 2013; Shiau et al., 2009; ANL, 2009), it is consistent with modeling studies 

that make projections to 2035 and beyond and show appreciable shares of BEVs (Wu et al., 

2013; EIA, 2012).  

 

2.4.3 Effect of EDV Deployment and Scenario Drivers on Emissions 

Figure 2.3 illustrates how 2050 EDV deployment relates to the total system-wide CO2, NOX, 

and SO2 emissions across the 108 scenarios. While the scenario parameters influence EDV 

deployment, the EDV deployment does not in turn produce a discernible effect on total 

system-wide emissions. There are three reasons for this lack of observed effect: at present the 

overall share of emissions from the LDV sector is only 20% of U.S. CO2 emissions (EIA, 

2012); EDV charging can still produce comparable emissions to conventional vehicles 
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depending on the grid mix; and the effect of other sectors on emissions is significant. 

Because the CO2 policy has a large and direct effect on system-wide emissions, the emissions 

in the CO2 and no-CO2 policy cases are discussed in turn. 
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Figure 2.3 The estimated total system-wide SO2 (top panel), NOX (middle panel), and CO2 (bottom 

panel) emissions in 2050 associated with the 2050 market share of light duty travel demand met by 

EDVs in each of the 108 scenarios. Scenarios with higher oil prices and lower battery costs are 

presented with larger bubbles and lighter colors, respectively. Scenarios with a CO2 policy are 

enclosed by the dashed boxes. The horizontal spread is largely related to the oil price and battery cost, 

while the vertical spread is determined by the natural gas price and RPS. 
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In the 54 scenarios without a CO2 policy, the horizontal position of the 2050 emissions 

levels are determined largely by the prevailing oil price and battery cost, while the vertical 

spread is determined largely by the natural gas price and the RPS. Although low natural gas 

prices and the presence of the RPS do not produce an effect on EDV deployment, they do 

affect system-wide emissions. The RPS reduces electric sector emissions by forcing a 

minimum share of renewables, which produces a modest reduction in system-wide 

emissions. Similarly, lower natural gas prices lead to higher shares of new natural gas rather 

than coal capacity in the electric sector. The result is uniformly lower system-wide SO2, 

NOX, CO2 emissions at lower natural gas prices.  

By contrast, the CO2 policy imposes a binding constraint on system-wide CO2 emissions, 

which results in 54 scenarios with 2050 emissions of approximately 3500 MtCO2. In these 

cases, the SO2 and NOX also decrease because much of the conventional coal capacity in the 

electric sector is retired.  

Since oil price and battery cost have the largest effect on EDV deployment, we can better 

isolate the effect of EDV deployment on emissions by varying these scenario parameters 

while holding the others constant. Figure 2.4 presents the sector-specific differences in 2050 

emissions between high and low EDV deployment scenarios without the CO2 cap (top panel) 

and with the CO2 cap (bottom panel). The high deployment scenario assumes high oil prices 

and low battery cost, while the low deployment scenario assumes low oil prices and high 

battery cost. All 4 scenarios assume reference case natural gas prices and no RPS. Without 

the CO2 cap, there is no change in electric sector SO2 and NOX emissions because the air 

pollution constraints remain binding. The system-wide net decrease in SO2 and NOX 
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(approximately 3% for each) is largely unrelated to EDV deployment: higher oil prices lead 

to fuel switching in the fuel supply, heavy duty vehicle (HDV), and end-use sectors. Also 

without the CO2 cap, high EDV deployment creates a 21% reduction in LDV CO2 emissions 

but a 13% increase in electric sector CO2 emissions. Accounting for additional changes 

across the remaining sectors, the net system-wide effect is a slight 0.9% decrease in total CO2 

in 2050. EPRI similarly finds little change in electric sector SO2 and NOX emissions due to 

PHEV deployment and an 11% increase in electric sector CO2 emissions in 2030 (EPRI, 

2007). The CO2 cap is binding when in effect, so lower tailpipe CO2 emissions from high 

EDV deployment are compensated by higher CO2 emissions in the electric sector. As a 

result, high EDV deployment can enable the retention of some existing coal in the electric 

sector, which increases both electric sector SO2 and NOX emissions by approximately 24% 

and 7% respectively in 2050, because the air pollution limits are no longer binding.  
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Figure 2.4 Year-2050 sectoral differences in SO2, NOX, and CO2 emissions between high and low 

EDV deployment scenarios without the CO2 cap (top panel) and with the CO2 cap (bottom panel). 

High EDV deployment assumes high oil prices and low battery cost; low EDV deployment assumes 

low oil prices and high battery cost. Both sets of scenarios assume reference case natural gas prices 

and no RPS. ‘HDV’ represents the heavy duty vehicle sector, ‘OH’ represents off highway vehicles, 

and ‘End Use’ represents the end use sectors other than transport (i.e., commercial, industrial, 

residential). ‘Net’ represents the net emissions change across the whole system. 

 

 

 

To quantify the benefit of EDV deployment, the model was run again in the CO2 
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availability of EDVs. Comparing the difference in the marginal CO2 price between the EDV 

and no-EDV runs in both scenarios, the cost savings associated with EDV deployment ranges 

from approximately 30–200 $/tonne CO2 in 2050. While there is much uncertainty associated 

with these price estimates, they nonetheless suggest that EDVs can provide an economic 

benefit under a CO2 policy, though their deployment must be driven by other factors such as 

oil price and battery cost.  

 

2.5 POLICY IMPLICATIONS 

The model results do not demonstrate a clear and consistent trend towards lower system-wide 

emissions as EDV deployment increases. Differences in net emissions among scenarios do 

not stem exclusively from the tradeoff between lower vehicle tailpipe emissions and higher 

electric sector emissions; rather, the scenarios can produce systemic effects that mask the 

effect of EDVs, as shown in Figure 2.4. Therefore, it is not enough to simply incentivize the 

purchase of EDVs and wait for emissions benefits to accrue. The emissions benefits – if any 

– will depend on a broad set of future conditions. Therefore, public policies that target EDV 

deployment should be formulated, reviewed, and revised with careful attention paid to 

evolving changes to the broader energy system over time. 

If the primary objective is to reduce emissions, policy makers should focus on 

implementing targeted emissions policy rather than the promotion of specific technologies or 

fuels. Among the scenario variables tested, the CO2 cap produced the largest and most 

consistent drop in CO2, SO2, and NOX emissions. Although the observed marginal CO2 

prices do not drive significant EDV deployment, the results indicate that EDVs can help 
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lower the marginal price of CO2, particularly if scenario variables favorable to EDVs (high 

oil prices, low battery cost) prevail.  

In the absence of a CO2 policy, the promotion of clean electricity can provide direct 

emissions reductions and also lower the emissions footprint from vehicle charging. The new 

EPA proposed carbon pollution standard and the forthcoming proposed rule on existing coal-

fired power (due out in 2014) could have a significant impact on national emissions and 

eliminate some of the potential emissions increases associated with vehicle charging (U.S. 

EPA Carbon Pollution Standards, 2013). 

Finally, other alternative vehicles are worth a mention. First, compressed natural gas 

(CNG) vehicles are not cost-effective in any scenario, including those with low natural gas 

prices, because low CNG prices are not enough to overcome the higher investment costs. 

Second, the model deploys diesel and diesel hybrids in many scenarios, which may be a cost-

effective way to reduce CO2 emissions given their higher efficiency compared to 

conventional gasoline vehicles. 

While this analysis provides useful insight into the role that EDVs may play in the future, 

a few caveats should be noted. First, we do not capture the potential air quality benefits due 

to shifting emissions out of dense urban areas to more remotely located power plants where 

emissions from large point sources are easier to control. Second, we do not explicitly map the 

all electric range (AER) for plug-in vehicles to the annual distribution of daily trip lengths. 

However, we note that the highest penetration of BEV160 in the model results is 30%, which 

can be assumed to meet 87% of the daily trips less than 160km in length (Bradley and Quinn, 

2010) in the 59% of households with 2 or more vehicles (NHTS, 2009). Third, as noted 
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above, the 10% hurdle rate applied to alternative vehicle technologies is relatively low 

compared to the 20-40% rates published in the literature, so EDV deployment should be 

considered optimistic. We conducted a sensitivity analysis of hurdle rates in the highest EDV 

deployment scenario and found there is a significant drop in EDV deployment as the hurdle 

rate increases from 12-14%, with no deployment of hurdle rate EDVs at 15%. While hurdle 

rates are a crude proxy of consumer choice, the results nonetheless indicate that prevailing 

consumer preferences pose a potentially serious challenge to large scale EDV deployment.  

Fourth, we assume vehicle charging is constant throughout the day. We investigate the 

effects of time-of-day charging on system-wide emissions in Chapter 4. 
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Chapter 3: The Effect of Clean Electricity on CO2 Emissions Reductions 

from Plug-in Electric Vehicles 

 

3.1 INTRODUCTION 

Plug-in vehicles (PEVs), which include both plug-in hybrid electric vehicles (PHEV) and 

battery electric vehicles (BEVs), have received significant attention from the research 

community, automotive industry, and policymakers. Annual PEV sales in the U.S. have 

increased rapidly from 345 in 2010 to approximately 97,000 in 2013, representing 3.8% of 

the market (EDTA, 2014). This rapid growth is due in part to improvements in battery 

technology and financial incentives at the federal and state level (DOE, 2010; DOE, 2014). 

There are currently over 40 different plug-in hybrid electric vehicles (PHEVs) and battery 

electric vehicles (BEVs) under development or available on the U.S. market (PIA, 2014). By 

pushing some or all of the input fuel from gasoline or diesel to electricity, these vehicles have 

the potential to increase the security of US fuel supply, improve air quality, and reduce 

greenhouse gas emissions. 

Given the threat of anthropogenic climate change, the efficacy of using PEVs to reduce 

national CO2 emissions is a key concern and will depend in part on three interdependent 

factors: (1) the degree to which PEVs can penetrate the light duty vehicle (LDV) market, (2) 

the fraction of tailpipe CO2 emissions offset by CO2 emissions from the electric sector 

incurred through vehicle charging, and (3) the potential effect of changing electricity prices 

on PEV deployment, and vice versa. The role that these factors play in determining the net 
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reduction in emissions will depend on a broad set of underlying system-wide conditions that 

unfold over time. While the U.S. Congress is unlikely to pass federal economy-wide climate 

legislation soon, there is increasing likelihood that more targeted electric sector policy may 

be implemented. For example, using their regulatory authority under the Clean Air Act, the 

U.S. EPA recently issued a set of rules pertaining to electric sector CO2 emissions (U.S. EPA 

2014; U.S. EPA 2013). The electric sector has remained a key target for greenhouse gas 

reductions given that existing power plants represent large, stationary point sources that can 

be replaced at relatively low abatement costs (Johnson and Keith, 2004). There are a limited 

number of plausible, targeted electric sector policies that can affect electricity prices and 

emissions, which can in turn affect PEV deployment and charging-related emissions. A key 

challenge is to quantify the incremental change in national CO2 emissions from PEV 

deployment in response to changes in the electric sector over time. 

Given large uncertainties over fuel prices, technological innovation, and potential energy 

and environmental policy, the future U.S. energy system and associated emissions have 

previously been modeled with a wide variety of scenarios and methods. Several studies, 

which treat electric sector emissions through a set of exogenous assumptions, indicate that 

significant emissions benefits from PEVs only begin to accrue with clean electricity (Traut et 

al., 2012; Samaras and Meisterling, 2008; Michalek et al., 201; Kammen et al., 2009; 

Hawkins et al., 2012). However, these studies do not indicate how the electric and 

transportation sectors may co-evolve over time in response to a set of drivers that can affect 

the net emissions from PEVs. Energy system models can address such issues by 

simultaneously optimizing technology capacity and utilization across the entire energy 
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system over time in order to minimize cost, subject to a set of rules that constrain system 

performance due to technological limits or public policy. Several studies utilize energy 

system models to analyze changes in transportation over the next several decades. For 

example, Kyle and Kim (2011) and Wallington et al. (2010) explore the effect of technology 

deployment and CO2 policy on alternative vehicle deployment and emissions abatement, but 

both are focused at the global level. Likewise, McCollum et al. (2012) and Bahn et al. (2013) 

employ the TIMES model generator to examine the effect of CO2 policies on the transport 

sector and the broader energy system; however, these analyses are limited to California and 

Canada, respectively. EPRI and NRDC (2007) examined the emissions impact of PHEVs 

using an energy system model coupled to an electric sector model by examining three PHEV 

deployment scenarios along with three electric scenarios with varying CO2 intensity. Sarica 

and Tyner (2013a) utilize a modified EPA MARKAL model to examine the effects of 

different policy and technology scenarios on the uptake of biofuels. Yeh et al. (2008) explore 

the effects of an economy-wide and transportation-only CO2 cap as well as biofuel mandate 

on the light duty vehicle market. Sarica and Tyner (2013b) also use MARKAL to examine 

the economy-wide changes in primary energy consumption and CO2 emissions in response to 

different policy scenarios, including a new CAFE standard, renewable fuel standard, clean 

energy standard, and federal carbon tax. AEO (2014) also utilizes the NEMS model to 

produce a mid-term forecast of the U.S. energy system, but they do not specifically focus on 

the effect of PEV deployment. While all of these studies make a unique contribution to the 

literature, none specifically addresses an important question: How might U.S. CO2 emissions 
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change over time due to PEV deployment under targeted efforts to reduce electric sector 

emissions? 

In addition to these studies, we previously employed an energy system model to examine 

PEV deployment within the light duty vehicle (LDV) market in response to a broad set of 

conditions: different projections of oil price, natural gas price, vehicle battery cost, a federal 

renewable portfolio standard, and a CO2 cap (Chapter 2; Babaee et al., 2014). We found that 

the oil and the battery cost exert the greatest influence on PEV deployment, which is 

consistent with previous studies (e.g., Kammen et al., 2009). Furthermore, across these 

various scenario conditions, the model results did not demonstrate a clear and consistent 

trend towards lower system-wide emissions as EDV deployment increased. This result is due 

to a couple factors. First, LDV emissions represent a relatively small share of the overall total 

(e.g., 20% of U.S CO2 emissions in 2010), so emissions changes across the broader energy 

system induced by the modeled scenarios can partially mask the emissions effects due to 

PEV deployment. Second, lower tailpipe emissions are partially offset by high electric sector 

emissions. In the scenarios without a CO2 cap, the CO2 intensity of electricity in 2050 only 

decreased by 10-30% compared to the current value of 1220 lbs/MWh (EPA eGRID, 2007). 

In the scenarios with a national CO2 cap, we found that the availability of EDVs reduces the 

price of CO2 emissions by 30-200 $/tCO2 in 2050. While electricity CO2 intensity decreased 

by 90-99% in 2050, the cap was binding in all cases so higher EDV deployment did not lead 

to larger emissions reductions. These results led us to consider a set of targeted electric sector 

scenarios that could reduce emissions over time, thereby increasing the efficacy of using 

PEVs to further reduce CO2 emissions. 
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This paper fills a gap in the literature by employing an energy system model to quantify 

the incremental impact of PEV deployment on national U.S. CO2 emissions through mid-

century under different electric sector scenarios. We consider a base case and three different 

future electricity policy scenarios: a federal renewable portfolio standard, a clean energy 

standard, and the proposed EPA power sector rules. In addition, we examine a separate no-

policy scenario that assumes accelerated technological innovation in wind and solar 

technology that drives lower investment costs. Under all scenarios, we assume conditions 

favorable to PEV deployment in order to quantify the maximum expected emissions benefits. 

To perform the analysis, we employ the TIMES modeling framework coupled to the National 

US TIMES Dataset (NUSTD). NUSTD is an open source, TIMES-compatible dataset we 

developed to examine the impacts of electric drive vehicle deployment on US emissions 

(Energy Modeling, 2014). TIMES-NUSTD models all sectors of the economy, and therefore 

captures the system-wide effects induced by policy on technology deployment and utilization 

as well as the resultant emissions of CO2, SO2, and NOX. The paper is organized as follows. 

Section 2 presents a set of simple calculations to bound the model-based analysis, Sections 3 

and 4 describe the TIMES modeling framework and input dataset used to conduct this 

analysis, Section 5 presents the modeling results, and Section 6 draws high-level insights 

regarding the effect of PEVs on national CO2 emissions under different electricity scenarios. 

 

3.2 BOUNDING THE MODEL-BASED ANALYSIS 

We develop a simple set of calculations that bound the potential emissions benefits from 

PEVs and serve as a check on the model-based analysis presented in Section 3.5. For 
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simplicity, we use current vehicle performance data and reduce the system complexity to two 

key variables: the CO2 intensity of electricity used for vehicle charging and the BEV market 

share within the LDV sector. 

Table 3.1 presents data drawn from EPA TRENDS (2013), which is ultimately used to 

estimate the reduction in national emissions if each LDV size class switches from gasoline to 

BEVs. The first two rows represent the market share and vehicle fuel economy associated 

with each vehicle size class, respectively. In Row 3, the fuel economy associated with the 

gasoline vehicle is then converted to the equivalent electricity requirement for a BEV, 

assuming a 20% thermal efficiency for the internal combustion engine and an 85% battery 

charge/discharge efficiency. For simplicity, we do not account for the additional weight 

associated with the equivalent BEVs, which would increase the electrical energy requirement 

(Shiau et al., 2010). Rows 4 and 5 present the associated CO2 emissions per gasoline and 

electric vehicle if traveled 12,000 miles/year, respectively (ORNL, 2013). For the BEVs, we 

assume that electricity used for vehicle charging emits 1220 lbs/MWh, corresponding to the 

national average CO2 intensity of electricity (EPA eGRID, 2007). 
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Table 3.1 Average CO2 emissions per gasoline and electric vehicle in each size class 
 Vehicle Class 
 

Car Wagon 
Non-Truck 

SUV 
Van 

Truck 

SUV 
Pickup 

Market Share 0.531 
 

0.039 0.068 0.051 0.210 0.100 

Fuel Economy  

(km/lit) 
11.8 12.0 10.3 8.96 8.59 7.35 

Electricity 

Requirement 

(kWh/km) 

0.178 0.175 0.204 0.234 0.244 0.285 

Gasoline:  

CO2 emissions 

(tonnes/yr) 
3.85 3.78 4.41 5.05 5.27 6.16 

Electric:  

CO2 emissions 

(tonnes/yr) 
1.90 1.86 2.17 2.49 2.60 3.03 

 

 

 

Using the data in Table 3.1, displacing gasoline with electricity results in an 

approximately 50% reduction in CO2 emissions within each vehicle size class. Next, we 

estimate the reduction in national CO2 emissions associated with each vehicle class switching 

from gasoline to electricity, assuming that LDVs are currently responsible for 20% of U.S. 

CO2 emissions (EIA, 2012). Figure 3.1 shows the resultant cumulative reduction in national 

CO2 emissions as vehicle size classes with progressively lower fuel economy and higher 

electricity requirements are switched from gasoline to electricity. While BEVs will likely 

continue to penetrate multiple segments of the vehicle market simultaneously, we generally 

expect that smaller electric vehicles requiring smaller, less expensive batteries are likely to be 

deployed in proportionally larger numbers first. Figure 3.1 includes two trajectories: an upper 

line assuming CO2-free electricity, and a lower line assuming electricity with the current 
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national average CO2 intensity. If BEVs took over the entire car and wagon classes 

representing 57% of the LDV market, the total reduction in total US CO2 emissions would be 

5% with the current electricity mix, and 10% with CO2-free electricity. An electricity grid 

with a lower CO2 intensity than today, perhaps under new policy, will result in a trajectory 

that falls between the two extremes plotted in Figure 3.1. In addition, non-zero PHEV market 

share will lead to lower CO2 reductions, as those vehicles consume some gasoline. 

 

 

 
Figure 3.1 The cumulative share of national CO2 emissions displaced as a function of LDV market 

share met with electric vehicles. The top line represents the case where electricity used to charge 

electric vehicles is CO2-free, and the bottom line represents the case where electricity with the 

average U.S. CO2 intensity of 1216 lbs/MWh is used to charge electric vehicles. The label associated 

with each segment represents the size class added to obtain the given market share; ordering 

progresses from the highest to lowest fuel economy. Note that wagons have slightly higher overall 

fuel economy than cars, but we reversed the ordering to more clearly see the effect from cars alone. 

Market shares in 2012 based on ORNL (2013). 
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While based on simple calculations, Figure 3.1 provides a useful set of bounds that help 

ground the model-based results presented in Section 3.5. However, there are several key 

considerations not addressed by this simple, static analysis. First, although we generally 

expect PEV market deployment to occur in the smaller size classes first given the lower 

absolute battery costs, simultaneous deployment across different vehicle size classes will 

affect the shape of the curves above. Second, the LDV share of total national CO2 emissions 

may not remain fixed at 20%, as emissions across the energy system change over time. Third, 

the shift from gasoline to electricity in the LDV sector will also produce changes across the 

broader energy system (e.g., a shift in emissions from oil drilling to coal mining or natural 

gas drilling) that will also affect net emissions. Fourth, electric sector CO2 intensity will 

change dynamically in response to a variety of factors that exert their influence over time. 

Fifth, the marginal CO2 intensity associated with PEV charging may be quite different from 

the average CO2 intensity of the electric sector. Sixth, PEV deployment and associated 

emissions changes will be driven by the prevailing prices for competing technologies and 

fuels. Policy or technological change in the electric sector will affect electricity prices, which 

in turn may affect PEV deployment. Conversely, electric demand associated with PEV 

charging may affect the electric sector mix and electricity prices. The TIMES-NUSTD model 

described in Section 3.3 addresses these issues by exploring the dynamic co-evolution of the 

energy system in response to prevailing market conditions and different energy and 

environmental policy scenarios. 
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3.3 MODEL AND DATA DESCRIPTION 

The model used for this analysis consists of two components: The Integrated MARKAL-

EFOM System (TIMES) (Loulou et al., 2005), which serves as a generic energy optimization 

framework and operates on the National U.S. TIMES Dataset (NUSTD), a TIMES-

compatible dataset constructed specifically for this analysis. 

 

3.3.1 The TIMES model generator 

TIMES is a widely used bottom-up, technology rich energy system model, which represents 

an energy system as a set of networked technologies linked together via flows of energy 

commodities (Loulou et al., 2005). TIMES employs linear programming techniques to 

identify the optimal installed technology capacity and utilization in order to meet a set of 

end-use demands over time, subject to a number of built-in constraints that ensure proper 

operation of the energy system as well as user-defined constraints such as emissions limits 

and growth rate limits on specific technologies. Model outputs by future time period include 

the optimal installed technology capacity, commodity flows, marginal energy prices, and 

emissions. TIMES assumes rational decision-making, with perfect information and perfect 

foresight, and optimizes over an entire set of multi-year modeling periods simultaneously.  

 

3.3.2 The National U.S. TIMES Dataset (NUSTD) 

We developed NUSTD, a TIMES-compatible input dataset containing fuel prices; 

technology cost and performance estimates; and end-use demands to represent the U.S. as a 

single region over the next four decades. NUSTD was carefully documented in Babaee et al. 

(2014) and the updated workbooks required to run the model are publicly available (Energy 
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Modeling, 2014). Here we provide a brief summary of key data elements relevant to this 

study. 

The model time horizon is 2010 to 2050, with 5-year time periods. Intra-annual variation 

in demand and renewable resource availability is represented by specifying 3 seasonal (i.e., 

summer, winter, and intermediate) and 4 diurnal (i.e., morning, mid-day, afternoon/evening, 

and night) time segments. The U.S. is modeled as a single region with no interregional trade. 

A 5% social discount rate is used to convert future expenditures into present cost. As 

described below, a 10% hurdle rate is applied to all alternative vehicle technologies.  

An overview of the energy system representation in NUSTD is provided in Figure 3.2. 

Conceptually, NUSTD can be categorized into several different sectors: fuel supply, electric, 

transport, and the remaining end-use sectors (i.e., commercial, residential, industrial). Fuel 

supply is represented by a set of exogenously specified fuel prices drawn from the output to 

the Annual Energy Outlook (AEO) 2012 (EIA, 2012).  

Given the focus on PEV deployment, the database contains significant technological 

detail in the transportation and electric sectors. The electric sector contains 32 generation 

technologies and 71 pollution control retrofits to reduce NOX and SO2 emissions from 

existing coal-fired power plants. Because the electric sector is modeled explicitly, the price 

of electricity is determined endogenously. As the model only represents 12 timeslices per 

year, it is impossible to accurately model the potential relaibility effects associated with 

intermittent renewables such as wind and solar. To represent the need for backup capacity to 

support intermittent renewables, we added a model constraint (Equation B.8) that requires 

one capacity unit of simple- or combined-cycle gas turbine capacity to be installed for every 
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capacity unit of wind, solar photovoltaics, or concentrating solar thermal installed. This 

backup capacity constraint is loosely based on previous modeling work by Greenblatt et al. 

(2007) and DeCarolis and Keith (2006). 

 

 

 

 
Figure 3.2 Schematic illustrating the design of the National U.S. TIMES Dataset (NUSTD). Given 

the focus on the emissions effects of PEV deployment, there is significant technology detail in the 

electric and transportation sectors. Fuel supply is modeled as a set of exogenously specified, period-

specific price projections drawn from EIA (2012). The commercial, industrial, and residential sectors 

are modeled with fixed end-use demands that can be met with fuels whose shares are constrained. 

 

 

 

The transportation sector includes light duty, heavy duty, and off highway vehicles. 

There are 85 light duty vehicle technologies, which consist of 7 vehicle size classes, 6 fuel 
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EPA (Shay et al., 2006), but vehicle cost information is updated based on AEO (EIA, 2012), 

and electric drive vehicle performance data are drawn from the Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation (GREET) Model (GREET, 2012). The 

following PEV technologies, ordered by their all-electric range (AER) in kilometers, are 

modeled: PHEV20, PHEV60, and BEV160. Hurdle rates are used to adjust the amortized 

cost of alternative fuel vehicles relative to conventional gasoline vehicles in order to partially 

capture non-market factors that may affect their deployment. We allow alternative vehicle 

shares to reach the same levels as in the AEO reference case without a hurdle rate, but 

additional deployment beyond AEO levels requires the use of alternative vehicles with a 

hurdle rate. While studies conducted using surveys have estimated hurdle rates for alternative 

vehicle purchases in the range of 20-50 (Peterson and Michalek, 2013; Mau et al., 2008; 

Horne et al., 2005), our previous work in Chapter 2 indicates that applying even a 20% 

hurdle rate results in zero PEV deployment across a wide range of scenarios (Babaee et al., 

2014). As a result, we assume that consumers make decisions based largely on vehicle cost-

effectiveness.  

The remaining end-use sectors (commercial, industrial, residential) each contain a single 

aggregate energy demand with no explicit representation of demand devices. Instead, base 

year 2010 fuel consumption is constrained to historical shares, and the projected AEO (EIA, 

2012) fuel shares serve as the basis for lower bound fuel share constraints that are gradually 

relaxed over time (Figures A2-A4 and Equations B.20 and B.21). Because there are 

minimum required electricity shares in these end-use sectors, the resultant price for 

electricity is affected not only by transportation demand, but by demand in the other end-use 
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sectors as well. While the lack of technology detail is a key simplification, we assume that 

technology switching in these end use sectors will have a limited effect on vehicle 

deployment. 

 

3.4 SCENARIO INFORMATION 

The promotion of clean electricity can provide direct emissions reductions and also lower the 

emissions footprint from vehicle charging. The effect of clean electricity generation on PEV 

deployment and total system-wide CO2 emissions are investigated in 4 low carbon electricity 

scenarios and compared with a base case scenario.  

