
Supplementary material for

Schönberg, C. H. L. (2021). No taxonomy needed: sponge functional morphologies inform about environmental conditions. https://doi.org/10.1016/j.ecolind.2021.107806

- Supplement 1. The use of sponge growth forms in the literature in comparison to the present approach.
- Supplement 2. Relationships between environmental factors and sponge morphologies related in the literature.
- Supplement 3. Taxonomic affiliations and taxon authors of species mentioned.
- Supplement 4. Cheat sheet v. December 2020, a fieldwork reference.
- Supplement 5. Example images of sponge morphologies by functional growth form, *in situ* and as samples.

Supplement References.

Photographs Onslow, NW Australia, 10-14 m.

Supplement 1. The use of sponge growth forms in the literature in comparison to the present approach. Where matching of forms could not be ascertained, terms are marked with "?". See also Suppl. 4.

Schönberg (2012, unpubl. trial), Schönberg and Fromont, 2013 (pilot)

Internet publs.)

Schönberg and Fromont, 2014, 2019 (short, preliminary Schönberg, 2020 (Present publication; if you print this part and cut it out, you can slide it along the rest of the table as reference.)

Jackson, 1979 (6 basic forms for clonal

Fry, 1979

invertebrates and sponges)

Van Soest, 1989

							invertebrates and sponges)	
ENCRUSTING (EN)		1 ENCRUSTING (EN) CAAB 10 000901		1-2 CRUST-LIKE in fu CAAB 10 000			CRUST-LIKE in functio	n
Thinly encrusting (EN-thn)	1.3 Encrusting (EN-cr)	Thinly encrusting (EN-thn)	1 Encrusting sensu lato	1.1 True crusts sensu stricto	1.1.1 Thin crusts (EN-cr-tn) CAAB 00 000923	Encrusting, flat	Sheets	
Thickly encrusting (EN-thc)		Thickly encrusting (EN-thc)	(EN-lat) CAAB 10 000922	(EN-cr) CAAB 10 000902	1.1.2 Thick crusts (EN-cr-thn) CAAB 00 000924			Massively encrusting
Endolithic-bioeroding (EN-en)	1.2 Endolithic-bioe CAAB 10 000921	roding (EN-en)		1.2 Endolithic-bioerc CAAB 10 000921	oding (EN-be)	Boring, infaunal	Boring (mentioned, but not part of Jackson's definitions)	
Creeping-ramose (EN-cg)	1.1 Creeping, ramo CAAB 10 000917	ose (EN-cg)	2 Creeping, repent (E CAAB 10 000917	N-rep)		Encrusting, clathriid, asconoid (if low-relief)	Runners, vines	Ramose (incl. erect forms)
MASSIVE (M) (then incl. stalked forms (M-st) and barrels (M-br), see below)		2-4 MASSIVE (M) CAAB 10 000903		3-6 MASSIVE in fur CAAB 10 000			MASSIVE in function	1
Simple-massive (M-s)	2 Simple-massive (CAAB 10 000904	M-s)	3 Simple-massive (M- CAAB 10 000904	s)		Solid, massive	Mounds	Massive structures (incl. some endopsammic forms)
Massive-balls (M-bl)	3 Balls (M-bl) CAAB 10 000905		4 Globular-massive, b CAAB 10 000905	alls (M-bl)		Globular		Globular, ball-shaped
			5 Composite-massive CAAB 00 000925	, dense meshes or clus	ters (M-c)	Clathriid	-	
Cryptic-massive, endopsammic (M-crp)	4 Cryptic-massive CAAB 10 000908	(M-crp)	6 Fistular, cryptic-ma CAAB 10 000908	ssive, endopsammic (N	1-f)	Papillate, infaunal		Fistulose (incl. massive-creeping with upright branches)
CUPS etc. (C)		5-7 CUP-LIKES (C) CAAB 10 000909		7-9 CUP-LIKE in fu CAAB 10 000	1		CUP-LIKE in function	, I
Table-shaped or shallow disc (C-t)	5 Cups CAAB 10 000910	5.1 Tables, dics or very shallow cups (C-tab) CAAB 10 000920	7 Cups CAAB 10 000910	7.1 Tabular "cups" (0 CAAB 10 000920	C-tab)	Free flat	Plates	Cups and tubs (incl. some stalked forms)
Incomplete cups, curled fans (C-inc)		5.2 Incomplete cup, curled fan (C- inc) CAAB 10 000918		7.2 Incomplete "cup CAAB 10 000918	s", curled fans (C-inc)			
Wide cup or goblet (C-wd)	-	5.3 Wide cup or goblet (C-wd) CAAB 10 000919			ly wide cups, vases (C-cmp)	Vase, cup, calicular, incl. barrels	Mounds	
Narrow cup, funnel or tube (C-nr)	7 Narrow cup, slim CAAB 10 000911	funnel or tube (C-nr)	8 Tube-like forms, "narrow cups"	8.1 Chimneys, prope CAAB 00 000911	r tubes (C-t)	Tubular, incl. barrels	Trees? Mounds?	Tubes and pipes (incl. tube clusters)
			(C-n) CAAB 10 000926	8.2 Amphoras, sack- CAAB 00 000927	like sponges, bladders (C-a)			
Barrels (M-br) – was the part of massives	6 Barrels (C-b) CAAB 10 000907		9 Barrels, "massive cu CAAB 10 000907	ıps" (C-br)		Included in tubular, vases and cups	Mounds	Cups and tubs (incl. some stalked forms)
ERECT (E)		8-12 ERECT (E) CAAB 10 0009130		10-14 ERECT in fur CAAB 10 0009			ERECT in function	
Simple-erect (E-s)	11 Simple erect (E- CAAB 10 000916	·s)	10 One-dimensionally CAAB 10 000916	/ erect, simple erect (E	-1D)	Erect	Trees	
Erect-laminar, spatula, fan (E-fn)		atulas, fans (E-lam)	11 Two- dimensionally erect	11.1 Erect-laminar, f CAAB 10 000913	labellate (E-lam)	Erect fan-shaped		Fan-shaped
Erect-palmate, hand-shaped, branching in 1 plane (E-pal)	9 Erect-palmate, h pal)	and-shaped, branching in one plane (E-	(E-2D) CAAB 00 000928	11.2 Erect-palmate (CAAB 10 000914	E-pal)	Erect-digitate?		
	CAAB 10 000914			11.3 Erect-reticulate CAAB 00 000929	(E-ret)	Erect		
Erect-branching, branching in 3 dimensions (E-br)	10 Erect-branching CAAB 10 000915	g (E-br)	12 Three-dimensiona CAAB 10 000915	lly erect, branching (E-	3D)	Erect-digitate		Partly as ramose
Massive-stalked (M-st) – but was then part of the massives	12 With long stalk CAAB 10 000906	(E-st)	13 Stalked (E-st) CAAB 10 000906			Pedunculate, stalked		
			14 Carnivorous (E-car CAAB 00 000930)				-

Diaz et al., 1990	Madonado and Young, 1996	Boury-Esnault and Rützler, 1997	Barnes, 1999	Ginn et al., 2000	Barnes and Bell, 2002	Bell, 2002	Bell and Barnes, 2002d	Bell et al. 2002b	Neves and Omena, 2003	Wulff, 2006a
					CRUS	T-LIKE in function				
Encrusting	Encrusting	Encrusting	Encrusting	Encrusting (incl. fistular sponges)	Encrusting	Encrusting	Encrusting	Encrusting		Encrusting
				Massive	-		Cushion?		Encrusting (partly with large, raised oscules)	Thick sheet
		Excavating						Burrowing*		Semi-cryptic
		Repent			Repent		Repent			
					MA	SSIVE in function				
Large and small massive, cushions	Massive		Lobate?	Massive (incl. fistular sponges)	Massive, lobate (latter massive-encrusting)	Massive (incl. clusters of walls and crusts)	Massive, cushion?	Massive, ridged	Massive, lobate?	Massive (incl. massive vases = barrels?)
(incl. balls, barrels, tubes)		Globular, ficiform, ellipsoid	Spherical		Globular		Globulose			
				-		Massive (as clusters of walls and crusts), clathrate	Leaved?			
		Endopsammic, digitate	Buried	Massive	Papillate	Massive	Papillate	Massive/chimney, encrusting/chimney	Massive	Massive and semi-cryptic (incl. endolithic-bioeroding)
					CUP	-LIKE in function				
Erect (incl. creeping forms)	Cup-like				Infundibuliformis		Cuplike			
		Turbinate								Massive vase? (but in this approach under massive)
				7				_		
		Tubular	Tubular		Tubular	Tubular	Columns, tubular		Lobate (tube clusters)	
	_						Tubular?			
Large massive										Massive vase? (but in this approach under massive)
					ER	ECT in function				
Erect (incl. creeping forms)	Erect	Flagellate, columnar		Upright		_		_		
		Flabellate, foliaceous	Leaved		Leaved		Flabellate, pedunculate?	_		
		Palmate		Upright	Palmate		Arborescent?			Erect-branching?
				1		7		٦		
		Arborescent	Lobate?		Arborescent		Arborescent (incl. palmate?)		Lobate	Erect-branching (incl. some cups and palmate?)
		Pedunculate, clavate, stipitate, pinnate					Pedunculate?			

* "Burrowing" is not a good term for bioeroders of hard substrate and most commonly refers to motile sediment-dwelling organisms (see definitions in Schönberg et al., 2017)

Wulff, 2006d	Bell, 2007a	Bell, 2007b	De Voogd and Cleary, 2007	Freeman et al., 2007	Pitcher et al., 2007	Van Soest et al., 2007	Abdo et al., 2008	Ruzicka and Gleason, 2009	Ávila et al., 2011	Kelly and Przeslawsk 2012**
				CRUST-LIK	E in function					
ncrusting	Thin encrusting, thin encrusting conulose	Encrusting		Encrusting	Encrusting	Thin, small, hispid crusts	Encrusting	Encrusting	Encrusting	Encrusting
	Massive crust (incl. sponges with raised oscules)	Massive encrusting?	Massively encrusting							
ryptic (incl. nsinuating sponges)	Boring	Boring/ burrowing*				-			Boring	
nsinuating sponges ounted as "cryptic"	Repent, repent-arborescent, flake?		Ramose (incl. erect forms)	Branching (incl. erect-branching)	Prostrate branching				Repent	
				MASSIVE	in function					
Massive-breakable,	(Conulose) massive upright, re-verse ficiform, cushions, domes	Massive upright?	Massive structures (incl. some endopsammic forms)	Amorphous	Nodules?	Massive (highly silicified; incl. barrels?)	Massive, submassive?	Amorphous (ridge- like?)	Massive, cushion- shaped (incl. barrels?)	Massive simple (incl. barrels)
Massive-tough										
	Globulose, oval-supported?	Globular/ globulose	Globular or ball-shaped	Globular	Globular, nodules?		Globular		Globular	-
	Clathrate			Clathrate	Lobate?		Submassive?			-
Cryptic	Fistulate, flake-digitate? Papillate?	Fistulose	Fistulose, massive- creeping with upright branches?	Digitate	Digitate?		Submassive?	Digitate	Fistulose	
			• •	CUP-LIKE	in function					
	Horizontal plates? Massive plates?		Cups and tubs (incl. some stalked forms)		Plate Vase, Cymbastela	-				Massive hollow
/ase	Cup, (conulose) infundibuliform	Infundibuliform								
ube clusters	Massive chimneys? Massive tubes? Mini tubes	Tubular	Tubes and pipes (incl. tube clusters)	Vase		2	Tubular, massive	Vase		
					_	Hollow, bladder- like forms				
	Barrel	Barrel	Cups and tubs		Barrels, Xestospongia					Barrels (but scored a "massive"
				ERECT i	n function					
	Flagelliform, single branch				Club?				Arborescent	Erect simple
an	Flabellate	Flabellate	Fan-shaped	Pedunculate	Fan, foliose, Ianthella		Flabellate	Pedunculate		Erect laminar
rect-branching?			Branching?			-		Arborescent?		Erect laminar/branching
rect-branching (incl. almate?)	Multi-fat/multi-thin branch, multi- orientation plates, branched multiplate?	Arborescent	Branching (incl. repent and palmate?)		Branching, bushy?			Arborescent (incl. palmate?	Arborescent?	Erect branching
	Stalked ficiform, mini/massive pedunculate?	Pedunculate?		-	Club?]				Erect stalked

* "Burrowing" is not a good term for bioeroders of hard substrate and most commonly refers to motile sediment-dwelling organisms (see definitions in Schönberg et al., 2017)

** Following an unpublished, very preliminary pilot version of Schönberg (2012)

Berman et al., 2013	Te, 2013	Carroll et al., 2014***	Przeslawski et al., 2014**	Althaus et al., 2015****	Bertolino et al., 2015	Bewley et al., 2015***	Hadi et al., 2015	Kelly and Herr, 2015	Abdul Wahab et al., 2017a, 2017b, 2018**** (but incorrectly applied in 2017a)
					CRUST-LIKE in f	unction			
Encrusting	Encrusting	Encrusting	Encrusting	Encrusting	Encrusting, insinuating	Encrusting		Thin encrusting	Encrusting-crust thin (incl. thick crusts)
							Thickly encrusting	Thick encrusting	Encrusting-crust thick
Burrowing*	Boring			Endolithic- bioeroding					Encrusting-endolithic
				Creeping-ramose	Repent, ramose	Creeping/ramose	Repent, creeping massive	Meandering	Encrusting-creeping
					MASSIVE in fu	nction			
Massive	Variable	Simple	Massive simple	Simple-massive	Massive, massive-lobate,	Simple	Massive? Conus massive?	Amorphous, loaf, hemispherical	Massive-simple (incl. some
IVIG551VE	variable	Simple	(incl. barrels)	Simple-massive	cushion (incl. fistular)	Simple	Irregular massive, cushion	Amorphous, ioar, nemispherical	barrels)
Globular		Radially organised		Balls		Radially organised	Spherical	Ball, spherical	Massive-ball
	Variable?		-		2		Irregular massive?	Amorphous, cormus, massive	Massive-simple, erect- branching
Papillate, repent		Cryptic		Cryptic-massive	Massive	Cryptic		Fingers, also: encrusting, hemispherical-massive, cushion	Massive-cryptic
					CUP-LIKE in fu	nction			
		Cups and alikes	Massive hollow	Tables		Cups and alikes			Cup-tabulate
				Incomplete cups				Plate (sensu curled fan)	Cup-incomplete
				Wide cups				Bowl, cup, vase	Cup-wide
Tubular	Tube	Tubes and	-	Narrow cups, tubes	_	Tubes and chimneys	Tubular	Tube, tube cluster	Cup-narrow (incl. some thick
		chimneys			_			Sack, bulb, flask, egg?	crusts and incomplete cups)
		Barrels	Barrels (but scored as "massive")	Barrels		Barrels (but scored as "massive")	Conus massive? Tubular massive?	Bulb	Cup-barrel
					ERECT in fun	ction			
Arborescent	Finger?	Simple	Erect simple	Simple-erect	Uniramose	Simple	Columnar massive? Columnar, branch	Whip, club	Erect-simple (incl. some palmate and creeping)
Flabellate		Laminar	Erect laminar	Erect-laminar	Laminar	Laminar	Flabellate, foliose, laminar (all scored separately)	Fan, plate	Erect-laminar (incl. some branching sponges)
Arborescent?	Finger?	Palmate (incl. erect-reticulate?	Erect laminar/ branching	Erect-palmate		Palmate	Flabellate? Foliose? Laminar?	Hand, strappy, also: tree, shrubby	Erect-palmate
								Tube cluster?	
Arborescent (incl. simple- erect, also palmate?)	Finger?	Branching (incl. erect-reticulate?)	Erect branching	Erect-branching (3- dimensions)	Erect-branching, ramified	Branching	Busy branching?	Shrubby, tree	Erect-branching (incl. palmate, some creping)
Pedunculate		Stalked (but scored as "massive")	Erect stalked	Erect-stalked		Stalked (but scored as "massive")		Lollipop	Erect-stalked (function not always correctly scored)

* "Burrowing" is not a good term for bioeroders of hard substrate and most commonly refers to motile sediment-dwelling organisms (see definitions in Schönberg et al., 2017)

** Following an unpublished, very preliminary pilot version of Schönberg (2012)

*** Following Schönberg and Fromont (2013)

**** Following Schönberg and Fromont (2014)

James et al., 2017**** (but partly incorrectly applied)	Kelly and Bell, 2017	Rush et al., 2017	George et al., 2018**** (but incorrectly applied)	Otero et al., 2018 (referring to bycatch, so no crusts scored)	Bell et al.,2020	Gochfeld et al., 2020
			CRUST-LIKE in fu	unction		
	Thin encrusting	Thin encrusting	Encrusting (incl. sponges with some vertical structure		Encrusting	Encrusting, low-relief
	Thick encrusting	Thick encrusting	-	Partly as massives?	-	
	Boring				Bioeroding	Excavating
	Meandering, ramose, repent, fingers?			Arborescent		
			MASSIVE in fur	nction		
Massive (but incl. barrels)	Amorphous, loaf, hemispherical	Amorphous, loaf, thick crust	Massive (but incl. barrels)	Massive	Massive	Massive (incl. cushions, simple- massives, tubes, vases, and other
Ball	Ball	Ball, spherical, globular		Globular		amorphous forms of medium relief)
Massive	Amorphous, lobate			Massive		
	Fingers? Also: encrusting	Fingers? Digitate? Thick crust			_	
			CUP-LIKE in fur	nction		
Сир			Tabular	Lamellate to cup-shaped (differentiating tetractinellid rock		Massive (incl. cushions, simple- massives, tubes, vases, and other
	Plate (sensu curled fan)	Plate	Half and full cups	sponges from others)		amorphous forms of medium relief)
	Bowl, cup, vase	Cup, vase				
Tubular	Tube, tube cluster		Massive	"Bird's nest" and "felt vase" sponges	Upright (tubular sponges)	
	Volcano, sock-shaped					
Cup (but partly scored as "massive")	Bulb, barrel				Massive?	
	ERECT in function		UPRIGHT		ERECT in function	
	Whip, club, tangled branches?				Upright (incl. tubular and branching forms)	Upright (incl. branching and "rope" sponges)
	Fan, plate	Plate	Upright-simple, upright-laminar, foliaceous	Fans		
Palmate	Hand, strappy	Strappy	Digitate/branching?	Arborescent?		
	Tube cluster?					
Branching	Shrubby, tree, fingers? Tangled branches?		Digitate/branching	Arborescent]	
			Stalked			

**** Following Schönberg and Fromont (2014)

Supplement 2. Environmental factors that have been reported in the science literature as selecting for certain sponge morphologies, or accounts of sponge distribution patterns in relation to environmental parameters. To facilitate information retrieval and locating different growth forms, the main function categories <u>encrusting</u>, <u>massive</u>, <u>cup-like</u> and <u>erect</u> have been highlighted in colour to match colours used in the scheme overview and to visualise strong patterns (e.g. "laminar flow" is yellow-dominated = (2D-)erect dominated). Please note that the terms for the morphologies used in the cited publications do not exactly correspond to the presently proposed sponge classification scheme. Especially definitions for "massive" sponges differ widely, and 2- and 3-dimensionally branching sponges were almost never differentiated (see Suppl. 1).

Environmental condition	Sponge morphologies	Reference
Hydrodynamics		
Strong, turbulent flow with high drag force of unpredictable direction	Calcified sclerosponges of low relief live at exposed sites at the reef edge but also often occur at deeper sites to about 100 m with reduced water movement. Their overall shape was described as massive, encrusting and tabular, but similar to corals they have only a thin veneer of living tissue on top of the skeleton they form and often function as <u>encrusting</u> sponges, depending on the overall shape.	Hartman and Goreau, 1970
	In a reef environment, no sponges were found at the shallowest sites, and <u>endolithic-bioeroding</u> sponges were detected at slightly deeper sites (in SCUBA diving depth).	Rützler, 1972
	Halichondria panicea develops a higher structural rigidity in times and at sites with stronger turbulent flow. At exposed sites this species also has a more massive, more compact body shape compared to in reduced flow. At low-energy sites the morphology is more delicate and can tend towards more branching shapes, including raised oscules that attain a fistular function. In general, oscules were at the outer edges of the sponges, where maximum flow was achieved.	Vogel 1974; Peattie and Hoare, 1981; Palumbi, 1984, 1986; Barthel, 1991; Schönberg and Barthel, 1997
	Jackson (1979) ranked expected success of sessile marine invertebrates in strong flow as creeping, encrusting, massive (here including cups) > rope sponges that are here understood as creeping (his "vines") > tabular, erect-branching. "Maintenance of relatively large areas of attachment [] should make mounds [= simple-massive] more resistant to strong water movements".	Jackson, 1979
	Encrusting sponges are resistant to turbulent flow, cup-like, simple-erect and erect-branching sponges less so.	Trammer, 1979
	Strong, unpredictable flow conditions select against more delicate and <u>erect</u> morphologies by causing damage, dislodgement, fragmentation, scouring and abrasion. As good mixing guarantees a good food supply, sponges do not have to spatially separate their in- and exhalants. Risk of smothering and clogging is reduced by strong flow, so that low-relief forms that are less feeding-efficient can settle under these conditions, and often <u>encrusting</u> forms dominate.	Hiscock, 1983
	The <u>encrusting</u> to <mark>massive</mark> Pachymatisma johnstonia, Thymosia guernei, Tethyspira spinosa and Myxilla (Myxilla) rosacea predominantly occurred at wave-swept sites.	Hiscock et al., 1984
	As a general rule, organisms in wave-swept or strong-current environments either reduce the effects of the fluid-dynamic forces by being small, having a low profile and large attachment area, or they are flexible and move with the forces. Some avoid wave force by seeking out concave shelters (e.g. sea urchins, snails; note by Schönberg: see also sponge balls). Morphologies may vary from crusts in the surf zone to erect forms in deeper water (e.g. <i>Millepora complanata</i>).	Denny et al., 1985; Denny, 1988
	In less than 10 m depth in a reef environment, sponges were generally smaller than fist-size, with the exception of some larger endolithic- bioeroding sponges.	Alcolado, 1990
	At sites in shallow water, the effect of turbulence, waves and storms was most pronounced and selected for a predominance of encrusting and endolithic-bioeroding sponges. The ball-shaped Tectitethya crypta (as Tethya) and the encrusting morphology of the rope sponge Clathria (Thalysias) virgultosa (as Rhaphidophlus juniperinus) were more common in the shallow water.	Schmahl, 1990

Environmental condition	Sponge morphologies	Reference
Ctd.: Strong, turbulent flow	The <u>erect-branching</u> , "ropy" Agelas sceptrum suffered a large rate of fragmentation during a hurricane, but many fragments also quickly re-attached and recovered.	Fenner, 1991
	Simplified summary: In experiments using objects of different shapes placed broadside to the tested current, a plate (<mark>erect-laminar</mark>) experienced higher drag forces than a cylinder (<u>tube</u> or <u>barrel</u>), than a shallow cone (mound, <mark>simple-massive</mark>), than a <mark>ball</mark> .	Denny, 1994
	In erect-branching sponges a high spongin content safeguards against physical tearing and fragmentation.	Wulff, 1997
	In comparison between an exposed and a sheltered reef site, the proportional distributions of sponge morphologies did not much vary between the two, but at both sites <u>encrusting</u> sponges dominated. The <u>ball-shaped</u> <i>Cinachyrella arabica</i> (as <i>C. voeltzkowii</i>) was the only sponge present and abundant on the upper shore.	Barnes, 1999
	The authors' exposed site had poor diversity of sponge morphologies, mostly reduced to encrusting and well-attached simple-massive sponges, lacking sponges with small attachment area. This was true for inclined, as well as for vertical surfaces.	Bell and Barnes, 2000a, 2000b
	<i>Cliona</i> cf. <i>celata</i> was <u>encrusting</u> and ridge-like <mark>simple-massive</mark> in strong, turbulent flow	Bell et al., 2002b
	The ball-shaped Cinachyrella australiensis was larger and rounder in stronger flow and had a higher content of inorganic skeleton, as well as thicker spicules.	MacDonald et al., 2002
	The ball-shaped Tetilla sp. had larger bodies in stronger, turbulent flow, a higher content of inorganic skeleton, and longer spicules.	Meroz-Fine et al., 2005
	When transplanted from 3 to 1 m, the thickly encrusting to creeping to tubular Haliclona (Soestella) caerulea developed a larger attachment area, smaller, but more oscules, a higher density, and a higher inorganic content (spicules, but also algal partner scaffold).	Carballo et al., 2006
	Compared to sheltered embayments, survey sites with ocean swells were dominated by <u>encrusting</u> morphologies (by % cover), with low diversity, but variability over time.	Roberts et al., 2006a
	Aplysina cauliformis commonly occurs in areas with strong waves, frequent exposure to storms and sedimentation. It is <u>erect-branching</u> , but it also has a high spongin content and is flexible. It furthermore tends to be <u>repent</u> . The broad base of the <u>barrel-shaped</u> Spheciospongia vesparium provides a good attachment and protection against storm damage.	Alcolado, 2007
	The often sack-like glass sponge Aphrocallistes vastus had a smaller, more compact morphology at more exposed sites.	Austin et al., 2007
	Rocky substrate at an exposed coast was predominately covered by encrusting sponges.	Carballo and Nava, 2007
	Ordination on a sponge community associated the <u>thickly encrusting</u> sponge <i>Placospongia melobesioides</i> and the <mark>fistular</mark> species Oceanapia sagittaria and Coelocarteria singaporensis with exposure, the <u>thickly encrusting</u> to <u>creeping</u> to <u>erect-branching</u> Neopetrosia chaliniformis (as N. exigua) with offshore habitats.	Cleary and de Voogd, 2007
	Globular sponges were more prevalent with exposure (stronger flow). Creeping, massive-creeping (with upright branches, i.e. in function fistular or erect-branching?) and thickly encrusting to massive sponges were found at shallow depth (where flow would be more turbulent than at depth).	De Voogd and Cleary, 2007
	Dislocated sponges that washed up on the beach by waves were mostly <mark>branching</mark> , <mark>massive</mark> and <mark>cushion-shaped</mark> . <mark>Encrusting</mark> species were never found washed up. While sponges with high spongin content occurred in the area, they were not found washed up.	Ávila et al., 2011
	Exposed coral reef sites with turbulent flow had more sponges with "irregular-massive" growth forms.	Hadi et al., 2015
	New Zealand intertidal sponges were dominated by <u>encrusting</u> , <mark>fistular</mark> and <u>ball-shaped</u> forms.	Rush et al., 2017

nvironmental condition	Sponge morphologies	Reference
Strong, laminar flow	"There is a possibility that [<u>fan-shaped</u> sponges] are found always in a permanent current, on which they depend for subsistence. [It] is possible that the <u>fan-shaped</u> form only occurs in response to the stimulus of a constant current [] across which its plane is extended." Bidder (1923) hazarded that <u>cups</u> result from constant flow that changes across all directions.	Bidder, 1923
	"Plates [= tabular sponges] cannot usually grow as high as trees [= erect-branching sponges] and thus may have less access to the water column [= resource limitation]. Depending on their orientation, however, their large, flattened surfaces may be more effective than the branches of trees in obtaining resources in unidirectional water regimes. A potential cost is a greater vulnerability to strong water movements." But such sponges usually have a high spongin content, see other listings.	Jackson, 1979
	Passive suspension feeders with <u>erect-laminar</u> bodies orient themselves at right angle to the predominant current.	Hiscock, 1983
	The thickly encrusting to branching Halichondria panicea and Amphilectus fucorum occurred at strong-current sites exposed to tidal flows.	Hiscock et al., 1984
	Erect, branching parts of the freshwater Spongilla lacustris could not be maintained when stream flow seasonally increased. Branches were detached, and crusts of the sponge remained behind.	Manconi and Pronzato, 1991
	<i>Spongia (Spongia) agaricina</i> had a <mark>cup-like</mark> to <mark>erect-laminar</mark> form and preferentially occurred at sites with laminar flow.	Pronzato et al., 1998
	Branching sponges have a higher branch complexity and more branches in stronger flow.	Abraham, 2000; Lawler a Osborn, 2008
	"The orientation of an individual sponge to the direction of the [tidal] current was [] dependent on its morphology, with [<u>2-D and 3-D</u> branching, flexible] species orientated across the current." More rigid, massive sponges were at right angle to the prevailing currents at lower flow speed and parallel to the current at high flow speeds. Encrusting sponges were less clearly oriented but mostly extended parallel to the current.	Ginn et al., 2000
	Cliona cf. celata was encrusting and ridge-like, simple-massive in strong flow and had more oscules per area than in low flow.	Bell et al., 2002
	In strong tidal currents Spongia sp. oriented itself with the broad face across prevailing currents. It grew faster in that orientation than when placed in parallel with the currents. This was explained as an optimisation for feeding by separation of in- and exhalant streams.	McDonald et al., 2003
	Erect-laminar Axinellidae were reported for northern Australian sites with strong tidal currents.	Alvarez and Hooper, 200
	Predominant morphologies in elongated valleys between scarps were <mark>erect-branching</mark> (here: "arborescent"), <mark>fistular</mark> ("digitate") and <u>erect-laminar</u> ("pedunculate"). Geomorphology may suggest laminar flow.	Ruzicka and Gleason, 200
	Laminar flow favours a high frequency of <mark>erect-laminar</mark> and <mark>palmate</mark> sponges, situated at right angle to the predominant flow direction; these sponges have a high spongin content and are flexible to bend in strong flow regimes.	Schönberg and Fromont, 2012
	The flexible, <u>erect-laminar</u> sponge <i>lanthella flabelliformis</i> had "positive affinities for seabed current stress" at a northern Australian site with strong tidal currents (Torres Strait). The area also had a high frequency of <u>ball-shaped</u> sponges.	Pitcher et al., 2007
Strong to moderate, but	Sponges adapted to stronger flow with increased wall thickness (in tubes) or overall reinforcement.	Schmahl, 1990
predictable, steady flow	Modelling and transplantation showed that the <u>branching</u> , mostly <u>erect-palmate</u> sponge Haliclona (Haliclona) oculata produced thinner branches in reduced flow, and wider, more flattened branches under increased flow. With stronger flow the variation in branch spacing and the chance of branch fusion also grew.	Kaandorp, 1991; Kaando and de Kluijver, 1992; Kaandorp, 1999
	<u>Crusts</u> were by far most dominant overall, and especially in shallow water between ca90 and -170 m. All morphologies were most abundant in -90 m, with <u>cups</u> also being common around -370 m and dominant at about -520 m (here: astrophorines), which the authors interpreted as an adaptation to maximize feeding and sediment avoidance (presumably in reduced flow). <u>Massives</u> were dominant around -480 m. <u>Erect</u> , whip-like (<u>simple-erect</u>) and <u>branching</u> sponges only occurred to -140 m.	Maldonado and Young, 1996
	Of 3 local Spongia species, S. (Spongia) officinalis displayed the most variability in morphology and occurred across the widest range of habitats. It is mostly massive, but it has a slight separation of in- and exhalants (side and top, respectively). The distribution peak of S. officinalis did not match the highest sedimentation peak.	Pronzato et al., 1998

