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Abstract
Many species of micronekton perform diel vertical migrations (DVMs), which ultimately contributes to car-

bon export to the deep sea. However, not all micronekton species perform DVM, and the nonmigrators, which
are often understudied, have different energetic requirements that might be reflected in their trophic ecology.
We analyze bulk tissue and whole animal stable nitrogen isotopic compositions (δ15N values) of micronekton
species collected seasonally between 0 and 1250 m depth to explore differences in the trophic ecology of verti-
cally migrating and nonmigrating micronekton in the central North Pacific. Nonmigrating species exhibit
depth-related increases in δ15N values mirroring their main prey, zooplankton. Higher variance in δ15N values
of bathypelagic species points to the increasing reliance of deeper dwelling micronekton on microbially
reworked, very small suspended particles. Migrators have higher δ15N values than nonmigrators inhabiting the
epipelagic zone, suggesting the consumption of material during the day at depth, not only at night when they
migrate closer to the surface. Migrating species also appear to eat larger prey and exhibit a higher range of varia-
tion in δ15N values seasonally than nonmigrators, likely because of their higher energy needs. The dependence
on material at depth enriched in 15N relative to surface particles is higher in migratory fish that ascend only to
the lower epipelagic zone. Our results confirm that stark differences in the food habits and dietary sources of
micronekton species are driven by vertical migrations.

Diel vertical migration (DVM) performed by marine zoo-
plankton and micronekton is a ubiquitous behavior (Bianchi
and Mislan 2016), constituting one of the largest animal migra-
tions worldwide (Sutton 2013). Observations of higher biomass
and abundance of organisms deeper in the water column during
the day and closer to the surface at night have been extensively
reported from global marine ecosystems (e.g., Vinogradov 1962;
Clarke 1977; Pearcy et al. 1979; Watanabe et al. 1999). DVM is
generally characterized by feeding in surface waters at night fol-
lowed by excretion at greater depths, thereby contributing sig-
nificantly to the transport of organic matter to the deep sea
(reviewed in Drazen and Sutton [2017]). Bianchi et al. (2013)
estimated that vertical migrators are responsible for between

15% and 40% of the total particle export flux to the mesopelagic
zone. This active transport of carbon by DVM ultimately con-
tributes to the functioning of deep-sea ecosystems (Burd et al.
2010), and it is needed to meet the overall energetic demands of
mesopelagic ecosystems (Steinberg et al. 2008; Robinson et al.
2010). Moreover, the transport of organic matter by vertical
migrators is thought to enhance coupling between pelagic and
benthic communities (Trueman et al. 2014) that in turn,
improves the resilience of deep benthic systems to top–down or
bottom–up perturbations that affect the structure of the food
web (Blanchard et al. 2011).

Among vertical migrators, micronekton comprise much of
the metazoan biomass in oceanic pelagic environments
(Irigoien et al. 2014), yet the causes and implications of their
migratory behavior are more poorly known than those of zoo-
plankton (Lampert 1989; Hays 2003; Cohen and Forward Jr
2009). Micronekton comprise a taxonomically diverse group of
organisms (i.e., fishes, crustaceans, and cephalopods) of �2 to
20 cm in length that are functionally defined as nekton
(i.e., able to independently swim against currents). Many are
zooplanktivores (Hopkins et al. 1997; Drazen and Sutton 2017)
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and are important prey for top predators, including commer-
cially harvested species (e.g., Watanabe et al. 2009; Choy et al.
2013). Indeed a major driver of DVM is a response to avoid
visual predators (Robison 2003), which adjust their behavior
accordingly (Sainmont et al. 2013), further highlighting the
implications of migrations for the trophic interactions within
the food web. There are also nonmigrating species of micronek-
ton which depend on food resources found at their specific
habitat depth, likely resulting in different diet and trophic link-
ages compared with animals that migrate to access an array of
food resources. However, nonmigratory micronekton are under-
studied (Klevjer et al. 2016), and it is unknown to what extent
their different energetic requirements are reflected in their tro-
phic ecology as compared to migrating species.