 

3.4.1 Base Scenario 

To clearly see the effect of PEV deployment on emissions, we focus on scenarios that result 

in high PEV deployment, which is informed by our previous work. In Chapter 2 (Babaee et 

al., 2014), we examined electric drive vehicle deployment across 108 different scenarios, 

where each scenario represents a unique combination of assumptions regarding future oil 

prices, natural gas prices, vehicle battery cost as well as the presence of a renewable portfolio 

standard and a national cap on CO2 emissions. Similar to earlier studies (e.g., Kammen et al., 

2009), we found that low battery cost and high oil prices have the greatest influence on PEV 

deployment. As such, we adopt the scenario from our previous analysis that leads to the 

highest PEV deployment without new policy, which corresponds to high oil prices, reference 

natural gas prices, and low battery cost. As a result, all scenarios in the current analysis – 

including the Base scenario – include these scenario conditions that lead to high PEV 
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deployment. Fuel prices, with the exception of crude oil, are drawn from the EIA (2012) 

reference case projection. Oil-based commodity prices are drawn from the EIA (2012) High 

Oil Price Case. The low cost battery scenario considers attainment of program goals set forth 

by the DOE’s Office of Energy Efficiency and Renewable Energy, which assumes a battery 

cost of 135 $/kWh in 2035 (EIA Today In Energy, 2013). We only include the effects on 

battery investment cost, not increased efficiency or reduced EDV weight over time, given the 

uncertainty inherent in such estimates. 

Several assumptions regarding policy affecting the U.S. energy system are included in the 

base case, and therefore apply to the four alternative electricity scenarios as well. We account 

for the 29 existing state-level renewable portfolio standards (Equation B.10), which require a 

minimum percentage of electricity to come from renewable sources (DSIRE RPS, 2013). The 

overall minimum share of renewable energy for all states is 2% in 2010 and it increases to 

13% by 2025 (EIA, 2012). The new CAFE standard and the corresponding greenhouse gas 

(GHG) emissions rate limit (EPA Federal Register, 2012) are included as constraints in the 

base case (Equations B.17 and B.18). LDVs are expected to reach a fleet-wide average fuel 

economy of 49.6 miles per gallon and GHG emissions of 163 grams CO2 per mile in model 

year 2025, per the NHTSA and EPA requirements, respectively (AEO, 2012). Consistent 

with AEO (AEO, 2012), the NHTSA standard of 49.6 miles per gallon is multiplied by a 

degradation factor of 80% to approximate on-road fuel economy. To factor out the effects of 

improved air conditioning which we do not model, the EPA standard is implemented as 185 

grams CO2 per mile to only capture the effects of improved energy efficiency. 
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The upper bound constraints on SO2 and NOx emissions from the electric sector 

(Equation B.9) are based on AEO (EIA, 2012) and include implementation of the Mercury 

and Air Toxics Standards (MATS) (EPA MATS, 2012) and the Cross-State Air Pollution 

Rule (CSAPR) (EPA CSAPR, 2013). The renewable fuel requirements in the transportation 

sector (Equations B.14, B.15, and B.16) are based on the Energy Independence and Security 

Act of 2007 (EPA RFS, 2013). The upper bound on cellulosic ethanol availability from 2015-

2020 is obtained from the Renewable Fuel Standard (EPA RFS, 2013) and held constant 

from 2025 to 2050, while the lower bound is based on AEO projections to 2035 (EIA, 2012) 

and linearly extrapolated to 2050. Finally, the effect of existing fuel subsidies and tax credits 

for new vehicles, drawn from AEO
 
(AEO 2012), are included in the baseline cost 

assumptions. We do not include the recently proposed EPA regulations (EPA, 2014) on 

power sector CO2 emissions in the base case, but rather model those in a separate scenario. 

 

3.4.2 Renewable Portfolio Standard (RPS) Scenario 

The modeled federal renewable portfolio standard is based on the Title I of the American 

Clean Energy and Security Act of 2009 (H.R. 2454, 2009). According to this proposal, the 

minimum requirement for renewable energy generation is 9.5% in 2015, which gradually 

increases to 20% by 2020 (Equation B.10). Eligible renewables under this policy include 

wind, solar photovoltaics and concentrating thermal, biomass gasification, and incineration 

of municipal solid waste. For simplicity, we assume that existing renewables are also eligible 

as their existing share was only 3% of 2010 electricity supply (EIA, 2012). 
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3.4.3 The EPA CO2 Rules scenario 

On April 13, 2012, the U.S. EPA proposed a new source performance standard (NSPS) for 

CO2 emissions from electric generating units, including new fossil fuel-fired boilers, 

integrated gasification combined-cycle (IGCC) units, and natural gas-fired stationary 

combustion turbines (EPA, 2013). A CO2 standard of 1100 lbs/MWh (499 kg / MWh) is 

proposed for new fuel-fired boilers, IGCC, and small gas-fired combustion turbines with a 

heat input rating less than 850 MMBtu/hr (897 GJ/hr). A CO2 standard of 1000 lbs/MWh 

(454 kg / MWh) is proposed for large gas-fired combustion turbines with a heat input rating 

less than 850 MMBtu/hr. In this analysis, these emissions rate limits are applied to applicable 

new capacity in model year 2015 and remain in place through 2050 (Equation B.24). 

In addition, on June 2, 2014, the U.S. EPA proposed emission guidelines for states to 

follow in developing plans to address greenhouse gas (GHG) emissions from existing fossil 

fuel-fired EGUs (EPA, 2014). Following Section 111(d) of the Clean Air Act (CAA), the 

proposed rule contains state-specific goals that reflect EPA’s calculation of the achievable 

emission reductions by applying the “best system of emission reduction” (EPA, 2014). EPA 

has proposed two options: Option 1 requires larger emissions reductions over a longer 

timeframe, and Option 2 requires smaller emissions reductions over a shorter timeframe. 

Each state is expected to meet its target using four basic approaches: plant-level heat rate 

improvements, utilizing less carbon-intensive generation, and increasing demand-side 

efficiency improvements. EPA emphasizes that each state should develop its own strategy to 

meet the required emissions reductions, with the flexibility to act independently or on a 

regional basis through interstate cooperation. Given the long model timeframe, we chose to 
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adopt Option 1, which requires a 30% reduction in electric sector emissions by 2030 relative 

to 2005 emissions. Given the nature of the TIMES-NUSTD model employed for this 

analysis, we do not model electric sector capacity at the plant level, and therefore cannot 

effectively consider potential heat rate improvements at individual plants. Also, because the 

end-use sectors include fixed demands, the model cannot employ end-use efficiency 

measures to help meet the required emissions reductions. Finally, the model is focused at the 

U.S. national level, so we cannot model state-level options as U.S. EPA does in their 

regulatory impact analysis (EPA, 2014). Instead, we apply a national-level constraint on 

electric sector CO2 emissions that requires a CO2 emissions reduction below 2005 levels of 

26% in 2020, 29% in 2025, and 30% in 2030 (Table 3.2). The 30% upper bound constraint 

on total CO2 emissions is extended from 2030 to 2050 in this scenario (Equation B.25). 

These reduction requirements must be met through the retrofit of existing fossil fuel-fired 

boilers with carbon capture and sequestration or the deployment of low or zero carbon 

emitting generating units. Because the emissions reductions must be met exclusively through 

changes in electric generation in this model scenario, the expected emissions benefit 

attributable to PEV deployment may be larger than in reality. 

 

3.4.4 Clean Energy Standard Scenario 

The Clean Energy Standard (CES) modeled in this study (Equation B.23) is based on Clean 

Energy Standard Act of 2012, which sets forth a minimum requirement for electricity 

purchase from clean power plants (S. 2146, 2012). The qualifying clean power technologies 

include solar, wind, geothermal, municipal solid waste, biomass, new nuclear, coal-based 
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IGCC-CCS, and NGCC-CCS (S. 2146, 2012). Most existing nuclear and hydro capacity does 

not qualify under this plan, which only considers plants built after 1992; only 2.5% of 

existing nuclear and hydro capacity was built after 1992 (EIA, 2011). Under this model 

scenario, we assume for simplicity that no existing capacity (pre-2010) qualifies under the 

modeled CES. In addition, since the proposal is now two years old, we delayed the 

implementation of the plan from 2015 to 2020. Table 3.2 presents clean energy purchase 

requirements, expressed as a percentage of total electricity generation, for both Clean Energy 

Standard Act of 2012 and our study. 

 

 

 

Table 3.2 Minimum annual requirements for a clean energy standard and a federal EPA CO2 

cap on the electric sector 

Year          Percent Clean Energy EPA CO2 Cap (% reduction from 2005 levels) 

 CES 2012 This study This study  

2015       24.0 NA NA  

2020 39.0 24.0 26.0  

2025 54.0 39.0 29.0  

2030 69.0 54.0 30.0  

2035 84.0 69.0 30.0  

2040 NA 84.0 30.0  

2045 NA 84.0 30.0  

2050 NA 84.0 30.0  

 

 

 

3.4.5 Low Wind and Solar Cost Scenario 

In addition to the three electric sector policy scenarios described above, we also wanted to 

examine a scenario in which technology innovation drives higher deployments of wind and 

solar electric generators in the absence of new policy. Since 2000, electricity generation from 

both wind and solar photovoltaics has grown at annual average rates of 30% (EIA, 2014). 
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With rapid growth and innovation that drives down investment costs, it is possible that the 

accelerated deployment of wind, solar photovoltaics, and concentrating solar thermal could 

lead to significant reductions in electric sector CO2 emissions without additional policy. 

To capture the effects of technology innovation in TIMES-NUSTD, we apply technology 

learning rates to wind and solar, which represent the average reduction in capital cost 

associated with a doubling of capacity. Azevedo et al. (2013) performed a comprehensive 

literature review of historical learning rates for wind and photovoltaics, and found that the 

mean learning rate for wind is 16% and for solar PV is 22%. They also note that while 

learning curves may be reasonable at explaining the past, the use for forecasting or modeling 

future cost trends is likely to be inadequate and the judgment of technology modelers is still 

required to use the appropriate learning rate (Azevedo et al., 2013). Since we do not use 

learning rates in the base case and only apply learning rates to wind, solar photovoltaics, and 

concentrating solar thermal in this model scenario, we assume the rates cited above for wind 

and solar photovoltaics. Given the paucity of data, we also apply the solar PV learning rate of 

22% to concentrating solar thermal. Since we do not consider learning associated with other 

electric generation technology, application of the average historical learning rates for wind 

and solar relative to other technologies with unchanging capital costs represents an 

aggressive but plausible renewable development scenario. Using these rates, a four-fold 

increase in wind and solar capacity would produce a capital cost reduction of 30% and 40%, 

respectively. While there is a high degree of uncertainty in future learning rates, this scenario 

is simply meant to illustrate the possible effects of accelerated renewable deployment within 

the electric sector and the consequent effect on CO2 emissions. 
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In addition, the capacity constraint requiring one unit of gas turbine capacity for each unit 

of wind or solar (described in Section 3.3.2) is lifted under this scenario to further increase 

the cost-effectiveness of renewables relative to other generation options. 

 

3.5 RESULTS 

We present several results from the TIMES-NUSTD analysis that highlight the effect of 

alternative electricity scenarios on electric sector technology deployment, prices, CO2 

intensity, PEV deployment, and the overall effect on system-wide CO2 emissions. Each 

electric sector scenario includes assumptions favorable to PEV deployment, including high 

oil prices and low battery cost to maximize the deployment of PEVs. To quantify the 

marginal effects of PEV deployment, we also ran each of the five scenarios without PEVs. 

We begin by presenting the results from the light duty vehicle sector, followed by electric 

sector results, and finally the incremental effect of PEV deployment on national CO2 

emissions.  

Figure 3.3 illustrates the light duty vehicle market share with and without PEVs in the 

future. Without PEVs included in the model, gasoline vehicles remain dominant, but the 

market shares of ethanol, diesel, and diesel hybrid vehicles increase over time. With PEVs, 

the vehicle deployment is the same across the base case and all three policy scenarios, 

indicating that the effects of electric sector policy do not increase the electricity price enough 

to affect the economics of PEVs relative to other vehicle technologies. As a result, the 

feedback of more costly, lower CO2-intensive electricity on PEV deployment is negligible. 

Likewise, the availability of low cost wind and solar does not lower the price of electricity 
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enough to push PEV deployment levels higher than those in the base case. The market share 

of BEVs begins to dominate the alternative vehicle share post-2030. The higher BEV 

efficiency, larger proportional battery cost reductions in BEVs, and lower cost for electricity 

compared to liquid fuels makes BEVs more cost-effective than PHEVs in the long-run. The 

market share of BEVs and PHEVs in 2050 is 30% and 4%, respectively. As noted in Chapter 

2, diesel and diesel hybrids also make a significant contribution given their high fuel 

economy relative to gasoline vehicles. 

 

 

 
No PEVs 

 

 
With PEVs 

 
Figure 3.3 Market share in the LDV sector when no PEVs are included in the model (left panel) and 

PEVs are allowed to enter the market (right panel). As battery costs fall over time, the BEV market 

share accelerates, reaching a 30% market LDV share in 2050. No differences in LDV market share 

are observed across the various electricity scenarios. 

 

 

 

As discussed above, PEV deployment does not change with the assumed electric sector 

scenarios. Figure 3.4 presents the average cost of electricity across the five studied scenarios 
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with PEVs, which varies from approximately 73-100 $/MWh over the 40-year time horizon. 

The three policy scenarios show an increase in electricity price relative to the base case 

because they apply binding constraints on technology deployment in the electric sector. The 

RPS scenario has a negligible effect on electricity price compared to the base case, as the 

former only supplants a modest amount of new coal and natural gas with additional wind 

power, totaling 364 TWh of wind-generated electricity in 2050 (Figure 3.5). Similar to the 

RPS, the EPA Rules scenario has a small effect on electricity prices, resulting in a 3% 

increase in the 2050 electricity cost relative to the base scenario. The CES has the largest 

effect on electricity prices, resulting in a 16% increase in 2050 relative to the base scenario. 

The CES requires an aggressive deployment of 84% clean energy by 2040, but as the 

requirement is held constant from 2040 to 2050, the deployment rate of more expensive 

renewables slows down considerably and the electricity price remains nearly constant for the 

last decade. The low wind and solar cost scenario does not add a policy constraint to the 

model and features lower renewable costs, so the prevailing price of electricity is 5% lower 

in 2050 compared to the base case. 

To better understand why these variations in electricity price across the 5 scenarios do not 

affect PEV deployment, we calculate the present cost of gasoline and non-hurdle rate battery 

electric vehicles purchased in 2050 across the four vehicle sizes classes in which BEVs are 

available: minicompact, compact, full size, and small SUV. Using the lowest (82 $/MWh) 

and highest (100 $/MWh) electricity prices across the 5 scenarios in 2050, the electricity 

portion of the BEV present cost varies from 5-12%, indicating that the bulk of the BEV 

present cost comes from the investment cost. The present cost of the BEVs is 25-36% lower 
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than their gasoline vehicle counterparts across the high and low electricity prices, which 

suggests that electricity prices do not have a strong effect on the economic tradeoff between 

different vehicle technologies. Because PHEVs derive their motive power from a 

combination of electricity and gasoline, their present cost will be less sensitive to electricity 

prices than BEVs. 

 While we have demonstrated that electricity prices do not have a significant effect on 

PEV cost-effectiveness, it is possible that PEV deployment may affect electricity prices, 

since more electric generating capacity is needed to support vehicle charging. Comparing the 

average 2050 electricity prices with and without PEV availability for each scenario, the price 

difference is negligible and ranges from 0.004% to 1.2%. 
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Figure 3.4 Average annual electricity price ($/MWh) in each of the five studied scenarios. When the 

same scenarios were run without PEVs, the change in average annual price was negligible. 

  

 

 

 Each of the five scenarios leads to different electric sector mixes, as summarized in 

Figure 3.5. Future reductions in electric sector CO2 emissions will hinge critically on the 

retirement of existing coal-fired power plants and the deployment of new low carbon sources. 

In the CES scenario, existing coal-based electricity generation is pushed to nearly zero by 

2050. Because the CES scenario requires more than 80% of U.S. electricity supply post-2030 

to be provided from clean sources, it effectively forces the retirement of existing coal and 

requires the most aggressive deployment of new clean capacity. In addition, the CES 

scenario suggests that wind and solar can compete favorably against fossil alternatives with 
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carbon capture and sequestration, as it leads to the highest deployments of wind and solar 

across the five scenarios. The EPA Rules and Low Cost Wind/Solar scenarios reduce the 

utilization of existing coal by 24% and 47%, respectively, compared to the base scenario in 

2050. Given the increasing price of natural gas over time and the low marginal costs 

associated with coal-fired electricity, coal persists in the U.S. electric sector in the absence of 

aggressive policy such as the CES. Wind plays a large role in all four alternative electricity 

scenarios, and solar makes a significant contribution to electricity supply in the CES and 

Low Cost Wind/Solar scenarios. The model prefers concentrating solar thermal over solar 

photovoltaics given its slightly lower cost. However, this distinction is not robust because the 

two solar technologies have similar cost and performance characteristics given their 

simplified representation with the model.  
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Figure 3.5 Electricity production in representative model periods 2010, 2030, and 2050. Note that the 

CES scenario produces the most dramatic cut in existing coal and the largest deployment of wind and 

solar. 

 

 

 

The effect of existing coal retirement is also evident in Figure 3.6, which presents the 

CO2 emissions intensity (kg/MWh) across the five scenarios, with and without the 

availability of PEVs. All four alternative electricity scenarios lead to a reduction in CO2 

intensity compared to the base scenario by 2050. In both the CES and EPA rules scenarios, 

the CO2 intensity pathway is largely determined by the policy requirements over time. 

Although the CES does not directly regulate CO2 emissions, the aggressive requirements for 

low carbon energy lead to a 52% reduction in 2050 CO2 intensity compared to the base case. 

The EPA Rules scenario directly regulates CO2 emissions, but overall produces less 

technology switching in the electric sector, resulting in a 35% reduction in 2050 CO2 
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intensity compared to the base case. The RPS scenario enables a 9.5% cut in CO2 intensity 

relative to the base scenario in 2050 without increasing the average price of electricity. In the 

Low Wind/Solar Cost scenario, the CO2 intensity is nearly the same as the Base scenario 

through 2040, but then drops below the base scenario in the last decade as the low costs of 

solar and wind plants accelerate wind and solar deployment levels. The CO2 intensity in the 

Base case increases from 2040 to 2050, indicating that in the absence of electric sector 

policy, new coal capacity is cost-effective, particularly in later time periods as the projected 

price of natural gas increases. 
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Figure 3.6 Electric sector CO2 intensity across the five studied scenarios. Results without PEV 

availability are plotted in gray; those with PEVs are plotted in black. For reference, current CO2 

intensities by NERC region are plotted as open circles in 2010. Note that in the base and RPS 

scenarios, PEV deployment leads to higher CO2 intensities in the last decade. 

 

 

 

One of the most interesting features of Figure 3.6 is the difference in CO2 intensity – 
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in the model. In the Base and RPS scenarios, the increased electricity demand associated 

PEV charging leads to higher CO2 intensity than without PEVs. In both cases, steadily 

increasing natural gas prices over the model time horizon make new pulverized coal capacity 
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still meet the requirement, despite the shift towards higher CO2 intensity. In the EPA Rules 

0

100

200

300

400

500

600

700

2010 2015 2020 2025 2030 2035 2040 2045 2050

C
O

2
In

te
n

si
ty

 in
 E

le
ct

ri
c 

Se
ct

o
r 

 (
kg

 C
O

2
/M

W
h

)

Year

Base: No PEVS Base
RPS: No PEVS RPS
CES: No PEVS CES
EPA Rules: No PEVS EPA Rules
Low Wind/Solar Cost: No PEVS Low Wind/Solar Cost

HICC, MRO

RFC

SERC

TRE,FRCC

ASCC

WECC

NPCC

SPP



66 

 

scenario, the upper limit on absolute CO2 emissions means that increasing electricity demand 

will simply require more low carbon electricity generation, thereby dropping the overall CO2 

intensity as electricity demand from PEV charging ramps up in later periods. 

Figure 3.7 presents national U.S. CO2 emissions under all 5 scenarios with and without 

PEV availability, which illustrates the net effect of PEV deployment, electric sector CO2 

intensity, and broader effects across the energy system. Figure 3.7 also splits the changes in 

2050 national CO2 emissions into two components: (1) the CO2 emissions change between 

the Base and each scenario without PEVs, and (2) the incremental change in CO2 emissions 

within each scenario due to PEV deployment. 
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Figure 3.7 CO2 emissions pathways for all five scenarios with and without the availability of PEVs, 

which are represented by black and gray lines, respectively. The percentages to the left represent the 

2050 emissions change between the Base and each scenario without the availability of PEVs, and the 

percentages to the right represent the incremental change in 2050 emissions within each scenario due 

to PEV deployment. 

 

 

 

Figure 3.7 indicates that the PEV deployment in the Base and RPS scenarios actually 

produce a slight increase (less than 1%) in 2050 CO2 emissions. Because the EPA Rules 

scenario effectively provides a cap on CO2 emissions, the increased electricity demand from 

PEV charging does not lead to higher CO2 emissions, but rather an additional 6% drop by 

2050. The incremental emissions benefit under the Low Cost Wind/Solar scenario is a more 

modest 3% in 2050, as a higher share of existing coal is retained in later time periods in order 

to meet the increased demand from vehicle charging. Finally, PEV deployment under the 
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CES scenario also results in an additional 5% decrease in 2050 CO2 emissions, similar to the 

EPA Rules scenario. As PEV charging demand ramps up, the share of clean electricity under 

the CES must be preserved, so the absolute amount of renewables rises and CO2 intensity 

remains relatively constant. For comparison to these modeled scenarios, the simple 

calculations in Section 2 indicate that carbon-free electricity used to charge a 100% electric 

LDV fleet would produce a 20% reduction in national CO2 emissions. In the alternative 

electricity scenarios tested here, the largest reductions in national CO2 emissions due to PEV 

deployment are on the order of 5-6%. 

To understand the effects of PEV deployment on future CO2 mitigation costs, the 2050 

difference in total system cost and CO2 emissions was calculated between the PEV and no-

PEV deployment cases within the EPA Rules, CES, and Low Cost Wind/Solar scenarios. The 

difference in system cost divided by the difference in system-wide CO2 emissions (yielding 

$/tonne CO2) provides a rough estimate of CO2 mitigation cost associated with deploying 

PEVs.  The resultant CO2 mitigation costs are 270, 290, 620 $/tonne CO2 in 2050 for the 

EPA Rules, CES, and Low Cost Wind/Solar scenarios, respectively. The higher mitigation 

cost in the low cost wind and solar scenario occurs because the additional electricity load 

associated with vehicle charging is partially met by new coal, which leads to higher electric 

sector CO2 emissions compared to the EPA Rules and CES scenario, which have stringent 

requirements for new capacity with low CO2 emissions. For comparison, these CO2 

mitigation costs are an order of magnitude higher than EPA’s social cost of carbon, which 

has an average value of 28 $/tonne CO2 in 2050 using a 5% discount rate (EPA, 2013). 
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3.6 DISCUSSION 

We have quantified the incremental change in CO2 emissions associated with PEV 

deployment under different electric sector scenarios over time. Rather than focus on 

parametric variation of electricity CO2 intensity, we modeled the entire energy system in 

order to explore how changes in the national grid mix could affect PEV-related emissions. 

We focus attention on scenarios that are favorable to PEV deployment, including high oil 

prices, low battery cost, and use of a relatively low 10% hurdle rate for alternative vehicle 

purchases, which collectively result in a 34% share of PEVs within the LDV market. As 

shown in Figure 3.7, the alternative electric sector scenarios without PEVs result in national 

CO2 emissions reductions ranging from 4-36% in 2050. Allowing PEV deployment changes 

emissions by an additional +0.5% to -6% in 2050. Thus the direct effect of electric sector 

policies in reducing electricity-related CO2 emissions is much larger than the effect produced 

by PEV deployment. 

The model results suggest the following policy-relevant insights. First, the alternative 

electricity scenarios produce a wide range of emissions reductions. Given the threat of 

anthropogenic climate change, policymakers would be wise to revisit the CES, which 

produced the largest emissions reductions, or perhaps an aggressive, system-wide cap-and-

trade system. Second, PEV deployment is relatively robust to changes in electricity price. So 

reducing electric sector CO2 emissions will improve the efficacy of using PEVs to further 

reduce emissions without producing a significant effect on PEV cost-effectiveness. Third, 

wind, and to a lesser extent solar, compete favorably against other low carbon options in the 

CES scenario, suggesting that continued support for these technologies through government 
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research & development as well as the production tax credit is warranted. Fourth, pulverized 

coal remains a viable generation option, particularly as natural gas prices increase over time, 

leading to generally higher carbon intensities from 2040-2050 in the absence of policy 

constraints. As a result, incremental changes in electricity supply to meet PEV charging 

requirements can produce a significant increase in marginal CO2 emissions. For instance, in 

the Base and RPS scenarios, changes in electricity supply to meet PEV charging 

requirements actually lead to a slight 0.5-0.6% increase in overall 2050 CO2 emissions. 

Interestingly, the EPA Rules scenario inoculates the electric sector to this possibility by 

effectively capping electric sector CO2 emissions. As a result, electricity demand for PEV 

charging leads to a decrease in electric sector CO2 intensity, producing a significant 6% 

incremental reduction in CO2 emissions due to PEV deployment. These results highlight a 

key point: Policymakers must be attentive to electric sector developments when considering 

policy related to PEV deployment, as the marginal changes to electricity supply to 

accommodate vehicle charging can produce a range of effects on net CO2 emissions.  

There are several underlying uncertainties that can affect the CO2 projections shown in 

Figure 3.7. The first uncertainty relates to the projected level of PEV deployment. In this 

analysis we assume conditions favorable to PEV deployment, including high oil prices and 

low battery prices. Under less favorable conditions – such as the continuation of current low 

crude oil prices around 70 $/barrel (EIA, 2014) – fewer PEVs will be deployed and their 

ability to affect national CO2 emissions will be reduced. By contrast, surging oil prices, the 

rapid development of battery technology, aggressive investment in public charging 

infrastructure, and increased consumer acceptance of driving range limitations can push PEV 
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deployment to levels well beyond the 34% of the LDV fleet shown here. All else equal, 

higher PEV deployment levels will magnify the CO2 emissions effects from PEVs shown in 

Figure 3.7. 

 A second key uncertainty relates to natural gas and coal prices, which can affect electric 

sector technology deployment and utilization. As shown in Figure 3.5, the base and RPS 

scenarios include increased coal development towards mid-century as natural gas prices 

continue to rise. The model results suggest that the marginal generation used to charge a 

future PEV fleet could partially come from new coal plants. If instead natural gas prices 

remain low and/or coal prices increase over several decades, new NGCC generation could 

supplant coal generation, lowering the emissions footprint of both PEVs and the broader 

electric sector. 

A third key uncertainty relates to technology innovation. Capital cost reductions in wind, 

solar, nuclear, and grid-scale storage could enable lower electric sector CO2 intensities and 

push Base Case CO2 emissions due to PEV deployment from a modest increase to a decrease.  

By contrast, stagnant innovation of low carbon electric generators in the absence of new 

policy could result in higher Base Case CO2 emissions than projected here, which could 

increase the marginal CO2 emissions associated with PEV charging.  

A fourth uncertainty pertains to policy implementation. For example, an RPS or CES can 

vary widely based on its timeline for implementation and the stringency of the requirements. 

Aggressive, coordinated low carbon electric sector policy along with high levels of PEV 

deployment could maximize the CO2 emissions benefit of PEVs while weak, uncoordinated 
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electric sector policy along with high levels of PEV deployment could produce marginal 

increases in CO2 emissions.  

Given the complexity of the system we are trying to model, several caveats should be 

noted. First, as with all energy system models, ours is a radical simplification of the real 

world. Second, the scenarios analyzed here are not predictions but rather stylized pathways 

from which useful insight about future possibilities can be derived. For example, given the 

model granularity, we do not model the possibility of boiler retrofits to increase thermal 

efficiency or increased end use efficiency in the EPA Rules scenario, which may overstate 

the effects of EPA’s proposed rules on the U.S. generation portfolio. Third, we do not 

account for regional variation in resource availability or generation mix; consideration of 

which could lead to additional insight regarding regional policy strategies. Fourth, while we 

do not consider radical technological breakthroughs or geopolitical developments that could 

push PEV deployment beyond 34%, we nonetheless consider the deployment levels and 

associated effects to be on the optimistic side because we assume high oil prices, low battery 

cost, and a low hurdle rate of 10% across all modeled scenarios. Fifth, for simplicity, we 

assume that electricity demand from vehicle charging is constant throughout the day. 