nvironmental condition	Sponge morphologies	Reference
Ctd.: Strong to moderate flow	Branching sponges have an increased branch complexity and more branches in higher flow.	Abraham, 2000; Lawler and Osborn, 2008
	The predominantly massive Rhopaloerides odorabile occurred at more exposed locations with stronger flow. This is here interpreted as a necessity arising from its surface with mixed in- and exhalants that require good flow in order to prevent re-inhalation of exhaled water.	Bannister et al., 2007
	Cups were found at offshore sites with high wave energy and exposed to oceanic swells.	De Voogd and Cleary, 2007
	[At sites] "where the current is strong and constant, tube- and vase-shaped sponges dominate."	Díaz, 2012
Reduced flow	In the <u>encrusting</u> sponge <i>Ophlitaspongia papilla</i> (as <i>O. seriata</i>) the "membranous contractile oscular papillae [] are much more strongly developed" at a flow-reduced than at a "hydrodynamically more violent" site. Sponges at the former site had a cuticle, at the latter not.	Fry, 1971
	Simple-erect and erect-branching sponges are more in danger of fragmentation in stronger, turbulent currents than other forms, but they reach into the water column to enter a better flow regime to transport nutrients to them. They require moderate flow regimes.	Trammer, 1979
	Weak water movement prevents physical damage and enables the survival of delicate and <u>erect</u> morphologies and selects against the usually strong space competitors with <u>encrusting</u> habit. Enhanced sedimentation leads to clogging and smothering and to the exclusion of morphologies with large horizontal surface area such as <u>encrusting</u> sponges, instead selecting for <u>erect</u> forms raised above the sediments or those with parts above the sediments (e.g. with <u>fistules</u>). Reduced mixing causes food and oxygen limitation, favouring <u>erect</u> forms. In <u>fistular</u> sponges, the exhalant <u>fistules</u> are well above inhalant structures to afford spatial separation (see Suppl. 4 and 5.2H, I and P – in clionaids the inhalant fields are usually at the bases of the closed fistules, the exhalants are usually bundled together and raised above the sponge's surface; Schönberg, pers. obs.).	Hiscock, 1983
	The <u>ball-shaped</u> Suberites carnosus and the <u>ball-shaped</u> to <u>massive</u> Suberites ficus were restricted to wave-sheltered sites. Larger and <u>erect</u> sponges such as axinellids and poecilosclerids were found at wave-sheltered sites or microhabitats and in the circalittoral at depths deeper than -10 m, where flow was reduced in comparison to shallower sites. <u>Encrusting</u> sponges were rare.	Hiscock et al., 1984
	Erect sponges in shallow water were more abundant at sheltered than at exposed sites. Some common <u>tubular</u> and more delicate <u>cup-</u> like sponges and barrels were restricted to deeper sites in 13 m.	Schmahl, 1990
	Hexactinellida can develop a symmetry in accordance to the predominant flow: "The dermal surface of these sponges is exposed to the water current, while the atrial surface is at the lee side." This means that these sponges are arranged so that the inhalants point into the arriving current, the exhalants are aligned with the leaving current, and the wastewater can be carried away more efficiently.	Tabachnick, 1991
	In a comparison between low-profile (" <mark>encrusting</mark> ") and higher profile (" <mark>erect</mark> ", here including e.g. cups) sponges, the latter became much more prevalent with depth (= reduced flow, finer sediments), while encrusting morphologies became less common.	Roberts and Davis, 1996
	Branching sponges have fewer branches in reduced flow.	Abraham, 2000; Lawler ar Osborn, 2008
	Sponge morphological diversity increased with depth, sedimentation and with reduced flow (in shallow depths), the frequency of more delicate <u>erect-branching</u> forms increased; settling on vertical surfaces generated refuge for other forms. In three-dimensionally <u>erect-branching</u> sponges branching complexity was reduced with reduced flow.	Bell and Barnes, 2000a, 2000b; Bell et al. 2002a
	The simple-massive Cliona cf. celata produced the largest individuals in stable, low flow conditions.	Bell et al., 2002b
	Tubular individuals of Callyspongia (Cladochalina) aculeata (as Callyspongia vaginalis), Agelas conifera and Aplysina fistularis grew to higher total heights at deeper depth with reduced flow (25 m) compared to a site in shallower water (14 m). However, growth rates at depth were also higher due to a higher nutrient concentration.	Lesser, 2006; Trussell et a 2006
	Compared to sites exposed to ocean swells, sheltered survey sites were dominated by "erect" morphologies (here including massives), with higher diversity and less variability over time (by % cover).	Roberts et al., 2006a

nvironmental condition	Sponge morphologies	Reference
Ctd.: Reduced flow	Ordination on a sponge community associated <i>Clathria (Wilsonella) mixta</i> (<u>erect</u> ?) and the <u>thickly encrusting</u> or <u>creeping</u> species <i>lotrochota baculifera</i> with sheltered sites. The <u>ball-shaped</u> <i>Melophlus sarassinorum</i> that is slightly removed from the substrate by foot- like little stalks, and the <u>ball-shaped</u> <i>Diacarnus megaspinorhabdosa</i> , the <u>creeping</u> <i>Pseudoceratina verrucosa</i> , <i>Xestospongia mamillata</i> (<u>thick crust</u> ? Species was originally described as fragment) and the <u>tubular</u> sponges <i>Haliclona (Reniera) fascigera</i> and <i>Niphates olemda</i> were found in deeper water with presumably reduced flow.	Cleary and de Voogd, 200
	Barrels such as Xestospongia testudinaria and larger massive sponges occurred in deeper water, where wave energy would be reduced.	De Voogd and Cleary, 200
	Balls are smaller with reduced flow.	Lawler and Osborn, 2008
	The <u>thickly encrusting</u> to <u>composite-massive</u> to <u>tubular</u> <i>Dysidea avara</i> became increasingly less compact and more <u>erect</u> and <u>branching</u> with water depth and reduced flow speed. At a calm-water site the oscules were particularly large, and the <u>erect</u> branches <u>tube-like</u> , achieving the best separation between inhaled and exhaled water and becoming more <u>fistule</u> -like. During intermittent high-flow periods, these large oscules were closed.	Mendola et al., 2008
	Occurrence of <u>erect</u> sponges in soft bottom environments moderately correlated with reduced clay in the substrate, suggesting that they required slightly elevated flow conditions. This was explained in a need for being provided adequate nutrients for filter feeding. The weak correlation of <i>Xestospongia</i> sp. <u>barrels</u> with mud was explained with their tolerance to reduced flow conditions.	Kelly and Przeslawski, 20
	The morphologically variable Halichondria (Halichondria) melanadocia had larger volumes and much larger oscules in the more sheltered seagrass environment than in the mangrove system with slightly more flow. Larger oscules allow stronger exhalant flow, which reduces the risk of re-inhaling wastewater under stagnant conditions (Bidder, 1923). Both sites had similar sedimentation conditions. Sponge height was similar in both habitats.	Ávila and Ortega-Bastida 2015
	Coral reef sites with reduced flow had more sponges with delicate (<u>erect</u> ?) growth forms, including "breakable" ones.	Hadi et al., 2015
	The massive Coscinoderma matthewsi was more abundant and had larger individuals in 12 than in 6 m, where flow was halved; it had a simple-massive morphology in 6 m, and a more "lobed" composite-massive, or more erect morphology in 12 m, which was explained as an adaptation to increase access to food.	Duckworth, 2016
Low flow to stagnant water	Encrusting forms are very much governed by near-substrate conditions and cannot reach beyond that. Boundary layer resources are often restricted, while at the same time a comparatively large tissue area is exposed to possible disturbance.	Jackson, 1979
	At greater depth [= with finer sediments and reduced flow], sponges develop special morphological structures such stalks to be distanced from the substrate. While such stalks appear of similar length between younger and older sponges, the body size increases with age. This may relate to the need to reach a layer in the water column where flow regime is more favourable.	Burton, 1928
	The morphologically variable sponge Halichondria panicea develops an increasingly more <mark>tubular</mark> structure in more sheltered environments and is more <u>encrusting</u> and compact (= <mark>simple-massive</mark>) where it is more exposed.	Burton, 1928
	Larger encrusting sponges are not usually found in "continuously still water". Separation of their in- and exhalants was assumed to be insufficient to prevent re-inhalation and thus to prevented them from growing into larger specimens.	Fry, 1979
	According to Trammer (1979), tubular and cup-shaped sponges can tolerate strongly reduced flow, as their inhalant and exhalant structures are separated. However, this does not yet take into account that reduced flow means increased sediment deposition and finer sediments, which will be a trade-off for these forms.	Trammer, 1979
	With distance into caves, flow reduction and darkness resulted in food limitation. Here, thin crusts "with a more efficient filtration surface ratio" dominated.	Bibiloni et al., 1989
	Fragile Hexactinellida cannot tolerate high-energy hydrodynamic conditions. To compensate for reduced filter-feeding efficiency, they have switched to osmotrophy, i.e. they are feeding on dissolved or colloidal materials and enhance absorption in stagnant waters by developing thin-walled morphologies with a high surface : volume ratio. Spicular veils can supplement the diet by becoming habitats for microbial communities.	Leinfelder, 1996; Krautte 1998

Environmental condition	Sponge morphologies	Reference
Ctd.: Low flow to stagnant	With bathymetry and reducing flow, incidence of erect-branching forms increases, including forms with short stalks.	Bell and Barnes, 2000a
water	Haliclona caerulea transplanted from 3 to 5 m developed a larger surface area by growing many little erect extensions or branchlets (only in cages, which may have created stagnant and nutrient limited conditions).	Carballo et al., 2006
substrate/sediment quality		
Prevailing hard = rocky or coral substrate	Even though <u>creeping</u> forms are probably the most versatile in using different substrates or even altering the growth direction from horizontal into a more vertical aspect, Jackson (1979) identified them as most vulnerable to substrate-related factors. He however allowed that possible damaging effects will rarely kill the entire animal, and regeneration will occur. <u>Erect</u> forms and <u>cup-like</u> forms with small attachment areas are most removed from substrate effects. He ranked expected success on instable substratum as <u>creeping</u> , <u>encrusting</u> , vines (= <u>creeping</u> rope sponges potentially with erect elements) > <u>massive</u> (including <u>cup-like</u> forms) > <u>tabular</u> , <u>erect-branching</u> .	Jackson, 1979
	Comparing Antarctic sponge communities, on muddy substrate Demospongiae with <mark>fistules</mark> or surface cleaning capability prevailed, while on hardground <mark>stalked</mark> Demospongiae and <mark>cup-</mark> and <u>sack</u> -like Hexactinellida dominated.	Barthel and Gutt, 1992
	Hard bottom had higher total, <mark>erect</mark> and <mark>massive</mark> or <mark>thickly encrusting</mark> sponge densities than cobble or gravel.	Ginn et al., 2000
	Morphological and species richness were correlated, but in the reef environment taxonomic diversity increased stronger with morphological diversity than in a soft sediment environment.	Bell and Barnes, 2002
	Rocky substrate at an exposed coast was predominately covered by <u>encrusting</u> sponges. Apart from that, bedrock (stable, in 2-3 m depth) was dominated by the <u>massive</u> <i>Haliclona caerulea</i> , and <u>endolithic bioeroders</u> were more common on boulders (occasionally overturned by storms? in 4-6 m).	Carballo and Nava, 200
	[In the present study] "there is a clear dominance of <u>tubular</u> , <u>creeping</u> , and <u>massive</u> sponges among conspicuous coral reef species, whereas thin and massive <u>crusts</u> predominate among mangrove species. [] On open reef habitats, the most conspicuous species are the <u>massive</u> large, <u>creeping</u> , <u>tubular</u> , <u>fan</u> , or <u>vase</u> sponges."	Díaz, 2012
	Sponge morphological and taxonomic diversity were correlated and increased with availability of dead coral substrate and decreased with abundance of coral rubble.	Hadi et al., 2015
Environment with rocky outcrops	On elevated, hard-bottom ridges the predominating sponges were <u>encrusting</u> and <u>simple-massive</u> . On the sandy valleys in between sponges were endopsammic (= <u>fistular</u>), <u>erect-laminar</u> or <u>erect-palmate</u> . Presumably the tops of the ledges represented a hydrodynamically exposed habitat, whereas the flow between the ledges valleys was reduced and predominantly laminar. In this case the distribution of sponge morphologies thus appeared to be more strongly influenced by currents than by substrate.	Freeman et al., 2007
Sediment-dominated environment, sandy bottom	The bioeroding-endolithic to simple-massive sponge Cliona cf. celata was more abundant on bottoms with low silt-clay content and a mean grain diameter in the medium sand range. The simple-massive form was most abundant on bottoms poor in dead shell material and more abundant on coarser sediments where stronger currents were assumed to provide nutrients.	Driscoll, 1967
	In a field survey, the fistular Spheciospongia florida (cf. Spheciospongia vagabunda/inconstans species complex) was only found on sand. Spheciospongia spp. are often endopsammic and tend to develop fistular morphologies (Schönberg, 2016). The ball-shaped Cinachyrella arabica and the fistular Ciocalypta sp. were only found on sand.	Barnes and Bell, 2002
	The endopsammic, fistular sponges Oceanapia amboinensis, Biemna fortis, Spheciospongia solida (as Spirastrella) and Siphonodictyon mucosum (as Aka mucosa) live (half-)buried in sediment, anchor themselves by being attached to or inhabiting buried rock and have erect parts or fistules that emerge from the sediment.	Cerrano et al., 2002
	Coscinoderma matthewsi was more abundant in 12 than in 6 m, where sediment occurrence was doubled, covering surfaces; the sponge has a simple-massive morphology in 6 m, and a more "lobed', more erect morphology in 12 m, which could be a reaction to sediment deposition.	Duckworth, 2016

vironmental condition	Sponge morphologies	Reference
Fine sediments in the environment, soft bottom	At greater depth [= with finer sediments and reduced flow], sponges, especially hexactinellids, develop special morphological structures such as basal spicule tufts for anchoring in fine sediments and stalks to be distanced from the substrate and avoid burial.	Burton, 1928; Tabachnick 1991; Schönberg, 2016
,	Fistular sponges such as Ciocalypta penicillus and Polymastia mamillaris were associated with soft sediments and were often partially buried in them.	Hiscock et al., 1984
	The often fistular sponge Tedania (Tedania) ignis was observed to occur in areas with soft, muddy bottom sediments.	Alcolado, 1990
	The fistular species Tentorium papillatum and Polymastia invaginata can survive in very muddy areas as long as there are boulders for initial settlement. Another species at this site, Mycale acerata, forms tube clusters. The most common species found at this site keep their surfaces sediment-free or have erect structures.	Barthel and Gutt, 1992
	The stalked glass sponge Caulophacus (Caulophacus) arcticus was found in deep sea mud environments, was usually fixed on stones in the mud, had a stalk and a disc-shaped, elevated body, on which inhalants pointed downwards and exhalants were on the upper surface. Forcepia (Forcepia) topsenti was small, spherical sponge that was observed to have endopsammic tendencies (= fistular), at times half buried in the sediment and agglutinating particles. Forcepia spp. were encrusting to massive and have been observed to develop fistular structures (see also van Soest, 2002; Lim et al., 2012). The thinly encrusting-creeping sponge Hymedesmia (Hymedesmia) stylata had 2 mm long, fistule-like papillae and appeared to have surface-cleaning capability. Sycon abyssale was tubular and had a short stalk.	Barthel and Tendal, 1993
	Thenea spp. often inhabit fine sediments. They are functionally between globular sponges and barrels by being small and rounded, but also separating in- and exhalants. Oscules can be extended into fistular structures. The spicule-anchored lower part of the body can be embedded in sediment, the spicule-screened inhalants are lateral, just above the sediment surface, the exhalant is apically, on the top of the sponge. Tentorium semisuberites has a very similar functional biology. Occurring in the same habitat as <i>T. semisuberites</i> was the ball-shaped Radiella sol (as Trichostemma).	Barthel and Tendal, 1993 Cárdenas and Rapp, 2012
	No <u>stalked</u> sponges were seen, but the morphology was interpreted as adaptations to soft abyssal bottoms.	Maldonado and Young, 1996
	Morphological and species richness were correlated, but in the reef environment taxonomic diversity increased stronger with morphological diversity than in a soft sediment environment.	Bell and Barnes, 2002
	The erect, <u>tubular</u> sponge <i>Liosina granularis</i> was able to live at a site with fine sediments and siltation. Its outer walls can be covered with a fine layer of silt.	Bell and Smith, 2004
	The often sack-like glass sponge Aphrocallistes vastus occurs at sites with soft sediments and sedimentation.	Austin et al., 2007
	Erect-branching sponges formed a significant part of the community where fine sediments were present, at the expense of encrusting and massive sponges. Overall sponge height was larger with fine sediments.	Lawler and Osborn, 2008
	Prevalence of muddy substrate correlated with the occurrence of <mark>erect-palmate</mark> sponges. Large <mark>erect-laminar</mark> sponges such as <i>lanthella</i> spp. and <u>barrels</u> such as <i>Xestospongia</i> spp. were also common.	Kelly and Przeslawski, 20
	An environment dominated by fine sediments, high turbidity and strong tidal flow supported a sponge community dominated by <mark>erect</mark> (50%, >30% <mark>2D-erect</mark>) and <mark>fistular</mark> sponges (22%). <mark>Wide cups</mark> , <u>barrels</u> and <u>crusts</u> were each only around 5% of the counts.	Fromont et al., 2013; Schönberg pers. obs. 201
	Many <u>endolithic-bioeroding</u> sponges can be smothered by fine sediments and do not well in muddy environments.	Schönberg et al., 2017; Schönberg pers. obs. 201 Abdul Wahab pers. comn
Biotic substrate	Sponges colonising living surfaces of other invertebrates are often encrusting.	e.g., Davis et al., 1996; Calcinai et al., 2013; Voultsiadou et al., 2010

Turbidity/sedimentation

urbidity/sedimentation		
Clear water without much sedimentation, potentially nutrient-poor water	"Foliose", wide, shallow cups to erect-laminar sponges, with large horizontal surface area were the dominant sponge morphologies on clear-water coral reefs and most common between 10 and 30 m, and most were photosymbiotic. They were missing from more turbid inshore reefs with higher sedimentation rates and elevated nutrient concentration.	Wilkinson, 1988
	The low-relief, <u>composite-massive</u> Axinella damicornis, the <u>encrusting</u> Scopalina lophyropoda, the <u>thickly encrusting</u> to <u>composite-massive</u> sponge Aplysilla rosea, the thickly <u>encrusting</u> Crambe crambe, the <u>thinly encrusting</u> Timea unistellata and the <u>endolithic-bioeroding</u> Pione (as Cliona) cf. vastifica only occurred at sites with low levels of siltation, or on vertical surfaces and under stones or overhangs. The <u>ball-shaped</u> Tethya aurantium also appeared to prefer reduced sedimentation.	Carballo et al., 1996
	The pink vase sponge Niphates digitalis (cup) is usually associated with deep water and high water clarity.	Reeson et al., 2002
	Despite its <u>tubular</u> shape, Aplysina fistularis appears to prefer high water clarity.	Alcolado, 2007
	In clear water, <mark>massive</mark> , <mark>cup-shaped</mark> , <mark>massive-encrusting</mark> and <mark>tubular</mark> sponges were common. The <mark>cups</mark> were often photosymbiotic and had a higher proportion of horizontal surface.	De Voogd and Cleary, 2007
Turbid water	The <mark>ball-shaped</mark> Cinachyrella australiensis (as Cinachyra porosa) and the <mark>fistular</mark> sponges Axinyssa mertoni (as Pseudaxinyssa pitys) and Biemna fortis occurred in turbid water, also suggesting sedimentation pressure.	De Laubenfels, 1954
	Barrels of the genus <i>Xestospongia</i> (as <i>Sigmadocia</i>) were often observed to be more common in turbid water.	De Laubenfels, 1954; Wilkinson and Cheshire, 1989
	Ball-shaped, globular sponges have often been found in turbid waters with high sedimentation rates, e.g. Tethya aurantium and the Tetillidae in general.	Bell and Barnes, 2000b; van Soest and Rützler, 2002
	Ordination on a sponge community associated the sediment-resistant and ball-shaped species Paratetilla bacca, the creeping Gelliodes fibulata and the erect-laminar sponge Lissodendoryx (Acanthodoryx) fibrosa with turbidity, whereas e.g. the rope-like erect-branching to creeping Callyspongia (Euplacella) biru needed clearer water and stronger flow.	Cleary and de Voogd, 2007
	With reduced water transparency near human settlement, the abundance of <mark>globular</mark> , <mark>fistular</mark> and <mark>fan-shaped</mark> sponges increased.	De Voogd and Cleary, 2007
	Changes in predominant sponge morphologies were related to seasonal changes (mostly turbidity and temperature); <u>encrusting</u> sponges were more abundant in winter (was explained by competition with algae in summer), abundance of <u>erect-branching</u> sponges was consistent, apart from a peak in October (explained by reproduction); overall predominance of <u>erect</u> and <mark>fistular</mark> sponges across seasons suggested high sedimentation at site. Seasonal differences were most apparent through <u>encrusting</u> , <u>erect-branching</u> and <u>tubular</u> sponges	Berman et al., 2013
	At a highly turbid, high-sedimentation site with fine sediments and strong tidal currents wide cups were rare (5% of all sponge individuals scored*). The few wide cups that occurred often displayed necrotic or dead parts or had parts missing that presumably had previously died*. Barrels were also uncommon, but conspicuous (6%*). They usually had coarse sediments in their apical, concave part (Fig. 8), with fine sediments having been washed out by the exhalant stream*. While Abdul Wahab et al. (2017b) stated encrusting and massive sponges to be predominant, the other two sources found the sponge community was dominated by erect forms (ca. 50%*) and endopsammic, fistular forms (22%*). Massives together contributed only 30%*. Data in Abdul Wahab (2017a) suggest that scoring may have been incorrectly applied.	Fromont et al., 2013*; Schönberg pers. obs. 2013*; Abdul Wahab et al., 2017b
	In a before-after sediment-impact study by capital dredging at a turbid site with fine sediments, <mark>fistular</mark> , <mark>erect-branching</mark> forms and <u>barrels</u> increased in abundance after the impact, which are all morphologies with strategies to deal with sedimentation.	Abdul Wahab et al., 2017b
	Many bioeroding sponges can tolerate high levels of turbidity and moderately high sedimentation. However, endolithic-bioeroding sponges can be smothered by fine sediments and do not well in muddy environments.	Schönberg et al., 2017; Schönberg pers. obs. 2013; Abdul Wahab pers. comm.

Environmental condition	Sponge morphologies Reference						
Ctd.: Turbid water	At the study's clear-water site <mark>cups</mark> were 1.5 x as abundant than at the turbid site. <mark>Erect</mark> forms were 13 x as abundant at the turbid site. No differences were found for <u>crusts</u> and <u>massives</u> .	Abdul Wahab et al. 2018					
	Despite shown sediment-clearing abilities, Crella incrustans developed fistule-like appendages in an experiment applying high suspended sediment concentration to resemble fistular sponges	Cummings et al., 2020					
High sedimentation rate	When Hymeniacidon perlevis occurred in areas with high sedimentation and became covered in mud, it displayed fistular projections, raising the oscules above the sediments.	Stone, 1970					
	In a reef environment, at a sheltered site below 6 m depth and with high rates of sedimentation, only few sponge species were found. These were "tall or <mark>massive</mark> " and half-buried in sediment (<u>fistular</u>). <u>Encrusting</u> sponges occurred on vertical surfaces where they had enough flow, but were at the same time at safe distance from the sediment and avoided sediment deposition.	Rützler, 1972					
	Based on approximated calculations, Jackson (1979) ranked expected success of sessile marine invertebrates in high sedimentation as erect-branching > tabular, massive (here including cup-like forms), vines (= rope sponges that Jackson described as creeping) > encrusting, creeping.	Jackson, 1979					
	The amphora- or tube-shaped Varongia aerophoba grew faster when sedimentation was excluded with a transparent roof.	Wilkinson and Vacelet, 197					
	The ball-shaped Cinachyrella (as Cinachyra) apion survived > 15 days of burial in ventilated reef sediment.	Rice, 1984					
	The <u>erect-reticulate</u> Echinodictyum pulchrum (as E. cancellatum) occurs on "shallow coastal and shallow offshore rock reefs, in mud or areas with high sedimentation". <u>Erect-branching</u> Raspailia spp. can tolerate extremely high sedimentation levels.	Hooper, 1991; Bell and Barnes, 2000b, 2000c					
	The freshwater <i>Spongilla lacustris</i> developed <mark>erect</mark> parts to avoid burial.	Manconi and Pronzato, 1991					
	The encrusting sponges Crambe crambe, Scopalina lophyropoda and some Hymedesmia spp. were less common or excluded from sites with high levels of siltation and rather occurred on vertical surfaces, under overhangs or on the underside of stones. Simple-massive Sarcotragus spp. were excluded from high sedimentation sites.	Carballo et al., 1996					
	At depth <u>crusts</u> were more common on vertical surfaces (presumably avoiding sedimentation and moving into levels with higher flow than in the boundary layer). Predominance of <u>cups</u> at about -520 m (here: astrophorids) was interpreted as an adaptation to maximize feeding and sediment avoidance. No <u>stalked</u> sponges were seen, but the morphology was interpreted as adaptations to soft abyssal bottoms.	Maldonado and Young, 1996					
	Tabular Hexactinellida are very sensitive to sedimentation and will perish under such conditions.	Leinfelder, 1996					
	Moderate sedimentation selects for tubular sponge morphologies, as these create bundled exhalant jets suited to prevent sediment entering or collecting in the concave parts of the body.	Krautter, 1998					
	In comparison to other local <i>Spongia</i> species, <i>S. (S.) agaricina</i> was most tolerant to high levels of sedimentation, and its peak in occurrence matched the sedimentation. While it most commonly had an <u>incomplete</u> or <u>complete cup-like</u> morphology with clear separation of in- and exhalants, the local sediments were mostly coarse, and the sponge incorporated sediments into its fibres.	Pronzato et al., 1998					
	In contrast to other local Spongia species, S. (S.) virgultosa only occurred in sheltered, shallow waters of 3-10 m, where it formed <u>crusts</u> with small <u>fistules</u> . The abundance of this species was similar to sedimentation levels. This species did not incorporate sediment grains in its fibres and needed the <u>erect</u> structures to deal with potential sediment deposition and with observed overgrowth by epibiotic organisms.						
	The <u>thickly encrusting</u> or low-relief massive sponge <i>Cliona (Spheciospongia?</i> – published as Anthosigmella) varians produces <u>erect</u> branching structures at sites with higher sedimentation, becoming more fistular.	Hill, 1999					

Environmental condition Spo	onge morphologies
-----------------------------	-------------------

Ctd.: High sedimentation rate	With reduced flow and higher rates of sediment settlement <u>erect-branching</u> forms, morphologies with short <u>stalks</u> , and cryptic-massive forms with <u>fistules</u> emerging from the sediment increased in frequency (e.g., <i>Polymastia</i> spp.); <u>encrusting</u> forms were lacking or grow on vertical surfaces. The <u>simple-massive</u> sponge <i>Cliona</i> cf. <i>celata</i> occurred at high sedimentation sites, growing on inclined (fewer, larger specimens) and on vertical surfaces (more, smaller specimens).	Bell and Barnes, 2000a, 2000b, 2000c
	Ball-shaped, globular sponges have often been found in turbid waters with high sedimentation rates, e.g. Tethya aurantium and the Tetillidae in general.	Bell and Barnes, 2000b; van Soest and Rützler, 2002
	With increased water depth and sedimentation and decreased flow branching complexity was reduced in <mark>three-dimensionally erect-</mark> branching sponges.	Bell et al., 2002a
	Encrusting and endolithic growth forms of Cliona cf. celata were more common at sites with reduced flow and higher sedimentation, as well as developing fistules, except for one site they had also more oscules per unit surface area.	Bell et al., 2002b
	The ball-shaped Cinachyrella australiensis was adapted to high sedimentation levels and occurs in high turbidity and strong flushing. The sponge formed thicker spicules in environments with the coarser sediment, and a flattened growth form with finer sediments.	McDonald et al., 2002
	The ball-shaped Cinachyra barbata occurred on "sediment-rich bottoms".	Van Soest and Rützler, 2002
	Haliclona (Haliclona) urceolus is a tubular sponge with an apical water jet protecting the oscular opening; it was common in sedimented habitats.	Bell, 2004
	Seasonal sediment deposition events reduced the diversity of the coastal sponge community by smothering larger sponges (<u>massive</u> and <u>branching</u>), but <u>endolithic-bioeroding</u> , <u>encrusting</u> clionaids and <i>Clathria (Microciona)</i> sp. survived. It was not explained whether the <u>encrusting</u> species were located on horizontal surfaces and how they survived being covered, but they have a micro-hispid ectosome that may help in keeping their surfaces clean (Schönberg, 2015). Overall, the habitat was described as high-energy, with turbulent flow.	Carballo, 2006
	Sedimentation can select for some clionaid, endolithic-bioeroding sponges.	Carballo et al., 2006
	Experiments creating elevated levels of suspended sediments proved lethal for cup-shaped Callyspongia confoederata and caused necrosis in other sponges with much horizontal surface area (massives, encrusting sponges, wide cups).	Pineda et al., 2006
	The wide cup-shaped and photosymbiotic sponge Cymbastela concentrica did not tolerate sedimentation or shading very well.	Roberts et al., 2006b
	The barrel-shaped Spheciospongia vesparium and the composite-massive to fistular, sediment-incorporating Tectitethya crypta are tolerant to sedimentation.	Alcolado, 2007
	The ball-shaped Paratetilla corrugata (as P. bacca) was adapted to perturbed sites and high sedimentation levels, and displayed a bristly surface that caught sediments and kept pores free.	De Voogd and Cleary, 2007
	Dysidea avara became increasingly less compact and more erect and branching with water depth and increased sedimentation. At the deepest site, where the sponge was covered with a film of sediments, the apical oscules were smaller than at intermediate depth, where intermittent flow occurred.	Mendola et al., 2008
	Highly turbid and sedimented reef areas in Singapore were dominated by <mark>globular</mark> , <mark>fistular</mark> , <mark>fan-shaped</mark> and <mark>creeping</mark> sponges. <u>Cup-shaped</u> and photosymbiotic sponges were absent.	De Voogd and Cleary, 2009
	The ball-shaped Paratetilla sp. is a heterotrophic globular sponge with a natural crust of sediments and algae, and it occurred in very shallow depths on sandflats. In an 8 d flow-through tank experiment sponges were subjected to daily application of a handful of mud or sand onto the sponges. In Paratetilla sp. mud and sand treatments had no visible effect at all. Most sediment slid off and what remained	Büttner and Siebler 2013 (incl. Schönberg pers. obs. 2013)

sand onto the sponges. In *Paratetilla* sp. mud and sand treatments had no visible effect at all. Most sediment slid off and what remained 2013) on top of the sponge did not cause any change. The control sponges did not show any signs of tank effects.