With energetic benefits exceeding the costs, DVM conveys an
adaptive significance (Hays 2003). However, due largely to sam-
pling constraints, the ultimate factor or the relative importance
of the many drivers of DVM by micronekton is the subject of
ongoing debate (Pearre 2003; Robison 2003). Past studies of
stomach contents have revealed epipelagic zooplankton as the
dominant prey of micronekton (Hopkins et al. 1997), as well as
higher stomach fullness indices (Clarke 1977; Pearcy et al. 1979)
or higher proportions of fresh food (Pearcy et al. 1979) in sto-
machs of individuals captured at shallower depths during the
night. Collectively, these findings have led to the general
assumption that vertically migrating micronekton feed at night
near the surface and not during the day at depth (Robison
2003), following the movement patterns of zooplankton, their
main prey. There is uncertainty associated with this interpreta-
tion because of net avoidance (Pearcy 1983), ingestion of food
within nets (“net feeding”; Lancraft and Robison 1980), and
stomach eversion of deep-dwelling species. Hence, in order to
understand the trophic implications of DVM, it is also necessary
to trace diets at individual levels across longer time scales.

Stable isotope analyses have been widely used in studies of
trophic ecology, providing a wealth of information about diet
that is integrated over weeks or months (Vander Zanden et al.
2015). In particular, nitrogen isotope values (as δ15N) increase
�3‰ to 4‰ (Minagawa and Wada 1984) between a predator
and its prey, representing an indicator of relative trophic
position (TP). While a useful measure of TP, the δ15N value of
a metazoan can also vary depending on the δ15N value of
organic matter at the base of the food web. For example, the
δ15N values of suspended and sinking particulate organic mat-
ter are known to increase with depth due to microbial degra-
dation (Saino and Hattori 1980; Casciotti et al. 2008). As a
result, increases in δ15N values with depth are also found in
zooplankton (Koppelmann et al. 2009; Hannides et al. 2013)
and deep-benthic communities (Bergmann et al. 2009; True-
man et al. 2014). However, the depth-related variation in δ15N
values has not been quantified for micronekton species (but
see Choy et al. [2015] and Gloeckler et al. [2018] for amino
acid compound-specific isotope analysis [AA-CSIA]). It is
expected that nonmigrating species will show an increase in

bulk tissue δ15N values with depth, whereas if vertically
migrating micronekton are feeding mainly in surface waters,
they will exhibit similar δ15N values to those of epipelagic
nonmigrators, which in turn reflect the δ15N values of surface
plankton. Despite the potential of stable isotopic composi-
tions to assess vertical migrations, this approach has been
rarely used (Hannides et al. [2013] and Harris et al. [2014] in
zooplankton and McClain-Counts et al. [2017] in micronek-
ton), and there is a lack of studies addressing differences in
isotopic composition between migrators and nonmigrators
along a depth gradient.

We compare the bulk tissue nitrogen isotopic composition
between migratory and nonmigratory micronekton species inha-
biting a depth range from 0 to 1250 m in the subtropical North
Pacific. We aim to address the following questions: Do the δ15N
values of micronekton increase with depth of occurrence? Does
feeding depth explain the vertical pattern in δ15N values of both
migratory and nonmigratory species? Is there a difference in the
food habits and diet source between migrators and nonmigrators
that can be inferred from nitrogen isotopic compositions?

Material and methods
Sample collection

The dataset was generated from a compilation of micronek-
ton samples that were collected on different cruises that took
place between 2007 and 2014 in February, March, April, May,
July, or August at two sites to the north (Sta. ALOHA; 22.45�N,
158�W) and west (21.3�N, 158.3�W) of the island of O’ahu,
and a third site near the island of Hawaii (Cross Seamount;
18.75�N, 158.25�W), all broadly within the central North
Pacific Subtropical Gyre ecoregion (Supporting Information
Fig. S1 and Table S1). Micronekton was sampled with tows of
a 10-m2 multiple opening closing net and environmental sens-
ing system (MOCNESS; see Gloeckler et al. [2018] for details)
or by oblique midwater trawls using a 3-m-Tucker Trawl (see
Choy et al. [2015] for details), a Cobb Trawl (see De Forest and
Drazen [2009] for details), or a Isaacs-Kidd Midwater Trawl
(IKMT; Supporting Information Table S1). Micronekton speci-
mens were identified to species level (except for euphausiids,
stomatopods, and Vinciguerria sp.), and lengths were measured
onboard prior to storing them frozen at −80�C in cryovials.
Samples were frozen individually, or as a pool of several indi-
viduals for small organisms where more tissue was needed for
stable isotope analysis. Standard length, fork length, or total
length measurements were taken for fishes, carapace length
for crustaceans, and mantle length for cephalopods.