Preliminary work on our part indicates that stacking vehicle charging demand in a more 

limited daily time window (e.g., 8 hours) does not have a significant effect on PEV 

deployment or emissions. Finally, while we focus attention on CO2 emissions, the 

deployment of PEVs can also produce a significant reduction in crude oil consumption and 

improvements in air quality, particularly in urbanized areas, which we do not address. As 
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such, the results from this study should not be used to pass judgment on the overall utility of 

PEV deployment. 
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Chapter 4: The Effect of Time-of-Day Plug-in Electric Vehicle Charging on 

U.S. Power Generation and CO2 Emissions  

 

4.1 INTRODUCTION 

Vehicle electrification is often identified as an effective strategy to reduce oil dependence, 

greenhouse gas (GHG) emissions, and air pollution (Michalek et al., 2011; Silva et al., 2009; 

and EPRI, 2007). The transport and electric sectors have evolved independently over the last 

several decades because they use different fuel sources. Plug-in electric vehicles (PEVs), 

which include both plug-in hybrid electric vehicles (PHEVs) and battery electric vehicles 

(BEVs), directly couple the electric and transport sectors through the process of vehicle 

charging. Time-of-day PEV charging may have a significant effect on the diurnal distribution 

of electricity demand, which in turn can affect the electricity generation mix, electricity price, 

and technology deployment across the broader energy system.  

Several previous studies have investigated the impacts of charging power requirements, 

time, or PEV location on hourly electricity load patterns over the course of a day or week 

(Harris and Webber, 2014; Yao et al., 2013; Kelly et al., 2012; Weiller, 2011; Wang et al., 

2011; Zhang et al., 2011; Clement et al., 2010; Tate and Savagian, 2009; EPRI, 2007; 

Kintner-Meyer et al., 2007; Parks et al., 2007; Denholm et al., 2006).  

Sioshansi et al. (2010), Hadley and Tsvetkova (2009), and Parks et al. (2007) provide 

comprehensive analyses of the fuel and plant types used to generate the required electricity 

for PEVs based on different charging scenarios. Kim and Rahimi (2014), Peterson et al. 
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(2011), Axen et al. (2011), and Shiau et al. (2009) examine the effect of different charging 

strategies on hourly electricity load, energy consumption, GHG emissions, and lifetime cost 

associated with PEVs. Peterson and Michalek (2013), NRC (2013a), and Morrow (2008) 

estimate the lifetime gasoline consumption and charging infrastructure cost of PEVs 

associated with different charging times and locations. Yao et al. (2013), Traut et al. (2012), 

and Kristofferson et al. (2011) minimize life cycle cost or GHG emissions for the fleet of 

PEVs based on different charging times, locations, and electricity prices. All of these studies 

employ sector-specific electric and transportation models, but do not indicate how the 

electric and transportation sectors may co-evolve over time in response to a set of scenario 

drivers and charging strategies that can affect PEV deployment. The various charging 

strategies (e.g., time-of-day vehicle charging) when combined with policy scenarios (e.g., a 

federal CO2 cap) may affect electricity prices, technology deployment, and fuel use 

throughout the energy system.  

A growing body of literature has also focused on PEV smart charging. For instance, one 

strategy is to charge PEVs when the electricity demand is lowest to make maximal use of 

existing power plants (Iversen et al., 2014; Weis, 2014; Richardson, 2013). Several studies 

investigate the effects of smart charging on the electricity transmission and distribution 

network (Kiviluoma et al., 2011; Green II et al., 2011; Denholm et al., 2006). These studies 

treat the electricity generation mix through a set of exogenous assumptions and do not 

account for the potential effects of smart charging through the broader energy system over 

time and in response to different policy and technology scenarios. For example, charging 
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PEVs over night, when electricity demand is lowest, may have a significant effect on 

electricity prices if combined with a CO2 cap that requires more expensive baseload plants. 

Previous analyses based on energy system models do not consider charging strategies 

(McCollum et al., 2012; AEO, 2012; Van Vliet et al., 2010; Yeh et al., 2008; Turton et al., 

2007). They explore technology deployment in the transportation and electric sectors for 

several scenarios assuming constant charging demand from PEVs. Yet time-of-day charging 

can exert influence over power system development over time as PEV deployment increases. 

The goal of this paper is to examine the potential impact of time-of-day PEV charging on 

electricity prices, generation mix, and total system-wide CO2 emissions under several 

scenarios that consider different PEV deployment levels, time-of-day charging patterns, and 

policy options that could promote dramatic changes in the future electric sector mix. To 

perform the analysis, we use, the Integrated MARKAL-EFOM System (TIMES), a bottom-

up, technology rich energy system model generator, which allows us to account for coupled 

electric and transport system development as well as interactions across the energy system 

over time. We developed the TIMES-compatible National US TIMES Dataset (NUSTD) 

(Energy Modeling, 2014) as an input dataset, which is specifically designed to look at the 

effects of PEV deployment under different future scenarios. This analysis draws from and 

builds on our previous work in Chapter 2, which examined 108 future scenarios and the 

resultant PEV deployment, electric generation mix, and system-wide emissions. The next 

section provides a brief overview of the model and dataset employed in this analysis, 

followed by a description of the charging time scenarios in Section 4.3. Sections 4.4 and 4.5 

present key results and draw conclusions, respectively. 
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4.2 MODEL AND DATABASE DESCRIPTION 

The model used for this analysis consists of two components: The Integrated MARKAL-

EFOM System (TIMES) (Loulou et al., 2005), which serves as a generic energy optimization 

framework and operates on the National U.S. TIMES Dataset (NUSTD), a TIMES-

compatible dataset constructed for this analysis. 

 

4.2.1 The TIMES Model Generator 

TIMES is a widely used bottom-up, technology rich energy system model, which represents 

an energy system as a set of networked technologies linked together via flows of energy 

commodities (Loulou et al., 2005). TIMES employs linear programming techniques to 

identify the optimal installed technology capacity and utilization in order to meet a set of 

end-use demands over time, subject to a number of built-in constraints that ensure proper 

operation of the energy system. In addition, user-defined constraints, such as emissions caps 

or growth rate limits on specific technologies, can be used to represent particular systems or 

scenarios. The model is driven by an objective function that minimizes the system-wide cost 

of energy supply over the user-specific time horizon. Model outputs by future time period 

include the optimal installed capacity and utilization of each technology, marginal energy 

prices, and emissions. TIMES assumes perfect information and perfect foresight, optimizing 

over an entire set of multi-year modeling periods simultaneously.  

 

4.2.2. The National U.S. TIMES Dataset (NUSTD) 

We developed NUSTD, a TIMES-compatible input dataset containing fuel prices, technology 

cost and performance estimates, and end-use demands to represent the U.S. as a single region 
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over the next four decades. NUSTD was carefully documented in Babaee et al. (2014) and 

the updated workbooks required to run the model are publicly available (Energy Modeling, 

2014). Here we provide a brief summary of key data elements relevant to this study. 

The model time horizon is 2010 to 2050, with 5-year time periods. The U.S. is modeled 

as a single region with no interregional trade. A 5% social discount rate is used to convert 

future expenditures into present cost. As described below, a 10% hurdle rate is applied to all 

alternative vehicle technologies.   

NUSTD is organized into several different sectors: fuel supply, electric, transport, and the 

remaining end-use sectors (i.e., commercial, residential, industrial). Fuel supply is 

represented by a set of exogenously specified fuel prices drawn from the output to the 

Annual Energy Outlook (AEO) 2012 (EIA, 2012).
 
Given the focus on PEV deployment, the 

database contains significant technological detail in the electric and transportation sectors. 

The electric sector contains 32 generation technologies and 71 pollution control retrofits to 

reduce NOX and SO2 emissions from existing coal-fired power plants. Because the electric 

sector is modeled explicitly, the price of electricity is determined endogenously. To represent 

the need for backup capacity to support intermittent renewables such as wind and solar, we 

added a model constraint that requires one capacity unit of simple- or combined-cycle gas 

turbine capacity to be installed for every capacity unit of wind, solar photovoltaics, or 

concentrating solar thermal installed (Equation B.8). This backup capacity constraint is 

loosely based on previous modeling work by Greenblatt et al. (2007) and DeCarolis and 

Keith (2006). 
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The transportation sector includes light duty, heavy duty, and off highway vehicles. 

There are 85 light duty vehicle technologies, which consist of 7 vehicle size classes, 6 fuel 

types, and 13 vehicle types.  Much of the vehicle cost and performance data is derived from 

EPA (Shay et al., 2006), but vehicle cost information is updated based on AEO (EIA, 2012). 

Hybrid vehicle and PEV performance data are drawn from the Greenhouse Gases, Regulated 

Emissions, and Energy Use in Transportation (GREET) Model (GREET, 2012). The 

following PEV technologies, ordered by their all-electric range (AER) in kilometers, are 

modeled: PHEV20, PHEV60, and BEV160.  

A 10% hurdle rate is used to adjust the amortized cost of alternative fuel vehicles relative 

to conventional gasoline vehicles in order to partially capture non-market factors that may 

affect their deployment. We allow alternative vehicle shares to reach the same levels as in the 

AEO reference case without a hurdle rate, but additional deployment beyond AEO levels 

requires the use of alternative vehicles with the 10% hurdle rate. While studies conducted 

using surveys have estimated hurdle rates for alternative vehicle purchases in the range of 20-

50 (Peterson and Michalek, 2013; Mau et al., 2008; Horne et al., 2005), previous work in 

Chapter 2 indicates that applying even a 20% hurdle rate results in zero PEV deployment 

across a wide range of scenarios. As a result, we assume that consumers make decisions 

based largely on vehicle cost-effectiveness.  

The remaining end-use sectors (commercial, industrial, residential) each contain a single 

aggregate energy demand with no explicit representation of demand devices. Instead, base 

year 2010 fuel consumption is constrained to historical shares, and the projected AEO (EIA, 

2012) fuel shares serve as the basis for lower bound fuel share constraints that are gradually 
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relaxed over time (Figures A2-A4 and Equations B.20 and B.21). Because there are 

minimum required electricity shares in these end-use sectors, the resultant price for 

electricity is affected not only by transportation demand, but by demand in the other end-use 

sectors as well. While the lack of technology detail is a key simplification, we assume that 

technology switching in these end use sectors will have a limited effect on vehicle 

deployment. 

 

4.2.3 Time-Slices Used in NUSTD 

The TIMES model generator optimizes the flow of energy commodities over a set of user-

defined seasons and times-of-day. The combination of each season and time-of-day (e.g., 

winter-night) is referred to as a “time-slice” (Loulou et al., 2005). The commodity flows 

within each time-slice are used to determine the optimal technology capacity and activity 

associated with a representative year within each user-defined model time period.  

Less temporal resolution (i.e., fewer seasons and time-of-day segments) decreases model 

run time, however, greater temporal resolution can more accurately represent demand, which 

can be critical when modeling electricity supply. The original time-slice fractions, which are 

drawn from Shay et al. (2006), are based on 3 seasonal (i.e., summer, winter, and 

intermediate) and 4 diurnal (i.e., morning, mid-day, afternoon/evening, and night) time 

segments, thus creating a total set of 12 time-slices. To study the effect of time-of-day 

charging on electricity prices and PEV deployment with greater temporal resolution, we 

increase the number of diurnal time segments from 4 to 12 in order to represent two-hour 

intervals, resulting in a total of 36 time slices when applied across all three modeled seasons 
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(summer, winter, intermediate). We do not increase the number of seasons, as we expect 

seasonal variations in charging demand to be a second order effect. 

These time slices provide the flexibility to look at three different diurnal charging 

scenarios: constant, night (12am-4am), and an extreme scenario where all charging demand 

occurs in the 2-hour time slice associated with peak daily electricity demand within each 

season. We model the latter 2-hour charging case because it represents an extreme upper 

bound on how vehicle charging can affect grid development and performance. For reference, 

two hours of charging at a 240 volt charging station (Level 2 charger) can fully charge a 

Toyota Prius (PHEV20), charge a Chevrolet Volt (PHEV60) to more than 50%, and a Nissan 

Leaf (BEV160) to approximately 25% (Toyota, 2014; Chevrolet, 2015; Nissan, 2015). 

In order to parameterize these new time-slices within the model, we need to calculate the 

fraction of a year represented by each time slice, which can be obtained by multiplying the 

fraction of a day associated with each diurnal slice (i.e., 2/24) with the fraction of a year 

associated with each season (i.e., winter = 0.3315; summer = 0.3342; intermediate =0.3343) 

(Shay et al., 2006). The resultant time-slice fractions used in this analysis are presented in 

Table 4.1. 
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Table 4.1 The sub-annual time-slice fraction 

Time-slice Name
a
  Fraction of a Year 

S0-2, S2-4, S4-6, S6-8, S8-10, S10-12, S12-14,  

S14-16, S16-18, S18-20, S20-22, S22-24 
0.02785 

W0-2, W2-4, W4-6, W6-8, W8-10, W10-12, W12-

14, W14-16, W16-18, W18-20, W20-22, W22-24 
0.02763 

I0-2, I2-4, I4-6, I6-8, I8-10, I10-12, I12-14, I14-16, 

I16-18, I18-20, I20-22, I22-24 
0.02786 

                                  a S: Summer, W: Winter, I: Intermediate; Numerical ranges correspond to the two-hour intervals within a day 

 

 

 

As discussed in Section 4.2.2, each end-use sector (residential, commercial, and 

industrial) contains a single aggregate demand which is distributed across time-slices to 

represent the amount of demand occurring within a given time-slice. The following 

subsection describes how demand in each end-use sector is reallocated from the original 12 

EPA time-slices to the 36 two-hour time-slices shown in Table 4.1.  

 

4.2.4 Demand Reapportionment in the Residential, Commercial, and Industrial Sectors 

In this analysis, the total end-use demand for the residential, commercial, and industrial 

sectors is partitioned into dedicated electricity demand and “other” demand. For each end-use 

sector, the dedicated electricity demand represents the sum of all end-use demands in each 

time period that can only be met with electricity (e.g., lighting, freezing, and cooling 

demand). By contrast, the “other” demand is the sum of other end-use demands (e.g., space 

heating and water heating) that can be met with other fuels as well as electricity. The end-use 

demand data are obtained from EIA (2012) for each end-use sector and are distributed 

throughout the EPA time-slices based on the annual fraction of each end-use demand 

occurring within each time-slice drawn from Shay et al. (2006). Both the dedicated electricity 
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and “other” demands are then reallocated to the new 2-hour time-slices. A step-by-step 

description of the demand reapportionment process in the end-use sectors is provided in 

Appendix D.  

 

4.3 SCENARIO DESCRIPTION 

We focus on three scenarios with high PEV deployment and compare the results with the 

base scenario. Focusing on high deployment scenarios allow us assess the upper bound 

impacts of time-of-day charging across the energy system, which can help determine whether 

additional analysis at different PEV deployment levels is warranted. We assume three time-

of-day charging scenarios: constant, peak, and night. In all cases, we assume no seasonal 

variation in charging patterns, only diurnal. In the constant charging scenarios, the PEV 

charging occurs at a constant rate throughout the day. In the peak charging scenarios, the 

PEV charging occurs during the 2-hour interval with the highest electricity demand 

throughout the system, corresponding to 2pm to 4pm each day. In the night charging 

scenarios, PEV charging occurs over the 4-hour interval spanning midnight to 4am every 

day. As described below, we examine four different deployment scenarios, which include a 

base case, a high deployment case, and a high deployment case coupled with new policies 

related to CO2 reduction and clean energy deployment. The total number of model scenarios 

is 12, which represents every combination of four PEV deployment scenarios and three 

charging times. The assumptions made in each set of PEV deployment scenarios are outlined 

in the subsections below. 

 



90 

 

4.3.1 Base Scenario 

The base and high PEV deployment scenarios are based on our previous work in which we 

examined electric drive vehicle deployment across 108 different scenarios (Babaee et al., 

2014). Each scenario represents a unique combination of assumptions regarding future oil 

prices, natural gas prices, vehicle battery cost as well as the presence of a renewable portfolio 

standard (RPS) and a national cap on CO2 emissions. For our base case in this analysis, we 

adopt the scenario corresponding to reference oil prices, reference natural gas prices, 

reference battery cost, no RPS, and no CO2 policy, which resulted in a 15.6% PEV market 

share in the light duty vehicle (LDV) sector in 2050 (Babaee et al., 2014). Several existing 

policies that affect baseline system performance, including CAFE standards (EPA Federal 

register, 2012), the Mercury and Air Toxics Standards (MATS) (EPA MATS, 2012), the 

Cross-State Air Pollution Rule (CSAPR) rules (EPA CSAPR, 2013), state-level renewable 

portfolio standards (DSIRE RPS, 2013), and the Renewable Fuel Standard (EPA RFS, 2013), 

are described in Chapter 2 and are included in all the scenarios tested in this analysis 

(Equations B.9, B.10, and B.14 to B.18). 

 

4.3.2 High PEV scenario [PEV] 

We adopt the highest PEV deployment scenario drawn from Chapter 2 that excludes new 

policy. The highest PEV market share achievable without new policy is 34% in 2050, and 

includes high oil prices, reference natural gas prices, and low battery cost (Babaee et al., 

2014). 
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4.3.3 High PEV with CO2 cap scenario [PEV(CO2)] 

A federal cap on national U.S. CO2 emissions is based on a review of four proposed federal 

climate bills introduced in the US Congress in the last 7 years (U.S. EPA legislative analyses, 

2013). We chose to model a cap on national CO2 emissions assuming uniform, linear 

reductions in each 5-year period until a 40% reduction in the 2010 energy-related emissions 

level is achieved by 2050 (Equation B.22). The high PEV with CO2 cap scenario includes the 

same assumptions as the high PEV scenario, but with the addition of the CO2 cap. 

 

4.3.4 High PEV with Clean Energy Standard (CES) scenario [PEV(CES)] 

The Clean Energy Standard (CES) modeled in this study (Equation B.23) is based on the 

Clean Energy Standard Act of 2012, which sets forth a minimum requirement for electricity 

purchase from clean power plants (S. 2146, 2012). The qualifying clean power technologies 

include solar, wind, geothermal, municipal solid waste, biomass, new nuclear, coal-based 

IGCC-CCS, and NGCC-CCS (S. 2146, 2012). Most existing nuclear and hydro capacity does 

not qualify under this plan, which only considers plants built after 1992; only 2.5% of 

existing nuclear and hydro capacity has been built since 1992 (EIA, 2011). Under this model 

scenario, we assume for simplicity that no existing capacity (pre-2010) qualifies under the 

modeled CES. In addition, since the proposal is now two years old, we delayed the 

implementation of the plan from 2015 to 2020. Table 4.2 presents clean energy purchase 

requirements, expressed as a percentage of total electricity generation, for both the Clean 

Energy Standard Act of 2012 and our study. 
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Table 4.2 Minimum annual requirements for the modeled CES 

Year          Percent Clean Energy 

 CES 2012 This study 

2015       24.0 NA 

2020 39.0 24.0 

2025 54.0 39.0 

2030 69.0 54.0 

2035 84.0 69.0 

2040-2050 NA 84.0 

 

 

 

Table 4.3 summarizes the 12 modeled scenarios based on the PEV deployment level, new 

policy, and assumed time-of-day charging. 

 

 

 

Table 4.3 Charging Scenarios 

Scenario Name
a
  Brief Scenario Description 

Base-C Base PEV deployment with constant charging 

Base-P Base PEV deployment with peak charging 

Base-N Base PEV deployment with night charging 

PEV-C High PEV deployment with constant charging 

PEV-P High PEV deployment with peak charging 

PEV-N High PEV deployment with night charging 

PEV(CO2)-C High PEV deployment with a CO2 cap and constant charging 

PEV(CO2)-P High PEV deployment with a CO2 cap and peak charging 

PEV(CO2)-N High PEV deployment with a CO2 cap and night charging 

PEV(CES)-C High PEV deployment with a CES and constant charging 

PEV(CES)-P High PEV deployment with a CES and peak charging 

PEV(CES)-N High PEV deployment with a CES and night charging 
     a-C: Constant charging, -P: Peak charging, -N: Night charging 
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4.4 RESULTS 

We present LDV deployment, electricity mix, average electricity prices, and system-wide 

CO2 emissions associated with all 12 tested scenarios. Figure 4.1 displays the LDV market 

share for the 12 modeled scenarios through 2050.  In the Base scenarios (top left), the vehicle 

deployment is the same with constant, peak, and night charging, implying that the electricity 

price does not fluctuate enough to affect PEV deployment. The market penetration of BEVs, 

which is the only PEV technology in the Base scenarios, is 1% in 2030 and increases to 

15.6% by 2050.  

 Differences in time-of-day charging can produce modest changes in deployment when 

the high PEV deployment scenario is examined under different policy futures. The PEV 

market share is identical in the PEV-C, PEV(CO2)-C, and PEV(CES)-C scenarios through 

2050, indicating that the effect of different policy futures does not change vehicle market 

shares when vehicle charging remains constant through the day. In all three cases, the 2050 

share of PHEV60 and BEV160 is 4% and 30%, respectively. 

The middle plots in Figure 4.1 illustrate the results with peak charging. LDV shares under 

the PEV-P (left) as well as PEV(CO2)-P and PEV(CES)-P scenarios (right) are almost the 

same through 2045. However, the 2050 market penetration of BEVs is 2% lower in the PEV-

P (no policy) scenario. This result indicates that the need to use low carbon, clean energy 

under the policy scenarios drives slightly higher demand for PEVs, despite the higher cost of 

electricity, as shown in Figure 4.2. As a result, the model tends to build larger amounts of 

more efficient BEVs in the smaller size classes in the policy scenarios versus smaller 

amounts of larger BEVs in the no policy scenario. Across all three peak charging scenarios, 
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PHEV60 gradually disappears by 2045 and is replaced by PHEV20, which has 4% of LDV 

market share in 2050, in part due to increasing electricity prices.   

In the night charging scenarios with high PEV deployment (Figure 4.1, bottom), the LDV 

market share across all three policy scenarios is almost the same through 2050. Similar to the 

constant charging scenarios with high PEV deployment, the market penetration of BEVs 

increases to 30% by 2050. However, there are slight differences in the market share of 

PHEVs. In the PEV-N and PEV(CO2)-N scenarios, the market share of PHEV60 declines by 

3% from 2030 to 2050 while the share of PHEV20 increases by 2.6% over the same period. 

In the PEV(CES)-N scenario, the market share of PHEV60 declines by 3.75% from 2030 to 

2050 while the share of PHEV20 increases by 3.5% over the same period. As shown in 

Figure 4.2, the slight shift from PHEV60 to PHEV20 deployment in the PEV(CES)-N 

scenario is due to higher electricity prices compared to the PEV-N and PEV(CO2)-N 

scenarios. 
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Figure 4.1 LDV market shares associated with all 12 scenarios, organized by time-of-day PEV 

charging: constant (top row), peak (middle row), and nighttime (bottom row).  
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Figure 4.2 presents the average annual electricity price in $/MWh across the 12 scenarios 

from 2010-2050. Over the 40-year model time horizon, the average annual electricity cost 

varies from 73 to 107 $/MWh across 12 charging scenarios. The PEV(CES)-P scenario 

shows the largest effect on electricity prices, resulting in a 22% increase in the 2050 

electricity price relative to the Base-C scenario. Because the CES requires an aggressive 

deployment of 85% clean electricity by 2040, the electricity price increases significantly until 

2040. The CES requirement is held constant from 2040 to 2050 and the electricity price only 

increases 5% for the last 10 years in the PEV(CES)-P scenario.   
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Figure 4.2 Average annual electricity price ($/MWh) for each charging scenario. The highest and 

lowest electricity price corresponds to the PEV(CES)-P and Base-N scenarios, respectively. 

 

 

 

The annual average electricity price for the Base-N and PEV-N scenarios is 2.7% lower 

than the Base-C scenario in 2050. The electricity generation associated with the night 

charging scenarios is largely provided by existing and new coal steam power plants, which 

are more cost-effective than new combined-cycle natural gas (NGCC) power plants, resulting 

in lower electricity prices associated with night charging. By contrast, coupling either the 

CO2 cap or CES with the night charging scenario requires significant retirement of existing 

baseload coal. The presence of low carbon technology options under the policy scenarios 

increases the electricity cost by 3% and 11% in PEV(CES)-N and PEV(CO2)-N scenarios in 
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the last decade, respectively. Looking beyond the electric sector, variations in electricity 

prices across the 12 modeled scenarios are not large enough to shift the share of electricity 

consumed (relative to other fuels) in the residential, commercial, and industrial sectors.  

Figure 4.3 illustrates the electricity generation mix associated with each modeled 

scenario, grouped by time-of-day charging. In the Base scenarios (top), the electricity 

generation from new baseload coal steam begins to increase in Base-N after 2035 and 

electricity production from NGCC plant decreases, unlike the pattern of NGCC deployment 

exhibited in Base-C and Base-P. The NGCC deployment level for the Base-N scenario is 

38% less relative to the Base-C scenario in 2050.  
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Figure 4.3 Total electricity generation by plant type, time period, and time-of-day charging for Base 

scenarios (top panel), high PEV deployment scenarios with no policy (second middle panel), high 

PEV deployment scenarios with a CO2 cap (third middle panel), and high PEV deployment scenarios 

with a CES (bottom panel). The night charging scenarios have higher coal power plant deployment 

levels than peak charging scenarios. By contrast, the peak charging scenarios have higher natural gas 

and wind power plant deployment levels than the night charging scenarios. 
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In the PEV-N scenario (second panel from top), we found a similar deployment pattern to 

the Base-N scenario post-2035, only with twice the new coal steam generation in 2050. In the 

PEV-P scenario, wind generation significantly increases after 2035 and replaces retired coal 

and NGCC. The 2050 coal and NGCC deployment levels in the PEV-P scenario are 18% and 

30% less compared to the PEV-C scenario, respectively, because PEVs are being charged 

with non-baseload renewables during the peak charging window. 

In the PEV(CO2) scenarios (third panel from top), a dramatic decline in electricity 

generation from coal power plants coupled with a modest reduction in NGCC electricity 

generation for the constant, night, and peak charging occurs over the entire model time 

horizon. The 40% reduction in total CO2 emissions by 2050 leads to significant retirement of 

existing coal across all three charging times compared to the base and high PEV deployment 

scenarios with no policy. The electricity generation from wind and solar thermal power 

plants significantly increases in the PEV(CO2)-C, PEV(CO2)-N, and PEV(CO2)-P scenarios 

after 2035. However, the growth rate of solar thermal deployment in the PEV(CO2)-P 

scenario is lower than in the PEV(CO2)-C scenario, which results in 40% less solar 

deployment by 2050. 

In the PEV(CES) scenarios (bottom), the existing coal power plants are retired by 2040 in 

the constant, night, and peak charging times. The aggressive requirement of 85% clean 

energy by 2040 in the CES scenario leads to significant retirements of existing coal across 

the three modeled charging times. Similar to the PEV(CO2) scenarios, there is a dramatic 

increase in electricity generation from wind and solar thermal power plants in the 

PEV(CES)-C, PEV(CES)-N, and PEV(CES)-P scenarios post-2035. The more stringent 
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requirements under the CES compared to the system-wide CO2 cap lead to higher 

deployments of NGCC-CCS in the former. However, in all the high PEV deployment 

scenarios with a CES, wind and solar compete favorably against NGCC-CCS as the projected 

price of natural gas increases in later time periods. In the PEV(CES)-N scenario, 92 TWh of 

coal IGCC-CCS displaces NGCC-CCS in the last decade due to the increased baseload 

electricity demand.  