Environmental condition	Sponge morphologies	Reference
Ctd.: High sedimentation rate	At a highly turbid, high-sedimentation site with fine sediments and strong tidal currents <u>wide cups</u> were rare (5% of all sponge individuals scored*). The few <u>wide cups</u> that occurred often displayed necrotic or dead parts or had parts missing that presumably had previously died*. <u>Barrels</u> were also uncommon, but conspicuous (6%*). They usually had coarse sediments in their apical, concave part, with fine sediments having been washed out by the exhalant stream*. While Abdul Wahab et al. (2017b) stated <u>encrusting</u> and <u>massive</u> sponges to be predominant, the other two sources found the sponge community was dominated by <u>erect</u> forms (ca. 50%*) and endopsammic, <u>fistular</u> forms (22%*). <u>Massives</u> together contributed 30%*. Data in Abdul Wahab (2017a) suggest that scoring may have been incorrectly applied.	Fromont et al., 2013*; Schönberg pers. obs. 2013*; Abdul Wahab et al., 2017b
	In a before-after sediment-impact study by capital dredging at a turbid site with fine sediments, <mark>fistular</mark> , <mark>erect-branching</mark> forms and <mark>barrels</mark> increased in abundance after the impact. During the construction work the proportion of finer sediments increased at the site.	Abdul Wahab et al., 2017b
	<i>Biemna fortis</i> developed a fistular or cryptic-massive morphology at a site with higher levels of suspended particles (and presumably high rates of sedimentation), whereas at a site with les suspended material, the sponge had a simple-massive growth form	Dahihande and Thakur, 2017
	Many endolithic-bioeroding sponges can tolerate high levels of turbidity and moderately high sedimentation. However, they can be smothered by fine sediments and do not well in muddy environments.	Schönberg et al., 2017; Schönberg pers. obs. 2013; Abdul Wahab pers. comm.
Other parameters		
Bathymetry	[Apart from rare exceptions, keratose sponges] are never found at greater depths than [ca. 180 m], and seldom go down so far as that even". On the other hand, the "Hexactinellida, typical deep-sea animals, are but rarely found at depths less than [ca. 180 m]".	Burton, 1928
	In the deep sea, morphology per species becomes more uniform, and forms become more symmetrical.	Burton, 1928
	At greater depth [= with finer sediments and reduced flow], sponges develop special morphological structures such as spicule tufts for anchoring in mud and stalks to be distanced from the substrate. While such stalks appear of similar length between younger and older sponges, the body size increases with age.	Burton, 1928
	Clustering of Antarctic sponge associations related to substrate properties and sedimentation, not depth.	Barthel and Gutt, 1992
	The erect, <mark>carnivorous</mark> sponge <i>Cladorhiza gelida</i> was found on rock and muddy bottom in 780-2800 m depth.	Barthel and Tendal, 1993
	Low-profile forms such as <u>encrusting</u> , <mark>massive</mark> and <u>creeping</u> dominated in shallower water, <mark>erect</mark> and <mark>fistular</mark> forms increased in frequency at deeper sites. This was mainly discussed in the context of flow.	Bell and Barnes, 2000a
	Comparing intertidal and subtidal sites, <u>tubular</u> and <u>branching</u> forms were missing at the former site (but site-relevant covariables possibly affecting result were not discussed; <mark>branching</mark> sponges were observed in the intertidal in NW Australia, Schönberg pers. obs.).	Barnes and Bell, 2002
	Demospongiae and Homoscleromorpha remained largely confined to shelf habitats between 0 and 200 m with dSI concentrations of <150 μM. Hexactinellida mostly required high-silica conditions >100 μM and extended down to 6000 m, and the Calcarea had another peak between 1500 and 3000 m. However, the paper did not investigate and differentiate growth forms.	Alvarez et al., 2017
Light/shade	Calcified sclerosponges that function as encrusting sponges often prefer shaded environments.	Hartman and Goreau, 1970
	Based on approximated shape parameter calculations, Jackson (1979) ranked expected success under an abundance of food and light as <u>encrusting</u> , <u>massive</u> (including <u>cup-like</u> forms) ≥ vines (= <u>creeping</u> rope sponges) ≥ <u>tabular</u> , <u>erect-branching</u> > <u>creeping</u> . Under food/light limitation this ranking changed to: <u>erect-branching</u> , <u>tabular</u> > <u>massive</u> , vines (<u>creeping</u> rope sponges) > <u>encrusting</u> > <u>creeping</u> .	Jackson, 1979
	With distance into caves, flow reduction and darkness resulted in food limitation. Here, thin crusts "with a more efficient filtration surface ratio" dominated.	Bibiloni et al., 1989
	The <u>encrusting</u> Crambe crambe had an irregular outline in light (shallow) and a more directional growth at sciaphilous locations. This was thought to be more likely due to lack of space competition at the shallow sites, rather than a light effect.	Becerro et al., 1994

nvironmental condition	Sponge morphologies	Reference
Ctd.: Light/shade	When the photosymbiotic <u>massive</u> sponge <i>Ircinia felix</i> was transplanted from 4 m depth to 100, 200 and 300 m, it lost its cyanobacteria and developed <mark>fistule</mark> -like processes in 200 m. None survived in 300 m. The <u>tubular</u> <i>Aplysina fistularis</i> only survived in 100 m, did not lose the photosymbionts and did not develop <mark>fistules</mark> .	Maldonado and Young, 1998
	Exposure to strong light was interpreted as stressful for sponges, and those exposed to light were observed to have a cortex or had lacunae to trap water when exposed, or they were partially buried. Encrusting and tabular forms were found more commonly in shaded environments. The authors' views on light effects may perhaps be too simplified, ignoring other factors that may have had a stronger influence on the morphology.	Barnes, 1999
	Endolithic-bioeroding and endopsammic-fistular bioeroding sponges such as Siphonodictyon spp. and some Spheciospongia spp. are relatively resistant to exposure to air, and some species occur in the upper intertidal, where they would also be exposed to high UV irradiation during low tide.	Rützler, 1971; Schönberg, 2000, 2001; Schönberg and Tapanila, 2006; Schönberg pers. obs. 1996-2013
	The wide cup-shaped and photosymbiotic sponge Cymbastela concentrica did not tolerate sedimentation or shading very well.	Roberts et al., 2006b
	Frequency of photosymbiotic sponges decreased with water depth, but this was not related to morphology.	Bell, 2007a
Exposure to air	The <u>encrusting</u> Hymeniacidon perlevis (as H. sanguinea) can survive exposure to air in the upper intertidal, but exposure often results in partial tissue death and fragmentation of the specimens, leading to smaller individuals.	Burton, 1928
	Endolithic-bioeroding and endopsammic-fistular bioeroding sponges such as Siphonodictyon spp. and some Spheciospongia spp. are relatively resistant to exposure to air, and some species occur in the upper intertidal, where they would also be exposed to high UV irradiation during low tide.	Rützler, 1971; Schönberg, 2000, 2001; Schönberg and Tapanila, 2006; Schönberg pers. obs. 1996-2013
	The intertidal site of this study lacked tubular and branching sponges. Supposedly, these were at larger risk of desiccation due to the comparatively large surface area and the proportionally longer exposure being erect.	Barnes and Bell, 2002
Climate, temperature, heat events	Keratose sponges are excluded from cold waters. [] "formation of spongin can usually only take place in moderate temperatures[, and keratose sponges] are confined, for the most part, to the seas between 45° of latitude north and south of the Equator and are pre- eminently abundant in the warm shallow waters of the Mediterranean and Gulf of Mexico. Outside this area their occurrence is extremely rare."	Burton, 1928
	Photosymbiotic sponges often have a <u>wide cup-shaped</u> growth form that provide the sponge with more horizontal surface area for light harvest, erect-branching sponges are not as likely to be photosymbiotic. E.g. <u>encrusting</u> , low-profile sponges near the substrate surface with reduced flow are more likely to bleach and to die than <u>erect</u> sponges that reach into layers with stronger currents, or larger sponges with large canal system and oscules that can produce a cooling effect with the pumping currents they produce.	Bell, 2007a
	The subtropics and tropics have a more morphologically and taxonomically diverse sponge fauna than temperate waters. The authors found more erect-branching and palmate sponges at their tropical sites than at their subtropical sites (but site-relevant covariables affecting result were not discussed).	Barnes and Bell, 2002
	Morphological and species richness were correlated, but unlike for bottom characteristics, the correlation slopes of taxonomic diversity versus morphological diversity did not differ with climate.	Bell and Barnes, 2002
	The encrusting sponge Hemimycale columella tended to fission in the colder season.	Garate et al., 2017
	Endolithic-bioeroding sponges appear to be more heat tolerant than many other benthic organisms	Schönberg et al., 2017
Anoxia	The ball-shaped <i>Cinachyrella</i> (as <i>Cinachyra</i>) <i>apion</i> survived > 15 days of burial in ventilated reef sediment.	Rice, 1984

Nutrients	Individuals of Grantia compressa were larger in estuarine environments rich in detritus than in other marine environments.	Burton, 1928
	Erect forms of sessile marine invertebrates have an advantage against low-relief forms in terms of resource and nutrient access in higher layers of the water column. Their disadvantage is a small basal attachment area. Vines (= creeping forms) can bridge between low-relief encrusting and erect-branching forms by often forming erect branches. Based on his approximated shape parameter calculations, Jackson (1979) ranked expected success under an abundance of food and light as encrusting, massive (including cup-like forms) ≥ vines (= creeping rope sponges) ≥ tabular, erect-branching > creeping. Under food/light limitation this ranking changed to: erect-branching, tabular > massive (incl. some cup-likes), vines (creeping rope sponges) > encrusting > creeping.	Jackson, 1979
	Encrusting sponges have openings at an angle to prevailing flow that may induce passive flow through the sponge (Vogel, 1974, 1977), while this is not the case in erect sponges. The latter employ a different strategy, i.e. they extent into the water column, moving away from the nutrient-depleted boundary layer.	Trammer, 1979
	During aquarium experiments the form-variable sponges Haliclona (Halichoclona) fistulosa, H. (Reniera) cinerea (as H. elegans), H. (Gellius) rava, H. (Rhizoniera) rosea, Amphilectus fucorum and Halichondria (Halichondria) bowerbanki reacted to starvation with process formation. The author interpreted this observation as an attempt to increase feeding efficiency by increasing the surface : volume ratio and as a means to spread out into other microhabitats. All these sponges range in nature from encrusting to fistular and erect-branching.	Jones, 1994
	Hydrodynamic conditions have an impact on the growth form of sessile animals such as sponge and corals. Fractal modelling showed that this process is strongly linked to the nutrient distribution. "[] sensitivity to the amount of contact with the environment, for example by a relatively low contribution of translocation of nutrients from the place of absorption to more remote sites, could play a role in the formation of branches." A more open branching pattern assures a better nutrient distribution to all branches. Branching asymmetry suggests that arriving nutrients are depleted when passing through the branch structure. Highest nutrient access is upstream and near the tips, where the most intensive growth proceeds.	Kaandorp and Sloot, 2001
	Experimentally changed nutrient conditions did not seem to have a significant effect on the cup-shaped and photosymbiotic sponge Cymbastela concentrica.	Roberts et al., 2006b
	Near human settlement, the abundance of <mark>globular</mark> , <mark>fistular</mark> and <mark>fan-shaped</mark> sponges increased.	De Voogd and Cleary, 2007
	Bioeroding sponge abundances increase with eutrophication (evidence mostly for <mark>endolithic-encrusting</mark> sponges, but likely also valid for fistular forms). Although, this is probably also true for a vast range of different sponges with different morphologies.	Schönberg, 2008; Schönberg et al., 2017
Silica	Sponge distributions could not conclusively be correlated to certain silica concentrations, except that the Hexactinellida largely required high-silica conditions >100 μM and extended down to 6000 m, and the Calcarea had another peak between 1500 and 3000 m. The Demospongiae and Homoscleromorpha remained mostly confined to shelf habitats between 0 and 200 m with dSI concentrations of <150 μM. The paper did not investigate and differentiate growth forms.	Alvarez et al., 2017
Salinity	Individuals of the amphora-like Grantia compressa were larger in estuarine than in marine environments.	Burton, 1928
	The wide cup-shaped sponge Cymbastela concentrica did not tolerate lowered salinity.	Roberts et al., 2006b
Heavy metals	The <u>encrusting</u> Crambe crambe developed increased shape irregularity and fission at a contaminated site and accumulated lead, copper and vanadium, and survival, growth rates and fecundity were reduced. The polluted site had also finer sediments.	Cebrian et al., 2003
Ocean acidification	In areas of low pH only encrusting sponges were found.	Goodwin et al., 2013
	At a CO ₂ seep site, the sample location with the lowest pH had a x40 increase in ambient abundance of the <mark>fistular</mark> Coelocarteria singaporense and the ball-shaped Cinachyra sp. The composite-massive Stylissa massa was less common near the high-CO ₂ site.	Morrow et al., 2015
	Sponge cover in general was reduced with decreasing distance to a vent site and a lowered pH in the field.	Fabricius et al., 2011

nvironmental condition	Sponge morphologies					
Predation, spongivory	Predation is thought to act more general, unlikely to affect different morphologies to different levels, apart from targeting more conspicuous forms more strongly. Jackson (1979) listed reactions of sessile marine invertebrates to predation to include distribution and abundance patterns, and structural, chemical or behavioural mechanisms. However, survival, recovery and regrowth may differ between different growth forms. He ranked expected success with high predator abundance as creeping, encrusting, vines (= creeping rope sponges potentially with erect elements) > massive (including cup-like forms) > tabular, erect-branching.	Jackson, 1979				
	The branching (fistular?) morph of the thickly encrusting Cliona varians (Spheciospongia? – published as Anthosigmella) developed a higher spicule content and became encrusting when subjected to real or simulated spongivory, but the <u>encrusting</u> morph did not develop branches when fish was excluded.	Hill and Hill, 2002				
	Grazers that can ingest sponge tissue appear to suppress bioeroding sponges (here largely endolithic-bioeroding forms).	Carreiro-Silva and McClanahan 2012; Schönberg et al., 2017				
Space competition	Due to the way they occupy available space and substrate, <u>encrusting</u> sessile marine invertebrates are superior space competitors. The author hypothesised that <u>creeping</u> forms may be "escapists incapable of confrontation" and that they would exhibit greater growth rates than other morphologies, possibly at the expense of sexual reproductive output (but cited evidence pointing in the opposite direction). This competition strategy would strongly separate <u>creeping</u> from more typically <u>encrusting</u> forms that are otherwise morphologically similar. For epibiosis he ranked forms <u>creeping</u> (his runners and vines) > <u>encrusting</u> > <u>massive</u> (including some <u>cups</u>), <u>tabular</u> , <u>erect-branching</u> .	Jackson, 1979				
	The <u>encrusting</u> Crambe crambe had an irregular outline in light (shallow) and a more directional growth at sciaphilous locations. This was thought to be more likely due to lack of space competition at the shallow sites, rather than a light effect. The sponges were more toxic at depth.	Becerro et al., 1994, 1995				
	In field surveys encrusting and massive sponges were better competitors against corals than erect morphologies (more contact area).	Aerts and van Soest, 1997				
	Under intense space competition, there is selection for <mark>erect</mark> and <u>tubular</u> morphologies as they require less area to attach to and can make use of small patches of substratum.	Krautter, 1998				
	"Sponges which exhibited thick (>2 mm) crusts were, in the majority of interactions, superior competitors compared to the thin (<1 mm) crusts."	Bell and Barnes, 2003				
	At coral reef sites with a mix of live and dead coral and sponges, latter had predominantly growth forms that required little attachment space, such as cups, fans and columnar (= <u>1D-erect</u>) sponges. A similar situation emerged on dead coral in competition with turf algae, however, here <u>thick crusts</u> or fast-growing creeping sponges emerged.	Hadi et al., 2015				
Disease	2006a: In a long-term study sponge community changes were observed that differed by growth form. "No <u>erect-branching</u> species were lost, 40% of <u>encrusting</u> species were lost, and 80% of <u>massive</u> species were lost." Changes were discussed as natural fluctuations or being due to disease. 2006b: During a more targeted investigation <u>massive</u> (mound-shaped) sponges suffered higher losses from mortality due to disease than <u>branching</u> sponge. Latter had a higher incidence of disease but were more likely to recover. <u>Branching</u> sponges were rope sponges with fast growth rates and tendency to have <u>creeping</u> parts. (Note: Wulff's 2006a, 2006b definitions differed from the present one, as both <u>erect</u> and <u>massive</u> forms included <u>cup-like</u> morphologies. See Suppl. 1 for a comparison of approaches to the uses of sponge morphologies.)	Wulff, 2006a, 2006b				
	Comparing resistance/recovery properties of two haliclonid species, the more <u>tubular</u> ("massive") one was more fragile, and unattached fragments would likely perish, but remaining sponges healed fast. The cushion-shaped species with raised papillae to produce a <mark>fistular</mark> appearance ("submassive") and resisted physical damage, but was more vulnerable to necrosis.	Abdo et al., 2008				

Environmental condition	Sponge morphologies	Reference
Physical damage due to e.g. dredging, fishing, storms	Encrusting and creeping sessile marine invertebrates were modelled to exhibit a low feeding and reproductive potential compared to other morphologies. Especially mound-shaped (<u>simple-massive</u>) forms can increase these potentials with size. In contrast, in <u>erect</u> forms attachment area decreases with size and makes them more vulnerable to physical damage. After disturbance, Jackson (1979) expected a succession from creeping, encrusting to massive (incl. cups) – when food supply is high, or to erect forms – when food supply is low.	Jackson, 1979
	Erect-branching rope sponges with tendencies to have creeping parts such as Amphimedon spp. and Aplysina cauliformis and Aplysina fulva have a very high growth rates and can quickly recover to original or even increased abundance after physical damage. However, Aplysina spp. are also flexible and resist drag forces and may not suffer much damage.	Wulff, 1994, 2005; Alcolado 2007; Biggs, 2013
	Sponges with a higher spongin content are more resistant to physical damage such as during storms.	E.g., Wulff, 1995
	Scallop dredging reduced the overall sponge biodiversity and may select for certain morphologies. <u>Massive</u> and <u>erect</u> forms were more affected by dredging than <u>creeping</u> forms. <u>Endolithic-bioeroding</u> sponges were removed together with the substrate. <u>Encrusting</u> and cushion-shaped (<u>simple-massive</u>) sponges were turned over with their substrate and died. The abundance of the morphologically variable <i>Suberites massa</i> increased after dredging.	Kefalas et al., 2003
	After experimental damage <mark>tubular</mark> sponges healed faster than vasiform, <mark>cup-shaped</mark> sponge.	Walters and Pawlik, 2005; Wulff, 2006c
	Comparing resistance/recovery properties of two haliclonid species, the more tubular ("massive") one was more fragile, and unattached fragments would likely perish, but remaining sponges healed fast. The cushion-shaped species with raised papillae to produce a fistular appearance ("submassive") and resisted physical damage, but was more vulnerable to necrosis.	Abdo et al., 2008
	Sponge recovery potential may vary with morphology. The <u>creeping</u> sponge <i>Neopetrosia</i> (as <i>Xestospongia</i>) subtriangularis increased after a storm. Balls were not affected by the observed disturbances. Simple-massive, barrel-shaped and tubular species mostly recovered after a bloom-induced mortality event, but some at a slower rate, or they deteriorated or vanished due to further disturbance.	Stevely et al., 2010
	Sponges washed up on the beach by waves were mostly <mark>branching</mark> , <mark>massive</mark> and <mark>cushion-shaped</mark> . <mark>Encrusting</mark> species were never found washed up. While sponges with high spongin content occurred in the area, they were not found washed up.	Ávila et al., 2011
	Storm surges removed almost 40% of the erect sponges, followed by an almost 25% increase of encrusting sponges.	Gochfeld et al., 2020

Supplement 3. List of species names used in the publication and its supplements, together with taxonomic affiliations, taxon authors and predominantly seen (but occasionally variable) growth forms. The latest formats and taxonomic agreements were checked in the World Register of Marine Species (WoRMS, 2020), where original descriptions are also deposited. Figure references are for images displayed in the main publication.

