

CENTER for WETLAND RESOURCES LOUISIANA STATE UNIVERSITY · BATON ROUGE

CIRCULATING COPY Sea Grani Depository

REPORT 2

Preliminary Assessment of the Environmental Impact of a Superport on the Southeastern Coastal Area of Louisiana

LOUISIANA SUPERPORT STUDIES

Prepared by:

Dr. James H. Stone Department of Marine Sciences Center for Wetland Resources Louisiana State University Baton Rouge, Louisiana 70803

Prepared for:

Dr. Hugh J. McLellan Associate Program Director Institutional Support National Sea Grant Program and National Oceanic and Atmospheric Administration Rockville, Maryland 20852 Mr. Steven D. Jellinek Senior Staff Member Council for Environmental Quality 722 Jackson Place, N.W. Washington, D.C. 20006

This work is a result of research sponsored by NOAA Office of Sea Grant, Department of Commerce, under Grant 2-35231. The U.S. Government is authorized to produce and distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon.

I. ABSTRACT

Two offshore sites for a proposed Superport, off southeastern Louisiana, are evaluated for potential environmental impact on the coastal region. The most vulnerable areas along the coast are the estuaries. Oil drift projections indicate that the site more distant from shore would have less effect because a potential spill there would probably not reach the estuarine areas.

Louisiana's estuaries are flanked by levees and, on the Gulf side, usually by barrier islands. This configuration, coupled with a gentle slope, has produced a nutrient-rich environment that now supports over 4 million acres of estuarine marshlands--one of the world's most extensive coastal wetland areas. The climatic regime provides high solar insolation, abundant rainfall, and a wind system all of which interact with the physical setting in such a way that primary production supports the largest fishery in the United States. The principal fishery species are menhaden and shrimp, and they depend on the estuaries for a habitat and/or nursery area and for detrital food--the product of marsh grass disintegration.

Oil drift projections of hypothetical oil spills are based on a hydrodynamical numerical model using wind conditions, local tides, and bathymetry. At the closest site oil spills moved either northwest toward Timbalier Bay or northeast toward Barataria Bay. Oil spills at the farther site did not impinge on the shorelines nor into the estuaries. Oil spills at both sites usually assumed an east-west orientation and moved somewhat faster than drift projections based

i**i**i

solely on winds.

Potential adverse effects resulting from an oil spill would be most severe in the estuaries. Oil could damage or kill extensive areas of marsh grass, thereby reducing or eliminating the most important food source for the major consumers, which are fishery species. This damage could be by direct contact with the top of the plants, the root system, or the microbes which initiate the breakdown of grass into detritus. Most marsh fauna is located near the boundary between the grass and estuarine waters. If oil enters the estuaries, it is believed that it will concentrate in this boundary area and thereby possibly cause high mortalities of these forms and indirectly of the fishery species, inasmuch as detritus in the estuaries is used as a food source. The larval and juvenile stages of the fishery species use the tidal passes into and out of the estuaries as migratory routes, and if oil reached these areas mortalities could have severe effects on later fish harvests. Damage to the Gulf shoreline would probably be minimal unless the oil concentrated in the littoral currents, which are also used as a migratory aid. The most severe effect offshore would probably be damage to the spawning waters or grounds used by the fishery species. However, this damage would probably be low when compared with potential spill effects on estuaries because the size of the offshore shelf area and the large volume of water would tend to mitigate the damage.

Regardless of the final location of the Superport, research should be initiated on the detailed hydrography and meteorology of

iv

the proposed site, the toxic effects of various crude oils on planktonic stages of fishery species, and the effects of oil on marsh grasses and microbes.

TABLE OF CONTENTS

		Page	3
I.	ABS	TRACT	Ĺ
II.	INT	RODUCTION	L
	A.	Objectives	L
	Β.	Study Area and Conditions	Ļ
	с.	Data Sources and Acknowledgements)
III.	SEL	ECTED ENVIRONMENTAL INVENTORY OF STUDY AREA	7
	A.	Geological and Geographic Setting	1
		1. Delta Formation	l
		2. Active Delta: Mississippi River	1
		3. Barrier Islands	3
		4. Estuarine Areas)
		5. Shoreline Features)
		6. Offshore Area)
	B.	Characterization of Sediments and Waters	L
		1. Selected Estuarine Areas	Ļ
		2. Offshore Areas	¥.
	с.	Climate	Ļ
	••	1 Average Conditions	ì
		2 Summer Conditions 11 11 11 11 11 11 11 11 11 11 11 11 11	ł
		$2 \text{Fall Conditions} \qquad \qquad$	į
			ś
			, Y
		D. Spring Conditions	, 1
	υ.	Hydrographic Background	۰. ۱
		1. General Description	-
		2. Surface Circulation along Western	
		Continental Shelf	-
		3. Littoral Currents	5
		4. High-Salinity Cells off Delta of	
		Mississippi River	ł
		5. Modification of Shelf Hydrography by	
		Mississippi River	j
		6. Effects of a Hurricane on Hydrography 25)
		7. Gross Circulation of Barataria Bay	j
		8. Water Temperatures and Salinities	1
		9. Sea Level and Tidal Effects	3
		10. Wave Characteristics	3
	Ε.	Biological Units)
		1. Important Physical Parameters	Ļ
		2. Plant Communities	L
		3. Primary Production	ļ.
		4. Marsh Consumer Species	5
		5. Fishery Species)
		6 Migrellaneous Species 44	ŝ
		or importaneous sheeres	

P	а	g	e
	_	-	<u> </u>

		0
	 8. General Overview of Biological Units 8. General Overview of Biological Units F. Selected Cultural Aspects 1. Archaeological Sites 2. People and Some of Their Activities 2. People and Some of Their Activities 3. Observed Effects from Previous Oil Spills and Studies in Louisiana 1. The Chevron and Shell Spills 2. Other Studies on the Impact of Oil on Louisiana Estuaries and Coastal Waters 	47 48 51 52 53 53 53
IV.	DRIFT PREDICTIONS FOR OIL SPILLS	64
	 A. Surface Circulation Based on Hansen's Model	64 65 67 67 68 69 71 73 74
V.	PREDICTED EFFECTS OF OIL SPILLS	75
	 A. Estuarine Effects 1. Marsh Grass. 2. Microbial Populations 3. Other Primary Producers 4. Marsh Edge-Water Interface 5. Nutrient Cycle 6. Fishery Species 8. Shoreline Effects 9. Summary. 	76 76 77 77 78 79 79 80 81
VI.	RECOMMENDATIONS	83
VII.	REFERENCES	85
VIII.	FIGURES AND TABLES* (79 figures and 110 tables)) 5

*Detailed listings are given on pages directly following.

LIST OF FIGURES

Figure		Page
1,	Map showing geographic context of study area in Louisiana	95
2.	Hydrologic catchment units and offshore fishing grids	96
3.	Chronology of deltas of Mississippi River deltaic plain	97
4.	Sequences of development of deltaic facies	98
5.	Mudlump areas in Mississippi River delta	99
6.	Submarine topography of Mississippi River delta	100
7.	Subaqueous profiles of seven river deltas	101
8.	Environmental management areas of coastal Louisiana	102
9.	Influence of subsidence on delta deterioration	103
10.	Bathymetry of offshore region in study area	104
11.	X-ray diffraction for clay minerals from Barataría Bay, Louisiana	105
12.	Location map of sampled areas in Barataria Bay, Louisiana	106
13.	Organic-C and total-N of sediments from Barataria Bay, Louisiana	107
14.	Soil organic matter in coastal Louisiana	108
15.	Sulfides and total-P content in sediments from Barataria Bay, Louisiana	109
16.	Dissolved carbonates in waters of Barataria Bay, Louisiana	110
17.	Inorganic nitrogen, nitrate, and nitrite nitrogen in waters of Barataria Bay, Louisiana	111
18.	Total phosphates in waters of Barataria Bay, Louisiana	112

.

Figure		Page
19.	Gross lithology of sediments along shelf northwest Gulf	113
20.	Surface phosphates and chlorophyll around Mississippi River delta	114
21.	Annual insolation along coastal Louisiana	115
22.	Cyclone occurrences along Gulf and Atlantic coasts	116
23.	Cyclone probabilities along Gulf and Atlantic coasts	117
24.	Generalized surface circulation along coastal Louisiana	121
25.	Mississippi River discharge and rainfall along coastal Louisiana	122
26.	Current vectors at South Pass of Mississippi River	123
27.	Distribution of suspended sediments at South Pass of Mississippi River	124
28.	Results of oceanographic survey along coastal Louisiana before Hurricane Betsy	125
29.	Results of oceanographic survey along Louisiana coast after Hurricane Betsy	126
30.	Results of oceanographic survey along Louisiana coast before and after Hurricane Betsy	127
31.	Hydrologic catchment units of Barataria and Caminada Bays, Louisiana	128
32.	Circulation pattern at ebb tide for Barataria and Caminada Bays, Louisiana	129
33.	Circulation pattern at flood tide for Barataria and Caminada Bays, Louisiana	130
34.	Residence times for water areas in Barataria and Caminada Bays, Louisiana	121
35.	Annual salinity pattern in Barataria Bay, Louisiana	132

Figure 36.	Page Isohaline map of coastal Louisiana
37.	Sea level changes along coastal Louisiana
38.	Wave power and shoreline changes along coastal Louisiana
39.	Wave refraction characteristics along coastal Louisiana
40.	Hydrologic units and marsh zones along coastal Louisiana
41.	Coastal marshes of Louisiana
42.	Productivity data of waters in Barataria Bay, Louisiana
43.	Epiphytic production in Barataria Bay, Louisiana
44.	Biomass and productivity of <u>Spartina alterniflora</u> in Barataria Bay, Louisiana
45.	Energy flow diagram of Barataria Bay, Louisiana
46.	Seasonal distribution of bacteria in Barataria Bay, Louisiana
47.	Annual zooplankton cycle in marshes of Mississippi River delta
48.	Distributions and abundances of macrofauna in marshes of Barataria, Louisiana
49.	Population changes of melobenthos in Barataria Bay, Louisiana
50.	Transect data on meiobenthos in Barataria Bay, Louisiana
51.	Fish numbers and biomass in Barataria Bay, Louisiana
52.	Annual biomass of fishes in Barataria Bay, Louisiana

Figure		Page
53.	Annual biomass changes of brown and white shrimp in Barataria Bay, Louisiana	151
54.	Population and biomass changes of grids in salt marshes of coastal Louisiana	152
55.	Distribution and abundance of juvenile brown shrimp along coastal Louisiana	153
56.	Distribution and abundance of juvenile white shrimp along coastal Louisiana	154
57.	Known archeological sites on study area of ccastal Louisiana	155
58.	Location map of areas used for population estimates of people in Louisiana	156
59.	Currents, wind data, and oil slick orientation during Shell oil spill	157
60.	Currents, wind data, and oil slick orientation during Shell oil spill	158
61.	Currents, wind data, and oil slick orientation during Shell oil spill	159
62.	Distributions and abundances of hydrocarbons and benthic fauna about Shell oil spill	160
63.	Yeast concentration in non∽treated and oil-treated sediments in Barataria Bay, Louisiana	161
64.	Undisturbed and disturbed marshes in coastal Louisiana	162
65,	Grid system used projection of surface circulation in study area offshore Louisiana	163
66.	Stability test for Hansen's model under Louisiana conditions	164
67.	Current vector pattern in study area using winds toward 280° at 7 m/sec	165
68,	Distribution of 30,000 ton oil spill at C_1 using winds toward 225° at 7 m/sec.	170

Figure											Page
69.	Distribution of 500 ton oil spill at $\rm C_2$ using winds toward 225° at 7 m/sec		•	•	•		•	•		•	174
70.	Distribution of 30,000 ton oil spill at using winds toward 225° at 7 m/sec	^C 2.				•		•	•		175
71.	Distribution of 30,000 ton oil spill at using winds toward 280° at 7 m/sec	$\overset{c_1}{\cdot}$.	-			•	•	•		•	177
72.	Distribution of 500 ton oil spill at $\rm C_2$ using winds toward 280° at 7 m/sec			•		•	•		•		181
73.	Distribution of 30,000 ton cil spill at using winds toward 280° at 7 m/sec	с ₂ 			-			•	•		185
74.	Distribution of 500 ton oil spill at C1 using winds toward 315° at 7 m/sec						•	•		•	189
75.	Distribution of 30,000 ton oil spill at using winds toward 315° at 7 m/sec	с ₁ 			-	•		•		•	193
76.	Distribution of 500 ton oil spill at C_2 using winds toward 315° at 7 m/sec			•	-			•	•		197
77.	Distribution of 30,000 ton oil spill at using winds toward 315° at 7 m/sec	с ₂ 		•	•	•	•		•		201
78.	Distribution of 30,000 ton oil spill at using winds toward 360° at 7 m/sec	с ₁ 		•	•	•		•			205
79.	Diagram of major features of coastal Lo	uísi	ana	ı		٠		•	•	٠	207

.

.

xiv

i I I

LIST OF TABLES

Table	Discharge rates and wave power indices	Page
	of seven river deltas	20 9
2.	Dimensions of estuarine areas in coastal Louisiana	210
3.	Changes in selected water bodies of coastal Louisiana from 1931 to 1970	211
4.	Shoreline inventory of coastal Louisiana	212
5.	Surface water area and volume along continental shelf of Louisiana	213
6.	Frequency in percent of monthly winds off southeast Louisiana	214
7.	Average air temperatures for southeast Louisiana	215
8.	Average rainfall for southeast Louisiana	216
9.	Frequency in percent of specific relative humidity for New Orleans, Louisiana	217
10.	Frequency in percent of monthly fog at Lake Charles, New Orleans, and Grand Isle, Block 46, Louisiana	218
11.	Cyclone probabilities for selected Gulf and Atlantic coastal areas	219
12.	Cyclone data for coastal Louisiana	220
13.	Frequency in percent of July winds for Grand Isle, Block 46, Louisiana	222
14.	Frequency in percent of September and October winds for Grand Isle, Block 46, Louisiana	223
15.	Frequency in percent of December winds for Grand Isle, Block 46, Louisiana	225
16.	Frequency in percent of April winds for Grand Isle, Block 46, Louisiana	226
17.	Current and wind vectors about Burrwood, Louisiana	227

Table			1	Page
18.	Current and wind vectors about Grand Isle, Louisiana			228
19.	Average current vectors for Grand Isle, Block 46, Louisiana	•	•	229
20.	Mississippi River discharge per month, 1950 to 1970			230
21.	Primary factors involved in mixing at South Pass of Missíssippi River delta		-	231
22.	Estimates on flow rates and residence time of hydrologic units within Barataria Bay, Louisiana	•		232
23.	Median water temperatures per month, 1962 to 1969 for Barataria Bay, Louisiana		•	2 3 3
24.	Surface water temperatures and salinities at selected stations off coastal Louisiana		•	234
25.	Mean tide levels along central Louisiana coast	•		235
26.	Tide characterístics, Grand Isle, Block 46, Louisiana		•	236
27.	Annual wave climate summary along Louisiana coast		•	237
28.	Storm tide and wave data for 1-year period at Crand Isle, Block 46, Louisíana			238
29.	Storm tide and wave data for 5-year period at Grand Isle, Block 46, Louisiana	•		239
30.	Storm tide and wave data for 10-year period at Grand Isle, Block 46, Louisiana			240
31.	Storm tide and wave data for 25-year period at Grand Isle, Block 46, Louisiana			241
32.	Storm tide and wave data for 50-year period at Grand Isle, Block 46, Louisiana			242
33.	Storm tide and wave data for 100-year period at Grand Isle, Block 46, Louisiana		•	243
34.	Frequency in percent of significant wave height for year at Grand Isle, Block 46, Louisiana			244

Table	I	Page
35.	Frequency in percent of significant wave height for April at Grand Isle, Block 46, Louisiana	245
36.	Frequency in percent of significant wave height for July at Grand Isle, Block 46, Louisiana	246
37.	Frequency in percent of significant wave height for September at Grand Isle, Block 46, Louisiana	247
38.	Frequency in percent of significant wave height for October at Grand Isle, Block 46, Louisiana	248
39.	Frequency in percent of significant wave height for December at Grand Isle, Block 46, Louisiana	249
40.	Intensity of offshore waves along Louisiana coast	250
41.	Physical variables involved in fisheries harvest of Louisiana	251
42.	Analysis of variance for Louisiana coastal fisheries 1962-1969	252
43.	Significant variables in fisheries harvest of Louisiana	253
44.	Acreage of marsh zones and vegetative types in Louisiana coastal marshes	254
45.	Plant species listing in Louisiana coastal marshes	255
46.	Major plant species per vegetative type in active delta marsh zone	258
47.	Major plant species per vegetative type in inactive delta marsh zone	259
48.	Acreages of marshes and water bodies per hydrologic unit in Louisiana coastal marshes	260
49.	Acreages of vegetative types in hydrologic unit III of coastal Louisiana	261
50.	Acreages of vegetative types in hydrologic unit IV of coastal Louisiana	262
51.	Acreages of vegetative types in hydrologic unit V of coastal Louisiana	263