Figure 4.4 illustrates the estimated total system-wide CO2 emissions across the 12 

charging scenarios from 2010-2050. Across the PEV(CO2) scenarios, there is no variation in 

total CO2 emissions associated with time-of-day charging because the CO2 policy imposes a 

binding constraint on system-wide CO2 emissions. Across all the no-policy scenarios, the 

variation in total CO2 emissions is approximately 5% in 2045 and less than 12% in 2050. The 

PEV(CES)-C scenario produces the largest drop in system-wide CO2 emissions relative to 

Base-C (40%). The PEV-N scenario produces a modest 5% increase in total CO2 emissions 

compared to the Base-C scenario by 2050. In the Base-N and PEV-N scenarios, nighttime 

charging leads to higher system-wide CO2 emissions relative to peak and constant charging 

due to the higher utilization of coal steam power plants, particularly in the last decade.  
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Figure 4.4 CO2 emissions pathways for the 12 charging scenarios over the model time horizon. The 

lowest and highest 2050 system-wide CO2 emissions corresponds to PEV(CES)-C and PEV-N 

scenarios, respectively. 

 

 

 

In the PEV(CES) scenarios, total CO2 emissions in the peak charging time are higher 

than in the constant and night charging times post-2040 because the existing coal power 

plants are retired by 2040 in all three charging times and electricity generation from NGCC is 

higher with peak charging relative to constant and night charging from 2040 to 2050 (Figure 

4.3). NGCC is a backup power plant for wind and solar, which are utilized to a larger extent 

in the PEV(CES)-P than the equivalent constant and night charging scenarios.  

To to understand the effects of time-of-day charging on future CO2 mitigation costs 

within each PEV deployment scenario, the 2050 difference in total system cost and CO2 
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emissions was calculated between pairs of scenarios. The different in system cost divided by 

the difference in system-wide CO2 emissions (yielding $/tonne CO2) provides a rough 

estimate of how switching from a charging scenario with higher emissions to one with lower 

emissions affects the cost of CO2 mitigation. Three cases involving a switch from peak to 

constant, night to constant, and peak to night charging were examined. The estimated 2050 

mitigation cost in the CES scenario due to switching from peak to constant charging is 184 

$/tonne CO2, from night to constant charging is 256 $/tonne CO2, and from peak to night 

charging is 159 $/tonne CO2. While it is not possible to control when owners charge their 

vehicles, these CO2 prices nonetheless indicate that switching the time-of-day charging does 

not provide a cheap means to lower CO2 emissions when compared to EPA’s social cost of 

carbon (EPA, 2013) or improvements in end use efficiency (McKinsey, 2009) . 

 

4.5 DISCUSSION 

We have examined the effect of constant, night, and peak PEV charging times coupled to 

different PEV deployment levels (i.e., base, high) and policy futures (i.e., no new policy, CO2 

cap, CES). The model results demonstrate that PEV market penetration is not strongly 

affected by time-of-day charging. Within the base and each alternative electricity scenario, 

the variation in electricity demand due strictly to variations in PEV deployment and therefore 

charging requirements is less than 4% in 2050. In addition, there is a 6% increase in 

electricity demand between the base and high PEV deployment levels with nighttime 

charging in 2050. Even in the presence of a system-wide CO2 cap or CES, the price of 

electricity does not increase enough to adversely affect the cost-effectiveness of PEVs 
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relative to other vehicle technologies. The highest and lowest electricity prices occur in the 

PEV(CES)-P and Base-N scenarios, respectively. In the PEV(CES)-P scenario, the 2050 

average electricity price is 107$/MWh, which is ~26% higher than in the Base-N scenario.  

 In the high PEV deployment scenarios with night charging, the electricity price increases 

significantly when either the CES or CO2 policy is implemented in the model. Night charging 

with a CO2 cap or CES forces the retirement of existing baseload coal that operates with low 

marginal cost, which has a significant effect on electricity prices. Under the CES and CO2 

policies, the need for clean and cost-effective electricity leads to a dramatic increase in 

electricity generation from wind and solar thermal plants in the last decade.  

The night charging scenarios generally have higher coal power plant deployment levels 

than the peak charging scenarios. The peak charging scenarios have higher natural gas and 

wind power plant deployment levels than the night charging scenarios. National CO2 

emissions reductions under different charging times are largely driven by the carbon intensity 

of the electric sector in the last decade rather than different time-of-day PEV charging 

scenarios. 

Many of the same uncertainties mentioned in Chapter 3 also apply in this chapter, 

including uncertainty in PEV deployment levels, fuel prices, technology innovation in the 

electric sector, and the timing and magnitude of policy requirements. Though we assume 

conditions favorable to PEV deployment, we do not consider future policies or technology 

innovations that may dramatically increase the market penetration of PEVs. In this work, we 

observe that PEV charging does not have a significant effect on annual average electricity 

prices, even in the peak charging scenario, which serves as an upper bound and assumes all 
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PEV charging across the U.S. takes place in the same 2-hour window. Nonetheless, higher 

levels of PEV deployment beyond those considered here could have a larger impact on 

electric sector technology deployment and utilization, which could in turn affect prices and 

emissions. Second, fuel prices and technology development in the electric sector can have an 

effect on which power plants operate at the margin and serve the incremental electricity 

demand to meet PEV charging requirements. For example, the Base-N and PEV-N scenarios 

partially utilize new coal steam to meet PEV charging demand. An approximate 40% drop in 

the capital cost for new light water nuclear reactors by mid-century could provide carbon-

free baseload power to charge PEVs, thereby reducing the CO2 emissions associated with 

nighttime charging. Finally, changes to the timing and stringency of the policy scenarios 

would affect the resultant electricity prices and emissions. For example, a more stringent CO2 

cap could have dramatic effects in the electric sector, and electricity prices may become more 

sensitive to the incremental effect of PEV charging. 

Use of an energy system model to look at the effect of PEV time-of-day charging can 

only provide limited insight into the consequent effects on electricity prices, technology 

deployment, and emissions. Quantifying the effects of different vehicle charging patterns can 

be refined by applying more detailed and regionally specific models. For example, running 

the same scenarios presented here through a unit commitment and dispatch model would 

provide a more accurate picture of how PEV charging affects hour-by-hour power system 

operation. Nonetheless, our analysis indicates that time-of-day vehicle charging, even under 

high deployment scenarios, is unlikely to produce dramatic effects on PEV deployment or 

electric sector capacity deployment and utilization. 
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 Several model simplifications suggest important caveats to this work. We apply a low 

hurdle rate (10%) to alternative vehicle technologies compared to 20-40% hurdle rates used 

in other studies, which may result in optimistic PEV deployment. In the end-use sectors, we 

do not include explicit representation of demand technologies, which can create additional 

opportunities for fuel switching, and which in turn can affect overall electricity demand, 

electricity prices, and PEV deployment under different time-of-day charging scenarios. 

Finally, we assume fixed end-use demands that are unresponsive to price, which may lead to 

an overestimation of the electricity price effects associated with PEV deployment. 
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Chapter 5: Summary and Future Work 

The research presented in this dissertation represents the most comprehensive study to date 

of U.S. electric drive vehicle (EDV) deployment with an energy system model. Using the 

TIMES model coupled to the National U.S. Technology Database (NUSTD) that I 

developed, changes in electricity prices, technology and fuel shares, and emissions across the 

energy system were quantified in response to changing EDV deployment under a variety of 

different scenarios. Such model-based analysis serves a critical role by identifying potential 

feedbacks and system effects associated with technology deployment that might not be 

captured by simplified calculations or sector-specific models.  

The model results in Chapter 2 illustrate that high EDV deployment in the light duty 

vehicle (LDV) sector does not produce a clear and consistent decline in total system-wide 

emissions of CO2, SO2, and NOX in the U.S. through 2050. There are a broad set of future 

conditions that can mask the effect of lower EDV tailpipe emissions, including high electric 

sector emissions and shifting emissions in the heavy duty vehicle, supply, and end-use 

sectors. However, the study also demonstrates that EDVs can produce a significant decline in 

marginal CO2 prices under a federal CO2 cap. Overall, policy makers must pay careful 

attention to prevailing system-wide conditions; they cannot simply incentivize EDV 

purchases through tax credits and wait for the emissions benefits to accrue.   

Based on the results from Chapter 2, I decided to investigate plausible, clean electricity 

scenarios that could potentially magnify the CO2 emissions benefit from plug-in electric 

vehicle (PEV) deployment. The Chapter 3 model results demonstrate that the incremental 
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CO2 emissions benefit associated with PEV deployment is largely determined by the 

marginal emissions rates associated with the power plants used to meet the PEV charging 

requirements. We find that the incremental change in national CO2 emissions ranges from 

+0.6% (Base case) to -5% (Clean Energy Standard). In scenarios where electric sector 

emissions are not constrained, it is possible to produce high marginal CO2 emissions from 

vehicle charging, particularly towards mid-century as natural gas prices increase relative to 

coal. As such, the CO2 emissions benefit from an increasing PEV market share depends on 

the evolving electric sector generation mix and to a lesser extent changes across the broader 

energy system. Since the emissions footprint of PEVs is contingent on electric sector 

developments over time, auto manufacturers should be engaged in policy discussions that can 

affect electric sector emissions. 

Another critical issue related to PEV deployment is the distribution of demand for vehicle 

charging over the course of a day, which can affect the deployment and utilization of 

different electricity generation technologies over time. Chapter 4 addresses this issue by 

exploring a set of bounding scenarios related to vehicle charging. The model results indicate 

that time-of-day charging does not have a large impact on electricity prices, PEV 

deployment, or total system-wide CO2 emissions. However, interesting system effects were 

observed. In the night charging scenarios, increased baseload electricity demand can increase 

the deployment of new pulverized coal plants in the base case. When instead emissions are 

limited or clean energy is required by new electric sector policy, new low carbon capacity 

can produce a significant rise in electricity cost, which is amplified by increases in vehicle 

charging demand. Therefore, policies aimed at shifting to low carbon power plants along 
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with an increase in baseload electricity demand can prove challenging and must be examined 

carefully.  

The analyses described in Chapters 2-4 suggest a broad set of policy relevant lessons. 

First, estimating the effect of PEVs on national emissions is complex; simple back-of-the-

envelope analyses assuming a fixed deployment level and using average emissions rates from 

electricity production are likely to be misleading. When considering the emissions effect of 

PEVs, it is important to consider the marginal changes to the system rather than the 

prevailing average conditions. For example, as illustrated in Chapter 4, it is possible to have a 

business-as-usual electric sector with a low average CO2 intensity that meets the incremental 

nighttime PEV charging demand with coal generation that has a high CO2 intensity. Marginal 

changes in electricity production and associated emissions are sensitive to system conditions, 

including fuel prices, the implementation of new energy and environmental policy, the 

relative economic performance of different vehicle and electric generation technologies, and 

the distribution of PEV charging demand across the day. The only way to capture the effects 

of such factors is to perform detailed modeling exercises, such as the ones presented in this 

thesis. 

Overall, we find that the net effect of PEV deployment on national CO2 emissions 

strongly depends on prevailing system conditions. For example, in a base case assuming no 

new policy, PEV deployment may actually produce an increase in CO2 emissions. On the 

other hand, PEV deployment in the presence of constrained electric sector CO2 emissions can 

produce additional reductions in national CO2 emissions on the order of 3-6%. Because PEV 

deployment produces emissions reductions that are contingent on prevailing system 
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conditions, federal policymakers should work on coordinated policy measures that ensure 

clean electricity for vehicle charging as PEV deployment continues. 

While the high level insights drawn from this thesis work are robust, several caveats to 

this work should be noted. First, the energy system model developed in this study represents 

a radical simplification of the underlying real world complexity. Any exercise with an energy 

system model at the national scale necessarily involves distilling very complex 

socioeconomic and technical issues into a manageable set of equations and input data. All 

discussion of model-based insight implicitly takes these limitations into account. Second, we 

did not consider fundamental technological breakthroughs or major geopolitical 

developments that could affect PEV market penetration. Third, we applied a low hurdle rate 

of 10% across all modeled scenarios. The 10% hurdle rate is an approximate estimate of 

consumer expectations towards alternative vehicles use, which depend on a variety of factors, 

including convenience of refueling or charging infrastructure, travel range on a single charge, 

or desired payback periods. Consumer choice in future vehicle adoption can also be affected 

by several other factors, such as vehicle design, safety, and comfort, driver’s income, age, 

and education, driving habits, household size and location (urban, suburban, or rural), social 

media coverage, the opinion of peers, and subjective aspects such as prestige or style. The 

application of a scalar hurdle rate to represent the reluctance to adopt alternative vehicle 

technologies is a key simplification in this modeling work. Fourth, we did not capture the 

potential effects of vehicle smart charging and vehicle-to-grid power on electricity prices and 

PEV market share. Fifth, we did not consider the environmental life cycle impacts of 

competing vehicle technologies. For example, we did not consider potential shortages in 
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battery raw materials such as lithium, the environmental impacts associated with battery 

recycling and disposal, or resource consumption and emissions associated with building 

charging infrastructure. Sixth, there are several macroeconomic aspects of PEV deployment 

that were not captured by our energy system model. For example, the widespread adoption of 

PEVs can exert an influence on total U.S. employment, household income, gross domestic 

product (GDP), federal budget, and the U.S. trade balance.   

The work in this dissertation could be extended in several ways. Future efforts are needed 

to develop a U.S. regional energy system database. Regional variations in energy resources, 

electricity supply, energy and emissions policies, air quality regulations, and inter-regional 

trade of fossil fuels and electricity could produce important region-specific energy and 

emissions impacts. Furthermore, while emissions of SO2 and NOX are tracked in addition to 

CO2, we were not able to assess the impact on regional air quality. Linking the output of a 

regional energy system model to an air quality model would help quantify the potential air 

quality benefits associated with PEV deployment and associated shift in emissions from 

urban transportation to more rural power plants. Finally, it would be worthwhile to extend the 

assessment to include the effects of large scale PEV deployment on crude oil consumption, 

imports, and overall energy security. Only through a holistic examination of PEV 

deployment and its effect on CO2 emissions, local and regional quality, and energy security 

can we judge the overall efficacy of this promising vehicle technology. 
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APPENDIX A. National US TIMES Dataset (NUSTD) Description 

Section A1. Overview of the National US TIMES Dataset (NUSTD) 

The National US TIMES Dataset (NUSTD) was designed and built to conduct this analysis. 

Given the focus on electric drive vehicles (EDVs), NUSTD contains significant technology 

detail in both the electric and transportation sector, while the industrial, commercial, and 

residential sectors are each represented by a fixed total demand and a set of fuel share 

constraints (Equations B.20 and B.21) that are gradually relaxed over time. The organization 

of NUSTD is provided below in Figure A1. 

 

 

 

 

Figure A1. Design details associated with the NUSTD. The electric and transport sectors contain 

significant technology detail in order to capture the effects of EDVs in both sectors. Conceptually, 

energy commodities flow left-to-right through a series of transformations in order to meet a set of 

fixed end-use demands. Capacity installation and utilization of technology over time is determined in 

both the electric and transport sectors. 
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We started with the U.S. EPA National Model Database (EPANMD) as a data source for 

transportation and electric sectors (Shay et al., 2006), but then incorporated a series of 

technology updates and assumptions largely based on the Annual Energy Outlook (AEO) 

2012 (EIA, 2012), GREET (GREET, 2012), and eGRID (eGRID, 2010). Key data and 

assumptions are described in the following sections, organized by model sector: 

transportation (A2), electric (A3), end-use sectors (A4), and resource supply (A5). While we 

provide a description of NUSTD in sections A2-A5, the complete set of input workbooks is 

publicly accessible online (Energy Modeling, 2014).  

 

Section A2. Transportation sector 

The transport sector consists of three subsectors: light duty vehicles (LDV), heavy duty 

vehicles (HDV), and off-highway (OH). All of the parameters used to characterize HDV and 

OH technologies in NUSTD are obtained from EPANMD-2010-V1.0 (Shay et al., 2006). 

This section is focused on the LDV sector, which is most relevant to the current analysis. An 

overview of the LDV sector is provided first, followed by vehicle-specific energy efficiency, 

special considerations associated with EDVs, and the use of hurdle rates for alternative 

vehicles. 

 

Vehicles Costs, stock, tailpipe emissions, and demand  

Table A1 lists all of the light duty vehicles, categorized by size and fuel type according to the 

EPANMD (Shay et al., 2006). Vehicle lifetimes and the fixed operation and maintenance 

costs (in units of million 2010 $ per billion vehicle miles traveled [bnvmt]) are based on 
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EPANMD-2010-V1.0 (Shay et al., 2006). The investment costs associated with light duty 

vehicles and start years (i.e., the first year of technology availability) are drawn from the 

AEO (EIA, 2012). While the National Energy Modeling System (NEMS) (EIA-NEMS, 

2009) assumes that vehicle price is subject to endogenous technological learning at the 

vehicle component level, for simplicity, we adopt the resultant EDV prices from AEO and 

use them to specify the vehicle cost exogenously in NUSTD. The cost of refueling 

infrastructure for alternative fuel vehicles is added to the capital cost of PHEVs and BEVs 

and to the fuel price of CNG, E85X, and hydrogen fuel cell vehicles (EIA, 2012; Peterson 

and Michalek, 2013).     

 

 

 

Table A1. Start year, lifetime, fixed operation and maintenance cost, and capital cost of 

LDVs 
 

Technology Name Start Year Lifetime 

Fixed 

Operation & 

Maintenance 

Cost 

(M$/bnvmt) 

Investment Cost  

(million 2010 $ per bnvmt) 

2015 2020 2025 2030 2035 2040 2045 2050 

Compact Diesel  2015 15 38.49 2034 2139 2216 2222 2222 2222 2222 2222 

Full Diesel  2015 15 43.30 2389 2470 2556 2556 2556 2556 2556 2556 

Minivan Diesel  2015 15 43.30 2586 2637 2764 2784 2784 2784 2784 2784 

Pickup Diesel  2015 15 48.12 2310 2362 2448 2448 2448 2448 2448 2448 

Small SUV Diesel  2015 15 43.30 2330 2380 2513 2538 2538 2538 2538 2538 

Large SUV Diesel  2015 15 43.30 3390 3448 3549 3582 3582 3582 3582 3582 

Compact Diesel Hybrid  2020 15 40.42   2488 2463 2446 2446 2446 2446 2446 

Full Diesel Hybrid  2025 15 45.52     2757 2728 2728 2728 2728 2728 

Minivan Diesel Hybrid  2015 15 45.47 2947 2964 2939 2931 2931 2931 2931 2931 

Small SUV Diesel Hybrid  2020 15 45.52   2780 2780 2764 2764 2764 2764 2764 

Large SUV Diesel Hybrid  2020 15 45.52   3858 3833 3816 3816 3816 3816 3816 

Compact Ethanol Flex Fuel  2015 15 38.49 1863 1973 2080 2080 2080 2080 2080 2080 

Full Ethanol Flex Fuel  2015 15 43.30 2249 2347 2467 2467 2467 2467 2467 2467 

Minivan Ethanol Flex Fuel  2015 15 43.30 2160 2236 2375 2403 2403 2403 2403 2403 

Pickup Ethanol Flex Fuel  2015 15 48.12 1878 1963 2066 2080 2080 2080 2080 2080 

Small SUV Ethanol Flex Fuel  2015 15 43.30 2029 2121 2263 2271 2271 2271 2271 2271 

Large SUV Ethanol Flex Fuel  2015 15 43.30 3056 3148 3265 3281 3281 3281 3281 3281 
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Table A1 Continued 

Compact Hybrid Ethanol  2015 15 40.42 2406 2399 2383 2374 2374 2374 2374 2374 

Full Hybrid  Ethanol  2015 15 45.52 2810 2804 2784 2776 2776 2776 2776 2776 

Pickup Hybrid  Ethanol  2015 15 48.12 2597 2374 2349 2332 2332 2332 2332 2332 

Minivan Hybrid Ethanol  2015 15 45.52 2653 2650 2630 2617 2617 2617 2617 2617 

Large SUV Hybrid  Ethanol  2015 15 45.52 3666 3649 3624 3615 3615 3615 3615 3615 

Small SUV Hybrid Ethanol  2015 15 45.52 2605 2597 2580 2563 2563 2563 2563 2563 

Compact Ethanol plugin hybrid (20km)a 2015 15 40.42 2581 2523 2443 2421 2413 2413 2413 2413 

Full Ethanol plugin hybrid (20km) 2020 15 45.52   2841 2809 2784 2772 2772 2772 2772 

Pickup Ethanol plugin hybrid (20km)  2025 15 48.12     2636 2621 2602 2602 2602 2602 

Minivan Ethanol plugin hybrid (20km)  2020 15 45.52   2766 2691 2685 2663 2663 2663 2663 

Large SUV Ethanol plugin hybrid (20km)  2025 15 45.52     3643 3609 3593 3593 3593 3593 

Small SUV Ethanol plugin hybrid (20km)  2015 15 45.52 2657 2657 2582 2557 2540 2540 2540 2540 

Compact Ethanol plugin hybrid (60km)a 2015 15 40.42 3140 2967 2861 2772 2714 2714 2714 2714 

Full Ethanol plugin hybrid (60km)  2015 15 45.52 3524 3357 3235 3129 3068 3068 3068 3068 

Pickup Ethanol plugin hybrid (60km)  2025 15 48.12     3269 3123 2991 2991 2991 2991 

Minivan Ethanol plugin hybrid (60km)  2020 15 45.52   3431 3361 3219 3081 3081 3081 3081 

Large SUV Ethanol plugin hybrid (60km)  2025 15 45.52     4583 4366 4177 4177 4177 4177 

Small SUV Ethanol plugin hybrid (60km)  2015 15 45.52 3375 3228 3176 3028 2902 2902 2902 2902 

Minicompact Electricb 2015 15 25.98 8435 7141 6390 6022 6022 6022 6022 6022 

Compact Electricb  2015 15 25.98 2908 2825 2683 2551 2551 2551 2551 2551 

Full Electricb  2020 15 25.98   3225 3075 2925 2925 2925 2925 2925 

Small SUV Electricb  2015 15 25.98 3517 3200 3025 2858 2858 2858 2858 2858 

Mini compact conventional gasoline  2015 15 38.49 3565 3692 3792 3789 3789 3789 3789 3789 

Compact conventional gasoline  2015 15 38.49 1855 1965 2074 2074 2074 2074 2074 2074 

Full conventional gasoline  2015 15 43.30 2241 2338 2459 2459 2459 2459 2459 2459 

Minivan conventional gasoline  2015 15 43.30 2152 2227 2367 2395 2395 2395 2395 2395 

Pickup conventional gasoline  2015 15 48.12 1869 1961 2057 2066 2066 2066 2066 2066 

Small SUV conventional gasoline  2015 15 43.30 2021 2113 2254 2263 2263 2263 2263 2263 

Large SUV conventional gasoline  2015 15 43.30 3048 3140 3256 3273 3273 3273 3273 3273 

Compact gasoline hybrid  2015 15 40.42 2399 2392 2375 2367 2367 2367 2367 2367 

Full gasoline hybrid  2015 15 45.47 2801 2795 2776 2767 2767 2767 2767 2767 

Minivan gasoline hybrid  2015 15 45.52 2645 2642 2622 2609 2609 2609 2609 2609 

Pickup gasoline hybrid  2015 15 48.12 2588 2365 2340 2323 2323 2323 2323 2323 

Small SUV gasoline hybrid  2015 15 45.52 2597 2588 2572 2555 2555 2555 2555 2555 

Large SUV gasoline hybrid  2015 15 45.52 3657 3641 3615 3607 3607 3607 3607 3607 

Compact gasoline plugin hybrid (20km)a  2015 15 40.42 2574 2515 2435 2414 2405 2405 2405 2405 

Full gasoline plugin hybrid (20km)   2020 15 45.52   2833 2800 2775 2764 2764 2764 2764 

Pickup gasoline plugin hybrid (20km) 2025 15 48.12     2628 2613 2594 2594 2594 2594 

Minivan gasoline plugin hybrid (20km) 2020 15 45.52   2758 2682 2676 2655 2655 2655 2655 

Large SUV gasoline plugin hybrid (20km)   2025 15 45.52     3634 3601 3584 3584 3584 3584 

Small SUV gasoline plugin hybrid (20km) 2015 15 45.52 2649 2649 2574 2549 2532 2532 2532 2532 

Compact gasoline plugin hybrid (60km)a 2015 15 40.42 3133 2960 2853 2765 2707 2707 2707 2707 

Full gasoline plugin hybrid (60km)  2015 15 45.52 3516 3349 3227 3121 3059 3059 3059 3059 
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Pickup gasoline plugin hybrid (60km)  2025 15 48.12     3260 3115 2983 2983 2983 2983 

Minivan gasoline plugin hybrid (60km) 2020 15 45.52   3423 3352 3210 3072 3072 3072 3072 

Large SUV gasoline plugin hybrid (60km) 2025 15 45.52     4575 4358 4168 4168 4168 4168 

Small SUV gasoline plugin hybrid (60km) 2015 15 45.52 3367 3220 3168 3020 2893 2893 2893 2893 

Compact hydrogen fuel cell  2015 15 40.42 5327 4736 4195 3850 3850 3850 3850 3850 

Full hydrogen fuel cell  2015 15 45.47 6356 5435 4790 4391 4391 4391 4391 4391 

Minivan hydrogen fuel cell  2015 15 47.63 7114 6070 5185 4651 4651 4651 4651 4651 

Small SUV hydrogen fuel cell  2015 15 45.52 6563 5611 4885 4392 4392 4392 4392 4392 

Large SUV hydrogen fuel cell  2025 15 45.52     6813 6179 6179 6179 6179 6179 

Compact compressed natural gas  2015 15 34.64 2505 2613 2730 2730 2730 2730 2730 2730 

Full compressed natural gas  2015 15 38.97 3073 3165 3307 3307 3307 3307 3307 3307 

Minivan compressed natural gas  2015 15 38.97 2847 2922 3031 3048 3048 3048 3048 3048 

Pickup compressed natural gas  2015 15 48.12 2705 2780 2864 2889 2889 2889 2889 2889 

Existing Mini compact conventional gasoline  2010 15 38.49                 

Existing Compact conventional gasoline  2010 15 38.49                 

Existing Full Diesel  2010 15 43.30                 

Existing Full conventional gasoline  2010 15 43.30                 

Existing Small SUV conventional gasoline  2010 15 43.30                 

Existing Large SUV conventional gasoline  2010 15 43.30                 

Existing Minivan conventional gasoline  2010 15 43.30                 

Existing Pickup conventional gasoline  2010 15 48.12                 

Existing Pickup Diesel  2010 15 48.12                 

Existing any Ethanol Flex Fuel  2010 15 43.30                 

Existing any CNG  2010 15 38.97                 

Existing any Electric  2010 15 25.98                 

Blending process to collect conventional 

gasoline and ethanol for E10 for LDV 
2010 50   

                

Blending process to collect conventional 
gasoline and ethanol for E85X for LDV 

2010 50 2.08 
                

Collector: DSLU to DSL for LDV 2010 55                   

Collector: NGA to CNG for LDV 2010 55 1.95                 
  a 

The distance in parentheses represents the all-electric range (AER) 
  b 

All new electric cars have 160 kilometers all-electric range battery.  

 

 

 

Table A2 presents the assumed existing stock of light duty vehicles by size class and fuel 

type. Note that the total distance traveled (bnvmt) can be converted to the total number of 

light duty vehicles by assuming 12,500 mi/yr/vehicle traveled. The cumulative retirement 
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percentages of the 2010 existing capacity are 30%, 59%, 84%, and 92% for 2015, 2020, 

2025, and 2030, respectively. Both the existing stock and the estimated retirement rates are 

drawn from EPANMD-2010-V1.0 (Shay et al., 2006).  

 

 

 

Table A2. Existing capacity of light duty vehicles (bnvmt) 

Technology Name 2010 2015 2020 2025 2030 

Existing Mini compact conventional gasoline  43.18 30.22 17.70 6.908 3.454 

Existing Compact conventional gasoline  728.3 509.8 298.6 116.5 58.26 

Existing Full Diesel  4.906 3.400 1.992 0.777 0.389 

Existing Full conventional gasoline  604.2 423.0 247.7 96.68 48.34 

Existing Small SUV conventional gasoline  187.1 130.9 76.69 29.93 14.96 

Existing Large SUV conventional gasoline  159.4 111.6 65.34 25.50 12.75 

Existing Minivan conventional gasoline  281.0 196.7 115.21 44.96 22.48 

Existing Pickup conventional gasoline  519.3 363.5 212.9 83.09 41.55 

Existing Pickup Diesel  4.944 3.461 2.027 0.791 0.396 

Existing any Ethanol Flex Fuel  119.2 83.46 48.88 19.08 9.538 

Existing any CNG  3.301 2.310 1.353 0.528 0.264 

Existing any Electric  0.300 0.210 0.123 0.048 0.024 

 

 

 

The total demand for vehicle miles associated with light duty transportation, shown in 

Table A3, is drawn from AEO (EIA, 2012) and linearly extrapolated from 2035 to 2050. 