Circlaras Calceras Calceras Calceras Lincolonida Excelonida Systelfilles Granitaliar Systelfilles Granitaliar Systelfilles </th <th>Class</th> <th>Subclass</th> <th>Order</th> <th>Family</th> <th>Genus</th> <th>Species</th> <th>Taxon author</th> <th>Morphologies</th>	Class	Subclass	Order	Family	Genus	Species	Taxon author	Morphologies
Calcares Calcares Calcares Calcares Calcares Calcares Calcares CalcaresConcoming Calcares Calcares Calcares Calcares Calcares Calcares Calcares Harrodesmanys <td>Calcarea</td> <td>Calcaronea</td> <td>Leucosolenida</td> <td>Grantiidae</td> <td>Grantia</td> <td>compressa</td> <td>(Eabricius 1780)</td> <td>amphora or tube clusters</td>	Calcarea	Calcaronea	Leucosolenida	Grantiidae	Grantia	compressa	(Eabricius 1780)	amphora or tube clusters
Glarome Isknown						compressa		•
Demissioner Demissioner Betersochernomphi Hetersochernomphi Artebiak Artebiak						abyssale	,	-
Bernagenome Heteracistomorpha Apelradia Aperladia Apelradia Aperladia Apprlicit Apprlicit Apprlicit Apprlicit Apprlicit Apprlicit Apprlicit Aperladia Apprlicit Apprlicit							Kleeton, 1965	
Demospanje Persongenje Metersockeromorph Alekské Persongenje Metersockeromorph Alekské Persongenje Metersockeromorph Metersockeromorph Alekské Persongenje Metersockeromorph Metersockeromorph Alekské Persongenje 			-					
Dimmspories Herrardiarrows Aplabatia Applica Applica <td>Demospongiae</td> <td>Heteroscleromorpha</td> <td>Agelasida</td> <td>Agelasidae</td> <td>Agelas</td> <td>dispar</td> <td></td> <td>composite-massive</td>	Demospongiae	Heteroscleromorpha	Agelasida	Agelasidae	Agelas	dispar		composite-massive
Bernsonging Hetersochernorgang Antellide	Demospongiae	Heteroscleromorpha	Agelasida	Agelasidae	Agelas	sceptrum	(De Lamarck, 1815)	erect-branching in three dimensions
Demosopie Bernosopie Bernosopie Heteroscheromorph Annelida Antellidae Antellida An	Demospongiae	Heteroscleromorpha	Agelasida	Agelasidae	Agelas	tubulata		tube
Demosponie Permospo	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Axinella	-		variable, mostly erect (e.g. Fig. 4J)
Demograppie Permagnapie Permagn	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Axinella	aruensis	(Hentschel, 1912)	variable, mostly erect
Demospongine Demospongine Demospongine Demospongine Heteroscleromorphy Heteroscleromo	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Axinella	australiensis	Bergquist, 1970	erect-reticulate
Demospongie Heteroschermorphe Auteillida Aniellidae Cymbarclei nooper and Bergouit. tabuli to wide cups Demospongie Heteroschermorph Auteillida Aniellidae Cymbarclei coralitabilitie Uno per and Bergouit. cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Cymbarclei stapa de per and Bergouit. cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Promospongie stapa de per and Bergouit. cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Promospongie stapa de per and Bergouit. cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Promospongie stabulita cup of tabuler cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Promospongie stabulita cup of tabuler cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Refordiar condicaba Auteillida cup of tabuler Demospongie Heteroschermorph Auteillida Aniellidae Refordiarym mescherinym Aute	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Axinella	damicornis	(Esper, 1794)	composite-massive
Demosponging Heteroschermonpha Antellida Antellida Gymbatchi Concertiza C	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Axinella	infundibuliformis	(Linnaeus, 1759)	wide cup
Demospongi Heterosciencompon Asinellida Aniellidae Combiscription (mbstrefe (mbstrefe morphone) concritation (mbstrefe morphone) (mospical designation) (mospical designation) concritation (mospical designation) Demospongia Heteroscleromorpha Aniellidae Aniellidae Grabitation 199 Demospongia Heteroscleromorpha Aniellidae Aniellidae Production 199 Demospongia Heteroscleromorpha Aniellidae Production 199 199 Demospongia Heteroscleromorpha Aniellidae Production 199 199 199 Demospongia Heteroscleromorpha Aniellidae Production 199 199 199 199 Demospongia Heteroscleromorpha Aniellidae Production state data 199	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Cymbastela	-		tabular to wide cups
Demogangie Heterosderomorpha Avinellida Avinellida Cymbastela conzolación 1992 popo and Bergueta, 1992 popo and Bergueta, 19	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Cymbastela	concentrica		cup
Demogangie Heteroscieromorph Aviellida Aviellidae Granbarte Statuta Biopasse Demogangie Heteroscieromorph Aviellidae Cambastela Statuta Biopasse Demogangie Heteroscieromorph Aviellidae Parambohoyo sicolari Biopasse Compositive Heteroscieromorph Aviellidae Parambohoyo Sicolari Granbarteroscieromorph Compositive Heteroscieromorph Aviellidae Parambohoyo Sicolari Granbarteroscieromorph Sicolari Heteroscieromorph Aviellidae Parambohoyo Sicolari Heteroscieromorph Sicolari Heteroscieromorph Aviellidae Parambohoyo Aviellidae Parambohoyo Heteroscieromorph Sicolari Heteroscieromorph Aviellidae Parambohoyo Aviellidae Heteroscieromorph Aviellidae Heteroscieromorph Aviellidae Heteroscieromorph Aviellidae Heteroscieromorph Heteroscieromorph Heteroscieromorph Aviellidae Heteroscieromorph Heteroscieromorph Heteroscieromorph Heteroscieromorph Heteroscieromorph Heteroscieromorph Hetero							Hooper and Bergquist,	-
Demospongia Hetersckeromorph Avinellida Avinellida Avinellida Combostoria Stafinton Heigraukt and Tizard, 1967 composite massive 1988 Demospongia Hetersckeromorph Avinellida Avinellida Parathophoya sinclui' (findlay and Dendy, 1988) erect-branching in three dimensions incomplete cursor pomospongia pomospongia incomplete cursor pomospongia incomplete cursor pomospongia erect-branching in three dimensions incomplete cursor pomospongia Demospongia Hetersckeromorph Avinellida Avinellida Exponlida Exponlida Exponlida incomplete cursor pomospomosponic	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Cymbastela	marshae	Hooper and Bergquist,	cup
Demospongia Heteroscieromorph Avinellida Avinellida Paramoción reticularum (falley and Denóy, 1880) composite- 1880 Demospongia Heteroscieromorph Avinellida Avinellida Parathoghoya sinclairi (for, 1931) erect-branching in three dimensions 1880 Demospongia Heteroscieromorph Avinellida Avinellida Parathoghoya sinclairu Bowetbank, 1820 varindira Demospongia Heteroscieromorph Avinellida Avinellida Respandira candelabra Aviare et al.,2008 tube cluster Demospongia Heteroscieromorph Avinellida Avinellida Respandira Candelabra Variare et al.,2008 tube cluster Demospongia Heteroscieromorph Avinellida Respandirac Cathonicityum clubricityum Cathonicityum Cathonicityu	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Cymbastela	stipitata	(Bergquist and Tizard,	cup
Demospangia Heteroscieromorpha Aniellida Aniellida Parchophoya Sinclari Giray, 1843 erect-branching in three dimensions Demospangia Heteroscieromorpha Aniellida Aniellida Pabellia	Demospongiae	Heteroscleromorpha	Axinellida	Axinellidae	Dragmacidon	reticulatum	(Ridley and Dendy,	composite-massive
Demospongiae Heteroscleromorpha Axinellidae Phatellia	Domost !-	Hotoroolcorroom	Aviaallida	Avinallida -	Darachant	sinalairi		exect brenching in these dimensi
Demosponja Hetroscleromorph Avinellida Phakellia Pendiparus (unnaeus, 1767) incomplete cups to erect-laminar fars Demosponja Hetroscleromorph Avinellida Avinellida Piestefa candelbaru Avare et al., 2008 to techstefic cups to erect-laminar fars Demosponja Hetroscleromorph Avinellida Avinellida candelbaru candelbaru Avare et al., 2008 to cluster Demosponja Hetroscleromorph Avinellida Kanellida clustor clustor clustor clustor Demosponja Hetroscleromorph Avinellida Raspallidae clustor clustor <td< td=""><td></td><td></td><td></td><td></td><td></td><td>sinciairi</td><td></td><td>-</td></td<>						sinciairi		-
LandowLandowAvaileAvaileAvailePerstelaCandelabraCandelabraAvaileFarsDemospongiaeHeteroscleromorphaAvailelidaReinichcalinastadagmitsNon Lendenfeid, 1888EucoUbe clustercupDemospongiaeHeteroscleromorphaAvailelidaRespailidaeEchinodictyumclathrioidesHeteroscleromorphaCupCupDemospongiaeHeteroscleromorphaAvailelidaeEchinodictyummessentenium(De Lamarck, 1814)cupDemospongiaeHeteroscleromorphaAvailelidaeEchinodictyummessentenium(De Lamarck, 1814)cupDemospongiaeHeteroscleromorphaAvailelidaeEchinodictyummessentenium(De Lamarck, 1814)cupDemospongiaeHeteroscleromorphaAvailelidaeRespailinaeEctyoplasiafondosa(Von Lendenfeid, 1887)fan to cupDemospongiaeHeteroscleromorphaAvailelidaRespailinaeRespailinaefondosa(Von Lendenfeid, 1887)fan to cupDemospongiaeHeteroscleromorphaAvailelidaRespailinaeRespailinaefondosa(Von Lendenfeid, 1887)fan to cupDemospongiaeHeteroscleromorphaAvailelidaRespailinaeRespailinaefondosa(Von Lendenfeid, 1887)findu to russiDemospongiaeHeteroscleromorphaAvailelidaStelligeridaeAcantholdapateroDowarban, 1864thic custDemospongiaeHeteroscleromorphaAvailelidaStelligeridaeAcantholdu						ventilahrum		
Demospongia Demospongia Heteroscleromorph AninellidaAxinellida AxinellidaAxinellida Rapalilida Echinodictyma Ech								fans
Demospongia Hetroscheromorpha Anienlida Raspaillidae (Ethionicitymae) Echinadictyma Idanticitymae Idanticitymae Demospongia Hetroscheromorpha Anienlida Espaillidae Echinadictymae Idanticitymae (De Lamarck, 1814) cup Demospongia Hetroscheromorpha Anienlida Easpaillidae Echinadictymae Juckrum Brandsted, 1934 erect-reticulate Demospongia Hetroscheromorpha Anienlida Raspaillinae Ectivoplosia fondosa (Von Lendenfeld, 1887) fan to cup Demospongia Hetroscheromorpha Anienlida Raspaillinae Ectivoplosia tobula (De Lamarck, 1814) palmate Demospongia Hetroscheromorpha Anienlida Stelligeridae Acontholdoa prostrata Bergquist, 1970 thick crust Demospongia Hetroscheromorpha Anienlida Stelligeridae Acontholdoa prostrata Borgquist, 1970 thick crust Demospongia Hetroscheromorpha Banarillae Ectivoplica acontholdoa prostrata Borgguist Grant, 192								
DemospongiaeHeteroscleromorphaAkinellidaEspinilidae (Exhinodictyinae)Echinodictyinae mesenterinum(De Lamarck, 1814)cupDemospongiaeHeteroscleromorphaAkinellidaRaspaillidae (Exhinodictyinae)Echinodictyinae)Brøndsted, 1934erect-reticulateDemospongiaeHeteroscleromorphaAkinellidaRaspaillidae (Raspaillidae)Ectyoplosiofrondosa(Von Lendenfeld, 1887)fan to cupDemospongiaeHeteroscleromorphaAkinellidaRaspaillidae (Raspaillinee)Ectyoplosiatabula(De Lamarck, 1814)palmateDemospongiaeHeteroscleromorphaAkinellidaRaspaillidae (Raspaillinee)RospaillatopsentiDendy, 1924erect-branching in three dimensionsDemospongiaeHeteroscleromorphaAkinellidaStelligeridaeAcanthocloda poterapoteratBowetbank, 1864thin crustDemospongiaeHeteroscleromorphaAkinellidaStelligeridaeAcanthocloda poteratpoterat poteratStelligeridae poteratpoterat poteratStelligeridae poteratpoterat poteratStelligeridae poteratpoterat poterationStelligeridae poteratpoterat poterationRistuar to massive, endopsammic poteratDemospongiaeHeteroscleromorpha BubaridaDictyonellidae Dictyonellidaeconterlida Clionaconterlida clionaconterlida poterat poteratRistuar to massive complex, conterlidae conterlidaepoterat conterlidaeconterlidae poterat poteratconterlidae cliona<						-		
Demosponjaci Hetroscleromorpha Axinellida Respailidae (Echinodictyme) Demosponjaci Brøndsted, 1934 erect-reticulate Demosponjaci Hetroscleromorpha Axinellida Raspailinae) Echinodictymen frondosa (Von Lendenfeld, 1887) fan to cup Demosponjaci Hetroscleromorpha Axinellida Raspailinae) Echinodictymen Uon Dendy, 1924 erect-branching in three dimensions Demosponjaci Hetroscleromorpha Axinellida Stelligeridae Raspailinae) fospanlia topsenti Dendy, 1924 erect-branching in three dimensions Demosponjaci Hetroscleromorpha Axinellida Stelligeridae Macinthecidad prospantia Borgauist, 1370 thick crust Demosponjaci Hetroscleromorpha Kinellida Stelligeridae Macinthelida patra Bowerbank, 1864 thicr crust Demosponjaci Heteroscleromorpha Bileminida Bileminida Bileminida Bileminida Bileminida Demosponjaci Rispanilicae crust Demosponjaci Heteroscleromorpha Bubarida	Demospongiae	Heteroscleromorpha	Axinellida		Echinodictyum	clathrioides	Hentschel, 1911	cup
DemospongiaeHeteroscleromorphaAxinellidaRaspailidae (Raspailinae)Ectyoplosiafondosa(Von Lendenfeld, 1887)fan to cupDemospongiaeHeteroscleromorphaAxinellidaRaspailinae)Ectyoplosiatobula(De Lamarck, 1814)palmateDemospongiaeHeteroscleromorphaAxinellidaRaspailinae)Raspailinae)tobulaDendy, 1924erect-branching in three dimensionsDemospongiaeHeteroscleromorphaAxinellidaStelligeridaeRaspailinae)poteraBoreguist, 1970thick crustDemospongiaeHeteroscleromorphaBiennidaBiennidaeBienniapoteraBoreguist, 1970thick crustDemospongiaeHeteroscleromorphaBiennidaBiennidaeBienniafortis(Topsent, 1897)fistular to massive, endopsammicDemospongiaeHeteroscleromorphaBubaridaDictyonellidaeAcanthelia-Schmidt, 1862variable, often composite-massiveDemospongiaeHeteroscleromorphaGionaidaeClionaiClionai-Grant, 1926endolithic-bioeroding (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionacelataGrant, 1926variable, cra be endolithic-bioeroding (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionapatera(Hardwick, 1820)stalked or upDemospongiaeHeteroscleromorphaClionaidaeClionapatera(Hardwick, 1820)stalked or upDemospongiaeHeteroscleromorphaClionaidaeCl	Demospongiae	Heteroscleromorpha	Axinellida		Echinodictyum	mesenterinum	(De Lamarck, 1814)	cup
DemospongiaeHeteroscleromorphaAxinellidaRaspailinaeEctroplasiatobula(De Lamarck, 1814)palmateDemospongiaeHeteroscleromorphaAxinellidaRaspailinaeRaspailinaetopsentiDendy, 1924erect-branching in three dimensionsDemospongiaeHeteroscleromorphaAxinellidaStelligeridaeAcanthocladapostrataBergquist, 1970thick crustDemospongiaeHeteroscleromorphaSkelligeridaeAcanthocladapostrataBergquist, 1970thin crustDemospongiaeHeteroscleromorphaBienmidaBienmidaBienmafortis(Topsent, 1897)fistular to massive, endopsammicDemospongiaeHeteroscleromorphaBubaridaDictyonellidaeAcanthella-Grant, 1926errotshiet, massiveDemospongiaeHeteroscleromorphaBubaridaDictyonellidaeClionaidaeClionaidaeClionaidaeentrusting (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionaidaeClionaidaecanthella-Grant, 1926endolthic-bioerodingDemospongiaeHeteroscleromorphaClionaidaeClionaidaeCliona-Grant, 1926endolthic-bioerodingfistular (but is published as a species complex, so different morphologies complex, so different morphologies complex, so different morphologiesDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionaTopsent, 1905endolthic-bioerodingDemospongiaeHeteroscleromorphaClionaidae	Demospongiae	Heteroscleromorpha	Axinellida		Echinodictyum	pulchrum	Brøndsted, 1934	erect-reticulate
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaAxinellida (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae) (Raspaillinae)Dendy, 1924 erect-branching in three dimensions (Raspaillinae) bernspongiae Heteroscleromorpha Heteroscleromorpha BubaridaStelligeridae BiemnidaAconthelia BiemnidaDendy, 1924 BiemnidaDendy, 1924 thick crustHeteroscleromorpha BubaridaDictyonellidae Dictyonellidae ClionaidaAconthelia Dictyonellidae ClionaidaDendy, 1826 ClionaidaCrust thick crustDemospongiae Heteroscleromorpha BubaridaDictyonellidae ClionaidaAconthelia Dictyonellidae ClionaidaDictyonellidae ClionaidaClionaida ClionaidaClionaida ClionaidaPathyspira ClionaidaSpinosa Clionaida(Bowerbank, 1874) encuting to spinle-massive encuting to spinle-massive encuting to spinle-massive complex, so different morphologies complex, so different to probabilis complex, so different to probabilis complex, so different to probabilis complex, so different to probabilis complex, 1926Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha HeteroscleromorphaClionaidaClionaidaeCliona ClionaidaThiele, 1900stalked or cup thick loer	Demospongiae	Heteroscleromorpha	Axinellida		Ectyoplasia	frondosa	(Von Lendenfeld, 1887)	fan to cup
Demospongiae Heteroscleromorpha Axinellida Raspaillinae <i>Raspaillinae Raspaillinae Raspaillin</i>	Demospongiae	Heteroscleromorpha	Axinellida		Ectyoplasia	tabula	(De Lamarck, 1814)	palmate
Demospongia Demospongia HeteroscleromorphaAxinellidaStelligeridae MaleAcanthoclada Halicnemia Halicnemia BiernalaBregquist, 1970Hick crustDemospongia Demospongia Heteroscleromorpha Demospongia HeteroscleromorphaBiernalaBiernala BiernalaFortis BiernalaGrotis Corust <td>Demospongiae</td> <td>Heteroscleromorpha</td> <td>Axinellida</td> <td>Raspailiidae</td> <td>•</td> <td>topsenti</td> <td>Dendy, 1924</td> <td>erect-branching in three dimensions</td>	Demospongiae	Heteroscleromorpha	Axinellida	Raspailiidae	•	topsenti	Dendy, 1924	erect-branching in three dimensions
Demospongiae Demospongiae Heteroscleromorpha HeteroscleromorphaAxinellida Biennida BiennidaeHalicenenia Biennia Biennia Biennia Biennia Biennia Biennia Biennia Biennia DictyonellidaeHalicenenia fortis fortis CarthellaBowerbank, 1864thin crust (Topsent, 1897)Demospongiae Heteroscleromorpha BubaridaDictyonellidaeAconthella Aconthella-Schmidt, 1862variable, often composite-massive composite-massiveDemospongiae Heteroscleromorpha DemospongiaeHeteroscleromorpha HeteroscleromorphaClionaidaClionaidaeCliona-Grant, 1926endoithic-bioeroding (Fig. 4C) variable, ach e endoithic-bioeroding (Fig. 4C)Demospongiae HeteroscleromorphaClionaidaClionaidaeClionacaltaGrant, 1926endoithic-bioeroding (Fig. 4C) variable, can be endoithic-bioeroding (Fig. 4C)Demospongiae HeteroscleromorphaClionaidaClionaidaeClionacaltaGrant, 1926variable, can be endoithic- bioeroding or simple-massive or fistular (but is published as a species complex, so different morphologies can refer to different species)Demospongiae HeteroscleromorphaClionaidaClionaidaeClionavariable, can be endoithic- bioerodingDemospongiae HeteroscleromorphaClionaidaClionaidaeClionavariable, can be endoithic- bioerodingDemospongiae HeteroscleromorphaClionaidaClionaidaeClionavariable, can be endoithic- bioerodingDemospongiae HeteroscleromorphaClionaidaClionaidaeClionava	Demospongiae	Heteroscleromorpha	Axinellida			prostrata	Bergauist, 1970	thick crust
DemospongiaHeteroscleromorphBiemidaBiemidaBiemidaBiemidaBiemidaFortis(Topsent, 1937)fistular to massive, endopsammicDemospongiaHeteroscleromorphBubaridaDictyonellidaeAconthella-Schmidt, 1862variable, often composite-massiveDemospongiaHeteroscleromorphBubaridaDictyonellidaeTethyspiraspinosa(Bowerbank, 1874)encrusting to simple-massiveDemospongiaHeteroscleromorphClionaidaClionaidaCliona-Grant, 1926endolthic-bioerodingDemospongiaHeteroscleromorphaClionaidaClionaidaeClionacelataGrant, 1926variable, and tendolthic- bioeroding (Fig. 4C)DemospongiaHeteroscleromorphaClionaidaClionaidaeClionacelataGrant, 1926variable, and endolthic- bioeroding or simple-massive or fistular (but is published as a species complex, so different morphologies can refer to different species)DemospongiaHeteroscleromorphaClionaidaClionaidaeClionapatera(Hardwicke, 1820)stalked or cupDemospongiaHeteroscleromorphaClionaidaClionaidaeClionapatera(Micheluti, 1864)portions, basally erodingDemospongiaHeteroscleromorphaClionaidaClionaidaeClionavarias ¹ (Micheluti, 1862)variable, an be endolthic- bioerodingDemospongiaHeteroscleromorphaClionaidaClionaidaeClionavarias ¹ (Micheluti, 1864)portions, basally eroding<				-				
Demospongiae DemospongiaeHeteroscleromorph HeteroscleromorphBubaridaDictyonellidae DictyonellidaeAcantheliapulcherrima pulcherrimaSchmidt, 1862variable, often composite-massive composite-massiveDemospongiae DemospongiaeHeteroscleromorph HeteroscleromorphBubaridaDictyonellidaeTethyspiraspinosaBidwaridacornostite-massiveDemospongiae DemospongiaeHeteroscleromorphClionaidaClionaidaeCliona-Grant, 1926endolithic-bioeroding (Fig. 4C)Demospongiae DemospongiaeHeteroscleromorphClionaidaClionaidaeClionacaribbeaCarter, 1882endolithic-bioeroding (Fig. 4C)Demospongiae DemospongiaeHeteroscleromorphClionaidaeClionaidaeClionacelataGrant, 1926endolithic-bioerodingDemospongiae DemospongiaeHeteroscleromorphClionaidaClionaidaeClionacelataGrant, 1926endolithic-bioerodingDemospongiae DemospongiaeHeteroscleromorphClionaidaeClionaidaeClionapatera(Hachwick, 1820)endolithic-bioerodingDemospongiae DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionavariasisuriasisthickly encusting, can have erect Michelott, 1864)malked or upDemospongiae DemospongiaeHeteroscleromorphaClionaidaeClionaidaeViridisSchmidt, 1862)variable, can be endolithic- bioerodinguriable, can be endolithic- bioerodinguriable, can be endolithic- bioerodinguriab				-		•		
DemospongiaHeteroscleromorphaBubaridaDictyonellidaeAcantheliapulcherrimaRidley and Dendy, 1886composite-massiveDemospongiaeHeteroscleromorphaGlonaidaClionaidaeClionaidaeGrant, 126encutsing to simple-massiveDemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaidaeClionaidaeCarter, 1882endolithic-bioeroding (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionaidaeCarter, 1882endolithic-bioeroding (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionacelataGrant, 1926variable, can be endolithic-bioeroding (Fig. 4C)DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionacelataGrant, 1926variable, can be endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionaorientalisThiele, 1900endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionapatera(Hardwicke, 1820)stalked or cupDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionavarians ¹ (Duchassing and michel tithicke, 1820)stalked or cupDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionavarians ¹ (Duchassing and michel tithicke, 1820)stalked or cupDemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionaidae-Topsent, 1905endolithic-b					Acanthella	-		· · ·
Demospongiae DemospongiaeHeteroscleromorpha ClionaidaClionaida Clionaida <th< td=""><td></td><td></td><td></td><td>•</td><td></td><td>pulcherrima</td><td></td><td></td></th<>				•		pulcherrima		
DemospongiaeHeteroscleromorphaClionaidaCl								encrusting to simple-massive
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaClionaidaClionaidaeClion		Heteroscleromorpha				-		
 bioeroding or simple-massive or fistular (but is published as a species complex, so different morphologies can refer to different species) Demospongiae Heteroscleromorpha Clionaida Clionaidae Clionai Clionai			Clionaida			caribbaea		
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaClionaida ClionaidaClionaidae ClionaidaeCliona orientalispatera patera(Hardwicke, 1820) (Hardwicke, 1820)endolithic-bioeroding stalked or cup thickly curvating, can have erect Michelotti, 1864)Demospongiae DemospongiaeHeteroscleromorpha ClionaidaClionaidaeCliona Clionaidaevarians ¹ (Duchassing and Michelotti, 1864)thickly curvating, can have erect Michelotti, 1864)Demospongiae DemospongiaeHeteroscleromorphaClionaidaeClionaidaeClionavarians ¹ (Schmidt, 1862)variable, can be endolithic- bioeroding or fistulae to us odifferent morphologies can refer to different species)Demospongiae Demospongiae HeteroscleromorphaClionaidaClionaidaeCliohasa-Topsent, 1905endolithic-bioeroding different species)Demospongiae Demospongiae HeteroscleromorphaClionaidaClionaidaeCliohasa-Topsent, 1905endolithic-bioerodingDemospongiae Demospongiae HeteroscleromorphaClionaidaClionaidaeCliohasa-Topsent, 1905endolithic-bioerodingDemospongiae Demospongiae HeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioerodingDemospongiae Demospongiae HeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioeroding<	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Cliona	celata	Grant, 1926	bioeroding or simple-massive or fistular (but is published as a species
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaClionaidaClionaidaeClionai ClionaidaeCliona Clionaipatera varians1(Hardwicke, 1820) (Duchassaing and Michelotti, 1864) portions, basally erodingstalked or cup thickly encrusting, can have erect portions, basally erodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaiviridis(Schmidt, 1862)stalked or cupDemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaviridis(Schmidt, 1862)variable, can be endolithic- bioeroding or fistular (but is published as a species complex, so different species)DemospongiaeHeteroscleromorphaClionaidaClionaidaeCliohosa-Topsent, 1905endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeCliohosadelitrix(Pang, 19730)endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePionevastifica(Hancock, 1849)endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePionevastificaHaccock, 1849)endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePionevastificaHaccock, 1849)endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeSpheciospongia<								can refer to different species)
DemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaiClionaiVarians1(Duchassaing and Michelotti, 1864)thickly encrusting, can have erect portions, basally endingDemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaviridis(Schmidt, 1862)variable, can be endolithic- bioeroding or fistular (but is published as a species complex, so different morphologies can refer to odifferent species)DemospongiaeHeteroscleromorphaClionaidaClionaidaeCliohosa-Topsent, 1905endolithic-bioeroding endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeCliohosa-Topsent, 1905endolithic-bioeroding endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeCliohosa-Topsent, 1905endolithic-bioeroding (Fig. SE)DemospongiaeHeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioeroding endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioeroding endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioeroding often fistular, but can be simple- massive or barrels (Fig. 4F)								-
DemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaidaeClionaidaeClionaidaeClionaidaeClionaidaeMichelotti, 1862)portions, basally eroding variable, can be endolithic- bioeroding or fistular (but is published as a species complex, so different morphologies can refer to different morphologies can refer to endolithic-bioeroding endolithic-bioeroding (Fig. 5E)DemospongiaeHeteroscleromorphaClionaidaClionaidaePioneGray, 1867endolithic-bioeroding endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePionevastifica(Hancock, 1849)endolithic-bioeroding often fistular, but can be simple- massive or barrels (Fig. 4F)						•		
DemospongiaeHeteroscleromorphaClionaidaClionaidaeClionaidaeCliothosa-Topsent, 1905endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeCliothosa-Topsent, 1905endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeCliothosadelitrix(Pang, 19730endolithic-bioeroding (Fig. 5E)DemospongiaeHeteroscleromorphaClionaidaClionaidaePione-Gray, 1867endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaePionevastifica(Hancock, 1849)endolithic-bioerodingDemospongiaeHeteroscleromorphaClionaidaClionaidaeSpheciospongiae-Marshall, 1892often fistular, but can be simple-massive or barrels (Fig. 4F)	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Cliona	varians ¹	Michelotti, 1864)	portions, basally eroding
Demospongiae Heteroscleromorpha Clionaida Clionaidae Cliothosa delitrix (Pang, 19730 endolithic-bioeroding (Fig. 5E) Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione - Gray, 1867 endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione - Gray, 1867 endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione vastifica (Hancock, 1849) endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaidae Clionaidae Pione vastifica (Hancock, 1849) endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaidae Clionaidae Pione vastifica Marshall, 1892 often fistular, but can be simple-massive or barrels (Fig. 4F)	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Cliona	viridis	(Schmidt, 1862)	bioeroding or fistular (but is published as a species complex, so different morphologies can refer to
Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione - Gray, 1867 endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione vastifica (Hancock, 1849) endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaida Clionaidae Spheciospongia - Marshall, 1892 often fistular, but can be simple- massive or barrels (Fig. 4F)	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Cliothosa	-	Topsent, 1905	endolithic-bioeroding
Demospongiae Heteroscleromorpha Clionaida Clionaidae Pione vastifica (Hancock, 1849) endolithic-bioeroding Demospongiae Heteroscleromorpha Clionaidae Clionaidae Spheciospongia - Marshall, 1892 often fistular, but can be simple- massive or barrels (Fig. 4F)	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Cliothosa	delitrix	(Pang, 19730	endolithic-bioeroding (Fig. 5E)
Demospongiae Heteroscleromorpha Clionaida Clionaidae Spheciospongia - Marshall, 1892 often fistular, but can be simple- massive or barrels (Fig. 4F)	Demospongiae	Heteroscleromorpha			Pione	-		-
massive or barrels (Fig. 4F)						vastifica		0
Demospongiae Heteroscleromorpha Clionaida Clionaidae Spheciospongia florida ² (Von Lendenfeld, 1897) fistular	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Spheciospongia	-	Marshall, 1892	
	Demospongiae	Heteroscleromorpha	Clionaida	Clionaidae	Spheciospongia	florida²	(Von Lendenfeld, 1897)	fistular

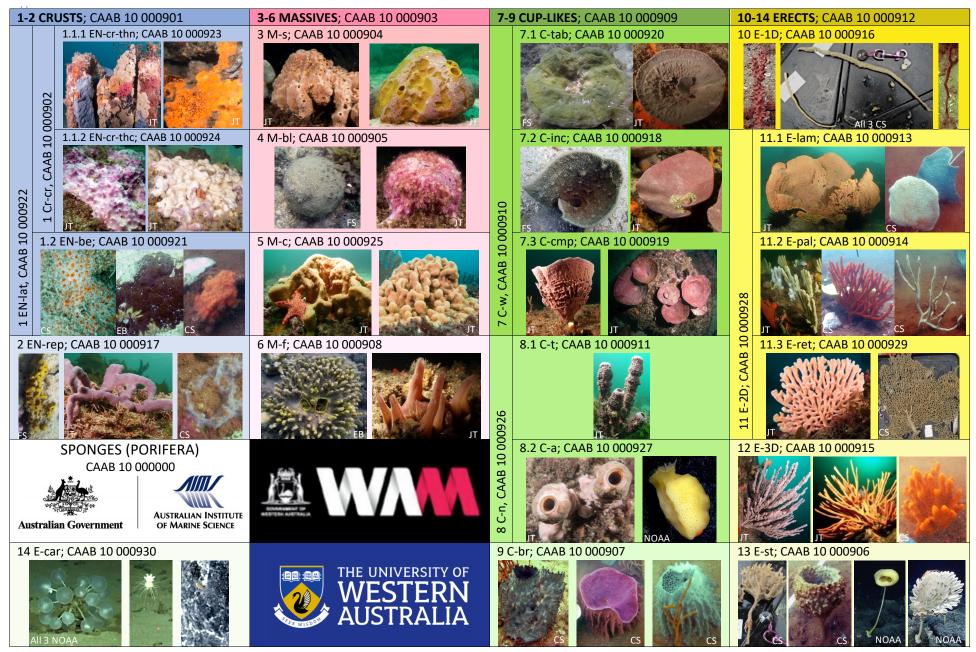
¹ This sponge is more likely a *Spheciospongia* species (C. Schönberg unpubl. data).

² This species strongly resembles Spheciospongia inconstans and is part of the Spheciospongia vagabunda species complex (C. Schönberg unpubl. data).

