

Chemical Contamination, Acute Toxicity in Laboratory Tests, and Benthic Impacts in Sediments of Puget Sound

A summary of results of the joint 1997-1999 Ecology/NOAA survey

October 2003

Washington State Department of Ecology Environmental Assessment Program Environmental Monitoring and Trends Section Olympia, Washington

Publication No. 03-03-049

U.S. Department of Commerce National Oceanic and Atmospheric Adm. National Ocean Service National Centers for Coastal Ocean Science Ctr. for Coastal Monitoring and Assessment Silver Spring, Maryland

> Technical Memorandum NOS NCCOS CCMA 163

This report is available on the Department of Ecology home page on the World Wide Web at http://www.ecy.wa.gov/biblio/0303049.html

For additional copies of this publication, please contact:

Department of Ecology Publications Distributions Office PO Box 47600, Olympia WA 98504-7600

E-mail ecypub@ecy.wa.gov

Phone (360) 407-7472

Refer to Publication Number 03-03-049

General information and all data generated during this survey can be accessed from Ecology's Marine Sediment Monitoring website: <u>http://www.ecy.wa.gov/programs/eap/mar_sed/msm_intr.html</u>

and the Sediment Quality Information System (SEDQUAL) website: <u>http://www.ecy.wa.gov/programs/tcp/smu/sedqualfirst.html</u>

The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran's status, Vietnam era veteran's status, or sexual orientation.

If you have special accommodation needs or require this document in alternative format, please contact Joan LeTourneau, Environmental Assessment Program, at (360)-407-6764 (voice). Ecology's telecommunications device for the deaf (TDD) number at Ecology Headquarters is (360) 407-6006.

This report has been reviewed by the National Ocean Service of the National Oceanic and Atmospheric Administration (NOAA) and approved for publication. Such approval does not signify that the contents of this report necessarily represent the official position of NOAA or of the Government of the United States, nor does mention of trade names or commercial products constitute endorsement or recommendation for their use.

Chemical Contamination, Acute Toxicity in Laboratory Tests, and Benthic Impacts in Sediments of Puget Sound

A summary of results of the joint 1997-1999 Ecology/NOAA survey

by

Edward R. Long, Margaret Dutch, Sandra Aasen, and Kathy Welch Washington State Department of Ecology

> *M. Jawed Hameedi* National Oceanic and Atmospheric Administration

> > October 2003

Waterbody Numbers

WA-01-0010	WA-14-0050	WA-PS-0010
WA-01-0020	WA-14-0110	WA-PS-0020
WA-01-0080	WA-14-0130	WA-PS-0030
WA-03-0020	WA-15-0010	WA-PS-0040
WA-06-0010	WA-15-0020	WA-PS-0040
WA-06-0020	WA-15-0030	WA-PS-0070
WA-07-0010	WA-15-0040	WA-PS-0090
WA-07-1005	WA-15-0050	WA-PS-0100
WA-07-1011	WA-15-0060	WA-PS-0220
WA-09-0010	WA-15-0080	WA-PS-0230
WA-10-0010	WA-15-0110	WA-PS-0240
WA-10-0030	WA-15-0120	WA-PS-0250
WA-13-0010	WA-15-0130	WA-PS-0270
WA-13-0020	WA-17-0010	WA-PS-0290
WA-14-0010	WA-17-0020	WA-PS-0300
WA-14-0020	WA-17-0030	

This page is purposely blank for duplex printing

Table of Contents

List of Tables	V
Acronyms and Abbreviations	vi
Abstract	vii
Executive Summary	ix
Acknowledgements	. xiii
Introduction	
Methods Sampling Design and Sample Collections Chemical Analyses Laboratory Toxicity Tests	5 6
Amphipod Survival Tests of Solid Phase Sediments Sea urchin Fertilization Tests of Pore Waters Microbial Bioluminescence (Microtox TM) Tests of Organic Solvent Extracts	8 8
Cytochrome P450 HRGS Assays of Organic Solvent Extracts Benthic Community Analyses	9 10
Data Summaries, Displays, and Statistical Analyses Incidence, Spatial Patterns and Spatial Extent of Sediment Contamination Toxicity Tests of Amphipod Survival	11
Toxicity Tests of Sea Urchin Fertilization Microtox TM Tests of Microbial Bioluminescence Cytochrome P450 HRGS Toxicity Tests	13 13
Incidence and Severity, Spatial Patterns and Gradients, and Spatial Extent of Sediment Toxicity	
Benthic Community Abundance and Diversity Sediment Quality Triad Analyses	
Results	
Incidence and Spatial Extent of Chemical Contamination Spatial Patterns in Chemical Contamination	19
Incidence and Spatial Extent of Toxicity Spatial Patterns in Toxicity	23
Spatial Distribution of Benthic Indices Sediment Quality Triad Analysis: Spatial Extent of Degraded Conditions	27
Sediment Quality in Total Study Area Sediment Quality Triad by Region	
Sediment Quality Triad by Stratum Type Sediment Quality Triad Analysis: Spatial Patterns	

Discussion	
Degree of Chemical Contamination	
Laboratory Tests of Toxicity	
Forming a Weight of Evidence with the Triad of Analyses	
Conclusions	
References	41

Appendix A. Sediment Triad Data - Results of selected toxicity, chemistry, and infauna	1
analyses for all 1997-1999 Puget Sound stations10)3

List of Figures

Page
Figure 1. Map of the Puget Sound study area for the PSAMP/NOAA bioeffects survey49
Figure 2. Map of the six PSAMP Sediment Monitoring Regions
Figure 3. Strait of Georgia and Whidbey Basin sampling stations for the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett
Figure 4. Central Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Tacoma
Figure 5. Central Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay
Figure 6. South Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor
Figure 7. Hood Canal and Port Townsend sampling stations for the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove
Figure 8. Summary of spatial patterns in the distribution of elevated chemical concentrations for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Possession Sound
Figure 9. Summary of spatial patterns in the distribution of elevated chemical concentrations for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Everett to Tacoma
Figure 10. Summary of spatial patterns in the distribution of elevated chemical concentrations for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay
Figure 11. Summary of spatial patterns in the distribution of elevated chemical concentrations for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey59
Figure 12. Summary of spatial patterns in the distribution of elevated chemical concentrations for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove
Figure 13. Summary of spatial patterns in the distribution of significant results in four toxicity tests for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett
Figure 14. Summary of spatial patterns in the distribution of significant results in four toxicity tests for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Tacoma
Figure 15. Summary of spatial patterns in the distribution of significant results in four toxicity tests for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay

Figure 16. Summary of spatial patterns in the distribution of significant results in four toxicity tests for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey
Figure 17. Summary of spatial patterns in the distribution of significant results in four toxicity tests for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove
Figure 18. Summary of spatial patterns of benthic infaunal indices for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett
Figure 19. Summary of spatial patterns in the distribution of benthic infaunal indices for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey Admiralty Inlet, Possession Sound to Tacoma
Figure 20. Summary of spatial patterns in the distribution of benthic infaunal indices central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay
Figure 21. Summary of spatial patterns in the distribution of benthic infaunal indices for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey
Figure 22. Summary of spatial patterns in the distribution of benthic infaunal indices for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove
Figure 23. Summary of spatial patterns in the distribution of indices of relative sediment quality based upon the sediment quality triad of data for Strait of Georgia, Whidbey Basin, and Admiralty Inlet sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett
Figure 24. Summary of spatial patterns in the distribution of indices of relative sediment quality based upon the sediment quality triad of data for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Tacoma
Figure 25. Summary of spatial patterns in the distribution of indices of relative sediment quality based upon the sediment quality triad of data for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay
Figure 26. Summary of spatial patterns in the distribution of indices of relative sediment quality based upon the sediment quality triad of data for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey
Figure 27. Summary of spatial patterns in the distribution of indices of relative sediment quality based upon the sediment quality triad of data for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove75

List of Tables

<u>P</u>	age
Table 1. Estimated spatial extent of chemical contamination in six Puget Sound regions and in the entire survey area.	76
Table 2. Estimated spatial extent of chemical contamination in five Puget Sound stratum types and in the entire survey area.	78
Table 3. Estimated spatial extent of the results of four toxicity tests that exceeded critical values in six Puget Sound regions and in the entire surevey area.	80
Table 4. Estimated spatial extent of the results of four toxicity tests that exceeded critical values in five Puget Sound stratum types and in the entire surevey area.	84
Table 5. Summary of nine indices of benthic infaunal diversity and abundance in six sampling regions of Puget Sound.	88
Table 6. Summary statistics for nine indices of benthic community structure for samples in each of five stratum types in Puget Sound	89
Table 7. Estimated spatial extent of four categories of relative sediment quality in sixPuget Sound monitoring regions based upon the Sediment Quality Triad	90
Table 8. Estimated spatial extent of four categories of relative sediment quality in fivePuget Sound stratum types based upon the Sediment Quality Triad.	92
Table 9. Summary statistics for nine indices of benthic community structure for samples in each of four categories of sediment quality in Puget Sound as classified with the triad analysis.	
Table 10. Comparisons of the percentages of sediment samples in which one or more sediment quality guidelines were exceeded and the spatial area that they represented in different databases and estuarine regions of the U.S.	95
Table 11. Concordance in results of toxicity tests, calculated as the numbers and percentage of stations and as the area and percentages of the total study area in which results of two or more tests exceeded critical values.	es 97
Table 12. Regional comparison of the spatial extent of toxicity in amphipod survival tests performed by NOAA and U. S. EPA.	98
Table 13. Spatial extent of toxicity in sea urchin fertilization tests performed with 100%sediment pore waters from 22 U. S. bays and estuaries	99
Table 14. Spatial extent of significant results in microbial bioluminescence tests performed with solvent extracts of sediments form 18 U.S. bays and estuaries.	
Table 15. Spatial extent of significant results in HRGS tests performed with solvent extract of sediments form 11 U.S. estuarine survey areas	

Acronyms and Abbreviations

- AED atomic emission detector
- B[a]P benzo[a]pyrene
- BNA base/neutral/acid organic chemical analysis
- CAS Columbia Analytical Services
- CLIS Central Long Island Sound
- CSL cleanup screening level
- DCM dichloromethane
- DMSO dimethylsulfoxide
- EAP Environmental Assessment Program
- EC50 50% effective concentration; concentrations of the extract that inhibited luminescence by 50%)
- EMAP Environmental Monitoring and Assessment Program
- ERL effects range low (Long et al., 1995)
- ERM effects range median (Long et al., 1995)
- HRGS human reporter gene system
- LC50 lethal concentration for 50% of test animals
- MEL Manchester Environmental Laboratory
- MSD minimum significant difference
- NOAA National Oceanic and Atmospheric Administration
- NS&T National Status and Trends Program
- PAH polynuclear aromatic hydrocarbon
- PCB polychlorinated biphenyl
- PSAMP Puget Sound Ambient Monitoring Program
- SDI Swartz's Dominance Index
- SDS sodium dodecyl sulfate
- SEDQUAL Sediment Quality Information System Database
- SQS sediment quality standard
- SQT Sediment Quality Triad
- SQG Sediment Quality Guideline
- UPL upper prediction limit

Abstract

From 1997-1999, surficial sediments were collected from 300 randomly chosen locations throughout Puget Sound as part of a joint monitoring program conducted by the Washington State Department of Ecology and the National Oceanic and Atmospheric Administration. The study was designed to provide information on the severity, spatial patterns, and spatial extent of contamination, toxicity, and degraded benthos and to identify the relationships among these measures of sediment quality. Analyses were performed to quantify concentrations of numerous potentially toxic chemicals, responses in laboratory toxicity tests, and the structure of benthic infauna communities in sediments. Results for the 2363 km² survey area are summarized in this report.

Degraded conditions, as indicated with a combination of relative high chemical concentrations, statistically significant responses in one or more tests of toxicity, and adversely altered benthos, occurred in samples that represented about 1% of the total area. These conditions invariably occurred in samples collected within urbanized bays and industrial waterways, especially near the urban centers of Everett, Seattle, Tacoma, and Bremerton, where degraded conditions had been reported in previous studies. Sediments with high quality (as indicated by no elevated chemical concentrations, no significant responses in the toxicity tests, and the presence of abundant and diverse infauna and or pollution sensitive taxa) occurred in samples that represented a majority, 68%, of the total study area. Sediments in which results of the three kinds of analyses were not in agreement were classified as intermediate in quality and represented about 31% of the total area. This relatively large area with intermediate sediment quality is suggested as in most need of continued surveillance because of the heterogeneity and transitional nature of the sediments.

Sediment quality is also compared between six Puget Sound regions, and to estuaries nationwide. Relative to many other estuaries and marine bays along the U.S. coastline, Puget Sound sediments were ranked among the least contaminated and toxic. This page is purposely blank for duplex printing

Executive Summary

This study was designed to provide information on the severity, spatial patterns, and spatial extent of contamination, toxicity, and degraded benthos and the relationships among these measures of sediment quality in the Puget Sound region. Analyses of sediments were performed to quantify the concentrations of a broad range of potentially toxic chemicals and a number of physical variables that can influence their relative biological availability. Four laboratory toxicity tests were performed to determine the relative degree of response among samples. The structure and composition of benthic infauna communities were determined as indicative of impacts among resident biota. Sediment was collected at 300 randomly chosen locations in Puget Sound sampled during 1997-1999. The 300 sampling locations were determined to cover a total survey area of 2363 km². Samples of surficial sediments were collected throughout the greater Puget Sound area. The study area extended from the U.S./Canada border, south through the central basin of Puget Sound, to the inlets of southern Puget Sound and Hood Canal. This area was divided into 6 sediment monitoring regions defined by their geographic locations and hydrogeological features, including the Strait of Georgia, Whidbey basin, Admiralty Inlet, Central Sound, South Sound, and Hood Canal. Sampling strata, defined by their geological and anthropogenic features, included deep basins, passages, rural bays, urban bays, and industrial harbors. During the three years, 300 samples were collected and analyzed, progressing from north to south, throughout this study area.

The study was performed as part of a joint research program of the Washington State Department of Ecology (Ecology) and the National Oceanic and Atmospheric Administration (NOAA). The results of the study were reported in detailed technical reports prepared for each of the three phases of the study (Long et al., 1999a, 2000a, and 2002). The purpose of this report is to summarize the information on the geographic patterns and spatial extent of degraded sediment quality over the entire study area developed during the three-year program.

A probabilistic, stratified-random sampling design was used to avoid biases in the selection of sampling locations and to allow estimations of the spatial extent of degraded and non-degraded conditions. Polygonal strata were designated based upon physiographic features and relative uniformity in bathymetry and sedimentological features. Sampling locations were selected randomly by a computer program within each stratum. Usually, three samples were collected in each stratum. Composited, homogenized sediment samples were collected at each sampling station and distributed to different laboratories for analyses of over 150 chemical and physical variables, for performance of four laboratory toxicity tests, and for identification and enumeration of benthic infauna captured on 1.0 mm sieves. Standardized methods, quality assurance, and quality control methods adopted by both Ecology and NOAA were applied in this survey to ensure acquisition of highest quality data.

Results of the chemical, toxicity, and benthic analyses were evaluated separately, using statistically-derived benchmarks (i.e., numerical "critical values"), to identify the spatial extent and spatial patterns in categories of relative sediment quality. Also, they were evaluated together in Sediment Quality Triad analyses to form a weight of evidence with which to compare and rank the overall degree of degradation in sediment quality among stations, strata, and regions.

The Triad analyses allowed us to identify the degree of concordance (agreement) among the three kinds of information that was developed.

To evaluate the chemistry data, concentrations were compared to sediment quality standards established for Washington State and informal guidelines derived for NOAA. Among the 300 samples collected, there were 184 (61% of the total) in which one or more chemical concentrations exceeded either a state standard or a NOAA guideline value. These 184 samples represented a total area of about 1260 km², equivalent to 53% of the total survey area. This overall estimate of chemical contamination was reduced to 70 samples, representing 144 km² (6% of total survey area) when the data were excluded for four relatively non-toxic, yet ubiquitous, chemicals: nickel, benzoic acid, phenol, 4-methyl phenol. Furthermore, the spatial extent of chemical contamination estimated relative to only NOAA's guideline values was much smaller, equivalent to only 1.3% of the total survey area. Complex mixtures of toxicants occurred in the contaminated samples, often consisting of organic compounds, including benzoic acid, phenol, 4-methyl phenol, polynuclear aromatic hydrocarbons, and polychlorinated biphenvls. Some samples also had elevated concentrations of potentially toxic trace elements including mercury, copper, and zinc. The degree of chemical contamination generally was higher in the Strait of Georgia, Whidbey Basin, Central Sound, and South Sound regions of the study area, notably highest in the industrialized, maritime harbors. The least contaminated samples generally were collected in the Hood Canal and Admiralty Inlet regions. Throughout the entire study area, the deep basins and rural bays farthest from sources were least contaminated

The toxicity of the sediments was determined in a battery of four tests intended to provide information on three phases of sediments; solid-phase (bulk) sediments, pore waters, and organic solvent extracts. Tests were performed for survival among marine amphipods exposed to solid phase sediments, sea urchin egg fertilization in exposures to pore waters, microbial bioluminescence activity in tests of solvent extracts, and cytochrome P-450 HRGS activity in another assay of the solvent extracts. Significant responses as determined in the four laboratory tests were not widespread; generally being restricted in scope to industrialized bays and harbors. Only one sample was classified as highly toxic in the amphipod survival test of whole sediments. This sampling station represented about 0.04% of the total survey area. Samples in which results of the area. In the microbial bioluminescence assay of organic solvent extracts, eight samples had highly significant responses and they represented about 0.4% of the study area. Cytochrome P-450 induction was highest in samples that represented about 3% of the total area; whereas responses above background levels occurred in samples that represented 25% of the area.

The area in which responses in one or more of four laboratory tests exceeded the critical values (144 samples, representing 642 km² or 27% of the total area) was less than the area classified as chemically contaminated with one or more substances (184 samples, representing 1260 km² or 53% of the area). Much of the area in which toxicity test results were significant was attributable to significant responses in the HRGS assay, a test of an organic solvent extract; thus, not a test of the bioavailability of sediment-sorbed toxicants. There was relatively good agreement between responses in the urchin fertilization test and HRGS test. There were 69 samples in which only a toxicity test response was recorded, but no chemical contamination was apparent, representing 22% of the study area. The lack of concordance in these 69 sediments suggested that toxicity was

in response either to unmeasured chemicals or chemicals for which there are no guidelines or criteria. There were 13 samples in which the sediments were contaminated, but not toxic, representing about 4% of the area. The toxicants in these sediments were apparently not bioavailable or sufficiently elevated in concentration to cause responses in either the laboratory tests or in the resident benthos. Only four (<1% of the study area) samples were classified as having degraded benthos, but were not contaminated or toxic. The benthos was apparently degraded as a result of factors other than chemical contamination.

Despite the lack of concordance among elements of the triad in some samples, there was agreement among these measures in the majority of samples. Sediments from 175 of the 300 sampling stations indicated concordance among the elements of the triad in classification of quality; that is, indicative of either high quality or degraded conditions. Together, they represented 69% of the total study area.

The presence and abundance of benthic infaunal taxa was summarized with nine calculated indices. In most cases, lowest index values (i.e., indicative of the lowest diversity and abundance or lowest counts of pollution-sensitive taxa) occurred in samples collected in industrial harbors and urban bays. No critical numerical values are available thus far for Puget Sound with which to classify benthic communities as degraded or stressed. Thus, the benthic data were analyzed qualitatively in subjective analyses of the weight of evidence formed with the triad of measures. An index of dominance and the abundance of arthropods, echinoderms, and miscellaneous taxa appeared to be most in concordance with overall indices of sediment quality, whereas total abundance, numbers of taxa and abundance of annelids and molluscs were least affected.

The weight-of-evidence from the three complimentary kinds of information suggested that, overall, sediment quality was good throughout most of the 2363 km² survey area. Degraded conditions (high chemical concentrations relative to effects-based critical values, highly significant response in one or more laboratory tests, and adversely altered benthic community structure) occurred in 37 samples that represented about 23 km², or 1.0% of the total study area. These sediments, in which there was a high degree of concordance among measures of sediment quality, invariably occurred in samples collected within urbanized bays and industrial waterways of the central Puget Sound region nearest the urban centers of Everett, Seattle, Tacoma, and Bremerton. Degraded sediment quality and high incidences of adverse biological effects had been recorded in these areas in previous studies. Any two elements of the triad were highly significant in 40 samples; thus, constituting intermediate/degraded conditions that represented about 4% of the total survey area. Another 85 samples (representing 27% of the study area) were of intermediate/high quality as indicated by only one of the elements of the triad. The 125 samples in which intermediate and non-concordant sediment quality (i.e., one or two elements of the triad indicating degraded conditions) was recorded underscores the transitional and heterogeneous nature of sediment quality in a fairly large proportion (31%) of Puget Sound. Sediments with intermediate or transitional conditions may be most in need of future surveillance to ensure that sediment quality does not deteriorate further in those areas. Sediments with high quality (as indicated by no significant responses in the four laboratory tests, no contamination relative to the values that were used, and supporting abundant and diverse infauna) occurred in 138 samples, representing the majority (i.e., 68%) of the total study area. These high quality conditions were most apparent throughout the study area in the rural bays,

deep basins and passages and in the Strait of Georgia, Whidbey Basin, Admiralty Inlet, and Hood Canal regions adjacent to least populated areas farthest from toxicant sources.

Comparisons between results of the present study with those in which comparable methods were applied elsewhere in U.S. estuaries indicated that the percentages of samples and/or study areas with either chemical contamination or acute toxicity were relatively low in Puget Sound. Surficial sediments of Puget Sound, as classified in the present study, ranked among the least degraded relative to those from many other estuarine regions. Conditions, in the industrialized harbors and urban bays of Puget Sound, however, were roughly equivalent to those in similar areas of other estuaries and marine bays.

Acknowledgements

We are grateful to the following for their generous and capable assistance, provided in a timely and gracious manner. A large-scale project such as this could not be conducted and reported without the contributions and assistance of all of these individuals.

- The U. S. Geological Survey performed the sea urchin tests (Dr. R. Scott Carr, Corpus Christi, TX) and the Microtox[™] tests (Dr. Tom Johnson, Columbia, MO).
- Science Applications International Corporation in Narragansett, RI (Dr. K. John Scott, Ms. Cornelia Mueller, P.I.s) completed the amphipod survival tests.
- Columbia Analytical Services, Inc. in Vista, CA, performed the cytochrome P450 HRGS assays (Dr. Jack Anderson, P.I.).
- EVS Environment Consultants, Ltd. in Seattle, WA, provided assistance in data base management, preparation of base maps, and identification of station coordinates (Ms. Corinne Severn, P.I.).
- Taxonomic services were provided by Howard Jones, Eugene Ruff (polychaetes), Susan Weeks, Ron Shimek (molluscs), Steve Hulsman, Dr. F. Scott McEuen (miscellaneous taxa), Dr. John Chapman, Renee Zane and Dr. Jeff Cordell (arthropods).
- Scott Redman, Puget Sound Water Quality Action Team, provided early project planning assistance.
- During field operations, Mr. Charles Eaton, Bio-Marine Enterprises, captained the *R/V Kittiwake* and assisted with field logistics and itinerary preparation, and Mr. Sam Eaton operated the winch and provided sampling assistance.
- The following Washington State Department of Ecology personnel provided assistance:
 - ♦ Dr. William Ehinger, Environmental Assessment Program (EAP), provided assistance with the correlation analyses.
 - ♦ Brendon MacFarland, Sediment Management Unit, and Dale Norton, EAP, provided assistance during the stratification process.
 - ♦ Steve Barrett, EAP, assisted with data base preparation and handling.
 - Manchester Environmental Laboratory provided laboratory analyses, sampling handling and tracking services, and data quality assurance and quality control, including Stuart Magoon, Catherine Bickle, Bob Carrell, Pam Covey, Sally Cull, Karin Feddersen, Kamilee Ginder, Dickey Huntamer, Randy Knox, Debbie LaCroix, Myrna Mandjikov, Cherlyn Milne, Norman Olson, Greg Perez, Jim Ross, and Will White.
 - Christina Ricci participated in field sampling and infaunal sample sorting.
 - Michelle Harper, EAP, assisted with formatting the final report.
 - ◊ Bernard Strong, EAP, assisted with equipment preparation and repair and field logistics.

This page is purposely blank for duplex printing

Introduction

Toxic substances introduced into estuarine ecosystems, such as Puget Sound, can bind to suspended particles, settle to the bottom, and become incorporated into deposited soft sediments (National Research Council, 1989). Therefore, sediments that have accumulated in low-energy, depositional zones where they are not disturbed by physical processes or other factors can provide a relatively stable record of toxicant inputs (Power and Chapman 1992). As a result, sediments are an important medium in which to estimate the degree and history of chemical contamination of environmental regimes such as estuaries and bays. Whereas this sedimentation process tends to rid the water column of toxicants, their concentrations in sediments can increase to the point that they eventually represent a potential toxicological threat to the resident benthic biota and predators that may depend on this resource as their food (Burton, 1992).

Toxic chemicals occur in a wide range of concentrations in surficial (recently deposited) sediments of Puget Sound (Llansó et al., 1998a). Previous studies in Puget Sound have shown that high concentrations of toxic chemicals in water, biota, and sediments often were accompanied by a variety of adverse biological effects (Long, 1987). In studies conducted during 1978-1990, it was determined that acute mortality occurred in toxicity tests of water samples (Cardwell et al., 1979), sea surface microlayer samples (Hardy et al., 1987a,b; PTI, 1990) and surficial sediments (Chapman et al., 1982, 1983, 1984a, 1984b). In sediments from the industrial waterways of Commencement Bay, low amphipod survival was coincidental with low amphipod abundance in the benthic samples and elevated chemical concentrations (Swartz et al., 1982). Data from the Sediment Quality Triad of analyses (chemical analyses, toxicity tests, benthic analyses) verified previous observations that degraded conditions existed in portions of Elliott Bay near Seattle and Commencement Bay near Tacoma (Chapman et al., 1984b; Long and Chapman, 1985). Histopathological studies of demersal fishes indicated that pollution-related disorders, such as hepatic neoplasms, were found most frequently in association with contaminated sediments near industrialized urban areas of Puget Sound (Malins et al., 1982, 1984; Becker et al., 1987).

The incidence and spatial patterns in sediment contamination, sediment toxicity, benthic impacts, and histopathological disorders in demersal fishes were quantified in additional surveys of Commencement Bay (Tetra Tech, 1985), Elliott Bay/lower Duwamish River (PTI, 1988), Everett Harbor (PTI 1989), Sinclair Inlet (Tetra-Tech, 1988), and 13 small bays (Crecelius et al., 1989). Studies of invertebrate communities conducted in central Puget Sound indicated significant losses of benthic resources in some areas with high chemical concentrations (Malins et al., 1982; Kisker, 1986; Chapman et al., 1984a, b; Llansó et al., 1998a, b). Colonization rates by epifaunal invertebrates were slowest and resulted in the lowest numbers of taxa in contaminated harbors and waterways as compared to rural bays (Schoener, 1983).

Analysis of the SEDQUAL database developed by Ecology and consisting of chemical information from 8523 sediment samples collected throughout the greater Puget Sound region indicated that violations of Washington State standards occurred frequently. Among the 8523 samples, violations of the Sediment Quality Standards (SQS) occurred in 2319 samples (27%) and violations of Cleanup Screening Levels (CSL) occurred in 1565 samples (18%). The

violations involved all 47 substances for which the state standards were developed. The chemical makeup of toxicant mixtures in sediments has varied from place to place in Puget Sound, mostly in relation to the nature of local sources. Such mixtures have included numerous polynuclear aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), phthalate esthers, trace metals (including arsenic, copper, mercury, lead), phenols, chlorinated butadienes and hexachlorobenzenes.

Although contaminant levels in some regions of Puget Sound have been well characterized with data from many previous studies, considerably less information has been generated for other regions of the system. None of the historical data were collected with methods that allowed estimates to be made of the surficial (i.e., spatial) extent of degradation. Often, studies were performed in the vicinity of specific point sources, dredged channels, or other focused areas; thus, precluding analyses of the data to determine the size and spatial dimensions of the degraded areas for the entire system.

Objectives

To objectively evaluate the relative quality of sediments throughout the Puget Sound estuary system, data were needed that had been developed with consistent methods applied area-wide and during the same time frame. To estimate the spatial extent or area of degradation, a probabilistic sampling design was necessary to ensure a lack of bias in selections of sampling sites and to allow weighting of results to spatial dimensions of the study area. The survey described in this report was jointly funded and conducted by Ecology and NOAA, following methods previously used by both agencies in sediment quality assessments (Llansó et al., 1998a, b; Long et al., 1996; Long, 2000a, b).

Specific objectives of the Puget Sound survey were:

- 1. Determine the incidence and severity of toxicity and chemical contamination of sediments;
- 2. Identify spatial patterns and gradients in sediment toxicity and chemical concentrations as defined with the selected methods;
- 3. Estimate the spatial extent of toxicity and chemical contamination, as defined with the selected methods, in surficial sediments as percentages of the total survey area;
- 4. Describe the composition, abundance and diversity of benthic infaunal assemblages at each sampling location;
- 5. Determine the degree of concordance, or agreement, among the elements of the sediment quality triad in classification of sediment quality;
- 6. Determine the spatial patterns and extent of degraded conditions based upon a weight of evidence formed with the triad of measures; and
- 7. Compare the quality of sediment from six sediment monitoring regions and five strata types measured in Puget Sound.

Because the area was too large to evaluate in a single sampling season, the project was extended over three sampling phases. Sediments were sampled in the northern part of the study area during 1997 (Long et al., 1999a), the central area in 1998 (Long et al., 2000a), and the southern part, Hood Canal, and Commencement Bay in 1999 (Long et al., 2002). The same sampling and analytical methods were used in all three years; thus, ensuring that the data were comparable. The purpose of this report is to combine and summarize the data acquired during the three phases of the survey to identify the overall patterns and extent of degraded sediment quality as measured in the triad of analyses.

This page is purposely blank for duplex printing

Methods

To ensure that highest quality data were produced, a combination of standardized methods previously used by Ecology in the Puget Sound Ambient Monitoring Program (PSAMP) and by NOAA in the National Status and Trends (NS&T) Program was used in this survey (Long and Dzinbal, 1999). The sampling design, toxicity tests, and data analyses used in this survey were applied by NOAA in comparable surveys of sediment quality conducted elsewhere in the U.S. (Long et al., 1996; Long, 2000a, b). Sets of standardized methods for sample collections, chemical analyses, and benthic analyses in Puget Sound were previously described in the Puget Sound Estuary Program protocols (PSEP, 1986, 1987, 1996a, b, c). To ensure that the data were comparable throughout the study area, the same methods were used in all three phases of the survey. Details of these methods were provided in the individual technical reports (Long et al., 1999a, 2000a, 2002) and briefly summarized below.

Sampling Design and Sample Collections

A stratified-random sampling design was used in this survey. It was similar to those used in surveys of sediment quality conducted nationwide by NOAA as part of the NS&T Program (Long et al., 1996) and by U.S. EPA as a part of the Environmental Monitoring and Assessment Program (EMAP; Paul et al., 1992). This approach combined the strengths of a stratified design with the random-probabilistic selection of sampling locations within the boundaries of each stratum. Because the sampling locations were chosen randomly and without bias, data generated within each stratum were attributable to the size of the stratum. Therefore, this approach allowed us to estimate the spatial extent of toxicity with a quantifiable degree of confidence (Heimbuch et al., 1995). Strata boundaries were established to coincide with the dimensions of major basins, bays, inlets, waterways, etc. in which hydrographic, bathymetric and sedimentological conditions were reviewed to assist in establishing strata boundaries.

The sample collections progressed from the northern strata, to the central strata, and finally to the southern strata (Figure 1) during the three sampling phases. In the analyses of the data for this report, the study area was sub-divided and realigned to better conform to the Puget Sound subregions defined by the Puget Sound Ambient Monitoring Program (PSWQAT, 2002). This realignment resulted in six regions for which results were summarized: Strait of Georgia, Whidbey Basin, Admiralty Inlet, Central Sound, South Sound, and Hood Canal (Figure 2).

The Strait of Georgia region ranges from the U.S./Canada border southward through Bellingham Bay, Samish Bay, Padilla Bay to the vicinity of Anacortes. It encompasses an area of 429 km². The Whidbey Basin region (345 km²) included the strata east of Whidbey Island from the Skagit River delta to Port Gardner Bay and Everett Harbor. Admiralty Inlet and the Port Townsend area were included in the Admiralty Inlet region (186 km²). The Central Sound region (690 km²) was largest, extending from the southern tip of Whidbey Island, through the central basin of Puget Sound to the northern entrance of the Tacoma Narrows. The Central Sound region included the most urbanized bays, including Elliott Bay adjoining Seattle, Sinclair Inlet adjoining Bremerton, Commencement Bay adjoining Tacoma, and the passages and inlets West of Bainbridge Island. The South Sound region (397 km^2) extended from the southern entrance of the Tacoma Narrows to the heads of the many inlets of southern Puget Sound. The Tacoma Narrows itself and a small area East of Budd Inlet were excluded from the survey area because these areas were known to not have soft sedimentary deposits and large boulders were present. The Hood Canal region (316 km²) included the length of Hood Canal and three small adjoining bays; Dabob Bay, Port Gamble Bay, and Port Ludlow.

Large strata were established in the areas distant from toxicant sources where toxicant concentrations were either known or expected to be uniformly low (e.g., Admiralty Inlet, Puget Sound central basin), resulting in the least intense sampling effort. In contrast, relatively small strata were established in urban bays and industrial harbors nearer suspected sources in which conditions were expected to be heterogeneous or transitional (e.g., inner Elliott Bay, Commencement Bay waterways, Port of Olympia). Dimensions, locations and shapes of each stratum are outlined in Figures 3-7. In most cases, three samples were collected within each stratum at coordinates randomly selected with a NOAA computer program. Four samples were collected in a few strata that were expected to be more heterogeneous. The survey area encompassed a total area of 2363 km². All samples were collected in water depths of 2 m or more (mean lower low water), the operating limit of the sampling vessel.

A total of 300 samples were collected in the survey, distributed among 97 strata as shown in Figures 3-7. Sample numbers 101-105, 206-210, and 311-315 were field duplicates only for chemical analyses. Sediments were collected at each designated station with multiple deployments of a double 0.1m^2 vanVeen grab. Sufficient amounts of surficial material (upper 2-3 cm) were removed with a scoop to form a homogenized, composited sample for both chemical analyses and four toxicity tests. Benthic infauna samples were collected separately at the same location and same time with a single deployment of the 0.1 m^2 sampler. All infaunal samples were rinsed gently through nested 1.0 and 0.5 mm screens and the organisms retained on each screen were kept separate.

Sediments were collected during June of each year from the research vessel Kittiwake. Each station was sampled only once. Differential Global Positioning System (DGPS) was used to accurately position the vessel at the station coordinates. Recommended procedures (PSEP, 1986, 1987, 1996a, b) for collection of samples, decontamination of equipment, sample handling, chain of custody documentation, and re-screening of benthic samples were followed.

Chemical Analyses

Chemical analyses were performed for up to 171 chemical and physical variables, including trace elements (including potentially toxic metals), polynuclear aromatic hydrocarbons (PAHs), chlorinated pesticides, phenols, phthalate esters, polychlorinated biphenyls (PCBs), other organic toxicants, total organic carbon, and grain size. Protocols were used that satisfied requirements of both NOAA (Lauenstein and Cantillo, 1993) and Ecology (PSEP, 1987, 1995, 1996a, b, c).

Analyses were performed for 133 substances that are routinely quantified by the NS&T Program, plus 24 additional compounds either required by Ecology to ensure comparability with previous PSAMP and enforcement studies or automatically quantified during analyses for the required compounds. Analytical procedures provided performance (i.e., recovery efficiencies, detection

limits) equivalent to those of both the NS&T Program and the PSEP Protocols. Information was reported on recovery of spiked blanks, analytical precision with standard reference materials, and duplicate analyses of every 20th sample with the exception of grain size analyses, all chemical analyses were performed by Ecology's Manchester Environmental Laboratory (MEL). Grain size analyses were contracted out under their supervision.

Analyses for grain size were performed using a sieve-pipette method according to the PSEP Protocols (PSEP, 1986). Total organic carbon analyses also followed PSEP Protocols (PSEP, 1986) and involved drying sediment material, pretreatment and subsequent oxidation of the dried sediment, and determination of CO_2 by infra-red spectroscopy.

To maintain compatibility with previous PSAMP metals data, EPA Methods 3050/6010 were used for the determination of metals in sediment. Method 3050 is a strong acid (aqua regia) digestion that has been used for the last several years by Ecology for the characterization of sediments for trace metal contamination and was the recommended technique for digestion of sediments in the recently revised PSEP protocols (PSEP, 1996b). This digestion does not yield geologic (total) recoveries for most analytes including silicon, iron, aluminum and manganese. It does, however, recover quantitatively most anthropogenic metals contamination and deposition. For comparison with NOAA's national database, metals analyses also were performed with a total (hydrofluoric acid-based) digestion (EPA method 3052) on portions of the same samples. Determinations of metals concentrations for both sets of extracts were made by ICP, ICP-MS, or GFAA, depending upon the appropriateness of the technique for each analyte.

Mercury concentrations were determined with U.S. EPA Method 245.5 by cold vapor atomic absorption (CVAA). The method consists of a strong acid sediment digestion, followed by reduction of ionic mercury to Hg0, and analysis of mercury by cold vapor atomic absorption as recommended by the PSEP Protocols (PSEP, 1996b). Butyl tins in sediments were analyzed by methods that consisted of solvent extraction of sediment, derivitization of the extract with the Grignard reagent hexylmagnesium bromide, cleanup with silica and alumina, and analysis by Atomic Emission Detector (AED) (Manchester Environmental Laboratory, 1997).

Analyses for semi-volatile compounds and PAHs followed methods of U.S. EPA Method 846 8270, as recommended in PSEP (1996c), using capillary column, GC/MS techniques. The list of compounds normally quantified for Puget Sound was extended by the inclusion of additional PAH compounds to match the analyte list for NOAA. U.S. EPA Method 8081 for chlorinated pesticides and PCB was used for the analysis of these compounds, using GC methods with dual dissimilar column confirmation and electron capture detectors. The concentrations of 20 target PCB congeners were determined following procedures outlined by NOAA (Lauenstein and Cantillo, 1993).

Laboratory Toxicity Tests

Multiple toxicity tests were performed on aliquots (portions) of each sample to provide a weight of evidence. Tests were selected for which there were widely accepted protocols that would represent the toxicological conditions within different phases (partitions) of the sediments. The tests included those for amphipod survival in solid-phase sediments, sea urchin fertilization success in pore waters, and both microbial bioluminescence activity and cytochrome P450

HRGS induction in portions of an organic solvent extract. Test endpoints, therefore, ranged from survival to rate of physiological activity. Either the tests were initiated (amphipod survival) or the sample extractions were performed (all others) within 10 days of the sample collection dates.

Amphipod Survival Tests of Solid Phase Sediments

Amphipod tests, using the taxa *Ampelisca abdita*, followed the procedures detailed in ASTM (1993) which are equivalent to those of PSEP (1995). The amphipod tests are the most widely and frequently used assays in sediment evaluations performed in North America. These tests provided wide ranges in responses among samples, strong statistical associations with elevated toxicant levels, little sensitivity to natural factors, strong correlations with losses of benthic resources, and small within-sample variability (Long et al., 1990, 1996, 2001).

In these tests, amphipods were exposed to test and negative control solid phase (or bulk) sediments for 10 days with 5 replicates of 20 animals each under static conditions using filtered seawater. The numbers of survivors were counted after the ten-day exposures. Aliquots of 200 mL of test or control sediments were placed in one-liter test chambers, and covered with approximately 600 ml of filtered seawater (28-30 ppt).

Amphipod survival tests were conducted by Science Applications International Corporation (SAIC) in Narragansett, R.I. (1997-1998), and then by ToxScan, Inc. in Watsonville, CA (1999), under a sub-contract with SAIC. Amphipods were collected from tidal flats in the Pettaquamscutt (Narrow) River, a small estuary adjoining Narragansett Bay, RI. Control sediments were from a Central Long Island Sound (CLIS) location and tested with each batch of test samples. These sediments had been tested repeatedly with the amphipod survival test and other assays and found to be non-toxic (amphipod survival has exceeded 90% in 85% of the tests). Positive controls (sodium dodecyl sulfate, SDS) were tested in water-only exposures to document the sensitivity of each batch of test organisms, resulting in LC50 values (lethal concentration for 50% of the tests) and overlying waters (days 2 and 8 of the tests). Concentrations of the un-ionized form of ammonia were calculated, based upon measures of total ammonia, and concurrent measures of pH, salinity and temperature.

Sea urchin Fertilization Tests of Pore Waters

Sea urchin fertilization tests of pore waters followed protocols of the U.S. Geological Survey (Carr and Chapman, 1995; Carr et al., 1996a, b; Carr, 1998) using gametes of the purple urchin *Strongylocentrotus purpuratus*. Tests of sea urchin fertilization have been used in assessments of ambient water and wastewater effluents and in previous NS&T Program surveys of sediment toxicity (Long et al., 1996; Turgeon et al., 1998). Test results have shown wide ranges in responses among test samples, excellent within-sample homogeneity, and strong associations with the concentrations of toxicants in the sediments (Long et al., 1990; Carr et al., 1996b). This test combines the features of testing sediment pore waters (the phase of sediments in which dissolved toxicants are highly bioavailable) and exposures to early life stages of invertebrates (sperm cells) which often are more sensitive to toxicants than adult forms.

Pore water was extracted by the U.S.G.S. laboratory (Corpus Christi, TX) from sediments with a pressurized squeeze extraction device. Then, porewater samples were centrifuged to remove particulate matter, and the supernatant was retained and frozen (Carr and Chapman, 1995). Adult *S. purpuratus* obtained from Marinus Corporation, Long Beach, CA, were induced to spawn by injecting potassium chloride into the coelomic cavity. To determine urchin fertilization success, 50 μ l of appropriately diluted sperm were added to each porewater test vial, and incubated at 20±2°C for 30 minutes. One ml of a well mixed dilute egg suspension was added to each vial, and incubated an additional 30 minutes at 20± 2°C. Buffered formalin was added to stop the test. Fertilization membranes were counted, and fertilization percentages calculated for each replicate test. Each of the pore water samples was tested in a dilution series of 100%, 50%, and 25% of the salinity-adjusted sample with 5 replicates per treatment. Dilutions were made with clean, filtered (0.45 μ m), Port Aransas, Texas, laboratory seawater. A dilution series test with SDS was included as a positive control. Pore water from sediments collected in Redfish Bay, Texas were used as negative controls.

Microbial Bioluminescence (Microtox[™]) Tests of Organic Solvent Extracts

Microbial bioluminescence (MicrotoxTM) tests were performed with protocols initially developed for Puget Sound (Schiewe et al., 1985; PSEP 1995; Johnson and Long, 1998) to determine inhibition of light production. This is a test of the relative toxicity of extracts of the sediments prepared with an organic solvent, and, therefore, it is immune to the effects of environmental factors, such as grain size, ammonia and organic carbon that can influence outcomes of other types of sediment tests. Organic toxicants, regardless of their bioavailability in nature, are extracted with the organic solvent. Therefore, this test is considered as indicative of the potential toxicity of mixtures of substances bound to the sediment matrices (Long et al., 1996). Results of these tests frequently show strong correlations with the concentrations of mixtures of organic compounds. The tests were performed by the U.S.G.S. laboratory in Columbia, MO, on extracts prepared by Columbia Analytical Services (CAS) in Kelso, WA.

All tests were run on portions of the extracts prepared for the cytochrome P-450 HRGS assays (described below), using three replicates of each extract. The amount of light lost per sample was assumed to be proportional to the toxicity of that test sample. A suspension of luminescent bacteria, *Vibrio fischeri* (Azur Environmental, Inc.) was exposed to a dilution series (four concentrations) of each sample to determine percent decrease in bioluminescence activity relative to the reagent blank. Light loss was expressed as a gamma value and defined as the ratio of light lost to light remaining. The mean concentrations of the extract that inhibited luminescence by 50% (with 95% confidence intervals) after a 5-min exposure period, the EC50 value, were determined and expressed as mg equivalent sediment wet weight. Thus, relative toxicity of samples increased as mean EC50's decreased. Tests of extracts of sediments from the Redfish Bay, TX, site used in the urchin tests also were used as negative controls in the MicrotoxTM tests.

Cytochrome P450 HRGS Assays of Organic Solvent Extracts

Cytochrome P-450 assays of the light produced by luciferase in a human reporter gene system (HRGS) of cultured human liver cells was conducted on organic solvent extracts, following standard protocols (Anderson et al., 1995, 1996; APHA, 1998; ASTM, 1999; EPA 2000). This

assay is responsive to the presence of mixed-function oxygenase inducers such as dioxins, furans, high molecular weight PAHs, and coplanar PCBs in tissues and sediments (Anderson et al., 1995; 1999a; 1999b, Jones and Anderson 1999). Therefore, it provides an estimate of the presence of contaminants bound to sediment that could produce chronic and/or carcinogenic effects in benthic biota and/or demersal fishes that feed in sediments. Columbia Analytical Services, Inc. in Vista, CA performed these tests with solvent extracts prepared by their laboratory in Kelso, WA.

Approximately 20 g of sediment from each station were extracted using EPA method 3550 to produce 1 ml of dichloromethane (DCM)/extract. Extracts were exchanged into dimethylsulfoxide (DMSO) to produce a sufficient amount of sample for triplicate tests. Small portions (up to 20 µl) were applied to approximately one million human liver cells contained in three replicate wells with 2 ml of culture medium. After 16 hours of incubation (exposure), the cells were washed, then lysed, and the solution centrifuged. The supernatant was then placed into a 96-well plate with a buffer solution, and on the addition of luciferin the light produced by each replicate was measured with a luminometer. Solvent blanks and the reference toxicants (2, 3, 7, 8 - dioxin and benzo[a]pyrene) were tested with each batch of samples. Responses were compared to that of the solvent blank to produce fold induction (times background) values. Data were then converted to µg of benzo[a]pyrene equivalents per gram (µgB[a]P/g) of sediment, based on the observation that 60 fold induction is produced by 1 µg of B[a]P/ml. The HRGS assays also were performed on an extract of the Redfish Bay, TX, negative control previously used in the urchin fertilization tests.

Benthic Community Analyses

Methods for sorting of major taxonomic groups, identification to taxa level (when possible), and sample documentation followed those described for Puget Sound benthic studies (PSEP, 1987; Dutch et al., 1998). A single 0.1 m² benthic sample was collected at each station and sieved with stacked 1.0 mm and 0.5 mm sieves in the field. Material retained on the two sieves was bagged separately and preserved with formalin. Samples were then transported to the Ecology benthic laboratory. After a minimum fixation period of 24 hours, the samples were washed to remove the formalin, transferred to 70% ethanol, and stained with rose bengal. Data are reported here only for material retained on the 1.0 mm sieves.

All macroinfaunal invertebrates and fragments were removed and sorted into the following major taxonomic groups: Annelida, Arthropoda, Mollusca, Echinodermata, and miscellaneous taxa. Meiofaunal organisms such as nematodes and foraminiferans were not removed from samples, although their presence and relative abundance were recorded. Representative samples of colonial organisms such as hydrozoans, sponges, and bryozoans were collected, and their relative abundance noted. Sorting QA/QC procedures consisted of resorting 20% of each sample by a second sorter to determine whether a sample sorting efficiency of 95% removal was met. If the 95% removal criterion was not met, the entire sample was resorted.

Upon completion of sorting and sorting QA/QC, the majority of the taxonomic work was contracted to recognized, regional specialists. When possible, at least two scientific references were used for the identification of each taxa. A maximum of three representative organisms of each taxa or taxon were removed and retained in a voucher collection. Taxonomic identification

quality control for all taxonomists included re-identification of 5% of all samples identified by the primary taxonomist and verification of voucher specimens generated by another qualified taxonomist.