Table		Page
52.	Plant species listing in hydrologic unit III	264
53.	Plant species listing in hydrologic unit IV	266
54.	Plant species listing in hydrologic unit V	268
55.	Major primary producers in Barataria Bay, Louisiana	270
56.	Primary production estimates in Barataria Bay, Louisiana	271
57.	Major producers and consumers in Barataria Bay, Louisiana	272
58.	Estimates on bacterial population in Barataria Bay, Louisiana	273
59.	Distributions and abundances of marsh fauna in Airplane Lake, Louisiana	274
60.	Fish species listing for Caminada Bay, Louisiana	277
61.	Dominant fish species in Caminada Bay, Louisiana	282
62.	Ranges of total length of fishes from Caminada Bay, Louisiana	283
63.	Total numbers of 6 most abundant fishes from Caminada Bay, Louisiana	284
64.	Total biomass of 6 most abundant fishes from Caminada Bay, Louisiana	285
65.	Stomach contents of 6 dominant fishes from Caminada Bay, Louisiana	286
66.	Abundances and food habits of principal marsh birds of Louisiana	287
67.	1970 fishery landings statistics for Louisiana	288
68.	Fish harvest in Louisiana waters for 1963-1967 by major commercial species	289
69.	Fish harvest in Louisiana waters landed in contiguous states	290
70.	Fish harvest and value for hydrologic units of Louisiana	291

Table		Page
71.	Louisiana historical commercial landings of menhaden	292
72.	Distribution and abundance of juvenile menhaden in Louisiana estuaries	293
73.	Menhaden production for hydrologic units of Louisiana	294
74.	Total menhaden harvest from offshore Louisiana, 1963-1967	295
75.	Louisiana shrimp harvest, 1913-1968	296
76.	Shrimp harvest for hydrologic units of Louisiana	297
77.	Total shrimp harvest offshore Louisiana, 1963-1967	298
78.	Louisiana historical commercial landings of oysters	299
79.	Acreages of oyster grounds in coastal Louisiana	300
80.	Production of canned oyster meat per acre of leased land for hydrologic units of Louisiana	301
81.	Total harvest of Louisiana oysters, 1963-1967	302
82.	Louisiana historical commercial landings of blue crab	303
83.	Blue crab harvest for hydrologic units of Louisiana	304
84.	Hard- and soft-shell blue crab harvest for hydrologic units of inshore and offshore Louisiana	305
85.	Louisiana historical commercial landings of croaker	308
86.	Distribution and abundance of juvenile croaker in Louisiana estuaries	309
87.	Croaker harvest per hydrologic unit inshore and per offshore grid offshore Louisiana	310
88.	Waterfowl estimates for southeast Louisiana	313

Table		Page
89.	Muskrat and nutria fur and meat production for 1969–1970 in Louisiana	314
90.	Population estimates of alligators in subdelta and delta areas of Louisiana	315
91.	Benthic taxons for central Gulf of Mexico coast	316
92.	Fauna assemblages for various habitats of Central Gulf of Mexico coast	317
93.	Major components of estuarine system of Barataria Bay, Louisiana	323
94.	Archeological sites in superport study area of Louisiana	324
95.	Estimates on human populations in coastal Louisiana, 1960-1969	325
96.	Estimates on projected changes of human populations in the State of Louisiana, 1960-1985	326
97.	Estimates on projected changes of human populations for selected areas of coastal Louisiana, 1970-1985	327
98.	Statistics on recreational activities for selected coastal region in Louisiana	328
99.	Distributions and abundances of hydrocarbons and benthos at Shell oil spill off Louisiana coast	330
100.	Wind vectors for January at Shell oil spill off Louisiana coast	331
101.	Yeast populations near and about Shell oil spill off Louisiana coast	332
102.	Estimates of aerobic bacterial populations in Barataria Bay, Louisiana	333
103.	Effects of crude oil on various marsh plants in coastal Louisiana	334
104.	Yeast populations in marsh sediments before and after oil saturation in coastal Louisiana	335

Table		Page
105.	Physical and chemical characteristics of crude oils used in toxicity tests on <u>Penaeus</u> shrimp	336
106.	Toxicity values of various crude oils on <u>Penaeus</u> shrimp	337
107.	Current vectors per grid area offshore Louisiana as given in Figure 65	338
108.	Summary of wind conditions and oil spill volumes used in drift prediction	34 3
109.	Monthly wind vectors and beaching time estimates for study site off Louisiana	344
110.	Area of visible influence of various continuous oil spills	345

A. Objectives

The objectives of this project were (1) to conduct an overall environmental evaluation of a Superport operation at two hypothetical locations on the continental shelf off the southeast coast of Louisiana, (2) to establish within the limits of available data the existing environmental conditions at and around the proposed sites, and (3) to predict and/or document (a) the effects of an oil spill at or near the proposed sites and (b) the effects of operations.

Only a superficial assessment was made of the effects that a Superport would have on people and their activities. No research was done on the impact of ancillary developments, such as pipelines, tank farms, new refining and/or manufacturing complexes. The latter activities would probably have a more serious and adverse impact on the environment than the port itself.

B. Study Area and Conditions

Part of the coastal area of Louisiana and its continental shelf out to water depths of 200 meters is shown in Figure 1. Potential Superport site locations 1 and 2 are also indicated on Figure 1, and their geographic coordinates are as follows: Site 1 at 28°42'N and 90°14'W or about 27 miles south of Bayou Lafourche (43 kilometers) and Site 2 at 28°57'N and 89°56 1/2'W or about 17 miles (29 kilometers) southeast of Bayou Lafourche. Each site is located where water depths are approximately 100 feet (about 30 meters). Operational (chronic)

spills were assumed to take place at the facility or site locations. Casualty spills were assumed to take place at those locations on Figure 1 marked by C_1 and C_2 . The geographic coordinates for C_1 or Casualty Spill 1 are 28°47'N and 90°14'W and for C_2 or Casualty Spill 2 are 28°58 1/2'N and 90°01'W. On the basis of these locations we have roughly circumscribed a study area for this report indicated by the dark lines in Figure 1 and having approximately the following geographic coordinates:

> North boundary 29°50' North latitude South boundary 28°30' North latitude West boundary 91°15' West longitude East boundary 89°15' West longitude

The Mississippi River forms the boundary of the northeast corner of the study area. The study area roughly conforms to some geographic limits used by previous and ongoing studies, and where possible we have tried to confine our efforts to these limits in order to use existing data more easily. For example, Figure 2 illustrates the geographic boundaries for suggested hydrologic units along coastal Louisiana. Hydrologic units III (Mississippi Delta), IV (Barataria Bay complex), and V (Terrebonne Bay complex) are the areas that would most probably undergo environmental impact from a Superport and its operations. Offshore, the most likely impact areas correspond to commercial fishing grids 13 and 14. We have, therefore, confined our data procurement and analyses where possible to hydrologic units III, IV, and V and offshore fishing grids 13 and 14.

Large casualty oil spills were assumed to take place at C_1 and C_2 under the following conditions:

1. Release time: 2 hours

2. Size: (1) 500 tons

(2) 30,000 tons

 Frequency: (1) The immediate and cumulative effect of a 500-ton spill yearly for 20 years

> (2) The immediate and cumulative effect of a 30,000-ton spill midway through a 20-year period

For the periodic (chronic) operational spills we assumed the following conditions at S_1 and S_2 :

Alternative #1: Assume that all crude is transshipped by tankship (40,000 DWT in 1980 and 50,000 DWT in 2000).

Year 1980

Amount: 840 bbl

Frequency: 2.3 bb1/day or 30 gal/supertanker operation
 (588 operations) and 4.8 gal/transshipment operation
 (3,673 operations).

Year 2000

Amount: 3,094 bb1

Frequency: 8.5 bb1/day or 30 gal/supertanker operation (2,165 operations) and 6.0 gal/transshipment operation (10,827 operations).

Location: At berth

Alternative #2: Consider that all oil is piped--no transshipment by tankship.

Year 1980

Amount: 420 bbl

Frequency: 1.2 bb1/day or 30 ga1/supertanker visit (558 operations).

Year 2000

Amount: 1,546 bb1

Frequency: 4.2 bbl/day or 30 gal/supertanker visit (2,165 operations).

Location: At berth

We have also assumed that two types of crude oil arrive on the Gulf coast via supertanker from Africa or the Middle East. For both the large casualty spills and the periodic operational spills, these two crude oil types have the physical and chemical characteristics given in the following table.

A в 0.14 1.30 Sulfur, percentage 0.042 0.083 Nitrogen, percentage Color brown-black brown-green 0.858 0.840 Specific gravity 33.4 37.0 API gravity 122-69* 43-40** Viscosity Light gasoline 2.4 7.3 15.1 30.3 Total gasoline and naptha 9.9 Kerosene distillate 13.1 10.3 15.2 Gas oil 14.8 11.3 Nonviscous lubricating distillate 4.3 6.8 Medium lubricating distillate 3.5 Viscous lubricating distillate ____ 42.2 19.4 Residuum 0.2 3.6 Distillation loss 1320 µg/kg crude 400 µg/kg crude 3, 4 benzpyrene

Physical and Chemical Characteristics of Crude Oils Considered for This Study

*Saybolt Universal at 100°F, 122 sec; at 130°F, 69 sec. **Saybolt Universal at 77°F, 43 sec; at 100°F, 40 sec. Crudes A and B would also contain compounds such as 1, 2 benzanthracene, 1, 2 benzphenanthrene, diphenylmethane, phenanthrene, and dibenzthiophene in the general proportions indicated by the benzpyrene content of each.

C. Data Sources and Acknowledgements

This report is based almost entirely on secondary data; no field investigations or new researches were carried out. As a result, data on the environmental background of the study area have been liberally extracted from published and unpublished sources. Many workers have, therefore, made this effort possible, and I gratefully acknowledge their data and/or aid. All tables and figures have their source indicated on them. Special thanks are tendered to Mrs. Nancy Roques, who did the programming for the Hansen's model. Personal acknowledgements are extended to Drs. John W. Day, Jr., James M. Coleman, Sherwood M. Gagliano, Robert H. Chabreck, A. N. Palmisano, S. P. Meyers, Stephen P. Murray, W. G. Smith, L. D. Wright, J. R. Van Lopik, W. P. James (Texas A&M), Don Mauer (Delaware), S. J. Moore (MIT), J. McHugh (New York), and H. J. McLellan (Sea Grant), and Mr. S. D. Jellinek (CEQ); also to Messrs. George Cry, Sidney Crow, Paul Wagner, and Robert Neuman and Louisiana Wild Life and Fisheries, the Environmental Protection Agency at the Mississippi Test Facility and W. N. Lindall (et al.) of the National Marine Fisheries Service, St. Petersburg Beach, Florida. Special acknowledgements are also due to the staff of Government Documents at the library of Louisiana State University, Baton Rouge. Use of the oceanographic data in the Glenn

(1972) report was made possible through the courtesy of Louisiana Offshore Oil Port, Inc. The extra efforts of the associates and office staff of the Center of Wetland Resources are especially appreciated.

III. SELECTED ENVIRONMENTAL INVENTORY OF STUDY AREA

A. Geological and Geographic Setting

1. Delta Formation

The study area as delineated in Figure 1 is part of the Mississippi River deltaic plain, which is a composite of many progradations of the Mississippi River (Fig. 3). There are at least three delta complexes in the study area: they are the Plaquemines-Modern, the St. Bernard, and part of the Lafourche complexes (Frazier, 1967). Figure 4 gives a "typical" diagrammatic development of a delta complex. Initial progradation begins when a stream discharges its sediment load into rather shallow and still waters and heavier sediments accumulate at the end of the delta. Additional channels usually develop, and they in turn discharge their sediment load; the common result is that the delta takes on a "bird-foot" shape. As further progradation occurs, the delta plain is enlarged and overflow deposition increases the sizes of the levees. Eventually, some of the distributary channels become too flat; the stream is abandoned, and a diversion takes place at another location where the slope is adequate for discharge. Often an old channel is reoccupied, and a repetition of the previous depositional phases can and often does follow (Frazier, 1967; Morgan, 1967).

2. Active Delta: Mississippi River

The distal end of the Mississippi River has at least four major distributaries which form the "bird-foot" shape (Fig. 5). The delta is active, fresh water and deposition dominating the

immediate area. Unstable areas exist off the front of each major pass. The instability is characterized by mudlumps (see Fig. 5), which result from the accumulation of heavier sediments on lighter material, presumably causing the extrusion of the latter as mudlumps. More than a hundred mudlump sites have been found at the mouth of South Pass (Morgan et al., 1963; Coleman, 1972). Off South and Southwest passes a rather steep slope-off exists (Fig. 6), and this increases the general instability and foundation problems of the area.

The general morphology of the Mississippi Delta is the result of the interaction of wave attack with the subaqueous profile (Wright and Coleman, 1972). Compared to other active deltas (Table 1), the Mississippi has a high discharge rate, approximately 17.69 x 10^3 m³/sec, and the shallow slope of its continental shelf (Fig. 7) apparently attentuates the offshore wave power sufficiently to allow a river-dominated configuration to develop.

3. Barrier Islands

At the distal end of the estuarine areas of Louisiana, barrier islands (such as Grand Isle; see Fig. 1) have been formed, presumably as a result of wave attack on abandoned sand bars at the mouths of abandoned distributaries. The sand is transported laterally and accumulates to form delta-margin or barrier islands. Russell (1967) suggested that these islands are commonly associated with low-coast estuaries, such as those of Louisiana and the study area.

4. Estuarine Areas

Between the major distributaries along the coast of Louisiana, the delta plain has established vast marshlands (Fig. 8). These marshlands originally were formed and maintained by annual flooding of water and sediments over the natural levees, but now rainfall and tidal exchange are the only means for water renewal. As a distributary system becomes less active, subsidence usually occurs at a greater rate in the areas of the old channels because of the heavier materials deposited there, and, as a result, open areas of brackish water are formed (Fig. 9).

Estimates of surface areas in all the hydrologic units along the Louisiana coast are given in Table 2. Hydrologic units III, IV, and V (Fig. 2) correspond roughly to the landward side of the study area and can be designated as the Mississippi Delta, Barataria Bay, and Terrebonne Bay. The total area of the Mississippi Delta complex is approximately 901 mi^2 (2,334 km²), of which 243 mi² (629 km^2) is land surface and about 658 mi² (1,705 km²) is water surface. The estimated water volume is 2,209,300 acre-feet. The total area of the Barataria Bay complex is approximately 2,509 mi² (6,500 km^2), of which 1,645 mi^2 (4,262 km^2) is land surface and about 864 mi² (2.238 km²) is water surface. The estimated water volume of this area is 714,200 acre-feet. The total area of the Terrebonne Bay complex is approximately 3,692 mi² (9,565 km²), of which 2,648 mi² (6.860 km^2) is land surface and about 1.044 mi² (2.705 km²) is water surface. The estimated water volume of this area is 1,555,700 acrefeet.

Estimates of surface areas for various natural and manmade water bodies in each of the three hydrologic units under study are in Table 3. These data are given for the years 1931 to 1942, 1948 to 1967, and 1970. The surface area for all types of water bodies has increased over the years 1931 to 1970; presumably, this increase is at the expense of existing land.

5. Shoreline Features

The shoreline morphology of Louisiana is characterized by a highly developed and complex land-water interface area. The total land-water interface, estimated at 30,191 miles, is second among the states only to that of Alaska in extent. Approximately two-thirds of this total interface (18,188 miles) is in the study area. Table 4 gives a breakdown of types of interfaces; there are at least five categories, i.e., streams and bayous; bayous, lakes, and marshes; canals and cuts; major rivers; and the Gulf shoreline. Hydrologic units IV and V have 50% of the state's land-water interface. The Gulf shoreline, estimated to be 363 miles long, has the smallest land-water interface.

6. Offshore Areas

The continental shelf off Louisiana, out to depths of 200 meters, has an area of approximately 29,000 mi² (75,075 km²). Approximately one-fifth (15,000 km²) of the shelf is in the study area. Generally, the offshore subaqueous profile is not steep, and so there are extensive areas of shallow depths all along the Louisiana coast. However, off the delta of the Mississippi River the slope is

greatly increased, and deeper waters are reached more rapidly. Figure 10 gives the 30-meter contour and bathymetry of the shelf per 29.6 km² (11.4 mi^2) grid in the study area. Table 5 gives estimates of surface water area and water volume per depth interval for all areas offshore of Louisiana. Separate estimates for hydrologic units III, IV, and V are not given, however. More than 50% of the surface area of the shelf waters is confined to shallow waters of <100 feet (30.5 meters) and 84% over depths of <300 feet (91.5 meters). Similarly, 54% of the volume of the shelf water is in water <300 feet (91.5 meters) in depth. The Mississippi River discharges an estimated 1 to 1.5 million tons of sediments per day along the continental shelf of Louisiana. A detailed characterization of the distribution of these sediments is given in Scruton (1956).