 

 

 

Table A3. Demand values for light duty transportation sector (billion vehicle miles) 

Commodity Description Abbreviation 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Total miles demanded for LDV TMDLDV 2655 2711 2882 3113 3365 3586 3716 3846 3975 

 

 

 

CO2 emission coefficients for transportation fuels are drawn from the AEO (EIA, 2012) 

and are shown in Table A4. CO2 emissions are provided per unit of primary fuel input, 
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whereas SO2 and NOX emissions depend not only on the input fuel but also on vehicle engine 

technology and performance. For brevity, only the CO2 emissions factors are shown in Table 

A4; however, emissions factors for SO2 and NOX can be found in the NUSTD spreadsheets 

(Energy Modeling, 2014). 
 

 

 

 

Table A4. CO2 emission factor of transportation fuels 

Commodity Name 
CO2 Emissions Factor 

(Thousand ton/PJ) 

Conventional gasoline 67.6 

Ethanol 67.6 

Ultra low sulfur diesel 69.4 

Natural gas 50.3 

 

 

 

Vehicle energy efficiency 

We represent vehicle performance through two key parameters: (1) the vehicle efficiency, 

expressed in units of PJ/bnvmt, and (2) the fuel ratio, which characterizes the ratio of fuel 

inputs required to generate 1 bnvmt. The latter only applies to vehicles that operate on more 

than one fuel type, such as PHEVs and flex fuel vehicles (i.e., vehicles that use blended fuels, 

such as ethanol and gasoline).  

 

Non-electric drive vehicles  

The efficiencies of existing and new non-electric drive LDVs (conventional gasoline, ethanol 

(E85), diesel, compressed natural gas, and hydrogen fuel cell) are taken from EPANMD-

2010-V1.0 (Shay et al., 2006), but were updated based on the AEO (EIA, 2012). Table A5 
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shows the period-specific efficiencies associated with all of the light duty technologies in 

NUSTD. The commodity abbreviations are described in Table A12. 

 

 

 

Table A5. Light duty vehicle energy efficiency (bnvmt per PJ) 

Technology Name Commodity In Commodity Out 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Compact Diesel  TRNDSLLDV TMDLDV   0.2672 0.3259 0.3796 0.3798 0.3798 0.3798 0.3798 0.3798 

Full Diesel  TRNDSLLDV TMDLDV   0.2536 0.2989 0.3466 0.3467 0.3467 0.3467 0.3467 0.3467 

Minivan Diesel  TRNDSLLDV TMDLDV   0.2167 0.2418 0.2944 0.3026 0.3026 0.3026 0.3026 0.3026 

Pickup Diesel  TRNDSLLDV TMDLDV   0.1838 0.2027 0.2323 0.2368 0.2368 0.2368 0.2368 0.2368 

Small SUV Diesel  TRNDSLLDV TMDLDV   0.2221 0.2472 0.3037 0.3122 0.3122 0.3122 0.3122 0.3122 

Large SUV Diesel  TRNDSLLDV TMDLDV   0.1793 0.2028 0.2359 0.2427 0.2427 0.2427 0.2427 0.2427 

Compact Diesel Hybrid  TRNDSLLDV TMDLDV     0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 

Full Diesel Hybrid  TRNDSLLDV TMDLDV       0.3883 0.3883 0.3883 0.3883 0.3883 0.3883 

Minivan Diesel Hybrid  TRNDSLLDV TMDLDV   0.2700 0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 

Small SUV Diesel Hybrid  TRNDSLLDV TMDLDV     0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 0.2763 

Large SUV Diesel Hybrid  TRNDSLLDV TMDLDV     0.2406 0.2656 0.2656 0.2656 0.2656 0.2656 0.2656 

Compact Ethanol Flex Fuel  E85XLDV TMDLDV   0.2205 0.2707 0.3340 0.3351 0.3351 0.3351 0.3351 0.3351 

Full Ethanol Flex Fuel  E85XLDV TMDLDV   0.2098 0.2519 0.3109 0.3112 0.3112 0.3112 0.3112 0.3112 

Minivan Ethanol Flex Fuel  E85XLDV TMDLDV   0.1800 0.2087 0.2595 0.2702 0.2702 0.2702 0.2702 0.2702 

Pickup Ethanol Flex Fuel  E85XLDV TMDLDV   0.1516 0.1757 0.2044 0.2096 0.2096 0.2096 0.2096 0.2096 

Small SUV Ethanol Flex Fuel  E85XLDV TMDLDV   0.1863 0.2184 0.2794 0.2832 0.2832 0.2832 0.2832 0.2832 

Large SUV Ethanol Flex Fuel  E85XLDV TMDLDV   0.1484 0.1761 0.2140 0.2231 0.2231 0.2231 0.2231 0.2231 

Compact Hybrid Ethanol  E85XLDV TMDLDV   0.2888 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 

Full Hybrid  Ethanol  E85XLDV TMDLDV   0.2888 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 

Pickup Hybrid  Ethanol  E85XLDV TMDLDV   0.1784 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 

Minivan Hybrid Ethanol  E85XLDV TMDLDV   0.2096 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 

Large SUV Hybrid  Ethanol  E85XLDV TMDLDV   0.1784 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 

Small SUV Hybrid Ethanol  E85XLDV TMDLDV   0.2096 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 

Compact Ethanol plugin hybrid 20 km  E85XLDV TMDLDV   0.3494 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 

  ELC TMDLDV   0.3494 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 

Full Ethanol plugin hybrid 20 km  E85XLDV TMDLDV     0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 

  ELC TMDLDV     0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 0.3811 

Pickup Ethanol plugin hybrid 20 km  E85XLDV TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

  ELC TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

Minivan Ethanol plugin hybrid 20 km  E85XLDV TMDLDV     0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 

  ELC TMDLDV     0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 

Large SUV Ethanol plugin hybrid 20 km  E85XLDV TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

  ELC TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

Small SUV Ethanol plugin hybrid 20 km  E85XLDV TMDLDV   0.2393 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 

  ELC TMDLDV   0.2393 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 0.2480 
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Compact Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.3855 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 

  ELC TMDLDV   0.3855 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 

Full Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.3855 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 

  ELC TMDLDV   0.3855 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 0.4189 

Pickup Ethanol plugin hybrid 60 km  E85XLDV TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

  ELC TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

Minivan Ethanol plugin hybrid 60 km  E85XLDV TMDLDV     0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 

  ELC TMDLDV     0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 

Large SUV Ethanol plugin hybrid 60 km  E85XLDV TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

  ELC TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

Small SUV Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.2535 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 

  ELC TMDLDV   0.2535 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 0.2734 

Mini Compact Electric  ELC TMDLDV   0.5500 0.7831 0.9882 1.0131 1.0131 1.0131 1.0131 1.0131 

Compact Electric  ELC TMDLDV   0.8251 0.8932 0.8932 0.8932 0.8932 0.8932 0.8932 0.8932 

Full Electric  ELC TMDLDV     0.8932 0.8932 0.8932 0.8932 0.8932 0.8932 0.8932 

Small SUV Electric  ELC TMDLDV   0.6209 0.6355 0.6355 0.6355 0.6355 0.6355 0.6355 0.6355 

Mini compact conventional gasoline  E10LDV TMDLDV   0.1964 0.2489 0.2972 0.2982 0.2982 0.2982 0.2982 0.2982 

Compact conventional gasoline  E10LDV TMDLDV   0.2191 0.2711 0.3320 0.3331 0.3331 0.3331 0.3331 0.3331 

Full conventional gasoline  E10LDV TMDLDV   0.2078 0.2494 0.3077 0.3081 0.3081 0.3081 0.3081 0.3081 

Minivan conventional gasoline  E10LDV TMDLDV   0.1783 0.2069 0.2567 0.2672 0.2683 0.2683 0.2683 0.2683 

Pickup conventional gasoline  E10LDV TMDLDV   0.1501 0.1743 0.2025 0.2073 0.2098 0.2098 0.2098 0.2098 

Small SUV conventional gasoline  E10LDV TMDLDV   0.1844 0.2165 0.2764 0.2802 0.2809 0.2809 0.2809 0.2809 

Large SUV conventional gasoline  E10LDV TMDLDV   0.1470 0.1747 0.2119 0.2207 0.2219 0.2219 0.2219 0.2219 

Compact gasoline hybrid  E10LDV TMDLDV   0.2888 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 

Full gasoline hybrid  E10LDV TMDLDV   0.2888 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 0.3126 

Minivan gasoline hybrid  E10LDV TMDLDV   0.2096 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 

Pickup gasoline hybrid  E10LDV TMDLDV   0.1784 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 

Small SUV gasoline hybrid  E10LDV TMDLDV   0.2096 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 0.2145 

Large SUV gasoline hybrid  E10LDV TMDLDV   0.1784 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 0.1798 

Compact gasoline plugin hybrid 20 km blended  E10LDV TMDLDV   0.3701 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 

  ELC TMDLDV   0.3701 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 

Full gasoline plugin hybrid 20 km blended  E10LDV TMDLDV     0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 

  ELC TMDLDV     0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 0.4034 

Pickup gasoline plugin hybrid 20 km blended  E10LDV TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

  ELC TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

Minivan gasoline plugin hybrid 20 km blended  E10LDV TMDLDV     0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 

  ELC TMDLDV     0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 

Large SUV gasoline plugin hybrid 20 km blended  E10LDV TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

  ELC TMDLDV       0.2256 0.2256 0.2256 0.2256 0.2256 0.2256 

Small SUV gasoline plugin hybrid 20 km blended  E10LDV TMDLDV   0.2540 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 

  ELC TMDLDV   0.2540 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 0.2633 

Compact gasoline plugin hybrid 60 km series  E10LDV TMDLDV   0.4063 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 

  ELC TMDLDV   0.4063 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 

Full gasoline plugin hybrid 60 km series  E10LDV TMDLDV   0.4063 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 
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 ELC TMDLDV   0.4063 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 0.4409 

Pickup gasoline plugin hybrid 60 km series  E10LDV TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

  ELC TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

Minivan gasoline plugin hybrid 60 km series  E10LDV TMDLDV     0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 

  ELC TMDLDV     0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 

Large SUV gasoline plugin hybrid 60 km series  E10LDV TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

  ELC TMDLDV       0.2419 0.2419 0.2419 0.2419 0.2419 0.2419 

Small SUV gasoline plugin hybrid 60 km series  E10LDV TMDLDV   0.2674 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 

  ELC TMDLDV   0.2674 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890 

Compact hydrogen fuel cell  H2 TMDLDV   0.3784 0.4017 0.4193 0.4193 0.4193 0.4193 0.4193 0.4193 

Full hydrogen fuel cell  H2 TMDLDV   0.3335 0.3465 0.3639 0.3639 0.3639 0.3639 0.3639 0.3639 

Minivan hydrogen fuel cell  H2 TMDLDV   0.2527 0.2623 0.2814 0.2866 0.2866 0.2866 0.2866 0.2866 

Small SUV hydrogen fuel cell  H2 TMDLDV   0.2814 0.2930 0.3062 0.3122 0.3122 0.3122 0.3122 0.3122 

Large SUV hydrogen fuel cell  H2 TMDLDV       0.2349 0.2385 0.2385 0.2385 0.2385 0.2385 

Existing Mini compact conventional gasoline  E10LDV TMDLDV 0.1607 0.1607 0.1607 0.1607 0.1607 0.1607 0.1607 0.1607 0.1607 

Existing Compact conventional gasoline  E10LDV TMDLDV 0.1951 0.1951 0.1951 0.1951 0.1951 0.1951 0.1951 0.1951 0.1951 

Existing Full Diesel  TRNDSLLDV TMDLDV 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 

Existing Full conventional gasoline  E10LDV TMDLDV 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 0.1714 

Existing Small SUV conventional gasoline  E10LDV TMDLDV 0.1452 0.1452 0.1452 0.1452 0.1452 0.1452 0.1452 0.1452 0.1452 

Existing Large SUV conventional gasoline  E10LDV TMDLDV 0.1213 0.1213 0.1213 0.1213 0.1213 0.1213 0.1213 0.1213 0.1213 

Existing Minivan conventional gasoline  E10LDV TMDLDV 0.1576 0.1576 0.1576 0.1576 0.1576 0.1576 0.1576 0.1576 0.1576 

Existing Pickup conventional gasoline  E10LDV TMDLDV 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 

Existing Pickup Diesel  TRNDSLLDV TMDLDV 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 0.1364 

Existing any Ethanol Flex Fuel  E85XLDV TMDLDV 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 

  E10LDV TMDLDV 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 0.1596 

Existing any CNG  CNGLDV TMDLDV 0.1712 0.1712 0.1712 0.1712 0.1712 0.1712 0.1712 0.1712 0.1712 

Existing any Electric  ELC TMDLDV 0.7225 0.7225 0.7225 0.7225 0.7225 0.7225 0.7225 0.7225 0.7225 

Compact compressed natural gas  CNGLDV TMDLDV   0.2349 0.2919 0.3581 0.3593 0.3593 0.3593 0.3593 0.3593 

Full compressed natural gas  CNGLDV TMDLDV   0.2155 0.2610 0.3282 0.3283 0.3283 0.3283 0.3283 0.3283 

Minivan compressed natural gas  CNGLDV TMDLDV   0.1895 0.2164 0.2608 0.2709 0.2709 0.2709 0.2709 0.2709 

Pickup compressed natural gas  CNGLDV TMDLDV   0.1574 0.1786 0.2025 0.2122 0.2122 0.2122 0.2122 0.2122 

 

 

 

Light Duty Electric Drive Vehicles 

Electric drive vehicles (EDVs) include hybrid electric vehicles (HEVs), plug-in hybrid 

electric vehicles (PHEVs), and battery electric vehicles (BEVs). EDV efficiencies are drawn 

from GREET (GREET, 2012). The NUSTD includes 6 LDV vehicle size classes (compact, 

full, minivan, small SUV, pickup, and large SUV), whereas GREET only includes 3 size 
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classes (passenger car and two light duty truck sizes categorized by weight). According to the 

GREET size definitions, ‘passenger cars’ have a gross vehicle weight of less than 2721 kg; 

‘light duty truck 1’ also has a gross vehicle weight of less than 2721 kg; ‘light duty truck 2’ 

has a gross vehicle weight of 2722-3855 kg (ANL, 2001). As a result, the ‘passenger car’ 

fuel economy from GREET is used in NUSTD for the compact and full size vehicles, ‘light 

duty truck 1’ for small SUVs and minivans, and ‘light duty truck 2’ for large SUVs and 

pickup trucks. No improvement in battery efficiency is assumed from 2020 to 2050, as 

GREET projections do not extend beyond 2020. Further extrapolation of battery 

improvements is highly speculative and could unintentionally drive model results. 

Because PHEVs operate in both charge-depleting (CD) and charge-sustaining (CS) 

modes, their representation in the NUSTD requires some explanation. A PHEV at full charge 

operates in CD mode until the battery reaches a minimum state of charge, at which point the 

vehicle switches to CS mode. There are two basic control strategies for vehicles in CD mode: 

all-electric or blended operation. PHEVs with an all-electric control strategy derive all of 

their propulsion energy from the battery during CD mode, whereas PHEVs with a blended 

control strategy derive their propulsion energy from a combination of the engine and the 

battery during CD mode. For PHEVs with a blended control strategy, the distance traveled in 

CD mode exceeds the all-electric range (AER). With either control strategy, the PHEV 

operates like an HEV with regenerative braking during CS mode.  

NUSTD includes 2 types of PHEVs, which are differentiated by the specified AER of 20 

km or 60 km, which is consistent with other studies (Michalek et al., 2011; Weiller, 2011; 

Axen et al., 2011; Wang et al., 2011). The PHEV20 has a blended control strategy, with an 
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all-electric range of 20 km, while the PHEV60 has an all-electric control strategy. PHEVs in 

the model can use electricity in combination with gasoline or E85 (ethanol with 15% 

gasoline). 

GREET provides separate efficiencies for CD and CS mode for both the PHEV20 and 

PHEV60 (GREET, 2012). Because vehicle assumptions are harmonized with Michalek et al. 

(2011) their estimates of the fractional distance traveled annually in CD mode for PHEV20 

(28%) and PHEV60 (47%) are utilized. Given the PHEV energy efficiency for the fuel and 

electricity inputs (in PJ per bnvmt) in each mode and the distance traveled in each mode, the 

gasoline and electricity consumption (in PJ) is estimated for each mode. The overall fuel 

ratio of gasoline to electricity for the PHEV is then calculated as follows: 

 

Ratio (gasoline/electricity) = 
 

 

Total gasoline consumption in CD CS  modes

Total electricity consumption in CD CS  mo des




                      (A.1)                  

 

Table A6 lists the fuel ratios for the PHEV20, PHEV60, and the blending technologies 

(i.e., processes that blend two fuels; for example ethanol and gasoline to make E85). The 

commodity abbreviations are explained in Table A12. 
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Table A6. Fuel share of ethanol, gasoline, and electricity for the PHEV20, PHEV60, and 

blending processes 

Technology Name Commodity In Commodity Out 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Compact Ethanol plugin hybrid 20 km  E85XLDV TMDLDV   0.9327 0.9262 0.9262 0.9262 0.9262 0.9262 0.9262 0.9262 

  ELC TMDLDV   0.0673 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 

Full Ethanol plugin hybrid 20 km  E85XLDV TMDLDV     0.9262 0.9262 0.9262 0.9262 0.9262 0.9262 0.9262 

  ELC TMDLDV     0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 0.0738 

Pickup Ethanol plugin hybrid 20 km  E85XLDV TMDLDV       0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 

  ELC TMDLDV       0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 

Minivan Ethanol plugin hybrid 20 km  E85XLDV TMDLDV     0.9450 0.9450 0.9450 0.9450 0.9450 0.9450 0.9450 

  ELC TMDLDV     0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 

Large SUV Ethanol plugin hybrid 20 km  E85XLDV TMDLDV       0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 

  ELC TMDLDV       0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 

Small SUV Ethanol plugin hybrid 20 km  E85XLDV TMDLDV   0.9466 0.9450 0.9450 0.9450 0.9450 0.9450 0.9450 0.9450 

  ELC TMDLDV   0.0534 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 0.0550 

Compact Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.8157 0.8042 0.8042 0.8042 0.8042 0.8042 0.8042 0.8042 

  ELC TMDLDV   0.1843 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 

Full Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.8157 0.8042 0.8042 0.8042 0.8042 0.8042 0.8042 0.8042 

  ELC TMDLDV   0.1843 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 0.1958 

Pickup Ethanol plugin hybrid 60 km  E85XLDV TMDLDV       0.8179 0.8179 0.8179 0.8179 0.8179 0.8179 

  ELC TMDLDV       0.1821 0.1821 0.1821 0.1821 0.1821 0.1821 

Minivan Ethanol plugin hybrid 60 km  E85XLDV TMDLDV     0.8248 0.8248 0.8248 0.8248 0.8248 0.8248 0.8248 

  ELC TMDLDV     0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 

Large SUV Ethanol plugin hybrid 60 km  E85XLDV TMDLDV       0.8179 0.8179 0.8179 0.8179 0.8179 0.8179 

  ELC TMDLDV       0.1821 0.1821 0.1821 0.1821 0.1821 0.1821 

Small SUV Ethanol plugin hybrid 60 km  E85XLDV TMDLDV   0.8248 0.8248 0.8248 0.8248 0.8248 0.8248 0.8248 0.8248 

  ELC TMDLDV   0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 0.1752 

Compact gasoline plugin hybrid 20 km 

blended  
E10LDV TMDLDV   0.9283 0.9216 0.9216 0.9216 0.9216 0.9216 0.9216 0.9216 

  ELC TMDLDV   0.0717 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 

Full gasoline plugin hybrid 20 km 

blended  

E10LDV TMDLDV     0.9216 0.9216 0.9216 0.9216 0.9216 0.9216 0.9216 

  
ELC TMDLDV     0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 0.0784 

Pickup gasoline plugin hybrid 20 km 

blended  

E10LDV TMDLDV       0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 

  
ELC TMDLDV       0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 

Minivan gasoline plugin hybrid 20 km 

blended  

E10LDV TMDLDV     0.9416 0.9416 0.9416 0.9416 0.9416 0.9416 0.9416 

  
ELC TMDLDV     0.0584 0.0584 0.0584 0.0584 0.0584 0.0584 0.0584 

Large SUV gasoline plugin hybrid 20 km 

blended  

E10LDV TMDLDV       0.9536 0.9536 0.9536 0.9536 0.9536 0.9536 

  
ELC TMDLDV       0.0464 0.0464 0.0464 0.0464 0.0464 0.0464 

Small SUV gasoline plugin hybrid 20 km 

blended  

E10LDV TMDLDV   0.9432 0.9416 0.9416 0.9416 0.9416 0.9416 0.9416 0.9416 

  
ELC TMDLDV   0.0568 0.0584 0.0584 0.0584 0.0584 0.0584 0.0584 0.0584 

Compact gasoline plugin hybrid 60 km 

series  

E10LDV TMDLDV   0.8058 0.7939 0.7939 0.7939 0.7939 0.7939 0.7939 0.7939 

  
ELC TMDLDV   0.1942 0.2061 0.2061 0.2061 0.2061 0.2061 0.2061 0.2061 

Full gasoline plugin hybrid 60 km series  E10LDV TMDLDV   0.8058 0.7939 0.7939 0.7939 0.7939 0.7939 0.7939 0.7939 
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Table A6 Continued 
           

  
ELC TMDLDV   0.1942 0.2061 0.2061 0.2061 0.2061 0.2061 0.2061 0.2061 

Pickup gasoline plugin hybrid 60 km 

series  

E10LDV TMDLDV       0.8179 0.8179 0.8179 0.8179 0.8179 0.8179 

  
ELC TMDLDV       0.1821 0.1821 0.1821 0.1821 0.1821 0.1821 

Minivan gasoline plugin hybrid 60 km 

series  

E10LDV TMDLDV     0.8152 0.8152 0.8152 0.8152 0.8152 0.8152 0.8152 

  
ELC TMDLDV     0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 

Large SUV gasoline plugin hybrid 60 km 

series  

E10LDV TMDLDV       0.8179 0.8179 0.8179 0.8179 0.8179 0.8179 

  
ELC TMDLDV       0.1821 0.1821 0.1821 0.1821 0.1821 0.1821 

Small SUV gasoline plugin hybrid 60 km 

series  

E10LDV TMDLDV   0.8152 0.8152 0.8152 0.8152 0.8152 0.8152 0.8152 0.8152 

  
ELC TMDLDV   0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 0.1848 

Blending process to collect gasoline and 

ethanol for E10 for LDV 

CONVGSL E10LDV 0.9316 0.9316 0.9316 0.9316 0.9316 0.9316 0.9316 0.9316 0.9316 

EthtoGSLorE85XLDV E10LDV 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 0.0684 

Blending process to collect gasoline and 

ethanol for E85X for LDV 

CONVGSL E85XLDV 0.2107 0.2107 0.2107 0.2107 0.2107 0.2107 0.2107 0.2107 0.2107 

EthtoGSLorE85XLDV E85XLDV 0.7893 0.7893 0.7893 0.7893 0.7893 0.7893 0.7893 0.7893 0.7893 

Truck using diesel to transport cellulosic 

ethanol between regions for LDV  

Celleth EthtoGSLorE85XLDV 0.9882 0.9882 0.9882 0.9882 0.9882 0.9882 0.9882 0.9882 0.9882 

TRNDSLLDV EthtoGSLorE85XLDV 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 0.0118 

 

 

 

Alternative LDVs with hurdle rates 

Bottom-up, technology rich models such as TIMES minimize direct costs and do not directly 

consider consumer expectations related to the convenience of refueling or charging 

infrastructure, travel range on a single charge, or desired payback periods. Without such 

considerations, some alternative vehicles, such as BEVs, have lower present cost compared 

to conventional options, and are therefore preferred by the model. In NUSTD, we 

approximate consumer behavior by applying hurdle rates (i.e., technology-specific discount 

rates) to the alternative LDVs: EDVs, CNG, hydrogen fuel cell vehicles, and diesel vehicles. 

The hurdle rates replace the 5% global discount rate used by the model when amortizing 

capital cost over the vehicle lifetime. Hurdle rates increase the annual payment on capital 

investments, thereby making the technology to which they are applied more expensive. As 

explained in the main narrative, we derived hurdle rates that were just large enough to keep 
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alternative vehicles out of the reference case solution
1
 rather than utilize behaviorally 

realistic hurdle rates. 

To estimate the hurdle rate for the alternative vehicle technologies, the present cost for 

each vehicle is compared to a conventional gasoline vehicle. The capital cost is amortized 

using a hurdle rate over the uniform 15-year vehicle lifetime, and brought back to present 

dollars using the 5% global discount rate. Fixed O&M costs and annual fuel costs assuming 

12,500mi/yr traveled over the 15-year lifetime are also converted to present dollars using the 

5% global discount rate. In many cases, the alternative vehicles have higher capital costs but 

lower fuel costs compared to a conventional gasoline vehicle. As the alternative vehicle 

hurdle rate is increased, it has the effect of raising the vehicle’s present cost. The vehicle-

specific hurdle rate is set such that the present cost of the alternative vehicle just exceeds that 

of the gasoline vehicle in the reference scenario. Since BEVs are the most cost-effective, they 

require the highest hurdle rate of 10%. This 10% hurdle rate is then applied uniformly to all 

alternative vehicles (HEV, PHEV, BEV, CNG, and H2-fuel cell vehicles).  

All of the LDVs in Table A1, with the exception of conventional gasoline and ethanol 

vehicles, have both a hurdle rate and non-hurdle rate version. Both sets of LDVs (i.e., with 

and without the hurdle rate) have identical characteristics, as specified in Tables A1 through 

A6. The only difference is the higher effective cost associated with the hurdle rate versions. 

                                                           
1
 The assumed reference case includes reference case natural gas, oil, and battery prices, and no RPS 

or CO2 policy. 
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The non-hurdle rate versions of the LDVs are subject to an upper bound constraint that limits 

their deployment to the levels found in the AEO reference case (EIA, 2012). In order to 

further deploy alternative vehicles across the 108 scenarios, the model must utilize the hurdle 

rate versions. By choosing the minimum hurdle rate to keep high levels of alternative 

vehicles out of the market in the reference case, we are representing some degree of 

consumer reluctance to switch to new vehicle technology. 