Data Summaries, Displays, and Statistical Analyses

The data from this survey were summarized in tables, displayed on regional base maps, and subjected to a variety of statistical analyses. The same methods were used consistently during each of the three years to ensure comparability of results. These methods were selected to both satisfy the objectives established for the study and to allow comparisons of results with those generated in estuarine sediment quality surveys conducted nationwide by NOAA and U.S. EPA. It is important to note that the data analyses in this study did not necessarily comply with those that Ecology must use in enforcement and regulatory programs that involve contaminated sediments. It should be noted also that numerical "critical values" as used in the NS&T Program (Long et al., 1996) and EMAP estuarine surveys (Paul et al., 1992; Schimmel et al., 1994) were applied to the data from the chemical analyses and toxicity tests as aids in their interpretation.

Incidence, Spatial Patterns and Spatial Extent of Sediment Contamination

Three sets of chemical concentrations were used as critical values in the analyses of these data. The Sediment Quality Standards (SQS) and Cleanup Screening Levels (CSL) were developed specifically for Puget Sound and are included in the Washington State Sediment Management Standards (Washington Dept. of Ecology, 1995). The Effects Range Low (ERL) and Effects Range Median (ERM) values were developed by Long et al. (1995) for NOAA with a national sediment quality database. Trace metals concentrations determined with partial digestions were compared to the SQS and CSL values, whereas those determined with total digestions were compared to the ERL and ERM values.

To identify possible spatial gradients or other patterns in chemical contamination among the 300 sampling locations, maps were prepared in which symbols were used to depict where numerical guidelines and/or criteria were exceeded. An open circle at a sampling location was used to indicate that none of the chemical concentrations exceeded either of these sets of values in the sample from that location. A darkened quadrant of a circle indicates that either an ERM, or an SQS, or a CSL value was exceeded. Because benzoic acid, 4-methylphenol, and phenol were so ubiquitous in the 300 samples, especially in those from the northern stations, they were treated separately in these figures. Stations with symbols darkened in two or more quadrants were viewed as more contaminated than stations in which no guidelines were exceeded or the chemical concentrations exceeded only one set of values. Concentrations were higher if they exceeded the CSL values in addition to the lower SQS values.

Estimates of the spatial extent of chemical contamination were determined with cumulative distribution functions in which the chemistry data from each station were compared to selected critical values (see below) weighted to the dimensions (km²) of the sampling stratum in which the samples were collected and weighted (Schimmel et al., 1994). The size of each stratum (km²) was determined with an electronic planimeter applied to navigation charts, upon which the boundaries of each stratum were outlined. Estimates of the spatial extent of contamination were calculated for each of the six regions outlined in Figures 2, and for the entire survey area.

In addition, calculations of the spatial extent of contamination were made for 5 strata, defined by their geologic and anthropogenic features including harbors, urban bays, rural bays, basins, and passages. In these analyses, strata were grouped into one of these five categories according to the following features:

- Harbor strata: semi-enclosed embayments, terminal inlets-head of bay/estuary, shallow, maritime activity-commercial vessel traffic, and/or ports, and/or shipyards, adjacent to urban /industrial centers, high numbers of point and /or nonpoint sources of discharge, frequently dredged, and presence of docks, breakwaters, and jetties;
- Urban strata: semi-enclosed embayment, sometimes head of bay/estuary, includes outer harbors, shallow to mid depth, adjacent to urban/industrial centers, lower numbers of point and/or nonpoint source discharge, and may or may not be dredged;
- Rural strata: includes semi-enclosed embayments and terminal inlets, as well as larger inlets, shallow to deep, not adjacent to urban/industrial centers or maritime activity, adjacent land mass is largely undeveloped, lightly populated, lowest numbers of point and/or nonpoint source discharges, and frequently used as reverence locations;
- Basin strata: deep, associated with a sill, may or may not be adjacent to urban/industrial centers, and lowest numbers of point and/or nonpoint source discharge (although some receive treated effluent form municipal point source outfalls);
- Passage strata: bounded by two shorelines and open at both ends (i.e., not a terminal bay), often deep, not associated with a sill, not adjacent to urban/industrial areas, and lowest numbers of point and/or nonpoint source discharge.

As indices of concentrations of chemical mixtures, mean ERM quotients (Long and MacDonald, 1998; Long et al., 2000c) and analogous mean SQS and CSL quotients were calculated. Mean ERM quotients were calculated as the mean of the quotients derived by dividing the chemical concentrations in the samples by their respective ERM values. The greater the mean ERM quotient, the greater the overall contamination of the sample as determined by the mixtures of 25 substances. Mean ERM quotient values of 1.5 or greater were independently determined to be highly predictive of acute toxicity in amphipod survival tests (Long et al., 2000c). Mean SQS and CSL quotients were determined using the same procedure, using all of the SQS and CSL values. In all of these analyses, the concentrations of nickel were not included. The reliability of the ERM value for nickel was reported as uniquely low (Long et al., 1995) and no state standards for nickel have been developed.

Toxicity Tests of Amphipod Survival

Mean percent amphipod survival in each sample was compared to that in the CLIS control using a one-way, unpaired t-test assuming unequal variance. Results were not transformed because examination of data from previous tests has shown that results of tests performed with *A. abdita* met the requirements for normality. When mean survival was not significantly different from that of the control (i.e., alpha ≥ 0.05), the sample was classified as "non-toxic" in this test. Samples were classified as "significantly toxic" in samples in which mean survival was

significantly less than that in the performance control (i.e., alpha < 0.05). In addition, samples in which survival was significantly less than controls and less than 80% of mean survival in the CLIS controls were regarded as "highly toxic". The 80% criterion was based upon iterative statistical power curves created from an extensive database for tests with *A. abdita* (Thursby et al., 1997). Their analyses showed that the power to detect a 20% difference from the control is approximately 90%. The minimum significant difference (i.e., "MSD" of <80% of control response) was used as the critical value in calculations of the spatial extent of toxicity nationwide by NOAA (Long et al., 1996; Long, 2000a, b; Turgeon et al., 1998).

Toxicity Tests of Sea Urchin Fertilization

For the sea urchin fertilization tests, statistical comparisons among treatments were made using ANOVA, followed by Dunnett's one-tailed t-test on the arcsine square root transformed data with the aid of SAS (SAS, 1989). Prior to statistical analyses, the transformed data sets were screened for outliers, using a Bonferroni-type adjustment when necessary (Moser and Stevens, 1992). After omitting outliers but prior to further analyses, the transformed data sets were tested for normality and for homogeneity of variance using SAS/LAB Software (SAS, 1992). Statistical comparisons were made with mean results from the Redfish Bay controls. Samples in which mean percent fertilization was not different from that in equivalent porewater concentrations for the Redfish Bay controls were classified as "non-toxic". Samples in which fertilization success was significantly different from that in the controls were classified as "significantly toxic".

In addition to the Dunnett's one-tailed t-tests, data from field-collected samples were treated with an analysis similar to the MSD analysis used in the amphipod tests. Power analyses of the sea urchin fertilization data have shown MSDs of 15.5% for alpha <0.05 and 19% for alpha <0.01. However, to be consistent with the statistical methods used in previous surveys (Long et al., 1996; Long, 2000a, b), estimates of the spatial extent of toxicity were based upon the same critical value used in the amphipod tests (i.e., samples were classified as "highly toxic" when fertilization success was significantly different (i.e., alpha from >0.05) from that in controls and <80% of control response).

Microtox[™] Tests of Microbial Bioluminescence

MicrotoxTM data were analyzed using the computer software package developed by Microbics Corporation (Azur Environmental Inc.) to determine concentrations of the extract that inhibited luminescence by 50% (i.e., the EC50). Statistical comparisons among treatments and Redfish Bay controls were made using ANOVA followed by Dunnett's one-tailed t-tests on the log transformed data with the aid of SAS (SAS, 1989). Concentrations tested were expressed as mg dry weight based on the percentage extract in the 1 ml exposure volume and the calculated dry weight of the extracted sediment. Samples with EC50's not significantly different (i.e., p>0.05) from that of the Redfish Bay controls were considered to be not toxic in this test. EC50's that were significantly different from controls (p<0.05) were considered as "significant".

As described in the annual reports (Long et al., 1999a, 2000a, 2002), the Microtox test results in the Redfish Bay controls were highly unusual and required development of additional statistical tools for interpretation of the data. Therefore, three critical values were used to estimate the

spatial extent of toxicity in these tests. First, a value of <80% of Redfish Bay controls was used; i.e., equivalent to the values used with the amphipod and urchin tests. Second and third, values of <0.51 mg/ml and <0.06 mg/ml calculated in the 1997 northern Puget Sound study were used, based upon the frequency distribution of MicrotoxTM data from NOAA's surveys nationwide (Long et al., 1999a).

Power analyses equivalent to those conducted with the amphipod and sea urchin test results have not been performed with the Microtox and HRGS data. No other statistically derived, critical values have been previously developed for either of these tests. The responses of the Microtox tests to the Redfish Bay (TX) negative control in the Puget Sound studies resulted in very high EC50 values, much higher than in previous surveys. This outcome had the effect of classifying an inordinate percentage of samples as different from controls in comparison tests. Therefore, two critical values were derived for both of these tests, based on prediction limits, specifically for application to the survey results for Puget Sound.

For the Microtox test results, data from previous NOAA surveys performed nationwide (n=1013) were compiled, including those from northern Puget Sound. An EC50 value of <0.06 mg/ml was derived as the 90% lower prediction limit (LPL) of the entire database. The probability that a future observation from this data distribution would be more toxic (i.e., an EC50 <0.06 mg/ml) would be 90%. Such an outcome was considered in this study to represent an extreme response in this test. An EC50 value of <0.51 mg/ml was derived as the 80% LPL of the database after removal of the lowest (most toxic) 10% of the data to eliminate the influence of outliers on the data distribution. Survey samples with EC50 values of < 0.51 mg/ml were considered in this study to represent a significant response, i.e., functionally equivalent to such classifications with the amphipod survival and urchin fertilization tests.

Cytochrome P450 HRGS Toxicity Tests

Microsoft Excel 5.0 was used to determine the mean HRGS response in each sample. Two values were derived with statistical procedures during the first year of the study to serve as critical values in the interpretation of the results: >11.1 μ g/g and >37.1 μ g/g B[a]p equivalents (Long et al., 1999a). The value $11.1 \,\mu$ g/g was determined as the 80% upper prediction limit (UPL) in the NOAA national database following elimination of data above the 90th percentile of response. A response greater than 11.1 ug/g was considered in this study as both the upper limit of the background response and a "significant" response. The value 37.1 µg/g was calculated as the 90% UPL of the entire NOAA database and was considered to represent a very high response. Both values agree well with the lower 99% confidence interval (11 ug/g) and upper 99% confidence interval (32 ug/g) among 1109 samples determined later with an expanded national database (Dr. Jack Anderson, CAS, Vista CA.). Calculations of the spatial extent of toxicity were made using both values. It should be noted that samples with HRGS assay results >11.1 ug/g were considered to be greater than those that represent background conditions and, therefore, functionally equivalent to the critical values used to interpret the invertebrate toxicity tests, i.e., <80% of controls. However, there is no strong evidence that values between 11.1 (background) and 37.1 ug B[a]P/g are associated with acute toxicity. Because the compounds detected by this assay (dioxins, furans, coplanar PCBs, PAHs) partition slowly from sediments to pore water, concentrations above 37.1 ug/g are likely required to produce significant toxicity in

benthic species. Fairey et al. 1996 reported degraded benthic communities in San Diego Bay at all stations where the B[a]P equivalents were 60 ug/g and higher.

Incidence and Severity, Spatial Patterns and Gradients, and Spatial Extent of Sediment Toxicity

The incidence of toxicity in each test was determined by dividing the numbers of samples in which the results were considered to be significant by the total number of samples tested. In the amphipod and urchin tests, mean percent survival and mean percent fertilization, respectively, less than 80% of that in controls were considered as significant. Mean EC50's <0.51 mg/ml were considered as significant in the Microtox tests and responses >11.1 ug/g B[a]p equivalents in the HRGS assays were considered as significant and carried forward in subsequent "triad" analyses. Severity of the responses was determined by examining the range in responses for each of the tests and identifying those samples with the highest and lowest responses. Spatial patterns in toxicity test responses were illustrated on base maps of each major region, using different symbols to represent significant and non-significant results.

The same approach used to calculate the spatial extent of contamination (described above) was used to calculate the spatial extent of toxicity. Estimates of the spatial extent of toxicity were determined with cumulative distribution functions in which the toxicity test results from each station were weighted to the dimensions (km²) of the sampling stratum in which the samples were collected (Schimmel et al., 1994). Estimates of the spatial extent of toxicity were calculated for each of the regions outlined in Figure 2 and for the entire survey area. In addition, calculations of the spatial extent of toxicity were made for strata classified as harbors, urban bays, rural bays, basins, or passages as defined above.

Benthic Community Abundance and Diversity

No multi-metric indices of benthic infauna integrity, available for other regions of the U.S. (Van Dolah et al., 1999), have been developed for Puget Sound. Such indices must be tailored to the infaunal assemblages of each biogeographic area; therefore, application of indices from other regions to Puget Sound infaunal assemblages is not warranted. Therefore, nine benthic infaunal indices were calculated to summarize the raw data and characterize the infaunal invertebrate assemblages. Indices were based upon all countable taxa, excluding colonial and epifaunal forms. Four indices were calculated that represented total abundance (total identifiable animals present), taxa richness (total numbers of taxa present), Pielou's evenness (J'), and Swartz's dominance index (SDI, the numbers of taxa present that represented 75% of the total abundance). In addition, total counts of annelids, arthropods, molluscs, echinoderms, and miscellaneous taxa were calculated. Spatial patterns in selected indices were illustrated on base maps, using symbols to represent three different percentiles in the data distributions for each of the four selected indices. In three out of four (i.e. not total abundance) cases, relatively high index values indicated good benthic conditions. However total organism abundance was very high in some samples because of the presence of pollution tolerant taxa.

There are no numerical criteria for the benthic indices consistently calculated with Puget Sound data. The sediment quality standards provide methods for comparing the relative abundance of crustaceans, molluscs, and polychaetes between study sites and reference areas (Chapter 173-204

WAC). Ranges in a variety of benthic indices were calculated for Puget Sound reference areas (Striplin and Weston, 1999). Neither document provides guidance, however, on a species-level basis for judging the relative condition of the benthos. The data from this survey, therefore, were interpreted qualitatively and descriptively using both best professional judgment based upon considerable local experience and the approaches identified in both documents. To aid in visual identification of spatial patterns in the benthic diversity and abundance, base maps were prepared in which each station is shown with symbols for each benthic index. On these figures, each station is depicted as falling within upper, middle or lower quartiles of the distribution of the data for each index from the 300 samples. This approach does not provide any judgment value as to whether the benthic community was 'degraded' or 'stressed' or not; it was used to depict relatively high, relatively low, and intermediate benthic index values.

Sediment Quality Triad Analyses

Information from the chemical analyses, toxicity tests, and benthic infaunal analyses constitute the Sediment Quality Triad (SQT, Long and Chapman, 1985). SQT data were used together in this study to form a weight of evidence with which to classify the relative quality of the sediments, following the approach of Chapman (1996).

Results from the toxicity testing, chemical analyses, and benthic community analyses for all stations are summarized in Appendix A. Included in this compilation are the chemicals measured at concentrations above the critical values (i.e., either Washington state standards, or NOAA guidelines or both), bioassay results indicative of a significant response, and benthic infaunal indices generated for each station. Both best professional judgment and methods outlined in Chapter 173-204 WAC and Striplin and Weston (1999) were used to evaluate the condition of the infaunal assemblages, using multiple individual indices.

The data were examined to determine which samples had any chemical concentrations that exceeded one or more of the Washington state standards or NOAA guidelines. The toxicity test results were examined to determine in which samples the responses were statistically significant as defined above. The benthic data were examined subjectively to determine which samples did not support a diverse and abundant infauna community or in which it was composed primarily of pollution-tolerant taxa. Following classification of the chemical, toxicity, and benthic data, the spatial extent of sediment quality was summed for each of four categories that represented four combinations of chemical/toxicity/benthic results. High quality sediments were those in which no chemical concentrations exceeded any of the standards or guidelines, significant responses were not apparent in any of the toxicity tests, and the benthos included relatively large numbers of organisms and taxa, including pollution-sensitive taxa. Sediments with a significant result in one element of the triad were considered to be intermediate/high quality. Those with significant results in two of the triad elements were considered to be intermediate/degraded. Degraded sediments were those with one or more chemical concentrations greater than a Washington state standard or NOAA guideline, a significant outcome in at least one of the toxicity tests, and either a relatively depauperate benthos or one with an abundance of pollution tolerant taxa (or both). Estimates of the spatial extent of the four sediment quality categories based upon the triad of analyses followed the same procedures as applied separately to the chemistry data and the toxicity data alone.

Results

Incidence and Spatial Extent of Chemical Contamination

The spatial extent of chemical contamination relative to the critical values (state standards, NOAA guidelines) was summarized for the entire survey area (2363.3 km²), for each of the six sampling regions (Table 1), and for each of five stratum types (Table 2). The data were summarized as the number and percentages of samples that exceeded the critical values (i.e., incidence of spatial contamination), the spatial area that these samples represented (as km²), and as the percentages of the total area of each region or stratum type or total survey area (i.e., extent of spatial contamination).

The spatial extent of chemical contamination relative to the ERM values was similar (2.1%, 1.9%, 1.4%, and 0.9%) in four of the regions (Strait of Georgia, Central Sound, South Sound, Hood Canal, respectively). The percentage of area affected was lowest (0.2% and 0.0%) in the Whidbey Basin and Admiralty Inlet, respectively, as estimated with the ERM values. Overall, there were 39 samples in which one or more chemical concentrations exceeded an ERM value. These 39 samples represented an area of 31 km², or about 1.3% of the total survey area.

The degree of chemical contamination showed a larger range among the six regions when compared to the state SQS and CSL values. Relative to the state SQS values, contamination was most widespread in the Strait of Georgia, Whidbey Basin, Admiralty Inlet, and Central Sound regions (77%, 58%, 68%, 79% of those areas, respectively) than in the South Sound and Hood Canal regions (14% and 0.5% of those areas, respectively). Because the CSL values are higher than the respective SQS values, the spatial extent of contamination relative to the CSL levels was lower than when gauged to the SQS values. Nevertheless, the pattern among the regions was the same using either set of values.

The differences in the estimates of the spatial extent of chemical contamination relative to the ERMs and to the SOS/CSL values are attributable to differences in the numbers and kinds of chemicals for which these sets of values were derived. Notably, numerous samples had concentrations of three organic compounds (benzoic acid, phenol, and 4-methyl phenol) that were elevated relative to the state standards. ERMs were not derived for these substances, therefore, their presence could not be accounted for with those values. When the spatial extent of contamination was re-calculated after excluding these substances, the estimates were reduced considerably in the four regions (Strait of Georgia, Whidbey Basin, Admiralty Inlet, and Central Sound) in which they were highest (Table 1). For example, after excluding the data for these substances, the percentage of the Strait of Georgia area with concentrations that exceeded the SQS values was reduced from 77% to 10%. In all cases, the areas estimated to be contaminated when data for these substances were excluded ranged from 0.0% (Admiralty Inlet) to 10% (Strait of Georgia) relative to the SQS values. Based upon these data (i.e., SQS and CSL values with the three ubiquitous substances omitted), the areal extent of chemical contamination was highest in four regions (Strait of Georgia, Whidbey Basin, Central Sound, South Sound) and lowest in the two other regions (Admiralty Inlet and Hood Canal).

The spatial extent of contamination was estimated also using any one of the values (i.e., an ERM, SQS, or SQS/CSL) as the critical values. The results showed the same regional pattern as with the SQS and CSL values alone, especially with data for the three ubiquitous substances omitted. That is, the percentages of areas affected ranged from 5% to 10% in four regions (Strait of Georgia, Whidbey Basin, Central Sound, South Sound). The absolute areas affected were remarkably similar among these four regions (44, 31, 32, and 33km², respectively). In contrast, the areas affected ranged from 0.0% in Admiralty Inlet to 1.4% in Hood Canal. Among the 300 samples tested, there were 184 (61% of the total) in which one or more chemical concentrations exceeded one or more respective sediment quality values (i.e., an ERM, or SQS). These 184 samples represented a total area of about 1259 km², equivalent to 53% of the total survey area. This overall estimate of chemical contamination was reduced to 70 samples, representing 144 km² (6% of total survey area) with the data for the three ubiquitous chemicals excluded.

Most (177) of the 300 samples were collected in areas that were classified as either deep basins, passages, or rural bays (Table 2). The basin, passage, and rural strata combined represented a large majority (91%) of the total survey area and were expected to be least contaminated because of the effects of greater distances from sources and greater potential for dilution of toxicant concentrations. The remaining samples were collected in either industrial harbors or urbanized bays which, together, represented about 9% of the survey area. Sediments from these two strata types were expected to be the most contaminated due to their proximity to sources. A large majority of the samples (30 of 39) in which one or more chemical concentrations exceeded an ERM value were collected in one of the strata classified as an industrial harbor. These 30 samples represented 13% of the area classified as industrial harbor. Samples that were contaminated at levels greater than any one of the ERMs represented about 3% of both the urban bay and rural bay areas. None of the ERMs were exceeded in samples collected in either the deep basins or passages.

The largest percentages of samples in which one or more chemical concentrations exceeded either the SQS values (70%) or CSL values (59%) were collected in the industrial harbors (Table 2). However, because these strata generally were among the smallest, these samples represented only 23% and 18%, respectively, of the areas classified as harbors (i.e., the lowest percentages among the five categories). The spatial extent of contamination greater than the SQS and CSL values, calculated as percentages of the areas sampled, was greatest in the passages, followed by the basins and urban bays. That is, samples in which one or more of the SQS values or CSL values was exceeded represented 68% and 63%, respectively, of the area classified as passages. The spatial extent of contamination was consistently relatively low in the rural bays as compared to the urban bays, basins, and passages.

When the data for the relatively ubiquitous substances (benzoic acid, 4-methylphenol, and phenol) were excluded, the pattern changed. When these three chemicals were excluded from the calculations, the relatively high degrees of contamination by other substances in the industrial harbors (21% of area relative to the SQS values) and urban bays (16% of area) became more apparent. The relatively low degree of contamination by other substances (as compared to the SQS's) in the deep basins (0.5% of area) and rural bays (7% of area), and the intermediate degree in the passages (9% of area), also was apparent in these final calculations.

In summary, based upon these data and the three combined sets of critical values, the percentages of areas affected by chemical contamination (excluding estimates influenced by three ubiquitous substances) were greatest in the urban bays and industrial harbors, especially in the central, southern, and northern regions of Puget Sound. The percentages of the areas affected were consistently lower throughout the passages and rural bays, and lowest in the deep basins of the study area, particularly in Hood Canal and Admiralty Inlet.

Spatial Patterns in Chemical Contamination

As indicated in the estimates of the spatial extent of chemical contamination (Table 1), the concentrations of benzoic acid, and/or 4-methylphenol, and/or phenol were elevated relative to Washington state standards in most of the samples collected in the northern stations (Figure 8). The concentrations of these substances exceeded the respective SQS values in many samples collected throughout the area from the U.S./Canada border to Possession Sound (Appendix A). However, there were no readily apparent gradients or other patterns in the violations of the standards.

The sample collected at station 9 in the southern Strait of Georgia west of Blaine had high chemical concentrations in all four categories, including a mercury concentration that exceeded both the ERM and CSL values (Figure 8). Samples from three other stations (38 in Samish Bay, 64 in Skagit Bay, 85 in Possession Sound) had at least one phthalate concentration that exceeded a state SQS value. However, in all three cases chemical concentrations were below all or most guideline values in other samples from surrounding stations. Similarly, chemical concentrations exceeded one or more SQSs in two categories in a sample from an industrial waterway of Bellingham Bay, but other samples collected nearby were not as contaminated. One sample collected off March Point had relatively high chemical concentrations, but, again, there were no readily apparent gradients in concentrations as identified with this approach.

Samples from clusters of stations in northern Bellingham Bay, Port Susan, and mid-channel between Guemes Island and March Point appeared to be among the least contaminated, i.e., none of the concentrations exceeded the NOAA guidelines or state standards (Figure 8). However, in each case samples collected from other nearby stations had elevated concentrations of either benzoic acid/4-methylephenol/phenol or other substances.

All nine samples from inner Everett Harbor had elevated concentrations in at least one category and frequently in two to four categories. The concentrations of one or more PAHs exceeded their respective ERM values in all Everett Harbor samples except the one from station 91. In addition, the concentrations of arsenic, lead, copper, and zinc in the sample from station 94 exceeded their respective ERM values. The copper concentration in the sample from station 94 also exceeded the state CSL value. These elevated concentrations decreased remarkably in Port Gardner Bay.

In addition to the obvious gradient in chemical concentrations in the Everett Harbor/Port Gardner Bay area, there were several others in the central region (Figures 9 & 10). Concentrations of mercury were relatively high in all samples (stations 160 -165) collected in Sinclair Inlet, exceeding the ERM and/or CSL values in all samples (Figure 9). These high concentrations dropped considerably eastward beyond the mouth of the inlet. Similarly, two of the samples collected in Dyes Inlet were contaminated with mercury (the concentration exceeded the CSL value) and concentrations diminished eastward out of this bay.

Spatial gradients in contamination were readily apparent in both Elliott Bay and Commencement Bay (Figure 10). In Elliott Bay the samples collected in the lower Duwamish waterways and along the Seattle waterfront had the highest concentrations of mixtures of chemicals, often exceeding the guidelines in two to four categories in most samples. In the lower Duwamish River strata, mixtures of PAHs, PCBs, phthalates, phenols, and arsenic exceeded one or more sets of sediment quality values. Relatively high chemical concentrations continued northward along the Seattle waterfront. Concentrations of mixtures of PAHs, phenols, and mercury in many samples collected along the Seattle waterfront exceeded respective SQS, CSL, and/or ERM values. These relatively high concentrations eventually decreased westward into the deeper central and outer reaches of the bay and, again, into the central basin. However, mercury concentrations remained relatively high in some samples from the deeper mid-bay stations. Most of the samples collected in the Puget Sound central basin were not contaminated relative to the NOAA guidelines or state standards, excluding those for the three ubiquitous substances, which were commonly elevated (Figure 9).

In Commencement Bay, the spatial gradient was much more distinct than that observed in Elliott Bay. Samples from the industrial waterways were contaminated, whereas those from the deep central and outer reaches of the bay were not (Figure 10). Thus, relatively high chemical concentrations did not extend as far into the bay as in Elliott Bay. All three samples from the Thea Foss Waterway were contaminated in either two or three categories. Another sample from the Middle Waterway was contaminated in three categories. These samples had elevated concentrations of numerous chemicals, including many PAHs, several trace metals, phenols, PCBs, and phthalates. Concentrations of PCBs, hexachlorobenzene, and phenol were elevated in the Hylebos Waterway. Among the waterways sampled at Tacoma, the sediments collected in the Blair Waterway were the least contaminated.

The majority of samples (i.e., 79%) collected in the southern region were not contaminated (Figure 11). That is, none of the sediment quality values were exceeded in these samples. Scattered among these un-contaminated samples were nine stations in which the sediment samples had one or more chemical concentrations that exceeded one or more sets of guidelines or criteria. One sample each from Hale Passage, Nisqually Reach, Henderson Inlet, and Budd Inlet had elevated concentrations of only phenol, and/or benzoic acid, and/or 4-methyl phenol. Concentrations of other chemicals exceeded the respective ERM, SQS, and/or CSL values in one or more samples each from Southern Pickering Passage, Totten Inlet, Budd Inlet, and Port of Olympia.

Much like the samples from the southern region, most samples collected in Hood Canal and near Port Townsend were not highly contaminated (Figure 12). Of the 27 samples analyzed from these areas, only 8 had elevated chemical concentrations. Five of the six samples collected near Port Townsend had relatively high concentrations of 4-methylphenol, but no other chemicals. Low molecular weight PAHs were elevated in one sample from Port Ludlow and another sample from Port Gamble. Another sample from Port Gamble had a high concentration of silver. Chemical concentrations were less than the guidelines and criteria throughout Hood Canal and adjoining Dabob Bay and Quilcene Bay. In summary, most of the samples from Admiralty Inlet, the central basin, Port Madison, Colvos Passage, the Bainbridge Island basin, and Quartermaster Harbor were not contaminated relative to three sets of guidelines and standards. Therefore it was apparent that the central basin and other waterways near relatively undeveloped lands either had not received major inputs of contaminants or were not depositional areas in which these chemicals were retained in sediments in high concentrations. In contrast, contaminant concentrations generally were highest in Everett Harbor, Sinclair Inlet, lower Duwamish waterways, inner Elliott Bay, and the Thea Foss and Hylebos waterways at Tacoma; all of which are areas nearest known sources.

Incidence and Spatial Extent of Toxicity

There were very few consistent patterns in the spatial extent of toxicity among the six regions of the study area, reflective of the generally low degree of toxicity in the four different tests (Table 3). Results of the amphipod survival tests were highly significant in only one sample (collected in Port Washington Narrows where it represented <0.1% of that region). The spatial extent of highly significant responses in the sea urchin tests of 100% pore water was greatest in Hood Canal as both absolute area (39 km^2) and percentage of the regional area (12%). However, none of the samples from Hood Canal had a highly significant response in tests of 50% porewater concentrations and the spatial extent estimates were greatest in the Strait of Georgia (2.6% of the area) and South Sound (1.1% of the area). In the Microtox tests, the samples with mean EC50's <80% of controls represented the largest proportion of the Strait of Georgia region (100%), followed by the Whidbey Basin region (96% of area), and South Sound (84% of area). The percentages of areas affected were lowest (31-49%) in the Central Sound, Hood Canal, and Admiralty Inlet regions. Based on the more realistic critical value of <0.51 mg/L, the areas affected ranged from 0.0% in Admiralty Inlet and Hood Canal to 2.0% in the Strait of Georgia. There were no samples in the entire survey area in which Microtox results fell below the more severe critical value of < 0.06 mg/L.

In the HRGS assays, there was a total of 134 samples in which the outcome was greater than 11.1 ug/g, indicative of responses above background levels. The samples in which results were greater than 11.1 ug/g represented 45% of the respective areas in the Central Sound and South Sound regions, followed by the Hood Canal region (25% of that area). The regions with the smallest areas affected were Admiralty Inlet, Strait of Georgia, and Whidbey Basin (0 – 3% of respective areas). There were considerably fewer samples (48 in the entire survey) in which HRGS assay results exceeded the upper critical value of 37.1 ug/g, 40 of which were collected in the Central Sound region. Notably, none of the results of this test exceeded 37.1 ug/g in the samples from Admiralty Inlet and the Strait of Georgia and there was only one such outcome in Hood Canal.

There were no samples in which the critical values for all four tests indicated significant results. In contrast, there were 144 samples in which any one of the tests indicated a significant result. These 144 samples represented about 27% of the total survey area. The largest percentages of areas affected in any one of the tests were in the South Sound and Central Sound regions (46% and 45% of those areas, respectively), followed by the Hood Canal region (25% of that area). The smallest percentages were apparent in the Admiralty Inlet, Whidbey Basin, and Strait of Georgia regions (0 – 9% of areas). It should be noted that these estimates would be much

smaller if the more severe critical values for the Microtox tests (i.e., <0.06 mg/ml) and HRGS assays (i.e., >37.1 ug/g) had been used.

Toxicity generally was most pervasive in the industrial harbor strata as compared to the urban bays, passages, basins, and rural bays (Table 4). Mean EC50's in the Microtox tests were <0.51 mg/ml in 12% of the samples from the harbor stratum (representing 3% of the area) and 2% of the urban bay stations (7% of the area). In contrast, none of the EC50's for the samples from the passages, basins, or rural bays were that low.

HRGS assay results exceeded 11.1 ug/g in 54 of the harbor samples, representing 91% of the area and exceeded 37.1 ug/g in 36 samples that represented 36% of the area. In both cases, these were the highest percentages of areas affected among the five stratum types. The percentage of area affected in any of the four tests performed (91% of the area) was highest in the harbor stratum type, as compared to a range of 4% to 52% in the other stratum types (lowest in passage stratum; 4% of total study area). Test results were significant in all three tests, excluding those performed with the amphipods, in 6 samples that represented 1.2% of the area as compared to 0% in all other stratum types. However, results of the urchin fertilization tests of 100% pore water were significant in 19 harbor samples that represented 6% of the area, a somewhat lower percentage than in rural bays (12%) and urban bays (8%). Also, the area affected (3%) in samples with Microtox EC50s <0.51 mg/L was somewhat lower in harbors than in the urban bays (6%).

The percentages of areas affected in the tests often were second highest in the urban bays and lowest in the basin, passage, or rural bay stratum types. An exception, however, the area affected in the urchin fertilization tests in 100% pore waters, was highest in the rural bays, where 9 samples represented about 12% of that area.

In summary, the data combined from all four tests indicated that highly significant responses were not pervasive in this study of Puget Sound. None of the samples had highly significant responses in all four tests. Percent amphipod survival was significantly reduced in only one sample. Excluding the amphipod survival tests, there were only six samples in which responses in all three of the remaining tests were highly significant, four from Whidbey Basin (Everett Harbor), and one each from the Central Sound (Thea Foss Waterway) and South Sound (Port of Olympia – Inner Budd Inlet) regions. All six of these samples were collected in the industrial harbor stratum type and represented only 0.8 km^2 , or 0.03% of the total survey area. The area represented by 144 samples in which any one of the four tests indicated a significant response constituted only 642 km² (27% of the total survey area). Significant responses were most frequent in the HRGS and Microtox tests. Both are tests of organic solvent extracts, performed either with a cultured bacteria or cell line, therefore, not a toxicity test indicative of bioavailable chemicals. HRGS results most frequently were significant in the Central Sound, South Sound, and Hood Canal regions. Responses in the HRGS test greater than 37.1 ug/g were observed only in 48 of the 300 samples; the majority of which were collected in the industrial harbors of the Central Sound and South Sound regions. Sediment quality, based upon data from these four tests, was highest in the rural bays, deep basins, and passages, particularly in the Whidbey Basin, Hood Canal, and Admiralty Inlet regions.

Spatial Patterns in Toxicity

To identify possible spatial patterns, such as gradients, in toxicity among the individual sampling stations, results of each of the four tests were plotted on base maps, using symbols to depict either a significant or non-significant response. A white circle at a sampling location indicates a lack of significant response in all four tests. A black wedge in any of the four quadrants of the circle indicates a significant response as defined in the methods section and figure legends (Figures 13-17).

As indicated by the estimates of the spatial extent of toxicity, the majority of samples (156/300) failed to induce significant responses in any of the four tests (Table 3); thus, indicating relatively good concordance in identifying samples as not toxic. This lack of toxicity was very apparent in most samples (78 of 100) from the Strait of Georgia and Whidbey Basin regions, notably excluding those from Everett Harbor (Figure 13). Non-toxic conditions were observed in most of the samples from the southern Strait of Georgia, Samish Bay, Port Susan, and in the bays and basins east of Whidbey Island. The exceptions were the 9 samples from Everett Harbor in which two or three significant responses were recorded and 13 samples collected from scattered locations in which only one (never two or more) tests indicated a significant response. The samples from Everett Harbor were among the most toxic in the overall Puget Sound survey. All 9 of these samples indicated a significant response in either two or three of the tests, always including the urchin fertilization and HRGS tests. The Microtox tests also were significant in four of the Everett Harbor samples. High toxicity in this area diminished into Port Gardner Bay and southward into the region of the central basin off Edmonds. Test results were significant in any one of the tests in 13 samples from scattered locations including: Blaine Harbor, Bellingham Bay, Padilla Bay, March Point/Fidalgo Bay, Skagit Bay, and Port Gardner Bay. As indicated by the numbers of tests showing toxic responses, there were no readily apparent gradients of high to low toxicity among these sampling locations.

In contrast, farther South in the central Puget Sound region, many more samples (95 of 128) indicated significant responses in one or more tests (Figures 14, 15). Several spatial gradients were apparent in the results, all of them associated with urban bays and/or industrial harbors. A significant response in one test (usually the HRGS test) was recorded for all samples collected in inner Liberty Bay, Sinclair Inlet, and 4 of 6 stations in Dyes Inlet, and diminished gradually eastward into Port Washington Narrows toward the central basin. All three samples from Eagle Harbor on Bainbridge Island induced a significant HRGS response along with two from the central basin collected near the mouth of this bay.

Amphipod survival was highly significant (i.e., <80% of control survival) in one sample collected in the entire study. This sample was collected in a small cove adjoining the outer reach of Dyes Inlet (Figure 14). The response in the HRGS test was significant in this sample also.

The majority of samples collected in the two largest urban bays of Puget Sound, Elliott and Commencement Bays, showed significant responses in at least one of the tests (Figure 15). Collectively, among the 58 samples tested from both bays, there were only three in which all the toxicity test results were negative. Significant responses were observed in the HRGS and/or urchin tests in samples from the lower Duwamish River, off the Seattle waterfront and into central and outer Elliott Bay. One sample collected off Duwamish Head and two collected off

Magnolia were non-toxic in all tests, perhaps, indicating a slight loss in the degree of toxicity test responses westward toward the central basin. A similar situation was apparent in much of Commencement Bay and its adjoining industrial waterways. As indicated in the HRGS tests and occasionally the Microtox and/or urchin tests, significant responses were widespread in this urbanized bay. The sample collected in the inner most station in Thea Foss Waterway induced significant responses in three of the tests. The HRGS response in this sample was the highest observed in the entire study. The degree of response diminished somewhat northward into the outer reaches of Commencement Bay and, again, into the basin waters surrounding Vashon Island (Figure 14).

Significant responses occurred in samples from scattered locations in the inlets and basins of Southern Puget Sound and in two industrialized harbors, Budd Inlet and Shelton Harbor (Figure 16). Significant responses were apparent in all three samples from Port of Olympia. The sample from the inner-most station induced significant responses in three of the tests. The HRGS response was significant also in the three samples from outer Budd Inlet. All six samples from the Oakland Bay/Shelton Harbor area had significant HRGS responses. Samples from Nisqually Reach, Carr Inlet, Case Inlet, and Pickering Passage were among the least toxic in the southern basin.

The majority of samples (21 of 27, 78%) from Hood Canal and Port Townsend area indicated non-significant responses in all four tests (Figure 17). The exceptions were samples from Port Ludlow, Port Gamble, Dabob Bay, and the southern reach of Hood Canal, all of which had significant responses in the HRGS test and three of which also had significant responses in the urchin test.

In summary, the least toxic conditions were observed in southern Strait of Georgia/outer Boundary Bay, Cherry Pt, outer Bellingham Bay, Guemes Channel, Samish and Padilla Bays, Whidbey Basin/Saratoga Passage, the northern reach of the Puget Sound central basin, Port Gardner Bay, Case and Carr inlets, Port Townsend Bay, Quilcene Bay, and portions of Hood Canal. The samples that indicated the most significant responses were those from inner Everett Harbor, inner Sinclair Inlet, lower Duwamish River, inner Elliott Bay, Thea Foss Waterway, Port of Olympia, and Dabob Bay.

Spatial Distribution of Benthic Indices

Mean and median values for the nine indices were calculated for each of the six sampling regions (Table 5) and stratum types (Table 6) to contrast the ranges in values between the two sets of geographic categories. The data indicated a great amount of heterogeneity (high standard deviations) in the benthic indices within each region and each stratum type. Standard deviations often approached, equaled, or exceeded mean values. However, there were a few consistent patterns in mean and median values for these data. In nearly all cases, the highest means and medians in the indices were apparent in samples from either the Strait of Georgia or Admiralty Inlet. The median indices of total abundance, numbers of taxa, evenness, dominance, and median abundance of arthropods, echinoderms, and molluscs were highest in one or the other of these two regions. In contrast, the lowest mean and median values for most indices occurred in samples from Whidbey Basin and South Sound. Significantly, the abundance of all organisms, the numbers of species, and the abundance of arthropods (often relatively sensitive to stressors

such as toxic chemicals) were very low in these samples. Ratios between the highest and lowest medians were 2.1 (numbers of taxa), 3.4 (SDI), 8.2 (arthropod abundance), and 20.5 (echinoderm abundance).

The patterns in mean and median values in the benthic indices among the different stratum types were less clear (Table 6). Total abundance generally was higher in samples from the harbors and urban bays than elsewhere and lowest in samples from the basins. High total abundance probably was attributable, in large part, to the presence of numerous annelids, which were most abundant in harbors and urban bays and least abundant in the basins. Generally, the numbers of taxa were highest in samples from the urban bays and passages and lowest in rural bays. Indices of evenness and dominance were highest in the passages and basins, lowest in the harbors. Reflective of the high total abundance of infauna in the samples from urban bay sites, the abundance of annelids, arthropods, molluscs, and echinoderms were relatively high in the same samples. In contrast, the abundance of annelids, molluscs, and echinoderms were 1.4 (numbers of taxa), 2.6 (SDI), 1.7 (arthropod abundance), and 8.5 (echinoderm abundance). Thus, these data suggest that there were greater ranges in benthic index values between the regions than between the stratum types. They also indicated a more consistent pattern among regions (with highest values often in Admiralty Inlet or Strait of Georgia) than among stratum types.

Indices of total abundance of identifiable taxa, total numbers of taxa, Pielou's Evenness (J') index, and Swartz's Dominance Index were selected to represent the spatial patterns in the benthic data. Experience has shown that these indices usually decrease as stresses increase; however, in some cases they will increase from sandy sediments in which there is little food available to sediments high in silts and clays and elevated organic carbon content in which there is much more food. In such fine-grained sediments that are highly contaminated with toxicants, all measures of benthic diversity and abundance ultimately are expected to eventually decrease. In some cases these indices can decrease precipitously as taxa and individuals are no longer capable of tolerating the stressful conditions.

A comparison of the benthic infaunal indices among the northern Puget Sound stations indicated a wide range in values from those in the upper 75% quartile to those in the lower 25% quartile (Figure 18). Most of the samples collected in the southern Strait of Georgia had indices of diversity and abundance in the middle quartiles. In contrast, a number of samples from nearby stations in the mouth of Boundary Bay, Drayton Harbor at Blaine, and inner Bellingham Bay had benthic index values that were within the lower quartile. The infauna at three stations in Bellingham Bay had three indices in the lower 25% quartile, indicating relatively low numbers of taxa, evenness, and numbers of dominant taxa. With some exceptions, typical of the spatial heterogeneity in benthic indices, the measures of diversity and abundance tended to increase southward from Bellingham Bay toward Samish Bay and Padilla Bay. Generally, the benthic infauna was relatively abundant and diverse in the vicinity of March Point and Anacortes. Farther south, conditions were heterogeneous with many samples collected in Oak Harbor, Possession Sound and Saratoga Passage (east of Whidbey Island) indicating relatively low abundance and diversity. Similar benthic conditions were apparent also in Port Susan with one station indicating low values in three indices. The indices of total abundance, taxa richness, and dominance were low in three samples from inner Everett Harbor and all four indices were low in

a fourth sample from the harbor. The benthic conditions gradually improved southward into Port Gardner Bay.

Benthic indices indicated heterogeneity and equally wide ranges in response in the central Puget Sound stations (Figure 19). Benthic diversity and abundance were relatively low in some of the samples from inner Sinclair Inlet, inner Liberty Bay and inner Dyes Inlet and tended to increase eastward into the Bainbridge basin, Rich Passage, and the flats surrounding Blake Island. There were two samples from Sinclair Inlet in which three indices were in the lower 25% percentile of the data distributions. Benthic index values were heterogeneous and patchy in Colvos Passage and East Passage surrounding Vashon Island.

In the Duwamish Waterways, many of the samples had relatively low evenness and dominance indices, but high or intermediate indices of total abundance and numbers of taxa (Figure 20). Benthic indices tended to increase somewhat from the Duwamish into Elliott Bay, but this was not a clear and consistent pattern. There was little uniformity among indices at any given station and there was no clear spatial pattern in benthic indices in Elliott Bay. Equally non-uniform and heterogeneous conditions were apparent in Commencement Bay where many samples had benthic indices in the intermediate ranges.

In the inlets and basins of southern Puget Sound, the benthic indices were depressed in most of the samples from Port of Olympia and outer Budd Inlet (Figure 21). All four indices were in the lower 25% quartiles in samples from three Port of Olympia stations. Benthic samples from most other southern Puget Sound inlets (Henderson, Eld, Totten, and Hammersley) also had relatively low indices of abundance and diversity. These indices were somewhat higher in samples from Case and Carr inlets and from the Nisqually Reach; however, some samples from these areas also had relatively low benthic indices.

Benthic indices were as variable and heterogeneous in the Hood Canal region as in the other regions (Figure 22). Eight samples collected from Dabob Bay to the terminus of Hood Canal were low in taxa numbers and total abundance, and one (Lynch Cove), was low in all four indices. Indices measured from the three stations in northern Hood Canal, three station in Quilcene Bay, and two stations in Port Ludlow, had relatively high values. All three stations in Port Gamble indicated low evenness and/or dominance values, and one station in Port Ludlow had mid or low values for all four indices. All samples collected near Port Townsend, however, had benthic indices in the upper or intermediate quartiles, indicative of relatively high diversity and abundance.

In summary, most of the nine indices of benthic abundance and diversity generally were highest in samples from the Strait of Georgia and Admiralty Inlet. Individual samples with relatively high benthic index values were collected in Padilla Bay, eastern Guemes Channel near March Point, Port Madison, the entrance to Sinclair Inlet, the flats surrounding Blake Island, Port Townsend Bay, and a few scattered locations elsewhere. The nine benthic index values generally were lowest in the Whidbey Basin, Central Sound and South Sound regions, occasionally, but not consistently in the urbanized bays, including Bellingham Bay, Everett inner harbor, inner Sinclair Inlet, the lower Duwamish River waterways, Port of Olympia, several other South Sound inlets, and outer Hood Canal.

Sediment Quality Triad Analysis: Spatial Extent of Degraded Conditions

By combining the results of the chemical, toxicity, and benthic analyses, a weight of evidence index was generated to classify the overall quality of the sediment samples. Equal weight was given to the data from each element of the triad of measures. Samples were classified as high quality (i.e., least degraded) when none of the chemical concentrations exceeded the critical values, none of the results of toxicity testing were significant, and the benthic indices indicated that the infaunal assemblages were diverse and abundant and/or supported sensitive species. In contrast, samples were classified as *degraded* when chemical concentrations exceeded one or more sediment quality values, significant results were observed in at least one toxicity test, and the benthic indices indicated that the infauna was depauperate (i.e., low abundance and numbers of taxa) and/or was dominated by pollution-tolerant species. Samples of intermediate quality were classified as either intermediate/high or intermediate/degraded when one or two elements, respectively, of the triad exceeded critical values. These triad indices were summarized for the stations grouped both by the six regions and the five stratum types defined above, excluding the data for nickel, benzoic acid, phenol, and 4-methyl phenol. Therefore, the results reported in this report differ somewhat from a previous analysis of these data in which the concentrations of the three organic compounds (but, still excluding nickel) were considered in the triad evaluations (Puget Sound Water Quality Action Team, 2002).

Sediment Quality in Total Study Area

Of the 300 samples analyzed, most (138) were classified as being of high quality (Table 7). These 138 samples comprised 46% of the total number of samples, but represented over 68% of the total survey area, thereby indicating that many of them were collected in relatively large strata. There were 37 samples classified as degraded with the triad of measures. Because many of them were collected in relatively small strata, they represented only 23 km² or about 1% of the area surveyed. The percentage of the survey area that the samples represented declined markedly as the quality of sediments decreased among the four categories; i.e., from 68% (high) to 27% (intermediate/high) to 4% (intermediate/degraded) to 1% (degraded).

Toxicity test results contributed the most to classification of samples in the intermediate/high category, indicating significant responses in at least one test in 68 samples that represented about 22% of the total survey area (Table 7). Elevated chemical concentrations contributed 13 samples (representing 4% of the area) to this classification whereas relatively low benthic indices contributed only 4 samples that represented less than 1% of the area. In the intermediate/ degraded classification, the combinations of elevated chemical concentrations/significant toxicity and poor infauna/significant toxicity contributed 19 and 20 samples respectively. These 39 samples, together, represented 4% of the total survey area.