ClassSubclassDemospongiaeHeteroscleromorpha <tr< th=""><th></th><th>Ordor</th><th>Family</th><th>Gopus</th><th>Spacias</th><th>Taxon author</th><th>Morphologies</th></tr<>		Ordor	Family	Gopus	Spacias	Taxon author	Morphologies
NumberDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha		Order	Family	Genus	Species	Taxon author	Morphologies
Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heterosclero	morpha	Clionaida	Clionaidae	Spheciospongia	inconstans	(Dendy, 1887)	mostly fistulate (Fig. 1C), occas. simple-massive
DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemosp	morpha	Clionaida	Clionaidae	Spheciospongia	solida	(Ridley and Dendy,	fistular
DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha Heteroscleromorpha	maraha	Clienside	Cliensides	Caboologaanaia	uaaahunda	1886) (Didlou: 1884)	fictular
DemosponjiaeHeteroscleromorphaDemosponjiaeHeteroscleromo		Clionaida	Clionaidae	Spheciospongia	vagabunda	(Ridley, 1884)	fistular
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha <tr< td=""><td></td><td>Clionaida Clionaida</td><td>Clionaidae</td><td>Spheciospongia</td><td>vesparium micraster³</td><td>(De Lamarck, 1815)</td><td>barrel</td></tr<>		Clionaida Clionaida	Clionaidae	Spheciospongia	vesparium micraster ³	(De Lamarck, 1815)	barrel
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha <tr< td=""><td></td><td></td><td>Placospongiidae</td><td>Placospherastra</td><td>micruster</td><td>(Lehnert and Heimler, 2001)</td><td>thick crust (Fig. 7A)</td></tr<>			Placospongiidae	Placospherastra	micruster	(Lehnert and Heimler, 2001)	thick crust (Fig. 7A)
DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae		Clionaida	Placospongiidae	Placospongia	-	Gray, 1867	thick crust
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	-	Clionaida	Placospongiidae	Placospongia	melobesioides	Gray, 1867	thick crust
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha <tr< td=""><td></td><td>Clionaida</td><td>Spirastrellidae</td><td>Spirastrella</td><td>-</td><td>Schmidt, 1868</td><td>thin crust</td></tr<>		Clionaida	Spirastrellidae	Spirastrella	-	Schmidt, 1868	thin crust
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	погрпа	Haplosclerida	Callyspongiidae	Callyspongia	-	Duchassaing and Michelotti, 1864	variable, often creeping
DemosponijaeHeteroscleromorphaDemosponijaeHeteroscleromo	morpha	Haplosclerida	Callyspongiidae	Callyspongia	confoederata ⁴	(sensu Ridley, 1884)	cup
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo		Haplosclerida	Callyspongiidae	Callyspongia	fallax	Duchassaing and	creeping
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo				(Callyspongia)		Michelotti, 1864	
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Callyspongiidae	Callyspongia (Cladochalina)	aculeata	(Linnaeus, 1759)	tube
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Callyspongiidae	Callyspongia	tenerrima	Duchassaing and	creeping
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo				(Cladochalina)		Michelotti, 1864	
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpna	Haplosclerida	Callyspongiidae	Callyspongia (Euplacella)	biru	De Voogd, 2004	erect-branching in three dimensions, but can also be
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	mornha	Haplosslarida	Chalinidae	Haliclona		Grant, 1841	creeping variable, can be creeping or low-
Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiaeHeteroscleromorpha <tr< td=""><td>погрпа</td><td>Haplosclerida</td><td>Chaimidae</td><td>нинскопи</td><td>-</td><td>Grant, 1841</td><td>relief</td></tr<>	погрпа	Haplosclerida	Chaimidae	нинскопи	-	Grant, 1841	relief
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona	koremella	De Laubenfels, 1954	erect-branching in three
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo							dimensions, but can also be simple- erect and tends to creeping
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona (Gellius)	cymaeformis	(Esper, 1806)	creeping
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona (Gellius)	rava	(Stephens, 1912)	thick crust
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona	fistulosa	(Bowerbank, 1866)	thick crust to low cushion, with
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo				(Halichoclona)			fistular tendencies (= for large, slightly tubular oscules or slim,
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo							erect-branching processes)
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona	oculata	(Linnaeus, 1759)	mostly erect-palmate, but can be
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo				(Haliclona)		(Dethics and) (also	erect branching in three dimensions
Demospongiae Heteroscleromorpha	morpna	Haplosclerida	Chalinidae	Haliclona (Haliclona)	urceolus	(Rathke and Vahl, 1806)	tubular
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona (Reniera)	cinerea	(Grant, 1826)	thick crust to low cushion, with
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo							fistular tendencies (= for large, tubular oscules or sometimes for
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo					<i>.</i> .		slim, erect-branching processes)
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpna	Haplosclerida	Chalinidae	Haliclona (Reniera)	fascigera	(Hentschel, 1912)	mostly tubular, but can vary into erect-branching and cup-shaped
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromo	morpha	Haplosclerida	Chalinidae	Haliclona	rosea	(Bowerbank, 1866)	thick crust, can have pronounced to
Demospongiae Heteroscleromorpha	•			(Rhizoniera)			elevated oscules
Demospongiae Demospongiae Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae 	morpha	Haplosclerida	Chalinidae	Haliclona (Soestella)	caerulea	(Hechtel, 1965)	variable, mostly thickly encrusting with almost fistule like, raised oscules
Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiae 	morpha	Haplosclerida	Niphatidae	Amphimedon	-	Duchassaing and	can be creeping
Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae Demospongiae DemospongiaeHeteroscleromorpha HeteroscleromorphaDemospongiae Demospongiae Demospongiae HeteroscleromorphaHeteroscleromorpha Heteroscleromorpha HeteroscleromorphaDemospongiae Demospongiae Demospongiae Heteroscleromorpha HeteroscleromorphaHeteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha						Michelotti, 1864	
DemospongiaeHeteroscleromorpha	morpha	Haplosclerida	Niphatidae	Amphimedon	paraviridis	Fromont, 1993	creping to erect-branching
Demospongiae Heteroscleromorpha		Haplosclerida	Niphatidae	Cribrochalina	vasculum	(De Lamarck, 1814)	cup (Fig. 7K)
Demospongiae DemospongiaeHeteroscleromorpha Heteroscleromorpha DemospongiaeDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromo		Haplosclerida	Niphatidae	Gelliodes	fibulata	(Carter, 1881)	creeping
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaHeteroscleromo	morpha	Haplosclerida	Niphatidae	Niphates	erecta	Duchassaing and	creeping
Demospongiae Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Demospongiae Heteroscleromorpha <td>morpha</td> <td>Hanlosslarida</td> <td>Ninhatidao</td> <td>Ninhator</td> <td>digitalic</td> <td>Michelotti, 1864</td> <td>CUD</td>	morpha	Hanlosslarida	Ninhatidao	Ninhator	digitalic	Michelotti, 1864	CUD
Demospongiae Heteroscleromorpha		Haplosclerida Haplosclerida	Niphatidae Niphatidae	Niphates Niphates	digitalis olemda	(De Lamarck, 1814) (De Laubenfels, 1954)	cup tubular
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaHeteroscleromorphaHeteroscleromorphaDemospongiaeHeteroscleromorpha </td <td></td> <td>Haplosclerida</td> <td>Petrosidae</td> <td>Xestospongia</td> <td>-</td> <td>De Laubenfels, 1932</td> <td>genus contains e.g. barrels and</td>		Haplosclerida	Petrosidae	Xestospongia	-	De Laubenfels, 1932	genus contains e.g. barrels and
Demospongiae Heteroscleromorpha				,. 5.		, ,	thickly encrusting or massive species
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	morpha	Haplosclerida	Petrosidae	Xestospongia	mamillata	Pulitzer-Finali, 1982	? taxon author described a flat fragment
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha	morpha	Haplosclerida	Petrosidae	Xestospongia	testudinaria	(De Lamarck, 1815)	barrel (Fig. 2B, 5F-G, 8)
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Haplosclerida	Petrosidae	Neopetrosia	chaliniformis	(Thiele, 1899)	variable, can be creeping, thickly
Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	morpha	Haplosclerida	Petrosiidae	Neopetrosia	subtriangularis	(Duchassaing, 1850)	encrusting to erect-branching variable, can be creeping or low-
Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	moreha	Hanlosclarida	Petrosiidao	Petrosia (Potrosia)	ficiformis	(Poiret 1780)	relief (Fig. 7E)
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Haplosclerida Haplosclerida	Petrosiidae Phloeodictyidae	Petrosia (Petrosia) Oceanapia	ficiformis -	(Poiret, 1789) Norman, 1869	creeping fistular (Fig. 10E)
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Haplosclerida	Phloeodictyidae	Oceanapia	- amboinensis	Topsent, 1897	fistular
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Haplosclerida	Phloeodictyidae	Oceanapia	sagittaria	(Sollas, 1902)	fistular
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Haplosclerida	Phloeodictyidae	Siphonodictyon	-	Bergquist, 1965	smaller species and individuals: endolithic-bioeroding, larger species
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorpha	morpha	Haplosclerida	Phloeodictyidae	Siphonodictyon	coralliphagum	Rützler, 1971	and individuals: fistular mostly fistular (Fig. 7G), or when smaller: endolithic-bioeroding, occasionally thickly encrusting
DemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorphaDemospongiaeHeteroscleromorpha	morpha	Haplosclerida	Phloeodictyidae	Siphonodictyon	mucosum	Bergquist, 1965	fistular
Demospongiae Heteroscleromorpha Demospongiae Heteroscleromorpha		Poecilosclerida	Acarnidae	Iophon	minor	(Brøndsted, 1924)	erect-reticulate
Demospongiae Heteroscleromorpha		Poecilosclerida	Chondropsidae	Chondropsis	-	Carter, 1886	variable (Fig. 4A)
Demospongiae Heteroscleromorpha		Poecilosclerida	Cladorhizidae	Abyssocladia	-	Lévi, 1964	carnivorous
	morpha	Poecilosclerida	Cladorhizidae	Chondrocladia	grandis	(Verrill, 1879)	carnivorous (Fig. 3E)
Demospongiae Heteroscleromorpha	mornha	Poecilosclerida	Cladorhizidae	(Chondrocladia) Chondrocladia	lyra	Lee et al., 2012	carnivorous (Fig. 3D)
semospongiae neteroscieromorpila	orpila	. Sectoscieriua	Saudornizidad	(Symmetrocladia)	.910	200 00 01, 2012	
Demospongiae Heteroscleromorpha	morpha	Poecilosclerida	Cladorhizidae	Cladorhiza	-	Sars, 1872	carnivorous

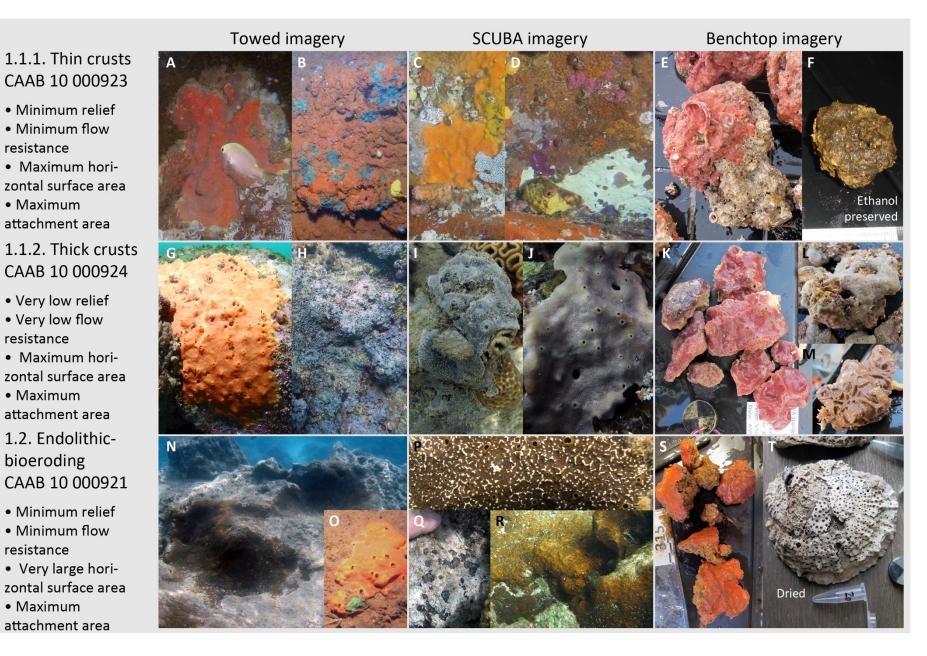
³ The genus change from *Timea* to *Placospherastra* is presently not implemented in van Soest et al. (2020), but is explained in the Sponge Guide (Zea et al., 2014) ⁴ See taxonomic remarks in van Soest et al. (2020).

Class	Cubalana	Orden	Family.		Creation	Taura author	Manual ala sina
Class	Subclass	Order	Family	Genus	Species	Taxon author	Morphologies
Demospongiae	Heteroscleromorpha	Poecilosclerida	Cladorhizidae	Cladorhiza	gelida	Lundbeck, 1905	carnivorous
Demospongiae	Heteroscleromorpha	Poecilosclerida	Coelosphaeridae	Forcepia (Forcepia)	topsenti	Lundbeck, 1905	endopsammic, likely fistular
Demospongiae	Heteroscleromorpha	Poecilosclerida	Coelosphaeridae	Lissodendoryx	fibrosa	(Lévi, 1961)	erect-laminar
Demospongiae	neterostieromorphu	1 occiloscienta	coclospilacitade	(Acanthodoryx)	Jibrosu	(LCVI, 1901)	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Crambeidae	Crambe	crambe	(Schmidt, 1862)	thick crust
Demospongiae	Heteroscleromorpha	Poecilosclerida	Crellidae	Crella	incrustans	(Carter, 1885)	variable, often encrusting, but can
Bernospongide	neccrossicromorphu	1 occurosolerida	eremade	erena -	merastans	(60.(61) 1005)	develop fistules
Demospongiae	Heteroscleromorpha	Poecilosclerida	Desmacididade	Desmacidon	-	Bowerbank, 1861	variable
Demospongiae	Heteroscleromorpha	Poecilosclerida	Esperiopsidae	Amphilectus	fucorum	(Esper, 1794)	thickly encrusting to erect-
				,	,	(branching, can have fistular
							tendencies
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Hemimycale	columella	(Bowerbank, 1874)	encrusting
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Hymedesmia	-	Bowerbank, 1864	often encrusting
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Hymedesmia	stylata	Lundbeck, 1905	thin crust, creeping over particles,
				(Hymedesmia)			but functionally fistular
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Hymedesmia	coriacea	(Fristedt, 1885)	thin crust
				(Stylopus)			
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Phorbas	-	Duchassaing and	variable, often thickly encrusting
						Michelotti, 1864	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Hymedesmiidae	Phorbas	fictitius	Bowerbank, 1866	thick crust
Demospongiae	Heteroscleromorpha	Poecilosclerida	Isodictyidae	Coelocarteria	-	Burton, 1934	fistular
Demospongiae	Heteroscleromorpha	Poecilosclerida	Isodictyidae	Coelocarteria	singaporensis	(Carter, 1883)	fistular
Demospongiae	Heteroscleromorpha	Poecilosclerida	lotrochotidae	lotrochota	baculifera	Ridley, 1884	thickly encrusting
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria	-	Schmidt, 1862	variable, can be composite-massive
			(Microcioninae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Clathria)	-	Schmidt, 1862	variable
			(Microcioninae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Clathria)	hjorti	(Arnesen, 1920)	erect-reticulate
- ·			(Microcioninae)	Clathai			
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria	-	Bowerbank, 1862	variable
- ·			(Microcioninae)	(Microciona)		(0) (00=)	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria	aceratoobtusa	(Carter, 1887)	thin crust
Dama i	11-1	Deseile 1 11	(Microcioninae)	(Microciona)		Bidlau 4004	and a track of the second
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	coppingeri	Ridley, 1884	erect-reticulate (Fig. 10C)
<u> </u>			(Microcioninae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	costifera	Hallmann, 1912	erect-laminar
<u> </u>			(Microcioninae)		<i>.</i> .		
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	fusterna	Hooper, 1996	erect-stalked
D		De esti es el estale	(Microcioninae)	Clatherin (Therburine)	law daw falali	Didley and Dandy 4000	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	lendenfeldi	Ridley and Dendy, 1886	usually erect-laminar
Domocrongiao	Hotorocoloromorpho	Dessilessleride	(Microcioninae) Microcionidae	Clathria (Thalusias)	maior	Hentschol 1012	arast valueta
Demospongiae	Heteroscleromorpha	Poecilosclerida	(Microcioninae)	Clathria (Thalysias)	major	Hentschel, 1912	erect-palmate
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	placenta	(De Lamarck, 1814)	erect-laminar
Demospongiae	neteroscieroniorpha	roeciloscierida	(Microcioninae)	ciuciniu (muiysius)	placenta	(De Lamarck, 1014)	erectianina
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	procera	(Ridley, 1884)	erect-branching in three
Bernospongide	neccrossicromorphu	1 occurosolerida	(Microcioninae)		proceru	(11010)) 100 17	dimensions, but can also be simple-
			(interocioninae)				erect and tends to creeping
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	spinifera	(Lindgren, 1897)	erect-palmate
			(Microcioninae)		-r.)	(,	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Thalysias)	virgultosa	(Esper, 1806)	creeping, rope sponge that can also
			(Microcioninae)		<u>j</u>	(,	be erect-branching in three
							dimensions (Fig. 7D)
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Clathria (Wilsonella)	mixta	Hentschel, 1912	erect
			(Microcioninae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Echinochalina	isaaci	Hooper, 1996	tube cluster
			(Microcioninae)	(Protophlitaspongia)			
Demospongiae	Heteroscleromorpha	Poecilosclerida	Microcionidae	Ophlitaspongia	papilla	Bowerbank, 1866	encrusting
			(Ophlitaspongiinae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Mycalidae	Mycale	-	Gray, 1867	often creeping or thickly encrusting
				(Aegogropila)			_
Demospongiae	Heteroscleromorpha	Poecilosclerida	Mycalidae	Mycale	laxissima	(Duchassaing and	amphora
				(Arenochalina)		Michelotti, 1864)	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Mycalidae	Mycale (Mycale)	laevis	(Carter, 1882)	thick crust (insinuating) or creeping
Demospongiae	Heteroscleromorpha	Poecilosclerida	Mycalidae	Mycale (Oxymycale)	acerata	Kirkpatrick, 1907	tube cluster
Demospongiae	Heteroscleromorpha	Poecilosclerida	Myxillidae	Myxilla (Myxilla)	rosacea	(Lieberkühn, 1859)	encrusting to simple-massive
Demospongiae	Heteroscleromorpha	Poecilosclerida	Podospongiidae	Diacarnus	megaspinorhabdosa	Kelly-Borges and	ball
	•					Vacelet, 1995	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Podospongiidae	Podospongia	virga	Sim-Smith and Kelly,	erect-stalked
-						2011	
Demospongiae	Heteroscleromorpha	Poecilosclerida	Raspailiidae	Trikentrion	flabelliforme	Hentschel, 1912	erect-palmate
			(Cyamoninae)				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Raspailiidae	Echinodictyum	pulchrum	Brøndsted, 1934	erect-reticulate
-			(Echinodictyinae))				
Demospongiae	Heteroscleromorpha	Poecilosclerida	Raspailiidae	Ectyoplasia	tabula	(De Lamarck, 1814)	erect-palmate
			(Raspailiinae)				
		Poecilosclerida	Raspailiidae	Raspailia	-	Topsent, 1913	usually erect, often branching
Demospongiae	Heteroscleromorpha	rocciloscientua	(5) (1))	(Raspaxilla)			-
Demospongiae	Heteroscleromorpha	roeciloscierida	(Raspailiinae)			(Duchassaing and	can be fistular
Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha	Poecilosclerida	(Raspailinae) Tedaniidae	Tedania (Tedania)	ignis		
					ignis	Michelotti, 1864)	
					ignis -		fistular
Demospongiae	Heteroscleromorpha	Poecilosclerida	Tedaniidae	Tedania (Tedania)	ıgnıs - grimaldii	Michelotti, 1864)	
Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida	Tedaniidae Polymastiidae	Tedania (Tedania) Polymastia		Michelotti, 1864) Bowerbank, 1862	fistular
Demospongiae Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida Polymastiida	Tedaniidae Polymastiidae Polymastiidae	Tedania (Tedania) Polymastia Polymastia	- grimaldii	Michelotti, 1864) Bowerbank, 1862 (Topsent, 1913)	fistular fistular
Demospongiae Demospongiae Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida Polymastiida Polymastiida	Tedaniidae Polymastiidae Polymastiidae Polymastiidae	Tedania (Tedania) Polymastia Polymastia Polymastia	- grimaldii hemisphaerica	Michelotti, 1864) Bowerbank, 1862 (Topsent, 1913) (Sars, 1872)	fistular fistular fistular
Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida Polymastiida Polymastiida Polymastiida Polymastiida	Tedaniidae Polymastiidae Polymastiidae Polymastiidae Polymastiidae	Tedania (Tedania) Polymastia Polymastia Polymastia Polymastia Polymastia	- grimaldii hemisphaerica invaginata mamillaris	Michelotti, 1864) Bowerbank, 1862 (Topsent, 1913) (Sars, 1872) Kirkpatrick, 1907 Bowerbank, 1862	fistular fistular fistular fistular
Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida Polymastiida Polymastiida Polymastiida	Tedaniidae Polymastiidae Polymastiidae Polymastiidae Polymastiidae	Tedania (Tedania) Polymastia Polymastia Polymastia Polymastia	- grimaldii hemisphaerica invaginata mamillaris sol	Michelotti, 1864) Bowerbank, 1862 (Topsent, 1913) (Sars, 1872) Kirkpatrick, 1907	fistular fistular fistular fistular fistular
Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha Heteroscleromorpha	Poecilosclerida Polymastiida Polymastiida Polymastiida Polymastiida Polymastiida	Tedaniidae Polymastiidae Polymastiidae Polymastiidae Polymastiidae Polymastiidae	Tedania (Tedania) Polymastia Polymastia Polymastia Polymastia Rodymastia Radiella	- grimaldii hemisphaerica invaginata mamillaris	Michelotti, 1864) Bowerbank, 1862 (Topsent, 1913) (Sars, 1872) Kirkpatrick, 1907 Bowerbank, 1862 (Schmidt, 1870)	fistular fistular fistular fistular fistular ball

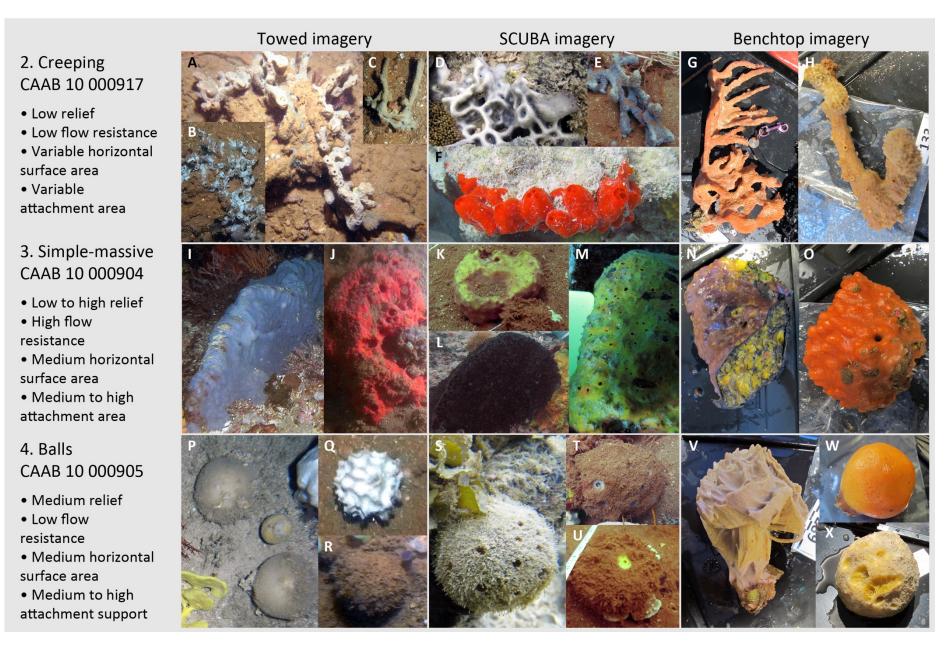

Class	Subclass	Order	Family	Genus	Species	Taxon author	Morphologies
Demospongiae	Heteroscleromorpha	Scoplainida	Scopalinidae	Stylissa	flabelliformis	(Hentschel, 1912)	erect-laminar
Demospongiae	Heteroscleromorpha	Scoplainida	Scopalinidae	Stylissa	massa	(Carter, 1887)	variable, often composite-massive
Demospongiae	Heteroscleromorpha	Spongillida	Spongillidae	Spongilla	lacustris	(Linnaeus, 1759)	thickly encrusting to erect-
Demospongiae	Heteroscleromorpha	Suberitida	Halichondriidae	Ciocalypta		Bowerbank, 1862	branching fistular
Demospongiae	Heteroscleromorpha	Suberitida	Halichondriidae	Ciocalypta	- penicillus	Bowerbank, 1862 Bowerbank, 1862	fistular
Demospongiae	Heteroscleromorpha		Halichondriidae	Halichondria	bowerbanki	Burton, 1930	thin to thick crust that can develop
				(Halichondria)			pronounced, fistule-like oscules and
Demospongiae	Heteroscleromorpha	Suberitida	Halichondriidae	Halichondria	melanadocia	De Laubenfels, 1936	fine erect-branching processes variable, can be encrusting, simple-
				(Halichondria)			massive to branching or even
						(- 1)	fistular, or can function as creeping
Demospongiae	Heteroscleromorpha	Suberitida	Halichondriidae	Halichondria (Halichondria)	panicea	(Pallas, 1766)	variable, can be encrusting, simple- massive to branching or even
				()			fistular, or can function as creeping
Demospongiae	Heteroscleromorpha	Suberitida	Halichondriidae	Hymeniacidon	perlevis	(Montagu, 1814)	variable, encrusting, can develop
Demospongiae	Heteroscleromorpha	Suberitida	Stylocordylidae	Stylocordyla	chupachups	Uriz et al., 2011	fistules erect-stalked
Demospongiae	Heteroscleromorpha		Suberitidae	Caulospongia	-	Kent, 1871	erect, ranging in function from
							simple-erect to three-dimensionally
Demospongiae	Heteroscleromorpha	Suberitida	Suberitidae	Rhizaxinella	_	Keller, 1880	branching to stalked (Fig. 4G) erect-stalked
Demospongiae	Heteroscleromorpha	Suberitida	Suberitidae	Suberites	-	Nardo, 1833	variable, small species can behave
							as balls
Demospongiae	Heteroscleromorpha		Suberitidae	Suberites	carnosus	(Johnston, 1842)	ball
Demospongiae	Heteroscleromorpha	Suberitida	Suberitidae	Suberites	ficus	(Johnston, 1842)	variable, can be simple-massive, or thickly encrusting or ball-shaped
Demospongiae	Heteroscleromorpha	Suberitida	Suberitidae	Suberites	massa	Nardo, 1847	variable, can be thickly encrusting to
		6 L		_ .		Duckey 1	composite-massive to fistular
Demospongiae	Heteroscleromorpha	Suberitida	Suberitidae	Terpios	-	Duchassaing and Michelotti, 1864	thin crust
Demospongiae	Heteroscleromorpha	Tethyida	Hemiasterellidae	Adreus	axiferum	(Hentschel, 1912)	palmate or 3D erect-branching
Demospongiae	Heteroscleromorpha	Tethyida	Hemiasterellidae	Axos	-	Gray, 1867	can be erect-palmate (Fig. 14A)
Demospongiae	Heteroscleromorpha	Tethyida	Hemiasterellidae	Axos	cliftoni flah allifamaia	Gray, 1867	erect-palmate
Demospongiae	Heteroscleromorpha	Tethyida	Hemiasterellidae	Axos	flabelliformis	Carter, 1879	erect-palmate (cliftoni, flabelliformis)
Demospongiae	Heteroscleromorpha	Tethyida	Hemiasterellidae	Liosina	granularis	Kelly-Borges and	tubular
						Bergquist, 1988	
Demospongiae Demospongiae	Heteroscleromorpha Heteroscleromorpha		Hemiasterellidae Tethyidae	Liosina Tectitethya	paradoxa crypta	Thile, 1899 (De Laubenfels, 1949)	tubular
Demospongiae	Heteroscleromorpha	Tethyida	Tethyidae	Tethya	-	De Lamarck, 1815	ball (Fig. 1C)
Demospongiae	Heteroscleromorpha	Tethyida	Tethyidae	Tethya	aurantium	(Pallas, 1766)	ball
Demospongiae	Heteroscleromorpha	Tethyida	Tethyidae	Tethycometes	radicosa	Lim and Tan, 2008	erect-stalked
Demospongiae	Heteroscleromorpha	Tethyida	Tethyidae	Xenospongia	patelliformis	Gray, 1858	is an unattached disc, but is adapted to sandy habitats similar as fistular
							sponges (Fig. 6)
Demospongiae	Heteroscleromorpha		Timeidae	Timea	unistellata	(Topsent, 1892)	thin crust
Demospongiae	Heteroscleromorpha	Tetractinellida (Astrophorina)	Ancorinidae	Asteropus	niger	Hajdu and van Soest, 1992	simple-massive (Fig. 7F)
Demospongiae	Heteroscleromorpha	Tetractinellida	Ancorinidae	Stelletta	clavosa	Ridley, 1884	ball
		(Astrophorina)					
Demospongiae	Heteroscleromorpha	Tetractinellida (Astrophorina)	Geodiidea (Erylinae)	Melophlus	sarassinorum	Thiele, 1899	ball, but on "feet", short stalks that slightly elevate it
Demospongiae	Heteroscleromorpha		Geodiidea (Erylinae)	Pachymatisma	johnstonia	(Bowerbank in	encrusting to simple-massive
		(Astrophorina)				Johnston, 1842)	
Demospongiae	Heteroscleromorpha		Geodiidea	Geodia	neptuni	(Sollas, 1886)	barrel
Demospongiae	Heteroscleromorpha	(Astrophorina) Tetractinellida	(Geodiinae) Theneidae	Thenea	-	Gray, 1867	often fistular, but can be balls or
		(Astrophorina)					barrels in function
Demospongiae	Heteroscleromorpha	Tetractinellida	Theonellidae	Theonella	swinhoei	Gray, 1868	amphora
Demospongiae	Heteroscleromorpha	(Astrophorina) Tetractinellida	Tetillidae	Cinachyra	-	Sollas, 1886	ball
bemospongiae	neteroscieromorpha	(Spirophorina)	retindue	cinacityra		551103) 1000	2011
Demospongiae	Heteroscleromorpha	Tetractinellida	Tetillidae	Cinachyra	barbata	Sollas, 1886	ball
Demospongiae	Heteroscleromorpha	(Spirophorina) Tetractinellida	Tetillidae	Cinachyrella	-	Wilson, 1925	ball
ospongiae		(Spirophorina)					
Demospongiae	Heteroscleromorpha	Tetractinellida	Tetillidae	Cinachyrella	apion	(Uliczka, 1929)	ball
Demospongiae	Heteroscleromorpha	(Spirophorina) Tetractinellida	Tetillidae	Cinachyrella	arabica	(Carter, 1869)	ball
Demospongiae	neteroscieromorpha	(Spirophorina)	retilidde	emacnyrena	ulubicu	(earter, 1005)	501
Demospongiae	Heteroscleromorpha	Tetractinellida	Tetillidae	Cinachyrella	australiensis	(Carter, 1886)	ball
Demonstration	Heteroscleromorpha	(Spirophorina)	Textiliates	Circusturella	local south all	(1)(ball (Fig. 7H)
Demospongiae	Heteroscieromorpha	Tetractinellida (Spirophorina)	Tetillidae	Cinachyrella	kuekenthali	(Uliczka, 1929)	
Demospongiae	Heteroscleromorpha	Tetractinellida	Tetillidae	Paratetilla	-	Dendy, 1905	balls
Demostra	Hotorostara	(Spirophorina)	Tatillida -	Devetotille	h	(Colonks 10C7)	hall
Demospongiae	Heteroscleromorpha	Tetractinellida (Spirophorina)	Tetillidae	Paratetilla	bacca	(Selenka, 1867)	ball
Demospongiae	Heteroscleromorpha	Tetractinellida	Tetillidae	Paratetilla	corrugata	Dendy, 1922	ball
		(Spirophorina)					unishis OTV
Demospongiae	Homoscleromorpha	Homosclerophorida	Plakinidae	Plakortis	-	Schulze, 1880	variable, OTU species in paper was basically ball-shaped (Fig. 4D)
Demospongiae	Homoscleromorpha	Homosclerophorida	Plakinidae	Plakortis	simplex	Schulze, 1880	thin crust
Demospongiae	Keratosa	Dendroceratida	Darwinellidae	Aplysilla	rosea	(Barrois, 1876)	composite-massive
Demospongiae	Keratosa	Dendroceratida	Darwinellidae	Darwinella	australiensis	Carter, 1885	thin crust (Fig. 4B)
Demospongiae Demospongiae	Keratosa Keratosa	Dictyoceratida Dictyoceratida	Dysideidae Dysideidae	Dysidea Dysidea	- avara	Johnston, 1842 (Schmidt, 1862)	variable variable, can be simple-massive to
Demosholißige	NCI BLUSB	Dictyoceration	Cysiaciade	Dysiaca	avara	(Juliul, 1002)	more tubular or erect-branching
							5