 

Section A3. Electric sector 

Thirty-two existing and new power plants along with 71 emission retrofit technologies are 

included in the electric sector. Emission retrofit technologies can capture NOX, SO2, and CO2 

emissions from coal, oil, and natural gas to reduce air pollution and greenhouse gas 

emissions. Flue Gas Desulfurization (FGD) is available for SO2 emissions control while Low 

NOX Burners (LNB), Selective Catalytic Reduction (SCR), and Selective Non-Catalytic 

Reduction (SNCR) are available for NOX control. SO2 and NOX controls can be installed in 

series, and LNB can be combined with either NOX flue gas control (SCR or SNCR). The 

existing capacities of NOX and SO2 retrofit technologies were updated based on eGRID 

(eGRID, 2010). The organization of NOX, SO2, and CO2 retrofit technologies is the same as 

EPANMD-2010-V1.0 (Shay et al., 2006). The cost and performance data for the electric 

generators and emissions control technologies (shown in Tables A7 to A9) as well as the 

emission factors associated with the fuels consumed in the power plants are taken from 

EPANMD-2010-V1.0 (Shay et al., 2006). The investment costs and existing capacities of the 
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electric generators are updated based on AEO (EIA, 2012). All of these data are available 

online in the NUSTD workbooks (Energy Modeling, 2014). Table A7 includes the list of 

power plants and their key characteristics. 
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Table A7. Commodity input/output, start year, lifetime, annual availability factor, 

investment cost, fixed and variable operation and maintenance costs for electric generators 

Technology Name 
Commodity 

In 

Commodity 

Out 

Start 

Year 
Lifetime AAFa 

Investment 

Cost 

(million 

2010$/GW) 

Fixed 

Operation & 

Maintenance 

Cost 

(M2010$/GW) 

Variable 

Operation & 

Maintenance 

Cost 

(M2010$/PJ)c 

Oil Steam (Residual Fuel Oil LS), Existing ELCRFLEA ELC 2010 10 0.833   18.86 12.92 

Natural Gas Steam, Existing ELCNGSEA ELC 2010 10 0.825   12.77 12.99 

Diesel Oil Combustion Turbine, Existing ELCDSLEA ELC 2010 16 0.873   4.47 20.32 

Natural Gas Combustion Turbine, Existing ELCNGAEA ELC 2010 29 0.877   3.01 18.81 

Diesel Oil Combined-Cycle, Existing ELCDSLEA ELC 2010 23 0.823   3.18 13.07 

Natural Gas Combined-Cycle, Existing ELCNGCEA ELC 2010 25 0.841   4.12 12.47 

Wood/Biomass Steam, Existing ELCBIOSTM ELC 2010 27 0.819   10.93 15.69 

Municipal Solid Waste Steam, Existing ELCMSWEA ELC 2010 29 0.788   13.05 16.72 

Geothermal, Existing ELCGEO ELC 2010 26 0.806   11.96 16.22 

Hydroelectric, Conventional, Existing ELCHYD ELC 2010 10 0.456   9.35 15.10 

Hydroelectric, Reversible, Existing ELC ELC 2010 18 0.371   11.96 16.11 

Wind, Existing WND ELC 2010 35 0.319   13.65 12.57 

Solar Thermal, Existing SOL ELC 2010 27 0.858   12.00 13.01 

Solar Photovoltaic, Existing SOL ELC 2010 31 0.150   12.00 13.01 

Residual Coal Steam, Existing COALSTM ELC 2010 17 0.863   20.15 12.93 

Pre-Existing Nuclear LWRs URNA ELC 2010 50 0.890   78.41 11.56 

    USPTA 2010 50         

Nuclear LWRs in 2015 URNA ELC 2015 45 0.850 4134 52.72 11.22 

    USPTA 2015 45         

Integrated Coal Gasification Combined Cycle CO2 Capture COALIGCC ELC 2015 50 0.850 4852 63.88 13.17 

Natural Gas Combined Cycle CO2 Capture ELCNGCEA ELC 2015 50 0.850 1834 27.88 12.76 

Solar PV Centralized Generationb SOL ELC 2015 30   4528 15.39 11.11 

Solar Thermal Centralized Generationb SOL ELC 2015 30   4384 59.00 11.11 

Wind Generation Class 4 b WND ELC 2015 30   2278 19.46 12.78 

Wind Generation Class 5 b WND ELC 2015 30   2278 19.46 12.78 

Wind Generation Class 6 b WND ELC 2015 30   2278 19.46 12.78 

Natural Gas - Advanced Combined-Cycle (Turbine) ELCNGCEA ELC 2015 30 0.900 929 13.48 11.91 

Natural Gas - Advanced Combustion Turbine ELCNGAEA ELC 2015 30 0.950 634 6.18 13.64 

Geothermal - Binary Cycle and Flashed Steam ELCGEO ELC 2015 25 0.640 2393 100.13 13.58 

Biomass Integrated Gasification Combined-Cycle ELCBIGCCEA ELC 2015 35 0.800 3519 92.69 12.39 

Pulverized Coal Steam – 2015 COALSTMCC ELC 2015 45 0.850 2658 27.35 12.20 

Integrated Coal Gasification Combined Cycle COALIGCCCC ELC 2015 40 0.850 3010 45.08 12.87 

Natural Gas - Combined Cycle (Turbine) ELCNGCEA ELC 2015 25 0.900 931 13.26 11.99 

Natural Gas - Combustion Turbine 
ELCNGAEA ELC 2015 25 0.950 927 6.43 14.88 

  a AAF=Annual availability factor  
  b Availability factors for the new solar and wind power plants are based on season and time of day. 
  c 4 cents/kWh was added to the VAROM of the power plants because of the transmission and distribution cost of electricity based on AEO2012 
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The existing capacity of the power plants in 2010 is derived from the AEO (EIA, 2012). 

The amount of capacity to be retired from 2010 to 2035 is also based on the AEO (EIA, 

2012). These retirement capacities were linearly extrapolated to 2050 and subtracted from 

existing capacity in 2010 to estimate the amount of preexisting power plant capacity in each 

time period. The existing electric sector capacity is shown in Table A8, while the peak factor 

(i.e., fraction of capacity that can be relied upon during the peak demand time slice) and 

conversion efficiencies are presented in Table A9. 

 

 

 

Table A8. The existing capacity of electric power plants (in GW) 

Technology Name 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Oil Steam (Residual Fuel Oil LS), Existing 29.31 24.51 24.26 24.12 23.85 23.47 23.18 22.87 22.55 

Natural Gas Steam, Existing 78.09 65.29 64.64 64.28 63.55 62.53 61.75 60.93 60.07 

Diesel Oil Combustion Turbine, Existing 26.37 25.02 24.86 24.39 24.00 23.87 23.45 22.96 22.39 

Natural Gas Combustion Turbine, Existing 108.43 102.88 102.24 100.31 98.70 98.13 96.41 94.41 92.06 

Diesel Oil Combined-Cycle, Existing 6.83 5.46 4.10 2.73 1.37 0.00       

Natural Gas Combined-Cycle, Existing 164.87 164.87 164.67 164.67 164.67 164.67 164.67 164.67 164.67 

Wood/Biomass Steam, Existing 7.95 6.36 4.77 3.18 1.59 0.00       

Municipal Solid Waste Steam, Existing 5.04 4.20 3.36 2.52 1.68 0.84 0.00     

Geothermal, Existing 3.50 2.80 2.10 1.40 0.70 0.00       

Hydroelectric, Conventional, Existing 78.20 78.20 78.20 78.20 78.20 78.20 78.20 78.20 78.20 

Hydroelectric, Reversible, Existing 22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 22.20 

Wind, Existing 39.52 33.87 28.23 22.58 16.94 11.29 5.64 0.00   

Solar Thermal, Existing 0.49 0.39 0.29 0.20 0.10 0.00       

Solar Photovoltaic, Existing 0.42 0.35 0.28 0.21 0.14 0.07 0.00     

Residual Coal Steam, Existing 308.10 266.90 260.10 260.10 260.10 259.90 257.97 255.97 253.88 

Pre-Existing Nuclear LWRs 101.20 101.20 100.60 100.60 100.10 95.10 95.10 90.31 81.75 
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Table A9. The peak factor and efficiency of electric power plants 

Technology Name Commodity In 
Commodity 

Out 
Peak Efficiency (2010-2040) 

Efficiency 

(2045) 
Efficiency (2050) 

Oil Steam (Residual Fuel Oil LS), Existing ELCRFLEA ELC 0.98 0.260 0.260 0.260 

Natural Gas Steam, Existing ELCNGSEA ELC 0.96 0.286 0.286 0.286 

Diesel Oil Combustion Turbine, Existing ELCDSLEA ELC 0.92 0.221 0.221 0.221 

Natural Gas Combustion Turbine, Existing ELCNGAEA ELC 0.96 0.246 0.246 0.246 

Diesel Oil Combined-Cycle, Existing ELCDSLEA ELC 0.96 0.322 0.322 0.322 

Natural Gas Combined-Cycle, Existing ELCNGCEA ELC 1.00 0.369 0.369 0.369 

Wood/Biomass Steam, Existing ELCBIOSTM ELC 0.84 0.206 0.206 0.206 

Municipal Solid Waste Steam, Existing ELCMSWEA ELC 0.95 0.213 0.213 0.213 

Geothermal, Existing ELCGEO ELC 0.95 0.162 0.162 0.162 

Hydroelectric, Conventional, Existing ELCHYD ELC 0.94 0.338 0.338 0.338 

Hydroelectric, Reversible, Existing ELC ELC 0.95 0.338 0.338 0.338 

Wind, Existing WND ELC 0.50 0.338 0.338 0.338 

Solar Thermal, Existing SOL ELC 0.30 0.328 0.328 0.328 

Solar Photovoltaic, Existing SOL ELC 0.30 0.338 0.338 0.338 

Residual Coal Steam, Existing COALSTM ELC 0.96 0.326 0.326 0.326 

Pre-Existing Nuclear LWRs (PJ elec/ton-input)  URNA ELC   1.43  1.43  1.43  

    USPTA 0.90       

Nuclear LWRs in 2015 (PJ elec/ton-input)  URNA ELC   1.53  1.53  1.53  

    USPTA 0.90       

Integrated Coal Gasification Combined Cycle CO2 Capture COALIGCC ELC   0.411 0.411 0.411 

Natural Gas Combined Cycle CO2 Capture ELCNGCEA ELC 0.96 0.455 0.455 0.455 

Solar PV Centralized Generation SOL ELC 1.00 1.000 1.000 1.000 

Solar Thermal Centralized Generation SOL ELC 0.30 1.000 1.000 1.000 

Wind Generation Class 4  WND ELC 0.30 1.000 1.000 1.000 

Wind Generation Class 5  WND ELC 0.34 1.000 1.000 1.000 

Wind Generation Class 6  WND ELC 0.34 1.000 1.000 1.000 

Natural Gas - Advanced Combined-Cycle (Turbine) ELCNGCEA ELC 0.34 0.531 0.531 0.531 

Natural Gas - Advanced Combustion Turbine ELCNGAEA ELC 0.95 0.350 0.350 0.350 

Geothermal - Binary Cycle and Flashed Steam ELCGEO ELC 0.92 0.350 0.350 0.350 

Biomass Integrated Gasification Combined-Cycle ELCBIGCCEA ELC 0.63 0.253 0.253 0.253 

Pulverized Coal Steam - 2010 COALSTMCC ELC 0.84 0.388 0.388 0.388 

Integrated Coal Gasification Combined Cycle COALIGCCCC ELC 0.96 0.392 0.392 0.392 

Natural Gas - Combined-Cycle (Turbine) ELCNGCEA ELC 0.96 0.484 0.484 0.484 

Natural Gas - Combustion Turbine ELCNGAEA ELC 0.95 0.314 0.318 0.318 
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Section A4. End-use demand sectors (commercial, industrial, residential) 

The end-use sectors (excluding transportation) are comprised of three major components: (1) 

time-sliced demand, (2) fuel share constraints (Equations B.20 and B.21), and (3) emission 

factors associated with in-sector fossil fuel combustion. The simplified representation of the 

end-use sectors does not include an explicit representation of demand technologies, since 

such technology detail is unlikely to have a large impact on vehicle deployment, which is the 

focus of this analysis. Table A10 provides the total amount of demand (in PJ) for the three 

end-use sectors (commercial, residential, and industrial), based on the AEO (EIA, 2012). The 

NUSTD workbooks contain the time-sliced demand and the emission factors associated with 

the fuel consumption in end-use sectors (Energy Modeling, 2014).  

 

 

 

Table A10. Total demands in the non-transportation related end-use sectors (PJ) 

Demand Commodity Name Abbreviation 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Residential RESDEM 12291 11838 11985 12154 12386 12587 12711 12863 13043 

Commercial COMDEM 9179 9284 9696 10012 10435 10825 11229 11668 12142 

Industrial INDDEM 19814 20384 20869 21354 21196 21122 21441 21765 22093 

 

 

 

In each end-use sector, the 2010 fuel shares and their projection to 2035 are drawn from 

the AEO (EIA, 2012). These lower bound shares are linearly extrapolated from 2035 to 2050 

and then linearly relaxed to 70% of the extrapolated values in 2050 for all of the fuels shown 

in Table A11, except electricity. Since it is hard to envision a scenario in which electricity is 

replaced by other fuels, no relaxation rate is applied to the electricity share. The 70% 

relaxation rate applied to the other fuel share constraints is chosen to give the model 
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sufficient flexibility to fuel switch in these end-use sectors in response to price signals. 

Because distributed wind and solar have no fuel costs, their shares are determined by upper 

bound constraints. Table A11 and Figures A2 through A4 illustrate how fuel shares get 

relaxed over time in the commercial, industrial, and residential sectors. 
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Table A11. Fuel share constraints by end-use sector 
End-use Demand Sector Commodity Name* 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Residential 

   LPG (L) 4.80% 4.55% 4.29% 4.04% 3.79% 3.53% 3.28% 3.02% 2.77% 

   LPG (U) 4.80% 4.80% 4.80% 4.80% 4.80% 4.80% 4.80% 4.80% 4.80% 

   Distillate fuel oil (L) 5.40% 4.85% 4.31% 3.76% 3.21% 2.66% 2.11% 1.56% 1.02% 

   Natural Gas (L) 43.40% 41.28% 39.16% 37.05% 34.93% 32.81% 30.69% 28.58% 26.46% 

   Renewables (U) 3.58% 3.45% 3.32% 3.19% 3.05% 2.92% 2.79% 2.66% 2.52% 

   Electricity (L) 42.45% 43.79% 45.12% 46.45% 47.79% 49.12% 50.45% 51.79% 53.12% 

   Coal (U) 0.09% 0.08% 0.08% 0.08% 0.07% 0.07% 0.06% 0.06% 0.06% 

Commercial 

   LPG (L) 1.61% 1.54% 1.47% 1.41% 1.34% 1.27% 1.20% 1.14% 1.07% 

   LPG (U) 1.61% 1.61% 1.61% 1.61% 1.61% 1.61% 1.61% 1.61% 1.61% 

   Distillate fuel oil (L) 4.92% 4.48% 4.04% 3.60% 3.16% 2.73% 2.29% 1.85% 1.41% 

   Distillate fuel oil (U) 4.92% 4.92% 4.92% 4.92% 4.92% 4.92% 4.92% 4.92% 4.92% 

   Natural Gas (L) 37.70% 36.03% 34.37% 32.70% 31.03% 29.37% 27.70% 26.03% 24.37% 

   Renewables (U) 1.26% 1.19% 1.12% 1.04% 0.97% 0.89% 0.82% 0.74% 0.67% 

   Electricity (L) 52.18% 53.01% 53.84% 54.67% 55.50% 56.32% 57.15% 57.98% 58.81% 

   Coal (U) 0.69% 0.65% 0.61% 0.57% 0.53% 0.49% 0.45% 0.40% 0.36% 

   Motor Gasoline (L) 0.57% 0.55% 0.53% 0.51% 0.49% 0.47% 0.45% 0.43% 0.41% 

   Motor Gasoline (U) 0.57% 0.57% 0.57% 0.57% 0.57% 0.57% 0.57% 0.57% 0.57% 

   Residual fuel oil (L) 0.92% 0.87% 0.81% 0.76% 0.70% 0.65% 0.59% 0.54% 0.49% 

   Residual fuel oil (U) 0.92% 0.92% 0.92% 0.92% 0.92% 0.92% 0.92% 0.92% 0.92% 

Industrial 

   LPG (L) 10.60% 10.22% 9.84% 9.46% 9.09% 8.71% 8.33% 7.95% 7.58% 

   LPG (U) 10.60% 10.60% 10.60% 10.60% 10.60% 10.60% 10.60% 10.60% 10.60% 

   Motor Gasoline (L) 1.33% 1.30% 1.28% 1.25% 1.23% 1.20% 1.17% 1.15% 1.12% 

   Motor Gasoline (U) 1.33% 1.33% 1.33% 1.33% 1.33% 1.33% 1.33% 1.33% 1.33% 

   Distillate fuel oil (L) 6.09% 5.83% 5.58% 5.32% 5.06% 4.80% 4.55% 4.29% 4.03% 

   Distillate fuel oil (U) 6.09% 6.09% 6.09% 6.09% 6.09% 6.09% 6.09% 6.09% 6.09% 

   Kerosene (L) 13.31% 12.69% 12.07% 11.45% 10.83% 10.20% 9.58% 8.96% 8.34% 

   Kerosene (U) 13.31% 13.31% 13.31% 13.31% 13.31% 13.31% 13.31% 13.31% 13.31% 

   Natural Gas (L) 35.62% 34.42% 33.21% 32.01% 30.81% 29.60% 28.40% 27.19% 25.99% 

   Coal (U) 7.99% 7.56% 7.12% 6.69% 6.26% 5.83% 5.40% 4.97% 4.53% 

   Renewables (U) 7.99% 7.94% 7.89% 7.85% 7.80% 7.75% 7.70% 7.66% 7.61% 

   Electricity (L) 16.45% 16.29% 16.13% 15.96% 15.80% 15.63% 15.47% 15.31% 15.14% 

   L=Lower bound constraint, U=Upper bound constraint 
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Figure A2. Total energy demand (squares) and minimum fuel shares (stacked area) in the commercial 

sector. Note that the share pertaining to wind and solar (grouped under ‘Renewables’) represents an 

upper bound, as the fuel cost is zero. 
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Figure A3. Total energy demand (squares) and minimum fuel shares (stacked area) in the industrial 

sector. Note that the share pertaining to wind and solar (grouped under ‘Renewables’) represents an 

upper bound, as the fuel cost is zero. 
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Figure A4. Total energy demand (squares) and minimum fuel shares (stacked area) in the residential 

sector. Note that the share pertaining to wind and solar (grouped under ‘Renewables’) represents an 

upper bound, as the fuel cost is zero. 

 

 

 

Section A5. Supply sector 

The supply sector includes the cost and emission factors associated with all energy resources 

and material used as commodity inputs to the transportation, electric, and end-use sectors. 

The fuel prices, shown in Table A12, are derived from the AEO for fuels delivered to 

different energy sectors (EIA, 2012). Non-biomass renewables have zero cost, but resource 

quality is parameterized by the availability factor. 
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Table A12. Fuel price in base scenario (millions of 2010 US$/PJ) 

Commodity Description Abbreviation 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Biomass ELCBSTMEA 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 

Municipal solid waste ELCMSW 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 

Cellulosic ethanol to TRN sector Celleth 39.56 39.56 39.56 39.56 39.56 39.56 39.56 39.56 39.56 

Hydrogen fuel to TRN sector H2 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65 27.65 

Coal to RESCOMIND sectors COAL 2.84 3.35 3.39 3.48 3.61 3.76 3.86 3.97 4.09 

Wood to RESIND sectors Wood  2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 

Waste to COM sector Waste 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 

Biomass to bio IGCC power plant ELCBIO 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 3.39 

Bituminous high sulfur coal ELCCOABH 2.69 2.81 2.93 3.06 3.19 3.33 3.48 3.63 3.79 

Bituminous low sulfur coal ELCCOABL 2.69 2.81 2.93 3.06 3.19 3.33 3.48 3.63 3.79 

Bituminous medium sulfur coal ELCCOABM 2.69 2.81 2.93 3.06 3.19 3.33 3.48 3.63 3.79 

Lignite high sulfur coal ELCCOALH 2.14 2.24 2.33 2.44 2.54 2.65 2.77 2.89 3.02 

Lignite medium sulfur coal ELCCOALM 2.14 2.24 2.33 2.44 2.54 2.65 2.77 2.89 3.02 

Sub-bituminous low sulfur coal ELCCOASL 1.30 1.35 1.41 1.47 1.54 1.60 1.67 1.75 1.82 

Sub-bituminous medium sulfur coal ELCCOASM 1.30 1.35 1.41 1.47 1.54 1.60 1.67 1.75 1.82 

Biodiesel to TRNHDV TRNBDSL 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 17.47 

Natural gas steam to electric sector ELCNGA 4.85 4.29 4.46 5.29 5.86 6.80 7.63 8.56 9.61 

Natural gas to RES sector NGRES 10.48 9.75 10.25 11.38 12.07 13.23 14.27 15.41 16.63 

Natural gas to COM sector NGCOM 8.60 8.14 8.50 9.48 10.02 11.01 11.87 12.81 13.81 

Natural gas to IND sector NGIND 5.21 4.61 4.85 5.71 6.21 7.13 7.96 8.87 9.89 

Natural gas to TRN sector NGTRN 11.09 10.72 11.14 12.24 12.75 14.12 15.13 16.20 17.36 

Distillate oil to electric sector ELCDSL 17.75 21.58 22.92 24.03 25.05 26.35 27.70 29.12 30.61 

Residual fuel oil to electric sector ELCRFL 11.27 21.80 23.11 24.08 24.22 24.38 25.07 25.78 26.51 

Conventional gasoline to TRN sector CONVGSL 22.72 29.17 30.57 31.78 32.69 33.26 34.37 35.51 36.70 

Diesel ultra low sulfur to TRN sector TRDSLU 22.09 26.12 27.47 28.83 29.74 30.71 31.98 33.30 34.67 

Ethanol to IND sector Ethanol 24.47 30.91 31.97 29.09 28.52 26.92 26.01 25.12 24.27 

Ethanol to LDV gasoline or E85X vehicles EthtoGSLorE85XLDV 24.47 30.91 31.97 29.09 28.52 26.92 26.01 25.12 24.27 

Ethanol to HDV gasoline or E85X vehicles  EthtoGSLorE85XHDV 24.47 30.91 31.97 29.09 28.52 26.92 26.01 25.12 24.27 

Ethanol to off-highway gasoline or E85X vehicles  EthtoGSLorE85XOH 24.47 30.91 31.97 29.09 28.52 26.92 26.01 25.12 24.27 

Distillate fuel oil to RESCOMIND sectors DistOil 20.00 23.84 25.29 26.61 27.74 28.89 30.31 31.81 33.37 

Kerosene to RESCOMIND sectors Kerosene 21.67 21.67 21.67 21.67 21.67 21.67 21.67 21.67 21.67 

LPG to RES sector LPGRES 25.61 29.10 29.45 30.59 31.55 32.83 33.84 34.88 35.95 

LPG to COM sector LPGCOM 22.29 25.99 26.33 27.46 28.40 29.67 30.67 31.70 32.76 

LPG to IND sector LPGIND 20.66 26.00 26.31 27.72 28.89 30.50 31.74 33.04 34.38 

LPG to TRN sector LPGTRN 25.48 30.27 30.53 31.64 32.58 33.88 34.85 35.84 36.87 

Motor gasoline to COMIND sectors Motorgsl 22.63 29.07 30.64 31.60 32.40 32.82 33.83 34.88 35.95 

Residual fuel oil to COMIND sectors ResOil 10.42 16.77 18.07 18.71 19.31 19.22 19.88 20.57 21.28 

Jet fuel to TRNHDV sector TRNJTF 15.37 22.50 23.94 25.07 26.14 27.61 29.06 30.59 32.19 

High sulfur residual fuel oil to TRNHDV TRNRFH 9.88 17.36 18.56 19.55 19.68 19.86 20.54 21.24 21.96 

Natural uranium (Units: M$/tonne) NURN 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 
  RES=Residential, COM=Commercial, IND=Industrial, TRN=Transportation (light and heavy duty vehicles and off-highway technologies), TRNHDV=Heavy duty transportation,      

  E85X=85% ethanol blended with 15% gasoline, E10=10% ethanol blended with 90% gasoline, LPG=Liquefied petroleum gas, CNG=Compressed natural gas, GSL=Gasoline,   

  DSL=Diesel, TRNDSLLDV=Diesel to transportation light duty vehicles, TMDLDV=Total miles demand for light duty vehicles, ELC=Electricity 
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The emissions rates, shown in Table A13, are based on EPANMD-2010-V1.0 (Shay et 

al., 2006). See Table A12 for commodity descriptions. These emissions factors are associated 

with the fuel production process, such as refinery emissions. Note that the negative emission 

coefficients are due to the CO2 uptake from corn production used to produce corn ethanol. 

These negative emissions coefficients are balanced by positive emissions coefficients 

downstream associated with fuel combustion.  

 

 

 

Table A13. Emission factors associated with the fuel production (10
3
 metric tons/PJ) 

Commodity Name Emission 2010 2015 2020 2025 2030 2035 2040 2045 2050 

LPGRES, LPGCOM, LPGIND, LPGTRN, 

CONVGSL, Motorgsl, TRNJTF, DistOil, 

ResOil, ELCRFL, TRNRFH, Kerosene, 
TRDSLU, ELCDSL 

SO2 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 

NOX 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 

CO2 11.948 11.948 11.948 11.948 11.948 11.948 11.948 11.948 11.948 

ELCNGA, NGRES, NGCOM, NGIND 

SO2 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 

NOX 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 0.018 

CO2 4.329 4.329 4.329 4.329 4.329 4.329 4.329 4.329 4.329 

ELCBSTMEA SO2 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 0.243 

ELCBSTMEA CO2 -108.31 -108.31 -108.31 -108.31 -108.31 -108.31 -108.31 -108.31 -108.31 

ELCBIO CO2 -94.680 -94.680 -94.680 -94.680 -94.680 -94.680 -94.680 -94.680 -94.680 

TRNBDSL CO2 -69.346 -69.346 -69.346 -69.346 -69.346 -69.346 -69.346 -69.346 -69.346 

EthtoGSLorE85XLDV,EthtoGSLorE85XH
DV,EthtoGSLorE85XOH  

CO2 -67.554 -67.554 -67.554 -67.554 -67.554 -67.554 -67.554 -67.554 -67.554 

ELCCOABH, ELCCOABL, ELCCOABM, 

ELCCOALH, ELCCOALM, ELCCOASL, 

ELCCOASM 

SO2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 

ELCCOABH, ELCCOABL, ELCCOABM, 

ELCCOALH, ELCCOALM, ELCCOASL, 
ELCCOASM 

NOX 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 

ELCCOABH, ELCCOABL, ELCCOABM, 

ELCCOALH, ELCCOALM, ELCCOASL, 

ELCCOASM 

CO2 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.440 0.440 
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APPENDIX B. Simplified TIMES Formulation 

The Integrated MARKAL-EFOM
2

 System (TIMES) is a model generator for national or 

multi-regional energy systems, which provides a technology-rich basis for simulating energy 

dynamics over a long-term, multi-period time horizon (Loulou et al., 2005). It is usually 

applied to the analysis of an entire energy system, but may also be applied to the detailed 

study of individual energy sectors (e.g., electricity or transportation) (Loulou et al., 2005).  

The user provides estimates of end-use energy service demands (e.g., vehicle miles 

traveled per year), the existing stock of energy related equipment in all sectors (e.g., installed 

capacity of pulverized coal plants), and the characteristics of available future technologies 

(e.g., capital cost, thermal efficiency) as well as present and projected primary energy prices 

and potentials (Loulou et al., 2005). TIMES performs linear optimization to supply energy 

service demands at minimum global cost, subject to user-imposed constraints such as 

emissions limits and maximum growth rates on technology capacity (Loulou et al., 2005).  

The energy system is described algebraically as a network of linked processes that 

convert primary energy commodities (e.g., natural gas, oil, uranium, biomass) into 

intermediate energy forms (e.g., enriched uranium, gasoline, ethanol) and finally end-use 

demands (e.g., lighting, transport, space heating) (Hunter et al., 2013). TIMES is considered 

a ‘technology rich’ model because it supports the representation of numerous energy 

                                                           
2
 The MARKAL (MARket Allocation) model (Fishbone et al. 1981, 1983; Berger et al., 1992) and 

EFOM (Van Voort et al., 1984) are two bottom-up energy models which inspired the development of 

TIMES. 
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technologies, where each energy technology-related process is defined by a set of 

engineering, economic, and environmental characteristics (e.g., capital cost, efficiency, 

capacity factor, emissions rate) associated with converting an energy commodity from one 

form to another. Processes are linked together in a network via flows of energy commodities. 

Figure B1 depicts a simplified reference energy system (RES) in TIMES containing 

processes represented as boxes and commodities as vertical lines. Commodity flows are 

represented as links between process boxes and commodity lines. 