Sediment Quality Triad by Region

The majority (26 of 37; 70%) of the samples classified as having degraded sediment quality were collected in the Central Sound region, where they represented about 19 km² or 3% of that area (Table 7). The eight samples from the Whidbey Basin (including Everett Harbor) with these characteristics represented <1% of that area. Samples from one or two stations each with these

characteristics were collected in the Hood Canal and South Sound regions respectively, in both cases representing less than 1% of those areas. No degraded samples were found in the Strait of Georgia or the Admiralty Inlet regions.

The majority (25 of 40, 63%) of samples with intermediate/degraded (i.e., two elements of the triad indicative of degraded) conditions also were from the Central Sound region (Table 7). All of these 24 samples had either elevated chemical concentrations and significant toxicity (14 samples) or poor infauna and significant toxicity (11 samples). Eight samples from the South Sound region had equivalent intermediate/degraded conditions, where they represented 63 km² or about 16% of that area. Seven other samples with two of the triad measures indicating degraded conditions were collected in the Strait of Georgia (3), Whidbey Basin (2), and Hood Canal (2) where they represented about 1-3% of those respective areas. In nearly all cases, the sample classifications were as a result of either the chemistry/toxicity data or the infauna/toxicity data.

Based upon these measures of sediment quality and the samples that were collected in this survey, the highest quality sediments were collected in the Admiralty Inlet region; all nine samples collected there were classified as high quality. Following Admiralty Inlet in sediment quality, were the Strait of Georgia region and the Hood Canal region (98% of respective areas classified as either high quality or intermediate/high quality). Samples from the Strait of Georgia were classified as intermediate/high quality primarily because of elevated chemistry or significant toxicity, whereas those from Hood Canal had either significant toxicity or depressed infauna.

Sediment Quality Triad by Stratum Type

Spatial extent data were then summarized for each of the 5 previously defined strata (Table 8). The largest percentage of samples (30 of 37, 81%) with degraded sediment quality (i.e., significant results in all three triad elements) came from the industrial harbor stratum type (Table 8). These 30 samples represented about 15% of the area classified as industrial harbors. Only 5 samples from urban bays and 2 samples from rural bays had characteristics of lowest sediment quality. Those samples represented about 7% and 0.4%, respectively, of the areas encompassed in each stratum type. None of the samples collected in strata categorized as basins and passages were classified as highly degraded.

Half of the samples (20 of 40, 51%) classified as intermediate/degraded in quality were, also, collected in strata identified as industrial harbors (Table 8). Therefore, the spatial extent of these intermediate/degraded conditions was highest (encompassing 74% of area) in the urban harbor stratum. The percentages of area represented by such conditions were much less in the urban bays (12%), rural bays (<4%), passages (<1%), and basins (0%). The classification of samples in this category was consistently attributable to combinations of high chemistry/ toxicity and poor infauna/toxicity. One sample from a rural bay was classified in this category based upon a combination of high chemistry and poor infauna.

Among the 85 samples classified as intermediate/high quality, many were collected in urban bays (29), rural bays (23), and basins (17), where they represented about 43%, 33%, and 32% of those respective stratum types (Table 8). A total of 57 samples (67% of 85 total) in this

classification from these three stratum types were attributable to significant toxicity. Intermediate/high quality conditions encompassed considerably smaller percentages of the harbor strata (<4%) and the passage strata (<12%) areas.

The spatial extent of highest quality conditions was greatest (88% of the area) in the passage stratum type, followed by the basins (68%) and rural bays (63%) (Table 8). These conditions were least pervasive in the urban bays (39% of area) and industrial harbors (7% of area). Only 4 samples (<3%) of the 138 samples classified as high quality were collected in the harbors and 17 (12%) were collected in the urban bays.

In summary, the triad of analyses confirmed the observations made with the individual measures of sediment quality that degraded conditions were most pervasive, i.e., encompassed the largest percentages of areas, within the industrial harbors and urban bays, particularly in the Central Sound. There were 37 samples classified as degraded based upon concordant information from the triad of analyses, but they represented an area of only 23 km², or 1% of the total survey area. Intermediate sediment quality (either one or two elements of the triad with significant results) also was most pervasive (78% of area) in the harbors, followed by the urban bays (55% of area), especially in the South Sound (52% of area) and Central Sound (43% of area). Highest sediment quality was most apparent in the deep basins, passages, and rural bays, particularly in the Strait of Georgia, Admiralty Inlet, and Whidbey Basin. The 223 samples that were classified as having highest quality or only slightly degraded quality, together, constituted a large majority (95%) of the total survey area.

Sediment Quality Triad Analysis: Spatial Patterns

Results of the triad of analyses were summarized on the base maps for each station to identify any spatial patterns in relative sediment quality (Figures 23-27). Shaded symbols were used to depict the presence of high quality, intermediate/high quality, intermediate/degraded quality, or degraded quality sediments. These analyses were performed excluding the information for nickel, benzoic acid, phenol, and 4-methyl phenol. Detailed chemical, toxicity, and benthic data described for the degraded stations in each region are compiled in Appendix A.

There were eight sampling stations in the northern region, all in Everett Harbor, in which degraded conditions were apparent in the sediments with all three elements of the sediment quality triad (Figure 23, Appendix A). Results in two of the triad elements were significant in the ninth of nine sampling stations in the harbor. Concentrations of PAHs, PCBs, phenols, benzoic acid, copper and other trace metals were elevated in some or all nine samples. The mean ERM quotient for sample number 86 was very high (1.77) and those for the remaining samples were moderately high (0.3 to 0.9). Total organic carbon concentrations were relatively high in these samples (range: 4.5% to 9.9%), which could inhibit or preclude the bioavailability of these potentially toxic substances. However, significant responses were apparent in one or more toxicity tests in all nine samples. Results of the urchin fertilization tests were highly significant in all nine samples to 68% in the sample from the harbor entrance. Results of the cytochrome P450 HRGS assays were significant in all nine samples with enzyme induction ranging from 26 ug/g in the sample from station 89 to >100 ug/g in three samples. In exploratory analyses of selected samples, relatively high concentrations of dioxins and furans (TEQ 110 pg/g) were discovered in

the sample (#86) from the innermost station and were major contributors to the HRGS induction. In some samples, only four taxa of infauna were found and as few as 1-3 taxa were dominant in four samples. Taxa numbers were low in all samples. The benthic infauna was dominated in many samples by opportunists such as Capitella capitata, Prionospio lighti, and Macoma carlottensis. Crustaceans and echinoderms generally were absent in these samples. Indices of diversity and abundance generally improved from the head of the harbor to its entrance (Appendix A).

Samples with intermediate/degraded conditions (i.e., two of the triad elements were significant) were collected at two stations each in inner Bellingham Bay and in the vicinity of Anacortes/March Point/Padilla Bay, and at one station in Port Gardner Bay (Figure 23, Appendix A). Samples in which degraded conditions were not apparent (i.e., high quality) or were observed in only one element of the triad (i.e., intermediate/high quality) were scattered throughout much of this region.

In the central region, the triad analyses indicated that the degraded conditions occurred in samples from inner Sinclair Inlet, inner Dyes Inlet, lower Duwamish waterways, inner Elliott Bay, and the Hylebos and Thea Foss waterways (Figures 24, 25 and Appendix A). All six samples from Sinclair Inlet had mercury concentrations that exceeded the ERM and/or SQS/CSL values. The concentrations of benzoic acid exceeded both the SQS and CSL values in all six samples. Mean ERM quotients ranged from 0.3 to 0.6, indicating slightly elevated concentrations of chemical mixtures. HRGS responses were moderately elevated in all six samples, ranging from 28 to 65 ug/g, urchin fertilization was significantly depressed in one sample. Benthic infauna indices differed considerably among the six stations. The numbers of taxa at each station were relatively high (range: 21-53); however, the numbers of dominants were low (range: 2-7). At some stations, the relatively sensitive arthropods and echinoderms were either absent or rare, but at other stations they were abundant. Dominants at most stations included pollution tolerant taxa, including Aphelochaeta spp, Nephtys cornuta and Prionospio pinnata.

Samples from two stations in inner Dyes Inlet were classified as degraded (Figure 24). The SQS values for benzoic acid and benzyl alcohol were exceeded in both samples and the CSL value for mercury was exceeded in one of them. The HRGS responses (28 and 30 ug/g) were elevated in both samples. Both samples had only 4 dominant taxa and, although arthropods and echinoderms were abundant, several pollution tolerant taxa, including Aphelochaeta spp also were abundant (Appendix A).

Eleven samples from Elliott Bay/lower Duwamish River were classified as degraded in the triad analyses (Figure 25, Appendix A). Mixtures of PAHs, PCBs, 4-methylphenol, and other organic compounds were elevated above critical values in all or most samples along with mercury and arsenic in a few samples. Mean ERM quotients were high (range: 0.4 to 3.9), indicative of the presence of mixtures of substances in relatively high concentrations. Responses in the HRGS assays were uniformly high (range: 47 - 153 ug/g) in these eleven samples and percent urchin fertilization was significantly depressed in many of them. In the benthic samples from these stations, the numbers of taxa identified often were high (>40) and total abundance, while variable, often was very high (400 to 1600 animals). However, the numbers of dominant taxa often were very low (\leq 5) and the arthropods and echinoderms were either present in low

numbers or absent. The echinoderms were consistently absent in the most contaminated samples from inner Elliott Bay and the lower Duwamish River channels. Usually the pollution tolerant taxa Aphelochaeta sp., Axinopsida serricata or Euphilomedes spp. were dominant.

Seven stations in the industrial waterways at Tacoma were classified as degraded in these analyses (Figure 25). Among these seven stations, the sample from near the shoreline of inner Thea Foss waterway (#294) was remarkably different from the others. The mean ERM quotient was 4.3 in this sample, the highest value observed in the study. Concentrations of numerous PAHs were elevated above NOAA guideline and/or state criteria levels and were accompanied by high concentrations of lead, mercury, phenols, phthalates, and PCBs. The response in the HRGS assay (1995 ug/g) was the highest observed in the study. Responses in the sea urchin (29% fertilization) and Microtox (0.3 mg/ml) tests were significant. The numbers of infaunal taxa and organisms, while not remarkably depressed, included no echinoderms and only 36 arthropods. Pollution tolerant molluscs were abundant. The other two samples from Thea Foss Waterway were contaminated with mixtures of PAHs above ERM and SQS values and induced high responses in the HRGS assays (356 - 529 ug/g). Sediments at these two locations supported infaunal assemblages low in evenness (0.4 - 0.6), low in dominant taxa (3 - 8), mostly the pollution tolerant Aphelochaeta spp. and Axinopsida serricata. The sample from station 299 (Middle Waterway) was highly contaminated (mean ERM quotient: 1.1) with mixtures of many PAHs along with arsenic, copper, and mercury. The HRGS response was elevated (120 ug/g). The benthic sample was similar to those from the Thea Foss Waterway, i.e., low indices of evenness and dominance and dominated by Aphelochaeta spp. The sediments from three stations in the Hylebos Waterway also were contaminated (PCBs, hexachlorobenzene), induced high responses in the HRGS assays (73 - 176 ug/g), and supported benthic assemblages with low indices of evenness, dominance and dominated by pollution tolerant animals (i.e., Aphelochaeta spp and Axinopsida serricata).

In the central region, the degraded conditions observed in these industrial harbors and urbanized bays gradually improved seaward into the central basin (Figures 24, 25). Most stations in the middle of Elliott Bay indicated impairment in two elements of the triad (usually elevated chemistry and HRGS response), while most in the central basin, Bainbridge basin, and outer Commencement Bay indicated impairment in only one parameter or in none. Intermediate/ degraded conditions were apparent in samples from Tacoma Narrows and five other locations scattered throughout the central region. High and Intermediate/High quality conditions were apparent throughout much of the central basin, Port Madison, Liberty Bay, the flats surrounding Blake Island, and the entrance to Sinclair Inlet.

In the southern region, one of the three samples from the Port of Olympia had degraded quality and the other two were intermediate/degraded based upon the triad of analyses (Figure 26). Sediments from station 243 were contaminated with a phthalate ester and benzoic acid and the responses were highly significant in the sea urchin, Microtox, and HRGS tests. No infaunal organisms were observed in the benthic sample from this location – one of only two such benthic samples in the study. No infauna was found at station 242 – the other station in the study that was azoic. At the third of the Port of Olympia stations, the sediments supported only 123 organisms belonging to 18 taxa, most of which were pollution-tolerant polychaetes. Samples from two other locations in Port of Olympia, as well as three samples from Shelton Harbor, had intermediate/degraded quality. Elsewhere in the southern region, most samples indicated high quality or intermediate/high quality conditions.

High and intermediate/high quality conditions, roughly comparable to those in much of the southern region, were also apparent in much of Hood Canal and vicinity (Figure 27). The exceptions were samples from Port Gamble and Port Ludlow, where degraded and intermediate/ degraded conditions, respectively, were observed in two samples each. In Port Gamble, one station had elevated concentrations of PAHs, while the other had a high concentration of silver. Both had significant responses in the HRGS assay and the urchin fertilization test was significant in one of them. The abundance of the benthic infauna was very high in both stations; however, the infauna was dominated almost exclusively by Aphelochaeta spp. The relatively poor conditions in both Port Gamble and Port Ludlow improved remarkably seaward of these bays in the mouth of Hood Canal and Admiralty Inlet (Figures 24, 27).

Mean and median benthic indices were compared among the sampling stations that were grouped into each of the four categories of triad results to help identify which indices, if any, were most often indicative of degraded conditions (Table 9). Average indices of evenness and dominance were lowest in the degraded sediments and highest in the sediments with high quality. Both indices were intermediate in the two intermediate classifications. Differences in evenness and dominance among these classifications largely were a function of differences in abundance and numbers of taxa of arthropods, echinoderms, and miscellaneous taxa – all of which were most abundant in high quality sediments and least abundant in degraded sediments. In contrast, the numbers of annelids was highest in the degraded sediments and lowest in the high quality sediments, whereas the abundance of molluscs did not differ remarkably among the four categories.

In summary, based upon this review of the triad of data, areas with the highest sediment quality included much of Admiralty Inlet, Port Gardner Bay, Port Madison, the entrance to Sinclair Inlet, the flats surrounding Blake Island, and Hood Canal; and parts of Carr Inlet, Case Inlet, and Nisqually Reach. The sediments in these areas did not have chemical concentrations that exceeded effects-based guidelines or criteria, did not induce significant responses in any of the four toxicity tests, and supported a taxa-rich and abundant infauna, often including many arthropods, echinoderms and other sensitive taxa. Based upon these data, the areas with poorest sediment quality included the inner Everett Harbor, inner Sinclair Inlet, Dyes Inlet, the lower Duwamish River waterways, inner (eastern) Elliott Bay, the Thea Foss and Hylebos waterways at Tacoma, Port of Olympia, and Port Gamble. Sediments with the poorest sediment quality were contaminated with mixtures of chemicals, the composition of which differed among sampling locations.

The toxicological significance of the chemical mixtures was indicated by significant responses in one or more laboratory toxicity tests. In turn, the ecological relevance of the toxicity tests was confirmed by indices of benthic community composition. Sediments of poor quality supported infauna assemblages that were low in numbers of taxa and indices of evenness and dominance, frequently because the annelids were dominant and the arthropods, echinoderms, and miscellaneous taxa were relatively low in numbers of species and abundance. In an extreme condition, sediments from two locations in Olympia were azoic.

Discussion

In the three-year study summarized in this report, analyses were conducted on 300 sediment samples collected to represent conditions throughout much of Puget Sound. Samples were collected in regions distant from sources of toxicants, in the deep basins, in the mouths of rivers, and in industrialized harbors. The stratified-random, probabilistic sampling design was similar to those used in estuarine sediment quality assessments conducted elsewhere in the U.S. by NOAA (Long et al., 1996) and U.S. EPA (Paul et al., 1992). Thus, the study design was intended to provide an objective, unbiased representation of the relative quality of sediments throughout this large complex region. In addition, the study design allowed us to estimate the spatial (or aerial) extent of degraded sediment quality and to compare results from the study with those obtained in equivalent surveys previously conducted elsewhere in the U.S.

Degree of Chemical Contamination

In the PSAMP/NOAA survey, there were 39 samples in which one or more of the 25 ERM values were exceeded and 62 samples in which one or more of the 47 SQS values were exceeded (Table 10). These samples represented 13% and 21% of the 300 samples, respectively, and 1.3% and 5.9% of the total survey area, respectively. To provide perspective to these data, similar information was compiled from several nationwide inventories and many regional, estuarine surveys conducted along all three coastlines of the U.S. Nearly all of these studies reported the percentages of samples in which sediment quality guidelines (usually ERMs) were exceeded by one or more chemicals. Most also reported the areas affected and the percentages of total areas studied. Sampling and analytical methods comparable to those used in the present study were applied in most of the others; however, differences in methods could account for some proportion of apparent differences among regions and data inventories.

U.S. EPA (1997) compiled the largest sediment quality database currently available as a part of a national inventory of sediment contamination. Data were compiled from freshwater and saltwater studies with broad nationwide coverage, but with a bias toward industrialized areas. Among the 21,000 samples for which chemistry data were reported, 26% were classified as contaminated (concentrations exceeded at least two guideline values) or toxic in an acute test. In another study a database was compiled from NOAA and EMAP studies of estuaries to quantify the predictive ability of guidelines. These data were more comparable to those developed in the present study of Puget Sound because studies were conducted only in estuaries and the methods were the same. Among the 1068 samples, 27% and 36% exceeded at least one ERM or PEL (Probable Effect Level, MacDonald et al., 1996) value, respectively.

In Ecology's SEDQUAL database, largely populated with data from samples (i.e., excluding PSAMP/NOAA samples) collected during enforcement or other regulatory actions in urbanized bays of Puget Sound, 27% of 8523 samples had at least one chemical concentration that exceeded an SQS value. In surveys conducted either by NOAA or EMAP in marine and estuarine regions, 1.2% to 27% of samples had at least one concentration greater than an ERM value. When expressed as percentages of survey areas, the results ranged from 0% to 29% among nine studies. In intensive studies of New York/New Jersey harbor, California bays and

harbors, and Pearl Harbor (Hawaii), the sampling designs focused upon urbanized and industrialized areas known or suspected to be contaminated. In two surveys of the NY/NJ harbor, the estimates of the spatial extent of chemical contamination were very similar, 50% in 1993 and 47% in 1998. In the California bays and harbors, 71% of samples had at least one chemical concentration greater than an ERM value and in Pearl Harbor 80% of samples were contaminated at equivalent levels.

The incidence and/or spatial extent of chemical contamination in the present Puget Sound study was roughly comparable with that reported for several other regions, including Biscayne Bay (FL), Southern California continental shelf, and the estuaries of Louisiana, the Florida panhandle, and the mid-Atlantic states. The percentage of samples with an SQS exceeded in the present survey (21%) was slightly lower than that reported in the SEDQUAL database (27%) for Puget Sound. Relative to results of the present study, the incidence of contamination above ERM values was lower in Tampa Bay (FL) and the spatial extent was lower in the estuaries of Mississippi. In contrast, the degree of chemical contamination (either expressed as percentages of samples or percentages of areas) was much greater in other regions. These regions included the estuaries of North Carolina, and Alabama; and the bays and harbors of Southern California, Pearl Harbor, and NY/NJ. The incidence of contamination in samples compiled in all national – scale inventories (26-60%) exceeded that in the present study (13% for ERMs, 21% for SQSs) by factors of two to four.

These comparisons suggest that chemical contamination of Puget Sound surficial sediments wasn't as widespread or as frequent as in many other regions, including those surveyed as a part of large-scale inventories. However, chemical contamination in Puget Sound exceeded that observed in several other estuarine areas.

Laboratory Tests of Toxicity

Results of the toxicity tests differed considerably as a function of the type of test and the numerical critical values used to interpret the outcomes. Only one sample was classified as highly toxic (mean percent survival <80% of controls) in the test of mortality in juvenile amphipods, the least sensitive test. In the Microtox test, microbial bioluminescence activity was less than 80% of controls in 237 of the samples; however, the mean EC50 was less than the more realistic critical value of 0.51 mg/ml in only 8 of these samples. HRGS results were greater than the critical value of 11.1 ug/g in 134 samples, indicating responses greater than in reference sediments. However, there were only 48 samples in which the HRGS assay response was greater than 37.1 ug/g. Results of urchin fertilization tests were highly significant in 32 samples of 100% pore water. Thus, if the survey had been conducted using only one toxicity test, the overall outcome of the survey would have been dictated entirely by results of the specific test that was selected.

There were 144 samples in which one or more of the laboratory tests indicated a significant result (Table 11). Therefore, there were 156 samples in which there was agreement, or concordance, in classification of the sediments as non-toxic. These 156 samples represented a large majority of the study area (73%). In four of the six possible combinations of two toxicity tests, there was complete concordance on the absence of toxicity in all 300 samples. There were no samples in which all four tests indicated outcomes that exceeded the respective critical values.

There was one sample in which the responses in both the Microtox and HRGS tests were significant (representing 0.05% of the area). Eighteen samples had significant responses in both the sea urchin and HRGS tests representing good concordance in representing 2% of the area). Six samples were highly toxic in all but the amphipod tests (<1% of the total study area).

To put the results of the toxicity tests in the Puget Sound study into perspective, they are compared to results of surveys conducted elsewhere in the U.S. using similar or the same methods. All surveys followed a stratified-random sampling design, all tested surficial sediments (upper 2-3 cm.), most used the same test taxa, and all treated the data the same way, using the same critical values. In the amphipod and sea urchin tests, sites were scored as "toxic" in calculations of the spatial extent of toxicity when outcomes were less than 80% of controls (Long et al., 1996; Long, 2000a, b). With two exceptions, the same critical value was used with Microtox results. In the Delaware Bay and Puget Sound studies, a critical value of <0.51 mg sediment/ml was used because of unusual results in the negative controls (Long et al., 1999). In all studies in which HRGS assays were performed, the same critical values (>11.1 ug/g and 37.1 ug/g) used in the Puget Sound study were applied.

Results of the amphipod survival tests in the present study are compared to those developed for other estuarine regions of the U.S. (Table 12). Results were combined together from individual surveys performed by NOAA in estuarine regions as summarized previously (Long et al., 1996; Long, 2000a, b). The methods used in other NOAA surveys were the same as those used in the Puget Sound study, using A. abdita, except in the California bays, where Rhepoxynius abronius was the test taxa. Highly significant results (survival <80% of controls) were most pervasive in the estuaries of the northeastern U.S. and several bays in southern California where highly toxic samples represented 38% and 35% of the areas, respectively. Toxicity occurred least frequently in the opposite regions of the U.S., i.e., the southeastern estuaries and Puget Sound, covering 3% and 0.04% of those regions, respectively. The cumulative average calculated by Long (2000b) on results developed through the 1997 field season (i.e., including Puget Sound data only from 1997) was 5.9% of the total area. The estuarine studies conducted as a part of the EMAP reported amphipod survival results with A. abdita for several estuarine provinces. They included the Louisianian province along the Gulf of Mexico (Summers et al., 1993; Macauley et al., 1994), the Virginian province in the northeast (Schimmel et al., 1994; Strobel et al., 1995), the Carolinian province in the southeast (Hyland et al., 2000), and offshore southern California (Bay, 1996). Results of these studies showed the spatial extent of toxicity covered 0% to 10% of these estuarine study areas and a cumulative average of about 7% for the combined total area. The one sample in which a highly significant result was recorded in the Puget Sound study represented less than 0.1% of the study area, considerably less than observed in all except one other region that was surveyed by either NOAA or EMAP.

Results of the sea urchin fertilization tests with 100% porewater concentrations in Puget Sound are compared to those of the same or equivalent tests in 21 other estuaries and bays in the U.S. studied by NOAA (Table 13). Porewater tests were not conducted in the EMAP surveys. Except in California and Puget Sound, tests were performed for fertilization success with the urchin *Arbacia punctulata*. Experiments conducted during the 1997 Puget Sound survey showed that *A. punctulata* and *S. purpuratus* were similar in sensitivity to six different toxicants (Long et al., 1999); thus, results among study areas based upon fertilization success in the two taxa should be comparable. The percentages of study areas affected in these tests ranged from 0% (Leadenwah

Creek, SC) to 98% (San Pedro Bay, CA). The embryological development test used in the San Pedro Bay and other California studies was extremely sensitive, indicating a response in many samples to the presence of ammonia. Excluding results of embryological development tests in California surveys, the range in responses was 0% to 84% (Tampa Bay, FL). The 32 Puget Sound stations that were classified as highly toxic in the urchin fertilization tests represented about 4% of the total survey area, the fourth lowest percentage among the 22 areas. The combined, cumulative average for spatial extent of toxicity in these tests for surveys conducted through 1995 was about 43%. As data were acquired and added to the database from surveys conducted in 1996 and 1997, the cumulative average decreased to 39% and 25%, respectively. The estimate for Puget Sound (4%) was considerably lower than all three of these averages.

Results of Microtox tests of organic solvent extracts ranged from 0.1% of area affected (Tampa Bay, FL) to 100% of area affected (two other Florida bays) (Table 14). Microtox tests were not performed in EMAP surveys or in NOAA surveys in California. Thus, the largest areas affected and percentages of totals were in bays and estuaries of the southeast and northeast. The lowest percentages of areas affected were recorded in the studies of Puget Sound (0.4%) and Tampa Bay (0.1%). The outcome for Puget Sound, using the standard critical value of <80% control response (1629 km², 69%, Tables 4, 5) would have ranked Puget Sound considerably higher. However, this outcome was biased by the unusual response in the Redfish Bay control in this test.

HRGS assays have been performed with 1110 sediment samples from14 marine and estuarine survey areas by NOAA (Table 15). Mean HRGS response in these surveys ranged from 5.1 ug/g in the 2002 survey of Chesapeake Bay to 57 ug/g in Delaware Bay, comparable to the results in the three years of the Puget Sound survey (range: 11.1 to 52.8 ug/g). The high standard deviation and upper confidence interval in the southern Puget Sound data probably were attributable to the elevated responses in samples from the Thea Foss waterway at Tacoma. Otherwise, the distribution of results in Puget Sound was not remarkably different from those calculated for other areas. Responses greater than 37.1 ug/g have been recorded in 132 samples, 48 of them in the Puget Sound sediments. One-half of the 74 samples in which responses were greater than 60 ug/g came from the Puget Sound surveys. The percentages of survey areas affected by results >37.1 ug/g ranged from 0% to 29% and averaged about 5% among all areas. In Puget Sound, the 48 samples with results >37.1 represented about 2.8% of the survey area, ranging from 0.04% to 5.0% among the three years. These comparisons suggest that the responses in these tests in the Puget Sound surveys were somewhat higher than observed in some other survey areas, but not the highest.

Forming a Weight of Evidence with the Triad of Analyses

Among the 300 samples tested, there were 175 samples in which there was complete concordance in results among the three elements of the triad. That is, there was either at least one chemical concentration that exceeded an ERM or SQS value, at least one significant outcome in the toxicity tests, and the benthos was judged to be degraded (37 samples) or, in contrast, none of the three was observed in 138 samples. It was hypothesized that in the former 37 samples that pollution-induced degradation to biological resources (i.e., infaunal benthos) had occurred in these sediments as outlined by Chapman (1996). In contrast, there was no evidence

of pollution-induced degradation in the latter 138 samples. Together, these 175 samples represented about 69% of the total survey area.

There was concordance between combinations of two of the triad elements in another 40 samples, resulting in a total of 215 samples in which concordance was reasonably good to excellent (i.e., either in 2 out of 3 or all elements of the triad). Together these 215 samples (72% of the 300) represented about 74% of the total survey area. Non-concordance was represented in the 85 samples classified in the Intermediate/High Quality category, representing about 27% of the survey area. These samples could be viewed as representing false negative outcomes. No toxicity or no benthic impacts were observed when predicted by relatively high chemistry (13 samples), perhaps because the chemicals were not biologically available for uptake. No contamination or benthic impacts were observed in 68 samples in which there was a significant response in one or more toxicity tests, possibly because the tests were more sensitive than the benthos to un-measured substances or to chemicals not accounted for with numerical guidelines or criteria. The infauna appeared to be degraded in 4 uncontaminated and non-toxic sediment samples, possibly responding to un-measured natural factors that did not cause toxicity.

Estuarine sediment quality in the studies conducted under the auspices of the EMAP often computed the spatial extent of degraded conditions in estuaries and rivers categorized according to their size (Hyland et al., 2000; Paul et al., 1992). In contrast, similar summations were done in the Puget Sound study according to geographic location (e.g., northern, southern, etc.) and strata type (e.g., rural bay, harbor, etc.). As expected, these analyses indicated that the quality of sediments was degraded most frequently in urban bays and industrial harbors, particularly nearest the metropolitan centers of Everett, Seattle, Tacoma, and Bremerton. Toxicant-induced biological effects have been recorded in these urbanized bays and harbors of Puget Sound for many years. Adverse effects have included acute and sublethal toxicity in laboratory tests of sediments and sea surface microlayers, reduced epifaunal colonization rates, and histopathological disorders in demersal fishes (Long, 1982; Long et al., 1985; Malins et al., 1984). Sediment toxicity tests conducted during the 1980's indicated effects in tests of mortality among amphipods, respiration rates in fish, metabolic activity in bacteria, and mutagenicity in fish cells (Long et al., 1985). Reduced abundance of resident amphipods in the benthos of Commencement Bay was observed in samples that were most contaminated and most toxic in amphipod survival tests (Swartz et al., 1982). Our analyses presented in this report of the data collected during the PSAMP/NOAA survey indicated that degraded sediments were most frequently found in the same urban bays and industrial harbors of Puget Sound. Therefore, results of the PSAMP/NOAA survey confirmed that degraded sediment quality previously reported was still apparent in the same areas of Puget Sound. Significantly, the results of this survey now provide a quantification of the magnitude or spatial extent of these problem areas.

This page is purposely blank for duplex printing

Conclusions

The weight of evidence from the triad of analyses showed that sediments in one percent of the Puget Sound study area, equivalent to 23 km², were degraded by the presence of chemical toxicants. Degraded conditions were most frequently observed in the urban bays and industrialized harbors of the Whidbey Basin (Everett) and the Central Sound region, which included embayments adjacent to Seattle, Tacoma, and Bremerton. Sediments with intermediate quality were distributed over 724 km², or about 31 percent of the area. These samples were classified as intermediate in quality because a mixture of results was recorded; that is, the agreement in results observed in the degraded and high quality sediments was not recorded. The majority of the area studied (about 68%, or 1616 km²) was determined to have high quality sediments as indicated by low chemical concentrations, absence of toxicity, and presence of abundant and diverse infaunal communities. Much of the area classified as deep passages, deep basins, and rural bays had the highest quality sediments.

Sediments from 175 of the 300 sampling stations indicated concordance among the elements of the triad in classification of quality; that is, indicative of either high quality or degraded conditions. There were only four samples in which the degraded condition of the benthos could not be explained with the results of matching chemistry or toxicity analyses of the samples.

There were 85 samples (representing 27% of the area) in which only one of the elements of the triad indicated degraded conditions. In contrast, there were only 40 samples (representing 4% of the area) in which two of the elements indicated degraded conditions, indicative of the general lack of concordance among the elements of the triad in these samples. Those in which a significant response was recorded in one or more of four laboratory tests were much greater (642 km² or 27% of the total area) than the area classified as chemically contaminated (144 km² or 6% of the total area, excluding data for nickel and three organic compounds). It should be noted, however, that the outcome of this comparison was a function of the statistical criteria used to interpret the toxicity tests and chemical analyses. The results could have differed considerably if other criteria had been applied to the data.

Significant responses above background levels (>11.1 ug B[aP/g) were most widespread in a test of the presence of certain organic compounds in the sediments, affecting 586 km² or 25% of the total area. However, highly significant responses (>37.1 ug B[a]P/g) in this test affected only 3% of the survey area. In the least sensitive test, highly significant mortality in benthic amphipods was recorded in only one sample, representing 0.04% of the area.

The benthic infaunal communities collected in the survey ranged widely in the numbers of species, numbers of individuals, and in several calculated indices of diversity. The composition of the benthos differed considerably among sampling locations, reflecting the diversity of habitats in Puget Sound. Some taxonomic groups increased remarkably in numbers of species and abundance with increasing chemical contamination and toxicity, whereas others declined along the same gradients. There were two samples in which no benthic organisms were found.

The sediments sampled during this study were contaminated above guideline or criteria values with mixtures of trace metals, PAHs, chlorinated substances, and miscellaneous chemicals. High

concentrations of benzoic acid, 4-methylphenol, phenol and other miscellaneous substances were most widespread with concentrations exceeding state SQS values in 174 samples, representing about 53% of the survey area. Otherwise, it was apparent from these data that the contamination of surficial Puget Sound sediments was not dominated by any single class of substances. The study design did not include any attempts to determine which chemicals or other factors caused or significantly contributed to toxicity or benthic impacts. Laboratory experiments and confirmatory bioassays would be necessary to assign causality.

Although the weight of evidence suggests that the large majority of the Puget Sound study area had relatively high quality surficial sediments and the area classified as degraded was relatively small (1% of the area), there was a sizeable area (31%) classified as intermediate in quality. Future attention and surveillance should focus upon these areas with intermediate quality to ensure that conditions there improve and do not deteriorate further.

References

- APHA. 1998. P450 Reporter Gene Response to Dioxin-like Organic Compounds. Method 8070, pp. 8-36–37 In: 20th Edition of Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, D.C.
- ASTM. 1993. Standard guide for conducting solid phase, 10-day, static sediment toxicity tests with marine and estuarine infaunal amphipods. ASTM E 1367-92. American Society for Testing Materials. Philadelphia, PA. 24 pp.
- -----. ASTM. 1999. Standard Guide E 1853M-98 for Measuring the Presence of Planar Organic Compounds which Induce CYP1A, Reporter Gene Test Systems, In: Vol. 11.05: Biological Effects; Environmental Fate; Biotechnology; Pesticides, Section 11: Water and Environmental Technology, 1999 Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA.
- Anderson, J., S. S. Rossi, R. H. Tukey, T. Vu, L. C. Quattrochi. 1995. A Biomarker, P450 HRGS, for assessing the induction potential of environmental samples. Environmental Toxicology and Chemistry 14(7):1159-1169.
- -----, J., K. Bothner, T. Vu, R. H. Tukey. 1996. Using a biomarker (P450 HRGS) test method on environmental samples. In: Gary K. Ostrander (ed.) Techniques in Aquatic Toxicology, Lewis Publishers, New York. pp 277-285.
- Anderson, J. W., J. M. Jones, J. Hameedi, E. Long, and R. Tukey. 1999a. Comparative analysis of sediment extracts from NOAA's Bioeffects studies by the biomarker, P450 RGS. Mar. Environ. Res. 48:407-425.
- Anderson, J. W., E. Zeng, and J. M. Jones. 1999b. Correlation between the response of a human cell line (P450RGS) and the distribution of sediment PAHs and PCBs on the Palos Verdes Shelf, California. Environmental Toxicology and Chemistry 18(7):1506-1510.
- Anderson, J. W., J. M. Jones, S. Steinert, B. Sanders, J. Means, D. McMillin, T. Vu, and R. Tukey. 1999c. Correlation of CYP1A1 induction, as measured by the P450 RGS biomarker assay, with high molecular weight PAHs in mussels deployed at various sites in San Diego Bay in 1993 and 1995. Mar. Environ. Res. 48:389-405.
- Bay, S. M. 1996. Sediment toxicity on the mainland shelf of the Southern California Bight in 1994. Pages 128-137 in SCCWRP Annual Report 1994-1995. Southern California Coastal Water Research Project, Westminster, CA.
- Becker, D. S., T. C. Ginn, M. L. Landolt, and D. B. Powell. 1987. Hepatic lesions in English sole (*Parophrys vetulus*) from Commencement Bay, Washington (USA). Marine Environmental Research 23: 153-173.

Burton, G. A. 1992. Sediment Toxicity Assessment, Lewis Publishers, Chelsea, MI, 457 pp.

- Cardwell, R. D., S. Olsen, M. I. Carr, and E. W. Sanborn. 1979. Causes of oyster larvae mortality in South Puget Sound. NOAA Technical Memorandum ERL MESA-39. National Oceanic and Atmospheric Administration. Boulder, CO.
- Carr, R. S. 1998. Sediment porewater testing. In: Standard methods for the examination of water and wastewater, section 8080, 20th edition, Clesceri, L. S., A. E. Greenberg, and A. D. Eaton (eds.), American Public Health Association, Washington, D.C.
- -----, and D. C. Chapman. 1995. Comparison of methods for conducting marine and estuarine sediment porewater toxicity tests Extraction, storage, and handling techniques. Arch. Environ. Contam. Toxicol. 28:69-77.
- -----, and D. C. Chapman, C. L. Howard, and J. Biedenbach. 1996a. Sediment Quality Triad assessment survey in the Galveston Bay Texas system. Ecotoxicology 5:341-361.
- -----, E. R. Long, D. C. Chapman, G. Thursby, J. M. Biedenbach, H. Windom, G. Sloane, and D. A. Wolfe. 1996b. Toxicity assessment studies of contaminated sediments in Tampa Bay, Florida. Environmental Toxicology and Chemistry 15:1218-1231.
- Chapman, P. M. 1996. Presentation and interpretation of Sediment Quality Triad data. Ecotoxicology 5:327-339.
- -----, A. Vigers, M. A. Farrell, R. N. Dexter, E. A. Quinlan, R.M. Kocan, and M. Landolt. 1982. Survey of biological effects of toxicants upon Puget Sound biota. I. Broad-scale toxicity survey. NOAA Technical Memorandum OMPA-25. National Oceanic and Atmospheric Administration. Boulder, CO.
- -----, D. R. Munday, J. Morgan, R. Fink, R. M. Kocan, M. L. Landolt, and R. N. Dexter. 1983. Survey of biological effects of toxicants upon Puget Sound biota. II. Tests of reproductive impairment. NOAA Technical Report NOS 102 OMS 1. National Oceanic and Atmospheric Administration. Rockville, MD.
- -----, R. N. Dexter, J. Morgan, R. Fink, D. Mitchell, R. M. Kocan, and M. L. Landolt. 1984a. Survey of biological effects of toxicants upon Puget Sound biota. III. Tests in Everett Harbor, Samish and Bellingham Bays. NOAA Technical Report NOS OMS 2. National Oceanic and Atmospheric Administration. Rockville, MD.
- -----, R. N. Dexter, R. D. Kathman, and G. A. Erickson. 1984b. Survey of biological effects of toxicants upon Puget Sound biota. IV. Interrelationships of infauna, sediment bioassay and sediment chemistry data. NOAA Technical Report NOS OMA 9. National Oceanic and Atmospheric Administration. Rockville, MD.
- Crecelius, E. A., D. L. Woodruff, M.S. Myers. 1989. Reconnaissance survey of environmental conditions in 13 Puget Sound location, 1988. EPA/910/9-89/005. Puget Sound Estuary Program, U.S. EPA Region 10, Seattle, WA.

- Dutch, M., E. Long, W. Kammin, and S. Redman. 1998. Puget Sound Ambient Monitoring Program Marine Sediment Monitoring Component – Final Quality Assurance Project and Implementation Plan. Measures of bioeffects associated with toxicants in Puget Sound: Survey of sediment contamination, toxicity, and benthic macroinfaunal community structure. Washington State Department of Ecology, Olympia, WA. 31 pp.
- Fairey R., Bretz C., Lamerdin S., Hunt J., Anderson B., Tudor S., Wilson C.J., LaCaro F., Stephenson M., Puckett M., Long E.R. 1996. Chemistry, toxicity, and benthic community conditions in sediments of the San Diego Bay Region. Final Report by State Water Resources Control Board, National Oceanic and Atmospheric Administration, California Department of Fish and Game- Marine Pollution Studies Laboratory, Moss Landing Marine Laboratories. Calif. State Water Resources Control Board, Sacramento, CA.
- Hansen, D. J., W. J. Berry, J. D. Mahony, W. S. Boothman, D. M. DiToro, D. L. Robson, G. T. Ankley, D. Ma, Q. Yan, and C. E. Pesch. 1996. Predicting the toxicity of metalcontaminated field sediments using interstitial concentrations of metals and acid-volatile sulfide normalizations. Environmental Toxicology and Chemistry 15(12): 2080-2094.
- Hardy, J., S. Kiesser, L. Antrim, A. Stubin, R. Kocan, and J. Strand. 1987a. The sea-surface microlayer of Puget Sound: Part I. Toxic effects on fish eggs and larvae. Marine Environmental Research 23: 227-249.
- -----, J. T., E. A. Crecelius, L. D. Antrim, V. L. Broadhurst, C. W. Apts, J. M. Gurtisen, and T. J. Fortman. 1987b. The sea-surface microlayer of Puget Sound: Part II. Concentrations of contaminants and relation to toxicity. Marine Environmental Research 23: 251-271.
- Heimbuch, D., H. Wilson, J. Seibel, and S. Weisberg. 1995. R-EMAP data analysis approach for estimating the proportion of area that is subnominal. Prepared for U.S. Environmental Protection Agency. Research Triangle Park. NC. 22 pp.
- Hyland, J. L., W. L. Balthis, C. T. Hackney, and M. Posey. 2000. Sediment quality in North Carolina estuaries: An integrative assessment of sediment contamination, toxicity, and condition of benthic infauna. Jo. Aquatic Ecosystem Stress & Recovery 8: 107-124.
- Johnson, B. T. and Long, E. R. 1998. Rapid toxicity assessment of sediments from estuarine ecosystems: A new tandem in vitro testing approach. Environmental Toxicology and Chemistry 17, 1099-1106.
- Jones, J. M. and J. W. Anderson. 1999. Relative potencies of PAHs and PCBs based on the response of human cells. Environ. Toxicol. Pharmacol. 7:19-26.
- Kisker, Dale S. 1986. Ecological Baseline and Monitoring Project, Final Report. Part 3: Distribution and Abundance of Benthic Macrofauna Adjacent to a Sulfite Pulp Mill Discharge Pipeline in Port Gardner, Washington - 1974 through 1976. University of Washington Department of Oceanography, Seattle, WA. 92 pp.

- Lauenstein, G. G. and A. Y. Cantillo, editors. 1993. Sampling and analytical methods of the National Status and Trends Program National Benthic Surveillance and Mussel Watch projects. 1984-1992. NOAA Technical Memorandum NOS ORCA 71. National Oceanic and Atmospheric Administration. Silver Spring, MD.
- Llansó, R. J., S. Aasen, K. Welch. 1998a. Marine Sediment Monitoring Program I. Chemistry and Toxicity Testing 1989-1995. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA.
- -----, S. Aasen, K. Welch. 1998b. Marine Sediment Monitoring Program II. Distribution and Structure of Benthic Communities in Puget Sound 1989-1995. Washington State Department of Ecology, Environmental Investigations and Laboratory Services Program, Olympia, WA.
- Long, E. R. 1982. An assessment of marine pollution in Puget Sound. Mar. Pollu. Bull. 13(11).
- -----. 1987. Biological indicators of pollution in Puget Sound. Pp 29-48, *In:* Puget Sound: Issue, resources, status, and management. NOAA Estuary-of-the-Month Seminar Series No. 8. National Oceanic and Atmospheric Administration. Washington, DC.
- -----. 2000a. Spatial extent of sediment toxicity in U. S. estuaries and marine bays". Environmental Monitoring and Assessment 64: 391-407.
- -----. 2000b. Degraded sediment quality in U.S. estuaries: A review of magnitude and ecological implications. Ecological Applications 10(2): 338-349.
- ----- and P. M. Chapman. 1985a. A sediment quality triad: Measures of sediment contamination, toxicity and infaunal community composition in Puget Sound. Mar. Pollu. Bull. 16(10): 405-415.
- ----- and D. D. MacDonald. 1998b. Recommended uses of empirically-derived, sediment quality guidelines for marine and estuarine ecosystems. Journal of Human and Ecological Risk Assessment 4(5): 1019-1039.
- ----- and K. A. Dzinbal. 1999a. Toxicity of sediments in Northern Puget Sound: A national perspective. Pg. 302-311. Proceedings, Puget Sound Research '98 Conference. Seattle, WA. Puget Sound Water Quality Action Team. Olympia, WA.
- -----, P. M. Chapman, R. N. Dexter, R. M. Kocan. 1985. An overview of biological effects testing in Puget Sound, Washington: Methods, results, and implications. In: Aquatic Toxicology and Hazard Assessment: Seventh Symposium. Special Technical Publication 854, pp 344-363. ASTM, Philadelphia, PA.
- -----, M. F. Buchman, S. M. Bay, R. J. Breteler, R. S. Carr, P. M. Chapman, J. E. Hose, A. L. Lissner, J. Scott, and D. A. Wolfe. 1990. A comparative evaluation of five toxicity tests with sediments from San Francisco Bay and Tomales Bay, California. Environmental Toxicology and Chemistry 9(9).

- -----, Donald D. Mac Donald, Sherri L. Smith, Fred D. Calder. 1995. Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environmental Management 19(1):81-97.
- -----, A. Robertson, D. A. Wolfe, J. Hameedi, and G. M. Sloane. 1996. Estimates of the spatial extent of sediment toxicity in major U.S. estuaries. Environmental Science and Technology 30: 3585-3592.
- -----, L. J. Field, and D. D. MacDonald. 1998. Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environmental Toxicology and Chemistry 17(4): 714-727.
- -----, J. Hameedi, A. Robertson, M. Dutch, S. Aasen, C. Ricci, K. Welch, W. Kammin, R. S. Carr, T. Johnson, J. Biedenbach, K. J. Scott, C. Mueller, and J. Anderson. 1999b. Sediment Quality in Puget Sound. Year 1 Report - northern Puget Sound. NOAA Technical Memorandum NOS NCCOS CCMA No. 139 and Washington State Department of Ecology Publication No. 99-347. Washington State Department of Ecology, Olympia, WA. <u>http://www.ecy.wa.gov/biblio/99347.html</u>.
- -----, C. B. Hong, and C. G. Severn. 1999c. Relationships between acute sediment toxicity in laboratory tests and the abundance and diversity of benthic infauna in marine sediments: A review. Environmental Toxicology & Chemistry 20(1): 46-60.
- -----, G. M. Sloane, G. I. Scott, B. Thompson, R. S. Carr, J. Biedenbach, T. L. Wade, B. J. Presley, K. J. Scott, C. Mueller, G. Brecken-Fols, B. Albrecht, J. W. Anderson, and G. T. Chandler. 1999d. Magnitude and extent of sediment contamination and toxicity in Biscayne Bay and vicinity. NOAA Technical Memorandum NOS NCCOS CCMA 141. National Oceanic and Atmospheric Administration. Silver Spring, MD.
- -----, J. Hameedi, A. Robertson, M. Dutch, S. Aasen, C. Ricci, K. Welch, W. Kammin, R. S. Carr, T. Johnson, J. Biedenbach, K. J. Scott, C. Mueller, and J. Anderson. 2000a. Sediment Quality in Puget Sound. Year 2 Report - central Puget Sound. NOAA Technical Memorandum NOS NCCOS CCMA No. 147 and Washington State Department of Ecology Publication No. 00-03-055. Washington State Department of Ecology, Olympia, WA. <u>http://www.ecy.wa.gov/biblio/0003055.html</u>.
- -----, D. D. MacDonald, C. G. Severn, and C. B. Hong. 2000b. Classifying the probabilities of acute toxicity in marine sediments with empirically-derived sediment quality guidelines". Environmental Toxicology & Chemistry 19(10): 2598-2601.
- -----, C. B. Hong, and C. G. Severn. 2001. Relationships between acute sediment toxicity in laboratory tests and the abundance and diversity of benthic infauna in marine sediments: A review. Environmental Toxicology & Chemistry 20(1): 46-60.