B. Characterization of Sediments and Waters

1. Selected Estuarine Areas

The mineral composition of the sediments of Baretaria Bay is predominantly montmorillonite; there are lesser amounts of illite and kaolinite (Fig. 11). Under aerobic conditions, two layers are present in the sediments and are easily seen: a top layer that is quite thin (1 to 2 centimeters) and colored light gray, and a bottom layer that is usually very thick (up to >2 meters) and colored dark brown to black. The upper layer is oxidized mud and the lower layer is reduced mud. The upper layer develops and disappears in relation to the amount of dissolved oxygen, and its presence or absence has a significant impact on the types and amounts of substances that pass

between the sediments and the water (Hutchinson, 1957). For example, under reduced or anaerobic conditions, soluble phosphorus (ionic) passes from the mud into the water. The seasonality of this phenomenon and its importance in Louisiana estuaries has not been researched.

Though detailed studies of circulation patterns of Louisiana estuaries have not been made, chemical data from Ho (1971) and from Barrett (1971) and Perret et al. (1971) suggest that nonconversative elements are being entrained and accumulated in sediments upstream along a north-south axis in Barataria Bay. The mechanism for estuarine entrainment, as outlined by Redfield et al. (1963), is one whereby the organic material is brought in by a countercurrent of seawater under the surface outflow. This organic material tends to sink differentially, and its concentration in the surface sediments increases upstream relative to the motion of the surface layer. Some of the organic entrainment in the northern sections of Louisiana estuaries may also represent incomplete flushing of the estuaries in that the more northerly sections presumably would not purge themselves of decaying organic material (such as dead marsh grass) as rapidly as the more southerly sections.

At a series of north and south stations (Fig. 12), Ho (ibid.) found that the sediments of the north stations contained an average of 24% organic carbon, whereas sediments of the south stations contained an average of <6% (Fig. 13A). The total nitrogen content of the sediments also exhibited entrainment upstream inasmuch as sediments of the north stations had an average of 1.23% total N,

whereas the respective value for the south stations was 0.30 (Fig. 13B). Figure 14 shows the distribution of soil organic matter in all the Louisiana coastal marshes. Those marsh areas having soils with >50% organic matter are almost all located upstream or north of the mouth of the estuary and usually in the northernmost reaches of each estuary; this feature is especially well illustrated in the Mississippi Delta, in Barataria and Caminada bays, and in Timbalier and Terrebonne bays. In addition, Ho (ibid.) found that concentrations of sulfides were higher in the surface soils of the north stations than in those of the south (Fig. 15A). Total phosphorus (Fig. 15B) in the sediments did not show a south to north increase.

Average dissolved carbonates in water samples taken 6 inches (15 centimeters) above the sediment surface were slightly higher at the north stations than at the south, respective yearly averages being 149 and 141 milligrams as HCO_3^{-} per liter (Fig. 16). These values may reflect the availability of free oxygen in the water, greater concentrations presumably being present at the south stations. Inorganic nitrogen, nitrates, and nitrites have a high seasonal value during March and April; this high is followed by a sharp decrease in May and a general low through summer, which are presumably reflections of biological uptake during spring growth (Fig. 17A and B). Total phosphorus (Fig. 18) was generally higher at the north stations; the highest seasonal value for all stations occurred during fall (October), and a secondary peak is evident during summer (July). Both peaks of total phosphorus probably coincide with the sequence of the biological
activities in the estuary.

2. Offshore Areas

Sediments offshore of Louisiana can be generally characterized into three types (Fig. 19), i.e., sands closest to the shoreline, alternating sands and muds, and finally muds. The origin and disposition of these are discussed by Curray (1960). Physical agents affecting sediment distributions from the source rivers are permanent currents, tidal currents, and hurricanes. The overall effect is a series of chenier-like bands, as shown in Figure 19. Fine sediments are generally carried farther to the west along the continental shelf of Louisiana toward the Texas coast. The heavier materials remain closer to the bays and near the shore.

Water chemistries offshore of Louisiana are greatly affected by freshwater runoff, particularly the discharge of the Mississippi River. Riley (1937), for example, found that surface salinities, phosphates, and chlorophyll distribution along the shelf were directly related to input by the Mississippi River (Fig. 20). C. Climate

1. Average Conditions

At least two pressure ridges dominate weather conditions along coastal Louisiana. One ridge is the "Bermuda high" centered over the Bermuda-Azores area of the Atlantic, and the other is the "Mexican heat low" centered over Texas during the warm months. Pressure changes associated with these ridges set up winds that predominantly come out of the east (Table 6). For example, fall and winter

winds have a strong component out of the east, 28% and 21% of all winds, respectively; but for these seasons the components from the northeast and north predominate over those from the southeast. In fall, 26% of all winds come from the northeast, but only 10% come from the southeast. During winter, 18% of all winds come from the northeast and 17% come out of the southeast; however, northwest winds increase 4% over fall season occurrences, so that overall the wind shift is still to the north. Spring and summer winds shift to the southeast. For example, 21% and 18% of all the spring and summer winds come from the southeast, whereas only 17% and 10%, respectively, come from the northeast.

Air temperatures usually reflect changes in wind direction. During fall and winter, mean air temperatures in southeast Louisiana are 69.4°F (20.9°C) and 56.7°F (13.8°C), respectively (Table 7). During spring and summer, mean air temperatures are 68.6°F (20.4°C) and 80.8°F (27.3°C), respectively (ibid.). Because the bulk of the surface waters of the Gulf of Mexico originate in tropical latitudes, coastal water temperatures are relatively higher than surface waters at similar latitudes, undoubtedly resulting in a great warming and increase of moisture content of the overlying air masses. Leipper (1954) gives the mean annual temperature of Gulf surface waters as 78°F (25.6°C), whereas in comparable areas at the same latitude the mean annual temperature is 74°F (23.3°C) in the western Atlantic, 73°F (22.8°C) in the eastern Atlantic, and 68°F (20.0°C) in the eastern Pacific.

Mean monthly rainfall in southeast Louisiana ranges from 3.2 inches/month (8.2 cm/mo) during October to 7.4 inches/month (18.7 cm/mo) during July. Generally, the winter and summer seasons are the rainiest, the monthly means being 5.2 inches (13.2 cm/mo) and 6.4 inches (16.3 cm/mo), respectively. Rainfall is slightly lower during the fall and spring, 4.5 inches/month (11.3 cm/mo) and 4.6 inches/month (11.6 cm/mo), respectively (Table 8).

Humidity along the southeast coast of Louisiana is high because of abundant rainfall and possibly because the prevailing winds have a long fetch over the warm surface waters of the Gulf. Table 9 gives the percent frequency of six classes of humidity on a seasonal basis for New Orleans. Humidity is generally high all year, but it is highest during summer.

Coastal fog (as indicated for New Orleans and Lake Charles) is 2 to 4 times more frequent during December and January (Table 10A and B). Generally, the duration of coastal heavy fog is only about 3 to 4 hours. Visibility offshore of Louisiana is reduced to less than 3 miles (4.8 kilometers) 4.3% of the time on a monthly basis. Poorest visibility occurs during winter and the spring months of March and April; visibility less than 3 miles occurs 7.9% of the time, during January and 9.6% and 8.0% of the time during March and April, respectively. The sky is obscured by cloud cover on the average from 4/10 to 6/10 of the time (Leipper, 1954).

The seasonal pattern of insolation in southeast Louisiana is given in Figure 21. During winter, solar radiation averages about

235 gr-cal/cm²/day, and during spring months it increases to 435 gr-cal/cm²/day. The rate reaches a maximum of 488 gr-cal/cm²/day during summer and declines to 367 gr-cal/cm²/day during the fall. This seasonal pattern of solar energy undoubtedly is one of the causal factors involved in biological productivity.

Cyclones, particularly the tropical species, generally affect the northwest Gulf area from late May to early November. Data on cyclones, including hurricanes, in coastal sections of Louisiana are given in Table 11. West of the Mississippi Delta, the probability of cyclone occurrence is slightly higher than to the east, occurrence values are 21% and 18%, respectively, for Barataria and Terrebonne and 15% west of the Mississippi Delta. The probability of hurricane and great hurricane occurrence is about the same on either side of the delta. Table 12A and B gives historical data on hurricanes within 180 miles (290 kilometers) of the Louisiana coast. During the entire hurricane season (163 days; May through early November), the average number of tropical storms is 0.76/year; the overall probability for any one day is 0.47%. Usually hurricanes occur at least once a year, and their overall probability is 0.61% for any one day. Comparative cyclone data are given in Figures 22 and 23 for the entire Atlantic and Gulf seaboards; it is apparent that the Gulf is more susceptible to cyclones (and hurricanes) than the Atlantic coast. Thus areas 5 and 6 (see Fig. 22 and Table 11), off Texas, for any one year have an overall tropical cyclone occurrence probability of 19% and a hurricane probability of 13%. For areas 11 and 12, off Louisiana, the probabilities are about the same, respective values being 18% and 11%. Similar

probabilities for areas 46-47 (Delaware), 50-51 (New Jersey) and 58 (Maine) are 2.5% - 1.5%, 8.5% - 6.0%, and 13.0% - 5%, respectively.

2. Summer Conditions

Two pressure ridges dominate the summer weather of coastal Louisiana. One is the "Bermuda high," centered over the Bermuda-Azores area of the Atlantic, and the other is the "Mexican heat low," centered over Texas, resulting from solar heating over the land. During July, 67% of the coastal winds are out of the southeast, south and southwest; 98% of the wind speeds are \leq 19 mph (8.5m/sec), and 50% of them are \leq 9 mph (4 m/sec) (Table 13).

Average monthly air temperatures are high: 78.7°F (25.9°C) in June, 80.7°F (27.6°C) in July, and 82.2°F (27.9°C) in August (Table 7). Rainfall is also high during the summer; monthly averages are 5.3 inches (13.5 centimeters), 7.4 inches (18.8 centimeters), and 6.6 inches (16.8 centimeters), respectively, for June, July, and August (Table 8).

During active seasons for hurricanes the probability of a hurricane occuring on any one day is 0.56% between June and July; during inactive seasons it is 0.15%. During early August, in an active season, the hurricane probability increases sharply to 0.99%; but in an inactive mid-season, the first part of August is the calmest time of the year (Table 12A).

3. Fall Conditions

During fall, the "Bermuda high" pressure ridge starts to migrate toward the southeas- of the Gulf of Mexico. September winds (Table 14A) shift to a more northeasterly origin, 21% of winds coming out of the northeast compared to 3% for July. Wind speeds increase

over those of July: 11.9 are >25 mpr (11.2 m/sec), compared to 1.7% during July. October winds (ibid.) continue the shift to northeast origin; almost 30% come from that direction. October wind speeds (Table 14B) also increase over those of September; 13.7% are >25 mph (11.2 m/sec).

Air temperatures begin to decrease during September (75.2°F or 24.0°C) and October (71.3°F or 21.8°C), but the sharpest drop occurs during November: down to 61.7°F (16.5°C). Rainfall is usually high during September (6.4 inches or 16.2 centimeters), but during October and November a drier period occurs: 3.2 inches (8.1 centimeters) and 3.7 inches (0.4 centimeters), respectively (Tables 7 and 8).

The first part of the fall is the most active period for tropical cyclones, the overall probability being 0.99% for any one day. Most hurricanes occur during this season; the average number is 0.7 per year (Table 12).

4. Winter Conditions

During winter, the "Bermuda high" is usually located in the southeast area of the Gulf of Mexico. In December winds out of the northeast, north, and northwest increase, the percentage of all winds from these directions being 24.7%, 16.6% and 8.6%, respectively (Table 15). Wind speeds increase over those of September and October: 23.1% are >25 mph (11.2 m/sec), as compared to 11.9% and 13.7% for the latter months, respectively.

Air temperatures are lowest during the winter season. During December, the mean air temperature is 56.8F (13.8°C); during January, 54.9°F (12.7°C); and during February, 58.5°F (14.7°C). Rainfall, however,

increases over the fall season average, the average in December, January, and February being 5.0 (12.7 centimeters), 5.9 (15.0 centimeters), and 4.7 (11.9 centimeters) inches/month, respectively (Tables 7 and 8).

Tropical cyclones are rare during this season (Table 12).

5. Spring Conditions

The frequency and intensity of "northers" decrease during spring as the "Bermuda high" develops again over the northwest portion of the Gulf. During April, winds shift to an origin predominantly out of the southeast (Table 16): 32.6% are from the southeast compared to 15.2% during December (of Tables 15 and 16). Wind speeds are slightly reduced from those of December; 52.2% are ≤ 14 mph (6.3 m/sec) compared to 32.6% <14 mph (6.3 m/sec) for December.

Air temperatures begin to increase. The mean air temperatures during March, April, and May are $61.7^{\circ}F$ ($16.5^{\circ}C$), $68.9^{\circ}F$ ($20.5^{\circ}C$), and $75.2^{\circ}F$ ($24.0^{\circ}C$), respectively. The greatest increase in air temperature occurs during March ($7.2^{\circ}F$ or $4.0^{\circ}C$) and April ($6.3^{\circ}F$ or $3.5^{\circ}C$). Rainfall during the spring season is slightly less than that during the winter season, mean rainfall during March, April, and May being 4.9 (12.4 centimeters), 4.3 (10.9 centimeters), and 4.5 (11.4 centimeters) inches/month, respectively (Tables 7 and 8).

The probability of a tropical storm occurring during this season is slightly more than during winter, but the chances are still low, being 0.23%. The average number of hurricanes per year during this season is only 0.02%, the lowest of the year (Table 12).

D. Hydrographic Background

1. General Description

No systematic survey of the oceanography of the western shelf along Louisiana has yet been made. The generalized picture of the surface circulation system given in Figure 24 is a result of compiling data and extrapolating from a variety of sources. Just south of the Mississippi River delta the surface circulation has a northerly set, possibly as the result of intrusion of the Yucatan current. When this water reaches the delta it flows to the west and east. The eastern branch forms a clockwise gyral along the continental shelf of northern Florida; it is especially well defined during late winter and spring. The western current is not so well defined but is presumably a boundary current flowing northward; the overall net direction is probably to the northwest and west-northwest as a result of modifications by winds, bottom topography, and discharge waters of the Mississippi and other rivers.

A littoral drift, setting to the east, is present along the coast near Grand Isle and may be coupled with Mississippi River discharge, as suggested by satellite photographs and by the presence of high concentrations of <u>Escherichia coli</u> at times in the waters of Barataria Bay. The latter is presumed to be the result of Mississippi River input inasmuch as it contains sewage contaminants. In addition, cells of high-salinity waters are often present immediately off the mouth of the delta, probably as a result of the bifurcation to the east and west of the discharge waters of the river and the intrusion of oceanic waters between them. Hurricanes in the Louisiana area usually have a net drift toward the northwest. They can cause considerable modification to the

shelf waters and generally push oceanic water onto the shore and into the estuaries.

2. Surface Circulation along Western Continental Shelf

The primary surface current of the Gulf of Mexico enters through the Yucatan Channel and eventually leaves through the Florida Straits. The extent of this intrusion into the Gulf varies with the season; it is just evident during February and March, but by August it becomes well defined, reaching approximately 760 kilometers across the Gulf or almost to the edge of the continental shelf off the delta of the Mississippi River (Nowlin and McLellan, 1967; Leipper, 1970). It is uncertain whether the shelf circulation off western Louisiana is coupled with the Yucatan Current (Nowlin, 1971), but it is generally known by mariners and from localized oceanographic surveys that the set of the shelf current is to the northwest and north-northwest.

Current data for a l-year period, extracted from Scruton (1956), were taken within an area just west of Burrwood, Louisiana, in the Mississippi Delta (in a 1° square bound by $28^{\circ}-29^{\circ}$ north latitude and $90^{\circ}-91^{\circ}$ east longitude), and from an area just south of Grand Isle, Louisiana (in a 1° square bound by $28^{\circ}-29^{\circ}$ north latitude and $89^{\circ}-90^{\circ}$ west longitude). The mean current vector off Burrwood sets toward 348° at 10.8 cm/sec, and off Grand Isle it sets toward 318° at 14.9 cm/sec. The currents off the Burrwood area have more northerly and easterly components than those of the Grand Isle area. Monthly data (ibid.) confirm this difference inasmuch as each of the resultant currents off Burrwood usually sets more often to the north than those off Grand Isle; the fall season (September, October, and November) is

an exception to this generalization. It is appropriate to note that during the summer months (June, July, and August) currents off Burrwood set due north and north-northeast. In the Grand Isle area, currents set with a north and west component, but during the summer months a more northerly set is evident. Wind data from Scruton (1956) for both areas are given in Tables 17 and 18. Scruton claims a significant correlation (at $p \leq 0.02$) between surface currents and winds. The correlation coefficients between the surface currents and winds are r = 0.52 and 0.41 for the Grand Isle and Burrwood areas, respectively.

Additional current data for the Grand Isle area are given in Table 19. These data were collected for a pipeline company just south of Grand Isle within an area delineated by geographic coordinates $28^{\circ}55'$ to $28^{\circ}57$ 1/2' north latitude and $89^{\circ}56'$ to $89^{\circ}58$ 1/2' west longitude. More than 55% of the surface currents flow to the west (NW + W + SW) at a median speed of approximately 1.2 ft/sec (42.7 cm/sec).