Samples of mesozooplankton (0.2 to > 5 mm) were col-
lected in August 2011 (see Hannides et al. 2013 for details) at
Sta. ALOHA and west of the island of O’ahu, and winter and
summer 2014 at Sta. ALOHA. Zooplankton was sampled using
a 1-m2 MOCNESS net during the daytime (noon � 2 h) and at
nighttime (midnight � 2 h) at depth intervals of: 0–50,
50–100, 100–150, 150–200, 200–300, 300–500, 500–700,
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700–1000, and 1000–1500 m. Each mesozooplankton sample
was size-fractionated through 0.2, 0.5, 1.0, 2.0, and 5.0 mm
mesh-sieves and filtered onto 47-mm filters of 0.2 mm nitex
mesh, and stored frozen at −80�C.

Sample processing and stable nitrogen isotope analysis
Each frozen sample was freeze dried, ground to a fine powder

using pestle and mortar, and packed in 3.3 × 5 mm tin capsules.
White muscle tissue was used for most of the micronekton spe-
cies, but for specimens with insufficient muscle tissue, whole
individuals were used after excising stomach contents. All sam-
ple preparation tools were rinsed with ethanol between each
processed sample. Nitrogen isotopic composition was deter-
mined using an isotope ratio mass spectrometer (DeltaPlusXP)
coupled to an elemental analyzer (Costech Model 4010). Isoto-
pic ratios are given in δ-notation as the deviation from the inter-
national standard, atmospheric N2, in parts per thousand (‰).
Accuracy and precision were < 0.2‰ based on multiple analyses
of glycine and homogenized fish tissue reference materials (both
extensively characterized with NIST-certified reference materials
and their δ13C and δ15N values verified independently in other
laboratories) and analyzed every 10 samples.

Body size
Mass was used as an indicator of body size due to the large

variability in morphologies of the species analyzed. Mass was
measured in the laboratory on many frozen specimens prior
to freeze drying (to within 0.01 g). For those specimens not
weighed, an estimate of mass was obtained from body length
using length/weight conversion factors available in the litera-
ture or calculated from weighed conspecifics from this study
(Supporting Information Table S2).

Data analysis
We used linear regression models to study the relationship

between δ15N values as the dependent variable and median
depth of occurrence or log-transformed body size as indepen-
dent variables. Zooplankton δ15N values of different years and
seasons were averaged across depth intervals for night and day
tows. To analyze the difference in δ15N values between migra-
tors and nonmigrators according to their depth of occurrence,
we performed an analysis of covariance (ANCOVA), restricting
the δ15N values of nonmigrators for a depth range similar to
that of migrators at nighttime (0–450 m). We evaluated sea-
sonal variations within species by calculating the range
between spring and summer mean δ15N values for each species
(i.e., the difference between mean spring and mean summer
values). We then used a t-test to determine potential significant
differences between the seasonal ranges of migrator and non-
migrator values. We considered two seasons, spring (March and
April) and summer (May, July, and August) according to annual
variations in surface primary production and mixed layer
depths at Sta. ALOHA (Karl et al. 2012). To disentangle the dif-
ferences in the effects of depth and log-transformed body size

on δ15N values between migrators and nonmigrators and a pos-
sible indirect effect due to the correlation between both predic-
tors, we fitted a structural equation model (SEM; Grace 2006).
All variables were standardized, followed by the calculation of
the standardized path coefficients using the function sem of the
package lavaan (Rosseel 2012). Those coefficients represent the
effects of each predictor variable on the response variable in
standard deviation units. The path diagrams were obtained
from the function semPaths of the package semPlot. All analyses
were performed using R (R Core Team 2015).

Results
We determined δ15N values of 20 nonmigrating and

25 migrating species of micronekton (n = 287) encompassing
broad taxa (Actinopterygii, Malacostraca, and Cephalopoda).
Individual masses ranged from 0.14 � 0 g (mean � SD,
49 � 0 mm fork-length) in the snake mackerel fish, Gempylus
serpens, to 6.65 � 0.53 g (73.92 � 22.54 mm standard length)
in the myctophid fish, Bolinichthys distofax. Median depth of
occurrence for each species sampled, obtained from literature
observations of their day and night ranges of distribution
(Supporting Information Table S2), ranged from 0 to 1300 m
for nonmigrators and from 150–895 to 0–382 m for migrators
during the day and at night, respectively.

Bulk δ15N values of migratory and nonmigratory species
Nonmigratory species exhibited a significant increase in their

δ15N values with median depth of occurrence (δ15N = 4.76
� 0.85 + 0.0045 � 0.001 × depth, parameter estimate � SE,
R2 = 0.47, p < 0.001; Fig. 1). The δ15N values of both day- and
night-collected zooplankton also showed the same increase with
depth as the slopes of the δ15N values vs. depth were not signifi-
cantly different (ANCOVA p > 0.1). But for a given depth, the
δ15N values of all micronekton were significantly higher
(ANCOVA p < 0.001) an average of 2.6‰ � 0.8‰ (mean � SD)
than that of zooplankton. Zooplankton collected between
200 and 700 m at night had higher δ15N values than zooplank-
ton collected during the day within that depth range (Fig. 1).