- -----, J. Hameedi, A. Robertson, M. Dutch, S. Aasen, C. Ricci, K. Welch, W. Kammin, R. S. Carr, T. Johnson, J. Biedenbach, K. J. Scott, C. Mueller, and J. Anderson. 2002. Sediment Quality in Puget Sound. Year 3 Report - southern Puget Sound. NOAA Technical Memorandum NOS NCCOS CCMA No. 153 and Washington State Department of Ecology Publication No. 02-03-033. Washington State Department of Ecology, Olympia, WA. <u>http://www.ecy.wa.gov/biblio/0203033.html</u>.
- Macauley, J. M., J. K. Summers, V. D. Engle, P. T. Heitmuller, G. T. Brooks, M. Babikow, and A. M. Adams. Statistical summery: EMAP-Estuaries, Louisianian Province – 1992. EPA/620/R-94-002. U.S. EPA, Office of Research and Development, Gulf Breeze, FL.
- MacDonald, D. D., R. S. Carr, F. D. Calder, E. R. Long, and C. G. Ingersoll. 1996. Development and evaluation of sediment quality guidelines for Florida coastal waters. Ecotoxicology 5: 253-278.
- Malins, Donald C., Bruce B. McCain, D. W. Brown, A. K. Sparks, H. 0. Hodgins, Sin-Lam Chan. 1982. Chemical Contaminants and Abnormalities in Fish and Invertebrates from Puget Sound. National Oceanic and Atmospheric Administration, Boulder, CO. 168 pp.
- -----, Bruce B. McCain, D. W. Brown, Sin-Lam Chan, Mark S. Myers, John T. Landahl, Patty G. Prohaska, Andrew J. Friedman, Linda D. Rhodes, Douglas G. Burrows, William D. Gronlund, Harold 0. Hodgins. 1984. Chemical pollutants in sediments and diseases of bottom-dwelling fish in Puget Sound, Washington. Environ. Sci. Technol. 18:705-713.
- Manchester Environmental Laboratory. 1997. Standard Operating Procedure for the Analysis of Butyltins. Washington State Department of Ecology, Manchester, WA.
- National Research Council. 1989. Contaminated Marine Sediments- Assessment and Remediation. Marine Board, National Research Council. National Academy of Science Press. Washington, D.C.
- Paul, J. F., K. J. Scott, A. F. Holland, S. B. Weisberg, J. K. Summers, and A. Robertson. 1992. The estuarine component of the U.S. EPA.'s environmental monitoring and assessment program. Chemistry and Ecology 7: 93-116.
- Power, E. A. and P M. Chapman. 1992. Assessing sediment quality. Pages 1-18 In: Burton, G. A., Jr., editor. Sediment Toxicity Assessment. Lewis Publishers, Inc. Boca Raton, FL.
- PTI Environmental Services. 1988. Elliott Bay Action Program: Analysis of toxic problem areas. EPA/910/9-88/213. Puget Sound Estuary Program, U.S. EPA Region 10, Seattle, WA.
- -----. 1989. Everett Harbor Action Program: 1989 Action Plan. EPA-68-D8-0085, EPA/910/ 0-006. Puget Sound Estuary Program, U.S. EPA Region 10, Seattle, WA.
- -----. 1990. Puget Sound microlayer workshop: summary report. EPA/910/9-90/008. Puget Sound Estuary Program, U.S. EPA Region 10, Seattle, WA.

- Puget Sound Estuary Program (PSEP). 1986. Recommended Protocols for Measuring Conventional Sediment Variables in Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA by Tetra Tech, Inc., Bellevue, WA. 25 pp.
- -----. 1987. Recommended Protocols for Sampling and Analyzing Subtidal Benthic Macroinvertebrate Assemblages in Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Office of Puget Sound, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA *by* Tetra Tech, Inc., Bellevue, WA. 32 pp.
- -----. 1995. Recommended Guidelines for Conducting Laboratory Bioassays on Puget Sound Sediments. Prepared for U.S. Environmental Protection Agency Region 10, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA *by* King County Environmental Lab, Seattle, WA. 30 pp. + appendices.
- -----. 1996a. Recommended Guidelines for Sampling Marine Sediment, Water Column, and Tissue in Puget Sound. Prepared for U.S. Environmental Protection Agency Region 10, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA *by* King County Environmental Lab, Seattle, WA. 51 pp.
- -----. 1996b. Recommended Guidelines for Measuring Metals in Puget Sound Marine Water, Sediment and Tissue Samples. Prepared for U.S. Environmental Protection Agency Region 10, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA *by* King County Environmental Lab, Seattle, WA. 43 pp + appendices.
- -----. 1996c. Recommended Guidelines for Measuring Organic Compounds in Puget Sound Water, Sediment and Tissue Samples. Prepared for U.S. Environmental Protection Agency Region 10, Seattle, WA and Puget Sound Water Quality Authority, Olympia, WA *by* King County Environmental Lab, Seattle, WA. 30 pp + appendices.
- Puget Sound Water Quality Action Team. 2002. 2002 Puget Sound Update: Eight Report of the Puget Sound Ambient Monitoring Program. Puget Sound Water Quality Action Team. Olympia, Washington. 144 pp.
- SAS Institute, Inc. 1989. SAS/LAB Software: User's Guide, Version 6, First Edition. Cary, NC: SAS Institute, Inc. 291 pp.
- -----. 1992. SAS/STAT User's Guide, Version 6, Fourth Edition, vol. 2. Cary, NC: SAS Institute, Inc. 846 pp.
- Schiewe, M. H., E. G. Hawk, D. I. Actor, and M. M. Krahn. 1985. Use of a bacterial bioluminescence assay to assess toxicity of contaminated marine sediments. Canadian Journal of Fisheries and Aquatic Science 42: 1244-1248.
- Schimmel, S. C., Melzian, B. D., Campbell, D. E., Strobel, C. J., Benyi, S. J., Rosen, J. S., and Buffum H. W. 1994. *Statistical Summary. EMAP-Estuaries. Virginian Province -1991.* EPA 620/R-94/005. U.S. Environmental Protection Agency. Washington, D.C. 77 pp.

- Schoener, A. 1983. Colonization rates and processes as an index of pollution severity. NOAA Technical Memorandum OMPA 27. National Oceanic and Atmospheric Administration. Rockville, MD.
- Striplin Environmental Associates, Inc. and Roy F. Weston, Inc. 1999. Puget Sound reference value project. Prepared for: Washington State Department of Ecology, Olympia, WA.
- Strobel, C. J., H. W. Buffum, S. J. Benyi, E. A. Petrocelli, D. R. Reifsteck, and D. J. Keith. 1995. Statistical Summary. EMAP-Estuaries. Virginian Province - 1990 to 1993. U.S. EPA/620/R-94/-26. U.S. Environmental Protection Agency. Narragansett, RI.
- Summers, J. K., J. M. Macauley, P T. Heitmuller, V.D. Engle, A.M. Adams, and G. T. Brooks.
 1993. Statistical summary: EMAP-Estuaries Louisianian Province 1991. EPA/620/ R-93-007. U.S. EPA, Office of Research and Development, Gulf Breeze, FL.
- Swartz, R. C., W. A. DeBen, K. A. Sercu, and J. O. Lamberson. 1982. Sediment toxicity and the distribution of amphipods in Commencement Bay, Washington, USA. *Marine Pollution Bulletin* 13: 359-364.
- Tetra-Tech, Inc. 1985. Commencement Bay nearshore/tideflats remedial investigation. Final Report. U.S. EPA 910/9-85-134b. Prepared for U.S EPA Region 10 and Washington State Department of Ecology.
- -----. 1988. Sinclair and Dyes Inlets Action Program; initial data summaries and problem identification. EPA/910/9-88/244. Puget Sound Estuary Program, U.S. EPA Region 10, Seattle, WA.
- Thursby et al. 1997. Revised approach to toxicity test acceptability criteria using a statistical performance assessment. Environmental Toxicology and Chemistry, 16(6): 1322-1329.
- Turgeon, D. D., J. Hameedi, M. R. Harmon, E. R. Long, K. D. McMahon, and H. H. White. 1998. Sediment toxicity in U.S. coastal waters. Special Report. National Ocean Service, National Oceanic and Atmospheric Administration. Silver Spring, MD.
- U.S. EPA. 1997. The incidence and severity of sediment contamination in surface waters of the United States. Vol. 1. National sediment quality survey. EPA 823-R-97-006. U.S. Environmental Protection Agency. Washington, D.C.
- Van Dolah, R. F, J. L. Hyland, A. F. Holland, J. S. Rosen, and T. R. Snoots. 1999. A benthic index of biological integrity for assessing habitat quality in estuaries of the southeastern United States. Marine Environmental Research 48: 1-15.
- Washington Dept. of Ecology. 1995. Sediment Management Standards. Chapter 173-204, WAC. Publication No. 96-252. Washington State Department of Ecology, Olympia, WA.

Figures and Tables

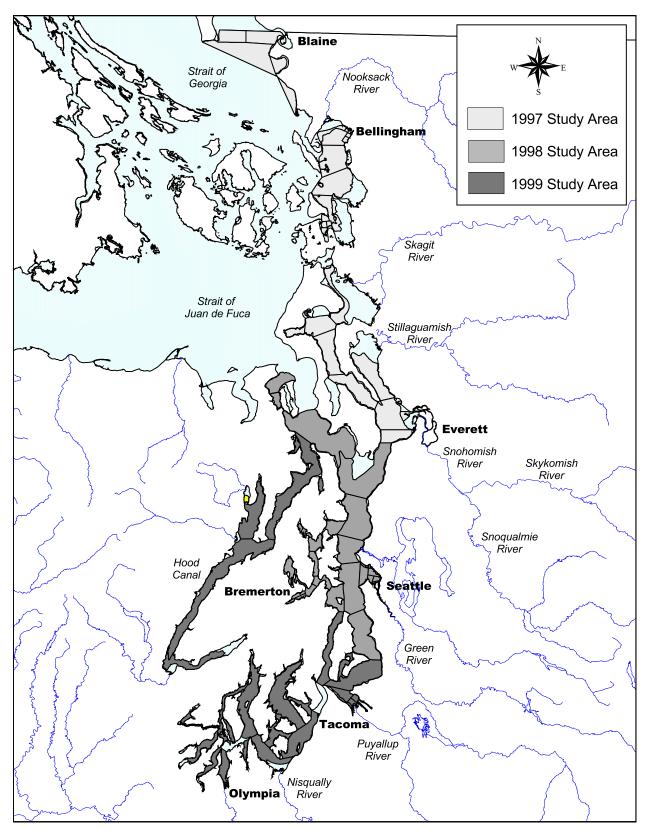


Figure 1. Map of the Puget Sound study area for the PSAMP/NOAA bioeffects survey. The areas sampled during 1997-1999 are outlined.

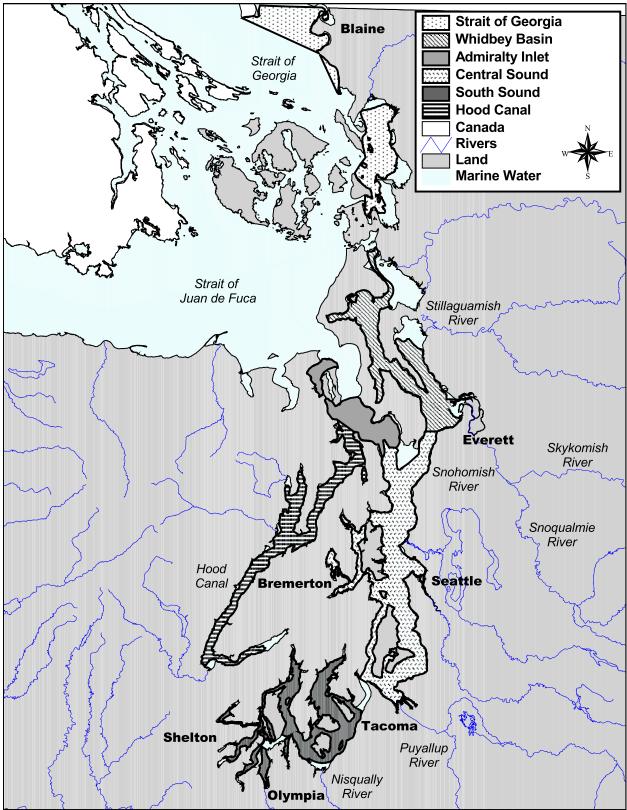


Figure 2. Map of the six PSAMP sediment monitoring regions.

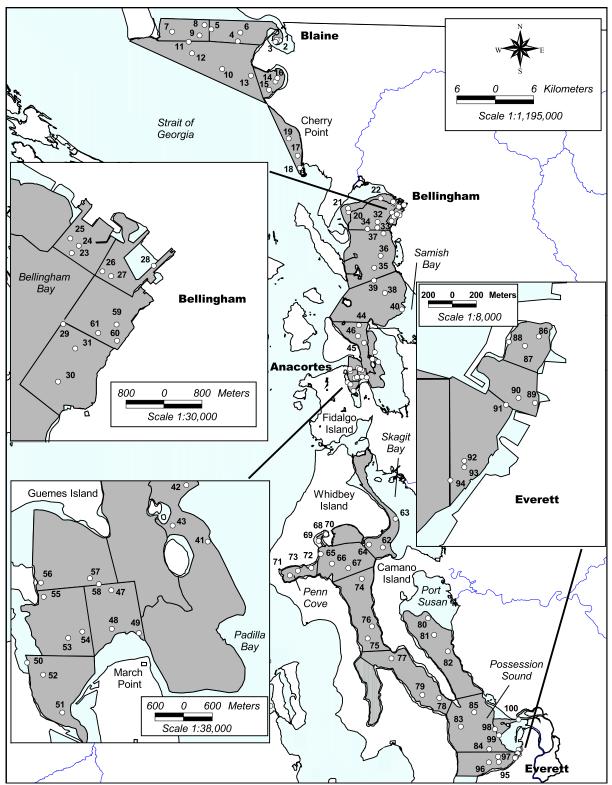


Figure 3. Strait of Georgia and Whidbey Basin sampling stations for the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett. Stations are identified by sample numbers.

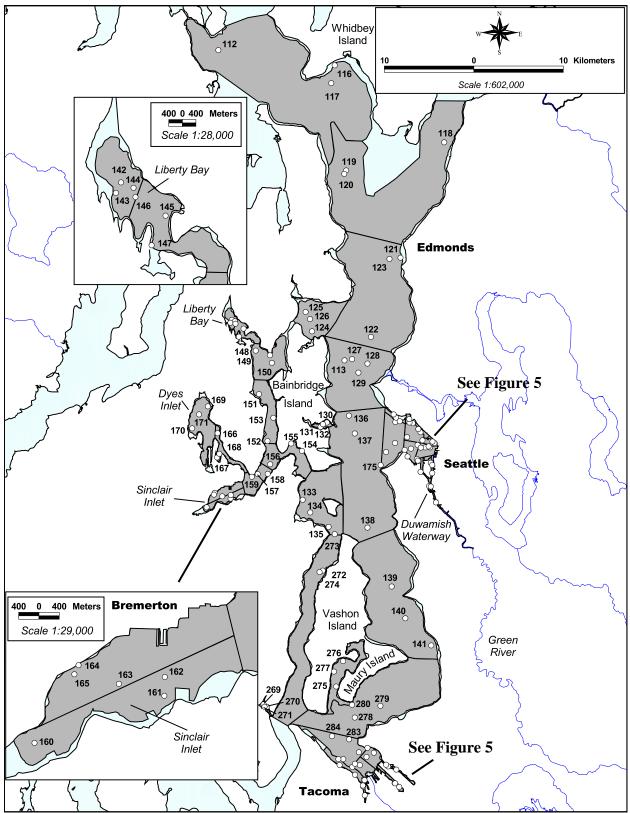


Figure 4. Central Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Commencement Bay. Stations are identified by sample numbers.

Figure 5. Central Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay. Stations are identified by sample numbers.

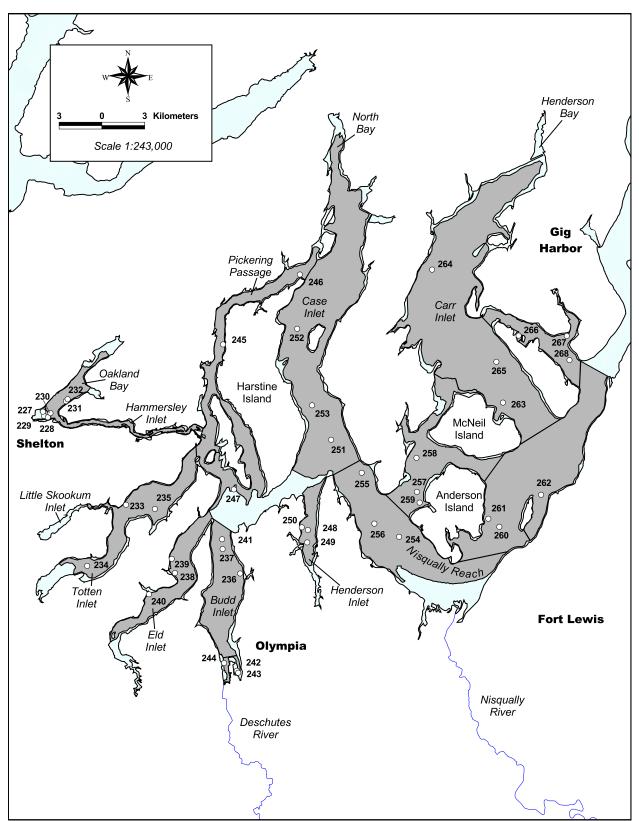


Figure 6. South Puget Sound sampling stations for the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor Stations are identified by sample numbers.

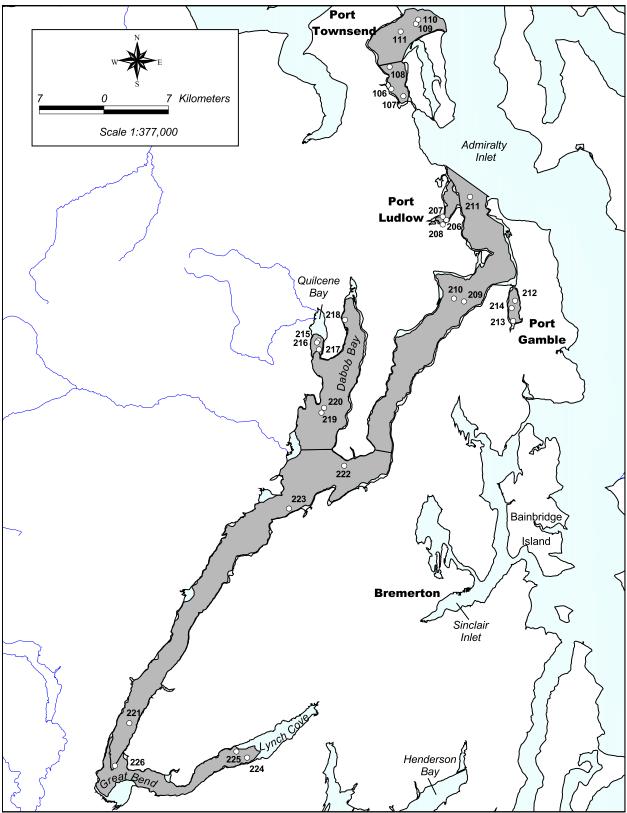


Figure 7. Hood Canal and Port Townsend sampling stations for the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove. Stations are identified by sample numbers.

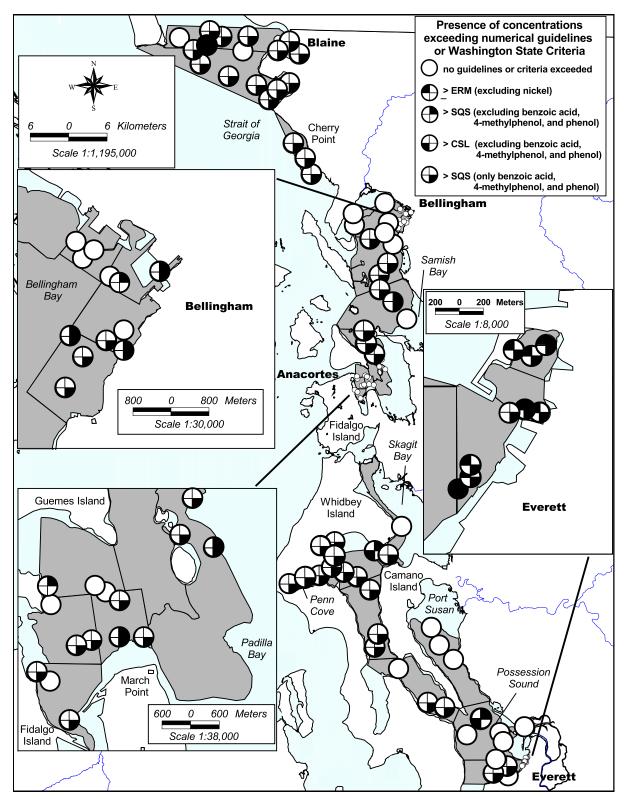


Figure 8. Summary of spatial patterns of chemical contamination for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Possession Sound.

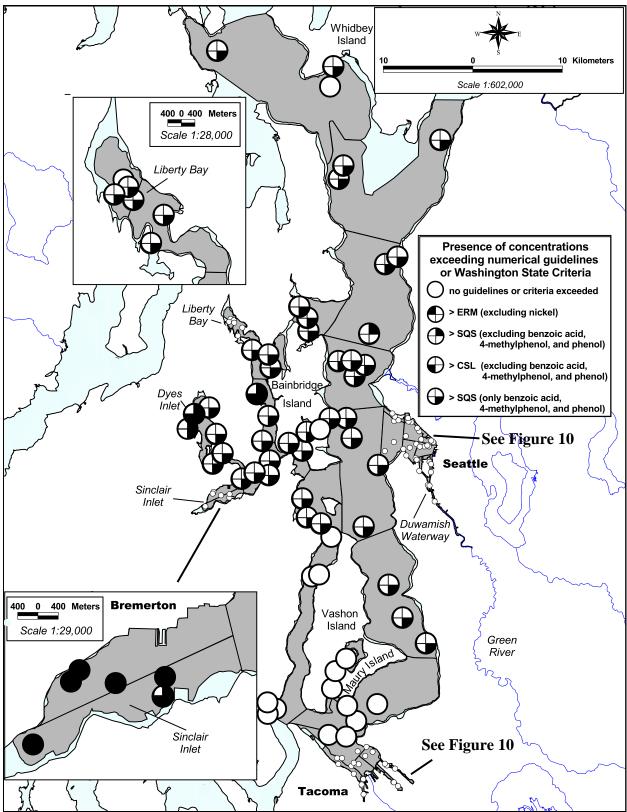


Figure 9. Summary of spatial patterns of chemical contamination for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Possession Sound to Commencement Bay.

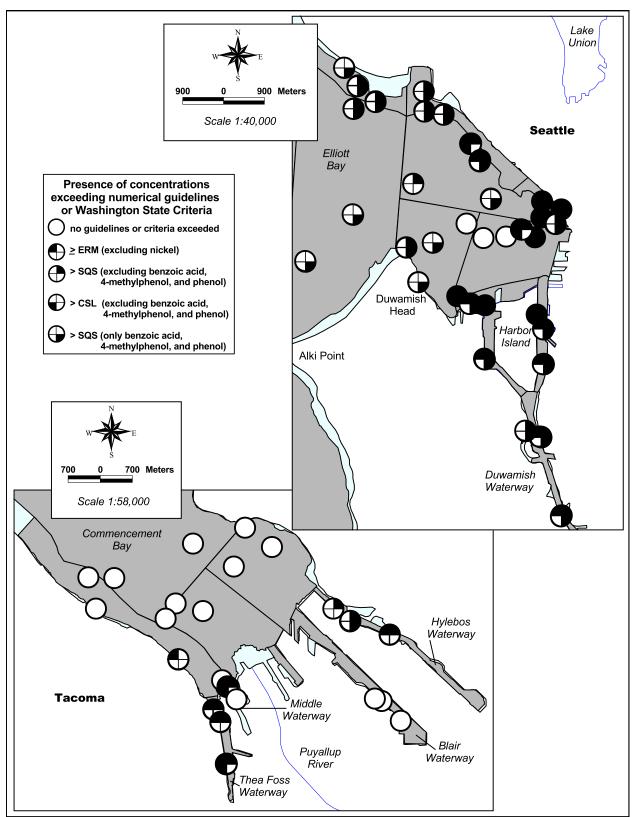


Figure 10. Summary of spatial patterns of chemical contamination for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay.

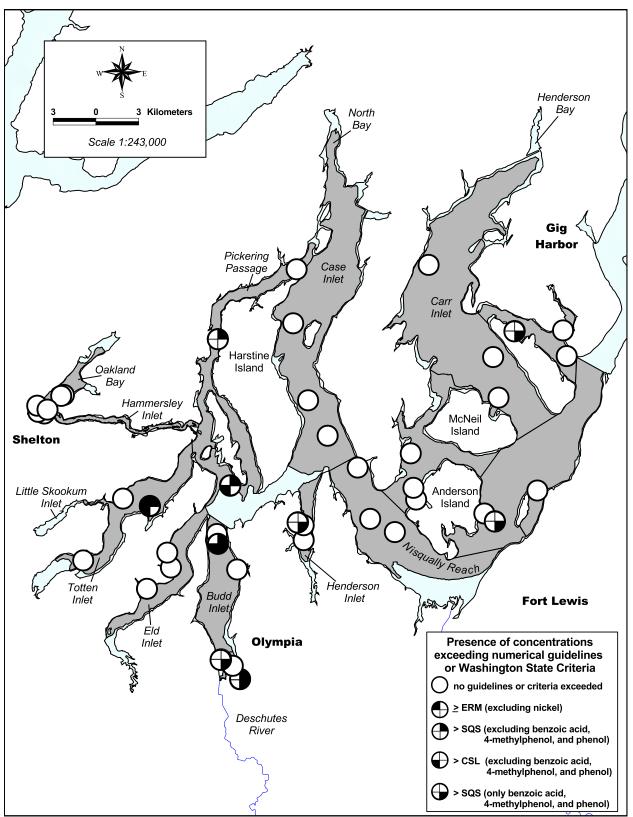


Figure 11. Summary of spatial patterns of chemical contamination for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor.

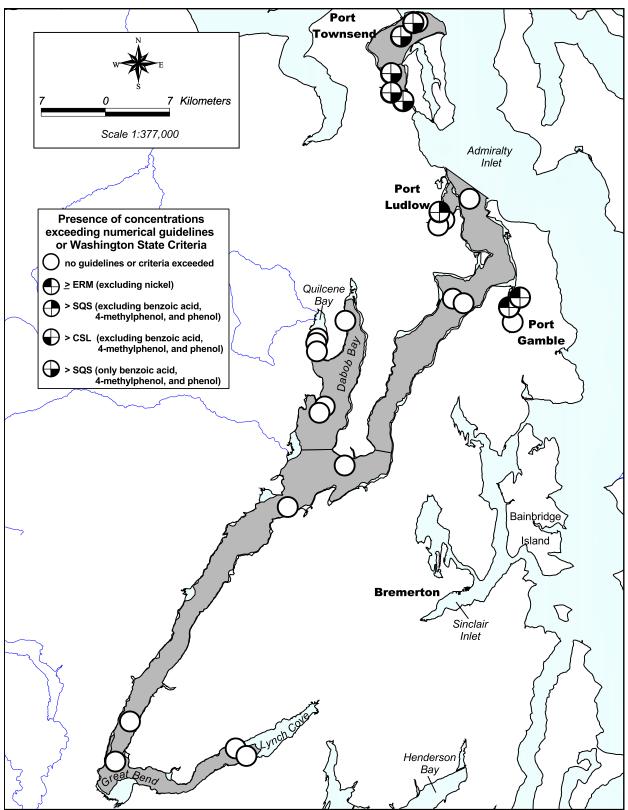


Figure 12. Summary of spatial patterns of chemical contamination for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove.

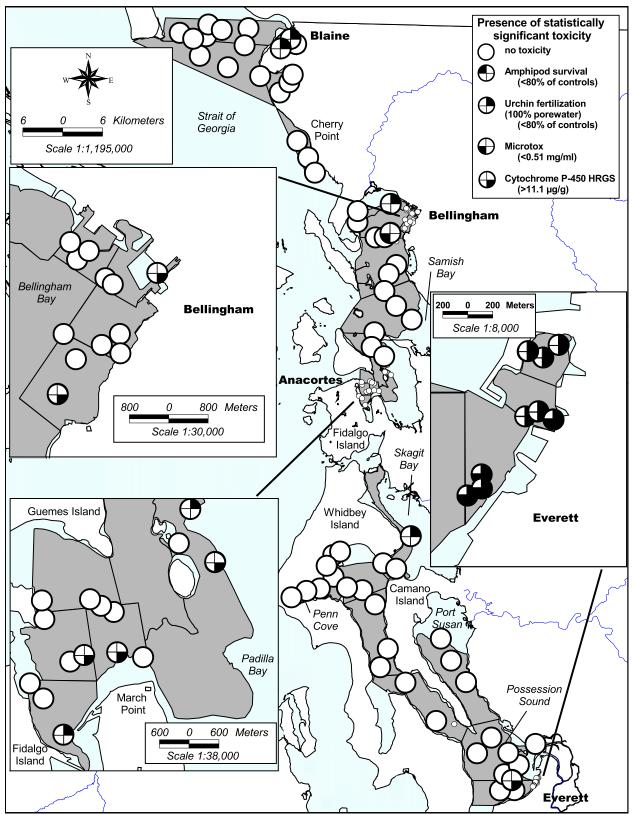


Figure 13. Summary of spatial patterns of toxicity for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett.

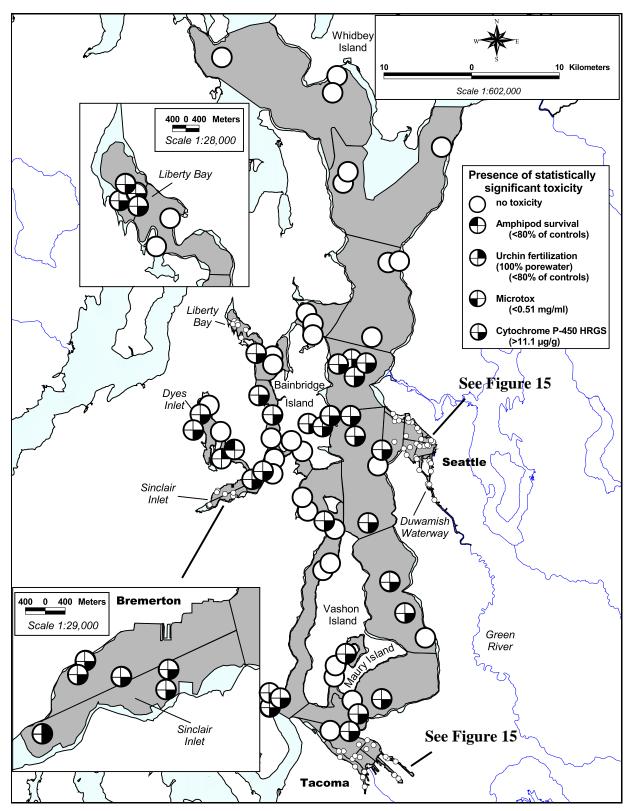


Figure 14. Summary of spatial patterns of toxicity for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Commencement Bay.

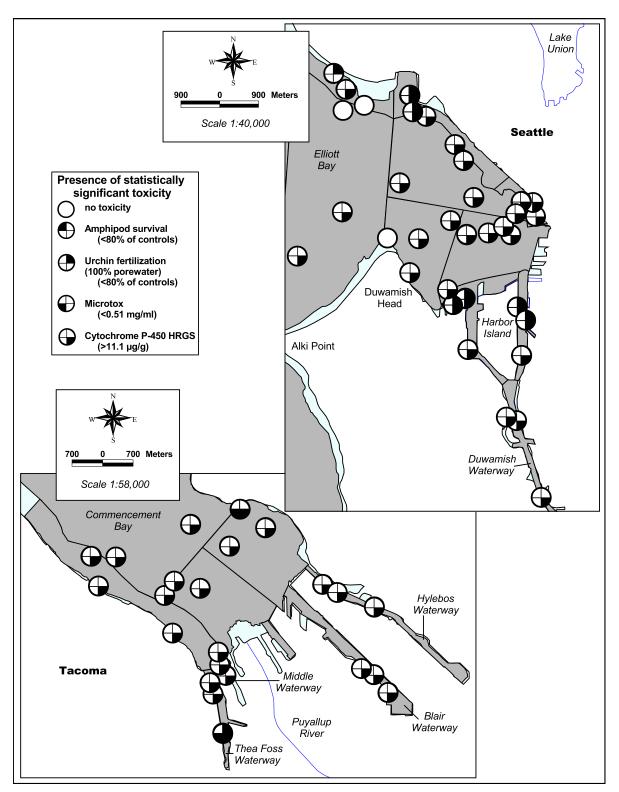


Figure 15. Summary of spatial patterns of toxicity for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay.

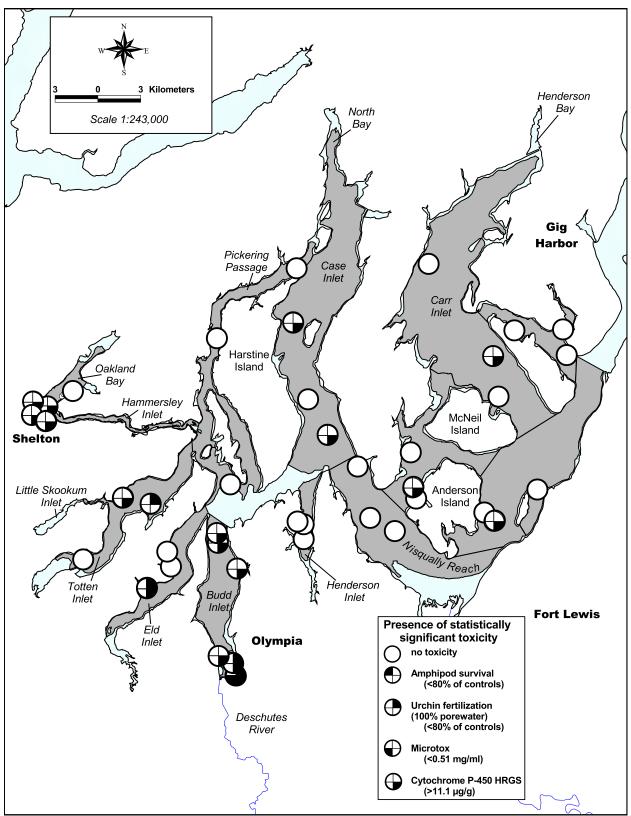


Figure 16. Summary of spatial patterns of toxicity for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor.

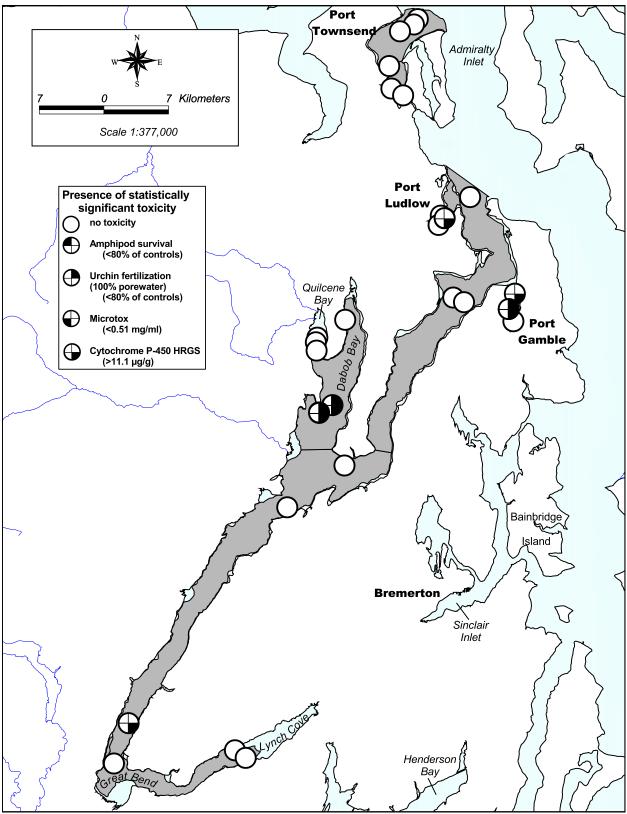


Figure 17. Summary of spatial patterns of toxicity for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove.

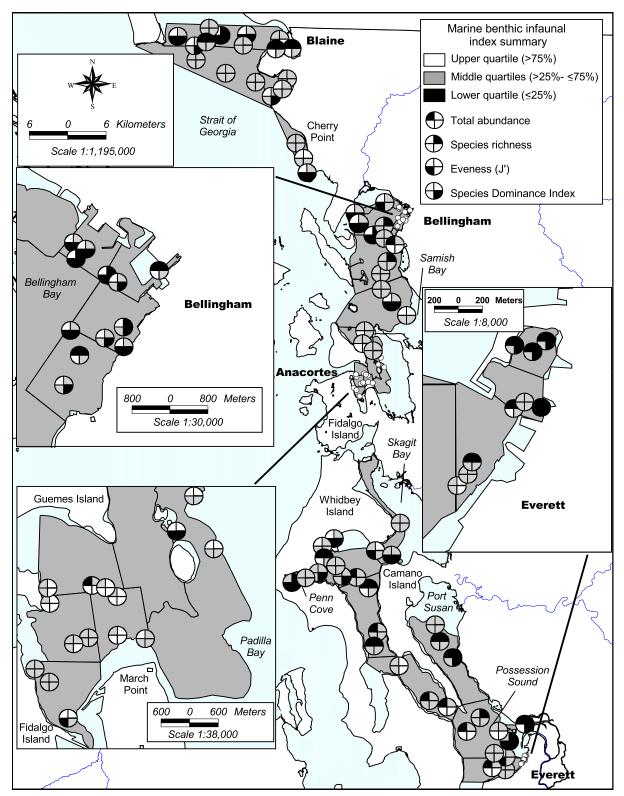


Figure 18. Summary of spatial patterns of benthic infaunal indices for northern Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett.

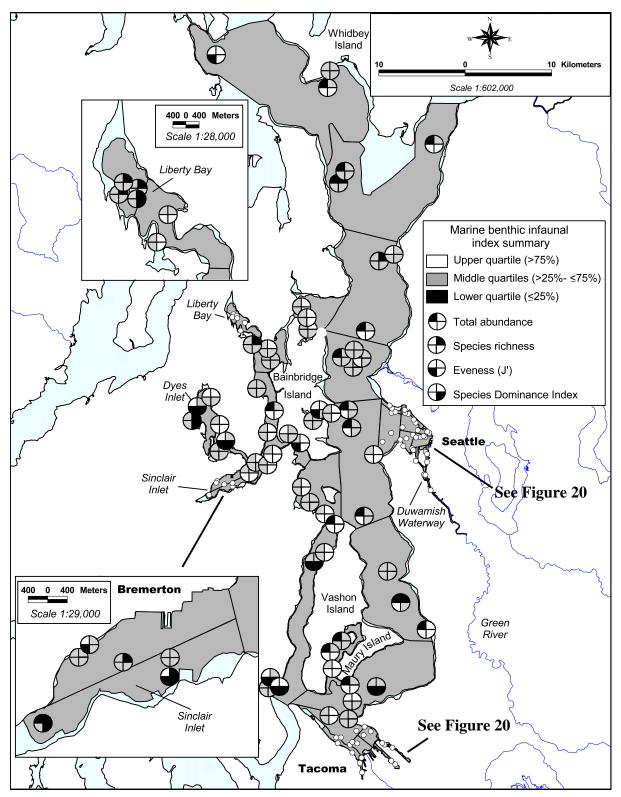


Figure 19. Summary of spatial patterns of benthic infaunal indices for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey Admiralty Inlet, Possession Sound to Commencement Bay.

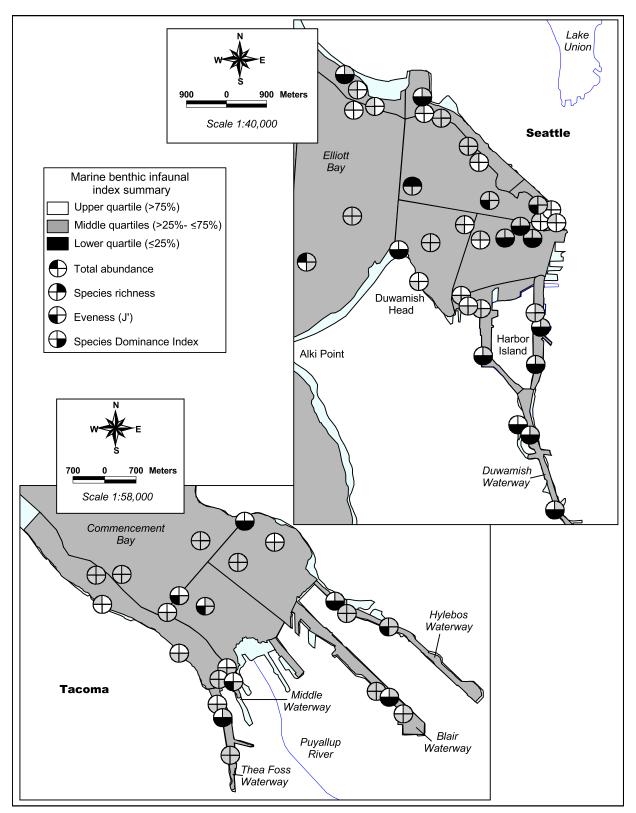


Figure 20. Summary of spatial patterns of benthic infaunal indices central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay.

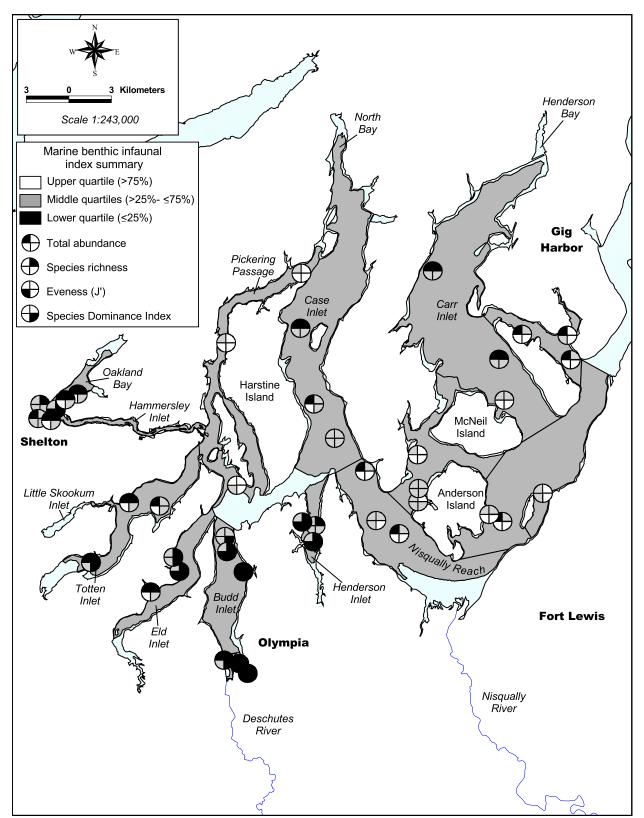


Figure 21. Summary of spatial patterns of benthic infaunal indices for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor.

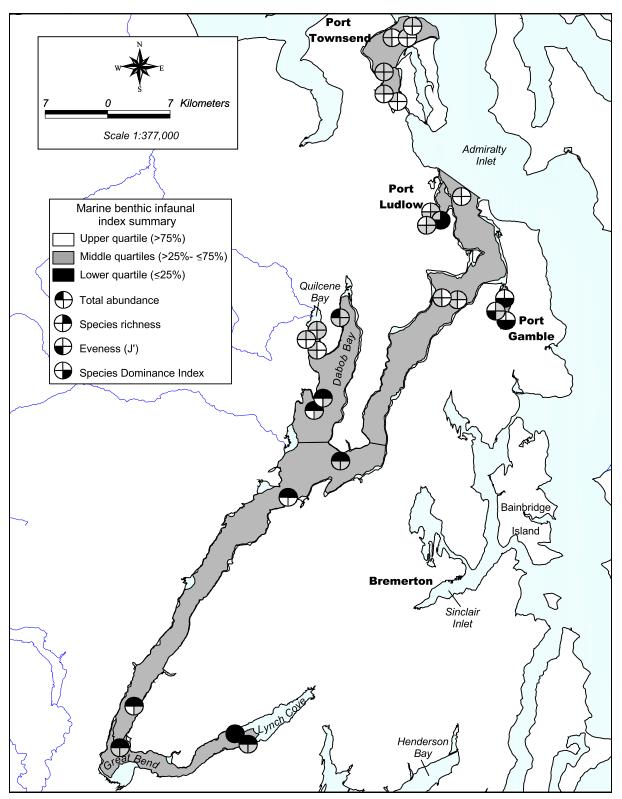


Figure 22. Summary of spatial patterns of benthic infaunal indices for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove.

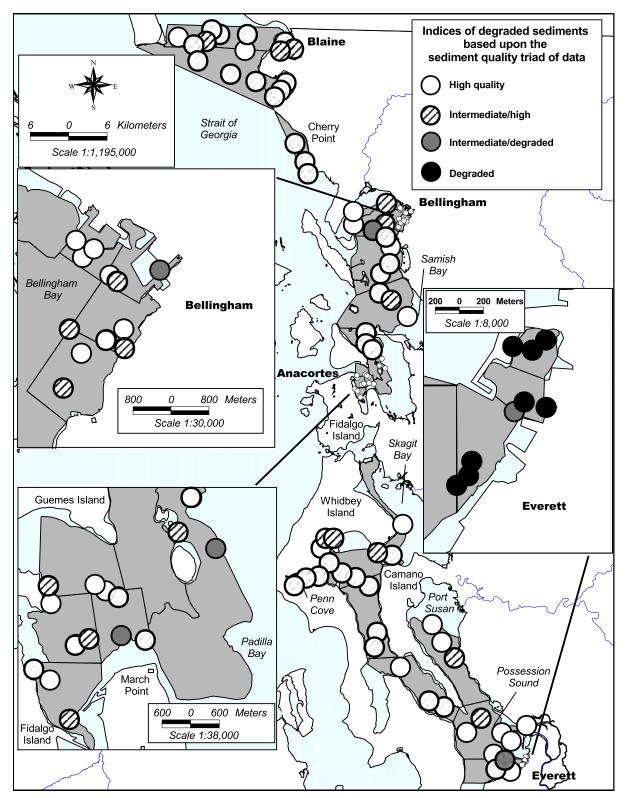


Figure 23. Summary of spatial patterns for indices of degraded sediments based upon the sediment quality triad of data for Strait of Georgia, Whidbey Basin, and Admiralty Inlet sampling stations from the PSAMP/NOAA bioeffects survey, Boundary Bay to Everett.