3. Littoral Currents

There is a littoral drift current along the shore of the Grand Isle area. Actual measurements of the direction and speed have not been made, but Conatser (1971) has inferred its presence and direction from sediment buildup on the sides of jetties and groins extending out along the ocean front of Grand Isle. Conatser states that waves moving out of the southeast and southwest arrive at Grand Isle at an angle just slightly from normal to the long axis of the beach and, as a result, they induce a littoral current to set toward the northeast. The end result is sand buildup on the southwestern sides

of the jetties and groins. The jetty at the northeast end of Grand Isle particularly shows the effects of this buildup; it has increased by about 367 meters along its southwest side since 1958. This littoral transport is probably in response to prevailing southerly winds inasmuch as Conatser has observed a temporary reversal (i.e., on the northeast side) of sand buildup along the sides of jetties when strong easterly winds occur. In addition, he states that discharge out of Caminada Pass into the Gulf is, under normal circumstances, toward the northeast---another indication of the northeast littoral drift.

4. High-Salinity Cells off Delta of Mississippi River

There are cells of water off the Mississippi Delta which have high salinities (Walsh, 1969; Bouma et al., 1971). It has been suggested that oceanic waters which intrude near the delta split into an easterly and a westerly component. The result is probably a series of uneven convergence lines where mixing of oceanic and river waters is uneven and cells of high-salinity oceanic water are formed. Chew et al. (1962a), using drift bottles, found that bottle returns showed a consistent pattern of recovery from eastern and western locations on either side of the delta of the Mississippi River. These workers also found that stagnant or unmixed cells were often present off the delta of the river, and they took this to mean that there were unmixed areas of water, probably the result of the intersection of oceanic waters with river waters. Bouma (ibid.) found that these oceanic cells generally had higher salinities and temperatures but less detrital and sediment content than the surrounding waters.

5. Modification of Shelf Hydrography by Mississippi River

At the Head of Passes, the Mississippi River branches into three major distributaries (Fig. 5). Pass A Loutre carries 37% of the total river discharge, whereas South Pass accounts for 29% of the total and Southwest Pass accounts for about 15% of the total. Average river discharges by month over 21 years are given in Table 20. Figure 25 graphically illustrates the discharge volume per month of the Mississippi River. Highest discharge occurs during spring, especially during March and April. During summer there is a sharp decline in runoff, and by fall and early winter the river is generally at its lowest stage.

Studies near South Pass by Wright (1970) show that current vectors during flooding and ebb tides increase in velocity and change their direction from a southerly set to one toward the southwest (Fig. 26). Sediment distribution (Fig. 27) confirms this pattern inasmuch as the plumes generally bend toward the southwest. The isopleth of the 80 mg/l suspended concentration extends out approximately 6,000 meters. Vertical mixing and statification were found to be significant functions of the distance from the river's mouth, the river's stage, and winds (Table 21).

6. Effects of a Hurricane on Hydrography

Stevenson (1967) collected temperature and salinity data off the Louisiana coast before and after Hurricane Betsy in September 1965. Prior to the hurricane, the surface waters near the delta of the Mississippi River were usually brackish to fresh and spread parallel to the coast along the continental shelf (Fig. 28), extending seaward

approximately 250 kilometers. Four to ten days after the hurricane, the same general transects were repeated along the coast and toward the shore at Terrebonne and Barataria bays (Figs. 29 and 30). The data indicate that water temperatures at depths as great as 75 meters increased as much as 6°C after the storm. It was estimated that the upper 30 meters of water was disturbed out to a distance of about 90 kilometers on either side of the hurricane eye.

7. Gross Circulation of Barataria Bay

Barataria Bay is considered to be a composite of three different hydrologic units, as shown in Figure 31. Its gross circulation patterns are outlined in Figures 32 and 33 (Pike and Hacker, 1972, unpublished data) in streamlines for each of the hydrologic units within Barataria Bay under conditions of an outgoing and an incoming tide. Estimates are given in Table 22 of the annual average flow of fresh water through each unit; the easternmost unit, through Quatre **Bayou Pass, passes the most water per day at 1.0** \times 10⁶ ft³/day. The average residence time that a particle of water spends in each of the units is 53, 48, and 50 years for units I, II, and III, respectively. Figure 34 presents residence times differently by dividing the areas into three subareas, running west to east. The total time for a water particle to move from north to south through all sections would be 3.000 days. Thereafter, transport out of the bay is assumed to be quite rapid and to be accomplished within a tidal cycle. These data imply that if a particle is located north of the boundary conditions shown in Figure 34, then its removal will be significantly slower.

26

ŝ

8. Water Temperatures and Salinities

Median water temperatures for Barataria Bay are given in Table 23. Water temperatures during winter average 13.4°C and during spring increase to 21.4°C. The most significant increase in water temperature occurs during April and May; respective averages are 22.4°C and 25.4°C. Summer water temperatures average 28.4°C, and during fall they drop to 22.7°C. The most significant decrease usually occurring during December. It is probably significant to biological production (such as fishery harvest) that considerable variation in water temperatures occurs during the winter and spring months. The reader is especially directed to examine the monthly data for variations between them and the overall average.

Representative water salinities for Barataria Bay over a 1-year period are illustrated in Figure 35; they range from about 6 °/... to a maximum of about 15 to 16 °/... Lowest salinities occur during April and May, and this condition appears to be directly correlated with the peak discharge of the Mississippi River. Figure 36 gives isohaline patterns for the entire Louisiana coast and for some offshore locations. The influence of freshwater influx is evident along the entire Mississippi Delta and in Barataria and Caminada bays. Timbalier and Terrebonne bays, however, appear to be comparatively more saline than the former two hydrologic units; the 20 °/.. isohaline is located farther north in these bays.

Table 24 gives water temperatures and salinities at a location 8 miles offshore from Grand Isle, Louisiana. Average water temperature during winter is 16.9°C (62.4°F), which is slightly warmer

than in the estuaries. During spring, summer, and winter the mean water temperatures are 21.2°C, 29.0°C, and 24.9°C, respectively.

9. Sea Level and Tidal Effects

Sea level along the Louisiana coast has been rising since the 1940's (Fig. 37). Data from three recording stations reflect this gradual encroachment of seawater. Generally, however, the mean tidal range is small, from about 2 inches (5 centimeters) to 24 inches (60 centimeters). Table 25 gives monthly data on tides along the central Louisiana coast. Tides are diurnal, and maximum ranges recur about every 2 weeks, alternating with minimums. The highest mean water level occurs during September and October, and the lowest levels occur during December through March. Winds, however, modify the tides significantly by either pushing the water out of the shallow estuaries or pushing more in under either a north or a south wind. The marshes are rarely covered during winter as a result of strong north winds. Table 26 gives tide data for a location offshore of Grand Isle. The mean range is 1 foot (30 centimeters), and maximum range is 3.3 feet (1 meter).

10. Wave Characteristics

Approximately 92% of the waves along coastal Louisiana are 3 to 5 feet (1 to 1.5 meters) in height and have a period of 4.5 to 6 seconds when wind speeds are greater than 10 km/hr. Most of the waves (43%) come out of the southeast (Table 27). In water depths of 30 meters, maximum wave height is about 27 feet (8 meters) but, depending on the storm, it can be 34 feet (10 meters) every 5 years, 39 feet (12 meters) every 10 years, 46 feet (14 meters) every 25 years, 52 feet (16 meters) every 50 years, or up to 54 feet (16 meters)

every 100 years (cf Tables 28, 29, 30, 31, 32, and 33). On an annual basis waves come out of the northeast, southeast, east, and south 70.9% of the time, and 71.9% of them are between 0 and 5.9 feet (1.8 meters) in height (Table 34). During April, 78% of the waves are from the northeast, east, southeast, and south. During July, the waves shift to a more southerly origin, 66.7% of them coming from the southeast, south, and southwest. During September and October, the waves shift to an origin more from the north, as 25% of the winds come from the northeast, compared to 3% during July. During December, the shift is slightly more to the north (cf Tables 35, 36, 37, 38, and 39).

The Louisiana coast is a low-energy coastline in terms of offshore waves. Data in Table 40 suggest that during spring and summer the intensity of offshore waves is at its lowest peak, but during fall and winter a 2X to 3X increase in intensity takes place. Figure 38 characterizes the Louisiana coast in terms of wave power and advance or retreat of a particular section of coast. The Mississippi and Atchafalaya (off Vermilion) deltas are, as would be expected, advancing. The Barataria and Terrebonne coastlines are, however, retreating. Along eastern and western Terrebonne this retreat amounts to >50 ft/yr (15 m/yr) and 25 to 50 ft/yr (7 to 15 m/yr), respectively. The coastline of Barataria Bay is retreating at a rate of 12 to 25 ft/yr (3 to 7 m/yr). It is noteworthy that the annual wave power at the 30-foot (9-meter) depth contour is greatest along the eastern side of Terrebonne Bay (i.e., Timbalier Bay). Figure 39 gives a plot of the orthogonals along the entire Louisiana coast. The density of

orthogonals is greatest off and east of the Mississippi River delta which suggests that this is the area of greatest wave power.

E. <u>Biological Units</u>

1. Important Physical Parameters

Salt marshes such as the Barataria and Terrebonne systems are highly productive ecosystems, considered by some (Pomeroy, 1970) to be highly eutrophic and quite stable. Their stability is apparently enhanced by the presence of a large amount of nutrients, resulting in turn in high and continuous primary production by means of a diversity of species. Although the data are not complete, the most important parameters controlling the cycle of estuarine production appear to be weather-related or environmental phenomena. Guidelines as to which environmental factors are important in estuarine production exist in the research literature. For example, Riley (1937) demonstrated the significance of Mississippi River discharge in terms of nutrient input to the northern Gulf of Mexico. Schelske and Odum (1962) claimed that primary production in Georgia estuaries is directly related to high and continuous production by a diversity of species (i.e., marsh grass, benthic algae, and phytoplankton), to tidal flushing, to abundant nutrients, and to rapid turnover rates. Odum and de la Cruz (1967) demonstrated the role of tidal currents and temperature in the formation of estuarine detritus. Odum (1971) suggested that there is a good correlation between detritus production in an estuary and the production of coastal fisheries contiguous to the estuary.

With the above serving as a background, Stone (1972)

regressed nineteen environmental variables on fishery harvest taken off the Louisiana coast on a monthly basis from 1962 through 1969. The variables are given in Table 41. The overall regression was significant at p = 0.0001 and accounted for 97% of the data variance (Table 42). Stepwise regressions (Table 43) revealed that water temperature significantly accounted for better than 80% of the data variance, and four other variables (i.e., tide range, sea level, air temperature, and Mississippi River discharge) and their interactions significantly accounted for an additional 6% of the data variance. Inasmuch as the major fishery species of Louisiana, i.e., menhaden and shrimp, are derived from estuaries, the assumption is that these five or six variables probably control a significant part of estuarine production. This does not mean that they are the only factors, and it should be emphasized that these variables are probably connected or mask the effects of temperature on growth and mortality and with the effects of the transportation of food (detritus) and nutrients.

2. Plant Communities

There are approximately 4 million acres (1.6 million hectares) of marshlands in the coastal zone of Louisiana (Table 44). Three general marsh zones are proposed by Chabreck (1972): (1) the chenier plain zone west of Lafayette, (2) the inactive delta zone east of Lafayette, and (3) the active delta zone or the delta area of the Mississippi River (see Fig. 40).

Within each zone, four general plant communities are recognized (Chabreck, 1970 and 1972). They are (1) the fresh community,

which makes up about 30.8% of the total Louisiana marsh, (2) the brackish community, which accounts for 30.7% of the total, (3) the saline community, which accounts for 22.1% of the total, and (4) the intermediate community, accounting for 16.3% of the total (Fig. 41). These plant communities are based on vegetative types originally proposed by Penfound and Hathaway (1938), and this system refers to the relative salt tolerance of the major vascular species along the Louisiana coast. In saline communities, Spartina alterniflora, Distichlis spicata, Juncus roemerianus, and Spartina patens are the indicator species. In brackish and intermediate communities, the indicator species are Spartina patens, Distichlis spicata, Phragmites communis, and Sagittaria falcata. The indicator species for the fresh community are Panicum hemitomon, Sagittaria falcata, Eleocharis sp., and Alternanthera philoxeroides. At least one hundred eighteen species of vascular plants have been found within these communities (Table 45). Spartina patens makes up 25% of the total vegetation, and other major species (those >5% of total) are S. alterniflora, Panicum hemitomon, Distichlis spicata, and Sagittaria falcata (ibid.).

Tables 46 and 47 give the fourteen major plant species occurring in the active and inactive delta marsh zone. (These are the only two marsh zones pertinent to this report.)

The total acreage in terms of marshes, water bodies, swamp, and dry land for hydrologic units in the study area is given in Table 48, i.e., III (Mississippi Delta), IV (Barataria Bay), and V (Terrebonne Bay). Natural marsh makes up 22.9% of the total acreage

in unit III, 36.4% in unit IV and 41.6% in unit V. Terrebonne Bay (V) has more marsh than any other estuary in Louisiana, and Barataria Bay is second in rank.

Table 49 gives total acreage of hydrologic unit III (Mississippi Delta) according to the four general types of marsh-plant communities. No saline marshes are present in the delta area, probably as the result of the freshwater input of the Mississippi River. Most of the delta marshes are of the fresh and intermediate types, i.e., 34.7% and 44.4%, respectively, though 20.8% is brackish.

Table 50 gives similar data on the Barataria Estuary, hydrologic unit IV. All four vegetative types are present in this estuary, but, in contrast to the delta estuary, 30.7% of the area is saline marsh. Fresh marsh accounts for most of the acreage, i.e., 38.3%, and brackish marsh accounts for 30.7% of the total acreage. Intermediate marsh is not so strongly developed in Barataria as in the delta (4.7% compared to 44.4% in the latter). Table 51 gives acreage estimates on vegetative types for the Terrebonne Estuary, hydrologic unit V; percentage composition is almost identical to that of Barataria Bay, i.e., 31.6% saline, 23.3% brackish, 6.5% intermediate, and 38.6% fresh.

The major plant species found in the natural marshes of the Delta, Barataria, and Terrebonne estuarine units are given in Tables 52, 53, and 54; no plant species were included in these listings that made up less than 1% of the total species composition. In the Delta estuary, the dominant species are <u>Phragmites communis</u>, <u>Myriphy-</u> <u>llum spicatum</u>, <u>Panicum sepens</u>, <u>Bacopa monnieri</u>, and <u>Spartine alterniflora</u>.

In the Barataria Estuary, the dominant species are <u>Bacopa monnieri</u>, <u>Distichlis spicata</u>, <u>Eleocharis</u> sp., <u>Juncus roemerianus</u>, <u>Panicum</u> <u>hemitomon</u>, <u>Pluchea camphorata</u>, <u>Sagittaria falcata</u>, <u>Spartina alterni-</u> <u>flora</u>, <u>Spartina patens</u>, and <u>Vigna repens</u>. In the Terrebonne Estuary the dominant species are <u>Bacopa monnieri</u>, <u>Cyperus odoratus</u>, <u>Distichlis</u> <u>spicata</u>, <u>Eleocharis</u> sp., <u>Leptochloa fascicularis</u>, <u>Panicum hemitomon</u>, <u>Sagittaria falcata</u>, <u>Scirpus olneyi</u>, <u>Spartina alterniflora</u>, <u>Spartina</u> <u>patens</u>, <u>Typha</u> spp., and <u>Vigna repens</u>.

3. Primary Production

Primary production in Louisiana coastal wetlands has been measured only in selected areas of the Barataria Bay estuary. A partial list of primary producers for those areas is given in Table 55. The significance of this listing is that primary production operates on at least four levels (benthos, phytoplankton, epiphytes, and marsh grass) and by means of a diversity of species.

Gross production for the benthos and phytoplankton is given in Figure 42. Phytoplankton production is at a maximum during July and at its lowest during the winter period. Benthic production peaks during late August and early September. Epiphytic production is shown in Figure 43; it has two seasonal peaks, one during spring and the other during late winter. The patterns of epiphytic and benthic production are quite similar in that they complement production by phytoplankton and marsh grass; their peak production generally occurs when the latter two groups are at low production.

Total net production for Spartina alterniflora at selected

areas in Barataria Bay is given in Figure 44. Production is highest during April and May and remains relatively high through July. Streamside production is always greater than inland production. Live standing crop of <u>S</u>. <u>alterniflora</u> reaches its maximum value during September, whereas the dead standing crop reaches its maximum value during late winter and spring (April). The maximum loss rate of detritus occurs during April, and a secondary high peak occurs during September and October. <u>S</u>. <u>alterniflora</u> is an annual plant which flowers in October and dies back during December. Propagation of this species in the Barataria Estuary is thought to be primarily by means of the existing root system rather than by seeds (Gosselink, 1972, personal communication).