In contrast, the δ15N values of migratory species were not
correlated to their depth of occurrence neither during the day
nor at nighttime (Fig. 2) and were higher than the δ15N values
of shallow living nonmigrators (ANCOVA p < 0.05). When we
included the taxonomic group (i.e., the Class of each species)
as a factor in the δ15N vs. night depth analysis of migrators, we
found that the increase in δ15N values was significant for fish
(i.e., class Actinopterygii; δ15N = 5.27 � 0.56 + 0.015 � 0.005
× nighttime depth, R2 = 0.46, p < 0.001; Fig. 2), and the slope
was significantly higher than that of all nonmigrators
(ANCOVA p < 0.05). The difference in δ15N values between
samples collected in spring and summer was not significant
(t-test, t = −0.15; df = 45, p > 0.05); however, the average sea-
sonal range of δ15N values within species was significantly higher
for migrators than for nonmigrators (t-test, t = 3.6; df = 24,

Romero-Romero et al. Effects of diel vertical migration

1475



p < 0.001; Fig. 3). Also, for nonmigrators, the seasonal range of
δ15N values was negatively correlated with depth of occurrence
(δ15N seasonal range = 0.92 � 0.16–0.00082 � 0.00021 depth,
n = 8, R2 = 0.68, p < 0.001).

Size-based trophic structure
We found that δ15N values of migrators were largely

explained by their body size (δ15N = 6.64 � 0.18 + 1.93
� 0.51 log10 body size; R2 = 0.38; p < 0.001; Fig. 4). Assuming
a trophic fractionation of 3.4‰, the slope of the δ15N
vs. log10-transformed body size relationship for migrating
micronekton yielded a predator–prey mass ratio of 59 : 1
(PPMR = 10(3.4/slope); Jennings et al. 2002). In the case of non-
migrators, δ15N values were not significantly correlated to
body size (δ15N = 7.69 � 0.49 + 1.74 � 0.92 log10 body size;
R2 = 0.16; p > 0.07). The SEM analysis showed that only body
size significantly explained variability in δ15N values of all
migrators, and depth did not have a direct or indirect effect
on their δ15N values (Fig. 5). The SEM analysis showed that
although the nonmigrating micronekton species sampled were
not size-structured, deeper dwelling species were larger and
had higher δ15N values (Fig. 5).

Discussion
We found clear evidence of differences in the food habits

and dietary sources of migrating and nonmigrating micronek-
ton, as reflected in their bulk stable nitrogen isotope

compositions. Differences in the source of organic matter
between some species of micronekton has been described previ-
ously (Valls et al. 2014; Choy et al. 2015; McClain-Counts et al.
2017; Gloeckler et al. 2018), but this is the first time that a com-
prehensive dataset was used to resolve depth-related, size-based,
and seasonal differences in the δ15N values between species of
micronekton driven by DVM. We hypothesized that nonmigrat-
ing species would show an increase in bulk tissue δ15N values
with depth, as has been previously described for particulate
organic matter (Casciotti et al. 2008), zooplankton (Hannides
et al. 2013) and benthic communities (Bergmann et al. 2009),
whereas vertically migrating micronekton would exhibit similar
δ15N values to those of epipelagic nonmigrators. However, that
was not true for migrators whose feeding depth was not con-
strained to surface waters, wherein their depth of occurrence
does not resolve observed differences in bulk δ15N values.

The δ15N values of nonmigrating micronekton increased
with median depth of occurrence with a pattern mirrored in
zooplankton (Fig. 1), confirming zooplankton as the main
prey resource of micronekton (Hopkins et al. 1997) and the
main driver of the depth-related increase in δ15N values. For a
given depth, micronekton was on average �0.77 trophic levels
higher than zooplankton (assuming a trophic fractionation of
3.4‰; Fig. 1). We expect a slightly lower than one trophic
level difference given that δ15N values of zooplankton com-
prise individuals with a TP ranging from 2.1 to 3.1 (Hannides
et al. 2013), and some micronekton species have a TP slightly
lower than 3 (Choy et al. 2015; Gloeckler et al. 2018). The