Class	Subclass	Order	Family	Genus	Species	Taxon author	Morphologies
Demospongiae	Keratosa	Dictyoceratida	Dysideidae	Lamellodysidea	herbacea	(Keller, 1889)	variable, creeping, but can have a significant erect portion of finger-
							like or little flabellate projections
Demospongiae	Keratosa	Dictyoceratida	Irciniidae	Ircinia	campana	(De Lamarck, 1814)	cup (Fig. 7J)
Demospongiae	Keratosa	Dictyoceratida	Irciniidae	Ircinia	felix	(Duchassaing and	composite-massive
						Michelotti, 1864)	
Demospongiae	Keratosa	Dictyoceratida	Irciniidae	Ircinia	strobilina	(De Lamarck, 1816)	barrel
Demospongiae	Keratosa	Dictyoceratida	Irciniidae	Psammocinia	bulbosa	Bergquist, 1995	fistular, endopsammic
Demospongiae	Keratosa	Dictyoceratida	Irciniidae	Sarcotragus	-	Schmidt, 1862	often simple-massive
Demospongiae	Keratosa	Dictyoceratida	Spongiidae	Coscinoderma	matthewsi	Von Lendenfeld, 1886	simple-massive
Demospongiae	Keratosa	Dictyoceratida	Spongiidae	Rhopaloeides	odorabile	Thompson et al., 1987	variable, commonly simple-massive
Demospongiae Demospongiae	Keratosa Keratosa	Dictyoceratida Dictyoceratida	Spongiidae Spongiidae	Spongia (Spongia) Spongia (Spongia)	- agaricina	Linnaeus, 1759 Pallas, 1766	variable, commonly simple-massive variable, can be cup-like to erect-
Demospongiae	Keratosa	Dictyoceratida	Spongiidae	Spongia (Spongia)	officinalis	Linnaeus, 1759	laminar simple-massive (Fig. 1B, 5A-D), can function as creeping
Demospongiae	Keratosa	Dictyoceratida	Spongiidae	Spongia (Spongia)	virgultosa	(Schmidt, 1868)	crusts with small fistules
Demospongiae	Keratosa	Dictyoceratida	Thorectidae	Carteriospongia	foliascens	(Pallas, 1766)	cups, incomplete cups to erect-
8		,	(Phyllospongiinae)	g	,	(laminar fans (Fig. 9)
Demospongiae	Keratosa	Dictyoceratida	Thorectidae (Thorectinae)	Aplysinopsis	-	(Von Lendenfeld, 1888)	variable, mostly simple-massive or low-relief
Demospongiae	Keratosa	Dictyoceratida	Thorectidae	Cacospongia	-	Schmidt, 1862	mostly simple-massive
Demospongiae	Keratosa	Dictyoceratida	(Thorectinae) Thorectidae	Fascaplysinopsis	reticulata	(Hentschel, 1912)	simple-massive
Demospongiae	Keratosa	Dictyoceratida	(Thorectinae) Thorectidae	Hyrtios	cavernosus	Vacelet et al., 1976	simple-massive (Fig. 7B)
Demospongiae	Keratosa	Dictyoceratida	(Thorectinae) Thorectidae	Hyrtios	erectus	(Keller, 1889)	
			(Thorectinae)				creeping
Demospongiae	Verongimorpha	Verongiida	Chondrillidae	Thymosia	guernei	Topsent, 1895	encrusting to simple-massive
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	-	Nardo, 1834	creeping
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	aerophoba	(Nardo, 1833)	tube
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	archeri	(Higgin, 1875)	variable, e.g. erect-branching (Fig. 7C)
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	cauliformis	(Carter, 1882)	tube (Fig. 7L)
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	fistularis	(Pallas, 1766)	tube
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Aplysina	fulva	(Pallas, 1766)	erect-branching in three dimensions, but can also be simple- etect and tends to creeping
Demospongiae	Verongimorpha	Verongiida	Aplysinidae	Verongula	reiswigi	Alcolado, 1984	barrel or cup (Fig. 7I), or even tube
Demospongiae	Verongimorpha	Verongiida	Ernstilligae	Ernstilla	lacunosa	(Hentschel, 1912)	erect-palmate (Fig. 10B)
Demospongiae	Verongimorpha	Verongiida	Ianthellidae	Ianthella	-	Gray, 1869	mostly erect-laminar, but can form functionally intermediate forms
Demospongiae	Verongimorpha	Verongiida	Ianthellidae	Ianthella	basta	(Pallas, 1766)	towards cup-like morphologies often tubular (Fig. 2B, 4H-I), small
Domocrongiao	Vorongimorpha	Vorongiida	lanthellidae	Ianthella	flaballiformic	(Lippoour 17E0)	specimens can be erect-laminar
Demospongiae Demospongiae	Verongimorpha Verongimorpha	Verongiida Verongiida	Pseudoceratinidae	Pseudoceratina	flabelliformis	(Linnaeus, 1759) (Carter, 1880)	erect-laminar (Fig. 10A)
Demospongiae	Verongimorpha	Verongiida	Pseudoceratinidae	Pseudoceratina	purpurea verrucosa	Bergquist, 1995	creeping creeping
Hexactinellida	Amphidiscophora	Amphidiscosida	Hyalonematidae	Hyalonema	venucosu	Gray, 1832	erect-stalked
Hexactinellida	Hexasterophora	Lyssacinosida	Euplectellidae (Bolosominae)	Bolosoma	-	ljima, 1904	erect-stalked
Hexactinellida	Hexasterophora	Lyssacinosida	Euplectellidae	Docosaccus	-	Topsent, 1910	tabular
Hexactinellida	Hexasterophora	Lyssacinosida	(Euplectellinae) Euplectellidae	Euplectella	-	Owen, 1841	tube to amphora
Hexactinellida	Hexasterophora	Lyssacinosida	(Euplectellinae) Euplectellidae	Euplectella	aspergillum	Owen, 1841	tube to amphora
Hexactinellida	Hexasterophora	Lyssacinosida	(Euplectellinae) Rossellidae	Caulophacus	-	Schulze, 1886	erect-stalked
Hexactinellida	Hexasterophora	Lyssacinosida	(Lanuginellidae) Rossellidae	Caulophacus	arcticus	(Hansen, 1885)	erect-stalked
Hexactinellida	Hexasterophora	Lyssacinosida	(Lanuginellidae) Rossellidae	(Caulophacus) Anoxycalyx	joubini	(Topsent, 1916)	amphora
Hexactinellida	Hexasterophora	Lyssacinosida	(Rossellinae) Rossellidae	(Scolymastra) Bathydorus		Schulze, 1886	tabular
			(Rossellinae)				
Hexactinellida	Hexasterophora	Lyssacinosida	Rossellidae (Rossellinae)	Rossella	-	Carer, 1872	amphora
Hexactinellida Hexactinellida	Hexasterophora Hexasterophora	Sceptrulophora Sceptrulophora	Aphrocallistidae Euretidae (Chonalesmatinae)	Aphrocallistes Chonelasma	vastus -	Schulze, 1886 Schulze, 1886	amphora erect-stalked to erect-palmate
Ascidiacea		Stolidobranchia	Pyuridae	Pyura	spinifera	(Quoi and Gaimard, 1834)	stalked (but not a sponge)
Anthozoa	Hexacorallia	Scleractinia	Dendrophylliidae	Turbinaria	-	Oken, 1815	shallow complete cup to tabular (but not a sponge)
Hydrozoa	Hydroidolina	Anthoathecata	Milleporidae	Millepora	complanata	De Lamarck, 1816	3D or 2D branching to composite-

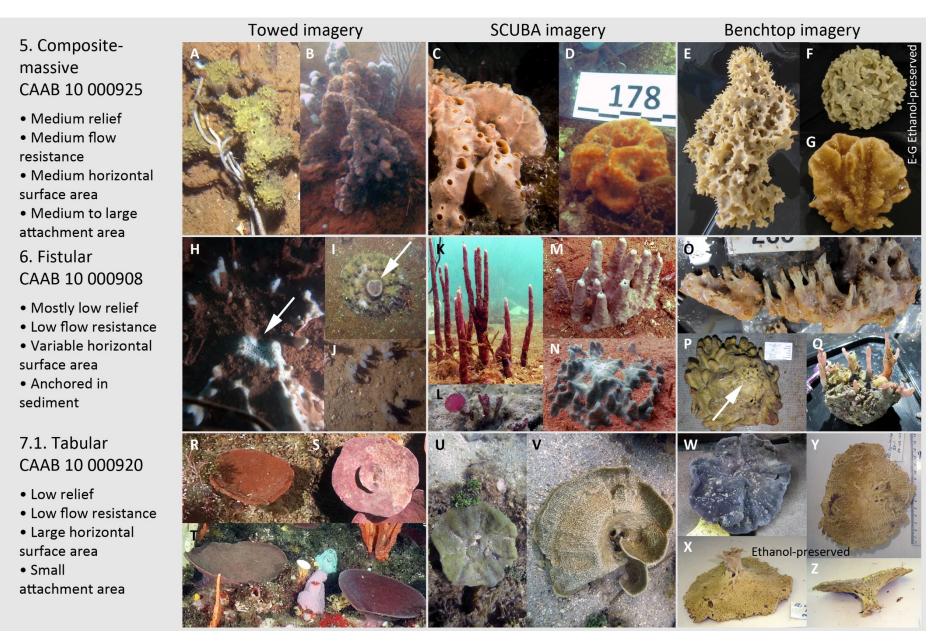
Sup		m off white frame, laminate, bring for	neid				
	1-2 FUNCTIONAL CRUST (EN)	3-6 MASSIVE IN FUNCTION (M)		7-9 CUP-LIKE FUNCTION (C)		10-14 ERECT IN FUNCTION (E)	
Crust (EN-lat) sensu lato	 1.1 – true crust (EN-cr), thin (few mm; thn, showing substrate contours) and thick crusts (few cm; thc); none or low surface relief 	3 - simple-massive (M-s) , about as wide as high, inhalants and exhalants scattered across same surface	t (C-w) dy dioameter	7.1 – tables, or very shallow cups (C-tab), can easily be covered by sediments	colu	D – 1D-erect, simple-erect (E-1D), olumns, rods, whips, usually in- & chalants, +/- round in cross section	
1 – Crust (EN	1.2 - endolithic, bioeroding (EN- be) , tissue dots or as crust, difficult to recognise as non-expert, but very similar to above	4 - balls (M-bl) , small body, more or less globular, in- and exhalants mixed or separate	• Wide cups ((meter > body	7.2 - incomplete cup (C-inc), intermediate form to erect- laminar, but body curled to funnel	(D)	11.1 - erect-laminar, spatulas, fans (E-lam) , flabellate, flat-upright, can have a short stalk or stem	
foll	creeping, repent (EN-rep), branches ow ground, can have erect parts, tiple attachm., easy to detach	5 - composite-massive (M-c), overall body shape and function massive, but body composed of densely merged or meshed subunits	7 – apical dia	7.3 – complete cup (C-cmp) , concave, catch sediment that is more difficult to be washed out	2D-erect (E-2	11.2 - erect-palmate, hand- shaped, flat bush (E-pal), small base or stalk, with round or flat branches fanning out in 1 plane	
Aust		6 - fistular-massive (M-f) , more or less embedded in the sediment, usually with	8 – Narrow cups (C-nr)	8.1 – tube or chimney (C-t), apical diameter = body diameter	11 -	11.3 - erect-reticulate (E-r) , upright meshes and lattices, often with short stalk or stem	
	Australian Institute of Marine Science	elevated fistules, often with (hidden) anchoring structures		8.1 – amphora or sack (C-a), apical diameter < body diameter			
		CHEAT	later or ex	barrels or "massive" cups (C-b), al inhalants, central-apical exhalant halant cluster, usually with barrel, mound or cone shape	arb	 3D-erect, erect-branching (E-3D), porescent, bush or otherwise egularly branching, in different planes 	
*	WESTERNA SHEET v. 2020-04 Sponge functional growth forms (sensu Schönberg 2020)					13 – stalked (E-st) , elevated body mass of misc. shape, no pores the stalk, in- & exhalants usually separated	
mai	be used for classification without tax n functional categories are further su norphologies are steps in a continuur	14 – carnivorous (E-c), usually delicate, usually stalked or branching from central axis					
heig surj turl	y width significantly greater than ht, extending across substrate ace. Typical for high-velocity, pulent flow. Partly vulnerable inst sedimentation.	Body width and height roughly similar, various forms. Usually mixed in- and exhalants. Fistular-massive forms and many balls sediment specialists.	pically concave or hollow forms, in- and exhalants usually spatially eparated. Sediment-vulnerable unless with bundled exhalant jet. Many whotosynthetic species.		Body and branches longer than wide, solid in cross section. 1D and 2D typical for strong, laminar flow. Sediment- tolerant and implying nutrient limitation.		


Supplement 4. Cheat sheet. Print, trim off white frame, laminate, bring for fieldwork or as reference

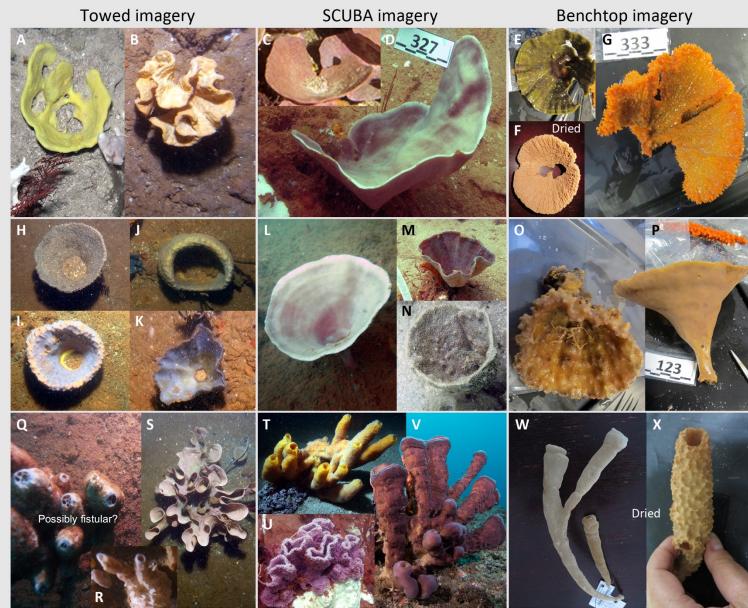
Examples. Photographs from the central Pacific (NOAA; https://oceanexplorer.noaa.gov/), SE Australia (JT, https://www.flickr.com/photos/johnwturnbull/), NW Australia and the central Great Barrier Reef (CS, EB, FS; AIMS). © AIMS, NOAA or photographer: CS – Christine Schönberg, EB – Evy Büttner, FS – Flora Siebler, JT – John Turnbull, with friendly permission. CAAB = CSIRO Codes for Australian Aquatic Biota. More: Suppl. 3.



Schönberg 2020, Supplements, p. 28

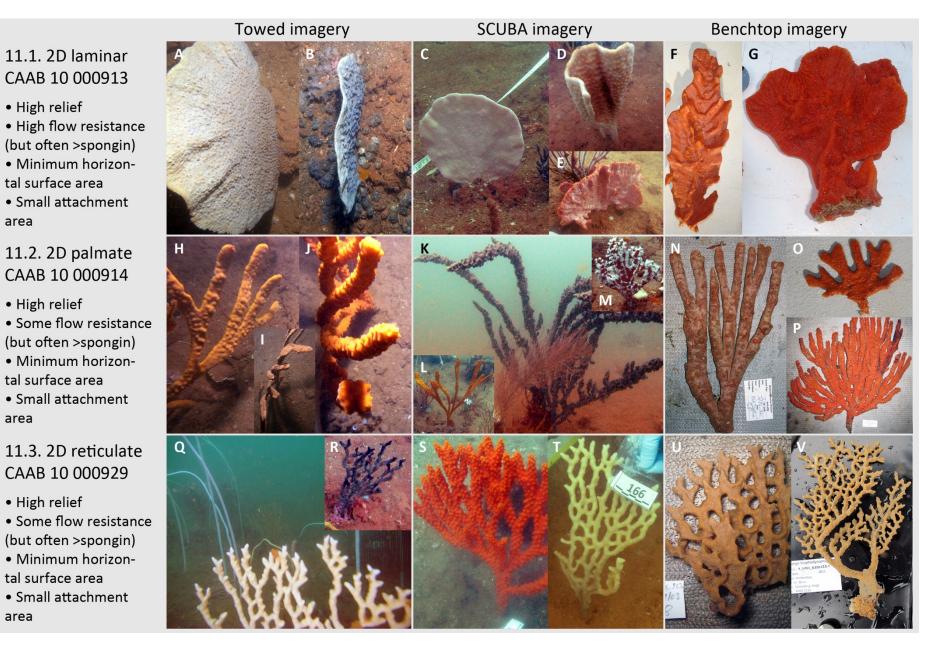

Supplement 5.1. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.

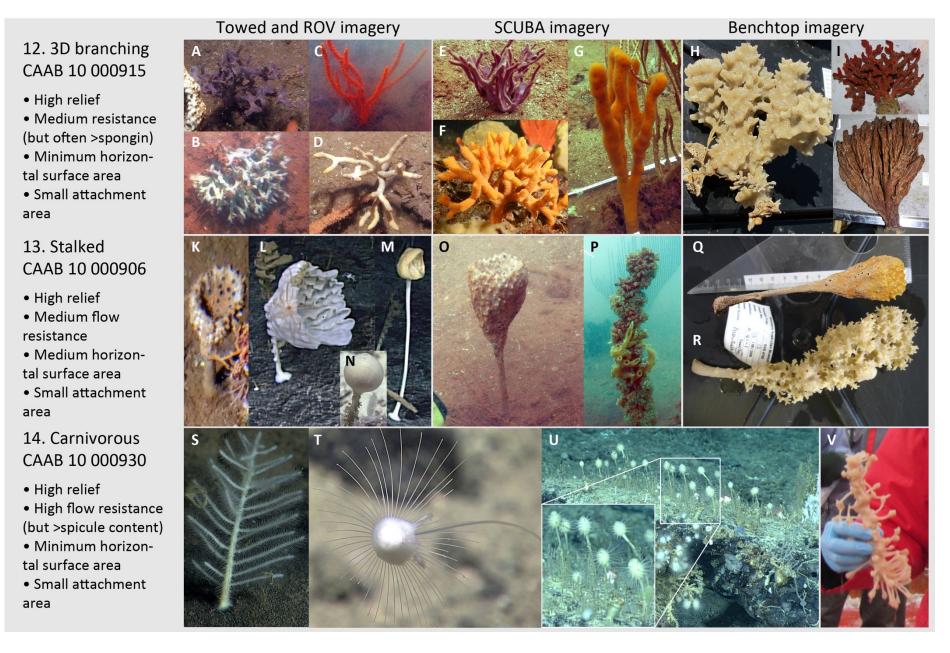
Supplement 5.2. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.


Supplement 5.3. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens. Arrows: oscule plates.

Supplement 5.4. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.

7.2. Incomplete cups CAAB 10 000918 Medium relief Medium flow resistance • Large horizontal surface area • Small attachment area 7.3. Complete cups CAAB 10 000919 • Medium relief • Medium flow resistance • Large horizontal surface area • Small attachment area 8.1. Tubes 0 CAAB 10 000911 • High relief • Medium flow resistance Minimum horizontal surface area • Small attachment




Supplement 5.5. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.

Supplement 5.6. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.

Supplement 5.7. Example images of sponge morphologies by functional growth form, *in situ* and as sample specimens.

Sources for Images in Supplement 5

The above images come from different sources. Except for the carnivorous sponges all depict Australian sponges. Towed imagery was collected during surveys that were funded by the Western Australian Marine Science Institution (WAMSI) as part of the WAMSI Dredging Science Node Theme 6.3 (https://www.wamsi.org.au/dredging-science-node), a project made possible through investment from Chevron Australia, Woodside Energy Limited, BHP Billiton as environmental offsets and by co-investment from the WAMSI Joint Venture partners. Other significant sources of above images were the "Surrogates for Biodiversity" project of the Commonwealth Environmental Research Facilities (CERF) Marine Biodiversity Hub in partnership between Geoscience Australia and the Australian Institute of Marine Science (https://www.nespmarine.edu.au/project/improvement-existing-and-development-newsurrogacy-relationships-between-physical-variables), various AIMS research projects led by Christine Schönberg and from specimens in her reference collection, and from publicly Flickr accessible albums collated by John Turnbull (https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525). These and other sources are listed below as per-image information. Collection abbreviations: AIMS -

Australian Institute of Marine Science, CERF – Commonwealth Environmental Research Facilities (samples stored at WAM), KIM – Kimberely collection (samples stored at WAM), WAM – Western Australian Museum, ZMB – Berlin Museum of Natural History. When identifications are unsure, the qualifiers "cf." and "aff." are used in the sense of "looks like, could be" and "looks similar, but unlikely to be", respectively.

Supplement 5.1: Thin and thick crusts, and endolithic-bioeroding sponges

- A Red encrusting sponge, shelf habitat at Carnarvon Shelf, NW Australia. Photograph AIMS.
- B Blue-grey encrusting sponge in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- C-D Patches of encrusting sponges, North Bondi, Sydney, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photographs John Turnbull, with friendly permission.
- E Unidentified thin crust from -21 m, S Montgomery Reef, N Australia. Sample KIM_1_1_49. Photograph Christine Schönberg.
- F *Clathria (Microciona)* sp. from -45 m, Mandu, Carnarvon Shelf, NW Australia. Sample CERF 1_009_1_14. Photograph Christine Schönberg, CERF project (Schönberg et al., 2006).
- G Thickly encrusting sponge at Bare Island, Botany Bay, Sydney, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- H Thickly encrusting blue-grey sponge in -4 m, Sandy Bay, Carnarvon Shelf, NW Australia. Photograph Christine Schönberg.
- 1 Thickly encrusting grey sponge in the intertidal, Montgomery Reef, N Australia. Photograph Janett Voigt.
- J Thickly encrusting purplish grey sponge in -4 to -5 m, Sandy Bay, Carnarvon Shelf, NW Australia. Photograph Christine Schönberg.
- K-M Thickly encrusting sponges from -26 m, NE Montgomery Reef, N Australia. Photographs Christine Schönberg. K – Xestospongia sp., sample KIM_2_1_6. L – Unidentified grey sponge, sample KIM_2_1_13. M – Placospongia sp., sample KIM_2_1_12.
- N Cliona orientalis in -4 m, Orpheus Island, central Great Barrier Reef. Photograph Christine Schönberg.
- O *Cliona* sp. in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- P *Cliona* aff. *viridis* at Rhodes Island in shallow water. Photograph Max Wisshak, Senckenberg, with friendly permission.
- Q Cliona cf. orientalis in -1 m, One Tree Island S Great Barrier Reef. Photograph Christine Schönberg.
- R *Cliona orientalis* in -6 m, Orpheus Island, central Great Barrier Reef. Photograph Christine Schönberg.

- S *Cliona* sp. from -12 m, Onslow, NW Australia. Sample WAMSI_315 = WAM Z65318. Photograph Flora Siebler, WAMSI Dredging Science Node.
- T *Cliona* cf. *celata* from Sylt Island, E North Sea. Sample ZMB1518. Photograph Christine Schönberg.

Supplement 5.2: Thin and thick creeping, simple-massive and ball-shaped sponges

- A-C Repent sponges in -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node.
- D Cf. *Lamellodysidea herbacea* in the intertidal, Montgomery Reef, N Australia. Photograph Christine Schönberg.
- E Cf. *Amphimedon paraviridis* in -10 to -15 m, Onslow, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- F Unidentified red sponge from -3 m, Orpheus Island, central Great Barrier Reef. Photograph Christine Schönberg.
- G Unidentified orange sponge from -23 m, S Montgomery Reef, N Australia, sample KIM_1_2_1. Photograph Christine Schönberg.
- H Amphimedon cf. paraviridis from -11 m, Onslow, NW Australia. Sample WAMSI_133 = WAM Z65173. Photograph Flora Siebler, WAMSI Dredging Science Node.
- Shelf habitat at Gnaraloo, Carnarvon Shelf, NW Australia. Photograph AIMS.
- J Unidentified red sponge in -10 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- K Aff. *Pseudoceratina verrucosa* in -12 m, Onslow, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- L-M Unidentified massive sponges in -13 m, Gnaraloo, Carnarvon Shelf, NW Australia. Photographs Jamie Colquhoun, AIMS.
- N *Pseudoceratina* cf. *verrucosa* from -12 m, Onslow, NW Australia. Sample WAMSI_328 = WAM Z65328. Photograph Flora Siebler, WAMSI Dredging Science Node.
- O *Mycale (Aegogropila)* sp. from -14 m, Onslow, NW Australia. Sample WAMSI_111 = WAM Z53919. Photographs Flora Siebler, WAMSI Dredging Science Node.
- P Unidentified tetractinellid sponges in -95 m, Point Cloates, Carnarvon Shelf, NW Australia. Photograph AIMS (Brooke et al., 2008).
- Q-R Spirophorine sponges in -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node. Q *Cinachyra* sp. R Unidentified.
- S Unidentified spirophorine sponge in the intertidal, Montgomery Reef, N Australia. Photograph Christine Schönberg.
- T Unidentified spirophorine sponge in -12 m, Ashburton Island, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- U Unidentified spirophorine sponge in -11 m, Onslow, NW Australia. Photograph Evy Büttner, WAMSI Dredging Science Node.
- V *Cinachyra* sp. from -11 m, Ashburton Island, NW Australia. Sample WAMSI_289 = WAM Z65296. Photograph Flora Siebler, WAMSI Dredging Science Node. The sponge ruptured after sampling and was globular *in situ*.
- W *Cinachyrella* cf. *australiensis* from -12 m, Onslow, NW Australia. Sample WAMSI_156 = WAM Z53985. Photograph Flora Siebler, WAMSI Dredging Science Node.
- X *Cinachyrella* sp. from -21 m, S Montgomery Reef, N Australia. Sample KIM_1_1_24. Photograph Christine Schönberg.

Supplement 5.3: Composite-massive, fistular and table-shaped sponges

- A Cf. *Pseudoceratina verrucosa* in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- B Unidentified sponge in -11 m, Onslow, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- C Lobed sponge at Middle Head, Sydney Harbour, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- D *Stylissa* cf. *flabelliformis* in -11 m, Onslow, NW Australia. Sample WAMSI_178 = WAM Z65220. Photograph Evy Büttner, WAMSI Dredging Science Node.

- E *Clathria* (cf. *Clathria*) sp. from -30 m, Point Cloates, Carnarvon Shelf, NW Australia, sample CERF 2_047_1_27A. Photograph Christine Schönberg, CERF project (Schönberg et al., 2006).
- F *Dysidea* sp. from -72 m, Point Cloates, Carnarvon Shelf, NW Australia, sample CERF 2_031_1_04. Photograph Christine Schönberg, CERF project (Schönberg et al., 2006).
- G Raspailia (Raspaxilla) sp. from -60 m, Point Cloates, Carnarvon Shelf, NW Australia, sample CERF 2_049_1_13. Photograph Christine Schönberg, CERF project (Schönberg et al., 2006).
- H-J Fistular sponges in 8-15 m, Onslow, NW Australia. Photograph Australian Institute of Marine Science, WAMSI Dredging Science Node. Please note oscule plates in H and I (arrow).
- K Oceanapia sp. in -11 m, Onslow, NW Australia. Photograph Evy Büttner, WAMSI Dredging Science Node.
- L Oceanapia sagittaria in -2 m, Orpheus Island, central Great Barrier Reef. Photograph Flora Siebler.
- M-N Fistular sponges at Ashburton Island, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node. M *Psammocinia* cf. *bulbosa* in -11m. N *Spheciospongia* sp. in -12 m.
- O *Xestospongia* sp. from -12 m, Onslow, NW Australia. Sample WAMSI_097 = WAM Z65140. Photographs Flora Siebler, WAMSI Dredging Science Node.
- P *Spheciospongia* sp. from -41 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_086_2_33. Photograph Christine Schönberg, CERF project. Please note oscule plate (arrow).
- Q *Oceanapia* sp. from -28 m, Montgomery Reef, N Australia, sample KIM_2_3_36 = WAM Z29296. Photograph Christine Schönberg.
- R-TTabularspongesinSEAustralia.Fromhttps://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessedMarch 28, 2020.Photograph John Turnbull, with friendly permission. R, T: Dee Why Wide, Curl Curl Beach, N Sydney.S: -18m, Henry Head, Botany Bay, Sydney.
- U-V Tabular sponges in -1 m, Fantome Island, central Great Barrier Reef. Photograph Flora Siebler. U *Cymbastela coralliophila*. V *Carteriospongia foliascens*.
- W Cymbastela coralliophila from -1 m, Fantome Island, central Great Barrier Reef. Photograph Evy Büttner.
- X-Z Phakellia sp. from -36 m, Point Cloates, Carnarvon Shelf, NW Australia. Sample CERF_2_53_1_15.
 Photographs Christine Schönberg, X bottom, Y top, and Z side views, CERF project (Schönberg et al., 2006).