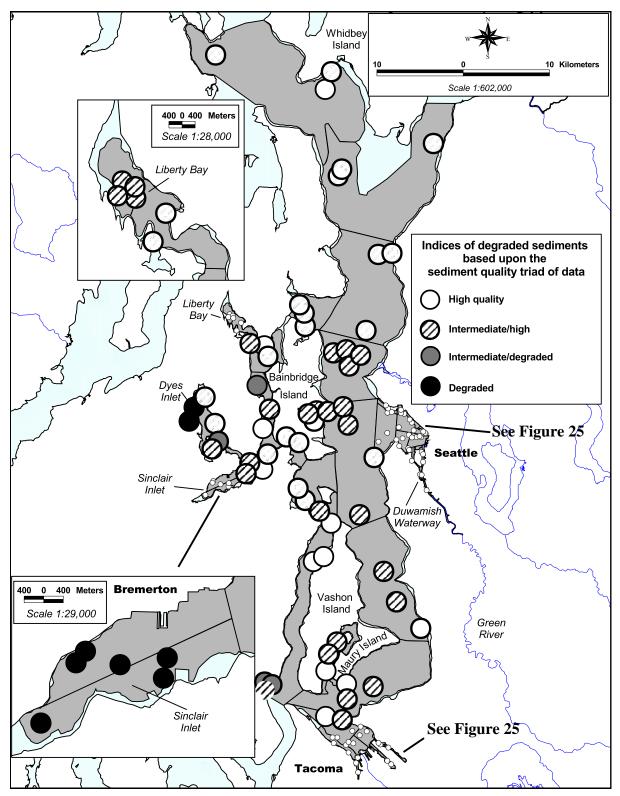
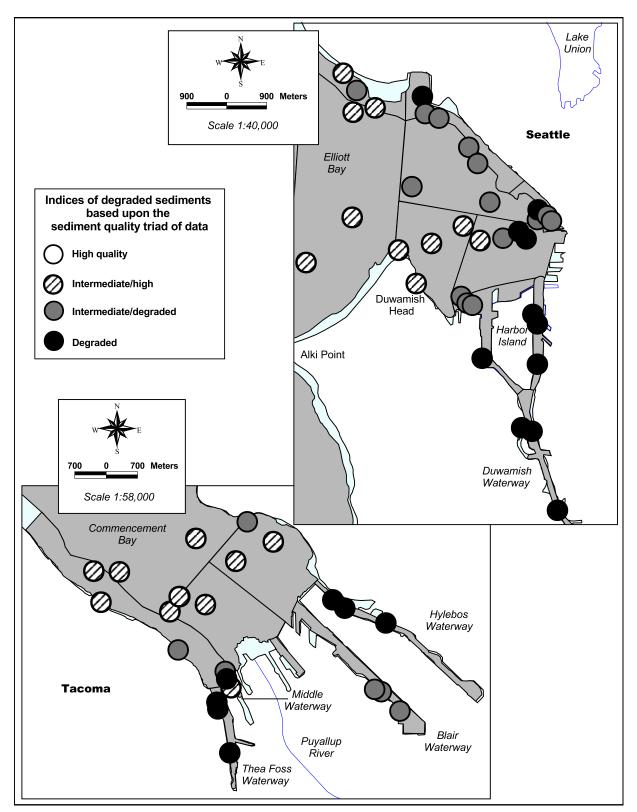



Figure 24. Summary of spatial patterns for indices of degraded sediments based upon the sediment quality triad of data for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Admiralty Inlet, Possession Sound to Commencement Bay.

Figure 25. Summary of spatial patterns for indices of degraded sediments based upon the sediment quality triad of data for central Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Elliott Bay and Commencement Bay.

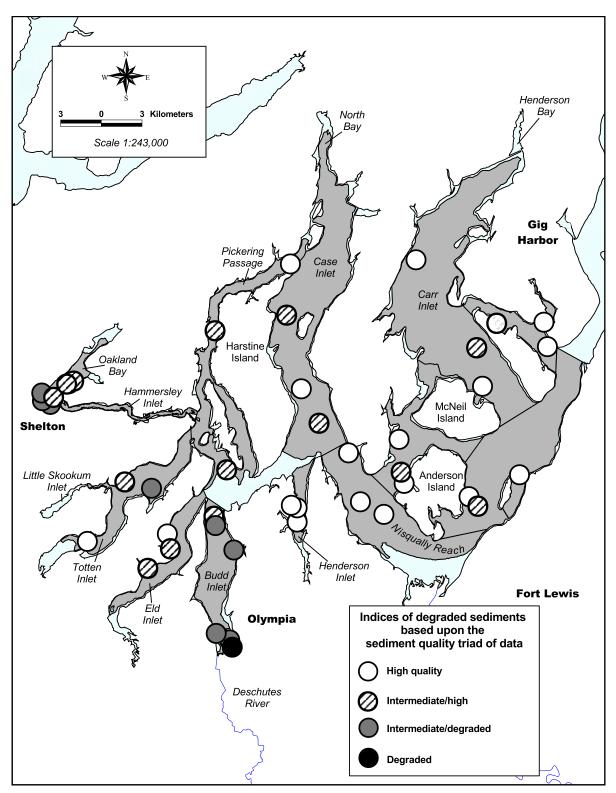


Figure 26. Summary of spatial patterns for indices of degraded sediments based upon the sediment quality triad of data for south Puget Sound sampling stations from the PSAMP/NOAA bioeffects survey, Tacoma Narrows to Shelton Harbor.

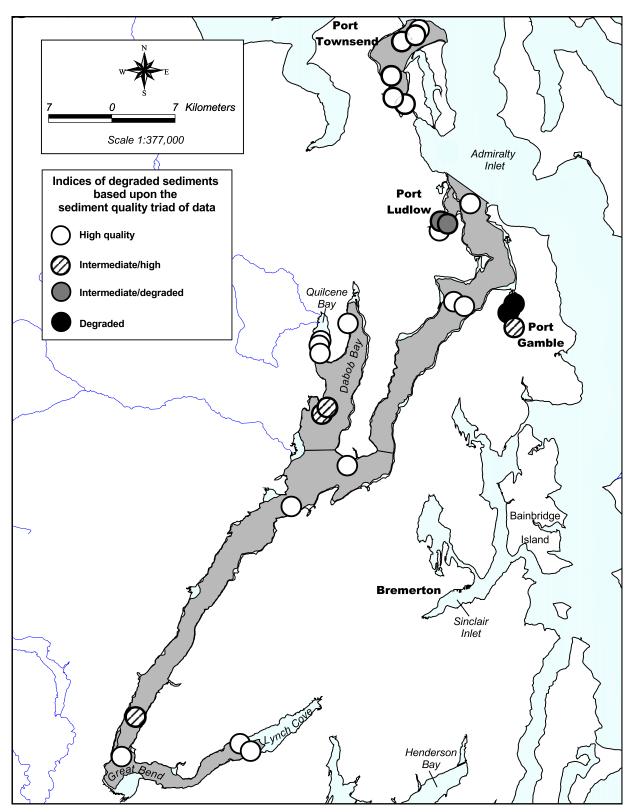


Figure 27. Summary of spatial patterns for indices of degraded sediments based upon the sediment quality triad of data for Hood Canal and Port Townsend sampling stations from the PSAMP/NOAA bioeffects survey, Port Townsend to Lynch Cove.

Table 1. Estimated incidence and spatial extent of chemical contamination in six PugetSound regions and in the entire survey area. The number and percent of stationsand the number and percent of the total region (km²) were calculated for thosestations where at least one chemical concentration was measured at levels abovestate criteria (SQS/CSL) and/or ERM guidelines (shaded area = total number ofstations and area of each region).

Sediment guideline or criteria exceeded	Incio	lence	<u>Spat</u>	<u>ial Extent</u>
Soument galacine of effective executed	No. of stations	Pct of stations	km ²	Pct. of total region
Strait of Georgia	61	100.0	429.1	100.0
ERM	1	1.6	8.8	2.1
SQS	43	70.5	331.0	77.1
excluding benzoic acid, 4-methylphenol, and phenol	9	14.8	43.5	10.1
CSL	31	50.8	245.1	57.1
excluding benzoic acid, 4-methylphenol, and phenol	1	1.6	8.8	2.1
Total for any one guideline or criteria exceeded	43	70.5	331.0	77.1
excluding benzoic acid, 4-methylphenol, and phenol	9	14.8	43.5	10.1
Whidbey Basin	39	100.0	344.8	100.0
ERM	8	20.5	0.6	0.2
SQS	28	71.8	198.8	57.7
excluding benzoic acid, 4-methylphenol, and phenol	5	12.8	30.9	9.0
CSL	27	69.2	189.2	54.9
excluding benzoic acid, 4-methylphenol, and phenol	4	10.3	30.9	9.0
Total for any one guideline or criteria exceeded	28	71.8	198.8	57.7
excluding benzoic acid, 4-methylphenol, and phenol	10	25.6	31.3	9.1
Admiralty Inlet	9	100.0	186.4	100.0
ERM	0	0.0	0.0	0.0
SQS	7	77.8	126.9	68.1
excluding benzoic acid, 4-methylphenol, and phenol	0	0.0	0.0	0.0
CSL	7	77.8	126.9	68.1
excluding benzoic acid, 4-methylphenol, and phenol	0	0.0	0.0	0.0
Total for any one guideline or criteria exceeded	7	77.8	126.9	68.1
excluding Benzoic Acid, 4-methylphenol, and Phenol	0	0.0	0.0	0.0
Central Sound	128	100.0	689.6	100.0
ERM	27	21.1	12.8	1.9
SQS	93	72.7	543.1	78.8
excluding benzoic acid, 4-methylphenol, and phenol	42	32.8	31.4	4.6
CSL	87	68.0	541.2	78.5
excluding benzoic acid, 4-methylphenol, and phenol	19	14.8	18.1	2.6
Total for any one guideline or criteria exceeded	94	73.4	543.9	78.9
excluding benzoic acid, 4-methylphenol, and phenol	43	33.6	32.2	4.7

Sediment guideline or criteria exceeded	Incid	ncidence Spatial Ext			
Scamient guidenne of efferta exceeded	No. of stations	Pct of stations	km ²	Pct. of total region	
				_	
South Sound	42	100.0	397.0	100.0	
ERM	1	2.4	5.7	1.4	
SQS	9	21.4	54.5	13.7	
excluding benzoic acid, 4-methylphenol, and phenol	5	11.9	32.5	8.2	
CSL	8	19.0	44.0	11.1	
excluding benzoic acid, 4-methylphenol, and phenol	3	7.1	21.7	5.5	
Total for any one guideline or criteria exceeded	9	21.4	54.5	13.7	
excluding benzoic acid, 4-methylphenol, and phenol	5	11.9	32.5	8.2	
Hood Canal	21	100.0	316.4	100.0	
ERM	2	9.5	2.8	0.9	
SQS	1	4.8	1.6	0.5	
excluding benzoic acid, 4-methylphenol, and phenol	1	4.8	1.6	0.5	
CSL	0	0.0	0.0	0.0	
excluding benzoic acid, 4-methylphenol, and phenol	0	0.0	0.0	0.0	
Total for any one guideline or criteria exceeded	3	14.3	4.3	1.4	
excluding benzoic acid, 4-methylphenol, and phenol	3	14.3	4.3	1.4	
Total Study Area	300	100.0	2363.3	100.0	
ERM	39	13.0	30	1.3	
SQS	181	60.3	1256	53.1	
excluding benzoic acid, 4-methylphenol, and phenol	62	20.7	139	5.9	
CSL	160	53.3	1146	48.5	
excluding benzoic acid, 4-methylphenol, and phenol	27	9.0	79	3.4	
Total for any one guideline or criteria exceeded	184	61.3	1259	53.3	
excluding benzoic acid, 4-methylphenol, and phenol	70	23.3	143	6.1	

Table 2. Estimated incidence and spatial extent of chemical contamination in five Puget Sound stratum types and in the entire survey area. The number and percent of stations and the number and percent of the total study area (km²) were calculated for those stations where at least one chemical concentration was measured at levels above state criteria and/or national guidelines (shaded area = total number of stations and area of each stratum).

No. of stations Pet. of stations Pet. of total strata Harbor 59 100.0 68.4 100.0 ERM 30 46.9 9.1 13.3 SQS 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 36 56.3 14.3 20.9 CSL 38 59.4 12.4 18.1 10.0 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 SQS 37 68.5 89.1 58.7 25.5 16.1 CSL 32 59.3 4.3 2.9 36.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 11.1 12.9 8.5 16.1 CSL excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 <	Sediment guideline or criteria exceeded	Sediment guideline or criteria exceeded <u>Incidence</u>		<u>Spati</u>	al Extent
ERM 30 46.9 9.1 13.3 SQS 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 36 56.3 14.3 20.9 CSL 38 59.4 12.4 18.1 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 59.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 5	8			km ²	
ERM 30 46.9 9.1 13.3 SQS 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 36 56.3 14.3 20.9 CSL 38 59.4 12.4 18.1 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 59.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 5					
SQS 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 36 56.3 14.3 20.9 CSL 38 59.4 12.4 18.1 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 25 59.3 67.6 44.6 64. 64.6 61.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 25.3 16.7 ERM 0 0.0 0.0 0.0 0.0 0.0 0.0 SQS 25 9					
excluding benzoic acid, 4-methylphenol, and phenol 36 56.3 14.3 20.9 CSL 38 59.4 12.4 18.1 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding be					
CSL 38 59.4 12.4 18.1 excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 30.0 85.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 ERM 0 0.0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 26 64.3 39.0 CSL 38	-				
excluding benzoic acid, 4-methylphenol, and phenol 15 23.4 7.5 11.0 Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 ERM 0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 CSL					
Total for any one guideline or criteria exceeded 45 70.3 15.8 23.1 excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceede					
excluding benzoic acid, 4-methylphenol, and phenol 41 64.1 15.0 21.9 Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 sQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 3.3 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3	-	-			
Urban 64 100.0 151.8 100.0 ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0	• •	-			
ERM 5 9.3 4.3 2.9 SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol		41			
SQS 37 68.5 89.1 58.7 excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 ERM 0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 excluding benzoic acid, 4-methylphenol, an					
excluding benzoic acid, 4-methylphenol, and phenol 14 25.9 24.5 16.1 CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 0.0 <td></td> <td></td> <td></td> <td></td> <td></td>					
CSL 32 59.3 67.6 44.6 excluding benzoic acid, 4-methylphenol, and phenol 6 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 genzeliding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 <t< td=""><td></td><td>37</td><td></td><td></td><td></td></t<>		37			
excluding benzoic acid, 4-methylphenol, and phenol 10 11.1 12.9 8.5 Total for any one guideline or criteria exceeded 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 gest ulding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excludin		14			
Total for any one guideline or criteria exceeded excluding benzoic acid, 4-methylphenol, and phenol 38 70.4 89.8 59.2 excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 ERM 0 0.0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excludi		32			
excluding benzoic acid, 4-methylphenol, and phenol 15 27.8 25.3 16.7 Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.00 0.5 2	• • • •	6	11.1	12.9	
Passage 54 100.0 626.7 100.0 ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1		38			
ERM 0 0.0 0.0 0.0 SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 Image: CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 <	excluding benzoic acid, 4-methylphenol, and phenol	15	27.8	25.3	16.7
SQS 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 ERM 0 0.0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	Passage	54	100.0	626.7	100.0
excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	ERM	0	0.0	0.0	0.0
CSL 38 70.4 396.8 63.3 excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	SQS	40	74.1	426.3	68.0
excluding benzoic acid, 4-methylphenol, and phenol 3 5.6 24.4 3.9 Total for any one guideline or criteria exceeded 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	excluding benzoic acid, 4-methylphenol, and phenol	5	9.3	56.3	9.0
Total for any one guideline or criteria exceeded excluding benzoic acid, 4-methylphenol, and phenol 40 74.1 426.3 68.0 excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	CSL	38	70.4	396.8	63.3
excluding benzoic acid, 4-methylphenol, and phenol 5 9.3 56.3 9.0 Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	excluding benzoic acid, 4-methylphenol, and phenol	3	5.6	24.4	3.9
Basin 42 100.0 889.6 100.0 ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	Total for any one guideline or criteria exceeded	40	74.1	426.3	68.0
ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	excluding benzoic acid, 4-methylphenol, and phenol	5	9.3	56.3	9.0
ERM 0 0.0 0.0 0.0 SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	Basin	42	100.0	889.6	100.0
SQS 26 61.9 534.4 60.1 excluding benzoic acid, 4-methylphenol, and phenol 2 4.8 4.0 0.5 CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1		0			
excluding benzoic acid, 4-methylphenol, and phenol24.84.00.5CSL2457.1508.957.2excluding benzoic acid, 4-methylphenol, and phenol00.00.00.0Total for any one guideline or criteria exceeded2661.9534.460.1	SQS				
CSL 24 57.1 508.9 57.2 excluding benzoic acid, 4-methylphenol, and phenol 0 0.0 0.0 0.0 Total for any one guideline or criteria exceeded 26 61.9 534.4 60.1	-	-			
excluding benzoic acid, 4-methylphenol, and phenol00.00.00.0Total for any one guideline or criteria exceeded2661.9534.460.1					
Total for any one guideline or criteria exceeded2661.9534.460.1	excluding benzoic acid, 4-methylphenol, and phenol	0	0.0		
	-	26			
	excluding benzoic acid, 4-methylphenol, and phenol		4.8	4.0	0.5

Sediment guideline or criteria exceeded	Incid	lence	ice <u>Spatial Exte</u>			
5	No. of stations	Pct. of stations	km ²	Pct. of total strata		
Rural	81	100.0	626.7	100.0		
ERM	4	4.9	17.3	2.8		
SQS	33	40.7	190.4	30.4		
excluding benzoic acid, 4-methylphenol, and phenol	5	6.2	40.7	6.5		
CSL	28	34.6	160.6	25.6		
excluding benzoic acid, 4-methylphenol, and phenol	3	3.7	34.8	5.6		
Total for any one guideline or criteria exceeded	35	43.2	193.1	30.8		
excluding benzoic acid, 4-methylphenol, and phenol	7	8.6	43.5	6.9		
Total Study Area	300	100.0	2363.3	100.0		
ERM	39	13.0	30.7	1.3		
SQS	181	60.3	1256.0	53.1		
excluding benzoic acid, 4-methylphenol, and phenol	62	20.7	139.8	5.9		
CSL	160	53.3	1146.3	48.5		
excluding benzoic acid, 4-methylphenol, and phenol	27	9.0	79.6	3.4		
Total for any one guideline or criteria exceeded	184	61.3	1259.5	53.3		
excluding benzoic acid, 4-methylphenol, and phenol	70	23.3	144.1	6.1		

Table 3. Estimated incidence and spatial extent of toxicity in six Puget Sound regions and in the entire survey area. The number and percent of regions and the number and percent of the total study area (km²) were calculated for those stations where toxicity results were statistically significant. Critical values in bold were used for calculation of total critical values exceeded (shaded area = total number of stations and area of each region).

Toxicity test critical values	Incid	ence	<u>Spat</u>	<u>tial Extent</u>	
Toxicity test errited values	No. of stations	Pct. of stations	km ²	Pct. of total region	
Strait of Georgia	61	100.0	429.1	100.0	
Amphipod survival	U1	10000	12/11	10000	
<80% of controls	0	0.0	0.0	0.0	
Urchin fertilization (<80% of controls)					
100% pore water	5	8.2	19.5	4.5	
50% pore water	2	3.3	11.1	2.6	
25% pore water	1	1.6	5.6	1.3	
Microbial bioluminescence					
<80% of controls	61	100.0	429.1	100.0	
<0.51 mg/ml	1	1.6	8.6	2.0	
<0.06 mg/ml	0	0.0	0.0	0.0	
Cytochrome p-450 HRGS					
>11.1 µg/g	5	8.2	9.7	2.3	
>37.1 µg/g	0	0.0	0.0	0.0	
Total for any one individual critical value exceeded	11	18.0	37.8	8.8	
Total for all critical values exceeded	0	0.0	0.0	0.0	
Total for all critical values exceeded (excluding					
amphipod survival)	0	0.0	0.0	0.0	
Whidbey Basin	39	100.0	344.8	100.0	
Amphipod survival <80% of controls	0	0.0	0.0	0.0	
Unching for till and (2000/ of controls)					
Urchin fertilization (<80% of controls)	10	25.6	21.1	6.1	
100% pore water 50% pore water	5	23.6 12.8	0.4	0.1 0.1	
	-	12.8	0.4 2.7	0.1	
25% pore water	5	12.0	2.1	0.0	
Microbial bioluminescence	25	04.0		06.5	
<80% of controls	37	94.9	332.7	96.5	
<0.51 mg/ml	4	10.3	0.4	0.1	
<0.06 mg/ml	0	0.0	0.0	0.0	

Table 3. Continued.

Toxicity test critical values	Incid	lence	Spatial Extent	
Toxicity test critical values	No. of stations	Pct. of stations	km ²	Pct. of total region
Cytochrome p-450 HRGS				
>11.1 μg/g	10	25.6	10.3	3.0
>37.1 µg/g	4	10.3	0.4	0.1
Total for any one individual critical value exceeded	11	28.2	30.7	8.9
Total for all critical values exceeded Total for all critical values exceeded (excluding	0	0.0	0.0	0.0
amphipod survival)	4	10.3	0.4	0.1
Admiralty Inlet	9	100.0	186.4	100.0
Amphipod survival				
<80% of controls	0	0.0	0.0	0.0
Urchin fertilization (<80% of controls)				
100% pore water	0	0.0	0.0	0.0
50% pore water	0	0.0	0.0	0.0
25% pore water	0	0.0	0.0	0.0
Microbial bioluminescence				
<80% of controls	3	33.3	58.3	31.3
<0.51 mg/ml	0	0.0	0.0	0.0
<0.06 mg/ml	0	0.0	0.0	0.0
Cytochrome p-450 HRGS				
>11.1 µg/g	0	0.0	0.0	0.0
>37.1 µg/g	0	0.0	0.0	0.0
Total for any one individual critical value exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding amphipod survival)	0	0.0	0.0	0.0
Central Sound	128	100.0	689.6	100.0
Amphipod survival				
<80% of controls	1	0.8	1.0	0.1
Urchin fertilization (<80% of controls)				
100% pore water	10	7.8	4.1	0.6
50% pore water	4	3.1	1.6	0.2
25% pore water	3	2.3	4.2	0.6
Microbial bioluminescence				
<80% of controls	85	66.4	338.5	49.1
<0.51 mg/ml	2	1.6	1.2	0.2
······································				

Table 3. Continued.

Toxicity test critical values	Incid	ence	<u>Spatial Extent</u>		
TOARCHY CST CITICAL Values	No. of stations	Pct. of stations	km ²	Pct. of total region	
Cytochrome p-450 HRGS					
>11.1 µg/g	93	72.7	310.5	45.0	
>37.1 µg/g	40	31.3	49.4	7.2	
Total for any one individual critical value exceeded	95	74.2	311.9	45.2	
Total for all critical values exceeded	0	0.0	0.0	0.0	
Total for all critical values exceeded (excluding	1	0.0	0.1	0.0	
amphipod survival)	1	0.8	0.1	0.0	
South Sound	42	100.0	397.0	100.0	
Amphipod survival	0	0.0	0.0	0.0	
<80% of controls	0	0.0	0.0	0.0	
Urchin fertilization (<80% of controls)					
100% pore water	4	9.5	10.3	2.6	
50% pore water	3	7.1	4.5	1.1	
25% pore water	3	7.1	2.2	0.6	
Microbial bioluminescence					
<80% of controls	39	92.9	331.9	83.6	
<0.51 mg/ml	1	2.4	0.3	0.1	
<0.06 mg/ml	0	0.0	0.0	0.0	
Cytochrome p-450 HRGS					
>11.1 µg/g	20	47.6	177.9	44.8	
>37.1 µg/g	3	7.1	15.8	4.0	
Total for any one individual critical value exceeded	21	50.0	183.6	46.3	
Total for all critical values exceeded	0	0.0	0.0	0.0	
Total for all critical values exceeded (excluding amphipod survival)	1	2.4	0.3	0.1	
Hood Canal	21	100.0	316.4	100.0	
Amphipod survival <80% of controls	0	0.0	0.0	0.0	
	Ũ	0.0	0.0		
Urchin fertilization (<80% of controls)	2	14.2	20 5	10.0	
100% pore water	3	14.3	38.5	12.2	
50% pore water	÷	0.0	0.0	0.0	
25% pore water	0	0.0	0.0	0.0	
Microbial bioluminescence			100 0	12.0	
<80% of controls	12	57.1	138.8	43.9	
<0.51 mg/ml	0	0.0	0.0	0.0	
<0.06 mg/ml	0	0.0	0.0	0.0	

Table 3. Concluded.

Toxicity test critical values	Incid	lence	<u>Spatial Extent</u>		
	No. of stations	Pct. of stations	km ²	Pct. of total region	
Cutashraman 450 UDCS					
Cytochrome p-450 HRGS >11.1 μg/g	6	28.6	77.8	24.6	
$>37.1 \ \mu g/g$	0	28.0 4.8	1.6	0.5	
~37.1 μg/g	1	4.0	1.0	0.3	
Total for any one individual critical value exceeded	6	28.6	77.8	24.6	
Total for all critical values exceeded	0	0.0	0.0	0.0	
Total for all critical values exceeded (excluding					
amphipod survival)	0	0.0	0.0	0.0	
Total Study Area	300	100.0	2363.3	100.0	
Amphipod survival					
<80% of controls	1	0.3	1	0.04	
Urchin fertilization (<80% of controls)					
100% pore water	32	10.7	93.5	4.0	
50% pore water	14	4.7	17.7	0.7	
25% pore water	12	4.0	14.6	0.6	
Microbial bioluminescence					
<80% of controls	237	79.0	1629.3	68.9	
<0.51 mg/ml	8	2.7	10.5	0.4	
<0.06 mg/ml	0	0.0	0.0	0.0	
Cytochrome p-450 HRGS					
>11.1 µg/g	134	44.7	586.3	24.8	
>37.1 µg/g	48	16.0	67.0	2.8	
Total for any one individual critical value exceeded	144	48.0	641.9	27.2	
Total for all critical values exceeded	0	0.0	0.0	0.0	
Total for all critical values exceeded (excluding	Ū			•	
amphipod survival)	6	2.0	0.8	0.0	

Table 4. Estimated incidence and spatial extent of toxicity in five Puget Sound stratum types and in the entire survey area. The number and percent of strata and the number and percent of the total study area (km²) were calculated for those stations where toxicity results were statistically significant. Criteria in bold were used for calculation of total criteria exceeded (shaded area = total number of stations and area of each stratum).

Toxicity test critical values	Incid	lence	<u>Spatial Extent</u>	
Toxicity test critical values	No. of stations	Pct. of stations	4 km ²	Pct. of total strata
	stations	stations	KIII	5ti ata
Harbor	59	100.0	68.4	100.0
Amphipod survival				
<80% of controls	0	0.0	0.0	0.0
Urchin fertilization (<80% of controls)				
100% pore water	19	32.2	3.9	5.7
50% pore water	11	18.6	2.6	3.8
25% pore water	8	13.6	2.3	3.4
Microbial bioluminescence				
<80% of controls	52	88.1	66.6	97.4
<0.51 mg/ml	7	11.9	1.9	2.8
<0.06 mg/ml	0	0.0	0.0	0.0
Cytochrome p-450 HRGS				
>11.1 µg/g	54	91.5	62.1	90.8
>37.1 µg/g	36	61.0	24.4	35.7
Total for any one individual critical value exceeded	54	91.5	62.1	90.8
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding				
amphipod survival)	6	10.2	0.8	1.2
Urban	64	100.0	151.8	100.0
Amphipod survival <80% of controls	0	0.0	0.0	0.0
Urchin fertilization (<80% of controls)	n	47	115	76
100% pore water 50% pore water	32	4.7 3.1	11.5 11.1	7.6 7.3
	2		5.6	7.3
25% pore water	1	1.0	3.0	3.1
		(0.0	112.0	75.0
Microbial bioluminescence <80% of controls	44	68.8	113.8	75.0
	44 1 0	68.8 1.6 0.0	113.8 8.6 0.0	75.0 5.7 0.0

Table 4. Continued.

Toxicity test critical values	Incid	ence	<u>Spatial Extent</u>	
Toxicity test critical values	No. of stations	Pct. of stations	km ²	Pct. of total strata
Cytochrome p-450 HRGS				
>11.1 µg/g	38	59.4	58.9	38.8
>37.1 µg/g	9	14.1	7.0	4.6
57.1 µB B	,	1 1.1	7.0	1.0
Total for any one individual critical value exceeded	42	65.6	79.0	52.0
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding	Ť			
amphipod survival)	0	0.0	0.0	0.0
Passage	54	100.0	626.7	100.0
Amphipod survival				
<80% of controls	1	1.9	1.0	0.2
Urchin fertilization (<80% of controls)				
100% pore water	1	1.9	1.0	0.2
50% pore water	0	0.0	0.0	0.0
25% pore water	0	0.0	0.0	0.0
Microbial bioluminescence				
<80% of controls	47	87.0	472.5	75.4
<0.51 mg/ml	0	0.0	0.0	0.0
<0.06 mg/ml	0	0.0	0.0	0.0
Cytochrome p-450 HRGS				
>11.1 µg/g	8	14.8	23.8	3.8
>37.1 µg/g	0	0.0	0.0	0.0
Total for any one individual critical value exceeded	9	16.7	24.8	4.0
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding				
amphipod survival)	0	0.0	0.0	0.0
Basin	42	100.0	889.6	100.0
Amphipod survival				
<80% of controls	0	0.0	0.0	0.0
Urchin fertilization (<80% of controls)	0			
100% pore water	0	0.0	0.0	0.0
50% pore water	0	0.0	0.0	0.0
25% pore water	1	2.4	2.8	0.3
Microbial bioluminescence				
<80% of controls	27	64.3	510.9	57.4
<0.51 mg/ml	0	0.0	0.0	0.0
0	0		0.0	
<0.06 mg/ml	0	0.0	0.0	0.0

Table 4. Continued.

Toxicity test critical values	Incid	lence	<u>Spatial Extent</u>	
Toxicity test critical values	No. of stations	Pct. of stations	km ²	Pct. of total strata
Cytochrome p-450 HRGS				
>11.1 µg/g	15	35.7	278.1	31.3
>37.1 µg/g	2	4.8	34.0	3.8
	-		2 1.0	2.0
Total for any one individual critical value exceeded	15	35.7	278.1	31.3
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding				
amphipod survival)	0	0.0	0.0	0.0
Rural	81	100.0	626.7	100.0
Amphipod survival				
<80% of controls	0	0.0	0.0	0.0
Urchin fertilization (<80% of controls)				
100% pore water	9	11.1	77.0	12.3
50% pore water	1	1.2	4.0	0.6
25% pore water	2	2.5	4.0	0.6
Microbial bioluminescence <80% of controls	(7	0 0 7	A (E . E	74.2
	67	82.7 0.0	465.5 0.0	74.3
<0.51 mg/ml <0.06 mg/ml	0 0	0.0 0.0	0.0	0.0 0.0
<0.00 mg/m	0	0.0	0.0	0.0
Cytochrome p-450 HRGS				
>11.1 µg/g	19	23.5	163.5	26.1
>37.1 µg/g	1	1.2	1.6	0.3
Total for any one individual critical value exceeded	24	29.6	198.0	31.6
Total for all critical values exceeded	0	0.0	0.0	0.0
Total for all critical values exceeded (excluding	0	0.0	0.0	0.0
amphipod survival)	0	0.0	0.0	0.0
Total Study Area	300	100.0	2363.3	100.0
Amphipod survival	1	0.2	1	0.04
<80% of controls	1	0.3	1	0.04
Urchin fertilization (<80% of controls)				
100% pore water	32	10.7	93.4	4.0
50% pore water	14	4.7	17.7	0.7
25% pore water	14	4.0	14.7	0.6
	12	1.0	17./	0.0
Microbial bioluminescence				
<80% of controls	237	79.0	1629.3	68.9
<0.51 mg/ml	8	2.7	10.5	0.4
<0.06 mg/ml	0	0.0	0	0.0
	5		9	

Table 4. Concluded.

Toxicity test critical values	Incid	ence	e <u>Spatial I</u>		
	No. of stations	Pct. of stations	km ²	Pct. of tota strata	
Cytochrome p-450 HRGS					
>11.1 μg/g	134	44.7	586.3	24.8	
>37.1 µg/g	48	16.0	67	2.8	
Total for any one individual critical value exceeded	144	48.0	641.9	27.2	
Total for all critical values exceeded	0	0.0	0	0.0	
Total for all critical values exceeded (excluding					
amphipod survival)	6	2.0	0.8	0.03	

Summary Statistics	Total Abundance	Number of Taxa	Even- ness (J')		Abundance				
				SDI*	Annelida	Arthro- poda	Mollusca	Echino- dermata	Misc. Taxa
Strait of Ge	orgia (61)								
Mean	1350.4	50.5	0.6	8.0	627.8	387.0	220.4	101.7	13.5
Median	856.0	45.0	0.6	5.0	272.0	176.0	105.0	41.0	6.0
Std. Dev.	1455.6	20.0	0.2	5.7	1030.3	468.1	369.0	149.9	22.3
Whidbey Ba	nsin (39)								
Mean	414.5	40.0	0.7	7.8	221.0	47.0	139.0	1.2	6.3
Median	318.0	40.0	0.7	6.0	158.0	36.0	90.0	1.0	5.0
Std. Dev.	300.3	19.5	0.1	5.0	223.9	57.9	154.9	1.8	5.3
Admiralty I	nlet (9)								
Mean	763.7	87.6	0.7	17.9	293.1	231.3	171.4	54.2	13.6
Median	667.0	77.0	0.8	17.0	292.0	67.0	161.0	7.0	6.0
Std. Dev.	615.9	43.9	0.1	8.7	223.8	423.0	71.1	137.8	18.3
Central Sou	nd (128)								
Mean	779.8	64.3	0.7	11.1	425.7	118.6	204.3	23.8	7.4
Median	644.5	61.0	0.7	9.0	219.0	81.0	139.5	3.0	6.0
Std. Dev.	563.7	23.8	0.1	8.2	487.0	143.3	188.1	51.4	5.6
South Sound	d (42)								
Mean	340.2	43.5	0.7	10.5	165.5	69.6	42.1	43.4	19.7
Median	269.5	36.0	0.8	8.0	139.0	21.5	31.0	3.0	6.0
Std. Dev.	255.3	27.1	0.2	7.3	126.8	104.5	42.7	99.2	54.9
Hood Canal	(21)								
Mean	704.7	49.2	0.7	9.4	477.8	98.0	116.1	3.2	9.6
Median	516.0	46.0	0.7	10.0	198.0	41.0	90.0	2.0	4.0
Std. Dev.	812.6	25.4	0.2	5.7	741.9	163.1	115.2	3.5	14.5

Table 5. Summary of nine indices of benthic infaunal diversity and abundance in six
sampling regions of Puget Sound, based upon the 300 samples analyzed in the
PSAMP/NOAA survey.

* SDI = Swartz's Dominance Index

					Abundance					
Station Number	Total Abundance	Number of Taxa	Evenness (J')	SDI*	Annelida	Arthro- poda	Mollusca	Echino- dermata	Misc. Taxa	
Harbor (59	9)									
Mean	974.2	51.4	0.6	7.3	642.2	149.2	152.8	25.3	4.7	
Median	806.0	50.0	0.6	5.0	394.0	52.0	95.0	1.0	4.0	
Std. Dev.	918.6	27.4	0.2	6.1	746.9	253.7	174.6	56.6	4.3	
Urban (64))									
Mean	955.0	60.4	0.6	9.8	492.1	185.4	195.5	74.0	8.0	
Median	714.0	61.0	0.6	7.5	271.5	74.0	147.5	8.5	6.0	
Std. Dev.	883.2	26.0	0.1	7.4	662.0	270.4	193.6	150.8	7.6	
Passage (54	4)									
Mean	596.4	64.4	0.7	13.1	229.9	111.6	180.1	55.4	19.4	
Median	514.5	56.0	0.8	12.5	164.0	58.0	122.0	5.0	9.0	
Std. Dev.	449.2	27.3	0.1	7.4	188.6	214.8	176.1	114.0	48.8	
Basin (42)										
Mean	415.0	58.1	0.8	14.4	133.6	134.8	121.5	14.3	10.8	
Median	325.5	53.0	0.8	13.0	100.5	75.0	89.0	3.0	8.5	
Std. Dev.	300.8	25.3	0.1	9.0	83.7	177.6	124.4	28.0	11.0	
Rural (81)										
Mean	815.9	45.8	0.7	7.9	415.0	189.2	177.9	22.9	10.8	
Median	531.0	43.0	0.7	6.0	166.0	43.0	87.0	5.0	5.0	
Std. Dev.	1112.0	22.0	0.1	5.1	742.5	358.4	325.3	36.1	19.0	

Table 6. Summary statistics for nine indices of benthic community structure for samples ineach of five stratum types in Puget Sound.

* SDI = Swartz's Dominance Index

Table 7. Estimated spatial extent of four categories of relative sediment quality in six PugetSound monitoring regions based upon the Sediment Quality Triad (excluding nickel,benzoic acid, phenol, 4-methylphenol). Shaded rows indicate the total numbers ofstations and area of each region.

Sediment Quality Index Category (number of parameters impaired /station)	No. of stations	Pct. of stations	km ²	Pct. of total study area
Strait of Georgia	61	100.0	429.1	100.0
High (0)	43	70.5	345.6	80.5
Intermediate/High (1)	15	24.6	77.3	18.0
Chemistry	6	9.8	37.2	8.7
Toxicity	8	13.1	31.5	7.3
Infaunal	1	1.6	8.6	2.0
Intermediate/Degraded (2)	3	4.9	6.3	1.5
Chemistry/Toxicity	3	4.9	6.3	1.5
Chemistry/Infauna	0	0.0	0.0	0.0
Infaunal/Toxicity	0	0.0	0.0	0.0
Degraded (3)	0	0.0	0.0	0.0
Whidbey Basin	39	100.0	344.8	100.0
High (0)	24	61.5	282.5	81.9
Intermediate/High (1)	5	12.8	51.9	15.1
Chemistry	2	5.1	30.7	8.9
Toxicity	1	2.6	20.4	5.9
Infaunal	2	5.1	0.8	0.2
Intermediate/Degraded (2)	2	5.1	9.7	2.8
Chemistry/Toxicity	0	0.0	0.0	0.0
Chemistry/Infauna	0	0.0	0.0	0.0
Infaunal/Toxicity	2	5.1	9.7	2.8
Degraded (3)	8	20.5	0.6	0.2
Admiralty Inlet	9	100.0	186.4	100.0
High (0)	9	100.0	186.4	100.0
Intermediate/High (1)	0	0.0	0.0	0.0
Chemistry	0	0.0	0.0	0.0
Chemistry	0	0.0	0.0	0.0
Toxicity	0 0	0.0 0.0	0.0	0.0 0.0
•				
Toxicity	0	0.0	0.0	0.0
Toxicity Infaunal	0 0	0.0 0.0	0.0 0.0	0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2)	0 0 0	0.0 0.0 0.0	0.0 0.0 0.0	0.0 0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity	0 0 0 0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna	0 0 0 0 0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna Infaunal/Toxicity	0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna Infaunal/Toxicity Degraded (3)	0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna Infaunal/Toxicity Degraded (3) Central Sound	0 0 0 0 0 0 0 128	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 689.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna Infaunal/Toxicity Degraded (3) Central Sound High (0)	0 0 0 0 0 0 128 30	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 (23.4)	0.0 0.0 0.0 0.0 0.0 0.0 0.0 689.6 373.7	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 (54.2)
Toxicity Infaunal Intermediate/Degraded (2) Chemistry/Toxicity Chemistry/Infauna Infaunal/Toxicity Degraded (3) Central Sound High (0) Intermediate/High (1)	0 0 0 0 0 0 128 30 47	0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 (23.4) (36.7)	0.0 0.0 0.0 0.0 0.0 0.0 689.6 373.7 282.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 (54.2) (40.9)

Table 7. Concluded.

Sediment Quality Index Category (number of parameters impaired /station)	No. of stations	Pct. of stations	km ²	Pct. of total study area
				"·····
Intermediate/Degraded (2)	25	(19.5)	14.5	(2.1)
Chemistry/Toxicity	14	(10.9)	8.8	(1.3)
Chemistry/Infauna	0	(0.0)	0.0	(0.0)
Infaunal/Toxicity	11	(8.6)	5.6	(0.8)
Degraded (3)	26	(20.3)	19.4	(2.8)
South Sound	42	100.0	397.0	100.0
High (0)	19	45.2	192.3	48.4
Intermediate/High (1)	14	33.3	141.6	35.7
Chemistry	2	4.8	21.0	5.3
Toxicity	12	28.6	120.5	30.4
Infaunal	0	0.0	0.0	0.0
Intermediate/Degraded (2)	8	19.0	62.9	15.8
Chemistry/Toxicity	2	4.8	11.2	2.8
Chemistry/Infauna	0	0.0	0.0	0.0
Infaunal/Toxicity	6	14.3	51.7	13.0
Degraded (3)	1	2.4	0.3	0.1
Hood Canal	21	100.0	316.4	100.0
High (0)	13	61.9	235.6	74.5
Intermediate/High (1)	4	19.0	74.9	23.7
Chemistry	0	0.0	0.0	0.0
Toxicity	3	14.3	73.5	23.2
Infaunal	1	4.8	1.4	0.4
Intermediate/Degraded (2)	2	9.5	3.1	1.0
Chemistry/Toxicity	0	0.0	0.0	0.0
Chemistry/Infauna	1	4.8	1.6	0.5
Infaunal/Toxicity	1	4.8	1.6	0.5
Degraded (3)	2	9.5	2.8	0.9
Total Study Area	300	100.0	2363.3	100.0
High (0)	138	(46.0)	1616.1	(68.4)
Intermediate/High (1)	85	(28.3)	627.6	(26.6)
Chemistry	13	(4.3)	92.8	(3.9)
Toxicity	68	(22.7)	524.0	(22.2)
Infaunal	4	(1.3)	10.8	(0.5)
Intermediate/Degraded (2)	40	(13.3)	96.5	(4.1)
Chemistry/Toxicity	19	(6.3)	26.3	(1.1)
	1	(0.3)	1.6	(0.1)
Chemistry/Infauna	1	(0.5)	1.0	()
Chemistry/Infauna Infaunal/Toxicity	20	(6.7)	68.6	(2.9)

Table 8. Estimated spatial extent of four categories of relative sediment quality in fivePuget Sound stratum types based upon the Sediment Quality Triad (excludingnickel, benzoic acid, phenol, 4-methylphenol). Shaded rows indicate the totalnumbers of stations and area of each stratum type.

Sediment Quality Index Category (number of parameters impaired /station)	No. of stations	Pct. of stations	km ²	Pct. of total study area
Hankan.	50	100.0	(9.4	100.0
Harbor High (0)	59 4	100.0 6.8	68.4 5.1	100.0 7.4
Intermediate/High (1)	4 5	0.8 8.5	3.1 2.5	3.6
Chemistry	3 1	0.3 1.7	1.2	1.8
Toxicity	4	6.8	1.2	1.8
Infaunal	4 0	0.8	0.0	0.0
Intermediate/Degraded (2)	20	33.9	50.8	7 4.3
5	20 10	33.9 16.9	3.4	7 4.3 4.9
Chemistry/Toxicity		0.0		4.9 0.0
Chemistry/Infauna	0		0.0	
Infaunal/Toxicity	10	16.9	47.5	69.4
Degraded (3)	30	50.8	10.1	14.7
Urban	64	100.0	151.8	100.0
High (0)	17	(26.6)	58.6	(38.6)
Intermediate/High (1)	29	(45.3)	64.6	(42.6)
Chemistry	4	(6.3)	5.6	(3.7)
Toxicity	24	(37.5)	50.4	(33.2)
Infaunal	1	(1.6)	8.6	(5.7)
Intermediate/Degraded (2)	13.0	(20.3)	18.3	(12.1)
Chemistry/Toxicity	6	(9.4)	9.4	(6.2)
Chemistry/Infauna	0	(0.0)	0.0	(0.0)
Infaunal/Toxicity	7	(10.9)	8.9	(5.9)
Degraded (3)	5	(7.8)	10.3	(6.8)
Passage	54	100.0	626.7	100.0
High (0)	41	75.9	549.0	87.6
Intermediate/High (1)	11	20.4	73.3	11.7
Chemistry	4	7.4	52.9	8.4
Toxicity	7	13.0	20.4	3.3
Infaunal	0	0.0	0.0	0.0
Intermediate/Degraded (2)	2	3.7	4.4	0.7
Chemistry/Toxicity	1	1.9	3.4	0.5
Chemistry/Infauna	0	0.0	0.0	0.0
Infaunal/Toxicity	1	1.9	1.0	0.2
Degraded (3)	0	0.0	0.0	0.0
Basin	42	100.0	889.6	100.0
High (0)	25	59.5	607.5	68.3
0 ()	17	40.5	282.1	31.7
Intermediate/High (1)	17 2	40.5 4.8	282.1 4.0	31.7 0.5
0 ()				0.5 31.3

Sediment Quality Index Category (number of parameters impaired /station)	No. of stations	Pct. of stations	km ²	Pct. of total study area
Intermediate/Degraded (2)	0	0.0	0.0	0.0
Chemistry/Toxicity	0	0.0	0.0	0.0
Chemistry/Infauna	0	0.0	0.0	0.0
Infaunal/Toxicity	0	0.0	0.0	0.0
Degraded (3)	0	0.0	0.0	0.0
Rural	81	100.0	626.7	100.0
High (0)	51	63.0	395.9	63.2
Intermediate/High (1)	23	28.4	205.1	32.7
Chemistry	2	2.5	29.0	4.6
Toxicity	18	22.2	173.9	27.8
Infaunal	3	3.7	2.2	0.4
Intermediate/Degraded (2)	5	6.2	22.9	3.7
Chemistry/Toxicity	2	2.5	10.1	1.6
Chemistry/Infauna	1	1.2	1.6	0.2
Infaunal/Toxicity	2	2.5	11.2	1.8
Degraded (3)	2	2.5	2.8	0.4
Total Study Area	300	100.0	2363.3	100.0
High (0)	138	(46.0)	1616.1	(68.4)
Intermediate/High (1)	85	(28.3)	627.6	(26.6)
Chemistry	13	(4.3)	92.8	(3.9)
Toxicity	68	(22.7)	524.0	(22.2)
Infaunal	4	(1.3)	10.8	(0.5)
Intermediate/Degraded (2)	40	(13.3)	96.5	(4.1)
Chemistry/Toxicity	19	(6.3)	26.3	(1.1)
Chemistry/Infauna	1	(0.3)	1.6	(0.1)
Infaunal/Toxicity	20	(6.7)	68.6	(2.9)
Degraded (3)	37	(12.3)	23.1	(1.0)

Table 8. Concluded.

					Abundance				
Summary Statistics	Total Abundance	Number of Taxa	Evenness (J')	SDI*	Annelida	Arthro- poda	Mollusca	Echino- dermata	Misc. Taxa
High (138)									
Mean	700.4	57.5	0.7	12.1	274.0	201.7	170.5	43.2	10.9
Median	540.0	51.5	0.7	10.0	167.0	79.0	105.0	7.0	8.0
Std. Dev.	745.7	26.2	0.1	8.0	433.2	312.4	265.2	88.4	12.5
Intermediat	e/High (85)								
Mean	834.0	52.8	0.7	9.4	468.6	153.9	151.0	45.6	14.8
Median	490.0	47.0	0.7	8.0	177.0	56.0	93.0	3.0	5.0
Std. Dev.	1142.1	25.9	0.1	6.2	841.7	299.3	169.6	118.7	41.4
Intermediat	e/Degraded (4	0)							
Mean	798.3	60.4	0.6	9.3	464.8	87.6	215.0	24.6	6.3
Median	735.5	60.5	0.6	8.0	317.0	47.5	149.5	2.0	4.0
Std. Dev.	589.6	28.1	0.2	6.9	454.6	121.7	203.1	74.8	5.8
Degraded (3	57)								
Mean	941.7	45.5	0.5	4.6	670.1	88.0	156.8	23.0	3.9
Median	825.0	46.0	0.5	4.0	354.0	38.0	69.0	1.0	2.0
Std. Dev.	776.6	22.5	0.2	3.2	668.5	119.1	187.9	52.4	4.0

Table 9. Summary statistics for nine indices of benthic community structure for samples in each of four categories of sediment quality in Puget Sound as classified with the triad analysis.

* SDI = Swartz's Dominance Index

Table 10. Comparisons of the percentages of sediment samples in which one or more
sediment quality guidelines were exceeded and the spatial area that they
represented in different databases and estuarine regions of the U.S.