Summary data on primary production for the marsh and water community in the Barataria Bay area in terms of dry gram weight per square meter per year is given in Table 56. Net community production of the marsh grass is 764 g dry wt/m²/yr for the water column. These data illustrate the prime importance of the marsh grass inasmuch as its net yield is some 12X to 40X greater than that of any of the other producers. For any one year, most of this net yield probably remains on the marsh as living plants until late winter, when the crop dies back. The dead plant material is then broken down into detritus and transported by high spring tides into the open bay areas offshore, where it supports an extensive marsh fauna and the major fishery species. Energy flow estimates for the Barataria Bay area are given in Figure 45. Approximately 58% of the total net production of the

estuary is used by species within its geographic confines, and about 42% is estimated to be "exported" to the offshore area.

4. Marsh Consumer Species

Consumer species in three different habitats common to the marsh-estuarine system of the Barataria Bay area are listed in Table 57.

Population estimates of bacteria, on a seasonal basis, are given in Figure 46 for the Barataria Bay area. Bacteria associated with living marsh plants have a population peak of 10⁷ cells per gram of wet substrate during August; however, high populations $(\sqrt[3]{10}^6 \text{ cells})$ g/wet substrate) generally prevail during the entire year. Bacteria populations in the sediments are approximately an order of magnitude lower than those associated with marsh grasses; they also appear to be relatively constant in numbers throughout the year. In the water, bacteria populations are about 2 to 4 orders of magnitude less than those of the sediments and marsh grass, but 2 peaks are evident, during spring and late summer. The difference in bacteria populations among these three habitats is probably a reflection of adequate surface area for growth. The available surface area on marsh grasses and sediments presumably would be greater than that of water. Table 58 gives additional population estimates for bacteria at various locations on the marsh grass \underline{S} . <u>alterniflora</u>. The greatest populations occur at the mid and bottom portions of the plant; it is noteworthy that these areas have the greatest amount of moisture.

Seasonal biomass of zooplankton from a salt marsh area

east of the Mississippi River is given in Figure 47. A population peak, about 3X that of the rest of the year, is reached during April.

Biomass estimates for various macrofauna common to the marsh grass habitat is given in Table 59. These organisms are polychaetes, <u>Neritina</u>, <u>Sesarma</u> sp., fiddler crabs, blue crabs, <u>Littorina</u> sp., <u>Melampus</u> sp., and <u>Modiolus</u> sp. Biomass estimates are given as a function of the distance the organisms are located from the edge of open water back into the marsh grass for 300 meters. Figure 48 graphically illustrates these data for two areas sampled in the Barataria Estuary. The bulk of the species biomass is located quite close to the water-marsh interface; indeed, the largest biomass usually occurs within the first 3 meters of the marsh away from the open water's edge, and probably greater than 80% of the biomass occurs within the first 50 meters.

Biomass estimates on a seasonal basis for benthic organisms common to the submerged sediments in the Bartaria Bay area are given in Figure 49. Nematodes and amphipods have a biomass peak during March, whereas foraminifera have their peak in April-May. It is noteworthy that the distribution of these benthic creatures is clumped near the shore or, equivalently, the water-marsh interface area (Fig. 50).

Fish species taken in Caminada Bay, part of the Barataria Estuary are listed in Table 60. One hundred and thirteen species of fish were collected during this study (Wagner, 1972). Number of fish per hectare x 1000 and their biomass in kilograms per hectare x 10 for the Barataria Bay area is given in Figure 51. The greatest number

of fish occur during mid-march, and a secondary peak develops during August. Fish biomass reaches a peak during August. The 5 most dominant species of the sampled area are given in Table 61. Anchovy and menhaden are first and second ranked, respectively; they are followed by spot, croaker, and sea catfish. Generally, the other statistics, i.e., mean number per trip, percentage of total, total biomass per trip, and percentage of biomass, follow the ranking of the total numbers for each species; the only exception being for total biomass of the sea catfish. The population of the latter species was made up of larger individuals (Table 62). More detailed data on these 6 fish species in terms of numbers and biomass per sampling date are given in Tables 63 and 64. Anchovy and menhaden made up >70% of the total numbers and >19% of the total biomass. Sampling was done by means of a 6-foot otter trawl, hand seines, and trammel nets, and so some of the data undoubtedly reflect a sampling bias.

Seasonal biomass of fish species for other areas in the Barataria Estuary is given in Figure 52. A strong peak is evident during spring (March through May) and is followed by a decline through the fall season and a sharp decrease during the winter season. An abridged breakdown of the food used by the dominant fishery species of the Barataria Estuary is given in Table 65.

Biomass data for the brown and white shrimp (<u>Penaeus</u> <u>aztecus</u> and <u>P. setiferus</u>) in the Barataria Estuary is given in Figure 53. Brown shrimp have a peak biomass during March and early summer, whereas biomass of the white shrimp peaks during October and November.

Estimates of seasonal abundance of marsh birds common to

the Barataria Estuary and some qualitative data on their feeding habits are given in Table 66. The birds are categorized into wading birds, waterfowl, shore birds, and birds of the marsh proper. Waterfowl (12 of the 13 species listed) are more abundant during the winter months; 6 of 9 wading species predominate during the warmer seasons. Species of shore birds do not show a pattern either way. About 6 species are abundant all year, and the other five are common during warm or cold months. Figure 54 graphically illustrates these data. Ducks (waterfowl) predominate during the winter, and waders have their largest biomass during summer. The other bird species have relatively constant populations during the year.

5. Fishery* Species

For the last 10 years Louisiana has been the leading fishery state in terms of volume, and in terms of economic value it usually ranks among the top five states. Table 67 gives the 1970 harvest data for Louisiana by volume and dollar value. Six species make up 99% of the harvest volume and 98% of the economic value. Menhaden and shrimp are the principal two species, accounting for 94% of the volume and 86% of the economic value. Other important species are the oyster, blue crab, freshwater catfish, and crawfish.

The production and value of the major estuarine-dependent fisheries as produced in Louisiana on a 5-year average (1963-67) by major species, by major species taken in adjacent states but produced

*Fish and shellfish

in Louisiana, and by major species produced in each of the hydrologic units along coastal Louisiana are given in Tables 68, 69, and 70. Units III, IV, and V are the Mississippi Delta, the Barataria Bay estuary, and the Terrebonne Bay estuary, which form the landward geographic limits of the area for this study. Commercial fishing grids 13 and 14 form the offshore geographic limit (see Figs. 1 and 2).

During 1963-67 the major fishery species were almost the same as those for 1970. Menhaden and shrimp constituted 93% of the volume and about 85% of the total economic value (Table 68). Harvest estimates in terms of volume and value for fish and shellfish landed in adjacent states but taken in Louisiana waters are given in Table 69. Fishery products totaling at least \$5 million derived from the estuaries of Louisiana were harvested in adjacent states. A complete breakdown of similar data for harvest of major species for each of the nine hydrologic units along coastal Louisiana is given in Table 70.

The Barataria Bay estuary (unit IV) has the highest total production (1,183 pounds per acre) and value (\$46 per acre) of any of the hydrologic units. Terrebonne Bay (unit V) is fourth- and thirdranked in terms of production and value, respectively. The Mississippi Delta (unit III) area ranks sixth in production and fifth in value.

The remainder of this section will deal with selected data on each of the principal fishery species in the following order: menhaden, shrimp, oyster, blue crab, and croaker.

<u>Menhaden (Brevoortia patronus)</u> - The life history of menhaden apparently follows the typical pattern of an estuarine-dependent

species: the adults spawn offshore somewhere along the continental shelf and then the larvae enter the estuaries, where they undergo rapid growth and finally leave as near-adults. The individuals harvested off Louisiana are probably 1 to 2 years old.

The menhaden fishery of Louisiana started in 1948 and achieved mature status in the 1960's (Table 71). In the 1970's record harvests of >1 billion pounds have been achieved, suggesting to some that this species is now being exploited to its maximum.

Data on juvenile menhaden captured in each of the hydrologic units are given in Table 72. No data are given for the Missisippi Delta. The Barataria Bay area has the highest spring, summer, and winter abundances, and the Terrebonne area has the highest summer populations. The average abundances of juvenile menhaden per unit effort are one hundred thirty-one and thirty-four for Barataria and Terrebonne, respectively.

Production and harvest data on menhaden for each of the coastal hydrologic units and for each of the offshore grid areas are given in Tables 73 and 74. The largest harvest in the hydrologic units of Louisiana for this species occurs in the Barataria Bay estuary, production being 1,070 pounds per acre, almost 6X to 7X greater than the production in the Mississippi Delta and Terrebonne Estuary. Maximum offshore harvest occurs east of the study area in offshore grid 15, the 5-year average harvest being 174 million pounds.

Shrimp (Penaeus aztecus and P. setiferus) - Brown and white shrimp species that are most significant to Louisiana, and brown

shrimp usually accounts for most of the harvest. These species are estuarine dependent in that they usually spawn offshore, the larvae migrate into the estuaries, and after 2 to 4 months the adults return to the Gulf. Presumably the Louisiana harvest is made up of individuals between 1 and 2 years old. The cycle of white shrimp is generally slightly later than that of the brown, and it is apparently slightly more resistant to environmental extremes such as low salinities.

Historical data on shrimp harvest for Louisiana are given in Table 75. The industry has been a mature fishery since the 1920's.

Seasonal distribution of brown and white shrimp per hydrologic unit along coastal Louisiana are given in Figures 55 and 56. During spring and summer juveniles of the brown are prevalent, and Barataria and Terrebonne bays have the greatest populations. Juveniles of the white shrimp prevail during the winter and fall seasons and appear to be more abundant in the Terrebonne Bay estuary and to the west.

Production data for harvested commercial shrimp per hydrologic unit along coastal Louisiana are given in Table 76. Terrebonne Bay and Barataria Bay estuaries are the first- and second-ranked areas for maximum harvest. In terms of production in pounds per acre, Barataria Bay was first-ranked at 63.7 pounds and Terrebonne Bay was second-ranked at 54.7 pounds. These are the prime shrimp production areas for Louisiana. Over a 5-year period the Terrebonne area yielded \$4.5 million/yr, compared to \$2.5 million/yr for Barataria.

Data for offshore harvest off Louisiana by offshore grid

numbers are given in Table 77 (see Fig. 2 for code). Maximum offshore yield occurs in offshore grid 15, which is west of the study area. Grids 13 and 14 are offshore of Barataria and Terrebonne bays, respectively. Offshore Barataria (grid 13) is second-ranked in harvest and economic yield, and offshore Terrebonne Bay (grid 14) is third- and fourth-ranked in harvest and economic yield, respectively. This shift of maximum offshore harvest slightly to the west (i.e., offshore grid 15) may be a reflection of the prevailing westerly current.

Oyster (Crassostrea virginica) - Oysters generally flourish in brackish waters having a range of salinities from about 10 °/... to 30 °/... They are found intertidally in waters with depths of about 30 centimeters above mean low water to about 12 meters below mean low water. Spawning occurs from early spring through October, and larvae appear in the water from April through October. The spatfall or larvae attachment occurs usually from 3 to 4 weeks after fertilization and is dependent on suitable substrate--in Louisiana, old oyster shells provide this requirement. The spatfall is best on the east side of the Mississippi Delta, but growth is best on the west side of the delta. As a result, oyster fishermen usually move the spatfall from the east side of the delta to the west. Both private and state-owned water bottoms are used in Louisiana for oyster harvest.

Historical data for oyster harvest in Louisiana are given in Table 78. The oyster industry has been well established in Louisiana since the early 1900's.

The total number of oyster grounds in Louisiana for 1969

by parish, seed ground reservations, "red line" areas, and public reef is given in Table 79. Over 800,000 acres are committed for oyster culture and harvest. More than three-quarters of this area lies east of the Mississippi Delta and hence is removed from the present study area.

Estimates of total oyster production by pounds of canned oyster meat per acre of leased land per hydrologic unit are given in Table 80. No oyster production occurs in the active Mississippi Delta, undoubtedly as a result of too much fresh water. However, the Barataria Bay estuary is the first-ranked production area and second only to Lake Borgne in terms of oyster pounds produced per acre leased (357 lbs/ leased acre as compared to 539 lbs/leased acre for Lake Borgne and vicinity. Oyster harvest data by private and public grounds are given in Table 81. Maximum production in each occurs during the spring, and private grounds produce more oysters than public grounds.

<u>Blue Crab (Callinectes sapidus)</u> - Blue crabs are apparently common all year in all waters of Louisiana and can live in fresh water or oceanic waters. Spawning may occur in offshore waters throughout the year, and the larval forms migrate to the estuaries. After a residence time of about 4 to 6 months, the individuals are mature and the cycle is completed.

Historical data on blue crab harvest in Louisiana are given in Table 82. It has been a mature fishery for at least 30 years.

Juvenile blue crabs are apparently more abundant in hydrologic units I, II, IV, and V, but Barataria Bay estuary is

first-ranked in terms of pounds of production per acre, i.e., 7.9 lbs/acre. This value is approximately 3 times greater than those of the other hydrologic units (Table 83).

Inshore harvest data on hardshell blue crabs per hydrologic unit are given in Table 84A. The Barataria Bay estuary and units east of the Mississippi have maximum harvest and dollar yield. Table 84B gives similar data for soft-shelled individuals. Terrebonne Bay estuary is the only unit with soft-shell harvest west of the Mississippi Delta.

Table 84C gives offshore harvest data on hard-shelled blue crabs. Offshore grid 15, just west of the study area, has maximum harvest and economic yield. This juxtapositioning of the best offshore harvest areas just west of the inshore best harvest areas may be a reflection of the prevailing westerly current along the continental shelf of Louisiana.

<u>Croaker (Micropogen undulatus)</u> - Historical harvest data for the croaker are given in Table 85. Though this species has been harvested since the early 1900's, some workers suggest that it is a fishery not being fully used and one which could be exploited approximately 6 times the volume of its present harvest.

Data on the distribution and abundances of juvenile croakers in Louisiana estuaries are given in Table 86. The largest populations occur from Barataria Bay to the west. Abundances are greatest during the spring and somewhat lower in the summer.

Harvest data on croakers per hydrologic unit along coastal Louisiana are given in Table 87A. Harvest production is greatest west of the present study area, in hydrologic unit VIII, along the chemier

plains of the coast. Terrebonne and Barataria estuaries are secondand third-ranked among the hydrologic units in terms of croacker production per acre.

Inshore harvest data on croakers between 1963 and 1967 are given in Table 87B. Inshore harvest and economic yield are about the same among hydrologic units I, II, IV, and V. Table 87C gives data on harvest of croakers offshore of Louisiana. Maximum harvest and dollar yield occur in offshore grid 13, just off the Terrebonne Estuary.

6. Miscellaneous Consumer Species

Seasonal estimates are given in Table 88 on waterfowl common to southeast Louisiana. Winter and fall populations are the highest for all four types of waterfowl listed; the total estimated population for both seasons is 4,542,000 birds, and the total during spring and summer is 560,000 birds, or a difference by a factor of approximately 9X. An important feature implied by these data is that the marsh or coastal wetlands support a large population of migratory species, none of which, apparently, overlaps any other to a significant degree.

Data on the nutria and muskrat fur and meat industry of Louisiana are given in Table 89. Estimates are also given as to the density of muskrats per 100 acres in each of the hydrologic units considered in this study. Highest densities of 285 animals/100 acres are found in the brackish marsh area of Terrebonne Parish. The total dollar value of pelts and meat in the 1969-70 season was 6.8×10^6 and during the 1970-71 season was 5.2×10^6 . Prior to the introduction of the nutria into Louisiana during the 1940's, the muskrat was the only

species of animals found in the coastal wetlands involved in the fur and meat industry. In 1966, the peak production of nutria was 1.5 million animals, and muskrat production was dramatically reduced. Since then, it appears, the muskrat and nutria have been reestablishing a stable interspecific relationship, though the harvest data of Table 89 indicate that nutria accounted for about 48% of the fur market and 86% of the meat market.

Alligator populations are apparently on the comeback in Louisiana, though as a species they are still on the endangered list. Table 90 gives population estimates in the general marsh zones, i.e., subdelta and active delta, part of which make up the study area. The greatest populations are in the subdelta zone; about 42,000 alligators are estimated to be on private lands and about 7,000 on public lands. The total population of this animal in both marsh zones is estimated to be approximately 63,360. It is believed that an oil spill per se would not bother the alligator unless the oil were differentially absorbed by their eggs, causing high mortalities. However, because the alligator feeds mainly on blue crab, crawfish, muskrat, nutria, and raccoon (all of which are quite dependent on marsh grass), the spill might affect this species adversely in an indirect way by decimating its prey or the younger forms of its prey.

7. Offshore Communities

Population estimates of major fishery species harvested offshore of Louisiana have already been discussed. More work is needed on the benthic communities and on the distribution and abundance of

larval and juvenile forms in the offshore areas. Parker and Curray (1956) classified three common macroorganisms of the central Gulf Coast in terms of the number of species found in a given gradient of salinity. His categories include gastropods, crustacea, and pelecypoda. The greatest number of species, i.e., twenty-three, occurs in more saline water $(35 \, ^{\circ}/_{\circ \circ})$ to $45 \, ^{\circ}/_{\circ \circ})$. There is a corresponding decrease in species as the salinity is decreased. Table 91 gives the estimated number of genera and species for five benthic forms common to the central Gulf Coast. Pelecypods and gastropods predominate the community species makeup (Table 91). More detailed data on various offshore communities are given in Table 92, but still this represents only a qualitative expression of part of the offshore communities.