Supplement 5.4: Incomplete and complete wide cups and tubular sponges

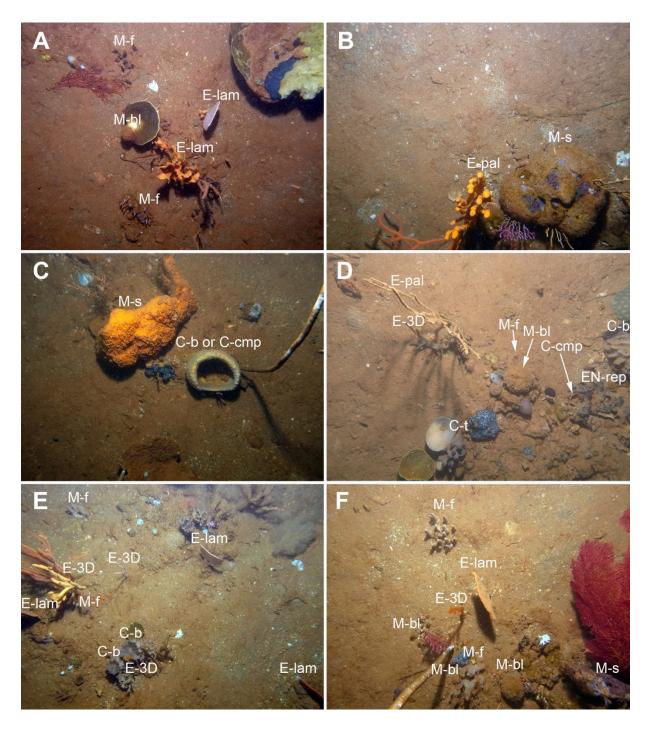
- A Yellow incomplete cup sponge in -95 m, Point Cloates, Carnarvon Shelf, NW Australia. Image AIMS.
- B Cf. *Stylissa flabelliformis* in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- C Incomplete cup sponge at North Head, Sydney Harbour, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- D *Ectyoplasia frondosa* in -12 m, Ashburton Island, NW Australia. Sample WAMSI_327 = WAM Z65327. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- E *Cymbastela stipitata* from -11 m, Onslow, NW Australia. Sample WAMSI_208 = WAM Z65188. Photograph Flora Siebler, WAMSI Dredging Science Node.
- F Macerated spongin skeleton of a keratose sponge, beach find, Ashburton Island, NW Australia. Photograph Christine Schönberg,
- G *Clathria* (*Thalysias*) cf. *lendenfeldi* from -11 m, Onslow, NW Australia. Sample WAMSI_333 = WAM Z65297. Photograph Flora Siebler, WAMSI Dredging Science Node. This sponge can be either interpreted as a fan or due to the slight rounding as a cup-like form.
- H-K Different cup-shaped sponges in -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node.
- L *Ectyoplasia frondosa* in -12 m, Onslow, NW Australia. Sample WAMSI_123 = WAM Z65146 (same as P). Photograph Evy Büttner, WAMSI Dredging Science Node.
- M Cf. Cymbastela stipitata in -12 m, Ashburton Island, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- N *Carteriospongia foliascens* in -1 m, Fantome Island, central Great Barrier Reef. Photograph Flora Siebler.
- O-P Cup-like sponges from -12 m, Onslow, NW Australia. Photographs Flora Siebler, WAMSI Dredging Science Node. O – *Echinodictyum clathrioides*. Sample WAMSI_155 = WAM Z53966. P – *Ectyoplasia frondosa*. Sample WAMSI _123 = WAM Z65146 (same as L).

- Q-S Tubular sponges in -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node. Q-R – Unidentified sponges, their habit and location in fine sediments possibly suggesting that they are fistular, rather than tubes. The scoring context sometimes needs to be decided from what is known about the sample area. S – lantella basta.
- T Sponge tube cluster at Port Stephens, New South Wales, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- U Unidentified sponge in -12 m, Ashburton Island, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- V Sponge tube cluster at Kurnell, Whale Watch Platform, Botany Bay, Sydney, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- W Macerated spongin skeleton of a tubular sponge, beach find, Fowlers Bay, S Australia. Photograph Christine Schönberg.
- X Dried tubular sponge, beach find, Ashburton Island, NW Australia. Photograph Christine Schönberg.

Supplement 5.5: Amphoras, barrels and 1D-erect sponges

- A *Euplectella* sp. in -810 to -830 m, Ocean Explorer dive 05-2019, Stetson Mound Field, waters off E Florida, USA. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1907/logs/photolog/welcome.html#, accessed April 25, 2020. Photograph US National Oceanic and Atmospheric Administration, creative commons.
- B Hexactinellid sponge in -750 to -830 m, Ocean Explorer dive 02-2019, Stetson Mesa, waters off E Florida, USA. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1907/logs/photolog/welcome.html#, accessed April 25, 2020. Photograph US National Oceanic and Atmospheric Administration, creative commons.
- C Amphora-like cluster of a sponge in -10 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- D Sponge amphora cluster at Bare Island, Botany Bay, Sydney, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission. Due to the density of this cluster, this could possibly alternatively be interpreted as a composite-massive sponge.
- E Macerated spongin skeleton of an amphora-shaped sponge, beach find, Rossiter Bay, Cape Le Grand, SW Australia. Photograph Christine Schönberg.
- F Barrel-shaped sponge in -8 to -15 m, Onslow, NW Australia. Photograph Australian Institute of Marine Science, WAMSI Dredging Science Node.
- G Barrel- or cup-like white sponge in an outer-shelf seabed habitat at the Muiron Islands, NW Australia. Photograph AIMS (Brooke et al., 2008).
- H Barrel-like sponge in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- Aff. *Pseudoceratina verrucosa* in -11 m, Onslow, NW Australia. Photograph Evy Büttner, WAMSI Dredging Science Node.
- J-K Barrel sponges at Onslow, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node. J – Cf. *Sarcotragus* sp. in -14 m. K – *Xestospongia testudinaria* in -12 m.
- L Spheciospongia vesparium from the W Atlantic. Sample ZMB1518. Photograph Christine Schönberg.
- M Spheciospongia sp. of unknown origin. Sample ZMB0037. Photograph Christine Schönberg.
- N Geodiid sponge from -108 m, Mandu, Carnarvon Shelf, NW Australia. Photograph Matthew McArthur, CERF project. Geoscience Australia, with friendly permission.
- O-P One-dimensionally erect sponges in a shelf habitat at the Muiron Islands, NW Australia. Photographs AIMS.
- Q Mostly one-dimensionally erect sponge in -10 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- R One-dimensionally erect branch of an orange sponge at Bare Island, Botany Bay, Sydney, SE Australia. https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- S-T One-dimensionally-erect sponges in -12 m, Onslow, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node. S *Reniochalina* cf. *stalagmitis*. Sample WAMSI_239 = WAM Z65235. T *Ernstilla lacunosa*.

U-W One-dimensionally-erect sponges from -21 m, Montgomery Reef, N Australia. Photographs Christine Schönberg. U – Trikentrion flabelliforme, sample KIM_1_1_89 = WAM Z29040 (with zoanthids). V – Unidentified sponge, sample KIM_1_1_93. W – Unidentified poecilosclerid sponge, sample KIM_1_1_74.


Supplement 5.6: 2D-erect sponges – laminar, palmate and reticulate erect sponges.

- A-B *lanthella* sp. -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node.
- C *Trikentrion flabelliforme* in -11 m, Onslow, NW Australia. Sample WAMSI_303 = WAM Z65303. Photograph Evy Büttner, WAMSI Dredging Science Node.
- D-E Erect-laminar sponges in -11 m, Onslow, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node. D Cf. Axinella aruensis. E Clathria (Thalysias) major, sample WAMSI_201 = WAM Z65164.
- F-G Erect-laminar sponges from -35 m, Red Bluff, Carnarvon Shelf, NW Australia. Photographs Christine Schönberg.
- H-J Erect-palmate sponges in -8 to -15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node.
- K Ernstilla lacunosa in -12 m, Onslow, NW Australia. Photograph Evy Büttner, WAMSI Dredging Science Node.
- L-M Erect-palmate sponges in -12 m, Ashburton Island, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node. L Ectyoplasia tabula. M Trikentrion flabelliforme with white zoanthids, sample WAMSI_317 = WAM Z65319.
- N *Ectyoplasia tabula* from -41 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_086_1_28. Photograph Andrew Heyward, CERF project (Schönberg et al., 2006).
- O Phorbas sp. from -35 m, Red Bluff, Carnarvon Shelf, NW Australia. Photograph Christine Schönberg.
- P *Desmacidon* sp. from -45 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_088_2_15. Photograph Andrew Heyward, CERF project.
- Q Erect-reticulate sponge in -10 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- R Cf. *Echinodictyum pulchrum* in -12 m, Onslow, NW Australia. Sample WAM Z65183. Photograph Christine Schönberg, WAMSI Dredging Science Node. The discolouration suggests that the sponge was diseased, compare to T.
- S Axos flabelliformis in -11 m, Onslow, NW Australia. Sample WAMSI_253 = WAM Z65218. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- T *Echinodictyum pulchrum* in -11 m, Onslow, NW Australia. Sample WAMSI_166 = WAM Z65183. Photograph Evy Büttner, WAMSI Dredging Science Node.
- U Unidentified sponge from -39 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_101_2_P8. Photograph Andrew Heyward, CERF project.
- V Clathria (Thalysias) coppingeri from -21 m, Montgomery Reef, N Australia. Photographs Christine Schönberg.

Supplement 5.7: 3D-erect branching, stalked and carnivorous sponges.

- A-B Three-dimensionally erect-branching sponges in 10-15 m, Onslow, NW Australia. Photographs AIMS, WAMSI Dredging Science Node. A Cf. *Cacospongia* sp. B Unidentified.
- C Cf. *Axos cliftoni* in -11 m, Onslow, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- D Cf. Adreus axiferum in -8 to -15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- E Cf. *Cacospongia* sp. in -11 m, Onslow, NW Australia. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- F Three-dimensionally erect-branching sponge at North Head, Sydney Harbour, SE Australia. From https://www.flickr.com/photos/johnwturnbull/albums/72157672870310525, accessed March 28, 2020. Photograph John Turnbull, with friendly permission.
- G Axinella aruensis in -11 m, Onslow, NW Australia. Sample WAMSI_277 = WAM Z65289. Photograph Christine Schönberg, WAMSI Dredging Science Node.
- H Callyspongia sp. from -21 m, S Montgomery Reef, N Australia. Photographs Christine Schönberg.
- Undetermined three-dimensionally erect-branching sponge from -37 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_089_1_7. Photograph Andrew Heyward, CERF project (Schönberg et al., 2006).

- J *Haliclona* sp. from -41 m, Gnaraloo, Carnarvon Shelf, NW Australia, sample CERF 3_086_1_20. Photograph Andrew Heyward, CERF project (Schönberg et al., 2006).
- K Cf. Aplysinopsis sp. in -8- to 15 m, Onslow, NW Australia. Photograph AIMS, WAMSI Dredging Science Node.
- L-M Stalked glass sponges in 2360 m, Ocean Explorer dive 11-2017, Laulima O Ka Moana, Johnston Atoll. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1706/dailyupdates/dailyupdates.html#cbpi=july 25.html, accessed April 25, 2020. Images US National Oceanic and Atmospheric Administration, creative commons.
- N Stalked lollipop sponge in -810 to -830 m, Ocean Explorer dive 05-2019, Stetson Mound Field, waters off E Florida, USA. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1907/logs/photolog/welcome.html#, accessed April 25, 2020. Image US National Oceanic and Atmospheric Administration, creative commons.
- O-P Stalked sponges, Onslow, NW Australia. Photographs Christine Schönberg, WAMSI Dredging Science Node.
 O Aplysinopsis sp. in -12 m, sample WAMSI_118 = WAM Z53977 (same as in Q). P Cf. Haliclona sp. in -14 m.
- Q Aplysinopsis sp. from -12 m, Onslow, NW Australia. Sample WAMSI_118 = WAM Z53977 (same as in Q). Photograph Flora Siebler, WAMSI Dredging Science Node.
- R *Acanthella* sp. from -91 m, Point Cloates, Carnarvon Shelf, NW Australia, sample CERF 2_041_1_1. Photograph Christine Schönberg, CERF project (Schönberg et al., 2006).
- S Carnivorous sponge in -4640 m, Ocean Explorer dive 10-2014, unnamed seamount, NW Atlantic. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1404/dailyupdates/dailyupdates.html#cbpi=sep t30.html, accessed April 25, 2020. Image US National Oceanic and Atmospheric Administration, creative commons.
- T Carnivorous sponge, Ocean Explorer dive in 2016, Hadal Wall at the Mariana Trench. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1605/logs/photolog/welcome.html#cbpi=/okea nos/explorations/ex1605/logs/may12/media/video/mn-habs.html, accessed May 1, 2020. Image US National Oceanic and Atmospheric Administration, creative commons.
- U Carnivorous sponges in -510 to -560 m, Ocean Explorer dive 08-2019, Miami Terrace off SE Florida, USA. From https://oceanexplorer.noaa.gov/okeanos/explorations/ex1907/logs/photolog/welcome.html#, accessed April 25, 2020. Image US National Oceanic and Atmospheric Administration, creative commons.
- *Chondrocladia (Chondrocladia) grandis* from the Gulf of Maine, Canada (Northern Neighbours Cruise). From https://oceanexplorer.noaa.gov/explorations/17gulfofmaine/logs/june15/june15.html, accessed April 25, 2020. Photograph US National Oceanic and Atmospheric Administration/Arctic Net, creative commons.

Supplement 6. Scoring examples for towed imagery captured with a stills camera pointing downwards, in -8 to -15 m at Onslow, NW Australia. Images were contrast-enhanced, but not otherwise changed. When zooming into images, corallite structure in most shallow cups confirmed that they were *Turbinaria* corals (in A, D – here one was bleached or dead, E). Mottled appearance of dark blue structures and translucent appearance of grey globular structures was suggestive of ascidians. Some sponges were recognised by finding pores on their surfaces (e.g. for E-pal in D). *C-b* – barrel, *C-cmp* – complete cup, *E-lam* – erect-laminar, fan, *E-pal* –palmate, *E-3D* – three-dimensionally erect-branching, *EN-rep* –here functioning as creeping, repent (dark grey patch, may become a barrel when growing up, may consist of two different sponges), *M-bl* – ball, *M-f* – fistular and endopsammic sponge, *M-s* – simple massive sponge.

Supplement References

- Abdo, D. A., McDonald, J. I., Harvey, E. S., Fromont, J. and Kendrick, G. A. (2008). Neighbour and environmental influences on the growth patterns of two temperate haliclonid sponges. *Marine and Freshwater Research* 59: 304-312. https://doi.org/10.1071/MF07165
- Abdul Wahab, M. A., Fromont, J., Gomez, O., Fisher, R. and Jones, R. (2017b). Comparisons of benthic filter feeder communities before and after a large-scale capital dredging program. *Marine Pollution Bulletin* 122: 176-193. https://doi.org/10.1016/j.marpolbul.2017.06.041
- Abdul Wahab, M. A., Gomez, O., Bryce, M. and Fromont, J. (2017a). Photo Catalogue of Marine Benthic Diversity off Onslow (Pilbara Region of Western Australia). *Report for Project 6.3.1. Dredging Science Node of the Western Australian Marine Science Institution, Perth, Western Australia*, 165 pp. Accessed March 31, 2020. https://www.wamsi.org.au/sites/wamsi.org.au/files/Photo_Catalogue_Marine_Benthic_Di versity_WAMSI_DSN_Project_6.3.1_Abdul_Wahab_et_al.pdf
- Abdul Wahab, M. A., Radford, B., Cappo, M., Colquhoun, J., Stowar, M., Depczynski, M., Miller, K. and Heyward, A. (2018). Biodiversity and spatial patterns of benthic habitat and associated demersal fish communities at two tropical submerged reef ecosystems. *Coral Reefs* 37: 327-343. https://doi.org/10.1007/s00338-017-1655-9
- Abraham, E.R. (2001). The fractal branching of an arborescent sponge. *Marine Biology* 138: 503-510. https://doi.org/10.1007/s002270000479
- Aerts, L. A. M. and van Soest, R.W.M. (1997). Quantification of sponge/coral interactions in a physically stressed reef community, NE Colombia. *Marine Ecology Progress Series* 148: 125-134. https://doi.org/10.3354/meps148125
- Alcolado, P.M. (1990). General features of Cuban sponge communities. In New Perspectives in Sponge Biology, edited by Rützler, K., pp. 351-357. Smithsonian Institution Press, Washington, DC. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Alcolado, P. M. (2007). Reading the code of coral reef sponge community composition and structure for environmental biomonitoring: some experiences from Cuba. In *Porifera Research. Biodiversity, Innovation and Sustainability*, edited by Custódio, M. R., Hajdu, E., Lôbo-Hajdu, G. and Muricy, G., pp. 3–10. Museu Nacional, Rio de Janeiro. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Althaus, F., Hill, N., Edwards, L. and Ferrari, R. (2014). CATAMI Classification Scheme for Scoring Marine Biota and Substrata in Underwater Imagery. A Pictorial Guide to the Collaborative and Automated Tools for Analysis of Marine Imagery (CATAMI) Classification Scheme. Version 1.4 – December 2014. Marine Biodiversity Hub. National Environmental Science Programme, Hobart. Accessed February 28, 2020. http://catami.github.io/catami-docs/CATAMI%20class PDFGuide V4 20141218.pdf.
- Alvarez, B., Frings, P. J., Clymans, W., Fontorbe, G. and Conley, D. J. (2017). Assessing the potential of sponges (Porifera) as indicators of ocean dissolved Si concentrations. *Frontiers in Marine Science* 4: 373. https://doi.org/10.3389/fmars.2017.00373
- Alvarez, B. and Hooper, J. N. (2009). Taxonomic revision of the order Halichondrida (Porifera: Demospongiae) of Northern Australia: family Axinellidae. *The Beagle: Records of the Museums and Art Galleries of the Northern Territory* 25: 17-42. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Austin, W. C., Conway, K. W., Barrie, J. V. and Krautter, M. (2007). Growth and morphology of a reef-forming glass sponge, *Aphrocallistes vastus* (Hexactinellida), and implications for recovery from widespread trawl damage. In *Porifera Research. Biodiversity, Innovation, and Sustainability*, edited by Custódio, M. R., Lôbo-Hajdu, G., Hajdu, E. and Muricy, G., pp. 139-145. Séries Livros Museu Nacional 28, Rio de Janeiro. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Ávila, E., Carballo, J. L., Vega, C., Camacho, L., Barrón-Álvarez, J. J., Padilla-Verdín, C. and Yáñez-Chávez, B. (2011). Deposition of shallow water sponges in response to seasonal changes. *Journal of Sea Research* 66: 172-180. https://doi.org/10.1016/j.seares.2011.06.001

- Ávila, E. and Ortega-Bastida, A. L. (2015). Influence of habitat and host morphology on macrofaunal assemblages associated with the sponge *Halichondria melanadocia* in an estuarine system of the southern Gulf of Mexico. *Marine Ecology* 36: 1345-1353. https://doi.org/10.1111/maec.12233
- Bannister, R.J., Brinkman, R., Wolff, C., Battershill, C., de Nys, R., 2007. The distribution and abundance of dictyoceratid sponges in relation to hydrodynamic features: identifying candidates and environmental conditions for sponge aquaculture. Marine and Freshwater Research 58: 624-633. https://doi.org/10.1071/MF07011
- Barnes, D. K. A. (1999). High diversity of tropical intertidal zone sponges in temperature, salinity and current extremes. *African Journal of Ecology* 37: 424-434. https://doi.org/10.1046/j.1365-2028.1999.00197.x
- Barnes, D. K. A. and Bell, J. J. (2002). Coastal sponge communities of the West Indian Ocean: morphological richness and diversity. *African Journal of Ecology* 40: 350-359. https://doi.org/10.1046/j.1365-2028.2002.00388.x
- Barthel, D. (1991). Influence of different current regimes on the growth form of *Halichondria panicea* Pallas. In *Fossil and Recent Sponges*, edited by Reitner, J. and Keupp, H., pp. 387-394. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75656-6_31
- Barthel, D. and Gutt, J. (1992). Sponge associations in the eastern Weddell Sea. *Antarctic Science* 4: 137-150. https://doi.org/10.1017/S0954102092000221
- Barthel, D. and Tendal, O. S. (1993). The sponge association of the abyssal Norwegian Greenland Sea: species composition, substrate relationships and distribution. Sarsia 78: 83-96. https://doi.org/10.1080/00364827.1993.10413524
- Becerro, M. A., Turon, X. and Uriz, M. J. (1995). Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environment. Journal of Chemical Ecology 21: 1931-1946. https://doi.org/10.1007/BF02033853
- Becerro, M. A., Uriz, M. J. and Turon, X. (1994). Trends in space occupation by the encrusting sponge Crambe crambe: variation in shape as a function of size and environment. Marine Biology 121: 301-307. https://doi.org/10.1007/BF00346738
- Bell, J. J. (2002). The sponge community in a semi-submerged temperate sea cave: density, diversity and richness. *Marine Ecology* 23: 297-311. https://doi.org/10.1046/j.1439-0485.2002.02784.x
- Bell, J. J. (2004). Evidence for morphology-induced sediment settlement prevention on the tubular sponge Haliclona urceolus. Marine Biology 146: 29-38. https://doi.org/10.1007/s00227-004-1429-0
- Bell, J. J. (2007a). Contrasting patterns of species and functional composition of coral reef sponge assemblages. *Marine Ecology Progress Series* 339: 73-81. https://doi.org/10.3354/meps339073
- Bell, J. J. (2007b). The use of volunteers for conducting sponge biodiversity assessments and monitoring using a morphological approach on Indo-Pacific coral reefs. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 133-145. https://doi.org/10.1002/aqc.789
- Bell, J. J. and Barnes, D. K. (2000a). The influences of bathymetry and flow regime upon the morphology of sublittoral sponge communities. *Journal of the Marine Biological Association of the United Kingdom* 80: 707-718. https://doi.org/10.1017/S0025315400002538
- Bell, J. J. and Barnes, D. K. A. (2000b). The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: vertical cliff surfaces. *Diversity and Distributions* 6: 283-303. https://doi.org/10.1046/j.1472-4642.2000.00091.x
- Bell, J. J. and Barnes, D. K. A. (2000c). The distribution and prevalence of sponges in relation to environmental gradients within a temperate sea lough: inclined cliff surfaces. *Diversity and Distributions* 6: 305-323. https://doi.org/10.1046/j.1472-4642.2000.00092.x
- Bell, J. J. and Barnes. D. K. (2002d). Modelling sponge species diversity using a morphological predictor: a tropical test of a temperate model. Journal for Nature Conservation 10: 41-50. https://doi.org/10.1078/1617-1381-00005
- Bell, J. J. and Barnes. D. K. (2002). Modelling sponge species diversity using a morphological predictor: a tropical test of a temperate model. *Journal for Nature Conservation* 10: 41-50. https://doi.org/10.1078/1617-1381-00005
- Bell, J. J. and Barnes, D. K. (2003). The importance of competitor identity, morphology and ranking

methodology to outcomes in interference competition between sponges. *Marine Biology* 143: 415-426. https://doi.org/10.1007/s00227-003-1081-0

- Bell, J. J., Barnes, D. K. A. and Shaw, C. (2002a). Branching dynamics of two species of arborescent demosponge: the effect of flow regime and bathymetry. *Journal of the Marine Biological Association* of the United Kingdom 82: 279-294. https://doi.org/10.1017/S0025315402005465
- Bell, J., Barnes, D. and Turner, J. (2002b). The importance of micro and macro morphological variation in the adaptation of a sublittoral demosponge to current extremes. *Marine Biology* 140: 75-81. https://doi.org/10.1007/s002270100665
- Bell, J.J., McGrath, E., Kandler, N.M., Marlow, J., Beepat, S.S., Bachtiar, R., Shaffer, M.R., Mortimer, C., Micaroni, V., Mobilia, V. and Rovellini, A. (2020). Interocean patterns in shallow water sponge assemblage structure and function. *Biological Reviews* 95: 1720-1758. https://doi.org/10.1111/brv.12637
- Bell, J. J. and Smith, D. (2004). Ecology of sponge assemblages (Porifera) in the Wakatobi region, south-east Sulawesi, Indonesia: richness and abundance. *Journal of the Marine Biological Association of the UK* 84: 581–591. https://doi.org/10.1017/S0025315404009580h
- Berman, J., Burton, M., Gibbs, R., Lock, K., Newman, P., Jones, J. and Bell, J. (2013). Testing the suitability of a morphological monitoring approach for identifying temporal variability in a temperate sponge assemblage. Journal for Nature Conservation 21: 173-182. https://doi.org/10.1016/j.jnc.2012.12.003
- Bertolino, M., Bo, M., Canese, S., Bavestrello, G. and Pansini, M. (2015). Deep sponge communities of the Gulf of St Eufemia (Calabria, southern Tyrrhenian Sea), with description of two new species. *Journal* of the Marine Biological Association of the United Kingdom 95: 1371-1387. https://doi.org/10.1017/S0025315413001380
- Bewley, M., Friedman, A., Ferrari, R., Hill, N., Hovey, R., Barrett, N., Marzinelli, E. M., Pizarro, O., Figueira, W., Meyer, L., Babcock, R., Bellchambers, L., Byrne, M. and Williams, S. B. (2015). Australian sea-floor survey data, with images and expert annotations. *Scientific Data* 3: 150057. https://doi.org/10.1038/sdata.2015.57
- Bibiloni, M.A., Uriz, M.J. and Gili, J.M. (1989). Sponge communities in three submarine caves of the Balearic Islands (Western Mediterranean): adaptations and faunistic composition. *Marine Ecology* 10: 317-334. https://doi.org/10.1111/j.1439-0485.1989.tb00076.x
- Bidder, G. P. (1923). The relation of the form of a sponge to its currents. Quarterly Journal of Microscopical Science 67: 293-323. Accessed April 15, 2020. https://jcs.biologists.org/content/joces/s2-67/266/293.full.pdf
- Biggs, B. C. (2013). Harnessing natural recovery processes to improve restoration outcomes: an experimental assessment of sponge-mediated coral reef restoration. *Public Library of Science One* 8: e64945. https://doi.org/10.1371/journal.pone.0064945
- Boury-Esnault, N. and Rützler, K. (1997). Thesaurus of sponge morphology. *Smithsonian Contributions to Zoology* 596: 1-55. Accessed April 14, 2020. https://repository.si.edu/bitstream/handle/10088/5449/SCtZ-0596-Lo_res.pdf?sequence=1
- Brooke, B., Nichol, S., Hughes, M., McArthur, M., Anderson, T., Przeslawski, R., Siwabessy, J., Heyward, A., Battershill, C., Colquhoun, J. and Doherty, P. (2009). Carnarvon Shelf Survey post-survey report 12 August – 15 September 2008. Geoscience Australia Survey SOL4769. *Geoscience Australia Record* 2009/02, 89 pp. Geoscience Australia, Canberra. Accessed April 26, 2020. https://d28rz98at9flks.cloudfront.net/68525/Rec2009_002.pdf
- Burton, M. 1928 A comparative study of the characteristics of shallow and deep-sea sponges, with notes on their external form and reproduction, *Journal of the Quekett Microscopic Club*, 16: 49-70.
- Burton, M. (1947). XVIII. The significance of size in sponges. Annals and Magazine of Natural History 14: 216-220. https://doi.org/10.1080/00222934708654627
- Calcinai, B., Bavestrello, G., Bertolino, M., Pica, D., Wagner, D. and Cerrano, C. (2013). Sponges associated with octocorals in the Indo-Pacific, with the description of four new species. *Zootaxa* 3617: 1-61. http://dx.doi.org/10.11646/zootaxa.3617.1.1
- Carballo, J. L. (2006). Effect of natural sedimentation on the structure of tropical rocky sponge assemblages. *Ecoscience* 13: 119-130. https://doi.org/10.2980/1195-6860(2006)13[119:EONSOT]2.0.CO;2

- Carballo, J. L., Naranjo, S. A. and García-Gómez, J. C. (1996). Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula). *Marine Ecology Progress Series* 135: 109-122. https://doi.org/10.3354/meps135109
- Carballo, J. L., Ávila, E., Enríquez, S. and Camacho, L. (2006). Phenotypic plasticity in a mutualistic association between the sponge *Haliclona caerulea* and the calcareous macroalga *Jania adherens* induced by transplanting experiments. I: Morphological responses of the sponge. *Marine Biology* 148: 467-478. https://doi.org/10.1007/s00227-005-0104-4
- Carballo, J. L. and Nava, H. (2007). A comparison of sponge assemblage patterns in two adjacent rocky habitats (tropical Pacific Ocean, Mexico). *Écoscience* 14: 92-102. Accessed December 17, 2020. https://www.tandfonline.com/doi/abs/10.2980/1195-6860(2007)14%5B92%3AACOSAP%5D2.0.CO%3B2?casa_token=aFjsmsdSlyYAAAAA:FfHesSEvIn9RJ nSjAjcwg0wdWj4-MJ1gWPGV9zRU2-UTUwDcHUHTup1wxHkqjva4Apm7Xs8KXe8QMA.
- Cárdenas, P. and Rapp, H. T. (2012). A review of Norwegian streptaster-bearing Astrophorida (Porifera: Demospongiae: Tetractinellida), new records and a new species. *Zootaxa*, (3253), 1-53. http://dx.doi.org/10.11646/zootaxa.3253.1.1
- Carreiro-Silva, M. and McClanahan, T. R. (2012). Macrobioerosion of dead branching *Porites*, 4 and 6 years after coral mass mortality. *Marine Ecology Progress Series* 458: 103-122. https://doi.org/10.3354/meps09726
- Carroll, A., Tran, M. and Przesławski, R. (2014). Use of underwater videography and still imagery for sponge biodiversity habitat mapping and modelling. *F1000 Research*: 1095360. Accessed March 28, 2020. https://f1000research.com/slides/1095360
- Cebrian, E., Martí, R., Uriz, J. M. and Turon, X. (2003). Sublethal effects of contamination on the Mediterranean sponge *Crambe crambe*: metal accumulation and biological responses. *Marine Pollution Bulletin* 46: 1273-1284. https://doi.org/10.1016/S0025-326X(03)00190-5
- Cerrano, C., Bavestrello, G., Boyer, M., Calcinai, B., Lalamentik, L. T. X. and Pansini, M. (2002) Psammobiontic sponges from the Bunaken Marine Park (North Sulawesi, Indonesia): interactions with sediments. In *Proceedings of the Ninth International Coral Reef Symposium, Bali Convention Centre, Bali 23–27 October 2000, Volume 1*, edited by Moosa, M. K., Soemodihardjo, S., Soegiarto, A., Romimohtarto K., Nontji, A., Soekarno and Suharsono, pp. 279–282. Ministry of Environment, Indonesian Institute of Science, International Society for Reef Studies, Denpasar. Accessed December 17, 2020. http://www.reefbase.org/resource_center/publication/pub_14758.aspx.
- Cleary, D. F. R. and de Voogd, N. J. (2007). Environmental associations of sponges in the Spermonde Archipelago, Indonesia. *Journal of the Marine Biological Association of the United Kingdom* 87: 1669-1676. https://doi.org/10.1017/S0025315407052770
- Cummings, V. J., Beaumont, J., Mobilia, V., Bell, J. J., Tracey, D., Clark, M. R., and Barr, N. (2020). Responses of a common New Zealand coastal sponge to elevated suspended sediments: indications of resilience. *Marine Environmental Research* 155: 104886. https://doi.org/10.1016/j.marenvres.2020.104886
- Dahihande, A. S. and Thakur, N. L. (2017). Differential growth forms of the sponge *Biemna fortis* govern the abundance of its associated brittle star *Ophiactis modesta*. *Journal of Sea Research* 126: 1-11. https://doi.org/10.1016/j.seares.2017.06.007
- Davis, A. R., Ayre, D. J., Billingham, M. R., Styan, C. A. and White, G. A. (1996). The encrusting sponge Halisarca laxus: population genetics and association with the ascidian Pyura spinifera. Marine Biology 126: 27-33. https://doi.org/10.1007/BF00571374
- De Laubenfels, M. W. (1954). The sponges of the West-Central Pacific. Oregon State Monographic Studies in Zoology 7: 1-320. Accessed December 17, 2020. https://www.biodiversitylibrary.org/item/28986#page/3/mode/1up.
- Denny, M. W. (1988). *Biology and the Mechanics of the Wave-Swept Environment*. Princeton University Press, Princeton, 344 pp. Accessed December 17, 2020. https://press.princeton.edu/books/hardcover/9780691635507/biology-and-the-mechanics-of-thewave-swept-environment.
- Denny, M. W. (1994). Extreme drag forces and the survival of wind and water-swept organisms. Journal ofExperimentalBiology194:97-115.AccessedDecember17,2020.

https://jeb.biologists.org/content/194/1/97.