_	Numbers of samples exceeding at least one SQG* value			rcent of y area	_
Location, database, and criteria or guideline used*	Ratio	Percent	km ²	Percent	Source of Data
PSAMP/NOAA survey of Puget Sour	nd				
 exceeded at least one ERM value exceeded at least one SQS value 	39/300	13.0	30.7	1.3	NOAA/PSAMP 1997-99 NOAA/PSAMP
(excludes qualified data)	62/300	20.7	139.8	5.9	1997-99
<u>National Inventories</u> U.S. EPA 1996 National Sediment Quality Inventory • exceeded two or more SQGs or were toxic	5460/21,000	26.0			U.S. EPA, 1997
U.S. NOAA/EMAP data base for estuaries • exceeded at least one					Long et al., 1998
ERM value • exceeded at least one PEL	291/1068	27.2			
value Field validation database for metals	385/1068	36.0			
criteria	46/77	59.7			Hansen et al., 1996
Regional Inventories: Estuaries Puget Sound SEDQUAL data base • exceeded at least one					
sediment quality criteria (i.e., SQS)	2319/8523	27.2			SEDQUAL database
NOAA survey of Biscayne Bay, FL NOAA/EMAP database for North	33/226	14.6	3.5	0.7	Long et al., 1999c
Carolina estuaries	44/175	25.1	1855.4	21±5	Hyland et al., 2000 U.S. EPA/EMAP
EMAP - Louisiana estuaries				5±5	website U.S. EPA/EMAP
EMAP - Mississippi estuaries				0.0	website
EMAP - Alabama estuaries				29±30	U.S. EPA/EMAP website
EMAP - Florida panhandle estuaries Mid-Atlantic Integrated Assessment				4.0	U.S. EPA/EMAP website U.S. EPA/EMAP
estuaries				6.0	website Steve Grabe,
Tampa Bay, FL estuary surveys Southern California Bight shelf	7/537	1.2			Hillsborough Co.

Table 10. Concluded.

_	Numbers of samples exceeding at least one SQG* value		As percent of study area		_	
Location, database, and criteria or guideline used*	Ratio	Percent	km ²	Percent	Source of Data	
Southern California Bight shelf, bays, harbors survey (1998)	78/290	26.9		14.7	SCCWRP website	
San Francisco Estuary Institute RMP data (1993-2000) • exceeded at least one					Bruce Thompson, SFEI	
ERM value (all chemicals considered) • exceeded at least one	381/397	96.0				
ERM value (excluding nickel)	20/397	5.0				
Regional Inventories: Industrial har New York/New Jersey Harbor R- EMAP survey; 1993/94	<u>bors</u>		250.5	50	Darvene Adams, U.S. EPA Region 2	
New York/New Jersey Harbor R-			225.5	47	Darvene Adams,	
EMAP survey; 1998 California BPTCP database for			235.5	47	U.S. EPA Region 2 Russell Fairey,	
harbors and bays	406/568	71.4			CalState, Moss Ldg	
Pearl Harbor, U.S. Navy survey	176/219	80.4			Jeff Grovhoug, U.S. Navy, San Diego	

*Unless indicated as otherwise, all data were calculated as incidence of samples in which one or more sediment quality guidelines (SQG), usually ERM values (Long et al., 1995), were exceeded.

Table 11. Concordance in results of toxicity tests, calculated as the numbers and percentages of stations and as the area (km²) and percentages of the total study area in which results of two or more tests exceeded critical values.

Toxicity Test and Critical Values	No. of stations	Pct. of stations	km ²	Pct. of total study area
Total Study Area	300	100.0	2363.3	100.0
Amphipod survival (<80% of controls)/ Urchin fertilization* (<80% of control)	0	0.0	0.0	0.0
Amphipod survival (<80% of controls) Microbial bioluminescence (<0.51 mg/ml)	0	0.0	0.0	0.0
Amphipod survival (<80% of controls)/ Cytochrome p-450 HRGS (>11.1 µg/g)	0	0.0	0.0	0.0
Urchin fertilization*(<80% of control)/ Microbial bioluminescence (<0.51 mg/ml)	0	0.0	0.0	0.0
Urchin fertilization* (<80% of control)/ Cytochrome p-450 HRGS (>11.1 µg/g)	18	6.0	46.6	2.0
Microbial bioluminescence (<0.51 mg/ml)/ Cytochrome p-450 HRGS (>11.1 µg/g)	1	0.3	1.1	0.05
Urchin fertilization* (80% of control)/ Microbial bioluminescence (<0.51 mg/ml)/ Cytochrome p-450 HRGS (>11.1 µg/g)	6	2.0	0.8	0.03
Total for no individual critical value exceeded	156	52.0	1721.4	72.7
Total for any one individual critical value exceeded Total for all critical values exceeded	144 0	48.0 0.0	641.9 0.0	27.2 0.0

*100% porewater

		Amphipod survival		
NOAA Regions and EMAP Provinces	Total area of survey (km ²)	toxic area (km ²)	Pct. of area toxic	Reference
NOAA Regions				
Northeastern	490.7	186.1	37.9	Long (2000a)
(MA, CT, NY, NJ)	1025	(2.1		T (2000)
Southeastern	1937	63.1	3.2	Long (2000a)
(SC, GA, FL)	00 7	24.4	24.5	
Southern California bays	99.7	34.4	34.5	Long (2000a)
(CA) Dugat Sound	2262.2	1	0.04	mussout study
Puget Sound	2363.3	1	0.04	present study
(WA) Cumulative NOAA National				
estuarine total for 1997	7280	432	5.9	Long (2000a)
	1200	752	5.7	Long (2000a)
EMAP Provinces				
Louisianian province	25725	2161	8.4	Summers et al., (1993)
Virginian province	23574	2357	10	Schimmel et al. (1994)
Carolinian province	8834.9	88	1	Hyland et al. (2000)
Californian province	3756	0	0	Bay (1996)
Cumulative EMAP estuarine total	64677	4750	7.3	Long (2000a)

 Table 12. Regional comparison of the spatial extent of toxicity in amphipod survival tests performed by NOAA and U.S. EPA.

**Ampelisca abdita* used in all regions except southern California where the test taxa was *Rhepoxynius abronius*.

			T ()		rtilization in ore waters
Survey areas	Year sampled	No. of sediment samples	Total area of survey (km²)	toxic area (km²)	Pct. of area toxic
San Pedro Bay, CA ^a	92	105	53.8	52.6	97.7%
Tampa Bay, FL	92/93	165	550	463.6	84.3%
San Diego Bay, CA ^b	93	105	40.2	25.6	76.0%
0 17					
Mission Bay, CA ^b	93	11	6.1	4.0	65.9%
Tijuana River, CA ^b	93	6	0.3	0.2	56.2%
San Diego River, CA ^b	93	2	0.5	0.3	52.0%
Biscayne Bay, FL	95/96	226	484.2	229.5	47.4%
Choctawhatchee Bay, FL	94	37	254.5	113.1	44.4%
California coastal lagoons	94	30	5	2.1	42.7%
Winyah Bay, GA	93	9	7.3	3.1	42.2%
Apalachicola Bay, FL	94	9	187.6	63.6	33.9%
Galveston Bay, TX	96	75	1351.1	432.0	32.0%
Charleston Harbor, SC	93	63	41.1	12.5	30.4%
Savannah River, GA	94	60	13.1	2.42	18.4%
Delaware Bay, DE	97	73	2346.8	247.5	10.5%
Boston Harbor, MA	93	55	56.1	3.8	6.6%
Sabine Lake, TX/LA	95	66	245.9	14.0	5.7%
Pensacola Bay, FL	93	40	273	14.4	5.3%
Puget Sound, WA ^c	97/98/99	300	2363.3	93.5	4.0%
St. Simons Sound, SC	94	20	24.6	0.7	2.6%
St. Andrew Bay, FL	93	31	127.2	2.3	1.8%
Leadenwah Creek, SC	93	9	1.7	0	0.0%
Cumulative National estuarin	e totals based u	pon data coll	ected through	<u>ı*:</u>	
•1995		940	2082.6	886.3	42.6%
•1996		1136	3723.3	1439.8	38.7%
•1997		1309	6837.8	1728.0	25.3%

Table 13. Spatial extent of toxicity (km2 and percentages of total area) in sea urchin fertilization tests performed with 100% sediment pore waters from 22 U.S. bays and estuaries (from Long, 2000a). Unless specified differently, tests were performed with Arbacia punctulata.

^a Tests performed for embryological development of *Haliotis rufescens* ^b Tests performed for embryological development of *Strongylocentrotus purpuratus*

^c Tests performed for fertilization success of *S. purpuratus*

* from Long, 2000a

Table 14. Spatial extent of toxicity (km² and percentages of total area) in microbial bioluminescence tests performed with solvent extracts of sediments from 18 U. S. bays and estuaries.

				Microbial bioluminescence		
Survey areas	Year sampled	No. of sediment samples	Total area of survey (km²)	toxic area (km²)	Pct. of area toxic	
Choctawhatchee Bay, FL	94	37	254.5	254.5	100.0%	
St. Andrew Bay, FL	93	31	127.2	127	100.0%	
Apalachicola Bay, FL	94	9	187.6	186.8	99.6%	
Pensacola Bay, FL	93	40	273.0	262.8	96.4%	
Galveston Bay, TX	96	75	1351.1	1143.7	84.6%	
Sabine Lake, TX/LA	95	66	245.9	194.2	79.0%	
Winyah Bay, GA	93	9	7.3	5.1	70.0%	
Long Island Sound, NY/CT	91	60	71.9	48.8	67.9%	
Savannah River, GA	94	60	13.1	7.49	57.1%	
Biscayne Bay, FL	95/96	226	484.2	248.4	51.3%	
St. Simons Sound, SC	94	20	24.6	11.4	46.4%	
Boston Harbor, MA	93	55	56.1	25.8	44.9%	
Charleston Harbor, SC	93	63	41.1	17.6	42.9%	
Hudson-Raritan Estuary, NY/NJ	91	117	350.0	136.1	38.9%	
Leadenwah Creek, SC	93	9	1.7	0.34	20.1%	
Delaware Bay, DE ^A	97	73	2346.8	114.0	4.9%	
Puget Sound, WA ^A	97/98/99	300	2363.3	10.5	0.4%	
Tampa Bay, FL	92/93	165	550.0	0.6	0.1%	
Cumulative National estuarine to	tals based un	on data colle	cted through*;	*•		
•1995	tais based up	<u>846</u>	2416.2	<u>.</u> 1482.3	61.3%	
•1996		1042	4039.2	2670.7	66.1%	
•1997		1215	7160.0	2802.4	39.1%	

^A Critical value of <0.51 mg/ml ** from Long, 2000a

					HRGS 1 ug/g)		S (>37.1 g/g)
Survey areas	Year(s) sampled	No. of samples	Total area of survey (km ²)	toxic area (km ²)	Pct. of area toxic	toxic area (km ²)	Pct. of area toxic
California coastal lagoons	1994	30	5	2.3	46.8	0	0
Puget Sound, WA	1997-99	300	2363.3	586.3	24.8	67	2.8
Delaware Bay, DE	1997	73	2346.8	145.2	6.2	80.5	3.4
Galveston Bay, TX	1996	75	1351.5	56.7	4.2	0	0
Biscayne Bay, FL Sabine Lake,	1996	121	271.4	8.8	3.3	0	0
TX/LA	1995	65	245.9	6.7	2.7	1.7	0.7
Cumulative Nationa	al estuarine	totals based	l upon data collect	ted through	<u>.*:</u>		
•1997		664	6583.9	806	12.2	149.2	2.3
•1997		004	0585.9	800	12.2	149.2	2.

Table 15. Spatial extent of toxicity (km² and percentages of total area) in cytochromeP-450 HRGS tests performed with solvent extracts of sediments from 6 U. S. baysand estuaries.

* from Long, 2000a

This page is purposely blank for duplex printing

Appendix A

Triad data - Results of selected toxicity, chemistry, and infaunal analysis for all 1997-1999 Puget Sound stations.

- **Amphipod:** *p<0.05, avg. survival >80% of CLIS control; ** p<0.05 and avg. survival <80% of control one-way, unpaired t-test
- Urchin fertilization: *p<0.05, **p<0.01 and <80% of controls. Dunnett's T-test
- **Microtox:** ^ = mean EC50 <0.51 mg/ml determined as the 80% lower prediction limit (LPL) with the lowest (i.e., most toxic) samples removed, but >0.06 mg/ml determined as the 90% lower prediction limit (LPL) earlier in this report.
- Cytochrome P-450 HRGS as µgB[a]p/g: ++value 11.1 benzo[a]pyrene equivalents (ug/g sediment) determined as the 80% upper prediction limit (UPL); +++ = value >37.1 benzo[a]pyrene equivalents (ug/g sediment) determined as the 90% upper prediction limit (UPL)
- As there are no accepted guidelines or criteria for the determination of impaired infaunal assemblages, best professional judgment was used to indicate whether the infaunal assemblage as each station appeared to be impacted, based on a combination of benthic indices examined. An assemblage was classified as impacted primarily if it had a combination of low benthic indicators, although some of the impacted stations possessed high total abundance and/or Swartz's Dominance Index, due to high abundance of 1 or 2 pollution tolerant taxa.

This page is purposely blank for duplex printing

Appendix A. Selected results for chemistry, toxicity, and infaunal analyses for all 1997-1999 Puget Sound stations.

Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
1, 1, Drayton	5.56	0	0.07		Other: Phenol		98.0		117.0		2.37		6.46		487	53	0.85	16	272	109	19	68	19	no	Nephtys cornuta	45
Harbor																									Protomedeia grandimana	45
																									Amage sp	33
																									Rochefortia tumida	32
1, 2, Drayton	5.56	0	0.10		Other: Phenol	Other: Phenol	98.0		29.0	**	1.80		8.51		122	24	0.88	10	59	24	0	35	4	no	Nephtys cornuta	17
Harbor																									Protomedeia grandimana	15
																									Macoma nasuta	13
																									Glycinde polygnatha	13
1.0.0	/	0	0.00				102.0		0.0	**	1.00		10.51		5.4		0.00	~	27	0	0	17	0		N. 1	14
1, 3, Drayton Harbor	5.56	0	0.09		Other: Phenol		103.0		0.0	**	1.33		10.51		54	11	0.89	5	37	0	0	17	0	no	Nephtys cornuta	14
maroor																									Prionospio (Minuspio) lighti	8
																									Terebellides californica	8
																									Macoma nasuta	7
2, 4,	10.97	0	0.10				96.0		118.0		2.73		2.72		864	49	0.56	5	74	572	51	160	7	no	Eudorella pacifica	388
Semiahmoo																									Psephidia lordi	109
Bay																									Protomedeia grandimana	103
																									Amphiodia urtica/periercta	43
																									complex	
2, 5,	10.97	1	0.12		Other: Benzoic Acid,	Other: Benzoic Acid,	91.0		118.0		1.06		2.51		1118	29	0.44	2	411	653	41	13	0	no	Protomedeia grandimana	612
2, 5, Semiahmoo	10.77	1	0.12		Phenol	Phenol	71.0		110.0		1.00		2.51		1110	2)	0.77	2	411	055	71	15	0	по	Terebellides horikoshii	273
Bay																									Prionospio (Minuspio) lighti	90
																									· · · · · · · · · · · · · · · · · · ·	
																									Amphiodia urtica/periercta	39
																									complex	
2.6	10.97	1	0.11		Othern Dama in Arit	Othern Den 1 A 11	00.0		117.0		2.50	$\left \right $	0 71		1100	37	0.44	2	05	025	24	66	0		Drotomodojo gran Jimana	675
2, 6, Semiahmoo	10.97	1	0.11		Other: Benzoic Acid, Phenol	Other: Benzoic Acid, Phenol	99.0		117.0		2.50		8.71		1100	51	0.44	2	85	925	24	66	0	no	Protomedeia grandimana Pontoporeia femorata	675
Bay																					1			1	Terebellides horikoshii	44
																									Pinnixa schmitti	38
												┝──┤											-			50
3, 7, West	8.82	0	0.06				96.0		117.0		6.83		0.27		5055	64	0.48	3	358	2062	46	2581	8	no	Rochefortia tumida	1635
Boundary		Ĭ													2.000								Ŭ		Ampelisca agassizi	1299
Bay																									Psephidia lordi	885
																					1			1	Euphilomedes carcharodonta	373
																					1		1	1		

Appendix A. Continued.

- ppen	dix A		Jutin	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.lugB[a]p/g, +++=>37.lugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Mise. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
3, 8, West Boundary Bay	8.82	0	0.08		Other: Phenol	Other: Phenol	100.0		117.0		1.02		2.17		783	43	0.61	5	555	106	65	57	0	no	Prionospio (Minuspio) lighti Terebellides horikoshii Protomedeia grandimana Paraprionospio pinnata	283 141 79 67
3, 9, West Boundary Bay	8.82	0	0.15	Metals: Mercury	Metals: Mercury; Other: Benzoic Acid, Phenol	Metals: Mercury; Other: Benzoic Acid, Phenol	99.0		118.0		1.67		2.32		197	33	0.74	8	128	6	25	37	1	no	Terebellides horikoshii Lumbrineris cruzensis Amphiodia urtica/periercta complex Axinopsida serricata	63 23 23 15
4, 10, South Boundary Bay	24.28	0	0.10		Other: Phenol	Other: Phenol	99.0		118.0		9.37		5.83		521	56	0.76	11	150	165	18	123	65	no	Eudorella pacifica Acila castrensis Pulsellum salishorum Levinsenia gracilis	91 65 63 52
																									, , , , , , , , , , , , , , , , , , ,	
4, 11, South Boundary Bay	24.28	1	0.11		Other: Phenol	Other: Phenol	93.0		117.0		1.57		3.03		1083	38	0.57	4	141	653	28	261	0	no	Protomedeia grandimana Eudorella pacifica Psephidia lordi Lumbrineris cruzensis	447 170 162 48
4, 12, South Boundary Bay	24.28	1	0.11		Other: Phenol	Other: Phenol	101.0		116.0		2.23		2.57		856	51	0.58	5	77	615	54	94	16	no	Eudorella pacifica Protomedeia grandimana Amphiodia urtica/periercta complex Psephidia lordi	304 238 50 30
4, 13, South Boundary Bay	24.28	0	0.10		Other: Phenol		95.0		116.0		4.37		3.95		554	59	0.76	12	124	240	80	105	5	no	Eudorella pacifica Amphiodia urtica/periercta complex Acila castrensis Protomedeia grandimana	104 74 50 45
5, 14, Birch Bay	4.74	0	0.10		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol, Phenol	96.0		117.0		1.46		2.01		965	40	0.63	5	89	455	24	392	5	no	Protomedeia grandimana Rochefortia tumida Psephidia lordi Megamoera borealis	280 197 153 59
5, 15, Birch Bay	4.74	0	0.10		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol, Phenol	97.0		118.0		2.90		2.40		1235	43	0.56	4	48	554	103	527	3	no	Psephidia lordi Eudorella pacifica Protomedeia grandimana Amphiodia urtica/periercta complex	436 307 146 85
5, 16, Birch Bay	4.74	0	0.09		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol, Phenol	99.0		118.0		2.63		2.67		746	38	0.58	5	90	434	21	199	2	no	Protomedeia grandimana Rochefortia tumida	351 111

Apper	naix A	I. C	ontin	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*		5 Count
																									Psephidia lordi Pontoporeia femorata	63 23
																										25
6, 17, Cherry Point	6.19	0	0.12		Other: Phenol		99.0		115.0		4.90		3.01		1454	74	0.62	9	227	223	14	956	34	no	Psephidia lordi Axinopsida serricata Eudorella pacifica Levinsenia gracilis	586 112 85 71
6, 18, Cherry	6.19	0	0.11		Other: Phenol		100.0		112.0		2.40		2.83		1092	52	0.53	4	98	268	25	689	12	no	Rochefortia tumida	548
Point	0.17	Ū	0.11				100.0		112.0		2.10		2.05		1072	52	0.55		70	200	25	007	12	10	Rhepoxynius boreovariatus	110
																									Tellina modesta	104 74
																									Protomedeia grandimana	/4
6, 19, Cherry	6.19	0	0.10		Other: Phenol		98.0		115.0		12.17		3.04		792	63	0.77	13	263	68	20	362	79	no	Axinopsida serricata	105
Point																									Levinsenia gracilis	85
																									Acila castrensis	81
																									Pulsellum salishorum	74
7, 20,	3.17	2	0.16				98.0		113.0		7.33		1.49		1860	49	0.39	2	1270	503	70	7	10	no	Owenia fusiformis	1145
Bellingham Bay	5.17	2	0.10				98.0		115.0		1.55		1.49		1800	49	0.39	2	1270	505	70	,	10	10	Euphilomedes carcharodonta	260
																									Protomedeia prudens/Cheirimedeia zotea	186
																									Amphiodia urtica/periercta complex	54
7.01	3.17	2	0.20				0(0		112.0		5.40		1.70		2672	57	0.20	_	1704	749	02	25	12		Ouumin familie	1(20
7, 21, Bellingham Bay	3.17	3	0.20				96.0		113.0		5.43		1.72		2672	55	0.39	2	1794	748	93	25	12	no	Owenia fusiformis Euphilomedes carcharodonta	1620 408
																									Protomedeia prudens/Cheirimedeia zotea	235
																									Amphiodia urtica/periercta complex	79
7, 22,	3.17	3	0.20				97.0		46.0	**	1.57		1.63		1846	41	0.51	5	1661	36	20	4	125	no	Aphelochaeta monilaris	1059
7, 22, Bellingham	5.17	5	0.20				97.0		40.0		1.37		1.05		1040	41	0.51	5	1001	50	20	4	123	10	Nephtys cornuta	1039
Bay																									Scoletoma luti	107
																									Heteromastus filobranchus	71

Apper	iaix A	I. U	ontin	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
8, 23,	1.27	3	0.21				99.0		114.0		8.23		2.63		5125	31	0.25	1	4228	712	170	7	8	no	Owenia fusiformis	4155
Bellingham Bay																									Euphilomedes carcharodonta	384
																									Protomedeia prudens/Cheirimedeia zotea	203
																									Amphiodia urtica/periercta complex	152
8, 24,	1.27	3	0.20				104.0		115.0		5.93		2.98		2786	36	0.40	3	1843	759	173	4	7	no	Owenia fusiformis	1720
Bellingham Bay																									Euphilomedes carcharodonta	347
																									Protomedeia prudens/Cheirimedeia zotea	294
																									Amphiodia urtica/periercta complex	164
8, 25, Bellingham Bay	1.27	3	0.21				99.0		114.0		4.00		2.06		984	37	0.49	3	58	802	116	1	7	no	Protomedeia prudens/Cheirimedeia zotea	358
																									Euphilomedes carcharodonta	355
																									Amphiodia urtica/periercta complex	109
																									Pinnixa schmitti	17
9A, 26, Bellingham Bay	1.24	4	0.23				101.0		119.0		12.87		4.70		1602	30	0.55	3	186	1135	266	0	15	no	Protomedeia prudens/Cheirimedeia zotea	594
																									Euphilomedes carcharodonta	423
																									Amphiodia urtica/periercta complex	250
																									Owenia fusiformis	57
9A, 27, Bellingham Bay	1.24	6	0.23		Metals: Mercury		99.0		119.0		12.00		3.31		1908	40	0.57	4	549	1118	221	4	16	no	Protomedeia prudens/Cheirimedeia zotea	600
																									Euphilomedes carcharodonta	381
																									Cirratulus spectabilis	319
																									Amphiodia urtica/periercta	216
1	1															l							1	1	complex	

Appendix A. Continued.

Appen		. U	onun	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
9A, 28, Bellingham	1.24	15	0.28		Metals: Mercury;		93.0		117.0		0.63		19.09	++	143	35	0.79	11	102	9	14	16	2	no	Nephtys cornuta	40
Bay					Other: Phenol																				Aphelochaeta monilaris	14
																									Amphiuridae	13 8
																									Podarke pugettensis	8
10, 29,	2.47	9	0.23		Other: Bis(2-	Other: 4-	98.0		120.0		2.13		3.00		5783	41	0.35	2	4129	1194	420	27	13	no	Owenia fusiformis	4048
Bellingham	2.17		0.25		Ethylhexyl) Phthalate, 4-		20.0		120.0		2.15		5.00		5705		0.55	-			.20				Protomedeia	496
Bay					Methylphenol, Phenol																				prudens/Cheirimedeia zotea	
																									Amphiodia urtica/periercta	365
																									complex Euphilomedes carcharodonta	237
																									Euphnomedes carenarodonta	257
10, 30,	2.47	11	0.28		Other: 4-Methylphenol,		91.0		121.0		1.93		16.08	++	1908	36	0.59	4	773	444	595	93	3	no	Amphiodia urtica/periercta	516
Bellingham					Phenol	Methylphenol																			complex	
Bay																									Owenia fusiformis	392 321
																									Pholoe sp Cmplx Euphilomedes carcharodonta	252
																									Eupinionieues carenarouonta	232
10, 31,	2.47	10	0.24		Other: 4-Methylphenol,		96.0		118.0		3.07		2.92		280	33	0.79	9	108	20	95	55	2	no	Amphiodia urtica/periercta	52
Bellingham					Phenol	Methylphenol																			complex	10
Bay																									Amphiuridae	43
																									Pholoe sp Cmplx Axinopsida serricata	35 27
																									Axinopsida serricata	27
11, 32,	8.59	3	0.20				102.0		94.0		0.47	^	3.31		403	33	0.61	5	287	5	13	96	2	no	Aphelochaeta monilaris	170
Bellingham	0.07		0.20				102.0		21.0		0.17		5.51		.05	55	0.01		207	5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-		Axinopsida serricata	78
Bay																									Heteromastus filobranchus	35
																									Glycera nana	17
																								†		
11, 33,	8.59	4	0.18				102.0		117.0		2.17		4.09		379	47	0.71	10	272	24	19	62	2	no	Aphelochaeta monilaris	119
Bellingham		1																						1	Axinopsida serricata	51
Bay																								1	Heteromastus filobranchus	42
																									Lumbrineris cruzensis	15
11, 34, Dallin altare	8.59	3	0.18		Other: Phenol		94.0		103.0		0.51		2.76		1303	30	0.28	1	1139	11	10	141	2	yes	Aphelochaeta monilaris	1037
Bellingham Bay																								1	Axinopsida serricata	127
Duy		1																						1	Heteromastus filiformis	24
																1					1		1	1	Lumbrineris cruzensis	20

Appendix A. Continued.

Appen			mum	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Mise. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
12, 35, Bellingham Bay	18.96	1	0.11		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol	100.0		117.0		2.90		3.12		520	41	0.68	7	261	34	163	58	4	no	Amphiodia urtica/periercta complex Levinsenia gracilis Cossura pygodactylata Ennucula tenuis	142 126 38 35
12, 36, Bellingham Bay	18.96	3	0.13		Other: Phenol		102.0		109.0		20.97		3.01		409	34	0.68	5	129	26	191	62	1	no	Amphiodia urtica/periercta complex Amphiuridae Levinsenia gracilis Axinopsida serricata	128 62 60 43
12, 37, Bellingham Bay	18.96	3	0.18				95.0		114.0		2.67		4.50		232	44	0.83	15	157	26	7	37	5	no	Aphelochaeta monilaris Heteromastus filiformis Axinopsida serricata Lumbrineris cruzensis	32 32 21 18
13, 38, Samish / Bellingham Bay	21.37	1	0.11		Other: Di-N- Butylphthalate, 4- Methylphenol, Phenol	Other: 4- Methylphenol, Phenol	99.0		116.0		21.03		9.23		1202	40	0.55	4	397	173	564	63	5		Amphiodia urtica/periercta complex Prionospio (Minuspio) lighti Eudorella pacifica Levinsenia gracilis	507 246 110 64
13, 39, Samish / Bellingham Bay	21.37	1	0.10		Other: 4-Methylphenol	Other: 4- Methylphenol	104.0		117.0		5.17		3.80		509	49	0.75	12	121	65	24	240	59	no	Acila castrensis Pulsellum salishorum Eudorella pacifica Levinsenia gracilis	140 58 35 29
13, 40, Samish / Bellingham Bay	21.37	0	0.06				94.0		115.0		0.98		2.99		2529	83	0.58	5	511	928	347	722	21		Rochefortia tumida Ampelisca agassizi Owenia fusiformis Amphiodia urtica/periercta complex	598 597 334 334
14, 41, Inner Padilla Bay	4.38	1	0.07		Other: Di-N- Butylphthalate, Phenol	Other: Phenol	101.0		103.0		0.54		12.41	++	2651	76	0.57	7	1989	185	124	349	4	no	Oligochaeta Exogone lourei Dorvillea annulata Rochefortia tumida	1168 323 139 139

Appendix A. Continued.

Appen	uix A	. U	onun	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Mise. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
14, 42, Inner Padilla Bay	4.38	1	0.07		Other: Phenol	Other: Phenol	91.0		112.0		2.80		7.64		1189	72	0.69	11	370	385	93	332	9	no	Rochefortia tumida Aoroides intermedius Owenia fusiformis Caprella laeviuscula	224 222 156 85
14, 43, Inner Padilla Bay	4.38	1	0.07		Other: 4-Methylphenol	Other: 4- Methylphenol	100.0		51.0	**	1.83		1.78		7671	110	0.48	4	5084	2016	66	430	75	no	Owenia fusiformis Leptochelia savignyi Exogone lourei Exogone dwisula	2996 1680 910 192
15, 44, Outer Padilla Bay	7.23	1	0.10		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol	91.0		116.0		6.47		6.32		498	52	0.80	12	121	176	63	136	2	no	Eudorella pacifica Acila castrensis Amphiodia urtica/periercta complex Levinsenia gracilis	68 57 56 35
15, 45, Outer Padilla Bay	7.23	1	0.11		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol	95.0		120.0		2.67		1.50		634	49	0.74	10	85	143	11	389	6	no	Acila castrensis Psephidia lordi Eudorella pacifica Ennucula tenuis	148 81 79 39
15, 46, Outer Padilla Bay	7.23	1	0.10		Other: 4-Methylphenol, Phenol	Other: 4- Methylphenol	93.0		118.0		4.73		2.68		398	54	0.80	14	61	88	23	222	4	no	Acila castrensis Psephidia lordi Eudorella pacifica Heterophoxus affinis	75 35 27 25
16, 47, March Point	0.69	0	0.08		Other: 4-Methylphenol	Other: 4- Methylphenol	91.0		114.0		3.70		11.10		633	91	0.80	22	333	19	1	271	9	no	Psephidia lordi Axinopsida serricata Prionospio steenstrupi/jubata Maldane sarsi	88 71 41 32
16, 48, March Point	0.69	0	0.08		Other: Di-N- Butylphthalate, Phenol		94.0		114.0		6.47		12.19	++	587	90	0.81	21	354	47	14	151	21	no	Prionospio steenstrupi/jubata Axinopsida serricata Tharyx sp N1 Psephidia lordi	87 38 30 29
16, 49, March Point	0.69	1	0.08		Other: 4-Methylphenol	Other: 4- Methylphenol	100.0		112.0		1.23		9.79		1555	65	0.65	8	755	396	78	309	17	no	Owenia fusiformis Protomedeia grandimana Rochefortia tumida Oligochaeta	424 249 190 105

Appendix A. Continued.

Apper	iaix A	. U	onun	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
17, 50, Inner	0.84	4	0.11		Other: 4-Methylphenol,	Other: 4-	90.0		115.0		1.10		1.89		623	50	0.68	9	358	78	16	165	6	no	Oligochaeta	220
Fidalgo Bay	0.04	4	0.11		Phenol	Methylphenol	90.0		115.0		1.10		1.09		025	50	0.08	,	558	78	10	105	0	110	Rochefortia tumida	59
																									Euphilomedes carcharodonta	51
																									·1	
																									Capitella capitata	35
																									hyperspecies	
17, 51, Inner	0.84	2	0.11		Other: 4-Methylphenol,	Other: 4-	96.0		51.0	**	3.83		3.70		1358	72	0.51	5	613	43	15	675	12	no	Psephidia lordi	569
Fidalgo Bay	0.64	2	0.11		Phenol	Methylphenol	90.0		51.0		5.65		3.70		1556	12	0.51	5	015	43	15	075	12	110	Owenia fusiformis	386
																									Aricidea lopezi	26
																									Terebellides horikoshii	24
17, 52, Inner	0.84	5	0.11				93.0		101.0		0.89		3.72		339	41	0.74	8	166	72	11	85	5	no	Euphilomedes carcharodonta	67
Fidalgo Bay																										
																									Oligochaeta	48
																									Psephidia lordi	37
																									Glycinde polygnatha	33
18, 53, Outer	0.94	1	0.09		Other: 4-Methylphenol	Other: 4-	91.0		113.0		2.80		10.79		748	63	0.78	14	308	181	72	167	20	no	Protomedeia grandimana	127
Fidalgo Bay	0.94		0.07		other. 4-wieuryiphenor	Methylphenol	21.0		115.0		2.00		10.75		/ 10	05	0.70		500	101	12	107	20	no	Amphiodia urtica/periercta	71
																									complex	
																									Aphelochaeta sp N1	69
																									Rochefortia tumida	68
18, 54, Outer Fidalgo Bay	0.94	1	0.10		Other: 4-Methylphenol	Other: 4- Methylphenol	98.0		111.0		3.27		12.11	++	707	50	0.71	9	276	140	9	275	.7	no	Rochefortia tumida	204 90
r luaigo Bay						weuryiphenor																			Protomedeia grandimana Aphelochaeta monilaris	90 75
																									Owenia fusiformis	41
<u> </u>																									o weina rushonnis	-11
18, 55, Outer	0.94	0	0.09				98.0		115.0		11.33		6.60		633	103	0.82	25	305	51	63	204	10	no	Psephidia lordi	75
Fidalgo Bay																					_				Amphiodia urtica/periercta	59
																									complex	
																									Scoletoma luti	41
																					L				Nephtys cornuta	36
10.56	1.04	0	0.07		Od D' M		05.0		110.0		15.72		4.00		405	71	0.77	17	0.5	25	C	275			D 1'F 1 F	217
19, 56, March Point	1.24	0	0.07		Other: Di-N- Butylphthalate		95.0		119.0		15.73		4.88		495	71	0.67	17	85	35	8	365	2	no	Psephidia lordi	217
march i ollit					Butyiphthalate																				Alvania compacta Protothaca staminea	22 16
																							1		Axinopsida serricata	16
1	1	1					1	l I	1	1		1		1							1		1		raamopsiua serricata	10

Apper	iaix A	I. C	ontin	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
19, 57,	1.24	0	0.09				101.0		121.0		19.00		8.91		203	45	0.85	14	45	18	11	128	1	no	Psephidia lordi	28
March Point																									Leitoscoloplos pugettensis	19
																									Axinopsida serricata	16
																									Parvilucina tenuisculpta	15
19, 58,	1.24	0	0.07				100.0		120.0		9.80		5.12		646	95	0.82	24	319	21	10	290	6	no	Axinopsida serricata	76
March Point																									Owenia fusiformis	65
																									Psephidia lordi	56
																									Magelona longicornis	32
9B, 59, Bellingham	2.01	6	0.25				96.0		103.0		4.13		3.08		1232	31	0.63	4	326	720	180	4	2	no	Euphilomedes carcharodonta	321
Bay																									Protomedeia prudens/Cheirimedeia zotea	264
																									Owenia fusiformis	189
																									Amphiodia urtica/periercta	170
-																									complex	
9B, 60,	2.01	16	0.32		Metals: Mercury;	Other: 4-	94.0		104.0		3.47		8.64		3444	39	0.42	3	2380	595	437	16	16	no	Owenia fusiformis	2146
Bellingham Bay					Other: 4-Methylphenol	Methylphenol																			Amphiodia urtica/periercta complex	402
																									Protomedeia prudens/Cheirimedeia zotea	186
																									Euphilomedes carcharodonta	167
9B, 61,	2.01	10	0.24		Other: 4-Methylphenol		98.0		98.0		2.73		2.41		2672	38	0.57	4	702	1294	650	15	11	no	Amphiodia urtica/periercta	589
Bellingham Bay						Methylphenol																			complex Owenia fusiformis	584
Бау																										565
																									Euphilomedes carcharodonta	303
																									Protomedeia	453
																									prudens/Cheirimedeia zotea	100
21, 62,	10.47	1	0.11		Other: 4-Methylphenol,	Other: 4-	94.0		102.0		6.30		0.62		900	51	0.49	4	206	85	1	588	20	no	Axinopsida serricata	536
Skagit Bay			1		Phenol	Methylphenol																	1		Sternaspis cf fossor	90
		1																							Euphilomedes carcharodonta	37
		1																					1	1	Scoletoma luti	26

Appendix A. Continued.

Appen	aix A	. U	onum	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
21, 63, Skagit Bay	10.47	0	0.09				97.0		100.0		8.90		0.36		408	64	0.76	13	231	93	0	80	4	no	Scalibregma inflatum Scoletoma luti Astyris gausapata Rhepoxynius boreovariatus	93 46 36 27
21, 64, Skagit Bay	10.47	2	0.12		Other: Bis(2- Ethylhexyl) Phthalate, 4- Methylphenol	Other: Bis(2- Ethylhexyl) Phthalate, 4-Methylphenol	101.0		95.0		3.97		0.87		797	71	0.51	6	255	19	3	513	7	no	Axinopsida serricata Sternaspis cf fossor Prionospio steenstrupi/jubata Scoletoma luti	448 82 19 18
22, 65, North Saratoga Passage	13.65	1	0.11		Other: 4-Methylphenol	Other: 4- Methylphenol	97.0		90.0		1.50		1.10		603	60	0.65	7	373	39	1	177	13	no	Spiochaetopterus costarum Axinopsida serricata Heteromastus filobranchus Aoroides intermedius	184 106 68 32
22, 66, North Saratoga Passage	13.65	3	0.15		Other: 4-Methylphenol	Other: 4- Methylphenol	98.0		88.0		2.13		2.43		600	36	0.59	3	404	13	0	177	6	no	Heteromastus filiformis Axinopsida serricata Scalibregma inflatum Sternaspis cf fossor	204 142 109 24
22, 67, North Saratoga Passage	13.65	3	0.13		Other: 4-Methylphenol	Other: 4- Methylphenol	96.0		96.0		2.43		3.04		272	40	0.77	9	179	27	0	61	5	no	Axinopsida serricata Cossura pygodactylata Prionospio steenstrupi/jubata Heteromastus filobranchus	54 42 29 20
23, 68, Oak Harbor	0.41	2	0.14		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	98.0		103.0		1.16		4.72		1110	43	0.57	5	966	5	0	134	5	yes	Aphelochaeta sp N1 Oligochaeta Aphelochaeta monilaris Psephidia lordi	450 173 138 71
23, 69, Oak Harbor	0.41	2	0.13		Other: Benzoic Acid, 4- Methylphenol, Phenol	Other: Benzoic Acid, 4-Methylphenol, Phenol	94.0		103.0		1.11		4.54		194	32	0.81	10	95	6	0	90	3	no	Psephidia lordi Heteromastus filobranchus Macoma nasuta Rochefortia tumida	46 29 12 11
23, 70, Oak Harbor	0.41	3	0.15		Other: 4-Methylphenol	Other: 4-Methylphenol	99.0		103.0		0.61		3.50		1159	40	0.49	4	980	4	0	163	12	yes	Aphelochaeta sp N1 Aphelochaeta sp Psephidia lordi Oligochaeta	623 119 112 81

Appendix A. Continued.

Appen	uix A	. U	ontin	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
24, 71, Penn Cove	3.06	5	0.16		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	82.0		104.0		2.13		2.28		650	23	0.55	3	577	3	1	65	4	no	Paraprionospio pinnata Scalibregma inflatum Heteromastus filiformis Axinopsida serricata	288 140 65 63
24, 72, Penn Cove	3.06	3	0.14		Other: 4-Methylphenol, Phenol	Other: 4-Methylphenol	94.0		100.0		13.77		3.63		697	51	0.57	4	533	14	3	139	8	no	Heteromastus filobranchus Axinopsida serricata Scalibregma inflatum Sigambra nr bassi	309 95 64 57
24, 73, Penn Cove	3.06	3	0.15		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	98.0		102.0		0.94		2.74		318	36	0.71	6	215	2	1	90	10	no	Axinopsida serricata Paraprionospio pinnata Sigambra nr bassi Scalibregma inflatum	62 53 51 50
25, 74, Mid- Saratoga Passage	17.39	3	0.15		Other: 4-Methylphenol	Other: 4-Methylphenol	94.0		97.0		4.20		2.61		223	32	0.81	10	141	15	0	64	3	no	Axinopsida serricata Cossura pygodactylata Heteromastus filobranchus Prionospio (Minuspio) lighti	59 21 18 15
25, 75, Mid- Saratoga Passage	17.39	3	0.16		Other: 4-Methylphenol	Other: 4-Methylphenol	97.0		92.0		4.10		2.83		253	31	0.63	6	81	38	1	128	5	no	Axinopsida serricata Cossura bansei Prionospio steenstrupi/jubata Eudorella pacifica	125 21 15 13
25, 76, Mid- Saratoga Passage	17.39	3	0.15		Other: Benzoic Acid	Other: Benzoic Acid	94.0		94.0		3.80		4.66		225	36	0.60	5	81	25	1	117	1	no	Axinopsida serricata Levinsenia gracilis Cossuridae Spiochaetopterus costarum	115 22 16 8
26, 77, South Saratoga Passage	17.08	1	0.10				102.0		101.0		45.50		1.06		429	71	0.73	15	203	37	1	179	9	no	Myriochele heeri Axinopsida serricata Adontorhina cyclia Leitoscoloplos pugettensis	93 84 42 14
26, 78, South Saratoga Passage	17.08	3	0.15		Other: 4-Methylphenol	Other: 4-Methylphenol	95.0		102.0		11.13		4.15		137	44	0.88	16	93	19	4	7	14	no	Heteromastus filobranchus Eudorella pacifica Sternaspis ef fossor Euclymeninae	17 10 9 9

Apper	idix A	. C	ontin	lued.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
26, 79, South Saratoga	17.08	3	0.17		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	97.0		101.0		9.67		3.78		203	44	0.76	10	153	24	3	11	12	no	Prionospio (Minuspio) lighti	51
Passage																									Heteromastus filobranchus	24
																									Prionospio steenstrupi/jubata	19
																									Eudorella pacifica	14
27, 80, Port	20.40	3	0.20				98.0		98.0		77.73		3.72		312	44	0.70	10	238	30	0	42	2	no	Levinsenia gracilis	111
Susan																									Scoletoma luti	41
																									Ennucula tenuis	20 14
																									Trochochaeta multisetosa	14
27, 81, Port	20.40	3	0.21				99.0		95.0		12.60		2.79		128	33	0.72	10	48	13	2	62	3	20	Axinopsida serricata	54
Susan	20.40	3	0.21				99.0		95.0		12.00		2.79		120	33	0.72	10	40	15	2	02	3	no	Levinsenia gracilis	9
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~																									Onuphis elegans	7
																									Chaetozone sp	6
																									cinactorione sp	Ű
27, 82, Port	20.40	3	0.20				96.0		76.0	**	6.70		5.76		148	18	0.72	4	39	57	3	45	4	no	Eudorella pacifica	44
Susan																									Axinopsida serricata	37
																									Pista wui	23
																									Bathymedon pumilus	9
28, 83,	20.21	2	0.14				101.0		121.0		7.07		7.05		269	70	0.87	25	147	43	2	59	18	no	Adontorhina cyclia	36
Possession																									Scoletoma luti	24
Sound																									Sternaspis cf fossor	14
																									Leitoscoloplos pugettensis	14
																										ļ
28, 84,	20.21	5	0.16				99.0		120.0		8.13		4.83		332	44	0.73	10	158	26	4	131	13	no	Axinopsida serricata	102
Possession Sound																									Heteromastus filobranchus	40
~ ~ ~ ~ ~ ~																									Microclymene caudata Prionospio (Minuspio) lighti	22 20
																									ritonospio (minuspio) righti	20
28, 85,	20.21	4	0.18		Other: Bis(2-	Other: Bis(2-	99.0		119.0		9.67		5.46		322	31	0.62	5	98	43	1	174	6	no	Axinopsida serricata	154
Possession Sound					Ethylhexyl) Phthalate	Ethylhexyl) Phthalate										1					1		1	1	Eudorella pacifica	31
Sound																									Chaetozone commonalis	22
										1															Prionospio steenstrupi/jubata	21

Evereti Harbor h	Appen	dix A	. U	ontin	uea.																						
Koveri Lieber Verie Lieber Verie Lieber Verie Lieber Medbyhenol Lieber Medbyhenol L	Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
Fixed Index View Prior Pri																											
Linker: Linker: Condition: Con		0.05	22	1.77	· · · · · · · · · · · · · · · · · · ·			96.0		23.0	**	0.51		202.20	+++	54	7	0.73	3	12	42	0	0	0	yes	1 0 1	
k k					2 · · · · ·		4-Methylphenol																			-	
1 1	Tharbor				Acenaphthene,	rour moeiors																					7
Image: Appendix and provide of control operations of the provide operation operations of the provide operation operations of the provide operation operations operation																											4
Evereti Harbor is a spectral s					LPAH; Other: Total																						
Evereti Harbor																											
Hurbor Image: biology of the sense in the sens		0.05	20	0.40	LPAHs: Total LPAH			84.0		12.0	**	0.69		33.10	++	109	9	0.57	2	57	52	0	0	0	yes		52
Image: Appendix and problem in the						Methylphenol	4-Methylphenol																				40
Image: Appendix and proving the pro																										-	
var																										10 1	
Evereti Harbor Angle Ang																											
Harbor	29, 88, Inner	0.05	23	0.41	LPAHs: Total LPAH	Other: Benzoic Acid, 4-	Other: Benzoic Acid,	90.0		50.0	**	0.94		115.80	+++	40	4	0.64	2	19	21	0	0	0	yes	Nebalia pugettensis Cmplx	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Everett					Methylphenol	4-Methylphenol																			Capitella capitata	18
Image: Appendix and a problem in the proper interpret i	Harbor																										
No.8																										-	1
Midele Everett LPAHs: Accomphthene, Pienerte, Total LPAH Methylphenol 4-Methylphenol 4-Methylphenol </td <td></td> <td>Aoroides sp</td> <td>1</td>																										Aoroides sp	1
Midele Everett LPAHs: Accomphthene, Pienerte, Total LPAH Methylphenol 4-Methylphenol 4-Methylphenol </td <td>20.80</td> <td>0.06</td> <td>21</td> <td>0.51</td> <td>IID A Hay Daman at</td> <td>Othern Denneis Arid 4</td> <td>Othern Democia Asid</td> <td>80.0</td> <td></td> <td>0.0</td> <td>**</td> <td>0.20</td> <td>^</td> <td>25.90</td> <td>1.1</td> <td>74</td> <td>7</td> <td>0.25</td> <td>1</td> <td>60</td> <td>2</td> <td>0</td> <td>2</td> <td>0</td> <td>1100</td> <td>Conitella coniteta</td> <td>67</td>	20.80	0.06	21	0.51	IID A Hay Daman at	Othern Denneis Arid 4	Othern Democia Asid	80.0		0.0	**	0.20	^	25.90	1.1	74	7	0.25	1	60	2	0	2	0	1100	Conitella coniteta	67
Everett Harbor $\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	50, 89, Middle	0.06	21	0.51		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	89.0		0.0	**	0.20		25.80	++	/4	/	0.25	1	69	3	0	2	0	yes		07
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Everett					intenij ipnenor	, meany phenor																			·· ·	2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Harbor				· ·																					Neotrypaea sp	1
index index <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Aoroides sp</td><td>1</td></t<>																										Aoroides sp	1
Middle Everett Image: Partial parti					LPAH																						
Middle Everett Image: Partial parti	20.00	0.06	21	0.42	IID A Hay Daman at	Othern Democia A. 1	Othern Democia A 11	02.0		1.0	**	0.71		120.20		((2	16	0.67		254	200	0	10	1		1	146
Everett Harbor Phthalate, 4- Methylphenol, Phenol Phthalate, 4- Methylphenol Phthalate,		0.06	21	0.43		· · · · · ·		92.0		1.0	**	0.71		129.20	+++	663	46	0.67	0	554	290	0	18	1	yes		
Harbor Image: heap line Methylphenol, Phenol Methylphenol Meth	Everett				Erning, rour Ernin																						100
30,91, Middle Everett Harbor Methylphenol	Harbor					Methylphenol, Phenol	Methylphenol, Phenol																				102
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																										Nebalia pugettensis Cmplx	88
Middle Everett Harbor																											
Everett Harbor H	30, 91, Middle	0.06	15	0.26		· · · · · ·		97.0		0.0	**	0.58		86.40	+++	92	21	0.82	8	36	48	0	4	4	yes	Euphilomedes carcharodonta	28
Americhelidium variabilum 8	Everett						, -F																				9
	1141001																										8
Nebalia pugettensis Cmplx 7																										Nebalia pugettensis Cmplx	7

Appendix A. Continued.