Fig. 1. Relationship between δ15N values (mean � SD) and median depth of occurrence for nonmigrating micronekton species (black line; black
circles, Actinopterygii; squares, Cephalopoda; and triangles, Malacostraca) values and between δ15N values and median capture depth for zooplankton
collected during the day (red line) and at nighttime (blue line). Zooplankton data are given as a mean for all size classes.
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increase in δ15N values with zooplankton depth has been well-
described in this (Hannides et al. 2013) and other ecosystems
(Koppelmann et al. [2009], in the Mediterranean; Laakmann
and Auel [2010], in the South Atlantic Ocean). This result
emphasizes that identifying the relative influence of food web
baseline processes is essential to understand the trophic ecol-
ogy of higher trophic level micronekton, as those processes
are reflected in their stable isotopic composition (Mintenbeck
et al. 2007; Choy et al. 2012). Hannides et al. (2013) used AA-
CSIA, that allow changes in δ15N values due to TP to be distin-
guished from changes at the base of the food web (Chikaraishi
et al. 2009). These results demonstrated that the increase in
δ15N values of zooplankton with depth collected in the sum-
mertime at Sta. ALOHA was due to both a 15N enrichment at

the base of the food web and a higher trophic level of deep-
water zooplankton.

DVM had a strong effect on zooplankton δ15N values par-
ticularly in the upper mesopelagic zone (200–700 m; Fig. 1),
where migrant biomass is greater (Angel et al. 1982; Hannides
et al. 2013). The δ15N values of zooplankton collected at night
in that depth range largely reflect the nonmigrant portion of
the community. Meanwhile during the day, the δ15N values of
zooplankton included migrators that had been feeding at the
surface on organic matter with lower δ15N values at night, and
then descended to the mesopelagic yielding lower average
δ15N values at 200–700 m during the day. These distinct δ15N
values between migrant and nonmigrant zooplankton could
be attributed to nonmigrants feeding on particles at depth

Fig. 2. δ15N values and median day and night depth of occurrence for vertically migrating species (black circles and black line, Actinopterygii; squares,
Cephalopoda; and triangles, Malacostraca). The dashed line is the fitted regression of the relationship between δ15N values and median depth of occur-
rence for nonmigrating species (as depicted from Fig. 1). Numbers correspond to species as in Table 1.
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that were enriched in 15N relative to surface particles, and
their higher trophic level (Hannides et al. 2013). Overall, zoo-
plankton δ15N values clearly show differences in feeding
depths between migrators and mesopelagic residents and sup-
ports their role in the active transport of organic matter pro-
duced in the surface layer to deeper waters through DVM.

Similar to zooplankton, we found that some migrating
mesopelagic micronekton exhibited lower δ15N values than
those of mesopelagic nonmigrators (as in Valls et al. 2014;
McClain-Counts et al. 2017; Fig. 2). It is tempting to attribute
the difference to the expected feeding of migrating species
close to the surface on zooplankton with low δ15N values.
However, for most migrators, δ15N values were higher than
those of epipelagic nonmigrators (Fig. 2). This result could
arise from: (i) a higher trophic level of migrating micronekton;
(ii) differences in energetics between migrators and nonmigra-
tors; or (iii) migrators feeding near the surface at night and
also on prey found at greater depths during the day that had
δ15N values higher than epipelagic prey.

We evaluate each of these possibilities. First, obtaining TP
from bulk δ15N values would be largely biased by depth-related
changes in the isotopic composition of the baseline
(Mintenbeck et al. 2007). However, Gloeckler et al. (2018) calcu-
lated TP for some of the species of micronekton included in this
study using AA-CSIA, so those estimates were not influenced by
differences at the base of the food web. Migrators had a TP span-
ning a wide range from 2.6 to 4.5, and differences with epipe-
lagic nonmigrators (median depth of occurrence = 0–200 m;
TP = 2.8–3.5) were not significant (t = 0.87, df = 10.5, p > 0.1).
TP does not appear to explain why the δ15N values of migrators
are higher than resident nonmigratory epipelagic species. Sec-
ond, growth rate is positively correlated to the efficiency with
which animals can utilize nitrogen (Trueman et al. 2005). Thus,
higher growth rates imply a higher proportion of amino acids
assimilated from dietary proteins, which would theoretically
lead to δ15N values that are more similar to those of diet and a
lower trophic fractionation (Trueman et al. 2005; Caut et al.
2009). Migratory fishes have a higher feeding rate and growth
rate than nonmigratory species (Childress et al. 1980; Koslow
1996; Moku et al. 2000). Hence, contrary to our results, migra-
tors would be expected to have δ15N values lower than those of
nonmigrators feeding on a similar diet. Therefore energy needs
and inherent differences in the trophic isotope discrimination
factor are likely not responsible for the consistently higher δ15N
values found for migrators relative to epipelagic nonmigrators.