- Denny, M. W., Daniel, T. L. and Koehl, M. A. R. (1985). Mechanical limits to size in wave-swept organisms. *Ecological Monographs* 55: 69-102. https://doi.org/10.2307/1942526
- De Voogd, N. J. and Cleary, D. F. (2007). Relating species traits to environmental variables in Indonesian coral reef sponge assemblages. *Marine and Freshwater Research* 58: 240-249. https://doi.org/10.1071/MF06125
- De Voogd, N. J. and Cleary, D. F. R. (2009). Variation in sponge composition among Singapore reefs. *Raffles Bulletin of Zoology, Supplement* 22: 59-67. Accessed December 17, 2020. https://www.researchgate.net/publication/216786770_Variation_in_sponge_composition_among __Singapore_reefs.
- Diaz, M. C. (2012). Mangrove and coral reef sponge faunas: untold stories about shallow water Porifera in the Caribbean. *Hydrobiologia* 687: 179-190. https://doi.org/10.1007/s10750-011-0952-5
- Díaz, M. C., Alvarez, B. and Laughlin, R.A. (1990). The sponge fauna on a fringing coral reef in Venezuela, II: community structure. In *New Perspectives in Sponge Biology*, edited by Rützler, K., pp. 367-375. Smithsonian Institute Press, Washington, DC. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Driscoll, E. G. (1967). Attached epifauna-substrate relations. Limnology and Oceanography 12: 633–641. https://doi.org/10.4319/lo.1967.12.4.0633
- Duckworth, A. R. (2016). Substrate type affects the abundance and size of a coral-reef sponge between depths. *Marine and Freshwater Research*, 67: 246-255. https://doi.org/10.1071/MF14308
- Fabricius, K. E., Langdon, C., Uthicke, S., Humphrey, C., Noonan, S., De'ath, G., Okazaki, R., Muehllehner, N., Glas, M.S. and Lough, J. M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. *Nature Climate Change* 1: 165-169. https://doi.org/10.1038/nclimate1122
- Fenner, D. P. (1991). Effects of Hurricane Gilbert on coral reefs, fishes, and sponges at Cozumel, Mexico. Bulletin of Marine Science 42: 133–144 Accessed December 17, 2020. https://www.ingentaconnect.com/content/umrsmas/bullmar/1991/00000048/0000003/art0001 1.
- Freeman, C. J., Gleason, D. F., Ruzicka, R., van Soest, R. W. M., Harvey, A. W. and McFall, G. (2007). A biogeographic comparison of sponge fauna from Gray's Reef National Marine Sanctuary and other hard-bottom reefs of coastal Georgia, USA. In *Porifera Research. Biodiversity, Innovation, and Sustainability*, edited by Custódio, M. R., Lôbo-Hajdu, G., Hajdu, E., and Muricy, G., pp. 319-325. *Séries Livros Museu Nacional* 28, Rio de Janeiro. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Fry, W. G. (1971). The biology of larvae of *Ophlitaspongia seriata* from two North Wales populations. In *Fourth Marine Biology Symposium*, edited by Crisp, D. J., pp. 155-178. Cambridge University Press, Cambridge. Accessed December 17, 2020. https://books.google.com.tw/books?hl=en&lr=&id=aBpMCCp_o2EC&oi=fnd&pg=PA155&dq=The+biology+of+larvae+of+Ophlitaspongia+seriata&ots=_vkfxBvZnY&sig=3qjlAMXgTu5aMMrMr4eHd5k UwOM&redir_esc=y#v=onepage&q=The%20biology%20of%20larvae%20of%20Ophlitaspongia%20 seriata&f=false.
- Fry, W. G. (1979). Taxonomy, the individual and the sponge. In *Biology and Systematics of Colonial Organisms. The Systematics Association Special Volume* 11, edited by Larwood, G. and Rosen, B. R., pp. 49-80. Academic Press, London, New York, San Francisco.
- Garate, L., Blanquer, A. and Uriz, M. J. (2017). Contrasting biological features in morphologically cryptic Mediterranean sponges. *PeerJ* : e3490. https://doi.org/10.7717/peerj.3490
- George, A. M., Brodie, J., Daniell, J., Capper, A. and Jonker, M. (2018). Can sponge morphologies act as environmental proxies to biophysical factors in the Great Barrier Reef, Australia? *Ecological Indicators* 93: 1152-1162. https://doi.org/10.1016/j.ecolind.2018.06.016
- Ginn, B. K., Logan, A. and Thomas, M. L. H. (2000). Sponge ecology on sublittoral hard substrates in a high current velocity area. *Estuarine, Coastal and Shelf Science* 50: 403-414. https://doi.org/10.1006/ecss.1999.0563
- Gochfeld, D. J., Olson, J. B., Chaves-Fonnegra, A., Smith, T. B., Ennis, R. S. and Brandt, M. E. (2020). Impacts of hurricanes Irma and Maria on coral reef sponge communities in St. Thomas, US Virgin Islands.

Estuaries and Coasts 2020: 1-13. https://doi.org/10.1007/s12237-020-00694-4

- Goodwin, C., Rodolfo-Metalpa, R., Picton, B. and Hall-Spencer, J. M. (2014). Effects of ocean acidification on sponge communities. *Marine Ecology* 35: 41-49. https://doi.org/10.1111/maec.12093
- Hadi, T. A., Hadiyanto, Budiyanto, A., Wentao, N. and Suharsono (2015). The morphological and species diversity of sponges on coral reef ecosystems in the Lembeh Strait, Bitung. *Marine Research in Indonesia* 40: 65-77. https://doi.org/10.14203/mri.v40i2.45
- Hartman, W. D. and Goreau, T. (1970) Jamaican coralline sponges: their morphology, ecology and fossil relatives. In *The Biology of the Porifera*. *Symposium of the Zoological Society of London* 25, edited by Fry, W. G., pp. 205-243. Academic Press, London. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Hill, M. S. (1999). Morphological and genetic examination of phenotypic variability in the tropical sponge Anthosigmella varians. Memoirs of the Queensland Museum 44: 239-248. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Hill, M. S. and Hill, A. L. (2002). Morphological plasticity in the tropical sponge Anthosigmella varians: responses to predators and wave energy. *The Biological Bulletin* 202: 86-95. Accessed December 17, 2020.

https://www.journals.uchicago.edu/doi/full/10.2307/1543225?casa_token=SWLrY_kqSmEAAAAA %3A4Nk0zTJaViqLkXj31fY4-2T_CReOXM3bfICzuCjBN11oYdbOXOUUnHJyRbZ7KQJX38nIO-geCZKn.

- Hiscock, K. (1983). Water movement. In *Sublittoral Ecology. The Ecology of the Shallow Sublittoral Benthos*, edited by Earll, R. and Erwin, D. G., pp. 58-96. Clarendon Press, Oxford.
- Hiscock, K., Stone, S. M. K. and George, J. D. (1983 [1984]). The marine fauna of Lundy. Porifera (sponges). *Reports of the Lundy Field Society* 34: 16-35.
- Hooper, J. N. A. (1991). Revision of the Family Raspailiidae (Porifera: Demospongiae), with description of Australian species. *Invertebrate Taxonomy* 5: 1179-1415. https://doi.org/10.1071/IT9911179
- Jackson, J. B. C. (1979). Morphological strategies of sessile animals. In *Biology and Systematics of Colonial Organisms. The Systematics Association Special Volume* 11, edited by Larwood, G. and Rosen, B. R., pp. 499-555. Academic Press, London, New York, San Francisco. Accessed December 17, 2020. http://www.reefbase.org/resource_center/publication/pub_8474.aspx.
- James, L. C., Marzloff, M. P., Barrett, N., Friedman, A. and Johnson, C. R. (2017). Changes in deep reef benthic community composition across a latitudinal and environmental gradient in temperate Eastern Australia. *Marine Ecology Progress Series* 565: 35-52. https://doi.org/10.3354/meps11989
- Kaandorp, J. A. (1991). Modelling growth forms of the sponge *Haliclona oculata* (Porifera, Demospongiae) using fractal techniques. *Marine Biology* 110: 203-215. https://doi.org/10.1007/BF01313706
- Kaandorp, J. A. (1999). Morphological analysis of growth forms of branching marine sessile organisms along environmental gradients. *Marine Biology* 134: 295-306. https://doi.org/10.1007/s002270050547
- Kaandorp, J. A. and de Kluijver, M. J. (1992). Verification of fractal growth models of the sponge Haliclona oculata (Porifera) with transplantation experiments. Marine Biology 113: 133-143. https://doi.org/10.1007/BF00367647
- Kaandorp, J. A. and Sloot, P. M. (2001). Morphological models of radiate accretive growth and the influence of hydrodynamics. *Journal of Theoretical Biology* 209: 257-274. https://doi.org/10.1006/jtbi.2001.2261
- Kelly, M., Bell, L. and Herr, B. (2016). *Splendid Sponges of Palau. Version 1*. Accessed April 4, 2020. https://coralreefpalau.org/wp-content/uploads/2017/04/Splendid-Sponges-of-Palau.pdf
- Kelly, M. and Herr, B. (2015). *Splendid Sponges. A Guide to the Sponges of New Zealand*. Accessed April 4, 2020. https://niwa.co.nz/static/web/splendid_sponges_2015.pdf
- Kelly, T. and Przesławski, R. (2012). The ecology and morphology of sponges and octocorals in the northeastern Joseph Bonaparte Gulf. *Geoscience Australia Record* 2012/67, 93 pp. Geoscience Australia, Canberra. Accessed April 5, 2020. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/74119
- Krautter, M. (1998). Ecology of siliceous sponges application to the environmental interpretation of the Upper Jurassic sponge facies (Oxfordian) from Spain. *Cuadernos de Geologia Ibérica* 24: 223-239.
- Lawler, M. M. and Osborn, J. E. (2008). Photogrammetric classification of sponge morphometric diversity.

In Proceedings of the 14th Australian Remote Sensing and Photogrammetry Conference, 29 September - 3 October 2008, Darwin. Accessed January 27, 2020. https://eprints.utas.edu.au/8385/.

- Lesser, M.P. (2006). Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. Journal of Experimental Marine Biology and Ecology 328: 277-288. https://doi.org/10.1016/j.jembe.2005.07.010
- Lim, S. C., de Voogd, N. J. and Tan, K. S. (2012). Biodiversity of shallow-water sponges (Porifera) in Singapore and description of a new species of *Forcepia* (Poecilosclerida: Coelosphaeridae. *Contributions to Zoology* 81: 55-71d. https://doi.org/10.1163/18759866-08101004
- Maldonado, M, and Young, C. M. (1996). Bathymetric patterns of sponge distribution on the Bahamian slope. *Deep Sea Research Part I: Oceanographic Research Papers* 43: 897-915. https://doi.org/10.1016/0967-0637(96)00042-8
- Maldonado, M. and Young, C. M. (1998). Limits on the bathymetric distribution of keratose sponges: a field test in deep water. *Marine Ecology Progress Series* 174: 123-139. https://doi.org/doi:10.3354/meps174123
- Manconi, R. and Pronzato, R. (1991) Life cycle of *Spongilla lacustris* (Porifera, Spongillidae): a cue for environment dependent phenotype. Hydrobiologia 220, 155-160. https://doi.org/10.1007/BF00006548
- McDonald, J. I., Hooper, J. N. A., McGuinness, K. A. (2002) Environmentally influenced variability in the morphology of *Cinachyrella australiensis* (Carter, 1886) (Porifera: Spirophorida: Tetillidae). *Marine* and Freshwater Research 53: 79-84. https://doi.org/10.1071/MF00153
- McDonald, J. I., McGuinness, K. A. and Hooper, J. N. A. (2003). Influence of re-orientation on alignment to flow and tissue production in a *Spongia* sp. (Porifera: Demospongiae: Dictyoceratida). *Journal of Experimental Marine Biology and Ecology* 296: 13-22. https://doi.org/10.1016/S0022-0981(03)00302-2
- Meroz-Fine, E., Shefer, S. and Ilan, M. (2005). Changes in morphology and physiology of an East Mediterranean sponge in different habitats. *Marine Biology* 147: 243-250. https://doi.org/10.1007/s00227-004-1532-2
- Morrow, K. M., Bourne, D. G., Humphrey, C., Botté, E. S., Laffy, P., Zaneveld, J., Uthicke, S., Fabricius, K. E. and Webster, N. S. (2015). Natural volcanic CO₂ seeps reveal future trajectories for host–microbial associations in corals and sponges. *The ISME Journal* 9: 894-908. https://doi.org/10.1038/ismej.2014.188
- Neves, G. and Omena, E. (2003). Influence of sponge morphology on the composition of the polychaete associated fauna from Rocas Atoll, northeast Brazil. *Coral Reefs* 22: 123-129. https://doi.org/10.1007/s00338-003-0295-4
- Palumbi, S. R. (1984). Tactics of acclimation: morphological changes of sponges in an unpredictable environment. *Science* 225: 1478-1480. https://doi.org/10.1126/science.225.4669.1478
- Palumbi, S. R. (1986). How body plans limit acclimation: responses of a demosponge to wave force. *Ecology* 67: 208-214. https://doi.org/10.2307/1938520
- Peattie, M. E. and Hoare, R. (1981). The sublittoral ecology of the Menai Strait. II. The sponge Halichondria panicea (Pallas) and its associated fauna. Estuarine, Coastal and Shelf Science 13: 621-635. https://doi.org/10.1016/S0302-3524(81)80044-8
- Pineda, M. C., Duckworth, A. and Webster, N. (2016). Appearance matters: sedimentation effects on different sponge morphologies. *Journal of the Marine Biological Association of the United Kingdom* 96: 481-492. https://doi.org/10.1017/S0025315414001787
- Pitcher, C. R., Haywood, M., Hooper, J., Coles, R., Bartlett, C., Browne, M., Cannard, T., Carini, G., Carter, A., Cheers, S., Chetwynd, D., Colefax, A., Cook, S., Davie, P., Ellis, N., Fellegara, I., Forcey, K., Furey, M., Gledhill, D., Hendriks, P., Jacobsen, I., Johnson, J., Jones, M., Last, P., Marks, S., McLeod, I., Sheils, J., Sheppard, J., Smith, G., Strickland, C., van der Geest, C., Venables, W., Wassenberg, T. and Yearsley, G. (2007). Mapping and characterisation of key biotic and physical attributes of the Torres Strait ecosystem. *CSIRO/QM/QDPI CRC Torres Strait Task Final Report for Cooperative Research Centre for Torres Strait Task T2.1*, 145 pp. CSIRO Marine and Atmospheric Research, Cleveland. Accessed March 30, 2020. http://www.cmar.csiro.au/datacentre/torres/CRCTS2003_06/pubs/T2.1_CRC-TS_Mapping_and_Characterisation_of_Torres_Strait_Seabed_FINAL_Report.pdf

- Pronzato, R., Bavestrello, G. and Cerrano, C. (1998). Morpho-functional adaptations of three species of Spongia (Porifera, Demospongiae) from a Mediterranean vertical cliff. Bulletin of Marine Science 63: 317-328. Accessed December 17, 2020. https://www.ingentaconnect.com/content/umrsmas/bullmar/1998/00000063/0000002/art0000 7.
- Reeson, P., Cowell, L., Narinesingh, D., Campbell, G. and Shirley, S. (2002). *Environmental impact assessment. Proposed dredging works at West Harbor, Port Antonio, Jamaica*. Environmental Solutions Ltd., Kingston. Accessed April 20, 2020. https://www.nepa.gov.jm/new/services_products/applications/eias/docs/Portland/ptantonio/Fina IReport_PtAntonio_Dredging.pdf
- Roberts, D. E., Cummins, S. P., Davis, A. R. and Chapman, M. G. (2006a). Structure and dynamics of spongedominated assemblages on exposed and sheltered temperate reefs. *Marine Ecology Progress Series* 321: 19-30. https://doi.org/10.3354/meps321019
- Roberts, D. E. and Davis, A. R., (1996). Patterns in sponge (Porifera) assemblages on temperate coastal reefs off Sydney. Australia. *Marine and Freshwater Research* 47: 897-906. https://doi.org/10.1071/MF9960897
- Roberts, D. E., Davis, A. R. and Cummins, S. P. (2006b). Experimental manipulation of shade, silt, nutrients and salinity on the temperate reef sponge *Cymbastela concentrica*. *Marine Ecology Progress Series* 307: 143-154. https://doi.org/10.3354/meps307143
- Rush, N., Kelly, M. and Herr, B. (2017). Splendid Sponges Version 1-2017. A Guide to the Intertidal Sponges of New Zealand. Accessed April 15, 2020. https://niwa.co.nz/coasts-and-oceans/marineidentification-guides-and-fact-sheets/intertidal_sponges
- Rützler, K. (1972). Principles of sponge distribution in Indo-Pacific coral reefs: results of the Austrian Indo-Westpacific Expedition 1959/60. In *Proceedings of the First International Symposium un Corals and Coral Reefs, held under the Auspices of the Marine Biological Association of India, at Mandapam Camp, on 12 to 16 January 1960,* edited by Mukundan, C. and Gopinadha Pillai, C. S., pp. 315-332. The Marine Biological Association of India, Association of India, Association of India, 2020. https://repository.si.edu/bitstream/handle/10088/7852/iz_Ruetzler_1972.pdf.
- Ruzicka, R., and Gleason, D. F. (2009). Sponge community structure and anti-predator defenses on temperate reefs of the South Atlantic Bight. *Journal of Experimental Marine Biology and Ecology*, 380: 36-46. https://doi.org/10.1016/j.jembe.2009.08.011
- Schmahl, G. P. (1990). Community structure and ecology of sponges associated with four southern Florida coral reefs. In *New Perspectives in Sponge Biology*, edited by Rützler, K., pp. 376-383. Smithsonian Press, Washington D.C. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Schönberg, C. H. L. (2000). Bioeroding sponges common to the Central Australian Great Barrier Reef: descriptions of three new species, two new records, and additions to two previously described species. *Senckenbergiana Maritima* 30: 161-221. https://doi.org/10.1007/BF03042965
- Schönberg, C. H. L. (2001). Small-scale distribution of Great Barrier Reef bioeroding sponges in shallow water. *Ophelia* 55: 39-54. https://doi.org/10.1080/00785236.2001.10409472
- Schönberg, C. H. L. (2008). A history of sponge erosion: from past myths and hypotheses to recent approaches. In *Current Developments in Bioerosion*, edited by Wisshak, M. and Tapanila, L., pp. 165-202. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_9
- Schönberg, C. H. L. (2015). Self-cleaning surfaces in sponges. *Marine Biodiversity*, 45: 623-624. https://doi.org/10.1007/s12526-014-0302-8
- Schönberg, C. H. L. (2016). Happy relationships between marine sponges and sediments a review and some observations from Australia. *Journal of the Marine Biological Association of the United Kingdom* 96: 493-514. https://doi.org/10.1017/S0025315415001411
- Schönberg, C. H. L. and Barthel, D. (1997). Inorganic skeleton of the demosponge *Halichondria panicea*. Seasonality in spicule production in the Baltic Sea. *Marine Biology* 130: 133-140. https://doi.org/10.1007/s002270050232
- Schönberg, C. H. L., Fang, J. K. H. and Carballo, J. L. (2017). Bioeroding sponges and the future of coral reefs. In *Climate Change, Ocean Acidification and Sponges* edited by Carballo, J. L. and Bell, J. J., pp. 179-

372. Springer, Cham. https://doi.org/10.1007/978-3-319-59008-0_7

- Schönberg, C. H. L., Fang, J. K. H., Carreiro-Silva, M., Tribollet, A. and Wisshak, M. (2017). Bioerosion: the other ocean acidification problem. *ICES Journal of Marine Science* 74: 895-925. https://doi.org/10.1093/icesjms/fsw254
- Schönberg, C. H. L. and Fromont, J. (2012). Sponge gardens of Ningaloo Reef (Carnarvon Shelf, Western Australia) are biodiversity hotspots. *Hydrobiologia*, 687: 143-161. https://doi.org/10.1007/s10750-011-0863-5
- Schönberg, C. H. L. and Fromont, J. (2013). Functional sponge morphologies. *The CATAMI Classification*. Accessed March 31, 2020. http://catami.github.io/
- Schönberg, C. H. L. and Fromont, J. (2014). Sponge functional growth forms as a means for classifying sponges without taxonomy. In *The Ningaloo Atlas*, edited by Radford, B. and Ridgway. T. Accessed April 14. 2020. http://ningaloo-atlas.org.au/content/sponge-functional-growth-forms-meansclassifying-spo
- Schönberg, C. H. L. and Fromont, J. (2019). Sponge functional growth forms as a means for classifying sponges without taxonomy. In North West Atlas, edited by Poutinen, M. Accessed March 31, 2020. https://northwestatlas.org/node/33141
- Schönberg, C. H. L., Fromont, J., Gomez, O., Alvarez, B., Battershill, C., Goudie, L., Pisera, A., Sorokin, S., Sutcliffe, P. and Case, M. (2015). The Ningaloo Sponge Catalogue. *Australian Institute of Marine Science Data Source*. Accessed April 16, 2020. http://data.aims.gov.au/metadataviewer/faces/view.xhtml?uuid=9eea48d8-85b5-44a0-b112-377aec2effaf
- Schönberg, C. H. L. and Tapanila, L. (2006). The bioeroding sponge Aka paratypica, a modern tracemaking analogue for the Paleozoic ichnogenus Entobia devonica. Ichnos 13: 147-157. https://doi.org/10.1080/10420940600851552

Stevely, J. M., Sweat, D. E., Bert, T. M., Sim-Smith, C. and Kelly, M. (2010). Sponge mortality at Marathon and Long Key, Florida: patterns of species response and population recovery. *Proceedings of the 63rd Gulf and Caribbean Fisheries Institute, 63*, 384-400. Accessed December 17, 2020. https://www.researchgate.net/profile/Carina_Sim-Smith/publication/268182861_Sponge_Mortality_at_Marathon_and_Long_Key_Florida_Patterns_ of_Species_Response_and_Population_Recovery/links/54889f080cf268d28f08fc5e/Sponge-Mortality-at-Marathon-and-Long-Key-Florida-Patterns-of-Species-Response-and-Population-Recovery.pdf.

- Stone, A. R. (1970). Growth and reproduction of *Hymeniacidon perleve* (Montagu) (Porifera) in Langstone Harbour Hampshire. *Journal of Zoology* 161: 443-459. https://doi.org/10.1111/j.1469-7998.1970.tb02048.x
- Tabachnick, K.R. (1991). Adaptation of the hexactinellid sponges to deep-sea life. In *Fossil and Recent Sponges*, edited by Reitner J. and Keupp H., pp. 378-386. Springer, Berlin. https://doi.org/10.1007/978-3-642-75656-6_30
- Te, F.T. (2013). Chapter 12. Sponges and Placozoans (slide 11). McGraw-Hill Education. Accessed March 31, 2020. https://www.mooreschools.com/cms/lib/OK01000367/Centricity/Domain/1686/IPZchapt12_lectur
- e_student.pdf
 Trammer, J. (1979). Some aspects of the biology of fossil solid-branching demosponges, exemplified by *Reiswigia ramosa* gen. n., sp. n., from the Lower Oxfordian of Poland. *Acta Geologica Polonica* 29: 39-50. Accessed December 17, 2020. https://geojournals.pgi.gov.pl/agp/article/view/9504.
- Trussell, G.C., Lesser, M.P., Patterson, M.R., Genovese, S.J. (2006). Depth-specific differences in growth of the reef sponge *Callyspongia vaginalis*: role of bottom-up effects. *Marine Ecology Progress Series* 323: 149-158. https://doi.org/10.3354/meps323149
- Van Soest, R. W. M. (1989). The Indonesian sponge fauna: a status report. *Netherlands Journal of Sea Research* 23: 223-230. https://doi.org/10.1016/0077-7579(89)90016-1
- Van Soest, R. W. M. (2002). Family Coelosphaeridae Dendy, 1922. In Systema Porifera. A Giude to the Classification of Sponges. Volume 1, edited by Hooper, J. N. A. and van Soest, R. W. M., pp. 528-546.

Kluwer Academic, Plenum Publishers, New York, Boston, Dordrecht, London, Moscow. https://doi.org/10.1007/978-1-4615-0747-5_1

- Van Soest, R. W. M., Cleary, D. F., de Kluijver, M. J., Lavaleye, M. S. S., Maier, C. and van Duyl, F. C. (2007). Sponge diversity and community composition in Irish bathyal coral reefs. *Contributions to Zoology* 76: 121-142. https://doi.org/10.1163/18759866-07602005
- Van Soest, R. W. M. and Rützler, K. (2002). Family Tetillidae Sollas, 1886. In Systema Porifera. A Giude to the Classification of Sponges. Volume 1, edited by Hooper, J. N. A. and van Soest, R. W. M., pp. 85-98.
 Kluwer Academic, Plenum Publishers, New York, Boston, Dordrecht, London, Moscow. https://doi.org/10.1007/978-1-4615-0747-5 1
- Vogel, S. (1974). Current-induced flow through the sponge *Hallchondria*. *The Biological Bulletin* 147: 443-456. https://doi.org/10.2307/1540461
- Vogel, S. (1977). Current-induced flow through living sponges in nature. *Proceedings of the National Academy of Sciences* 74: 2069-2071. https://doi.org/10.1073/pnas.74.5.2069
- Voultsiadou, E., Kyrodimou, M., Antoniadou, C. and Vafidis, D. (2010). Sponge epibionts on ecosystemengineering ascidians: The case of *Microcosmus sabatieri*. *Estuarine, Coastal and Shelf Science* 86: 598-606. https://doi.org/10.1016/j.ecss.2009.11.035
- Walters, K. D. and Pawlik, J. R. (2005). Is there a trade-off between wound-healing and chemical defenses among Caribbean reef sponges? *Integrative and Comparative Biology* 45: 352-358 . https://doi.org/10.1093/icb/45.2.352
- Wilkinson, C. R. (1988). Foliose Dictyoceratida of the Australian Great Barrier Reef. II. Ecology and distribution of these prevalent sponges. *Marine Ecology* 9: 321-327. https://doi.org/10.1111/j.1439-0485.1988.tb00210.x
- Wilkinson, C. R. and Cheshire, A. C. (1989) Patterns in the distribution of sponge populations across the central Great Barrier Reef. Coral Reefs 8: 127-134. https://doi.org/10.1007/BF00338268
- Wilkinson, C. R. and Vacelet, J. (1979). Transplantation of marine sponges to different conditions of light and current. *Journal of Experimental Marine Biology and Ecology* 37: 91-104. https://doi.org/10.1016/0022-0981(79)90028-5
- Wulff, J. L. (1994). Sponge-feeding by Caribbean angelfishes, trunkfishes, and filefishes. In: Sponges in Space and Time, edited by van Soest, R. W. M., van Kempen, T. M. G. and Braekman, J. C., pp. 265-271.
 Balkema, Rotterdam. Publication available in "Sources" of the World Porifera Database at http://www.marinespecies.org/porifera/.
- Wulff, J. L. (1995). Effects of a hurricane on survival and orientation of large erect coral reef sponges. *Coral Reefs* 14: 55-61. https://doi.org/10.1007/BF00304073
- Wulff, J. L. (1997). Mutualisms among species of coral reef sponges. *Ecology* 78: 146-159. https://doi.org/10.1890/0012-9658(1997)078[0146:MASOCR]2.0.CO;2
- Wulff, J. L. (2005). Trade-offs in resistance to competitors and predators, and their effects of the diversity of tropical marine sponges. *Journal of Animal Ecology* 74: 313-321. https://doi.org/10.1111/j.1365-2656.2005.00925.x
- Wulff, J. L. (2006a). Rapid diversity and abundance decline in a Caribbean coral reef sponge community. *Biological Conservation* 127: 167-176. https://doi.org/10.1016/j.biocon.2005.08.007
- Wulff, J. L. (2006b). A simple model of growth form-dependent recovery from disease in coral reef sponges, and implications for monitoring. *Coral Reefs* 25: 419-426. https://doi.org/10.1007/s00338-006-0110-0
- Wulff, J. L. (2006c). Ecological interactions of marine sponges. *Canadian Journal of Zoology* 84: 146-166. https://doi.org/10.1139/z06-019
- Wulff, J. L. (2006d). Resistance vs recovery: morphological strategies of coral reef sponges. *Functional Ecology* 20: 699-708. https://www.jstor.org/stable/3806619