The Gulf Coast Research Laboratory at Ocean Springs, Mississippi, recently published results of an extensive survey on nektonic and benthic forms carried out off Mississippi from 1967 through May 1969 (Franks et al., 1972). Fifty invertebrate species and one hundred twenty-three fish species made up the collection. <u>Renilla</u> <u>mulleri</u> was the most abundant invertebrate, and the brown shrimp (<u>P. aztecus</u>) was the second most abundant. The five most abundant fish were the croaker (<u>Micropogon undulatus</u>), the longspine porgy (<u>Stenotomus caprinus</u>), the butterfish (<u>Poronotus tricanthus</u>), the spot (<u>Leisotomus xanthurus</u>), and the seatrout (<u>Cynoscion nebulosus</u>). These species accounted for 81% of the numerical catch. Commercially important fish made up 93% of the total fish catch.

8. <u>General Overview of Biological Units</u>

Three major biological components of the Barataria Estuary

of Louisiana are listed in Table 93. The first component is made up of the most important physical factors, such as insolation, air and water temperatures, rainfall, water level, and river input. The second component is made up of the primary producers, such as marsh grass, phytoplankton, and epiphytic and benthic algae. The third component is composed of the major consumer species, such as bacteria, fungi, meiofauna, zooplankton, menhaden, shrimp, and birds. Also given in Table 93, in an effort to summarize the previous sections on biological units as succinctly as possible, are the gross seasonal changes in each of these parameters or populations. This summary approach may result at times in circular reasoning, and the reader is forewarned to be cautious in this regard. These components operate primarily in the estuaries of Louisiana, such as Barataria Bay, but the offshore area is an integral part of the system and is separated only for convenience of presentation and because it has not been studied as extensively as the marsh area.

An important feature mentioned in the caption of Table 93 but not emphasized is the fact that these components operate within a unique geological and geographic context. Geological processes have established a nutrient-rich environment, and because of the resulting configuration these nutrients are probably continually being entrained into the estuaries. The geographic context is the location at approximately 30° N latitude, which provides the area with abundant rainfall, solar insolation, warm air and water temperatures, and a long growing season. Most of the variables have a seasonal pulse or high--see,
for example, insolation, air and water temperatures, primary production, and all of the consumer species. Primary production is almost continuous throughout the year; this is accomplished not by one group but by production by one group followed by production by another group. Animal production is somewhat continuous throughout the year by alternation of groups of migratory species (i.e., shrimp, menhaden, birds, etc.).

The physical factors in Table 93 are primarily those influencing the weather. Before manmade levees were constructed, the rivers and bayous of Louisiana annually overflowed their banks, thereby adding water, nutrients, and sediments to the estuaries. The construction of levees, however, has eliminated this type of input, and now rainfall and estuarine exchange are the principal means of input. It is appropriate to note that the physical factors, particularly rainfall, mean water level, river input, and winds show a pattern of complementing and/or supplementing one another. For example, maximum rainfall occurs during the summer, when tidal action and winds are reduced and river input is on the decline. The end result is presumably sufficient water to "run" the system.

The important feature about the listing of the primary producers is that primary production operates on four levels and by means of a variety of species within each level. This type of system ensures high, continuous, and stable production. For example, marsh grass production is highest during spring, and phytoplankton production is highest during summer. In addition, production by benthic algae is high during fall and at a maximum during winter, the maximum occurring

in conjunction with maximum production by epiphytic algae. Another important feature, though not evident on Table 93, is that marsh grass apparently provides the bulk of "surplus" production to the consumer species (see Table 56 and Fig. 45). Also, the impact of marsh grass production is not apparent until the following year, when the dead grass is converted into detritus.

The pattern for major consumer species as given in Table 93 is not so clear-cut because the data are not complete. Nonetheless, certain features seem important. First, there is always a high population of bacteria and fungi--probably essential for the initial conversion of the marsh grass to detritus. Second, the meiofauna associated with the marsh area are highly clumped in their distribution, most of them being located at the marsh edge-water interface. And, finally, a variety of species make full use of the estuary by means of their migratory habits. This presumably allows for maximum animal production of a particular species at one time and maximum production of another species at another. See, for example, the migratory patterns of shrimp, menhaden, and birds. One example of this sequential coupling is seen in menhaden production. During spring it is coupled with high zooplankton production. According to June and Carlson (1971), the early stages of menhaden show a preference for zooplankton; later (during summer) the larvae shift to a food preference of phytoplankton, and summer is the time of maximum phytoplankton production.

F. Selected Cultural Aspects

1. Archeological Sites

There are at least twenty-one known archeological sites

in the study area, as shown in Figure 57. Sixteen of these are east of Bayou Lafourche and surround Caminada and Barataria bays. Most are beach deposits, shell mounds, and midden (<u>Rangia</u> sp.), as described in Table 94.

The impact of a Superport and its activities on these sites would be in terms of (1) ancillary developments of the Superport being located on or near them, such as tank farms and pipelines, and thus possibly damaging or destroying them and (2) possible cleanup activities associated with an oil spill that might also damage the sites.

2. <u>People and Some of their Activities</u>

The parishes (counties) of Louisiana are shown in Figure 58, and the readers are especially directed to the coastal parishes. Estimates on populations in parishes in and bordering the coastal wetlands of Louisiana are given in Table 95. Plaquemines, Jefferson, Lafourche, and Terrebonne parishes are especially pertinent for the requirements of this study. In 1960 the estimated population density in each of these was 22.9, 510.0, 47.9, and 43.7 per square mile, respectively. The estimate for Jefferson Parish is not representative of other coastal parishes because part of this parish is contiguous to the city of New Orleans. Nonetheless, the data illustrate that, even though coastal Louisiana is not densely populated, all parishes are showing a net increase in population. Additional data for projected population growth through 1985 in the parishes of Louisiana are given in Tables 96 and 97. Region 1, which includes the study area of this

report, had the largest population increase in the entire state between 1960 and 1970, at 29.9%. Further, these data project that this area will also have the largest population growth through 1985 (Table 96). Table 97 gives the breakdown of these data by parishes within area 1.

This population increase undoubtedly means that additional recreational demands will be made on the study area. Twenty-four recreational activities enjoyed in the Louisiana area, especially region 1 of the study area for this report, are listed in Table 98. More than 39% of these activities are enjoyed outdoors, particularly in the coastal wetlands. Data on user-days for areas 1A and 1B projected from 1970 to 1980 are also given in Table 98. For all activities, except those marked with an asterisk, user-days in outdoor activities related to the coastal wetlands will increase by about 25% from 29 x 10^6 user-days in 1970 to 51 x 10^6 user-days in 1985.

G. Observed Effects of Previous Spills Off Louisiana

1. The Chevron and Shell Spills

Two major spills have occurred recently off the Louisiana coast. The first spill was at a platform owned by Chevron Oil Company; it started February 10 and lasted until March 31, 1970. The location of this spill was east of the Mississippi River in the Main Pass Oil Field and is shown on Figure 1 by CH. The second spill was at a platform owned by Shell Oil Company; it started December 1, 1970, and lasted until April 16, 1971. The location of this spill was approximately 7 miles (11 kilometers) south of Timbalier Bay and is shown on Figure 1 by SH.

The Chevron spill was monitored by a variety of federal,

state, and private agencies. At least two reports on this spill were published. One was prepared by Alpine Geophysical Associates, Inc., Norwood, New Jersey, for the Environmental Protection Agency (EPA) in May 1971 under the title "Oil Pollution Incident; Platform Charlie, Main Pass 41 Field, Louisiana." The other report was published by Murray et al. (1970) under the title "Oceanographic Observations and Theoretical Analysis of Oil Slicks During the Chevron Spill, March 1970." The U. S. Geological Survey (personal communication from CEQ, 1972) estimates that the total volume of oil spilled at and about the Chevron platform was 30,500 barrels (about 4,200 metric tons).

The Shell spill was also monitored by a variety of federal, state, and private agencies. At least two reports were published on this spill. One was prepared by Resources Technology Corporation, Houston, Texas (for the EPA), under the title "Fate and Effect Studies of the Shell Oil Spill--December 1970." The other report was prepared by Texas Instruments, Inc., Dallas, Texas, under the title "Oceanographic and Remote-Sensing Survey" (a supplementary report was also included). Estimates of the total volume of oil spilled at and about the Shell platform range from 25,000 barrels, made by Shell Oil Company, to a 53,000-barrel estimate by the U. S. Geological Survey, and finally to a 90,000- to 119,000-barrel estimate by the EPA. These volume estimates are equivalent to 3,500, 7,420, 12,600, and 16,660 metric tons, respectively.

The reports on the Chevron spill mainly document the oceanographic observations made on the oil slicks as a function of

winds, surface currents, and tidal currents. In general, Murray et al. (1970) found that the stress of the wind on the water's surface was the most important factor in determining the behavior of the oil slicks, especially when the winds were >15 mph (>6.7 m/sec). Tidal currents caused the oil slick to assume an L shape when the winds were <15 mph (<6.7 m/sec), and their diurnal rotation helped to keep the slick away from the shore. Freshwater input from the Mississippi River also served as a barrier between the shore and the oil slicks by the development of convergence lines between fresh and saline waters. The width/length ratios of the oil slicks were found to be independent of current speed. Murray (1972) developed a model for prediction of gross size and overall shape of the oil slick; it is based on Fickian diffusion equations. The geometry of the oil slick is defined as a function of current speed, horizontal eddy diffusion, the oil discharge rate, and a boundary concentration determined empirically.

Apparently no significant biological damage resulted from the Chevron Spill. No fish, bird, or other animal kills were reported. No data are given on various marine populations surrounding the platform. It is especially noteworthy that chemical dispersants were used (i.e., 1,000 barrels of "Corexit" and 500 barrels of "Cold Cream"), despite the fact that studies on oil spills elsewhere document the fact that dispersants are invariably more toxic than the oil itself and probably should not be used (see the article by Mills and Culley, 1970, as one example of the toxicity problem of dispersants). The reports on the Shell spill are more detailed than

those on the Chevron spill in terms of data on marine populations in and about the spill site. In general, slick orientation was best correlated with the near-surface current, the 10-foot (3-meter) depth, and wind vectors. When the winds were out of the east, southeast, and south the surface water and the oil slick showed a net movement and set toward the northeast and north (Figs. 59 and 60). Under these conditions, oil reached the beach just northeast of Bay Champagne. When the winds changed to a set toward the west and southwest, the surface movement and slick orientation were approximately 230° to 240°, or toward the southwest (Fig. 61).

Biological sampling, though not definitive, was somewhat more detailed and intensive for the Shell spill than the Chevron spill. Stations were occupied at approximately every mile, out to 7 miles, from the platform along at least three transects. These transects had sets of approximately south, north, and northwest. Within the limited sampling program, the overall conclusion was that benthic and fish populations about the platform had been stressed as a result of exposure to petroleum hydrocarbons, but some recovery was apparent. Data on hydrocarbon concentration in the sediments along each of the transects are given in Figure 62. It also gives the composite distribution of species in terms of simple diversity, mean diversity per sample, crab catch data, and composite meiofaunal mean along each transect out from the platform. The report states that a weak negative correlation generally existed between the presence of high concentrations of hydrocarbons in the sediments and low abundances of epifauna and

infaunal species. This correlation should mean that areas having high concentrations of hydrocarbons have low abundances of species and individuals. Numerical data extracted from these figures are given in Table 99, and they confirm the above correlation; but it is not a strong relationship, probably because of considerable variance resulting from sampling problems. The north transects for simple diversity, mean diversity, crab data, and composite meiofaunal mean consistently showed a negative correlation with hydrocarbon contents at -0.63, -0.13, -0.46, and -0.36, respectively. The south transects had all positive relationships and had generally the lowest hydrocarbon concentrations. The northwest transect had positive and negative relationships. Limiting sampling to north, south, and northwest transects may have been unfortunate because the orientation of the slick near the platform, as shown in Figures 59, 60, and 61, appears to be, depending on the wind, either toward the northeast or the southwest. Inasmuch as wind data taken from the oceanographic report on the Shell spill (Table 100) show that January winds came mainly (65% of the time) from the north, northeast, south, and southeast, it may be logical to assume that transport would be predominant to the right of the wind direction and hence oil stress might predominate along an axis running northeast to southwest. Thus it is likely that the hydrocarbons would also take an overall distribution along a southwestnortheast axis. It is possible that the particular transects used for sampling may not have crossed or coincided as much as they could have with areas affected by oil.

In general, the Shell report concludes that the epifauna and infauna decreased in numbers as the platform was approached, particularly within the first 2 miles (Fig. 62). The average number of benthic creatures was about $13,000/m^2$ within a 1-mile radius, but beyond the 2-mile radius the density of organisms went as high as 32,000 and $48,000/m^2$. Grab samples also indicated a decrease in the number of organisms on approach to the platform (Fig. 62 and Table 99). A limited examination of the histology of fish gill filaments (only 6 species) showed that some epithelial cells were being sloughed off and that some gill filaments were swollen, presumably as a result of exposure to oil. The fish examined were collected along the north and northwest transects. The invertebrate form, stomatopods, was suggested to be an indicator of environmental or oil stress because no adult stages were taken within 4 miles of the platform. (The adults are burrowing benthic creatures and the larvae are planktonic.) The absence of adult stomatopods was taken as an indication that the oil had settled into sediments and then probably was being transported back and forth, recurrently, between the water surface and the sediments.

The Shell spill was also monitored, to a limited extent, by state officials (Adkins, 1972). Their report concluded that there were no differences in the plankton as a result of the spill; the baseline data for this conclusion extended back 4 years, but they were not included with the above report. No dead organisms were reported in the spill area, but some dead ducks were found in an oil slick on

Isle Dernieres, which is located on the extreme southwest corner of Terrebonne Bay, a considerable distance (about 30 miles or 48 kilometers due west) from the spill area. These conclusions need to be verified with more and better data than those attached to the report.

Yeast populations were monitored by Meyers (1971) during the Shell spill. The succession of yeast species and their populations in oll-free waters and in oil-stressed waters for 13 weeks after the spill is listed in Table 101. In oil-free waters, yeast populations are relatively sparse, at concentrations of 0-10 cells per 100 millileters, and are made up predominantly of the species complex Rhodotorula/Rhodosporidium, as well as Debaryomyces hansenii and Candida parapsilosis. Shortly after oil was introduced (about 2 weeks; see Table 101), the former group underwent a bloom and their populations increased to concentrations of >200 cells/100 ml. After 6 weeks, the concentrations of yeast populations increased to >500 cells/100 ml, but other species started to appear, e.g., Candida spp. and Trichosporon After 13 weeks, the concentrations of yeast populations cut anum. returned to the baseline level of >10 cells/100 ml, but species of the Rhodotorula/Rhodosporidium complex were absent. Meyers (ibid.) believes that the latter and other species known as oil-decomposing types disappeared despite oil-enrichment because nutrients (probably nitrogen and phosphate) became limiting. Oil decomposition presumably cannot occur at a rapid rate without an adequate N/P substrate.

2. Other Studies on the Impact of Oil on Louisiana Estuaries and Coastal Waters

Zobell and Prokop (1966) studied oil-oxidizing microbes

in mud samples taken from Barataria Bay and found them in abundance (see Table 102), possibly because this area is under chronic hydrocarbon stress as a result of extensive development of the petroleum industry. Mackin studied the effect of crude oil on a variety of Louisiana marsh grasses (Table 103). The grass species included salt grass (Distichlis spica), saltwort (Bastis sp.), glass wort (Salicornia begeloii), cordgrass (Spartina alterniflora), and young mangroves (Avicennia sp.). The oil was retained in 16 ft² (1.7 m^2) pens (4 x 4 feet or 1.3 x 1.3 meters) with wooden bulkheads. Though estimates of absolute concentrations are not given, it can be assumed that there would be at least 4 inches (10 centimeters) of standing water surrounding the base of the plants; this assumption implies that the total volume of water in each pen would be approximately 25 gallons (114 liters). Thus for each dosing level given in Table 103 the equivalent absolute volume is estimated at 0.16%, 0.32%, 0.65%, and 1.31%, respectively. Plant damage is first indicated at the 0.65% concentration level. At the 1.31% level, 25% specimen mortality occurred after 2 months, and only 10% of the plant specimens survived after an exposure lasting 1 year. These data strongly imply that long-time exposure at relatively high concentrations is quite lethal and that immediate and rapid cleanup in a spill area is therefore very critical and essential.

Studies by Crow (1972) on yeast populations under oil stress in the marshes of Barataria Bay show the same general species succession as observed by Meyers (1971) offshore during the Shell spill.