Fig. 3. Range of variation between spring and summer in δ15N values of
migrating and nonmigrating micronekton species (black circles, Actinop-
terygii; squares, Cephalopoda; and triangles, Malacostraca). For each spe-
cies, the depth of occurrence (night depth of occurrence for migrators) is
represented. Numbers correspond to species as in Table 1.

Fig. 4. Relationship between δ15N values and body size for migrating
and nonmigrating micronekton species (black circles, Actinopterygii;
squares, Cephalopoda; and triangles, Malacostraca). Dotted line repre-
sents a nonsignificant regression (p > 0.05).

Fig. 5. Path diagrams representing how depth of occurrence (night
depth of occurrence for migrators) and body size influence the δ15N
values of migratory and nonmigratory species. Solid arrows represent sig-
nificant relationships (p < 0.001) and dashed lines nonsignificant relation-
ships. Values of standardized partial regression coefficients are shown.
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Table 1. δ15N values, body size (mean � SD), and depth range of occurrence during the day and nighttime of the species analyzed in
this study.

Species Class n
Feeding
guild M/NM

Depth range
day (m)

Depth range
night (m)

δ15N
(‰)

Body size
(g)

1 Euphausiidae Mala 6 Sf M 157 84 6.9�0.8 0.6�0.4

2 Gennadas bouvieri Mala 6 Zoo M 750–875 250–455 7�0.5 0.7�0.3

3 Janicella spinicauda Mala 15 Zoo M 400–600 0–200 5.7�0.8 0.5�0.3

4 Oplophorus gracilirostris Mala 14 Zoo M 490–650 60–200 6�1.1 1.4�0.5

5 Sergestes erectus Mala 7 Zoo M 550–800 250–325 6.1�0.8 0.9�0.1

6 Sergia gardineri Mala 5 Zoo M 650–775 0–150 4.5�0.2 0.2�0.3

7 Systellaspis debilis Mala 3 Zoo M 550–800 100–300 6.7�1.2 1.5�0.1

8 Abralia trigonura Cepha 6 Zoo M 390–650 30–200 6.7�0.9 2.7�0.3

9 Abraliopsis sp. A Cepha 5 Zoo M 475–700 20–200 7.4�0.5 2.7�0.4

10 Hyaloteuthis pelagica Cepha 11 Zoo M 100–200 0–50 7.7�0.2 1.7�0.3

11 Pterygioteuthis microlampas Cepha 6 Zoo M 450–575 25–180 5.4�1 0.3�0.5

12 Benthosema suborbitale Actino 4 Zoo M 490–620 15–75 6.1�0.7 0.3�0.3

13 Bolinichthys longipes Actino 15 Zoo M 525–725 50–150 7�1.2 0.9�0.3

14 Ceratoscopelus warmingii Actino 20 Zoo M 600–1000 0–150 6.2�1.3 1.9�0.2

15 Chauliodus sloani Actino 8 Micro M 450–825 45–225 7.2�1.1 3.7�0.7

16 Diaphus perspicillatus Actino 8 Zoo M 490–560 30–190 7.4�0.7 2.1�0.3

17 Eustomias bifilis Actino 2 Micro M 650–800 15–200 4.8�0.1 0.9�0.1

18 Gonostoma atlanticum Actino 3 Zoo M 490–560 150–300 8.7�0.6 1.1�0.1

19 Hygophum proximum Actino 7 Zoo M 500–700 25–150 5.5�1.2 0.7�0.5

20 Idiacanthus fasciola Actino 9 Micro M 550–800 0–300 7.7�1.3 2.7�0.4

21 Lampanyctus nobilis Actino 9 Zoo M 590–1200 40–140 7.6�1.3 2.1�0.3

22 Myctophum lychnobium Actino 2 Zoo M 600–800 0–15 5.4�1 0.7�0.7

23 Lampanyctus niger Actino 14 Zoo M 640–900 100–310 8.9�1.1 2.5�0.3

24 Nealotus tripes Actino 8 Micro M 50–200 6�1.1 0.2�0.2

25 Vinciguerria sp. Actino 5 Zoo M 400–560 20–125 7.9�0.5 0.7�0.1

26 Acanthephyra curtirostris Mala 8 Zoo NM 700–1500 500–1250 8�0.3 1.4�0.3

27 Gnathophausia ingens Mala 3 Zoo NM 400–900 400–900 8.9�2.9 2.5�0.6

28 Notostomus gibbosus Mala 4 Zoo NM 600–1500 600–1500 10.3�0.6 2.7�0.3

29 Stomatopoda Mala 8 Zoo NM 0–100 0–100 5.1�0.8 0.2�0.4

30 Japetella diaphana Cepha 3 Zoo NM 725–1065 725–1065 6�0.9 6.5�0.1

31 Liocranchia valdiviae Cepha 2 Zoo NM 0–700 0–700 6�0.4 0.3�0.4

32 Vampyroteuthis infernalis Cepha 1 Zoo NM 800–1200 800–1200 8 0.6

33 Argyropelecus hemigymnus Actino 4 Zoo NM 425–550 425–550 6.9�1 0.3�0.3

34 Argyropelecus sladeni Actino 1 Zoo NM 400–575 400–575 5.7 1.1