 

 

 

 

Figure B1. A simplified representation of the reference energy system in TIMES drawn from 

Gargiulo et al. (2011).  
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The TIMES model optimizes energy system infrastructure and performance across a time 

horizon which may range over many decades (Loulou et al., 2005). The time horizon is 

usually split into several time periods. Each time period represents a point in time where 

decisions can be taken by the model, (e.g., installation of a new capacity to meet growing 

demand). The time periods are further divided into sub-annual time-slices to describe how 

loads vary seasonally and diurnally within a year, which can affect commodity flows and 

installed process capacities. Time-slices may be organized into four hierarchical levels: 

annual, seasonal, weekly, and day-night (Loulou et al., 2005). Figure B2 illustrates a user-

define time-slice tree, in which a year is divided into four seasons consisting of working days 

and weekends, and each day is further divided into day and night time-slices. 
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Figure B2. Example of a time-slice tree in TIMES drawn from Gargiulo et al. (2011). 

 

 

 

This appendix contains a simplified algebraic formulation of the TIMES model and 

ignores many exceptions and complexities that are not essential to a basic understanding of 

the core model principles. Additional details on general linear programming (LP) concepts 

are provided in the TIMES documentation (Loulou et al., 2005). A mathematical model 

consists of three key entities: (1) the decision variables, including unknowns or endogenous 

quantities to be determined by the optimization; (2) the objective function expressing the 

criterion to be minimized or maximized; and (3) constraint equations or inequalities 

involving the decision variables that must be satisfied by the optimal solution (Loulou et al., 

2005). 
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TIMES is formulated as an LP problem consisting of an objective function that 

minimizes the present cost of energy supply over the user-specified model time horizon and 

subject to a number of constraints that ensure the energy system functions properly (Loulou 

et al., 2005). The equations that make up the objective function and constraints represent 

algebraic expressions that include both decision variables and parameters, both of which are 

indexed by sets that represent unordered collections of items (e.g., model time periods, 

technologies, and commodities).  

The algebraic formulation of TIMES is implemented in the General Algebraic Modeling 

System (GAMS) language, which is an algebraic modeling language that combines the 

TIMES source code and user-created database into an LP matrix, which is then passed to a 

solver that finds the optimal solution (Loulou et al., 2005). Tables B1, B2, and B3 explain the 

main nomenclature in the TIMES formulation, which is drawn from Loulou et al. (2005). 

 

 

 

Table B1. Sets: List and description of TIMES nomenclature 

Set Description 

c Commodity (energy, material, emission, demand) 

cg Commodity group (user-defined list of commodities in a region) 

p Process (technology) 

r Region 

s 
Time-slice (this index is relevant only for user-designated commodities and processes that are tracked at 

finer than annual level (e.g., electricity) 

t  Time period 

v Technology vintage year is defined by the model time period (t) in which a technology (p) is installed. 
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Table B2. Parameters: List and description of TIMES nomenclature 

Variable Description 

AFr,v,t,p,s Availability factor of a process that can vary by season and time of day 

FRr,s Fraction of year represented by each time-slice s 

DEMc,t End-use demands specified by commodity c and time period t 

FLO-FUNCr,t,p,cg1,cg2,s 
Efficiency of process p with input commodity group cg1 and output 

commodity group cg2 in time period t (optionally with time-slice s) 

COM-IEr,t,c,s Efficiency of commodity c (e.g., transport losses) 

FLO-SHARr,t,p,cg,c,s Share of flow commodity c from the sum of all commodity flows in group 
cg belonging to process p 

 

 

 

Table B3. Variables: List and description of TIMES nomenclature 

Variable Description 

ACTr,v,t,p,s 
Total commodity consumption or production of technology p, in region r, 
and period t (optionally vintage v and time-slice s) 

CAPr,v,t,p Process capacity required to support all associated activity 

NCAP-COMr,t,p,c(io),s 
New capacity investment on commodity c (as input i or output o) of 
process p, in region r, period t, and time-slice s 

FLOWr,v,t,p,c,s 
The quantity of commodity c consumed or produced by process p, in 

region r and period t (optionally with vintage v and time-slice s)  

 

 

 

While the general TIMES formulation above includes a regional index ‘r’ for multi-regional 

models, NUSTD only represents the U.S. as a single region. As a result, the regional index 

can be ignored in the generalized algebraic formulation provided below. 

 

Decision variables 

The flow variables (FLOWr,v,t,p,c,s) are the fundamental quantities defining the detailed 

operation of a process. The technology activity (ACTr,v,t,p,s) and capacity (CAPr,v,t,p) represent 

derived variables based on the FLOW variable. While the ACT and CAP variables are 

derived from the underlying FLOW variables, they represent critical quantities that get 
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tracked though the model analysis; hence the constraints that define these derived variables 

are included in this section. In TIMES, the total commodity input to or output from a process 

(based on the user definition of the activity variable) is referred to as its “activity” and is 

represented by an equality constraint. 

Process activity: 

 

ACTr,v,t,p,s =                                                                   ∀r,v,t,p,s                              (B.1)                   

 

In addition, the activity of a process is used to define the associated process capacity 

through an inequality constraint. For each technology p, period t, vintage v, region r, and 

time-slice s, the activity of the technology may not exceed its available capacity. 

Technology capacity: 

ACTr,v,t,p,s ≤ AFr,v,t,p,s . CAPUNITr,p . FRr,s . CAPr,v,t,p           ∀r,v,t,p,s                               (B.2) 

 

The availability factor (AF) represents the maximum availability of a process by season 

and time-of-day, as determined by resource availability (e.g., as with intermittent 

renewables) as well as outage rates. The time-slice fraction (FR) is required because it 

specifies the amount of time over which the specified production must occur. CAPUNITr,p is 

the conversion factor between units of capacity and activity (e.g., activity of 31.536 PJ/yr is 

equivalent to 1 GW). 
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Objective function 

The TIMES objective is to minimize the total discounted cost of the modeled energy system 

over the user-specified time horizon (Loulou et al., 2005). The total discounted cost is based 

on the calculation of costs incurred in each model time period. Within each time period, the 

model optimizes the energy system for a representative year. The total annual cost for the 

representative year with a model time period includes the following elements: (1) capital 

costs incurred for investing into and/or dismantling processes; (2) fixed and variable annual 

operation and maintenance (O&M) costs; (3) costs incurred for exogenous imports and for 

domestic resource production; (4) revenues from exogenous exports; (5) delivery costs for 

required commodities consumed by processes; (6) taxes and subsidies associated with 

commodity flows and process activities or investments; and (7) salvage values associated 

with processes and embedded commodities at the end of the planning horizon (Loulou et al., 

2005). TIMES computes a net present value (NPV) associated with the stream of annual 

costs, discounted to a user-selected reference year. These regional discounted costs are then 

aggregated into a single total cost, which constitutes the objective function to be minimized 

by the model in its equilibrium computation (Loulou et al., 2005).  

 

NPV =   
           

        
                                                                                                          (B.3) 

 

To estimate the total annual cost of energy supply across the system (Cost_Annr,t), all 

annual costs are added to the annualized capital cost payments, minus salvage value and 
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export revenue in region r and time period t. The model discount rate is represented by d. 

Though a scalar discount rate of 5% is assumed for all model runs in this thesis, the TIMES 

model generator provides flexibility to vary the discount rate by region and model time 

period.  REFYR is the reference year for discounting. 

 

Constraint equations 
 

There are several constraints required to represent the critical physical and operational 

requirements associated with an energy system. If any constraint is not satisfied, the model 

will be infeasible. 

Commodity balance: 

                           COM-IEr,t,c,s ≥                         +                ∀r,v,t,s   (B.4)                                                                                                                                                                                                                                                                                                                                                                                               

 

For each time period t, time-slice s, input commodity c(in), and output commodity c(out), 

the left and right sides represent the total commodity produced and consumed (including end-

use demands), respectively. Equation (B.4) requires that the consumption of each commodity 

balances its production in each model period and time-slice. For example, total electricity 

supplied by electric generators (possibly with an adjustment for transportation losses) must 

be greater than or equal to total electricity consumed by demand devices in each time-slice. 

This inequality constraint is binding for all commodities that have non-zero production costs. 

Transformation equation: 

                            ≤ FLO-FUNCr,t,p,cg1,cg2,s ∙                              ∀r,v,t,p,s    (B.5)                                                                                                        
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The transformation equation (B.5) establishes a relationship between the flow of input 

commodity group cg1 and output commodity group cg2 in process p and ensures that the 

commodity output of a process cannot exceed the product of the commodity input and 

efficiency of the technology (FLO-FUNC).  

Flow share constraint:  

FLOWr,v,t,p,c,s ≤  FLO-SHARr,t,p,cg,c,s .                                      ∀r,v,t,p,s                  (B.6)                   

FLOWr,v,t,p,c,s  ≥  FLO-SHARr,t,p,cg,c,s .                                     ∀r,v,t,p,s                  (B.7)                               

 

Equation (B.6) limits the share of commodity flow c within commodity group cg on the 

input or output side of process p. For instance, refinery output might consist of three refined 

products: c1=light distillate, c2= medium distillate, and c3= heavy distillate. If the user intends 

to limit the production of commodity c3 to 40% of total commodity output, the resultant flow 

share constraint is FLOWC3 ≤ 0.4 . { FLOWC1+ FLOWC2+ FLOWC3}. Equation (B.7) was 

specifically used to set a lower bound on the share of electricity in the end-use sectors, as 

described on Appendix A, Section A4 (p. 130). 

In addition to the internal model constraints described above, several additional 

constraints were formulated to represent the specific scenarios modeled in Chapters 2-4. 

These scenario-specific constraints are presented in Equations (B.8) to (B.25). Since the 

constraints below are applied to the single region dataset NUSTD, the region index is 

dropped for ease of exposition. 
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New solar and wind backup constraint:  

CAP v,t,p1 + CAPv,t,p2  ≤ CAPv,t,p3                                                     ∀v,t,p                          (B.8)                                                                

 

Where CAP represents the installed technology capacity, p1 is the set of new wind power 

plants, p2 is the set of new solar power plants, and p3 is the set of new natural gas power 

plants (consisting of either combustion or combined cycle turbines). 

Electric sector NOx and SO2 emissions constraint:  

                         ≤ Et                                                                     ∀v,t                     (B.9)                                                   

 

Where the commodity FLOW variable is summed over all vintages (v) of processes (p) 

that produce NOX or SO2, which is denoted by the commodity subset c(out). These period-

specific total emissions must be less than or equal to the period-specific upper bound values 

on SO2 and NOx emissions from the electric sector Et specified in Table B4.  

 

 

 

Table B4. The upper bound values on electric sector NOx and SO2 emissions (Equation B.9) 
Time Period (t) Et: NOx (Kt) Et: SO2 (Kt) 

2010 2060 5110 

2015 1571 3988 

2020 1479 1378 

2025 1557 1544 

2030 1590 1580 

2035 1597 1590 

2040-2050 1604 1611 

                  Based on AEO (EIA, 2012) and include implementation of the Mercury and Air Toxics Standards (MATS)  
                          (U.S. EPA, 2012) and the Cross-State Air Pollution Rule (CSAPR) (U.S. EPA, 2013)   
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Renewable Portfolio Standard (RPS) constraint:  

                          ≤ PRt .                                                  ∀v,t                   (B.10)                                                                                             

 

Where the FLOW variable on the left side represents the total electricity generation from 

renewable power plant technologies, p1 (existing and new solar, wind, geothermal, biomass, 

and municipal solid waste), the FLOW variable on the right side represents the electricity 

generation from all power plant technologies p2, and PRt is the minimum percentage of 

electricity to come from renewable sources presented in Table B5.  The percentages in the 

middle column of Table B5 represent the existing state-level renewable portfolio standards 

included in all of the scenarios in all three chapters (DSIRE, 2013). The percentages on the 

right side represent renewable energy purchase requirements, based on Title I of the 

American Clean Energy and Security Act of 2009 (H.R. 2454) and are only included in the 

scenarios with the proposed federal RPS (Sections 2.3.5 and 3.4.2). 

 

 

 

Table B5. Requirements set for a renewable portfolio standard, old RPS (left) and new RPS 

(right) (Equation B.10) 
Time Period (t) PRt: Percent Renewable  PRt: Percent Renewable 

2010 2.00 NA 

2015 7.55 9.50 

2020 11.00 20.00 

2025 13.24 20.00 
2030 13.36 20.00 
2035 13.41 20.00 
2040 13.46 20.00 
2045 13.51 20.00 
2050 13.56 20.00 
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Biomass to coal constraint:  

                        ≤ 0.1 .                                              ∀v,t,s                        (B.11) 

 

Equation (B.11) ensures that biomass co-firing in coal plants does not exceed operational 

limits. The commodity FLOW variable on the left side represents the production of biomass 

c(out) by technologies p1 that is suitable for co-firing in coal plants p2. The commodity 

FLOW variable on the right side represents the total flow of coal into the coal-fired power 

plants and the 0.10 represents the fractional limit on the amount of biomass that can be 

supplied to coal plants on a per unit energy basis. 

Clean power plants capacity constraint:  

CAPv,t,p ≤ ACt                                                                                  ∀v,t,p                       (B.12) 

 

Equation (B.12) represents the upper bound constraints on the annual capacity (CAP) of 

geothermal, biomass, nuclear, and wind power plants drawn from AEO and EPA (EIA, 2012 

and Shay et al., 2006). Table B6 contains the annual upper bound values (ACt) in GW for 

these power plants for each time period. 

 

 

Table B6. The upper bound values on electric generation capacity (Equation B.12) 

Time Period (t) 
ACt (GW): 

Geothermal1  

ACt (GW): 

Biomass1 

ACt (GW): New 

Nuclear 

ACt (GW): 

Wind Class 4 

ACt (GW): 

Wind Class 5 

ACt (GW): 

Wind Class 6 

2015 4 8.2 12 2562 468 108 

2020 6 8.6 20 2562 468 108 

2025 8 8.9 48 2562 468 108 

2030 10 9.2 64 2562 468 108 

2035 11 9.5 86 2562 468 108 

2040 13 9.9 92 2562 468 108 

2045 15 10.2 100 2562 468 108 

2050 17 10.5 100 2562 468 108 
   1 The upper bound constraints are for the sum of existing and new capacity of geothermal and biomass power plants.  
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Solar capacity growth constraint:  

CAPv,t,p / CAPv,t-1,p ≤ 1.3                                                                ∀v,t,p                         (B.13)        

 

Equation (B.13) requires a maximum annual growth rate of 30% for new solar thermal 

and photovoltaic capacity CAP, based on AEO projections to 2035 (EIA, 2012). The installed 

capacity of new solar thermal or PV starts with a maximum of 2 GW in any time period that 

the model decides to start building new solar power plant capacity (EIA, 2012).  

Biofuels constraint:  

                        ≤ ICEUt                                                     ∀v,t,s                          (B.14) 

                        ≥ ICELt                                                     ∀v,t,s                           (B.15) 

                        = IOBFt                                                     ∀v,t,s                          (B.16) 

 

Equations (B.14) and (B.15) impose upper and lower bound constraints, respectively, on 

cellulosic ethanol imports to the transportation sector. The FLOW variable in both equations 

represents the cellulosic ethanol imports to technology p1, which provides ethanol to the 

transportation sector. ICEUt and ICELt, presented in Table B7, are the upper bound and 

lower bound constraints on cellulosic ethanol imports, respectively. Equation (B.16) sets a 

fixed bound constraint on imported corn ethanol and other advanced biofuels to the 

transportation sector. In this case, the FLOW variable represents corn ethanol and other 

advanced biofuels imports to technology p2, which provides corn ethanol and other advanced 
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biofuels to the transportation sector. IOBFt, presented in Table B7, is the fixed bound 

constraint value on corn ethanol and other advanced biofuels imports. The upper bound on 

cellulosic ethanol availability and the fixed bound constraint on corn-based ethanol and other 

advanced biofuels from 2015-2025 are obtained from the Renewable Fuel Standard
 
(RFS, 

2013) and held constant from 2030 to 2050, while the lower bound is based on AEO 

projections to 2035 (EIA, 2012) and linearly extrapolated to 2050.  

 

 

 

Table B7. The upper and lower bound values on cellulosic ethanol imports and the fixed 

bound constraints on imported corn-based ethanol and other advanced biofuels (Equations 

B.14, B.15, and B.16) 
Time Period (t) ICEUt (PJ): Upper Bound ICELt (PJ): Lower Bound IOBFt (PJ): Fixed Bound 

2015 269 11 1482 

2020 943 32 1661 

2025 1437 137 1706 

2030 3318 422 1706 
2035 3318 644 1706 
2040 3318 783 1706 
2045 3318 953 1706 
2050 3318 1159 1706 
 

 

 

CAFE constraint:  

                        ≤ TLEt                                                   ∀v,t,s                              (B.17) 

                       ≤ TLFCt                                                  ∀v,t,s                              (B.18) 

 

Equations (B.17) and (B.18) represent the upper bound constraints on total CO2 

emissions and fuel consumption associated with light duty vehicle (LDV) technologies, 

respectively. To avoid non-linearities in the TIMES model formulation, it was necessary to 
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place constraints on total estimated CO2 and energy consumption from the LDV sector rather 

than model the EPA emissions rate limits (EPA Federal Register, 2012) and required 

NHTSA fuel economies (AEO, 2012) directly. 

In Equation (B.17), for each time period t, the FLOW of tailpipe CO2 emissions c1(out) 

from  LDV technologies p must be less than or equal to the estimated greenhouse gas (GHG) 

emissions limits TLEt  listed in Table B.8 based on the CAFE standard (EPA Federal register, 

2012). In Equation (B.18), for each time period t, the total FLOW of input fuel c2(in) to LDV 

technologies p must be less than or equal to the maximum fuel consumption in the LDV 

sector, TLFCt, which is listed in Table B.8 and is based on the fleet-wide average fuel 

economy drawn from the CAFE standard (AEO, 2012). 

According to the new CAFE standard and the corresponding greenhouse gas (GHG) 

emissions rate limit (EPA Federal Register, 2012), LDVs are expected to reach a fleet-wide 

average fuel economy of 49.6 miles per gallon and GHG emissions of 163 grams CO2 per 

mile in model year 2025, respectively (AEO, 2012). Consistent with AEO (AEO, 2012), the 

49.6 miles per gallon is multiplied by a degradation factor of 80% to approximate on-road 

fuel economy. To factor out the effects of improved air conditioning which we do not model, 

the EPA standard is implemented as 185 grams CO2 per mile to only capture the effects of 

improved energy efficiency. 
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Table B8. The upper bound values on tailpipe CO2 emissions and fuel consumption 

associated with LDV technologies (Equations B.17 and B.18) 
Time Period (t) TLEt: LDV CO2 Emissions (Mt) TLFCt: LDV Fuel Input (PJ) 

2010 NA 17154 

2015 1376 16618 

2020 1218 15961 

2025 949 14919 

2030 946 14081 

2035 933 13699 

2040 959 14108 

2045 984 14512 

2050 1009 14910 

 

 

 

LDV size class share constraint:  

                        ≥ SCSt .                                             ∀v,t,s                     (B.19)                                                                    

 

Equation (B.19) represents the lower bound share constraint for each vehicle size class in 

the LDV sector. For each time period t, the total FLOW of commodity c(out) represents 

billion vehicle miles traveled associated with vehicle technologies in the LDV sector,  p1 

represents the set of vehicle technologies in a certain size class, p2 represents the set of all 

LDV technologies, and SCSt corresponds to the minimum percentage share of each vehicle 

size class in the LDV sector presented in Table B9 and based on U.S. EPA (Shay et al., 

2006). A similar constraint is applied to vehicle technologies in the heavy duty sector. 
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Table B9. The lower bound values on LDV size class share (Equation B.19) 
Time 

Period (t) 

SCSt (%): 

Mini-Compact 

SCSt (%): 

Compact 
SCSt (%): 

Full 
SCSt (%): 

Mini-Van 
SCSt (%): 

Small SUV 
SCSt (%): 

Large SUV 
SCSt (%): 

Pickup 

2015 1.7 19.0 28.5 5.7 17.4 14.3 13.2 

2020 1.8 20.2 29.5 5.4 16.6 13.6 12.6 

2025 1.9 21.5 30.6 5.2 15.7 13.0 12.0 

2030 1.9 22.7 31.6 4.9 14.9 12.3 11.3 

2035 2.0 24.0 32.7 4.6 14.0 11.7 10.7 

2040 2.1 25.2 33.7 4.4 13.2 11.0 10.0 

2045 2.2 26.4 34.8 4.1 12.4 10.3 9.4 

2050 2.3 27.6 35.8 3.9 11.6 9.7 8.8 

 

 

 

Fuel share constraint in end-use sectors:  

                 ≤ FSt .                                                   ∀v,t,p,s                                (B.20) 

                 ≥ FSt .                                                   ∀v,t,p,s                                (B.21)                                                                    

 

Equations (B.20) and (B.21) represent the upper and lower bound fuel share constraints 

in the end-use sectors (commercial, residential, and industrial). Note that this constraint set is 

an implementation of Equations (B.6) and (B.7) specifically applied to fuel shares in the end-

use sectors. The lower bound constraint (Equation (B.21)) is only applied to electricity in the 

end-use sectors, as we do not anticipate the possibility for a shrinking share of end-use 

electricity demand in the future. For each time period t, the total FLOW of commodity c1 

represents the fuel energy required to meet the total amount of end-use demand DEMc,t  (in 

PJ) for each end-use sector, drawn from Tables A10 and D5. FSt is the percentage fuel share 

from total demand in each end-use sector based on Tables A11 and D3. Note that end-use 

demands and fuel share constraints for Chapters 2 and 3 are drawn from Tables A10 and 
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A11. End-use demands and fuel share constraints for Chapter 4 are based on Tables D5 and 

D3, respectively.  

CO2 cap constraint:  

                       ≤ TEt                                                         ∀v,t,s                            (B.22) 

 

Equation (B.22) represents a federal cap on total system-wide CO2 emissions, where the 

left side represents the sum of CO2 emissions over all technologies p and the right side (TEt) 

is the cap on total system-wide CO2 emissions listed in Table B.10. The values listed in Table 

B.10 are based on a review of four proposed federal climate bills introduced in the US 

Congress over the last 7 years (U.S. EPA legislative analyses, 2013). The federal CO2 cap 

enters into force with a 5% reduction in the 2015 model period, with assumed uniform, linear 

reductions in each 5-year period until a 40% reduction is achieved in 2050. Additional 

information is provided in Appendix C. 

 

 

 

Table B10. A federal cap on system-wide CO2 emissions (Equation B.22) 
Time Period (t) TEt: Total CO2 Emissions Cap (Mt) 

2010 5811 

2015 5520 

2020 5230 

2025 4939 

2030 4649 

2035 4358 

2040 4068 

2045 3777 

2050 3487 
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Clean Energy Standard (CES) constraint:  

                          ≤ CESt .                                                 ∀v,t                  (B.23)                                                                    

 

Equation (B.23) represents a minimum requirement for electricity purchase from clean 

power plants based on the Clean Energy Standard Act of 2012 (S. 2146, 2012), where the 

FLOW variable on the left side represents the electricity generation from clean power plant 

technologies  p1 (solar, wind, geothermal, municipal solid waste, biomass, new nuclear, coal-

based IGCC-CCS, and NGCC-CCS). The FLOW variable on the right side represents total 

electricity production from all power plants p2, including the portion from clean power 

plants, and CESt is the minimum percentage of electricity that must come from clean sources, 

as shown in Table B11.  See Section 3.4.4 for more information. 

 

 

 

Table B11. Minimum annual requirements for the clean energy standard (Equation B.23) 
Time Period (t) CESt: Percent Clean Power Plants 

2020 24.0 

2025 39.0 

2030 54.0 

2035 69.0 

2040 84.0 

2045 84.0 

2050 84.0 

 

 

 

EPA CO2 cap constraint on the electric sector:  

                           ≤ NSPSt .                                      ∀v,t                        (B.24) 

                           ≤ ECt                                                          ∀v,t                        (B.25) 



173 

 

Equation (B.24) represents the upper bound constraint on CO2 emissions from new coal 

and natural gas power plants based on the U.S. EPA new source performance standard 

(NSPS) proposed on April 13, 2012 (EPA, 2013). For each time period t, the FLOW variable 

on the left side is summed over commodities c1(out) and represents the total CO2 emissions 

from new fossil fuel-fired power plants p1. The FLOW variable on the right side is summed 

over commodities c2(out) and represents the electricity generation from new fossil fuel-fired 

power plants p1. NSPSt is the proposed CO2 standard (in kt/PJ) for p1 technologies listed in 

Table B12. A CO2 standard of 1100 lbs/MWh (~138 kt/PJ) is applied for new coal steam and 

IGCC power plants (EPA, 2013). A CO2 standard of 1000 lbs/MWh (~126 kt/PJ) is applied 

for gas-fired combustion turbines and combined cycle (EPA, 2013). In this analysis, these 

emissions rate limits are applied to applicable new capacity in model year 2015 and remain 

in place through 2050. 

Equation (B.25) requires a national-level constraint on electric sector CO2 emissions 

based on the U.S. EPA proposed emission guidelines to address greenhouse gas emissions 

from existing fossil fuel-fired power plants (EPA, 2014). The FLOW variable represents total 

electric sector CO2 emissions summed over the set of all of power plant technologies p2 and 

ECt is the CO2 cap limit on the electric sector emissions shown in Table B12 (EPA, 2013 and 

2014).  We apply a national-level constraint on electric sector CO2 emissions that requires a 

CO2 emissions reduction below 2005 levels of 26% in 2020, 29% in 2025, and 30% in 2030 

(EPA, 2014). The 30% upper bound constraint on total CO2 emissions is extended from 2030 

to 2050. Section 3.4.3 provides more information on the U.S. EPA proposed emission 

guidelines for the electric sector CO2 emissions. 
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Table B12. A federal EPA CO2 cap on the electric sector (Equations B.24 and B.25) 
Time Period (t) NSPSt: CO2 Emissions Cap(Kt/PJ) ECt: Electric Sector CO2 Cap (Mt) 

 
New Coal Steam 

and IGCC 

New Natural Gas 

Combustion Turbine and 

Combined Cycle 

 

2015 138 126 NA 

2020 138 126 1801 

2025 138 126 1728 

2030-2050 138 126 1704 
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APPENDIX C. Scenario Information and Results for Chapter 2 

This appendix includes additional background information on the hypothetical CO2 policy 

and federal renewable portfolio standard (RPS) that are incorporated into the model scenarios 

as well as the characteristics of the scenarios analyzed in Chapter 2. 

In addition to the baseline data, NUSTD contains scenario data related to 5 key factors 

likely to affect electric drive vehicle (EDV) deployment: oil prices, natural gas prices, the 

presence of a federal renewable portfolio standard (RPS), the presence of a federal CO2 cap, 

and EDV battery costs. Figure C1 provides an influence diagram that illustrates how each 

factor affects the marginal electricity and fuel prices as well as vehicle cost, which taken 

together, determine the deployment of EDVs relative to other light duty vehicle (LDV) 

technologies as well as the fuel shares in the commercial, industrial, and residential sectors.  
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Figure C1. Influence diagram illustrating how scenario parameters related to natural gas prices, oil 

prices, EDV battery cost, a CO2 policy, and a renewable portfolio standard (‘RPS’) affect marginal 

fuel and electricity prices as well as vehicle cost. The quantities in dark gray are determined 

endogenously in response to scenario-specific parameters, which are represented by the dashed ovals. 

The RPS affects the mix of electric generators, which is not represented in the diagram, but it 

ultimately influences electricity price. 

 

 

 

It is important to note that the marginal price of a fuel represents its marginal value to the 

economy and is given by the change in total system cost per unit increase of the fuel. As a 

result, although the fuel supply prices are specified exogenously, the associated marginal 

prices, as determined by the model, can be affected by other scenario-specific assumptions 

such as the presence of the CO2 policy. While most of the scenario-specific assumptions are 

provided in the manuscript, additional information related to the natural gas price scenarios, 

federal RPS, and system-wide CO2 cap is provided below. 
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National gas prices 

As noted in Chapter 2, 3 scenarios are drawn from the AEO (EIA, 2012): low estimated 

ultimate recovery (EUR), reference EUR, and High Total Recoverable Resource (TRR). In 

the low EUR case, the EUR per shale gas well is 50% lower than the reference case, the high 

EUR case assumes a 50% higher EUR compared to the reference case, and the TRR case 

assumes a 136% higher EUR compared to the reference case and a higher well density. 