A series of plots of <u>Spartina alterniflora</u> were given monthly doses of crude oil at approximately a 1% concentration. Yeast species from the genera <u>Pichia</u> and <u>Kenyveromyces</u> usually predominate in the untreated marsh plots. However, after treatment with crude oil, species with known capabilities for decomposing oils assume dominancy; these species were <u>Pichia ohmeri</u>, <u>Trichosporon</u> sp., and species from the <u>Rhodotorula</u>/ <u>Rhodosporidium</u> complex (Table 104). It is significant that the concentrations of yeast cells in the oil-treated plots were considerably higher than those of the untreated plots (Fig. 63). For example, during June and July oil populations were about 8 times greater than in untreated plots. Thus yeasts of both water and sediments appear to respond similarly to oil treatment in that species and numbers of the <u>Rhodotorula/Rhodosporidium</u> complex increase. <u>Trichosporon</u> types did not develop in the treated water samples as well as they did in marshland sediments.

Extensive studies on Louisiana oysters in relation to the oil industry were made under Projects 9 and 23, starting in 1947 and continuing into the 1960's (Mackin and Hopkins, 1961). The general conclusion was that the oil operations were not responsible for widespread mortalities but that more likely the causal agent was a fungus called <u>Dermoceptidium marinum</u>. Lund (1957) studied the effect of crude oil on Louisiana oysters and found that there was no apparent effect on the oyster's ability to clear suspended material from the water it pumps through its system.

Toxicity studies (Mills and Culley, 1970) on four species

marine shrimp, including both brown shrimp (<u>Penaeus aztecus</u>) and white shrimp (<u>P. setiferus</u>), were made. Static bioassays were employed using four types of crude oils (Table 105). Tests lasted over a 48-hour period, and mortalities were recorded as a function of time and concentration. The results are given in Table 106. It was found that the oil dispersants were more toxic than the crude oil. The oil type Q-4-D was the most toxic and had a gas-oil fraction of 40%, the highest value of all the four crudes used (see Table 105). Median lethal concentration at 48 hours (48 hr LC_{50}) for <u>Penaeus</u> shrimp ranged from 1 to 40 ppt (0.1% to 4%). Concentrations from 7.5 to 75 ppt (0.75% to 7.5%) caused 100% mortalities. Mixtures of crude oil and emulsifiers were considerably more toxic than either the crude oil or the dispersant by itself. No correlation was apparent between shrimp mortality and the sulfur content of the crude oils.

Qualitative toxicity data using the common guppy (<u>Lebistes</u> <u>reticulatus</u>), crude oils, oils innoculated with yeast, and dispersants were collected by Ahearn et al.(1971). Louisiana crude was lethal at a 4% concentration within 24 hours, whereas the high-asphalt Mississippi crude had no adverse effect at 4% V/V on guppies over a 30-day period. The dispersant (same type used in several oil spills on the coast) killed the guppies within 8 hours. The addition of fungal culture did not apparently affect the test fish.

Though not a research task of this report, it is pertinent to add that the oil industry has other environmental effects besides causing oil stress on various populations. A major stress is

the disruption and changes in the natural drainage of the marshes a resulting from channels and pipelines dug expressly for oil exploration and production (see Fig. 64 as an example). Gagliano and Day (1972) estimate that approximately 35% (5.8 mi²/yr or about 1,500 hectares) of all land losses in coastal Louisiana result from dredging activities--much of which are due to the petroleum industry. They further estimate that at least 10% (800,000 acres or 324,000 hectares) of the total coastal land of Louisiana will eventually be modified by petroleum-related activities.

IV. DRIFT PREDICTIONS FOR OIL SPILLS

A. Surface Circulation Based on Hansen's Model

1. Description of Hansen's Model

Reproduction of the surface currents in the study area was done by means of the Hansen model or the Hydrodynamical Numerical model (HN) (Laevastu and Rabe, 1972; Laevastu, 1972; Larsen and Laevastu, 1972), a single-layer model that can be used for describing the surface circulation of semienclosed bays, estuaries, or coastal areas having three open boundaries. The study area satisfies the third condition. Laevastu and Rabe (ibid.) provided the model with transport and diffusion equations so that the distribution of pollutants, such as oil, could be computed. The model is based on vertical integration of the equations for motion and for continuity. The input data were (1) tides typical of the Louisiana area of the Gulf (taken from Marmer, 1954), (2) bathymetry, as shown in Figure 10 (taken from Coast Guard maps for the Lousiana coast), (3) Coriolis parameters of 0.73×10^{-4} , (4) a smoothing parameter, alpha, of 0.980, (5) a wind vector per run typical for the study area and/or seasonal wind changes, and (6) a Austauche Coefficient of 0.25 x 10^5 , as determined by the grid size and time steps used. The grid size and number used are shown in Figure 65; each grid is equivalent to an area of 29.6 km^2 (11.4 mi²). The computer program for this model makes rather extensive demands for machine time because it must usually be run about 5 to 10 hours real time (5 to 10 minutes machine time) in order that equilibrium be established and correct outputs be obtained. All data outputs

were taken after 5 hours real time. Equilibrium was verified by plotting water height for any particular grid as a function of time and checking to see if the tidal cycle showed any variations. Figure 66 gives water levels over a 30-hour period; variations appear to be very small from any one part of the tidal cycle to its counterpart at a later time.

The schedule of this project did not allow for testing beyond 30 hours real time; additional testing is needed for more adequate verification of the program's stability under the given Louisiana conditions. Also, the HN model was not modified so that permanent currents, simultaneous wind fields, and river input could be incorporated into the final surface current projections. We attempted this modification, but some of our output data became unrealistic, and on the advice of Laevastu (October 1972, personal communication) these changes were postponed.

2. Surface Circulation in Study Area Based on Hansen's Model

Current vectors in the study area for each of four times during one tidal cycle, i.e., low tide at 13 hours (46,800 seconds), at 17 hours (61,200 seconds), at 20 hours (72,000 seconds), and at 22 hours (79,200 seconds), and high tide at 26 hours (93,600 seconds) are given in Figure 67. The wind vector used during these analyses is toward 280° at 7 m/sec. This wind vector was taken from the data of Scruton, as given in Tables 17 and 18. The resultant wind direction for an area 1° square off Grand Isle, Louisiana, according to Scruton's data, is toward 280°. The speed 7 m/sec was derived from the data of

Glenn, given in Table 108, which shows that 48% of the winds on an annual basis are between 10 and 19 mph, and so 15 mph was chosen as a "mean" or representative wind speed. Table 107 gives numerical data for each current vector per grid in terms of direction (° north) and speed (cm/sec).

Current vectors at 13 hours (46,800 seconds) show a net movement to the north and north-northeast, toward the shore, as would be expected during low tide (Fig. 67A). Strong currents (50 to 60 cm/sec) are evident near the shore or near the landward boundary (Table 107A); this may be a boundary problem not adequately treated by the program, and so a certain amount of reserve is necessary in extrapolating from the grids next to the shoreline.

Current vectors at 17 hours (61,200 seconds) are mainly toward the east (Fig. 67B), and the resultant direction is approximately northeast (45°). Offshore currents are greater than those of low tide (cf Tables 107A and 107B). The currents in the grids near the shore are somewhat reduced but are still strong and still setting in the same general direction (to the east along the shore).

Current vectors at 20 hours (72,000 seconds) shift more to the east than those of 17 hours (Fig. 67C). This projection is approximately at mid-tide, between high and low tide, and the currents in the grids closest to the shore show a substantial decrease in speed (Table 107C), reduced to ≤ 20 cm/sec.

Current vectors at 22 hours (79,200 seconds) show a net movement more to the east (toward 90°) and some to the east by south

(about 100°) when compared to 20 hours (cf Figs. 67C and 67D). Speeds are generally reduced, though currents close to the shore show a slight increase over those of 20 hours (Table 107C).

Current vectors at 26 hours (93,600 seconds) show a net movement away from shore to the south (180°); some move to the southwest (about 225°). Current directions near site 1 (grid 14, 17) are toward 218°; in the same general area some currents set toward the southwest (218° to 263°), and some set to west by south. Current speeds in the grids closest to shore are again well developed and strong (up to 75 cm/sec).

B. Casualty 011 Spills

1. Study Conditions

The Hansen model was used to predict the distribution of oil at the two casualty sites, i.e., C_1 and C_2 (Fig. 1). This model is briefly described in a previous section (IV A). The dispersion of oil units per grid per unit time; this means that the cumulative sum of oil units is more than the total of the original spill, and so the projections of distributions and abundances must be viewed with some caution until a more detailed computer program can be developed. However, it is believed that, as order of magnitude estimates, the projections are probably reasonable and valid.

Four wind conditions were used: (1) winds coming out of the northeast or blowing toward 225° at 7 m/sec, (2) winds coming out of the east or blowing toward 280° at 7 m/sec, (3) winds coming out of the southeast or blowing toward 315° at 7m/sec, and (4) winds coming

out of the south or blowing toward 360° at 7 m/sec. It is assumed that these winds reflect average or prevailing conditions in the study area (see III C). Table 108 summarizes the study conditions for oil spills projections. No permanent currents or river inputs were used in these preliminary analyses. This should be done, at a later time, in order to reflect more accurately total drift conditions. Initial studies with permanent currents and river inputs provide the circulation with a more northerly set above or north of site 1 and a more westerly set near and about site 2. However, these additions cannot be used until the computer program is developed and refined for such inputs.

Two types of casualty spills were assumed (see II B), i.e., a 500-ton spill and a 30,000-ton spill, both with a release time of 2 hours. The oil was not spilled until the model had operated for 5 hours real time (5 minutes computer time) in order to satisfy the equilibrium requirement.

2. Northeast Winds

Oil spill distribution under northeast winds blowing toward 225° at 7 m/sec. is given in Figures 68, 69, and 70. The distribution of a 30,000-ton spill at C_1 through 20 hours real time is given in Figure 68. Figure 68A shows the distribution of the oil at 7 hours (2 hours after the start of spill). The oil spill has developed a strong east-west axis. Figure 68B shows the distribution of the oil at 15 hours (10 hours after the start of the spill). The east-west axis is still evident, though some discontinuities are present, and the oil

is shifting more to the east and to the south. The general drift of the oil is to the south and along an east-west axis. Also, a small amount of oil has moved to the north.

Figure 69 shows the distribution of a 500-ton spill at C_2 through 10 hours of real time. Winds are, as before, blowing toward 225° at 7 m/sec. After 10 hours (5 hours after the start of the spill) the oil has taken an east-west orientation, and some drift is evident to the south. Oil drift is slightly more to the west than to the east.

Figure 70 shows the distribution of a 30,000-ton spill at C_1 through 10 hours real time (5 hours after the start of the spill). Figure 70A shows the oil distribution after 7 hours. The spill is oriented west to east and slightly more to the west than to the east. After 10 hours (Fig. 70B), the spill still has a west to east orientation, but some drift to the south has occurred. The grids due west of C_1 , just off Timbalier Bay, show some presence of oil. It is likely that some oil would enter this estuary if further projections were made.

On the basis of northeast winds, C_1 and/or S_1 appear to be "better" locations because the general surface drift does not carry the oil near the estuaries. All the oil spills at C_1 and C_2 have an axis in an east-west direction and some general drift toward the south.

3. East Winds

Figures 71, 72, and 73 show oil spill distribution under easterly winds blowing toward 280° at 7 m/sec. Figure 71 shows the

distribution of a 30,000-ton spill at C₁ through a 20-hour time period. Figure 71A shows the oil spill after 7 hours (2 hours after the start of the spill). The orientation of the spill is along an east-west axis and slightly to the west, and some drift is evident toward the north. Figure 71B shows the oil after 10 hours; the eastwest axis is still evident, but the drift is no longer to the north. Figure 71C, showing the oil distribution after 15 hours (10 hours after the start of the spill), indicates that the general orientation of the spill is still along an east-west axis, but there is some extension toward the east. The northward movement evident during the initial stages is no longer apparent. Figure 71D shows the oil after 20 hours (15 hours after the start of the spill). The oil distribution is now more to the east than before, but the east-west orientation is still strongly developed.

Figure 72 shows the distribution of a 500-ton spill through a 30-hour (real time) period. Figure 72A shows the distribution after 10 hours (5 hours after the start of the spill). The general orientation of the spill is along an east-west axis, and there is some drift toward the northeast. Figure 72B shows that the oil distribution after 15 hours is still along an east-west axis. Figure 72C indicates the oil distribution after 25 hours. The oil has now shifted more to the east, and some drift is evident toward the north. Figure 72D shows the oil distribution after 30 hours (25 hours after the start of the spill). The net drift is now predominantly to the east and northeast.

Figure 73 shows the distribution of a 30,000-ton spill at C_2 under easterly winds through 30 hours. Figure 73A shows the oil distribution after 10 hours. An east-west axis has developed, and there is shift more to the west than to the east. Figure 73B shows the oil distribution after 15 hours. A strong east-west axis has developed and there is some drift toward the northwest. Figure 73C, which shows the oil distribution after 25 hours, indicates that a shift to the east and northeast has occurred, but the east-west axis is still present. After 30 hours (Fig. 71D) the entire area north of C_2 is covered by oil. It is highly probably the oil would enter all estuaries under these conditions.

Under easterly winds C₁ and/or S₁ appear to be the "better" location. The oil spills have a general orientation along an east-west axis and a slightly stronger easterly component.

4. Southeast Winds

Figures 74, 75, 76, and 77 show oil distribution under southeast winds blowing toward 315° at 7 m/sec. Figure 74 shows the oil distribution of a 500-ton spill at C₁ through a 20-hour period. Figure 74A shows the oil distribution after 7 hours (2 hours after the start of the spill). An east-west axis has developed, slightly stronger to the west, but some movement toward the southwest is also evident. After 10 hours (Fig. 74B) a westerly to southwesterly movement is indicated. Figure 74C shows that after 15 hours the same pattern is evident, i.e., to the west and southwest. Figure 74D shows the oil distribution after 20 hours (15 hours after the start of the spill). Generally the east-west axis is still evident, and there is some drift

toward the southwest but also some to the northeast.

Figure 75 shows the oil distribution of a 30,000-ton spill at C₁ through a 20-hour period. The general pattern is the same as for the previous 500-ton spill. However, after 20 hours (Fig. 75D) a drift toward the east is more evident with this larger spill. Figure 75A shows the oil distribution after 7 hours. The oil is oriented along an east-west axis but more to the west. Some drift is evident to the southwest. Figure 75B shows that after 10 hours the westerly and southwesterly drift is more strongly evident. Figure 75C shows the oil distribution after 15 hours. An east-west axis is still developed, and there is some drift to the southwest. Figure 75D shows the oil distribution after 20 hours (15 hours after the start of the spill). The most apparent change is from a west to southwest drift to one toward more to the east.

Figure 76 shows oil distribution of a 500-ton spill at C₂ through 20 hours. After 7 hours (Fig. 76A) an east-west axis begins to develop, and net movement is stronger to the west. Figure 76B shows the oil distribution after 10 hours. Movement is toward the west, and there is some drift toward the south and southwest. Figure 76C shows the oil distribution after 15 hours. Movement is toward the west and to the southwest. Some oil is evident north toward the shore in grids (6, 13 and 7, 14), just off the mouth of Bayou Lafourche. The oil distribution after 20 hours (15 hours after the start of the spill) (Fig. 76D) is still along an east-west axis, but there is some drift to the south. The westerly end of the spill is

now close to the Timbalier Bay area.

Figure 77 shows the oil distribution of a 30,000-ton spill at C₂ through a 20-hour period. Figure 77A shows the oil distribution after 7 hours. Net movement is toward the west and northwest. Figure 77B shows the oil distribution after 10 hours. Drift is toward the west and southwest. After 15 hours (Fig. 77C) the westerly movement is more strongly developed and some grids close to the shore are accumulating oil. Figure 77D, showing the oil distribution after 20 hours, indicates general movement still to the west and southwest. The more northerly grids now have oil, suggesting that some oil will intrude into the Timbalier Bay estuary. An easterly movement is also now apparent.

Under southeast winds C₁ and/or S₁ is the "better" location inasmuch as the net movement of oil spills is sufficiently removed so as not to intrude into the estuaries.

5. South Winds

Figures 78A and 78B show oil spill distribution under south winds blowing toward 360° at 7 m/sec. Figure 78A shows the oil distribution of a 30,000-ton spill at C_1 after 20 hours (15 hours after the start of the spill). The spill has an east-west orientation, and some oil is moving slightly to the northwest. Figure 78B shows the oil distribution of a 30,000-ton spill at C_2 after 20 hours. The spill has an east-west orientation but is situated slightly more to the west. Some oil movement is indicated to the northwest, and the grids closest to Timbalier Bay have some oil present.

Under south winds, locations C_1 and/or S_1 appear to be more favorable than C_2 and/or S_2 .

6. Summary of Oil Drift Studies

Under the four wind conditions, i.e., out of the northeast, east, southeast, and south, the oil spill is at the two sites roughly assumes, in all cases, an east-west orientation. C_1 and/or S_1 appears to be the "best" location since the prevailing currents, winds, and bathymetry apparently keep the oil away from the shore and hence Louisiana estuaries. The circulation pattern at C_2 and/or S_2 appears to have a net movement toward the northeast and east. The resulting oil spill distributions in this area suggest that the oil is entrained there. This may be an expression of a combination of factors, such as the bathymetry, tidal currents, and land topography. The latter is suggested by the fact that a small crescent area or embayment exists between Timbalier Bay and Southwest Pass.