35 Bolinichthys distofax Actino 8 Zoo NM 490–690 490–690 8.8�1.3 6.7�0.5

36 Cyclothone alba Actino 5 Zoo NM 425–465 425–465 6.9�0.5 0.2�0.5

37 Cyclothone pallida Actino 18 Zoo NM 600–1000 600–1000 11�2.4 0.4�0.4

38 Cyema atrum Actino 3 Zoo NM 1200–1400 1200–1400 9.6�0.7 4.1�0.1

39 Eurypharynx pelecanoides Actino 2 Zoo NM 650–1300 650–1300 8.2�0.3 2.1�0.1

40 Exocoetus volitans Actino 1 Zoo NM 0–10 0–10 4.2 0.9

41 Gempylus serpens Actino 2 Zoo NM 44–219 44–219 5.3�0.1 0.1�0

42 Melanocetus johnsonii Actino 2 Micro NM 850–1225 850–1225 13.9 1.9�0.4

43 Opisthoproctus soleatus Actino 5 Zoo NM 450–600 450–600 8.1�0.8 5.4�0.1

44 Serrivomer sector Actino 8 Micro NM 550–1500 550–1500 8.8�1.5 4.1�0.3

45 Sternoptyx pseudobscura Actino 1 Zoo NM 725–925 725–925 5.7 0.5

Class: Cepha, Cephalopoda; Mala, Malacostraca; Actino, Actinopterygii. n, number of samples. Feeding guild: Zoo, zooplanktivore; Micro, micronektoni-
vore; Sf, suspension feeder. M/NM: M, migrator; NM, nonmigrator.
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Accordingly, our results strongly suggest that the diet of ver-
tical migrators includes both epipelagic or vertically migrating
zooplankton captured at night, as well as nonmigrating zoo-
plankton consumed at depth during the daytime. We used
median depth of occurrence found in the literature for each
species to explore differences in the stable isotope composi-
tion, because the depth of capture of the particular few individ-
uals used in the analysis might not represent an actual
population distribution pattern. There is also individual vari-
ability in DVM (Hays et al. 2001; Pearre 2003), which leads to
asynchronous migrations within populations (Pearre 1979). As
a result, there can be individuals of vertically migrating species
not performing DVM usually due to their greater age or size
(Kaartvedt et al. 2009), which could lead to intra-specific varia-
tions in δ15N values. However, we analyzed individuals within
a narrow body size range, so differences in the migrating
behavior due to size are unlikely. Despite being often ignored,
previous work has reported vertical migrators feeding partially
at their daytime depth (e.g., Tyler and Pearcy 1975; Moku et al.
2000; Clarke and Tyler 2008). This behavior could result in
some upward transport of organic matter, leading to a recy-
cling of nutrients in the euphotic zone. This could have a sig-
nificant effect on carbon export flux that should be considered
in future investigations of carbon budgets.

Contrary to what was expected, among migratory micro-
nekton, only fishes (class Actinopterygii) showed an increase
in δ15N values with night depth of occurrence (Fig. 2), which
points to taxonomic group as an important factor determining
food habits for vertical migrating micronekton. Moreover, the
high slope of the δ15N values vs. night depth relationship of
migratory fish suggests that the proportion of total feeding
performed at night by migrating fishes depend markedly on
the depth range within the epipelagic zone reached during
the night. That is, fishes that ascend closer to the surface at
night have a lower dependence on organic matter at depth,
which is 15N-enriched relative to that at the surface, suggest-
ing that they feed at night to a higher extent than fish that
migrate only to a deeper depth range of the epipelagic zone.
This can be due to the exponential decline in zooplankton
biomass with depth (Hannides et al. 2013) so that only those
fishes migrating closer to the surface are able to meet their
energy needs feeding exclusively during the night.