Note that the AEO scenarios above also include changes to the EUR and TRR of tight oil, 

which affects crude oil supply and prices. However, the variation in the 2035 price of low 

sulfur, light crude oil is only 5% relative to the reference case, whereas the 2035 variation in 

natural gas price is 55% (EIA, 2012). As a result, given the 5% price variation compared to 

much larger fuel price uncertainties, the effects of the variations in tight oil supply are 

ignored in this analysis.  

 

CO2 cap  

Table C1 below presents a list of several climate bills introduced in the last 5 years and it 

provides the mid-century emissions targets associated with four pieces of climate legislation 

introduced in the U.S. Congress (U.S. EPA legislative analyses, 2013). While none of these 

measures were passed, they nonetheless provide an indication of the level at which 

greenhouse gas emissions might be capped under an eventual federal policy. For ease of 

comparison, all emissions reductions are based on emissions levels in 2010, which is the base 

year for our model. All four bills include provisions for domestic offsets and international 

emissions credits, which are not explicitly included in our model. As a result, the final 
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column in Table C1 reflects the emissions target whereby the maximum international 

allowable offsets are added to the 2050 emissions target. 

 

 

 

Table C1. Select US Congressional bills creating a federal cap and trade system for 

greenhouse gas emissions 

Bill Name Bill No. Offsets 

2050 Target 

(% reduction 

from 2010 levels) 

Bingaman-Specter, “Low 

Carbon Economy Act of 

2007  

S1766 

100% of cap can be 

domestic offsets; 10% can 

be international offsets 

38% 

Lieberman-Warner Climate 

Security Act of 2008 
S2191 30% of cap level per year 60% 

American Clean Energy and 

Security Act of 2009  
H.R.2454 2,000 metric MtCO2e/yr 45% 

The Clean Energy Jobs and 

American Power Act of 

2009 

S1733 2,000 metric MtCO2e/yr 45% 

 

 

 

Renewable portfolio standard (RPS) 

Table C2 presents renewable energy purchase requirements, expressed as a percentage of 

total generation, based on Title I of the American Clean Energy and Security Act of 2009 

(H.R. 2454). For comparison, the average annual renewable requirement across the states 

with existing renewable portfolio standards is also presented for reference (DSIRE, 2013).  
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Table C2. Requirements set for a renewable portfolio standard as set forth in H.R. 2454 

Year Percent Renewable 

 H.R. 2454 State Average 

2012       6.0 4.3 

2013 6.0 4.4 

2014 9.5 4.7 

2015 9.5 5.7 

2016 13.0 5.8 

2017 13.0 6.0 

2018 16.5 6.1 

2019 16.5 6.4 

2020 – 2039 20.0 10.6 
a
 

                                               a This estimate represents the average percentage from 2020-2030 

 

 

 

As described in Chapter 2, 108 scenarios were analyzed, which combine assumptions 

related to oil and natural gas prices, vehicle battery cost, and the presence of RPS or a federal 

cap on CO2 emissions. Table C3 illustrates the various assumptions associated with each of 

the 108 scenarios analyzed in Chapter 2. The model results for EDV share within the LDV 

market and associated system-wide emissions are also presented for each scenario. 

 

 

 

Table C3. Scenario characteristics and the resultant EDV market share and emissions of 

CO2, NOX, and SO2 

Scenario 
Nat Gas 

Price 
Oil Price RPS CO2 Policy Battery Cost 

EDV (% 

LDV 

market) 

CO2 

emission 

(Mtons) 

NOx 

emission 

(Ktons) 

SO2 

emission 

(Ktons) 

1 High High Yes Yes Low 0.42 3487 8578 4378 

2 High High Yes Yes Ref 0.29 3487 8280 3943 

3 High High Yes Yes High 0.27 3487 8232 3875 

4 High High Yes No Low 0.42 5961 9757 4660 

5 High High Yes No Ref 0.27 5935 9848 4693 

6 High High Yes No High 0.24 5939 9855 4695 

7 High High No Yes Low 0.42 3487 8579 4378 

8 High High No Yes Ref 0.29 3487 8290 3957 

9 High High No Yes High 0.27 3487 8242 3890 
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Table C3 Continued 
10 High High No No Low 0.42 6252 9760 4681 

11 High High No No Ref 0.28 6202 9847 4710 

12 High High No No High 0.24 6205 9858 4713 

13 High Ref Yes Yes Low 0.42 3487 8565 4355 

14 High Ref Yes Yes Ref 0.25 3487 8224 3868 

15 High Ref Yes Yes High 0.22 3487 8208 3841 

16 High Ref Yes No Low 0.40 5954 9763 4667 

17 High Ref Yes No Ref 0.22 5941 9846 4697 

18 High Ref Yes No High 0.16 5953 9849 4702 

19 High Ref No Yes Low 0.42 3487 8564 4359 

20 High Ref No Yes Ref 0.25 3487 8234 3882 

21 High Ref No Yes High 0.22 3487 8218 3857 

22 High Ref No No Low 0.42 6246 9751 4681 

23 High Ref No No Ref 0.22 6207 9849 4715 

24 High Ref No No High 0.16 6220 9852 4721 

25 High Low Yes Yes Low 0.16 3487 8256 3808 

26 High Low Yes Yes Ref 0.16 3487 8256 3808 

27 High Low Yes Yes High 0.03 3487 8038 3479 

28 High Low Yes No Low 0.16 5988 9982 4789 

29 High Low Yes No Ref 0.16 5988 9982 4789 

30 High Low Yes No High 0.00 6016 10062 4826 

31 High Low No Yes Low 0.16 3487 8266 3823 

32 High Low No Yes Ref 0.16 3487 8266 3823 

33 High Low No Yes High 0.03 3487 8038 3479 

34 High Low No No Low 0.16 6255 9985 4808 

35 High Low No No Ref 0.16 6255 9985 4808 

36 High Low No No High 0.00 6244 10066 4842 

37 Ref High Yes Yes Low 0.42 3487 8580 4340 

38 Ref High Yes Yes Ref 0.37 3487 8473 3672 

39 Ref High Yes Yes High 0.34 3487 8474 3660 

40 Ref High Yes No Low 0.42 5806 9798 4661 

41 Ref High Yes No Ref 0.28 5800 9884 4693 

42 Ref High Yes No High 0.24 5808 9894 4696 

43 Ref High No Yes Low 0.42 3487 8581 4341 

44 Ref High No Yes Ref 0.31 3487 8353 4009 

45 Ref High No Yes High 0.27 3487 8274 3899 

46 Ref High No No Low 0.42 6078 9811 4684 

47 Ref High No No Ref 0.28 6042 9897 4714 

48 Ref High No No High 0.24 6055 9906 4717 

49 Ref Ref Yes Yes Low 0.42 3487 8542 4328 
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Table C3 Continued 

50 Ref Ref Yes Yes Ref 0.25 3487 8239 3890 

51 Ref Ref Yes Yes High 0.22 3487 8223 3865 

52 Ref Ref Yes No Low 0.40 5801 9791 4668 

53 Ref Ref Yes No Ref 0.22 5812 9872 4698 

54 Ref Ref Yes No High 0.16 5824 9875 4704 

55 Ref Ref No Yes Low 0.42 3487 8543 4331 

56 Ref Ref No Yes Ref 0.25 3487 8240 3892 

57 Ref Ref No Yes High 0.22 3487 8224 3868 

58 Ref Ref No No Low 0.42 6074 9789 4685 

59 Ref Ref No No Ref 0.22 6059 9884 4719 

60 Ref Ref No No High 0.16 6071 9887 4725 

61 Ref Low Yes Yes Low 0.16 3487 8266 3796 

62 Ref Low Yes Yes Ref 0.16 3487 8267 3798 

63 Ref Low Yes Yes High 0.03 3487 8051 3489 

64 Ref Low Yes No Low 0.16 5855 10004 4781 

65 Ref Low Yes No Ref 0.16 5855 10004 4781 

66 Ref Low Yes No High 0.00 5884 10079 4815 

67 Ref Low No Yes Low 0.16 3487 8266 3796 

68 Ref Low No Yes Ref 0.16 3487 8267 3797 

69 Ref Low No Yes High 0.03 3487 8051 3489 

70 Ref Low No No Low 0.16 6105 10016 4802 

71 Ref Low No No Ref 0.16 6102 10016 4802 

72 Ref Low No No High 0.00 6132 10091 4837 

73 Low High Yes Yes Low 0.42 3487 7972 3222 

74 Low High Yes Yes Ref 0.31 3487 7988 3256 

75 Low High Yes Yes High 0.27 3487 8025 3292 

76 Low High Yes No Low 0.42 5632 9876 4674 

77 Low High Yes No Ref 0.28 5675 9950 4704 

78 Low High Yes No High 0.24 5681 9960 4707 

79 Low High No Yes Low 0.42 3487 7972 3222 

80 Low High No Yes Ref 0.31 3487 8031 3287 

81 Low High No Yes High 0.27 3487 8043 3305 

82 Low High No No Low 0.42 5853 9899 4697 

83 Low High No No Ref 0.28 5832 9982 4727 

84 Low High No No High 0.24 5842 9991 4730 

85 Low Ref Yes Yes Low 0.42 3487 7971 3223 

86 Low Ref Yes Yes Ref 0.25 3487 8031 3299 

87 Low Ref Yes Yes High 0.22 3487 8047 3311 

88 Low Ref Yes No Low 0.42 5638 9882 4676 

89 Low Ref Yes No Ref 0.22 5686 9965 4709 
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Table C3 Continued 

90 Low Ref Yes No High 0.16 5698 9968 4715 

91 Low Ref No Yes Low 0.42 3487 7971 3224 

92 Low Ref No Yes Ref 0.25 3487 8044 3309 

93 Low Ref No Yes High 0.22 3487 8051 3315 

94 Low Ref No No Low 0.42 5849 9904 4698 

95 Low Ref No No Ref 0.22 5847 9996 4732 

96 Low Ref No No High 0.16 5859 9999 4738 

97 Low Low Yes Yes Low 0.16 3487 8102 3311 

98 Low Low Yes Yes Ref 0.16 3487 8102 3311 

99 Low Low Yes Yes High 0.04 3487 8152 3377 

100 Low Low Yes No Low 0.16 5725 10047 4757 

101 Low Low Yes No Ref 0.16 5725 10047 4757 

102 Low Low Yes No High 0.00 5784 10129 4797 

103 Low Low No Yes Low 0.16 3487 8106 3314 

104 Low Low No Yes Ref 0.16 3487 8106 3314 

105 Low Low No Yes High 0.04 3487 8155 3380 

106 Low Low No No Low 0.16 5886 10078 4780 

107 Low Low No No Ref 0.16 5886 10079 4780 

108 Low Low No No High 0.00 5978 10141 4814 
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APPENDIX D. NUSTD Modifications for Chapter 4 

Because Chapter 4 tests the model response to different vehicle charging patterns, it was 

necessary to develop new time-slices with finer time resolution and reapportion the end-use 

demands from the previous time-slice configuration based on U.S. EPA (Shay et al., 2006) to 

the new time-slice configuration. This appendix is organized into four sections, which 

address the following issues: (1) reapportioning dedicated electricity demand to the new 

time-slices, (2) reapportioning ‘other’ (i.e., non-exclusive electricity) demand to the new 

time-slices, (3) mapping vehicle demand to the new time-slices to represent constant, night, 

and peak charging, and (4) adjustments to the renewable resource characterization. 

 

Section D1. Dedicated electricity demand reapportionment in the end-use sectors 

In each end-use sector, the total dedicated electricity demand for each time period is 

ultimately distributed across the 36 time-slices using the TIMES ‘FR’ parameter, as defined 

in Equation (D.1):  

 

FR (Time-slice) =                                    (D.1) 

 

Mapping the EPA demands (Shay et al., 2006) from the original 12 time-slices to the new 

36 time-slices is done in a two-step process. First, the demands are mapped to revised EPA 

time-slices similar to the original, but assuming each revised time-slice contains an integer 

number of hours. Second, the 12 revised EPA time-slices are mapped to the new 36 time-

Electricity demand  in each time-slice

Total electricity demand  for each time period

i

i
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slices. We construct Tables D1 and D2 to demonstrate how electricity demand is calculated 

for each 2-hour time-slice in the intermediate season. The electricity demand corresponds to 

the residential sector in the intermediate season in 2010. The first row represents the EPA 

original time-slices for the intermediate season, where ‘I’ represents the intermediate season, 

‘AM’ represents the morning, ‘P’ represents the peak slice, ‘PM’ represents the afternoon, 

and ‘N’ represents night (Shay et al., 2006). The dedicated electricity demand in Petajoules 

(PJ) and the length of the original EPA time-slices, drawn from AEO and EPANMD (EIA, 

2012; Shay et al., 2006), are presented in rows 2 and 3, respectively. In row 4, the PJ 

electricity demand from row 2 is converted into a rate of consumption (PJ/hr) for each 

original EPA time-slice. Using the data in row 3 and assuming intermediate AM (IAM) 

begins at 6:00am, the start and end time of each EPA time-slice is calculated in row 5. We 

extended the length of the peak time-slice to 2 hours in order to have each time-slice 

correspond to an integer number of hours while making the least number of changes in the 

original time-slices. Rows 6 and 7 present the revised (denoted by ‘R’) EPA time-slices and 

the resultant length of time in hr/day, respectively. The start and end time of each revised 

time-slice is calculated in row 8. To estimate the electricity demand for each revised time-

slice in row 11, we compare the length of the revised and original EPA time-slices in rows 9 

and 10. For example, the start time of revised intermediate peak (R-IP) is 6 minutes (0.1hr) 

ahead of IP and the end time of R-IP is 112 min (1.87 hr) ahead of IP. The electricity demand 

associated with the additional 1.87 hr in the revised intermediate peak slice (R-IP) is taken 

from the adjacent time-slice, which is intermediate PM (I-PM). The PJ electricity demand for 

R-IP is then adjusted based on Equation (D.2): 
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                               –                                            

                                                                                                        (D.2)                                                                                                                     

 

We generate the same equations for other time-slices and estimate the electricity demand 

for all revised EPA time-slices based on the data in rows 2, 4, and 9. 

 

 

 

Table D1. The electricity demand distribution throughout the original and revised EPA time-

slices 

1 Original EPA time-slice IAM IP IPM IN 

2 Dedicated-electric demand (PJ) 315 17.9 489.3 492.9 

3 EPA original time-slice (hr/day) 5.9 0.23 6.87 11 

4 Dedicated-electric demand (PJ/hr) 53.4 78.1 71.2 44.8 

5 Start time-end time 
6:00-

11:54am 

11:54-

12:08pm 

12:08-

7:00pm 

7:00-

6:00am 

6 Revised EPA time-slice R-IAM R-IP R-IPM R-IN 

7 EPA new time-slice (hr/day) 6 2 7 9 

8 Start time-end time 
6:00-

12:00pm 

12:00-

2:00pm 

2:00-

9:00pm 

9:00-

6:00am 

9 
Time difference between length of original 

and new time-slices (hr) 
+0.1 -0.1,+1.87 -1.87,+2 -2 

10 
IAM= 6am-11:54am       IP=11:54-12:08pm        IPM=12:08-7pm       IN=7pm-6am 

R-IAM= 6am-12pm      R-IP=12pm-2pm             R-IPM=2pm-9pm      R-IN=9pm-6am 
 

11 New Dedicated-electric demand (PJ) 322.8 143.3 445.8 403.3 

  IAM: Intermediate AM, IP: Intermediate Peak, IPM: Intermediate PM, IN: Intermediate Night 

 

 

 

Table D2 illustrates how the demand distribution (FR) parameter is estimated for all 2-

hour time-slices in the intermediate season based on the electricity demand from the revised 
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EPA time-slices shown in Table D1. The first row presents the twelve 2-hour time-slices in 

the intermediate season. The second row represents the fraction of each revised EPA time-

slice associated with each 2-hour time-slice. In row 3, the residential electricity demands 

from the revised EPA time-slices (last row of Table D1) are distributed across the 2-hour 

time-slices using the fractions in row 2. Assuming 4607 PJ for the total dedicated electricity 

demand in the residential sector in 2010, the FR parameter is estimated for all 2-hour time-

slices of the intermediate season in row 4 based on Equation (D.1). Note that the sum of 

dedicated electricity demands in row 3 corresponds to dedicated electricity demand for the 

intermediate season in the residential sector in 2010. 

 

 

 

Table D2. The reapportionment of electricity demand to 2-hour time-slices in the 

intermediate (I) season 

1 2-hour time-slice 

I(6-8am), 

I(8-10am),  

I(10-

12pm) 

I(12-

2pm) 

I(2-4pm), 

I(4-6pm), 

I(6-8pm) 

I(8-

10pm) 

I(10pm-12am), 

I(12-2am), 

I(2-4am), I(4-

6am) 

2 

Fraction of new 2-hour diurnal time 

segment coming from each revised EPA 

diurnal time segment
a 
  

1/3  

(R-IAM) 

1 

(R-IP) 

2/7  

(R-IPM) 

1/7  

(R-IPM), 

1/9  

(R-IN) 

2/9 (R-IN) 

3 Dedicated-electric demand (PJ) 107.6 143.3 127.4 108.5 89.6 

4 FR (time-slice) 0.023 0.031 0.028 0.024 0.019 
  a Length of revised EPA time-slice drawn from Table D1, Row 7. For example, the demand for the new intermediate time-slice from 8-

10pm (‘I(8-10pm)’) is based on 1/7 of the demand from the revised EPA R-IPM time-slice and the 1/9 of the demand from the revised EPA  
R-IN time-slice. 

 

 

 

Section D2. The reapportionment of ‘other’ demand in the end-use sectors 

The end-use demands (e.g., space heating and water heating) that can be met by either fossil 

fuels or electricity in the residential, commercial, and industrial sectors are included in a 
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separate demand category called ‘other’ demand. In the industrial sector, the ‘other’ demand 

is only met by coal, petroleum products, and natural gas, whose prices do not vary by time-

slice. As a result, a single aggregate energy demand is specified for ‘other’ industrial demand 

in each time period, which does not change across time-slices. However, in the residential 

and commercial sectors, some portion of ‘other’ demand can be met by electricity based on 

AEO (EIA, 2012). Therefore, the total ‘other’ demand in the residential and commercial 

sectors is distributed over the 2-hour time slices in the same way as shown in Tables D1 and 

D2.  

Table D3 illustrates how fuel shares get relaxed over time in the commercial, industrial, 

and residential sectors. The share of the “electricity-other” commodity in the end-use sectors 

is calculated based on Equation (D.3) for each time period. The total and dedicated electricity 

demand for each end-use sector in Equation (D.3) is drawn from AEO projections to 2035 

(EIA, 2012) and linearly extrapolated to 2050. 

 

“Electricity-other” Share = 
Total electricity demand dedicated electr icity demand

Total energy demand dedicated electricity  demand




      (D.3)                 

 

The 20% and 5% projected electricity share within ‘other’ demand in the residential and 

commercial sectors, respectively, are specified as lower bound constraints from 2010 to 2050 

(Table D3). The 2010 fuel shares and their projection to 2035 for other fuels are drawn from 

the AEO (EIA, 2012). These lower bound shares are linearly extrapolated from 2035 to 2050 

and then linearly relaxed to 70% of the extrapolated values in 2050 for all of the fuels shown 
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in Table D3. The 70% relaxation rate gives the model sufficient flexibility to fuel switch in 

these end-use sectors in response to price signals. Equation (B.20) represents the fuel share 

constraint for ‘other’ demand in end-use sectors. 
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Table D3. Fuel share constraints by end-use sector 
End-use Demand Sector Commodity Name* 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Residential 

LPG (L) 6.60% 6.26% 5.93% 5.59% 5.26% 4.92% 4.59% 4.25% 3.92% 

LPG (U) 6.60% 6.60% 6.60% 6.60% 6.60% 6.60% 6.60% 6.60% 6.60% 

Distillate fuel oil (L) 7.42% 6.68% 5.93% 5.19% 4.45% 3.70% 2.96% 2.22% 1.47% 

Natural Gas (L) 59.60% 56.82% 54.05% 51.27% 48.50% 45.72% 42.95% 40.17% 37.39% 

Renewables (U) 4.92% 4.75% 4.58% 4.41% 4.24% 4.07% 3.90% 3.73% 3.56% 

Electricity-other (L) 20.97% 21.29% 21.62% 21.95% 22.28% 22.60% 22.93% 23.26% 23.59% 

Coal (U) 0.12% 0.11% 0.11% 0.10% 0.10% 0.10% 0.09% 0.09% 0.08% 

Commercial 

LPG (L) 3.14% 3.05% 2.97% 2.88% 2.80% 2.71% 2.63% 2.54% 2.45% 

LPG (U) 3.14% 3.14% 3.14% 3.14% 3.14% 3.14% 3.14% 3.14% 3.14% 

Distillate fuel oil (L) 9.59% 8.83% 8.07% 7.31% 6.54% 5.78% 5.02% 4.26% 3.50% 

Distillate fuel oil (U) 9.59% 9.59% 9.59% 9.59% 9.59% 9.59% 9.59% 9.59% 9.59% 

Natural Gas (L) 73.54% 71.36% 69.19% 67.01% 64.83% 62.65% 60.47% 58.30% 56.12% 

Renewables (U) 2.47% 2.35% 2.24% 2.13% 2.01% 1.90% 1.78% 1.67% 1.56% 

Electricity-other (L) 6.73% 6.30% 5.87% 5.44% 5.02% 4.59% 4.16% 3.73% 3.31% 

Coal (U) 1.35% 1.28% 1.22% 1.16% 1.10% 1.04% 0.97% 0.91% 0.85% 

Motor Gasoline (L) 1.12% 1.10% 1.08% 1.05% 1.03% 1.01% 0.99% 0.97% 0.94% 

Motor Gasoline (U) 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 1.12% 

Residual fuel oil (L) 1.79% 1.71% 1.63% 1.55% 1.46% 1.38% 1.30% 1.22% 1.13% 

Residual fuel oil (U) 1.79 % 1.79% 1.79% 1.79% 1.79% 1.79% 1.79% 1.79% 1.79% 

Industrial 

LPG (L) 12.68% 12.21% 11.74% 11.28% 10.81% 10.34% 9.87% 9.40% 8.93% 

LPG (U) 12.68% 12.68% 12.68% 12.68% 12.68% 12.68% 12.68% 12.68% 12.68% 

Motor Gasoline (L) 1.59% 1.56% 1.53% 1.49% 1.46% 1.42% 1.39% 1.35% 1.32% 

Motor Gasoline (U) 1.59% 1.59% 1.59% 1.59% 1.59% 1.59% 1.59% 1.59% 1.59% 

Distillate fuel oil (L) 7.29% 6.97% 6.66% 6.34% 6.02% 5.70% 5.38% 5.06% 4.75% 

Distillate fuel oil (U) 7.29% 7.29% 7.29% 7.29% 7.29% 7.29% 7.29% 7.29% 7.29% 

Kerosene (L) 15.93% 15.17% 14.41% 13.64% 12.88% 12.11% 11.35% 10.58% 9.82% 

Kerosene (U) 15.93% 15.93% 15.93% 15.93% 15.93% 15.93% 15.93% 15.93% 15.93% 

Natural Gas (L) 42.64% 41.14% 39.64% 38.14% 36.64% 35.13% 33.63% 32.13% 30.63% 

Coal (U) 9.56% 9.03% 8.50% 7.98% 7.45% 6.92% 6.39% 5.86% 5.33% 

Renewables (U) 9.56% 9.49% 9.42% 9.34% 9.27% 9.20% 9.13% 9.05% 8.98% 

 
Electricity-other (L) 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

  L=Lower bound constraint, U=Upper bound constraint 
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For reference, Tables D4 and D5 provide the dedicated electricity and “other” demands 

(in PJ) for the three end-use sectors (commercial, residential, and industrial), based on the 

AEO (EIA, 2012). The NUSTD workbooks contain the complete set of demand fractions 

associated with each 2-hour time-slice for each time period in each end-use sector (Energy 

Modeling, 2014).  

 

 

 

Table D4. Total dedicated electricity demands in the non-transportation related end-use 

sectors (PJ) 

Demand Commodity Name Abbreviation 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Residential electricity demand RESDEMELC 3345 3112 3176 3281 3429 3577 3645 3720 3802 

Commercial electricity demand COMDEMELC 4473 4547 4864 5170 5507 5834 6199 6602 7048 

Industrial electricity demand INDDEMELC 3260 3429 3439 3524 3429 3302 3319 3335 3352 

 

 

 

Table D5. Total “other” demands in the non-transportation related end-use sectors (PJ) 

Demand Commodity Name Abbreviation 2010 2015 2020 2025 2030 2035 2040 2045 2050 

Residential other demand RESDEMOTH 8947 8725 8799 8873 8957 9010 9052 9109 9183 

Commercial other demand COMDEMOTH 4706 4727 4843 4843 4917 5001 5084 5173 5266 

Industrial other demand INDDEMOTH 16554 16955 17430 17830 17767 17820 14770 15026 15287 

 

 

 

Section D3. Apportionment of light duty vehicle demand to represent vehicle charging 

scenarios 

As described in Appendix B, TIMES balances commodity consumption and production 

associated with each process over each time slice. As such, vehicle charging and driving is 

assumed to balance over each time-slice. To represent vehicle charging with different time-

slice distributions, the light duty vehicle (LDV) demand is distributed over different time-
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slices to represent constant, peak, and night charging scenarios. While reapportioning vehicle 

travel demand effectively assumes that the distribution of travel demand can change over a 

daily cycle, it is a modeling kluge that allows us to capture the effect of different charging 

patterns and does not have any other effect on the model results. 

The annual demand for vehicle miles associated with light duty transportation, shown in 

Table A3, is distributed across time-slices for the night and peak charging time by the 

fractions presented in Tables D6 and D7, respectively. In the constant charging scenarios, the 

annual LDV demand is constant throughout the year. 

 

 

 

Table D6. The fraction of annual LDV demand associated with each time-slice for night 

charging scenarios 

Time-slice name  
Demand fraction for 

each time-slice 

I0-2am, I2-4am 0.250 

S0-2am, S2-4am, W0-2am, W2-4am 0.125 

W4-6, W6-8, W8-10, W10-12, W12-14, W14-16, W16-18, W18-

20, W20-22, W22-24, I4-6, I6-8, I8-10, I10-12, I12-14, I14-16, 

I16-18, I18-20, I20-22, I22-24, S4-6, S6-8, S8-10, S10-12, S12-
14, S14-16, S16-18, S18-20, S20-22, S22-24 

0.000 

                                          S: Summer, W: Winter, I: Intermediate            

 

 

 

Table D7. The fraction of annual LDV demand associated with each time-slice for peak 

charging scenarios 

Time-slice name  
Demand fraction for 

each time-slice 

I14-16 0.50 

W14-16, S14-16 0.25 

W0-2, W2-4, W4-6, W6-8, W8-10, W10-12, W12-14, W16-18, 

W18-20, W20-22, W22-24, I0-2, I2-4, I4-6, I6-8, I8-10, I10-12, 

I12-14, I16-18, I18-20, I20-22, I22-24, S0-2, S2-4, S4-6, S6-8, 
S8-10, S10-12, S12-14, S16-18, S18-20, S20-22, S22-24 

0.00 

                                          S: Summer, W: Winter, I: Intermediate 
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Section D4. Adjustments to renewable resource characterization 

In the electric sector, the existing capacity of concentrating solar thermal and photovoltaic 

(PV) is updated based on the most recent estimates (1.75GW for solar thermal and 18 GW 

for solar PV) (EIA, 2013; Greentechsolar, 2014).  

In addition, the availability factors (AFs) for the new solar and wind power plants had to 

be modified for consistency with the new 2-hour time-slices. The NUSTD workbooks 

contain the availability factors associated with each 2-hour time-slice for the new solar and 

wind power plants in each time period (Energy Modeling, 2014). 
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