Apper	iuix A	. U	ontin	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
		10		***																		10			a	60
31, 92, Outer Everett Harbor	0.12	19	0.45	HPAHs: Pyrene; LPAHs: Acenaphthene, Fluorene, Phenanthrene, Total LPAH	Other: Benzoic Acid, 4- Methylphenol, Phenol	Other: Benzoic Acid, 4-Methylphenol, Phenol	92.0		5.0	**	0.40	^	28.80	++	226	34	0.75	9	111	73	0	42	0	-	Capitella capitata hyperspecies Euphilomedes carcharodonta Macoma carlottensis Pleusymtes coquilla	69 32 15 14
31, 93, Outer Everett Harbor	0.12	19	0.46	LPAHs: Acenaphthene, Fluorene, Phenanthrene, Total LPAH	Other: Benzoic Acid, 4- Methylphenol, Phenol	Other: Benzoic Acid, 4-Methylphenol, Phenol	97.0		2.0	**	0.42	^	29.20	++	574	50	0.74	10	280	70	1	217	6	yes	Capitella capitata hyperspecies Rochefortia tumida Axinopsida serricata Euphilomedes carcharodonta	134 65 62 48
31, 94, Outer	0.12	22	0.00				100.0		68.0	**	0.44		28.70		012	78	0.50	17	225	211	0	250	-			136
Everett Harbor	0.12	22	0.89	Metals: Arsenic, Copper, Lead, Zinc; LPAHs: Phenanthrene, Total LPAH	Metals: Arsenic, Copper, Zinc; Other: Benzoic Acid, 4- Methylphenol, Phenol	Metals: Arsenic, Copper; Other: Benzoic Acid, 4- Methylphenol, Phenol	100.0		08.0		0.44		28.70	++	813	78	0.78	10	337	211	8	250	7		Euphilomedes carcharodonta Axinopsida serricata Rochefortia tumida Capitella capitata hyperspecies	67 63 59
32, 95, Port Gardner	9.65	2	0.12				93.0		120.0		145.00		3.20		582	63	0.66	10	168	37	0	364	13	no	Axinopsida serricata Macoma carlottensis Macoma sp Adontorhina cyclia	224 45 41 41
32, 96, Port	9.65	5	0.22		Other: Phenol		100.0		119.0		4.63		7.70		259	51	0.80	14	111	36	5	96	11	no	Axinopsida serricata	58
Gardner	2.05	5	0.22				100.0		117.0		4.05		7.70		20)	51	0.00	14		50	5	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11		Heteromastus filobranchus Eudorella pacifica Macoma sp	24 17 15
32, 97, Port	9.65	5	0.14		Other: 4-Methylphenol	Other: 4-	96.0		113.0		9.17		22.90	++	851	60	0.53	6	269	40	1	539	2	yes	Axinopsida serricata	462
Gardner						Methylphenol																			Prionospio (Minuspio) lighti Heteromastus filobranchus	64 39
		1																							Macoma carlottensis	39
		1																					1			
33, 98, Snohomish River Delta	2.37	2	0.11				99.0		121.0		2.50		4.20		579	57	0.80	14	270	170	0	126	13	no	Euphilomedes carcharodonta Scoletoma luti	84 75
Kiver Della																									Heteromastus filobranchus	57
																									Euphilomedes producta	32

Apper		. C	ontin	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
33, 99,	2.37	1	0.08				93.0		119.0		57.57		0.30		537	23	0.51	2	29	44	1	463	0	no	Tellina nuculoides	231
Snohomish	2.57	1	0.00				75.0		117.0		51.51		0.50		557	25	0.51	2	2)		1	405	0	110	Psephidia lordi	174
River Delta																									Rochefortia tumida	52
																									Lamprops quadriplicatus	18
																									Lamprops quadripricatus	18
22, 100	2.27	0	0.07				00.0		01.0		120 (2		0.20		24	(0.00	2	2	16	0	4	2			0
33, 100, Snohomish	2.37	0	0.07				90.0		94.0		120.63		0.30		24	6	0.88	3	2	16	0	4	2	no	Eohaustorius washingtonianus	8
River Delta																									Grandifoxus grandis	7
River Della																									Macoma balthica	4
																									Pygospio sp N1	2
		_																_							i ygospio sp ivi	2
1 106 8	2 (7		0.07				02.0		110 (1.27		7.10		202	(1	0.95	20	140	47	0	05	2		A sile asstruction	27
1, 106, South Port	2.67		0.07		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	93.9		118.6		1.37		7.10		302	61	0.85	20	149	47	8	95	3	no	Acila castrensis	37
Townsend					Wearyiphenoi	4-wearyiphenor																			Paraprionospio pinnata	36
rownsend																									Eudorella pacifica	20
																									Parvilucina tenuisculpta	17
1, 107, South	2.67	3	0.24		Other: Benzoic Acid, 4-	Other: Benzoic Acid,	100.0		117.0		3.07		5.70		580	81	0.82	24	292	66	3	218	1	no	Acila castrensis	119
Port Townsend					Methylphenol	4-Methylphenol																			Pinnixa schmitti	31
Townsend																									Spiochaetopterus costarum	25
																									Lumbrineris cruzensis	23
																									Eunormens eruzensis	25
1, 108, South Port	2.67		0.09		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	100.0		118.2		13.30		4.90		707	47	0.60	6	99	73	421	106	8	no	Amphiodia urtica/periercta complex	309
Townsend																									Amphiodia sp	107
																									Heterophoxus affinis	41
																1								1	Terebellides reishi	37
										1				1		1	1							1	†	
2, 109, Port	6.51	1	0.08		Other: Benzoic Acid, 4-	Other: Benzoic Acid,	93.9		116.7		10.67		1.20		702	131	0.83	34	333	181	3	161	24	no	Microclymene caudata	82
Townsend					Methylphenol	4-Methylphenol																			Alvania compacta	44
																									Cheirimedeia zotea	34
																									Gammaropsis ellisi	28
		-																							·····	-
2, 110, Port	6.51	+	0.06				98.0		116.7		44.67		1.20		667	77	0.70	13	353	67	17	224	6	no	Spiophanes bombyx	196
Z, 110, 1011 Townsend	0.01		0.00				20.0		110.7		17.07		1.20		007	,,	0.70	1.5		57	. /	227	0	10	Nutricola lordi	97
																1								1	Owenia fusiformis	46
																									Rochefortia tumida	26
					1	1		-										\vdash						-		20
2, 111, Port	6.51	-	0.07		Other: Benzoic Acid, 4-	Othom Dovi- A-1	89.8		115.3		17.07		4.30		809	112	0.77	24	101	42	7	268	11	no	Nutricola lordi	121
Z, TTT, Port Townsend	0.51		0.07		Methylphenol	Other: Benzoic Acid, 4-Methylphenol	09.0		113.3		17.07		4.30		009	112	0.77	24	401	42		200	11	10	Microclymene caudata	85
						· ·····																			Terebellides reishi	83
																1								1	Axinopsida serricata	82 58
												1				1								1	Axmopsida serricata	38

Appendix A.	Continued.
-------------	------------

Appen	uix A		onum	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
4, 112, South Admiralty Inlet	52.94		0.08		Other: Benzoic Acid	Other: Benzoic Acid	96.9		112.0		3.13		4.30		2325	176	0.54	17	758	1349	26	133	59	no	Erichthonius rubricornis Microclymene caudata Oligochaeta Pholoides asperus	1198 135 57 40
4, 116, South Admiralty Inlet	52.94		0.06		Other: Benzoic Acid	Other: Benzoic Acid	101.0		118.4		23.57		0.40		554	53	0.71	8	95	197	3	254	5	no	Rhepoxynius daboius Pinnixa schmitti Tellina modesta Axinopsida serricata	94 85 82 49
4 117 South	52.04	1	0.06				05.0		117.0		19.60		0.60		227	50	0.01	15	70	(0)	0	0.4	£		Nistria da la ndi	52
4, 117, South Admiralty Inlet	52.94	1	0.06				95.9		117.9		18.60		0.60		227	50	0.81	15	78	60	0	84	5	no	Nutricola lordi Photis bifurcata Orchomene cf pinguis Scoloplos armiger	53 22 14 12
5, 118, Possession Sound	40.15	3	0.13		Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	93.4		117.0		4.87		9.30		110	46	0.91	19	67	14	4	19	6	no	Euclymeninae Adontorhina cyclia Eudorella pacifica Levinsenia gracilis	12 7 7 7 7
																							1			
5, 119, Possession Sound	40.15		0.06		Other: Benzoic Acid	Other: Benzoic Acid	97.9		117.7		30.80		0.70		198	36	0.73	8	86	85	2	17	8	no	Rhepoxynius daboius Spiophanes bombyx Scoloplos armiger Pinnixa schmitti	60 32 18 16
5 120	40.15	1	0.07		Other: Benzoic Acid	Other: Benzoic Acid	102.1		117.9		23.27		0.50		201	22	0.73	6	92	80	0	20	0		Cuianhana hamhan	49
5, 120, Possession	40.15	1	0.07		Other: Belizoic Aciu	Other: Belizoic Acia	102.1		117.9		23.27		0.30		201	33	0.75	0	92	80	0	29	0	no	Spiophanes bombyx Pinnixa schmitti	49
Sound																									Rhepoxynius daboius	25
																									Tellina modesta	13
6, 121, Central	29.26		0.06		Other: Benzoic Acid	Other: Benzoic Acid	89.0		115.5		8.67		2.10		1274	61	0.58	5	109	677	0	475	13	no	Euphilomedes carcharodonta	517
Basin																								1	Solamen columbianum Lirobittium sp	194 101
																									Cheirimedeia cf macrocarpa	89
6, 122,	29.26	1	0.11			Other: Benzoic Acid,	98.9		117.7		2.97		9.00		240	46	0.84	14	82	53	1	92	12	no	Axinopsida serricata	36
Central Basin					Methylphenol	4-Methylphenol																			Macoma carlottensis	19
Dubin																								1	Macoma sp	18 15
1		1																					1	1	Euphilomedes producta	15

Appendix A. Continued.

Image:	Appen		. U	onun	ueu.																						
Image:	Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
Image:																											
Lamin Link	6, 123,	29.26	1	0.10			,	85.7		117.9		5.37		6.10		314	31	0.70	5	30	127	3	147	7	no		
124 bit 134 bit						Methylphenol	4-Methylphenol																			1 1	
12. Der Galson 5.48 0.07 0.07 0.08er: Benzoic Acid 00er: Benzoic Acid 105. 117.4 2.40 3.20 7.20 7.2 <	Dasin																										
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Macoma sp</td><td>42</td></th<>																										Macoma sp	42
Index Index <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																											
Image: bit in the section of the sectin of the sectin of the section of the section of the section of t		5.48		0.07		Other: Benzoic Acid	Other: Benzoic Acid	105.7		117.4		2.80		3.20		725	72	0.73	12	182	212	190	138	3	no	Euphilomedes carcharodonta	117
Image: bit in the state in	Madison																									Amphiodia sp	106
 I I I I I I I I I I I I I I I I I I I																											
125. Port Laficion 5.48 0.08 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>70</td></th<>																											70
fadio i																										Pinnixa schmitti	59
fadio i																									1		
Image: bit in the section of the se	7, 125, Port Madison	5.48		0.08		Other: Benzoic Acid	Other: Benzoic Acid	101.1		117.0		2.97		4.70		850	85	0.76	14	280	319	103	135	13	no	Euphilomedes carcharodonta	123
A A A A A A A A A A A A A A A A A																										Euphilomedes producta	89
Image: A problem in the problem in																											74
126, Port, 126,																											L
Aadison Application Applicat																										Polycirrus californicus	64
Aadison Application Applicat																											
Image: brance Imag		5.48		0.05		Other: Benzoic Acid	Other: Benzoic Acid	98.9		117.0		48.70		2.40		629	91	0.77	18	219	176	101	130	3	no		83
A A B <td>Wadison</td> <td></td> <td>69</td>	Wadison																										69
 A B B B B B B B B B B B B B B B B B B B																										reneponymus sores runatus	0,
i i																										Euphilomedes carcharodonta	46
i i																											L
oint i																										Polycirrus californicus	45
oint i	0.105.***	11.12		0.1.1		0.4 D	0.1 D	102 (110.6				18.00		4.1-		0.70		1.10	1		1.5-	<u> </u>			
A A B <td></td> <td>11.43</td> <td>1</td> <td>0.14</td> <td></td> <td>Other: Benzoic Acid</td> <td>Other: Benzoic Acid</td> <td>103.4</td> <td></td> <td>118.6</td> <td></td> <td>3.73</td> <td></td> <td>17.00</td> <td>++</td> <td>447</td> <td>50</td> <td>0.79</td> <td>11</td> <td>149</td> <td>156</td> <td>0</td> <td>137</td> <td>5</td> <td>no</td> <td></td> <td></td>		11.43	1	0.14		Other: Benzoic Acid	Other: Benzoic Acid	103.4		118.6		3.73		17.00	++	447	50	0.79	11	149	156	0	137	5	no		
Image: state stat	1 Onit																1					1		1	1		
i i			1																								
oint μ <th< td=""><td></td><td></td><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td></td><td>\square</td><td></td><td> </td><td></td><td></td><td>-</td><td>-</td><td>Dyopedos sp</td><td>37</td></th<>			<u> </u>																\square					-	-	Dyopedos sp	37
oint μ <th< td=""><td>8 128 West</td><td>11.42</td><td>16</td><td>0.26</td><td></td><td>Othern Depresie Acid</td><td>Othom Dongoio A -: J</td><td>05.5</td><td></td><td>1177</td><td></td><td>24.67</td><td>\vdash</td><td>71.10</td><td></td><td>568</td><td>68</td><td>0.64</td><td>7</td><td>201</td><td>120</td><td>1</td><td>222</td><td>5</td><td>nc</td><td>A vinonsida serricata</td><td>152</td></th<>	8 128 West	11.42	16	0.26		Othern Depresie Acid	Othom Dongoio A -: J	05.5		1177		24.67	\vdash	71.10		568	68	0.64	7	201	120	1	222	5	nc	A vinonsida serricata	152
Image: A product of the second of the sec	8, 128, west Point	11.43	10	0.20		other: Benzoic Acid	Other: Benzoic Acid	95.5		11/./		24.07		/1.10	+++	508	00	0.04	'	201	139	1	222	5	10	-	
Image: state stat			1																							1 1	
1.29, West 11.43 2 0.14																	1							1	1	ě	
Axinopsida serricata 54 Ampharete of crassiseta 37			<u> </u>			1												-	\vdash			<u> </u>		1	-		ru
Axinopsida serricata 54 Ampharete of crassiseta 37	8 129 West	11 43	2	0.14		Other: Benzoic Acid	Other: Benzoic Acid	95.5		118.6		10.37		19.10	++	424	61	0.77	13	154	118	1	136	15	ne	Euphilomedes producta	86
Ampharete cf crassiseta 37	Point		Ĩ	0.14		State Benzole Held	- men Benzole Helu	,0.0				10.07		17.10		.24	51	5.77		101		1		1.5	10		
																	1					1		1	1	-	
1 I I I I I I I I I I I I I I I I I I I																	1	1				1		1	1	Levinsenia gracilis	27

Appendix A. Continued.

IX A.	Cor	ntinued.																							
sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
1.43	0	0.09		Other: 4-Methylphenol	Other: 4-	05.0		118.2		2.90		11.70	++	231	37	0.78	0	85	50	2	01	3	no	A vinonsida serricata	56
1.45	, i	5.09		other. 4-methylphenor		95.9		116.2		2.90		11.70		251	57	0.78	2	85	50	2	91	5	110	1	28
																									20
																								-	18
0.40	17 0	0.33		Other: Benzoic Acid	Other: Benzoic Acid	96.6		117.9		1.97		48.30	+++	863	95	0.73	17	541	93	4	218	7	no		202
																									110 40
																								-	36
	_																							Scoletolila luti	50
0.40	19 () 36		Other: Benzoic Acid	Other: Benzoic Acid	103.4		118.9		0.87		96 50	+++	761	55	0.67	8	339	244	3	172	3	no	Eudorella pacifica	196
	., .			Phenol	o talett Denzole i telu	105.1		110.9		0.07		20.00		/01	00	0.07	Ŭ	557	2	5	1/2	5			139
																								Nutricola lordi	72
																								Aphelochaeta monilaris	60
0.40	5 0	0.14				100.0		118.4		1.77		14.70	++	1455	82	0.49	5	1143	201	2	105	4	no	Aphelochaeta sp N1	798
																								Euphilomedes carcharodonta	172
																								Mediomastus en	62
																									43
9.30	0	0.07		Other: Benzoic Acid	Other: Benzoic Acid	97.8		105.4		12.13		8.70		531	77	0.73	16	124	178	32	179	18	no	Axinopsida serricata	116
																								Euphilomedes producta	67
																								Euphilomedes carcharodonta	63
																								n 11 i 4 i 14	27
																								Parvilucina tenuisculpta	37
9.30	0	0.06		Other: Penzoia Acid	Other: Penzoia Acid	04.7		105.7		4.60		7.50		262	54	0.68	0	76	184	5	87	11	no	Eunhilomedes carcherodonta	114
				other, benzoie Acid	Other. Delizoit Acid	24.7	1	105.7		4.00	1	1.50		505	54	0.08	7	/0	104	5	07	11	110	Euphnomeues carenarodonta	114
																								Parvilucina tenuisculpta	52
																								Parvilucina tenuisculpta Euphilomedes producta	52 50
																								Euphilomedes producta Mediomastus sp	50 15
0.30		0.06		Other: Benzoic Acid	Other: Benzoic Acid	94.7		106.1		28.63		13.50	++	304	73	0.86	22	180	43	3	70	8	no	Euphilomedes producta	50
		0.06		Other: Benzoic Acid	Other: Benzoic Acid	94.7		106.1		28.63		13.50	++	304	73	0.86	22	180	43	3	70	8	no	Euphilomedes producta Mediomastus sp Prionospio steenstrupi/jubata	50 15 32
		0.06		Other: Benzoic Acid	Other: Benzoic Acid	94.7		106.1		28.63		13.50	++	304	73	0.86	22	180	43	3	70	8	no	Euphilomedes producta Mediomastus sp	50 15
(cm/) sear phare phare (cm/)	443 440 40	43 0 43 0 40 17 40 19 40 5 40 5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bit Markov Bit Markov 1 1	Image: Second	Image: Construction of the second	Image: Second and the second and th	10 17 0.09 Other: 4-Methylphenol Other: 4-Methylphenol 95.9 43 0.09 Other: Benzoic Acid Other: Benzoic Acid 95.9 40 17 0.33 Other: Benzoic Acid Other: Benzoic Acid 103.4 40 19 0.36 Other: Benzoic Acid Other: Benzoic Acid 103.4 40 5 0.14 Other: Benzoic Acid Other: Benzoic Acid 97.8 40 5 0.14 Other: Benzoic Acid Other: Benzoic Acid 97.8 40 5 0.14 Other: Benzoic Acid Other: Benzoic Acid 97.8 40 5 0.14 Other: Benzoic Acid Other: Benzoic Acid 97.8	Group on the output Bit passage Sign of section o	Markan Barkan	Image: Constraint of the second sec	Mainter Signal and anti-operation of the control of the	Image: Second state of the second state of	Mail Store Store	Image: second	Image: Second and sec	Image: Proper service of the service Acid Other: Henzoic Acid Other: Benzoic Acid Other: Benzoic Acid Offer: Benzoic Acid Off	Image: Solution of the second of th	Image: State of the s	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Image: Note of the second of the se	pp pp< pp<	Image: state of the s	Image: Property of the	Public bit in the second of the sec

Appendix A. Continued.

Appen	aix A	. C	ontin	ued.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
11, 136, Central Sound	25.71	3	0.18		Other: Benzoic Acid, Phenol	Other: Benzoic Acid, Phenol	93.5		106.7		6.30		13.70	++	198	38	0.81	11	63	71	0	53	11	no	Euphilomedes producta Prionospio (Minuspio) lighti Macoma carlottensis Axinopsida serricata	35 34 16 14
11, 137, Central Sound	25.71	5	0.20		Other: Benzoic Acid	Other: Benzoic Acid	101.1		105.4		9.93		15.70	++	230	40	0.82	10	85	67	0	66	12	no	Euphilomedes producta Axinopsida serricata Sigambra nr bassi Macoma carlottensis	29 28 22 17
11, 138, Central Sound	25.71	4	0.15		Other: Benzoic Acid	Other: Benzoic Acid	106.5		105.0		2.43		17.10	++	168	40	0.82	13	50	79	2	28	9	no	Eudorella pacifica Euphilomedes producta Prionospio (Minuspio) lighti Macoma carlottensis	30 29 10 8
12, 139, East Passage	25.78	2	0.10		Other: Benzoic Acid	Other: Benzoic Acid	94.4		106.5		21.13		17.80	++	337	55	0.72	10	81	94	2	151	9	no	Axinopsida serricata Macoma carlottensis Euphilomedes producta Eudorellopsis integra	66 59 43 36
12, 140, East Passage	25.78	4	0.13		Other: Benzoic Acid, 4 Methylphenol	Other: Benzoic Acid, 4-Methylphenol	97.8		105.4		3.63		23.80	++	144	35	0.83	11	63	46	2	29	4	no	Axinopsida serricata Levinsenia gracilis Eudorella pacifica Cossura bansei	22 20 17 12
12, 141, East Passage	25.78		0.06		Other: Benzoic Acid	Other: Benzoic Acid	80.0		102.5		64.10		5.80		265	78	0.91	32	177	38	3	33	14	no	Pionosyllis uraga Lumbrineris californiensis Nicomache lumbricalis Demonax rugosus	23 19 11 9
13, 142, Liberty Bay	0.65	4	0.13				94.3		105.4		5.27		16.70	++	325	26	0.70	6	109	102	107	4	3	no	Amphiodia urtica/periercta complex Pinnixa schmitti Aphelochaeta sp N1 Nephtys cornuta	96 79 25 22
13, 143, Liberty Bay	0.65	4	0.16		Other: Benzoic Acid	Other: Benzoic Acid	96.6		105.9		1.47		24.80	++	309	28	0.74	7	171	75	31	32	0	no	Aphelochaeta sp N1 Pinnixa occidentalis Eudorella pacifica Amphiodia urtica/periercta complex	84 37 34 29

exceeding SQSs ompounds exceeding CSLs ytochrome P-450 HRGS as Ξ. ignificance (<0.51 mg/mg) <80% of controls)</p>
Acount of controls
Mean Urchin fertilization in 100% pore water as % of control umphipod survival as % of Jumber of ERLs exceeded pecies Dominance Index stratum, sample, location % survival significantly different than controls & significance (<80% of controls) Aicrotox EC50 (mg/ml) Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g) Schinoderm abundance ample-wtd area (km2) ompounds exceeding Arthropod abundance Mollusca abundance Aean ERM quotient nnelid abundance Impaired infaunal assemblages* Misc. abundance otal abundance Faxa richness ompounds igB[a]p/g Evenness ontrol ERMs 92.0 13, 144, 0.65 4 0.16 Other: Benzoic Acid Other: Benzoic Acid 106.3 1.17 27.70 ++ 293 28 0.69 56 105 -90 40 2 no Pinnixa schmitti Liberty Bay Amphiodia urtica/periercta complex Eudorella pacifica Paraprionospio pinnata 14, 145, 0.94 0.04 105.7 106.1 2.50 179 Aphelochaeta sp N1 Other: Benzoic Acid Other: Benzoic Acid 2.83 354 48 0.87 16 61 107 4 no 3 Keyport Nutricola lordi Leitoscoloplos pugettensis Scoloplos acmeceps 14.146. 0.94 0.12 103.4 104.6 1.10 32.00 34 no Amphiodia urtica/periercta 4 Other: Benzoic Acid Other: Benzoic Acid $^{++}$ 650 28 0.56 3 63 200 353 0 Keyport complex Pinnixa schmitti Amphiodia sp Eudorella pacifica 14, 147, 0.94 0.07 Other: Benzoic Acid Other: Benzoic Acid 98.9 105.7 5.63 5.60 543 84 0.75 17 354 25 4 149 11 no Aphelochaeta sp N1 Keyport Ampharete labrops Alvania compacta Nutricola lordi 15, 148, NW 4.42 0.12 Other: Benzoic Acid, 4- Other: Benzoic Acid, 98.9 105.7 0.94 26.40 349 33 0.76 112 31 135 69 Amphiodia sp 3 $^{++}$ 8 2 no 4-Methylphenol Bainbridge Methylphenol Acteocina culcitella Island Amphiodia urtica/periercta complex Eudorella pacifica 15, 149, NW 4.42 0.04 95.5 103.9 1.09 6.60 810 72 0.67 13 204 112 466 15 Alvania compacta Other: Benzoic Acid Other: Benzoic Acid 13 no Bainbridge Rochefortia tumida Island Phyllochaetopterus prolifica Heptacarpus stimpsoni 15, 150, NW 4.42 0.07 Other: Benzoic Acid Other: Benzoic Acid 93.2 105.9 1.23 9.30 435 44 0.70 136 17 148 127 Amphiodia urtica/periercta no Bainbridge complex

taxa

ominant t

ount

90

79

14

13

34

31

24

22

254

161

94

39

124

58 36

30

82

48

44

24

290

93

61 52

89

84 55

55

Acteocina culcitella

Amphiodia sp Pholoe sp Cmplx

Island

Appendix A. Continued.

Appen		. U	onun	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
		-	0.40						1010									-				-0	4.0			
16, 151, SW Bainbridge Island	3.42	5	0.18		Other: Benzoic Acid, Benzyl Alcohol	Other: Benzoic Acid, Benzyl Alcohol	98.9		106.3		0.82		31.60	++	337	37	0.72	6	99	14	144	70	10	no	Amphiodia sp Amphiodia urtica/periercta complex Pholoe sp Cmplx Acila castrensis	69 64 36 35
						0.1 D					4.60						0.70									
16, 152, SW Bainbridge Island	3.42		0.08		Other: Benzoic Acid	Other: Benzoic Acid	98.9		105.4		4.60		7.60		859	87	0.69	15	165	122	86	475	11	no	Acila castrensis Euphilomedes carcharodonta Amphiodia urtica/periercta	289 70 50
																									complex Axinopsida serricata	33
16, 153, SW Bainbridge Island	3.42	4	0.19		Other: Benzoic Acid	Other: Benzoic Acid	100.0		104.4		1.97		27.90	++	243	40	0.84	14	83	8	58	87	7	no	Axinopsida serricata Amphiodia urtica/periercta complex Amphiodia sp Sigambra nr bassi	40 35 23 11
																									Sigamora in bassi	11
17, 154, Rich Passage	3.34		0.04		Other: Benzoic Acid	Other: Benzoic Acid	97.9		104.8		7.80		1.90		658	98	0.77	23	199	41	5	395	18	no	Nutricola lordi Alvania compacta Tellina modesta Parvilucina tenuisculpta	138 75 44 24
17, 155, Rich Passage	3.34		0.04		Other: Benzoic Acid	Other: Benzoic Acid	98.9		105.7		20.27		1.60		951	68	0.61	6	93	138	0	709	11	no	Nutricola lordi Tellina modesta Euphilomedes carcharodonta Parvilucina tenuisculpta	290 220 79 57
													10.00							100	4.0				x	
17, 156, Rich Passage	3.34		0.07		Other: Benzoic Acid	Other: Benzoic Acid	97.9		105.0		30.17		10.00		573	102	0.81	24	234	189	19	105	26	no	Pinnixa occidentalis Euphilomedes carcharodonta Rochefortia tumida	64 62 37
																									Mediomastus sp	29
18, 157, Port Orchard	1.94		0.07		Other: Benzoic Acid	Other: Benzoic Acid	102.2		113.0		3.20		14.10	++	808	90	0.67	12	163	159	37	443	6	no	Acila castrensis Euphilomedes carcharodonta Nutricola lordi Prionospio (Minuspio) lighti	246 119 42 30

Appendix A. Continued.

	Dominant taxa	_
		Count
	Alvania compacta Phyllochaetopterus prolifica Lumbrineris californiensis Magelona longicornis	173 39 20 19
Orchard A Contract of the second seco	Alvania compacta Rochefortia tumida Aoroides columbiae Amphipholis squamata	78 64 45 23
10.160 1.03 0.035 Metals: Mercury Motals: Mercury Motals: Marcury 00.0 2.0 ** 0.91 20.40 ++ 1.40 21 0.63 4 132 3 0 9 5 yes 14		70
	Aphelochaeta sp N1	73 23
	Paraprionospio pinnata	
Indepo(1.2.3.c.d)pyrepe	Terebellides californica Nephtys cornuta	9
Indeno(1,2,3-c,d)pyrene Other: Benzoic Acid, Butylbenzylphthalate, Total Aroclors Image: Construction of the constructio	Nephtys cornuta	9
Indeno(1,2,3-c,d)pyrene Other: Benzoic Acid, Butylbenzylphthalate, Total Aroclors Image: Senzoic Acid,	Nephtys cornuta	11 9 856
Indeno(1,2,3-c,d)pyrene Other: Benzoic Acid, Butylbenzylphthalate, Total Aroclors	Nephtys cornuta Aphelochaeta sp N1 Nephtys cornuta	11 9 856 209
Indeno(1,2,3-c,d)pyrene Other: Benzoic Acid, Butylbenzylphthalate, Total Aroclors Image: Benzoic Acid,	Aphelochaeta sp N1 Nephtys cornuta Eudorella pacifica	11 9 856 209 34
Indeno(1,2,3-c,d)pyrene Other: Benzoic Acid, Butylbenzylphthalate, Total Aroclors Image: Benzoic Acid,	Nephtys cornuta Aphelochaeta sp N1 Nephtys cornuta	11 9 856 209
$\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid, \\ Butylbenzylphthalate, \\ Total Aroclors \end{bmatrix}$ $\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid, \\ Butylbenzylphthalate, \\ Total Aroclors \end{bmatrix}$ $\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid, \\ Butylbenzylphthalate, \\ Total Aroclors \end{bmatrix}$ $\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid, \\ Butylbenzylphthalate, \\ Total Aroclors \end{bmatrix}$ $\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid, \\ Butylbenzylphthalate, \\ Total Aroclors \end{bmatrix}$ $\begin{bmatrix} Indeno(1,2,3,c,d) \text{ byrene} \\ Other: Benzoic Acid $	Aphelochaeta sp N1 Nephtys cornuta Eudorella pacifica	11 9 856 209 34
Indeno(1,2,3-c.d)pyrene Other: Benzoic Acid, Butylbenzylphthalae, Total Aroclors Image: Metals: Mercury; Other: Benzoic Acid Image: Metals: Mercury; Image: Metals: Mercury; Image: Metal	Nephtys cornuta	11 9 856 209 34 33 102 96 90 44
Indeno(1.2.3-c.d)pyree Other: Benzoic Acid, Butylbenzylphthalate, Total Arcolors Metals: Mercury; Other: Benzoic Acid Indeno(1.2.3-c.d)pyree Other: Benzoic Acid, Butylbenzylphthalate, Total Arcolors Metals: Mercury; Other: Benzoic Acid Indeno(1.2.3-c.d)pyree Other: Benzoic	Nephtys cornuta	11 9 856 209 34 33 33 102 96 90 44 44
$\left[\begin{array}{c c c c c c c c c c c c c c c c c c c $	Nephtys cornuta Aphelochaeta sp N1 Nephtys cornuta Eudorella pacifica Lumbrineris cruzensis Eudorella pacifica Amphiodia urtica/periercta complex Aphelochaeta monilaris Pinnixa schmitti Aphelochaeta sp N1 Amphiodia urtica/periercta	11 9 856 209 34 33 102 96 90 44
Indeno(1,2,3-c,d)pyreme Other: Benzoic Acid, Butybenzylphthalate, Total Arcolors Metals: Mercury; Other: Benzoic Acid Indeno(1,2,3-c,d)pyreme Other: Benzoic Acid, Butybenzylphthalate, Total Arcolors Metals: Mercury; Other: Benzoic Acid Indeno(1,2,3-c,d)pyreme (1,3,1-c) Indeno(1,2,3-c,d)pyreme (1,3,1-c) 19, 161, Sinclair Inlet 1.03 7 0.27 Metals: Mercury; Other: Benzoic Acid 104.4 103.0 0.82 44.50 +++ 1283 32 0.39 2 1165 52 24 41 1 yes A 19, 161, Sinclair Inlet 1.03 7 0.27 Metals: Mercury; Other: Benzoic Acid 104.4 103.0 0.82 44.50 +++ 1283 32 0.39 2 116 1.5 11 yes A 19, 162, Sinclair Inlet 1.03 8 0.30 Metals: Mercury; Metals: Mercury; Metals: Mercury; Metals: Mercury; 0 113.0 1.63 35.50 ++ 559 44 0.71 7 220 166 105 64 4 yes A 19, 163, Sinclair Inlet 1.04 8 0.44 Metals: Mercury; Metals: Mercury; Metals: Mercury; 0 <td>Nephtys cornuta</td> <td>11 9 856 209 34 33 33 102 96 90 44 44</td>	Nephtys cornuta	11 9 856 209 34 33 33 102 96 90 44 44
Indemo(1,2,3-c,d)pyrcne Other: Benzoic Acid, Burylbenzylphthalate, Total Aroclors Image: Mercury; Differ: Benzoic Acid, Burylbenzylphthalate, Total Aroclors Metals: Mercury; Other: Benzoic Acid Metals: Mercury; Other: Benzoic Acid Metals: Mercury; Other: Benzoic Acid Image: Mercury; Other: Benzoic Acid Image: Mercury; Other: Benzoic Acid Metals: Mercury; Other: Benzoic Acid Image: Mercury; Other: Benzoic Acid <td>Nephtys cornuta Aphelochaeta sp N1 Nephtys cornuta Eudorella pacifica Lumbrineris cruzensis Eudorella pacifica Amphiodia urtica/periercta complex Aphelochaeta monilaris Pinnixa schmitti Aphelochaeta sp N1 Amphiodia urtica/periercta complex</td> <td>11 9 856 209 34 33 102 96 90 44 44 83</td>	Nephtys cornuta Aphelochaeta sp N1 Nephtys cornuta Eudorella pacifica Lumbrineris cruzensis Eudorella pacifica Amphiodia urtica/periercta complex Aphelochaeta monilaris Pinnixa schmitti Aphelochaeta sp N1 Amphiodia urtica/periercta complex	11 9 856 209 34 33 102 96 90 44 44 83
Indemo(1,2,3,4)pyree Other: Benzoic Acid Indemo(1,2,3,4)pyree Other: Benzoic Acid <th< td=""><td>Nephtys cornuta</td><td>11 9 856 209 34 33 102 96 90 44 186 83 74 35</td></th<>	Nephtys cornuta	11 9 856 209 34 33 102 96 90 44 186 83 74 35
Indeno (1,2,3-c,d) pyrene Other: Benzoic Acid In	Nephtys cornuta	11 9 856 209 34 33 102 96 90 44 186 83 74 35 782
Indemo(1,2,3-c,d)pyrene Other: Benzoic Acid Metals: Mercury; Other: Benzoic Acid Metals: Mercury; Other: Benzoic Acid 103.0 0.82 44.50 +++ 1283 22 1155 52 24 41 1 yes Yes 19.161, Sinclair Inlet 1.03 7 0.27 Metals: Mercury; Other: Benzoic Acid 104.4 103.0 0.82 44.50 +++ 1283 32 0.39 2 1165 52 24 41 1 yes	Nephtys cornuta	11 9 856 209 34 33 102 96 90 44 186 83 74 35 782 82
Image: Sinclair Inlet Image: Sinclair	Nephtys cornuta	11 9 856 209 34 33 102 96 90 44 186 83 74 35 782 82 80

Appendix A. Continued.

Apper	iuix A	. U	onun	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
20, 165, Sinclair Inlet	1.04	11	0.55	Metals: Mercury	Metals: Mercury; Other: Benzoic Acid	Metals: Mercury; Other: Benzoic Acid	100.0		81.0		6.83		39.40	+++	663	36	0.69	6	269	277	73	34	10	yes	Eudorella pacifica Pinnixa schmitti Amphiodia urtica/periercta complex Lumbrineris cruzensis	199 73 73 70
21, 166, Port Washing-ton Narrows	1.00		0.06		Other: Benzoic Acid	Other: Benzoic Acid	104.4		111.0		3.40		6.50		651	85	0.79	20	196	162	5	270	18	no	Euphilomedes carcharodonta Alvania compacta Nutricola lordi Aphelochaeta sp N1	92 79 58 29
21, 167, Port	1.00		0.08		Other: Benzoic Acid	Other: Benzoic Acid	46.7	**	82.0	*	3.30		9.90		826	76	0.70	10	412	156	22	221	15	no	Alvania compacta	193
Washing-ton Narrows	1.00		0.08		Other: Benzoic Acia	Other: Benzoic Acid	40.7	**	82.0		3.30		9.90		820	/0	0.70	10	412	150	22	221	15	по	Alvania compacta Aphelochaeta sp N1 Phyllochaetopterus prolifica	193 100 88
																									Ampelisca lobata	56
21, 168, Port Washing-ton Narrows	1.00	7	0.17		Other: Benzoic Acid	Other: Benzoic Acid	96.7		69.0	**	0.65		32.30	++	1232	48	0.26	1	1103	30	2	93	4	yes	Aphelochaeta sp N1 Alvania compacta Odostomia sp Scoletoma luti	1023 35 21 13
22, 169, Dyes Inlet	3.88		0.05		Other: Benzoic Acid	Other: Benzoic Acid	101.1		94.0		4.10		3.60		1574	73	0.65	9	1123	248	17	179	7	no	Phyllochaetopterus prolifica Circeis sp Aphelochaeta sp N1 Caprella mendax	455 240 137 122
22, 170,	3.88	10	0.26		Other: Benzoic Acid	Other: Benzoic Acid	100.0		101.0		1.04		27.60	++	893	32	0.59	4	266	364	200	57	6	yes	Pinnixa schmitti	271
Dyes Inlet					Benzyl Alcohol																				Amphiodia urtica/periercta complex Aphelochaeta sp N1 Eudorella pacifica	196 181 92
22, 171	2.00	10	0.24		MALM		101.1		02.0		2.02		20.40		1110	20	0.55		2(2	67.4	22.4	40			D' 1 1 1/2	440
22, 171, Dyes Inlet	3.88	10	0.26		Metals: Mercury; Other: Benzoic Acid, Benzyl Alcohol	Metals: Mercury; Other: Benzoic Acid	101.1		92.0		2.03		30.40	++	1112	38	0.55	4	260	574	224	48	6	yes	Pinnixa schmitti Amphiodia urtica/periercta complex Eudorella pacifica	440 220 130
		1								1											1				Terebellides californica	62

Appendix A. Continued.

Apper	idix A	. C	ontin	ued.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
23, 172, Outer Elliott Bay	2.79	5	0.20		Other: Benzoic Acid	Other: Benzoic Acid	102.2		94.0		2.13		17.80	++	188	43	0.81	13	69	48	0	60	11	no	Axinopsida serricata Euphilomedes producta Spiophanes berkeleyorum Heterophoxus affinis	46 17 14 10
23, 173,	2.79	7	0.28		Other: Benzoic Acid	Other: Benzoic Acid	106.7		102.0		4.97		19.80	++	470	56	0.59	6	174	56	5	230	5	no	Axinopsida serricata	216
Outer Elliott Bay	2.77	,	0.20		oner beizer reid		100.7		102.0		,		17.00			20	0.07		.,.	20	5	250	5	10	Spiochaetopterus costarum Euphilomedes producta Spiophanes berkeleyorum	210 52 28 26
23, 174, Outer Elliott Bay	2.79		0.09		Other: Benzoic Acid, Butylbenzylphthalate	Other: Benzoic Acid	96.7		93.0		35.97		10.50		495	126	0.83	37	309	83	30	64	9	no	Prionospio steenstrupi/jubata Pholoides asperus Dipolydora cardalia Euphilomedes carcharodonta	76 29 27 21
22, 175	2.70		0.07				07.0		06.0		5.00		2.20		(21	127	0.00	40	252	114	20	114	22			26
23, 175, Outer Elliott	2.79		0.07		Other: Benzoic Acid	Other: Benzoic Acid	97.8		96.0		5.23		3.30		631	137	0.89	48	352	114	28	114	23	no	Euphilomedes carcharodonta	36
Bay																									Dipolydora socialis	27
																									Prionospio steenstrupi/jubata	24
																									Mediomastus sp	21
24.176	0.42	_	0.01				02.2		02.0	~	0.07		10.50		076	110	0.55		501	07	10	0.5.5	11			100
24, 176, Shoreline Elliott Bay	0.42	5	0.31		Metals: Mercury; HPAHs: Benzo(g,h,i)perylene;	Other: Benzoic Acid	92.2		82.0	*	2.27		12.50	++	876	113	0.77	22	501	97	12	255	11	no	Alvania compacta Spiochaetopterus costarum	132 98
					LPAHs: Phenanthrene; Other: Benzoic Acid, Butylbenzylphthalate Total Aroclors																				Parvilucina tenuisculpta Dipolydora cardalia	72 43
24, 177, Shoreline	0.42	2	0.08		Other: Benzoic Acid	Other: Benzoic Acid	101.1		75.0	**	2.57		3.40		1378	61	0.52	4	78	475	1	822	2	no	Euphilomedes carcharodonta	456
Elliott Bay																									Nutricola lordi	440
																									Tellina modesta	100
																									Lirularia lirulata	92
24, 178, Shoreline	0.42		0.14		Other: Benzoic Acid, Total Aroclors	Other: Benzoic Acid	101.1		106.0		86.83		10.70		343	80	0.78	21	179	104	1	56	3	no	Euphilomedes carcharodonta	70
Elliott Bay																									Prionospio steenstrupi/jubata	38
																									Magelona longicornis Pinnixa schmitti	27 19
																							-			17
25, 179,	0.33	13	0.52		HPAHs:	Other: Benzoic Acid	95.6		81.0	*	25.10		38.80	+++	478	69	0.73	12	254	83	0	137	4	no	Levinsenia gracilis	70
25, 179, h li	1	I	ı 1		I		I	1	l	n	A_74			I	I	1	1			1	•	1	1	1		

Appendix A. Continued.

Apper		. U	onun	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
Shoreline Elliott Bay					Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene; Other: Benzoic Acid, Total Aroclors																				Prionospio steenstrupi/jubata Axinopsida serricata Euphilomedes carcharodonta	64 62 52
25, 180, Shoreline Elliott Bay	0.33	15	0.57		HPAHs: Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene; Other: Benzoic Acid, Total Aroclors	Other: Benzoic Acid	97.8		68.0	**	17.50		34.40	++	639	76	0.79	18	350	66	3	215	5	no	Prionospio steenstrupi/jubata Parvilucina tenuisculpta Axinopsida serricata Euphilomedes producta	87 82 73 39
25, 181, Shoreline Elliott Bay	0.33	24	1.59	Other: Total congeners	Metals: Mercury; HPAHs: Benzo(g,h,i)perylene; Other: Benzoic Acid, Total Aroclors	Other: Benzoic Acid	87.8		96.0		17.20		32.80	++	457	85	0.83	27	212	88	2	142	13	no	Euphilomedes producta Axinopsida serricata Levinsenia gracilis Chaetozone nr setosa	69 55 19 17
25, 115, Shoreline Elliott Bay	0.33	24	0.83		HPAHs: Benzo(a)pyrene, Benzo(g,h,i)perylene; Other: Benzoic Acid, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	97.0		6.0	**	0.79		144.80	+++	1161	43	0.25	1	1092	9	0	60	0	,	Aphelochaeta sp N1 Lumbrineris californiensis Turbonilla sp Spiochaetopterus costarum	962 43 35 12
26, 182, Shoreline Elliott Bay	0.11	24	1.36		Metals: Mercury; HPAHs: Benzo(g,h.i)perylene, Indeno(1,2,3-c,d)pyrene; Other: Benzoic Acid, Total Aroclors	Metlas: Mercury; Other: Benzoic Acid	97.8		83.0	*	26.47		216.10	+++	571	88	0.79	23	309	37	21	188	16	no	Axinopsida serricata Levinsenia gracilis Aricidea lopezi Euphilomedes producta	115 73 22 18

Appen		. U	onun	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
26, 183, Shoreline Elliott Bay	0.11	20	0.52		HPAHs: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(g,h,i)perylene, Chrysene, Indeno(1,2,3- c,d)pyre, Fluoranthene, Total Benzofluranthenes, Total HPAH; LPAHs: Fluorene, Phenanthrene; Other: Benzoic Acid, Dibenzofuran	Other: Benzoic Acid	100.0		88.0		3.17		107.20	+++	740	105	0.79	23	435	133	3	159	10	no	Prionospio steenstrupi/jubata Euphilomedes carcharodonta Parvilucina tenuisculpta Lumbrineris californiensis	79 65 61 59
26, 184, Shoreline Elliott Bay	0.11	22	1.31	Benzo(a)anthracene, Benzo(a)pyrene, Fluoranthene, Pyrene,	HPAHs: Benzo(g,h,i)perylene, Total Benzofluranthenes, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Total HPAH; LPAHs: Phenanthrene; Other: Benzoic Acid	HPAHs: Fluoranthene; Other: Benzoic Acid	103.2		84.0	*	7.90		223.20	+++	731	89	0.79	21	488	57	2	177	7	no	Lumbrineris californiensis Prionospio steenstrupi/jubata Parvilucina tenuisculpta Aphelochaeta sp N1	97 82 77 39
27, 185, Mid Elliott Bay	1.04	7	0.39		Other: Bis(2- Ethylhexyl) Phthalate		104.3		120.0		18.20		19.70	++	269	32	0.74	9	106	57	1	101	4	no	Axinopsida serricata Prionospio (Minuspio) lighti Levinsenia gracilis Spiophanes berkeleyorum	98 23 17 15
27, 186, Mid Elliott Bay	1.04	13	0.57	Metals: Mercury	Metals: Mercury; Other: Total Aroclors	Metals: Mercury	101.1		116.0		34.00		54.90	+++	655	70	0.61	9	169	84	3	392	7	no	Axinopsida serricata Euphilomedes producta Euphilomedes carcharodonta Parvilucina tenuisculpta	294 56 26 26
27, 187, Mid Elliott Bay	1.04	12	0.55		Other: Benzoic Acid, Phenol	Other: Benzoic Acid	107.7		115.0		37.73		26.50	++	334	46	0.47	5	69	30	1	227	7	yes	Axinopsida serricata Spiophanes berkeleyorum Cossura bansei Protomedeia grandimana	222 11 8 7

Appendix A. Continued.