A large variance in migrator δ15N values was largely
explained by body size (Fig. 4), as opposed to depth, indicat-
ing that micronekton performing DVM feed on prey that
mostly depend on the same source of organic matter (Layman
et al. 2005). The PPMR obtained from the slope of the δ15N
values vs. body size relationship for migratory micronekton
(59 : 1) was lower than previous estimates for a fish commu-
nity (424 : 1; Jennings and Mackinson 2003). The PPMR is
expected to increase with predator size (Barnes et al. 2010)
and also vertically migrating predators could be selecting large
prey, probably as a response to the higher energetic require-
ments. The selectivity in prey size together with the low PPMR

are characteristic of longer food webs (Jennings and Warr
2003), which is in agreement with the wider range of TPs
described for migrating micronekton as compared to nonmi-
grating species (Gloeckler et al. 2018).

Conversely, nonmigrators were not significantly size struc-
tured (Figs. 4–5) although deeper dwelling species were larger
(Fig. 5). Body size and depth can have confounding effects that
should be carefully considered in size-based studies of trophic
structure encompassing a wide depth range, or including species
with “bigger–deeper” patterns (Collins et al. 2005). Nonmigra-
tors may encounter a lower prey availability that leads to more
generalist diets of some species, or to diets based on different
sources of organic matter. Moreover, the variance in δ15N values
increased with depth of occurrence of nonmigrators (Fig. 1), so
those different feeding habits were more marked at greater
depths. This matches the described dependence of some bathy-
pelagic micronekton on a very small/suspended microbially
altered particle based food web, in contrast to epipelagic species
that depend on organic matter produced by fresh phytoplank-
ton (Choy et al. 2015; Gloeckler et al. 2018). Very small and/or
suspended particles have high δ15N values, which will be incor-
porated in the zooplankton that feed on them (Mintenbeck
et al. 2007), ultimately leading to positive residuals for the linear
relationship between the δ15N values vs. depth of occurrence for
micronekton, like in the mesopelagic fish Cyclothone pallida or
the bathypelagic fishMelanocetus johnsonii.

Despite significant seasonal changes in surface particle δ15N
values (Dore et al. 2002) and zooplankton biomass and isoto-
pic values (Bode and Alvarez-Ossorio 2004; Valencia et al.
2016), we did not find a significant difference in δ15N values
of micronekton between spring and summer (see also Gloeck-
ler et al. 2018), probably due to their tissue turnover rates inte-
grating feeding across several months or more (Vander
Zanden et al. 2015). While mean values did not vary season-
ally, δ15N values of most migrating species did show a higher
range in δ15N values than nonmigrators (Fig. 3), which makes
sense because migrators have a higher metabolic rate (Drazen
and Seibel 2007) so they are expected to reflect δ15N values of
a new diet quicker than fishes with a lower metabolic rate
(Trueman et al. 2005). We also found that the range of varia-
tion in δ15N values of nonmigrators was depth-dependent,
with epipelagic species showing a higher difference between
spring and summer. The central North Pacific Ocean seasonal
cycle is characterized by a summer increase in primary produc-
tion (Church et al. 2013) coupled with an export pulse that
transports carbon to the deep sea (Karl et al. 2012). As a result,
the mesopelagic and bathypelagic systems in the study area
also exhibit seasonal variations that are reflected in the bio-
mass and stable isotope composition of zooplankton (C. C. S.
Hannides et al. unpubl.). This suggests that depth-related
changes in the seasonal variations of the range of δ15N values
of nonmigrators were due to the decline with depth of their
metabolic rate (Drazen and Seibel 2007) rather than to the
environmental conditions.
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In summary, we found marked differences in the food
habits and dietary sources of micronekton species driven by
vertical migration. Variations in the isotopic composition of
nonmigrating micronekton were largely explained by its depth
of occurrence, a pattern mirrored in zooplankton. Also, the
higher variance in δ15N values with depth points to the increas-
ing reliance of deeper dwelling nonmigrating micronekton on
microbially reworked suspended particles (Hannides et al.
2013; Gloeckler et al. 2018). In contrast, migrators had a more
selective diet of large prey and exhibited a higher range of var-
iation in δ15N values seasonally than nonmigrators probably
because they are expected to have higher metabolic rates and
thus higher tissue turnover rates. Migrators also had δ15N
values intermediate between epipelagic and lower mesopelagic
nonmigrators, which indicates that migrators feed in deeper
water during the day and not only at night when they ascend
closer to the surface. The importance of daytime feeding in
the diet of migratory fish was higher for species migrating into
the lower epipelagic zone than for those migrating up to the
surface during the night, probably due to the lower prey
availability.
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