Appen		. U	onun	lucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
27, 188, Mid Elliott Bay	1.04	23	1.47	Metals: Mercury; HPAHs: Benzo(a)pyrene, Pyrene, Total HPAH; LPAHs: Phenanthrene, Total LPAH; Other: Total congeners	Metals: Mercury; HPAHs: Benzo(g,h,i)perylene, Fluoranthene; Other: Benzoic Acid, Benzyl Alcohol, 2,4- Dimethylphenol	Metals: Mercury; Other: Benzoic Acid, 2,4-Dimethylphenol	105.5		115.0		67.17		152.90	+++	825	67	0.51	5	166	72	8	563	16	yes	Axinopsida serricata Euphilomedes producta Levinsenia gracilis Parvilucina tenuisculpta	471 51 40 37
28, 189, Mid Elliott Bay	0.70	16	0.43		Other: Benzoic Acid	Other: Benzoic Acid	108.8		109.0		9.47		139.80	+++	928	101	0.71	17	361	312	28	219	8		Euphilomedes carcharodonta Parvilucina tenuisculpta Spiochaetopterus costarum Pinnixa schmitti	222 148 52 43
28, 190, Mid Elliott Bay	0.70		0.06		Other: Benzoic Acid, Di N-Butylphthalate	Other: Benzoic Acid	106.6		117.0		5.93		3.60		1717	71	0.45	3	114	909	0	688	6	no	Euphilomedes carcharodonta Nutricola lordi Tellina modesta Astyris gausapata	858 392 103 50
28, 191, Mid Elliott Bay	0.70	13	0.45		Other: Benzoic Acid	Other: Benzoic Acid	103.3		113.0		179.30		29.10	++	328	57	0.69	12	155	36	1	132	4	no	Axinopsida serricata Levinsenia gracilis Maldane sarsi Spiophanes berkeleyorum	124 28 20 17
28, 192, Mid Elliott Bay	0.70	9	0.36				103.3		107.0		35.17		49.10	+++	883	91	0.71	14	608	112	7	151	5		Microclymene caudata Axinopsida serricata Euphilomedes producta Proclea graffi	224 84 73 66
29, 193, Mid Elliott Bay	0.73	9	0.37				101.1		92.0		50.73		32.80	++	847	54	0.41	3	219	21	0	603	4	yes	Axinopsida serricata Levinsenia gracilis Nephtys cornuta Aricidea lopezi	574 43 40 27
29, 194, Mid Elliott Bay	0.73	23	1.05	HPAHs: Dibenzo(a,h) anthracene; Other: Total congeners	Metals: Mercury; HPAHs: Dibenzo(a,h) anthracene; Other: 4- Methylphenol, Total Aroclors	Metals: Mercury; Other: 4- Methylphenol	102.2		106.0		62.40		74.10	+++	456	45	0.54	4	184	10	0	261	1	-	Axinopsida serricata Aricidea lopezi Levinsenia gracilis Spiophanes berkeleyorum	247 38 30 28

Appendix A. Continued.

Appen	uix A		onun	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Mise. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
29, 195, Mid Elliott Bay	0.73	12	0.54				105.4		90.0		61.87		49.30	+++	365	66	0.79	16	271	46	1	44	3	no	Levinsenia gracilis Axinopsida serricata Prionospio (Minuspio) lighti Nephtys cornuta	76 36 24 20
29, 196, Mid Elliott Bay	0.73	13	0.54	Metals: Mercury	Metals: Mercury	Metals: Mercury	100.0		108.0		55.63		28.60	++	471	41	0.45	3	131	18	2	320	0	yes	Axinopsida serricata Aricidea lopezi Levinsenia gracilis Prionospio (Minuspio) lighti	310 29 27 12
30, 197, West Harbor Island	0.27	18	0.60	Metals: Arsenic, Zinc	Metals: Arsenic; LPAHs: Acenaphthene; Other: Benzoic Acid, Dibenzofuran, 4- Methylphenol	Metals: Arsenic; Other: Benzoic Acid, 4-Methylphenol	87.9		62.0	**	2.23		96.60	+++	806	71	0.68	12	394	103	1	304	4	no	Parvilucina tenuisculpta Euphilomedes carcharodonta Lumbrineris californiensis Prionospio steenstrupi/jubata	261 89 64 47
30, 198, West Harbor Island	0.27	22	1.26	LPAHs: 2- Methylnaphthalene, Acenaphthene, Fluorene, Naphthalene, Total LPAH; Other: Total congeners	LPAHs: 2- Methylnaphthalene, Acenaphthene, Fluorene, Naphthalene, Total LPAH; Other: Benzoic Acid, Dibenzofuran, 4- Methylphenol, Total Aroclors	LPAHs: 2- Methylnaphthalene, Acenaphthene, Naphthalene, Total LPAH; Other: Benzoic Acid, Dibenzofuran, 4- Methylphenol	101.1		100.0		59.93		132.20	++++	1128	90	0.63	9	259	347	0	511	11	no	Axinopsida serricata Euphilomedes carcharodonta Euphilomedes producta Parvilucina tenuisculpta	358 142 141 59
30, 199, West Harbor Island	0.27	22	0.96	LPAHs: Total LPAH	LPAHs: Acenaphthene; Other: Benzoic Acid, Dibenzofuran, 4- Methylphenol	Other: Benzoic Acid, 4-Methylphenol	90.1		73.0	**	64.80		148.10	+++	1391	84	0.65	10	473	406	11	495	6	no	Euphilomedes carcharodonta Axinopsida serricata Parvilucina tenuisculpta Aphelochaeta sp N1	357 212 154 130
30, 114, West Harbor Island	0.27	21	1.34	HPAHs: Benzo(a)pyrene; Other: Total congeners	HPAHs: Benzo(g,h,i)perylene; Other: Benzoic Acid, 4- Methylphenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol	94.9		86.0		0.79		111.40	+++	1077	47	0.39	2	982	21	0	73	1	yes	Aphelochaeta sp N1 Heteromastus filobranchus Cossura pygodactylata Scoletoma luti	763 60 35 35

Appendix A. Continued.

Appen	aix A	. C	ontir	iuea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
31, 200, East Harbor Island	0.18	22	3.93	Other: Total congeners	Other: Benzoic Acid, 1,4-Dichlorobenzene, 4- Methylphenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol, Total Aroclors	100.0		68.0	**	25.40		153.50	+++	980	56	0.60	5	802	27	0	149	2	yes	Aphelochaeta sp N1 Chaetozone nr setosa Axinopsida serricata Scoletoma luti	352 168 95 86
31, 201, East Harbor Island	0.18	23	1.60	Other: Total congeners	Other: Benzoic Acid, Bis(2-Ethylhexyl) Phthalate, 4- Methylphenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol	92.3		66.0	**	3.13		135.30	+++	1415	57	0.39	2	1281	37	0	95	2	yes	Aphelochaeta sp N1 Scoletoma luti Axinopsida serricata Aphelochaeta monilaris	955 140 60 44
31, 202, East Harbor Island	0.18	25	2.16	Other: Total congeners	Other: Benzoic Acid, 4- Methylphenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol	90.1		100.0		7.67		133.20	+++	1572	42	0.45	3	891	23	0	657	1	yes	Axinopsida serricata Aphelochaeta sp N1 Scoletoma luti Aphelochaeta monilaris	589 514 282 22
32, 203, Duwamish	0.25	13	0.67		Other: Benzoic Acid, Total Aroclors	Other: Benzoic Acid	103.3		98.0		3.20		96.90	+++	3764	93	0.43	3	2970	94	0	688	12	yes	Aphelochaeta sp N1 Nutricola lordi Scoletoma luti Aphelochaeta sp	2152 430 320 91
32, 204, Duwamish	0.25	8	0.72	Other: Total congeners	Other: Benzoic Acid, Bis(2-Ethylhexyl) Phthalate, 4- Methylphenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol	92.3		103.0		3.33		77.00	+++	1155	52	0.37	2	1002	31	1	117	4	yes	Aphelochaeta sp N1 Scoletoma luti Macoma sp Nutricola lordi	814 58 47 35
32, 205, Duwamish	0.25	20	2.01	Other: Total congeners	HPAHs: Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene, Chrysene; Other: Benzoic Acid, Butylbenzylphthalate, 4- Methylphenol, Pentachlorophenol, Total Aroclors	Other: Benzoic Acid, 4-Methylphenol	100.8		94.0		3.57		46.90	+++	1561	65	0.45	3	1314	17	1	226	3	yes	Aphelochaeta sp N1 Scoletoma luti Nutricola lordi Cossura pygodactylata	660 455 98 90
1, 206, Port Ludlow	1.56	9	0.16				103.0		106.8		0.97		102.90	+++	688	32	0.45	2	595	1	0	90	2	yes	Aphelochaeta sp Aphelochaeta sp N1 Axinopsida serricata Acila castrensis	321 235 33 14

Apper		i. U	onth	iucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
1, 207, Port Ludlow	1.56	5	0.09		LPAHs: Naphthalene		97.0		106.6		6.87		4.40		953	58	0.60	6	687	115	0	148	3	yes	Aphelochaeta sp Aphelochaeta sp N1 Euphilomedes carcharodonta Nutricola lordi	293 260 65 47
1, 208, Port Ludlow	1.56	5	0.10				93.3		81.8		2.00		6.00		1574	47	0.64	6	645	731	0	198	0	no	Aoroides spinosus Oligochaeta Leptochelia savignyi Aoroides sp	411 350 195 103
2, 209, Hood Canal (north)		0	0.09				106.7		105.5		7.40		6.70		403	66	0.65	13	87	217	4	87	8	no	Euphilomedes producta Macoma carlottensis Pinnixa sp Macoma elimata	184 24 16 13
2, 210, Hood Canal (north)		0	0.07				108.6		106.1		8.60		6.70		516	83	0.78	19	127	133	10	211	35	no	Axinopsida serricata Euphilomedes producta Nutricola lordi Leitoscoloplos pugettensis	68 68 52 36
2, 211, Hood Canal (north)		1	0.07				103.7		105.7		7.27		5.10		587	92	0.79	22	198	257	2	107	23	no	Photis parvidons Photis sp Spiophanes bombyx Astyris gausapata	88 86 36 19
3, 212, Port Gamble Bay	1.38	6	0.11	Metals: Silver			100.0		105.9		2.23		15.00	++	1966	82	0.39	2	1764	119	7	69	7	yes	Aphelochaeta sp N1 Cirratulidae Euphilomedes carcharodonta Scoletoma luti	1271 206 74 55
3, 213, Port Gamble Bay	1.38	3	0.07				98.0		107.0		1.70		8.20		3475	84	0.33	2	3202	142	10	107	14	yes		2556 132 96 74
3, 214, Port Gamble Bay	1.38	18	0.50	LPAHs: Acenaphthylene, Naphthalene, Phenanthrene, Total LPAH			102.3		71.5	**	0.99		36.80	++	939	59	0.51	6	781	16	4	138	0	yes	Aphelochaeta sp N1 Dipolydora socialis Odostomia sp Paraprionospio pinnata	546 46 45 38

Арреі	naix A	I. U	onun	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
4, 215,	0.86	3	0.18				100.0		101.2		4.43		5.30		753	46	0.80	13	405	64	7	269	8	no	Trochochaeta multisetosa	127
Quilcene																									Parvilucina tenuisculpta	85
Bay																									Heteromastus filobranchus	71
																									Axinopsida serricata	45
															İ											
4, 216,	0.86	2	0.09				96.6		104.4		19.60		3.60		744	70	0.79	16	344	56	6	325	13	no	Trochochaeta multisetosa	97
Quilcene																									Macoma sp	89
Bay																									Macoma carlottensis	60
																									Pectinaria californiensis	43
4, 217,	0.86	2	0.09				103.0		105.9		45.20		4.60		892	81	0.75	15	361	41	2	427	61	no	Axinopsida serricata	123
Quilcene																-									Macoma sp	109
Bay																									Trochochaeta multisetosa	102
																									Macoma carlottensis	65
		-																								
5, 218,	18.57	2	0.09				98.0		105.7		29.80		3.60		280	42	0.74	10	147	3	0	127	3	no	Pectinaria californiensis	61
Dabob Bay	10.07	-	0.07				20.0		100.7		27.00		5.00		200		0.71	10		2	Ŭ	127	5		Axinopsida serricata	48
-																									Macoma carlottensis	45
																									Levinsenia gracilis	21
5, 219,	18.57	3	0.10				100.0		40.9	**	21.37		14.50	++	47	20	0.90	10	25	10	1	11	0	no	Macoma carlottensis	9
Dabob Bay	10.07	5	0.10				100.0		10.5		21.37		1 1.00		• *	20	0.70	10	20	10			Ŭ		Leitoscoloplos pugettensis	5
5																									Nephtys cornuta	5
																									Eudorella pacifica	4
		-																							Eudorena paemea	-
5, 220,	18.57	2	0.10				98.9		45.4	**	45.27	$\left \right $	15.20	++	26	16	0.95	10	12	5	1	7	1	no	Macoma carlottensis	4
Dabob Bay	10.57	-	0.10				70.7		тт		75.27		15.20		20	10	0.75	10	12	5		,	1	10	Pacifoculodes zernovi	3
																									Nephtys cornuta	3
																									Paraprionospio pinnata	2
		-																							r arapitonospio primata	2
6, 221, Hood	36.38	3	0.18				100.0		106.6		9.87		12.40	++	100	23	0.88	10	64	8	0	24	4	po	Mediomastus sp	16
6, 221, Hood Canal	50.58	5	0.10				100.0		100.0		7.0/		12.40	17	100	23	0.00	10	04	0	0	24	4	no	Macoma carlottensis	10
(central)																							1		Axinopsida serricata	12
																									Heteromastus filobranchus	12
		-																							neuromasius mooranellus	11
6, 222, Hood	36.38	1	0.09				101.1		105.3		111.70	$\left \right $	7.40		218	22	0.74	8	82	103	0	30	2		Eudoralla pagifica	68
6, 222, Hood Canal	30.38	1	0.09				101.1		105.5		111.70		/.40		218	33	0.74	0	82	103	0	50	3	no	Eudorella pacifica Pectinaria californiensis	35
(central)	1																						1		Euphilomedes producta	18
,	1																						1		1 1	18
	1																						1		Prionospio (Minuspio) lighti	15
1	1	1	1			1			1	1					1	1		1			1	1	1			

пррен								•	•														_			
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
6, 223, Hood Canal (central)	36.38	3	0.11				101.1		105.7		11.67		8.20		69	29	0.92	14	45	6	6	5	7	no	Leitoscoloplos pugettensis Brisaster latifrons Chaetoderma sp Lumbrineris limicola	11 5 5 4
7, 224, Hood Canal (south)	11.03	4	0.14				95.6		105.7		5.80		8.00		139	29	0.71	7	124	2	7	4	2	no	Sigambra nr bassi Spiophanes berkeleyorum Paraprionospio pinnata Heteromastus filobranchus	54 19 10 10
7, 225, Hood Canal (south)	11.03	4	0.13				96.7		106.4		2.73		9.40		144	15	0.54	2	134	0	0	7	3		Sigambra nr bassi Paraprionospio pinnata Axinopsida serricata Glycinde polygnatha	87 25 7 6
7, 226, Hood Canal (south)	11.03	3	0.12				105.6		103.1		14.63		6.50		286	27	0.66	5	205	28	0	48	5	no	Spiophanes berkeleyorum Heteromastus filobranchus Macoma carlottensis Eudorella pacifica	100 55 28 26
8, 227, Port of Shelton	15.23	16	0.22				103.2		97.5		1.13		56.60	+++	299	33	0.75	8	225	21	5	48	0		Nephtys cornuta Oligochaeta Capitella capitata hyperspecies Prionospio (Minuspio) lighti	83 42 33 19
8, 228, Port of Shelton	15.23	5	0.15				101.1		98.8		1.57		21.30	++	235	34	0.79	9	156	17	0	59	3	yes?	Nephtys cornuta Capitella capitata hyperspecies Oligochaeta Macoma nasuta	52 31 18 16
8, 229, Port of Shelton	15.23	7	0.15				104.3		99.2		0.99		26.40	++	198	44	0.82	13	131	25	0	40	2		Armandia brevis Capitella capitata hyperspecies Oligochaeta Alvania compacta	35 18 17 16
9, 230, Oakland Bay	3.27	8	0.18				97.9		95.6		1.73		27.00	++	91	26	0.84	8	31	4	1	49	6		Cryptomya californica Nutricola lordi Macoma nasuta Prionospio (Minuspio) lighti	14 12 12 10
9, 231, Oakland Bay	3.27	3	0.14				101.1		101.8		1.07		27.70	++	83	21	0.81	8	29	11	0	40	3	no	Nutricola lordi Terebellides californica	25 12

		1. U	ontin	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	taxa nunna Macoma nasuta	01 Count
																									Pinnotheridae	5
9, 232,	3.27	5	0.12		1	1	102.2		84.4		2.60		14.10	++	82	21	0.88	9	30	15	5	29	3	no	Macoma nasuta	12
Oakland Bay																									Pinnixa occidentalis	11
																									Prionospio (Minuspio) lighti	10
																									Nutricola lordi	9
10, 233, Tetter Julat	5.72	3	0.09				100.0		106.1		1.57		12.70	++	212	24	0.81	7	132	44	14	20	2	no	Paraprionospio pinnata	44
Totten Inlet																									Pinnixa occidentalis	26
																									Terebellides californica	26 23
																									Pholoe sp Cmplx	23
10, 234,	5.72	3	0.10				96.9		102.5		4.17		8.00		114	16	0.72	4	98	8	0	7	1	no	Nephtys cornuta	38
Totten Inlet																									Spiophanes berkeleyorum	31
																									Paraprionospio pinnata	12
																									Terebellides californica	6
10, 235, Totten Inlet	5.72	4	0.19	Metals: Mercury	Metals: Mercury	Metals: Mercury	100.0		70.2	**	3.83		8.30		259	38	0.84	12	121	39	48	32	19	no	Amphiodia urtica/periercta complex	41
																									Pholoe sp Cmplx	25
																									Levinsenia gracilis	21
																									Paraprionospio pinnata	21
11, 238, Eld	4.00	3	0.12				100.0		107.0		0.77		16.10	++	439	20	0.45	2	57	318	20	23	21	no	Eudorella pacifica	304
Inlet	4.00	5	0.12				100.0		107.0		0.77		10.10		439	20	0.45	2	57	510	20	23	21	110	Paraprionospio pinnata	29
																									Amphiodia urtica/periercta	20
																									complex Stylatula elongata	17
11, 239, Eld	4.00	3	0.10				101.0		106.6		4.20		8.40		566	27	0.59	4	131	328	81	10	16	no	Eudorella pacifica	262
Inlet																									Pholoe sp Cmplx	82
																									Amphiodia urtica/periercta	71
																									complex Pinnotheridae	31
		-																-			<u> </u>				r mnotheridae	51
11, 240, Eld	4.00	4	0.11				97.9		7.8	**	4.27		15.00	++	40	10	0.88	5	37	2	0	1	0	no	Paraprionospio pinnata	10
Inlet		1	0.11				,,,,,		,				10.00				5.00	5	2,	-	Ŭ		Ŭ		Nephtys cornuta	7
																									Spiophanes berkeleyorum	6
																							1		Aphelochaeta sp N1	6

Appendix A. Continued.

Appen	aix A	. C	ontin	uea.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
12, 236, Budd Inlet	5.45	3	0.12				96.9		92.6		2.00		18.50	++	273	23	0.38	2	230	10	1	29	3	yes	Aphelochaeta sp N1 Odostomia sp Paraprionospio pinnata Nephtys cornuta	204 18 13 5
12, 237, Budd Inlet	5.45	3	0.11		Other: Benzoic Acid, Benzyl Alcohol	Other: Benzoic Acid, Benzyl Alcohol	101.1		103.6		1.60		11.40	++	886	30	0.48	3	204	220	445	8	9	no	Amphiodia urtica/periercta complex Eudorella pacifica Pholoe sp Cmplx Aphelochaeta sp N1	439 174 127 51
10.041	5.45	2	0.10				102.1		105.0		1.20		25.60		026	20	0.57	4	2(2	207	202	24	40			232
12, 241, Budd Inlet	5.45	3	0.10				102.1		105.9		1.30		25.60	++	836	39	0.57	4	263	207	302	24	40	no	Amphiodia urtica/periercta complex Eudorella pacifica Pholoe sp Cmplx Amphiodia sp	232 197 173 55
13, 242, Port	0.27	12	0.23				96.8		0.4	**	1.01		45.70	+++	0	0	0.00	0	0	0	0	0	0	yes		
of Olympia	0.27	15	0.25				70.0		0.4		1.01		43.70		Ū	0	0.00	0	0	0		0		yes		
13, 243, Port	0.27	22	0.43		Other: Benzoic Acid,	Other: Benzoic Acid	101.1		0.0	**	0.31	^	122.70	+++	0	0	0.00	0	0	0	0	0	0	yes		
of Olympia	0.27	23	0.45		Bis(2-Ethylhexyl) Phthalate	Unier, Beizole Acid	101.1		0.0		0.51		122.70		0	0	0.00	0	0	0	Ŭ	0	Ū	yes		
13, 244, Port	0.27	4	0.13		Other: Phenol	Other: Phenol	98.9		100.1		0.74		20.10	++	123	18	0.64	4	112	1	1	7	2	yes	Nephtys cornuta	57
of Olympia																									Paraprionospio pinnata Sigambra nr bassi Aphelochaeta sp N1	17 16 10
14, 245, Pickering Passage/ Squaxin Island	10.52	1	0.07		Other: Benzyl Alcohol		81.1		106.4		7.33		1.80		830	102	0.83	23	418	92	8	232	80	no	Edwardsia sipunculoides Paleanotus bellis Caulleriella pacifica Astyris gausapata	52 51 49 48
14, 246, Pickering Passage/ Squaxin Island	10.52	0	0.07				101.1		106.6		7.87		4.20		690	97	0.82	25	509	19	2	137	23	no	Parvilucina tenuisculpta Levinsenia gracilis Mediomastus sp Trochochaeta multisetosa	76 48 42 39

Аррсі			0	acar																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
14, 247,	10.52	1	0.05		Other: Benzyl Alcohol	Other: Benzyl Alcohol	98.9		106.4		6.63		2.70		1069	92	0.67	17	522	48	15	130	354	no	Edwardsia sipunculoides	311
Pickering	10.52		0.05		other: Benzyr Heonor	Other: Benzyr / Reonor	70.7		100.4		0.05		2.70		100)	12	0.07	17	522	-10	15	150	551	по	Micropodarke dubia	220
Passage/																									-	
Squaxin																									Polycirrus californicus	45
Island																									Rochefortia tumida	26
15, 248,	1.64	3	0.10				93.8		103.8		3.60		9.10		389	25	0.71	6	82	185	72	37	13	no	Eudorella pacifica	130
Henderson	1.04	5	0.10				15.0		105.0		5.00		9.10		507	25	0.71	0	02	105	12	57	15	110		64
Inlet																									Amphiodia urtica/periercta complex	04
innet																									Pholoe sp Cmplx	44
																									Nutricola lordi	30
15, 249,	1.64	3	0.10				100.0		107.0		1.43		10.80		499	27	0.51	3	110	313	51	21	4	no	Eudorella pacifica	295
Henderson																									Amphiodia urtica/periercta	51
Inlet																									complex	
																									Paraprionospio pinnata	36
																									Oligochaeta	29
																									Ũ	
15, 250,	1.64	2	0.10		Other: Benzoic Acid,	Other: Benzoic Acid,	97.9		104.6		3.73		10.40		521	20	0.42	2	55	398	50	10	0		Eudorella pacifica	361
Henderson	1.04	2	0.10		Phenol	Phenol	97.9		104.0		5.75		10.40		321	20	0.42	2	55	390	50	10	8	no		
Inlet					ritetioi	riiciioi																			Amphiodia urtica/periercta	42
iniet																									complex	10
																									Heterophoxus affinis	19
																									Sigambra nr bassi	19
16, 251,	20.85	1	0.09				100.0		102.5		2.33		21.90	++	317	46	0.74	11	260	13	1	38	5	no	Levinsenia gracilis	84
Case Inlet																									Aricidea ramosa	51
																									Sigambra nr bassi	27
																									Parvilucina tenuisculpta	22
		_																							Fai vilucina tenuiscuipta	22
16, 252,	20.85	2	0.10				97.9		84.2		7.40		20.00	++	181	27	0.76	6	99	24	0	30	28	no	Aricidea ramosa	39
Case Inlet																							1	1	Levinsenia gracilis	29
																									Virgularia sp	26
1																							1	1	Parvilucina tenuisculpta	18
	i	1							1					1		1					1		i –	1	-	
16, 253,	20.85	2	0.10				97.9		101.4		4.87		9.00		206	ΔΔ	0.82	13	153	6	1	32	14	no	Aricidea ramosa	34
Case Inlet	20.05	-	0.10				,,,,		101.4		1.07		2.00		200		0.02	15	155	Ŭ	· ·	52	1.4	10	Levinsenia gracilis	29
																1							1	1	-	
																									Parvilucina tenuisculpta	20
																									Dipolydora caulleryi	15
17, 254, Nisqually	11.91	0	0.05				91.8		101.3		9.97		2.10		159	55	0.78	18	48	68	1	36	6	no	Euphilomedes carcharodonta	46
Reach																							1		Astyris gausapata	21
																							1	1	Westwoodilla caecula	6
																							1	1	Prionospio steenstrupi/jubata	5
																									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	İ	1	Ì													1	Ì				1		Ì	Ì		
17, 255,	11.91	0	0.06				96.9		101.1		5.27		7.40	1	220	51	0.79	14	176	4	3	28	9	no	Dipolydora cardalia	41
i ll	1	1	•	I	I	I	1	1	1	•	1	1		1	1	1	•			1	1	1	•	1		

i ll

Appen	dix A	. C	ontin	ued.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as% of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
Nisqually Reach				-															1						Levinsenia gracilis	37
Reacti																									Parvilucina tenuisculpta	14 13
																									Sigambra nr bassi	13
17, 256, Nisqually Reach	11.91	0	0.06				95.9		100.1		8.13		5.50		466	68	0.78	15	290	32	98	30	16	no	Dipolydora cardalia Amphiodia urtica/periercta complex Levinsenia gracilis Prionospio steenstrupi/jubata	74 68 46 22
18, 257,	6.72	1	0.08				96.9		100.5		2.80		15.70	++	490	55	0.60	6	403	19	2	21	45	no	Levinsenia gracilis	209
Drayton																									Aricidea ramosa	77
Passage																									Sigambra nr bassi	35
																									Virgularia sp	25
18, 258,	6.72	0	0.05				97.9		100.1		7.37		2.00		296	80	0.84	24	93	85	27	86	5	no	Euphilomedes carcharodonta	44
Drayton	0.72	0	0.03				97.9		100.1		1.51		2.00		290	80	0.64	24	93	05	27	80	5	110	Eupinioniedes carcharodonta	44
Passage																									Rochefortia tumida	24
																									Rhepoxynius boreovariatus	14
																									Astyris gausapata	13
18, 259,	6.72	0	0.05				102.1		100.9		5.63		2.30		686	78	0.59	8	241	22	380	24	19	no	Amphiodia urtica/periercta	313
Drayton Passage																									complex Scoletoma luti	60
i ussuge																									Amphiodia sp	59
																									Dipolydora cardalia	30
19, 260, East	16.50	1	0.10		Other: Benzoic Acid	Other: Benzoic Acid	99.0		100.1		6.57		12.40	++	228	51	0.87	17	149	30	10	34	5	no	Levinsenia gracilis	21
Anderson Island/No.																									Dipolydora socialis	19
Cormorant																									Sigambra nr bassi	18
Passage																									Parvilucina tenuisculpta	17
																(
19, 261, East Anderson	16.50	1	0.09				99.0		99.9		5.07		9.00		311	62	0.84	19	213	14	25	42	17	no	Dipolydora socialis Trochochaeta multisetosa	35 27
Island/No.																									Parvilucina tenuisculpta	27
Cormorant																									Praxillella pacifica	20
Passage																									1 ····	

Page A-36

Apper	IUIX P	i . U	onun	ucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Mise. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
19, 262, East Anderson	16.50	0	0.09				98.0		97.9		7.07		5.20		588	104	0.77	22	275	141	133	23	16	no	Amphiodia urtica/periercta complex	131
Island/No. Cormorant																									Euphilomedes carcharodonta	44
Passage																									Rhepoxynius boreovariatus	28
		-																							Ampelisca lobata	26
20, 263, Carr	26.60	0	0.08				101.0		100.3		14.53		3.50		376	69	0.84	19	277	7	13	76	3	no	Praxillella sp	38
Inlet																							-		Trochochaeta multisetosa	32
																									Levinsenia gracilis	32
																									Axinopsida serricata	30
		-																								
20, 264, Carr	26.60	4	0.20				101.0		100.7		15.80		7.00		94	19	0.72	5	35	0	0	59	0	no	Axinopsida serricata	40
Inlet	20.00	· ·	0.20				101.0		100.7		10.00		1.00		<i></i>	.,	0.72	2	50	Ŭ	Ŭ	0,	Ŭ		Sigambra nr bassi	9
																									Parvilucina tenuisculpta	9
																									Levinsenia gracilis	8
20, 265, Carr	26.60	3	0.13				99.0		98.7		6.23		12.80	++	175	26	0.75	6	113	1	0	59	2	no	Parvilucina tenuisculpta	38
Inlet	20.00	5	0.15				,,,,,,		20.7		0.25		12.00		170	20	0.75	0	115		0	0,7	-		Prionospio (Minuspio) lighti	32
																									Levinsenia gracilis	26
																									Axinopsida serricata	14
21, 266, Hale Passage	3.63	0	0.04		Other: Benzoic Acid	Other: Benzoic Acid	101.0		100.5		6.63		2.00		274	66	0.87	22	150	18	0	96	10	no	Mediomastus californiensis	33
		1																							Parvilucina tenuisculpta	22
																									Mediomastus sp	15
																									Chaetozone sp N2	14
21, 267, Hale Passage	3.63	0	0.05				100.0		100.1		6.80		4.10		266	73	0.78	20	146	84	3	27	6	no	Euphilomedes carcharodonta	60
		1																							Dipolydora socialis	27
																									Prionospio steenstrupi/jubata	23
																					L				Streblosoma sp	20
21, 268, Hale	3.63	0	0.07				99.0		99.9		6.43		1.60		222	57	0.85	17	147	30	3	33	9	no	Chaetozone sp N2	32
Passage																									Mediomastus californiensis	23
																1					1			1	Odontosyllis phosphorea	13
		1																							Diopatra ornata	13
1					•																				<u>, </u>	

Normalization Normalinteranterateration Normalinteranteranterantera	Appen	iaix A	i . C	ontin	uea.																						
Haber Haber	Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & ≺80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblaces*	Dominant taxa	Count
Haber Haber																											
Image: biase intermediate intermed	22, 269, Gig	0.18	0	0.08				104.5		100.9		2.80		33.30	++	1107	61	0.52	3	922	98	0	87	0	yes	Aphelochaeta sp	407
1 1 <td>Harbor</td> <td></td> <td>Aphelochaeta sp N1</td> <td>229</td>	Harbor																									Aphelochaeta sp N1	229
2.7.70. Gr Hurber 0.18 1 0.14 0.14 0.14 0.15 0.95 0.95 0.95 0.10.7 100.5 0.95 0.10.7 100.7 100.5 0.95 0.10.7 117 127 128 0.41 117 0.6 0 0.8 11 128 Aphelochetata y NI 359 Hurber 0.05																										Rhynchospio glutaea	195
Harbor Harbor<																										Odostomia sp	41
Harbor Harbor<																	1								1		
Harbor Harbor<	22 270 Gig	0.18	1	0.14				97.7		100.5		0.95		31.30	++	1287	78	0.48	3	1178	60	0	38	11	ves	Aphelochaeta sp	559
Image: bit with the section of the secting of the sectinge			-																-						,		
Image: biole																											
Image: bit im																											
Hubor Image																										r nyhoenaetopterus pronnea	50
Hubor Image	-																										
Image: bit in the state in		0.18	19	0.33				100.0		100.7		2.00		87.00	+++	807	64	0.61	6	537	136	23	108	3	yes		
1 1 <th1< th=""> 1 1 1 1<td>Harbor</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>	Harbor																										
x x																										Eudorella pa	56
Colors Passage Passage Image: passage Passage Image: passage Passage																										Euphilomedes	53
Colors Passage Passage Image: passage Passage <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																											
Passage Image: second	23, 272,	13.88	0	0.08				97.0		100.5		29.80		3.90		367	96	0.88	31	205	102	2	48	10	no	Mediomastus sp	31
Image: biole	Colvos																									Mediomastus californiensis	20
Image: bial bial bial bial bial bial bial bial	Passage																									Dipolydora socialis	17
23, 27, bases 13.88 1 0.07																										1.7	16
Colves Passage																										1 1	
Colves Passage	23 273	13.88	1	0.08				91.0		100.3		31 47		2.30		261	73	0.84	23	133	82	5	31	10	no	Mediomastus sp	34
Passage Image: same since		15.00		0.00				21.0		100.5		51.17		2.50		201	,5	0.01		100		5	51	10			
Image: state in therest and the state in there are state in the s																										-	
Image: book of the constraint of th																											
Colvos Passage Image: problem index proble																										1 milotiteridae	15
Colvos Passage Image: problem index proble	22 274	12.00	^	0.07				01.1		100.5		20 40		2 70		105	50	0.70	16	0.0	51	0	25	4		Madiamastus	27
Pasage Image		13.88	0	0.07				91.1		100.5		28.40		3.70		195	55	0.79	10	98	50	0	35	4	по		
Image: state in the state i																											
Image: bit image: bit	e																										
Quarter- master Harbor Quarter- Harbor Quarter- Harbor Quarter- Harbor Quarter- Polycirus sp Polycirus sp P																										Prionospio i	/
Quarter- master Harbor Quarter- Harbor Quarter- Harbor Quarter- Harbor Quarter- Polycirrus sp Polycirrus sp																											
master Harbor Harbor H		3.42	0	0.05				98.9		99.7		51.07		5.20		510	90	0.80	20	275	120	2	109	4	no	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-																									Euphilomedes carcharodonta	53
Image: state in the state																	1		1						1	Euphilomedes producta	39
24,276, Quarter- master 3.42 5 0.15 105.7 99.5 0.71 29.20 ++ 285 40 0.68 7 177 3 0 101 4 no Nutricola lordi 83 Luchor 105.7 99.5 0.71 29.20 ++ 285 40 0.68 7 177 3 0 101 4 no Nutricola lordi 83 Under 105.7 99.5 0.71 29.20 ++ 285 40 0.68 7 177 3 0 101 4 no Nutricola lordi 83 Under 105.7 99.5 0.71 29.20 ++ 285 40 0.68 7 177 3 0 101 4 no Nutricola lordi 83 Under 105.7 99.5 0.71 29.20 ++ 285 40 0.68 7 177 3 0 101 4 no 105.7 29																	1		1						1		
Quarter- master Lucher			+																							2	
Quarter- master Lucher	24, 276,	3.42	5	0.15				105.7		99.5		0.71		29.20	++	285	40	0.68	7	177	3	0	101	4	no	Nutricola lordi	83
master Scalibregma inflatum 29																	1		1						1		
U arbar																	1		1						1		
	Harbor		1																1							•	

Apper	iuix F	i . C	onun	ueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
24, 277,	3.42	4	0.11				94.3		100.5		1.30		16.40	++	259	47	0.83	14	151	61	28	13	6	no	Eudorella pacifica	34
Quarter-																									Terebellides californica	29
master																									Amphiodia urtica/periercta	28
Harbor																									complex	
																									Polycirrus californicus	22
25, 278, East	22.60	10	0.20				103.4		100.9		18.10		78.90	+++	1429	88	0.63	9	252	623	11	534	9	no	Axinopsida serricata	372
Passage																									Eudorellopsis integra	308
																									Euphilomedes producta	165
																									Macoma carlottensis	77
		-																								
25, 279, East	22.60	5	0.14				100.0		100.1		3.63		24.50	++	454	39	0.48	4	62	55	3	319	15	no	Axinopsida serricata	292
Passage		-																			-				Eudorellopsis integra	26
C																									Eudorella pacifica	16
																									Levinsenia gracilis	13
																					-				Ee vinsenia graenis	15
25, 280, East	22.60	1	0.08				97.7		98.7		175.30		1.50		193	66	0.86	26	124	29	1	34	5	no	Chaetozone sp N2	38
Passage	22.00	1	0.08				91.1		96.7		175.50		1.50		195	00	0.80	20	124	29	1	54	5	по	1	15
1 ussuge																									Astyris gausapata	9
																									Spiophanes bombyx Diopatra ornata	9
																									Diopatra ornata	9
			0.40															10								101
26, 281, Outer Com-	3.24	5	0.12				98.9		100.1		3.77		11.80	++	344	56	0.73	13	144	33	3	158	6	no	Axinopsida serricata	104
mencement																									Levinsenia gracilis	36
Bay																									Macoma carlottensis	30
-																									Prionospio (Minuspio) lighti	21
		-																								
26, 282,	3.24	7	0.16				100.0		98.9		4.30		27.80	++	533	66	0.64	10	269	55	3	192	14	no	Axinopsida serricata	169
20, 282, Outer Com-	5.24	'	0.10				100.0		70.7		4.50		27.00		555	00	0.04	10	209	55	5	192	14	10	Levinsenia gracilis	132
mencement																									Cossura pygodactylata	27
Bay																									Mediomastus sp	14
L		_																_							Mediomastus sp	14
26.202	2.24		0.14				04.6		100.5		11.57		10.00		701	60	0.57	6	170	101	-	202	20			227
26, 283, Outer Com-	3.24	4	0.14				94.6		100.5		11.57		18.80	++	721	60	0.57	6	178	131	2	382	28	no	Axinopsida serricata	337
mencement																									Eudorellopsis integra	94
Bay																									Levinsenia gracilis	43
		-												<u> </u>							<u> </u>				Macoma carlottensis	29
		+					4.0.1.1		107 -					ļ			0		a / -		-		_		<u> </u>	
26, 284,	3.24		0.16				101.1		100.5		6.47		7.00		609	89	0.73	19	217	126	2	257	7	no	Axinopsida serricata	163
Outer Com- mencement																1					1			1	Euphilomedes producta	73
Bay																1					1			1	Macoma carlottensis	50
	1		1													1									Levinsenia gracilis	19

Appen		. C	onth	lucu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)		Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
27, 285, S. E. Com-	0.79	3	0.12				101.1		100.7		9.07		19.80	++	635	98	0.80	24	264	207	16	144	4	no	Euphilomedes carcharodonta	124
mencement Bay																									Parvilucina tenuisculpta	39
(shoreline)																									Pinnotheridae Chaetozone nr setosa	36 31
·		-																							Chaetozone nr setosa	31
27, 286, S. E.	0.79	0	0.14				102.2		100.7		5.77		26.40	++	751	68	0.62	9	182	95	1	468	5	no	Axinopsida serricata	316
27, 280, S. E. Com-	0.79	0	0.14				102.2		100.7		5.77		20.40		/31	08	0.02	9	162	95	1	408	5	по	Macoma carlottensis	83
mencement																									Euphilomedes producta	52
Bay																									Astyris gausapata	36
(shoreline)																									· 8	
27, 287, S. E.	0.79	20	0.52	LPAHs:			95.7		100.1		4.67		121.70	+++	1874	100	0.63	9	325	616	31	898	4	no	Axinopsida serricata	495
27, 287, S. E. Com-	0.79	20	0.55	Phenanthrene, Total			95.7		100.1		4.07		121.70	+++	10/4	100	0.05	9	323	010	51	090	4	по	Euphilomedes carcharodonta	317
mencement				LPAH																					Eupinionicaes carenaroaona	517
Bay																									Euphilomedes producta	193
(shoreline)																									Macoma sp	172
28, 288, S. E.	1.05	7	0.18				101.1		100.9		9.20		12.80	++	1477	63	0.49	6	1332	64	0	72	9	no	Cossura pygodactylata	862
Com- mencement																									Trochochaeta multisetosa	106
Bay																									Levinsenia gracilis	45
																									Ampharete cf crassiseta	40
20. 200 G F	1.05	0	0.14				104.2		101.2		11.00		10.20		004	(0)	0.72	10	7(7	42	0	1(0	(127
28, 289, S. E. Com-	1.05	8	0.14				104.3		101.3		11.00		18.20	++	984	69	0.73	10	767	42	0	169	6	no	Ampharete cf crassiseta Cossura pygodactylata	137 114
mencement																									Axinopsida serricata	104
Bay																									Trochochaeta multisetosa	104
																									Troutoenaeta manisetosa	100
28, 290, S. E.	1.05	8	0.12				100.0		100.9		7.87		18.80	++	2289	69	0.49	5	2124	51	0	109	5	no	Cossura pygodactylata	1248
Com-																									Ampharete cf crassiseta	193
mencement																									Ampharetidae sp	135
Bay																									Trochochaeta multisetosa	90
29, 291, N.E.	1.11	6	0.11				96.7		100.5		5.47		22.00	++	619	52	0.56	5	215	19	5	378	2	no	Axinopsida serricata	315
Com-																									Ampharete finmarchica	57
mencement Bay																					1				Levinsenia gracilis	52
,																									Macoma carlottensis	31
																	0.67									
29, 292, N.E. Com	1.11	6	0.14				95.5		99.5		4.03		28.40	++	974	85	0.67	12	533	48	22	357	14	no	Axinopsida serricata	281
Com- mencement										1											1				Levinsenia gracilis	192
Bay																									Cossura pygodactylata	41 32
												1				1		1		1					Euchone incolor	52

Appendix A. Continued.

Appen	dix A	. C	ontin	lued.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
29, 293, N.E. Com- mencement Bay	1.11	15	0.25				92.2		99.3		0.43	^	109.00	+++	2235	86	0.46	4	1792	47	10	363	23	yes	Aphelochaeta sp Alvania compacta Aphelochaeta sp N1 Aphelochaeta monilaris	1262 220 153 70
30, 294, Thea Foss Waterway	0.13	27	4.25	Metals: Lead; HPAHs: Benzo(a)anthracene, Benzo(a)pyrene, Dibenzo(a,h)anthracen e, Fluoranthene, Pyrene, Chrysene, Total HPAH; LPAHs: 2-Methylnaphthalene, Acenaphthylene, Anthracene, Fluorene, Naphthalene, Phenanthrene, Total LPAH; Total PAH; Others: Total congeners	Metals: Mercury; HPAHs: Benzo(g,h,i)perylene, Fluoranthene, Indeno(1,2,3-c,d)pyrene; LPAHs: Acenaphthene, Fluorene, Phenanthrene; Others: Bis(2- Ethylhexyl) Phthalate, Dibenzofuran, 2,4- Dimethylphenol, Total Aroclors	Metals: Mercury; Other: 2,4- Dimethylphenol	90.2		28.8	**	0.32		1994.90	+++	304	43	0.77	10	103	36	0	164	1	yes	Alvania compacta Capitella capitata hyperspecies Lacuna vincta Armandia brevis	69 31 31 23
30, 295, Thea Foss Waterway	0.13	21	0.52	LPAHs: Total LPAH	Other: Butylbenzylphthalate		101.1		100.5		1.37		529.10	+++	2924	53	0.43	3	2259	96	41	521	7	yes	Aphelochaeta sp Axinopsida serricata Aphelochaeta sp N1 Pinnotheridae	1708 360 260 88
30, 296, Thea Foss Waterway	0.13	21	0.55	LPAHs: Pyrene, Total LPAH	HPAHs: Benzo(g,h,i)perylene, Indeno(1,2,3-c,d)pyrene		95.7		100.7		1.14		355.70	+++	1633	79	0.60	8	1070	91	38	427	7	yes	Aphelochaeta sp N1 Axinopsida serricata Rochefortia tumida Cossura pygodactylata	612 237 94 73
31, 297, Middle Waterway	0.02	19	0.41				100.0		99.1		3.03		44.20	+++	1847	117	0.59	12	1283	77	56	422	9	yes	Aphelochaeta sp N1 Axinopsida serricata Parvilucina tenuisculpta Alvania compacta	777 179 82 51
31, 298, Middle Waterway	0.02	18	0.29				94.6		101.0		0.89		73.30	+++	888	85	0.70	12	641	94	11	141	1	no	Aphelochaeta sp N1 Armandia brevis Prionospio steenstrupi/jubata Lumbrineris californiensis	232 92 51 49

Appendix A. Continued.

Appen	aix A	. U	ontin	lueu.																						
Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	Misc. abundance	Impaired infaunal assemblages*	Dominant taxa	Count
									100.5		• • • •	┝─┤	110 -		1000						L					-
31, 299, Middle Waterway	0.02	22	1.11	Metals: Copper, Mercury; HPAH : Benzo(a)anthracene, Benzo(a)pyrene, Dibenzo(a,h)anthracen e, Pyrene, Total HPAH; LPAH : Acenaphthene, Anthracene, Fluorene, Phenanthrene, Total LPAH	Metals: Arsenic, Copper, Mercury; HPAHs: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(a,h)perylene, Chrysene, Dibenzo(a,h)anthracene, Fluoranthene, Indeno(1,2,3-c,d)pyrene, Total HPAH; LPAHs: Acenaphthene, Fluorene, Phenanthrene, Total LPAH; Other: Dibenzofuran	Metals: Copper, Mercury; HPAHs: Dibenzo(a,h)anthracen e; LPAHs: Acenaphthene	93.5		100.3		2.00		119.70	+++	1296	81	0.53	8	1179	38	5	64	10	yes	Aphelochaeta sp N1 Lumbrineris californiensis Prionospio steenstrupi/jubata Notomastus hemipodus	706 65 52 50
32, 300, Blair Waterway	0.39	4	0.13				101.1		100.9		3.27		36.70	++	889	50	0.60	5	507	6	0	375	1	yes	Axinopsida serricata Aphelochaeta sp N1 Aphelochaeta monilaris Scoletoma luti	353 152 74 48
32, 301, Blair Waterway	0.39	3	0.13				93.3		100.1		2.60		33.30	++	1010	50	0.53	3	726	6	0	278	0	yes	Aphelochaeta sp NI Axinopsida serricata Chaetozone nr setosa Scoletoma luti	410 257 92 34
32, 302, Blair Waterway	0.39	2	0.16				94.4		100.7		4.33		19.90	++	1145	61	0.58	5	672	28	4	440	1	yes	Axinopsida serricata Aphelochaeta sp N1 Aphelochaeta monilaris Scoletoma luti	377 252 142 57
22, 202	0.00	0.4	0.05		04		101.1		00.2		0.00	┝─┤	17(20		774	<i>с</i> .	0.54		672	22		1.55	_		A 1 1 1 4 NT	202
33, 303, Hylebos Waterway	0.22	24	2.05	Other: Total Congeners	Other: Hexachlorobenzene, Total Aroclors		101.1		98.3		0.88		176.20	+++	776	54	0.54	5	572	22	0	177	5	yes	Aphelochaeta sp N1 Axinopsida serricata Aphelochaeta monilaris Scoletoma luti	383 90 63 40
33, 304, Hylebos Waterway	0.22	12	0.58		Other: Hexachlorobenzene, Phenol, Total Aroclors		101.1		99.7		1.23		104.80	+++	533	55	0.59	6	469	12	0	51	1	yes	Aphelochaeta sp N1 Euchone incolor Prionospio steenstrupi/jubata Scoletoma luti	258 41 31 29

Appendix A. Concluded.

Stratum, sample, location	sample-wtd area (km2)	Number of ERLs exceeded	Mean ERM quotient	Compounds exceeding ERMs	Compounds exceeding SQSs	Compounds exceeding CSLs	Amphipod survival as % of control	% survival significantly different than controls & <80% of controls)	Mean Urchin fertilization in 100% pore water as % of control	Significance (<80% of controls)	Microtox EC50 (mg/ml)	Significance (<0.51 mg/mg)	Cytochrome P-450 HRGS as ugB[a]p/g	Significance (++=>11.1ugB[a]p/g, +++=>37.1ugB[a]p/g)	Total abundance	Taxa richness	Evenness	Species Dominance Index	Annelid abundance	Arthropod abundance	Echinoderm abundance	Mollusca abundance	c. abur	Impaired infaunal assemblages*	Dominant taxa	Count
33, 305,	0.22	19	1.08		Other:		86.0		100.7		0.82		73.30	+++	922	46	0.39	2	836	25	2	57	2	yes	Aphelochaeta sp N1	632
Hylebos					Hexachlorobenzene																				Aphelochaeta monilaris	67
Waterway																									Scoletoma luti	57
																									Axinopsida serricata	28

*As there are no accepted guidelines or criteria for the determination of impaired infaunal assemblages, best professional judgment was used to indicate whether the infaunal assemblage as each station appeared to be impacted, based on a combination of benthic indices examined. An assemblage was classified as impacted primarily if it had a combination of low benthic indicators, although some of the impacted stations possessed high total abundance and/or Swartz's Dominance Index, due to high abundance of 1 or 2 pollution tolerant taxa.