Table 109 gives monthly wind vectors offshore of Grand Isle, Louisiana. Also given are time estimates for an oil spill to reach shore assuming transport at 3.7% of the wind speed and that transport would be in the direction of the wind. Projections of oil spill by means of Hansen's model, given in Figures 69 through 77, were carried out for \leq 30 hours (real time). The reason for this limitation was because this program demands a fair amount of computer time and because of the overall schedule limitations of the project itself. Nonetheless, there is one major discrepancy between Table 109 and Figures 69 through 77: the amount of time for the oil to reach the shore. Crude wind data in Table 109 suggest that during 6 months of

the year winds come from a beaching direction and hence would provide a more favorable condition if an oil spill were to occur. However, the amount of time required for beaching, using wind drift and direction, ranges from 3 to 20 days. Figures 69 through 70 are based on grids having an area of 29.5 km² (11.4 mi²)--a large area, and so the presence of oil in the grids closest to the shore does not necessarily mean oil will hit the beach or that it will intrude into the estuaries. Nonetheless, oil does reach some of the grids closest to shore in \leq 30 hours, and so it is probable that with the model beaching time is reached sooner than with wind drift projection only, as given in Table 109. Because the Hansen model has projected offshore currents that roughly duplicate the hydrography of the area, it is assumed that its oil drift projections will be more accurate than those based on wind drift.

C. Chronic Oil Spills

Section II B gives the hypothetical operational spills that might be expected to occur at a Superport. We did not analyze any of these spills with the Hansen model. However, Table 110 (from Ichiye, 1972) gives estimates on the area visible for spills ranging from 1.2 bb1/day to 8.5 bb1/day. The resulting plumes vary from 600 meters wide and 0.5 kilometer long at 1.2 bb1/day to 4,000 meters wide and 24 kilometers long at 8.5 bb1/day.

A. Estuarine Effects

1. Marsh Grass

The most significant effect that an oil spill could have in the Louisiana area is damage to or alteration of marsh grass production. Though it has been established that there are at least four levels of primary production in the Louisiana marshes, by and large the most significant producer is the marsh grass (Table 48). Marsh grass produces at least 16 times more than any of the other producers; about 50% of the net yield (in the form of detritus) is used by consumers within the estuaries, and about 50% is exported to the offshore area (Fig. 45) and presumably consumed there by the major fishery species (i.e., menhaden and shrimp).

The effects of oil on marsh grass can vary from no damage to extensive damage to the root system and hence death of the plant. The most serious effect would, of course, be the death of the root system. Patrick (1972, unpublished data) has found, for example, that the root system of <u>Spartina alterniflora</u> is quite extensive, its root:top dry weight ratio being approximately 12:1. In addition, Crow (1972, unpublished data) has found that regrowth of <u>S</u>. <u>alterniflora</u> does not occur when the plant is dosed monthly with a 1% concentration of crude oil. Death of the root system would also undoubtedly accelerate land loss inasmuch as the above data on the root:top ratio suggest that the landholding capacity of this marsh plant is large and important. Oil exposure could damage the top of the marsh grasses by

direct exposure or by killing the flowering parts, but this type of damage is considered less serious than if the entire plant were killed because propagation can and does occur from the root system.

2. Microbial Populations

Meyers (1971) and Crow (1972) have shown that yeast populations change in species composition and in absolute numbers when exposed to oil. They also found that the initial population "explosion" becomes significantly reduced after several weeks, presumably because of nutrient (nitrogen and/or phosphorus) depletion. It is unknown whether the alteration of species and numbers would have a significant impact on the initial formation of detritus from the dead marsh grass. In view of this uncertainty, the wisest course is to assume that the effect would be adverse. And, indeed, the effect would be adverse if sufficient detritus were not formed inasmuch as fishery production (i.e., menhaden and shrimp) would undoubtedly show a reduction during the following year.

Oil would tend to be entrained into the back sections of the dendritic or branching flow channels through the marsh grass (see Fig. 79) and also into the more northerly sections of the estuary. Because production of detritus is initiated in this area from the dead marsh grass, the effect could be significant during the next year's fishery harvest.

3. Other Primary Producers

Epiphytic algae are highly clumped about the bottom portions of the stems of marsh grasses, and it is therefore likely that their

populations would be severely reduced by exposure to oil. Similarily, benthic algae would be reduced by sinking oil. It is impossible to predict where and when this effect would be manifested, but again the conservative approach would be prudent--that is, assume damage would occur and that its effects would pass throughout the food web.

4. Marsh Edge-Water Interface

Figure 79 shows the general features of the Louisiana estuarine and offshore systems. The marsh edge-water interface is illustrated in detail by means of a "blow-up" picture. Day et al. (1972) and Bennett (1972) have shown that at least 80% of the marsh fauna biomass is located within 50 meters of this interface, and probably most of this is almost directly contiguous to the interface area. The reader is also directed to the marsh picture between the two levees of Figure 79. The important feature in this illustration is that the marsh has a dendritic or branch-like flow pattern, and any intruding oil would extend first into this main series of distributaries and hence suffocation and toxic effects would likely be imposed on the fauna of the interface area.

5. Nutrient Cycle

Estuarine sediments in Louisiana have two major zones: the top, thin, aerobic layer and the bottom, thick, anaerobic (reducing) layer. The presence and/or absence of the aerobic layer is apparently a seasonal phenomenon and important in the nutrient cycling of the marsh (Hutchinson, 1957). If oil were to intrude on extensive mud areas

of the marsh, it is likely that it would create a high biological oxygen demand and would cause anaerobic conditions to persist for some time. This may mean that phosphate, an essential nutrient, would be leached and lost from the estuarine system, thereby causing aberrations to the primary production cycle during later seasons or years. Of the two types of crude oils described in Section II B, type A may have a more severe effects on the nutrient cycles because it has a higher proportion of heavier distillates and residuum and hence more of it is likely to sink to the bottom.

6. Fishery Species

The effect of oil on fishery species within the estuaries could be either indirect, by the elimination of their food sources (detritus and/or marsh fauna), or direct, as a result of suffocation and toxic effects. It is likely that, of the two crude oils described in Section II B, type B would be more toxic, at least initially (for about the first 24 hours), because it has a higher proportion of lighter fractions such as gasolines.

The impact of an oil spill on fishery species might be more severe in the open bays and tidal passes because fish are mobile and would likely move away from the marsh edge-water interface if oil intruded. Because the tidal passes (see Fig. 79) are important migratory routes for various aquatic larval forms, they are also areas of considerable vulnerability.

B. Shoreline Effects

The shoreline communities of Louisiana have not been

studied adequately. It is assumed, because of the small amount of Gulf shoreline present in Louisiana, that the impact of oil on the shores would be negligible compared to potential estuarine damage. Perhaps the most dangerous potential effect is that oil might tend to move parallel to the shore in response to the littoral currents. Truesdale (1972, unpublished data) believes that the larval forms of the major fishery species also move along with the littoral currents (see Fig. 79) in an effort to find tidal passes into the estuaries. Planktonic forms such as these would be especially susceptible to suffocation and toxic effects from intruding oil.

C. Offshore Effects

Figure 79 shows the major components of the offshore water column. Phytoplankters and zooplankters in the immediate area of the oil plume (casualty or chronic) would undoubtedly be destroyed or greatly reduced. It is possible to assume that the net effect is not significant because these species have a short generation time.

The impact of oil, however, could be more severe on suspended materials (such as detritus) which would tend to accumulate oil and possibly sink. If this effect were on a sufficiently large scale, the impact would be immediate to the fishery species inasmuch as detritus is produced mainly during the spring of the year and its origin and formation are quite different from that of phytoplankton and zooplankton.

Benthic creatures directly below the oil plume would undoubtedly be destroyed or greatly reduced. If this effect were

persistent (such as with chronic spills), it could result in extensive areas of reduced benthos. In addition, the sediments might act as a reservoir for the hydrocarbons and thereby release them periodically and reenforce the persistence of chronic or operational spills.

Nekton species offshore would be affected as in the estuarine bays, either by suffocation or toxicicity. Because many of the fishery species are of a schooling type (such as menhaden), this effect could be significant, but it is believed that the size of the offshore area is sufficiently large to mitigate this damage. However, the detailed locations of spawning grounds and/or waters of the major fishery species offshore of Louisiana are unknown, and if the Superport and its operation were located in a prime area for spawning the overall effect could be quite significant.

D. Summary of Predicted Effects

Figure 79 illustrates the important features of Louisiana. The estuaries are considered to be most vulnerable to Superport operations. The major reason for this is because they are the most productive per unit and because they serve as habitats or nurseries for various stages of the major fishery species.

In addition, any oil spill intruding into an estuarine area would tend to accumulate in (1) the marsh edge-water interface, the exact location of the majority of the marsh fauna, and (2) the upper areas of the marsh grass, or toward the "ends" of the dendrite flow channels, where the dead marsh grass (future detritus) also tends to accumulate. Movement of the oil through the tidal passes would also

tend to concentrate it in the prime migratory routes of the major fishery species.

Shoreline effects would probably be minimal unless the oil tended to accumulate in those areas having a littoral current. The littoral currents are apparently used by migratory species to find an entrance into the estuaries.

Potential adverse effects to the offshore are considered to be less important than those to the estuarine areas. However, the locations of spawning and/or feeding grounds need to be known in order to keep the effects minimal. Chronic or operational spills will tend to create permanently stressed areas. The extent of these areas needs to be quantified so that compensational techniques can be designed.

- 1. Tentatively, locations C_1 and/or S_1 , farther from the shore, will have less environmental impact on the estuaries of Louisiana than the closer sites C_2 and/or S_2 . Other likely areas may exist between S_1 and S_2 , but detailed analyses on oil drift projections must be done to verify this. The basis for this recommendation is that the surface currents near and about C_1 and/or S_1 set up surface drift conditions away from the estuaries.
- 2. If a Superport is established along the Louisiana coast, then only one such port operation should be allowed in order to ensure that adequate environmental controls are meaningfully financed and established.
- 3. Cleanup procedures analogous to those used by civil defense or hurricane protection should be established. The important features to incorporate in these procedures are immediate containment and rapid cleanup.
- 4. Protective measures should be taken along all the tidal passes of the port area. Such measures should be designed so as to prevent oil from entering the estuaries but yet not disrupt these migratory areas by construction or during nonemergency times.
- Strict and meaningful navigational controls should be established for <u>all</u> vessels using the facility and for operation of the facility.
- 6. Shore development ancillary to Superport operations should be carefully monitored and controlled so as to minimize the impact to the estuaries.

- 7. Immediate research is needed in the following areas:
 - a. Field investigations on the detailed hydrography and meteorology of the Superport area.
 - b. Toxicity studies on the effects of various crude oils and their concentrations on planktonic forms of the major fishery species.
 - c. Establishment and detailing of the location of the primary spawning waters and/or grounds for the major fishery species.
 - d. Formulation and refinement of oil drift models so that effective and accurate projections under all types of conditions can be made.
 - e. Additional studies on the effects of oil on marsh grass and microbes.

- Adkins, Gerald. 1972. A Biological Summary of the Shell Oil Company's Fire, Platform B, Gulf of Mexico. La. Wild Life and Fisheries Comm., Bourg. Unpubl. rept., 19 pp.
- Ahearn, D. G., W. L. Cook, N. L. Berner and S. P. Meyers. 1971. Degradation of Hydrocarbons by Fungi. Amer. Chem. Soc. Symposium on Oil Biodegradation, Wash., D.C., 9 pp.
- Alpine Geophysical Associates, Inc. 1971. 011 Pollution Incident; Platform Charlie, Main Pass Block 41 Field, Louisiana. Proj. No. 15080 FTU, Contr. 14-12-860. U.S. Gov't. Print. Off., Stock No. 5501-0130.
- Austin, G. B., Jr. 1955. Some Recent Oceanographic Surveys of the Gulf of Mexico. Trans. Amer. Geophys. Union, 36(5):855-892.
- Barrett, B. B. 1971. Cooperative Gulf of Mexico Estuarine Inventory and Study, Louisiana. Phase II, Hydrology and Phase III, Sedimentology. La. Wild Life and Fisheries Comm.
- Bates, C. C. 1953a. Rational Theory of Delta Formation. Bull. Amer. Assoc. Petrol. Geol., 37(9):2219-2162.
- Bates, C. C. 1953b. Physical and Geological Process of Delta Formation. Texas A&M Univ., Bryan, Ph.D. dissertation.
- Becker, R. E. 1972. Wave Energy Studies along the Louisiana Coast. Rept. No. 12, Hydrologic and Geologic Studies of Coastal Louisiana, La. State Univ., Baton Rouge, Center for Wetland Resources, 22 pp.
- Bouma, A. H., F. B. Chmelik and R. Rezak. 1971. East Bay, Mississippi River Delta. Trans. Gulf Coast Assoc. Geol. Soc., pp. 273-289.
- Bretschneider, C. L. and R. D. Gaul. 1956. Wave Statistics for the Gulf of Mexico off Burrwood, Louisiana. U.S. Corps of Engrs., Beach Erosion Board, Tech. Memo 87, 25 pp., plus appendices A, B, and C.
- Brower, W. A., D. D. Sisk and R. G. Quayle. 1972. Environmental Guide for Seven U.S. Ports and Harbor Approaches. NOAA, Natl. Climatic Center, Asheville, N.C.
- Chabreck, R. H. 1970a. Marsh Zones and Vegetative Types in the Louisiana Coastal Marshes. La. State Univ., Baton Rouge, Ph.D. dissertation, 113 pp.
- Chabreck, R. H. 1970b. Vegetation and Size of Hydrologic Units along the Louisiana Coast. Rept. by La. Co-op Wildlife Unit to U.S. Corps of Engrs. and La. Wild Life and Fisheries Comm., New Orleans.
- Chabreck, R. H. 1971. Soil and Water Chemical Data for the Louisiana Coastal Marshes. Rept. by La. Co-op Wildlife Unit to U.S. Corps of Engrs. and La. Wild Life and Fisheries Comm., New Orleans.
- Chew, Frank, K. L. Drennan and W. J. Demoran. 1962a. Some Results of Drift Bottle Studies off the Mississippi Delta. Limnol. and Oceanog., 7(2):252-257.
- Chew, Frank, K. L. Drennan and W. J. Demoran. 1962b. On the Temperature Field East of the Mississippi Delta. J. Geophys. Res., 67(1):271-279.
- Coleman, J. M. 1972. Foundation Characteristics off Louisiana Coast. La. State Univ., Baton Rouge, Coastal Studies Inst., unpubl. ms., 14 pp.
- Coleman, J. M. and S. M. Gagliano. 1965. Sedimentary Structures: Mississippi River Deltaic Plain. La. State Univ., Baton Rouge, Coastal Studies Inst., Tech. Rept. No. 16(H):133-148.
- Conatser, W. E. 1971. Grand Isle: A Barrier Island in the Gulf of Mexico. Geol. Soc. Amer. Bull. 82:3049-3068.
- Court, Arnold and R. D. Gerston. 1966. Fog Frequency in the United States. Geog. Rev., 56:543-550.
- Cronin, E. L. 1971. Preliminary Analysis of the Ecological Aspects of Deep Port Creation and Supership Operation. Rept. to U.S. Corps of Engrs., Alexandria, Va. by Natural Res. Inst., Univ. of Maryland.
- Crow, S. A., Jr. 1972. The Effect of Louisiana Crude Oil on Estuarine Yeast Populations. La. State Univ., Baton Rouge, Master's thesis, 79 pp.
- Curray, J. R. 1960. Sediments and History of Holocene Transgression, Continental Shelf, Northwest Gulf of Mexico. <u>In</u> Recent Sediments, Northwest Gulf of Mexico, F. P. Shepard et al. (eds.), Amer. Assoc. Petrol. Geol., Tulsa, Okla., pp. 221-264.
- Cuzon du Rest, R. P. 1963. Distribution of the Zooplankton in the Salt Marshes of Southeastern Louisiana. Univ. of Texas, Port Aransas, Inst. of Mar. Sci., 9(12):132-155.
- Duxbury, A. C. 1962. Averaged Dynamic Topographies of the Gulf of Mexico. Limnol. and Oceanog., 7(3):428-431.
- Fisk, H. N., E. McFarlan, Jr., C. R. Kolb and L. J. Wilbert, Jr. 1954. Sedimentary Framework of the Modern Mississippi Delta. J. Sed. Petrology, 24(2):76-99.
- Franks, J. S., J. Y. Christmas, W. L. Siler, R. Combs, R. Waller and C. Burns. 1972. A study of nektonic and benthic faunas of shallow Gulf of Mexico - Mississippi. Gulf Coast Res. Lab, Ocean Springs, 148 pp.

- Frazier, D. E. 1967. Recent Deltaic Deposits of the Mississippi River: Their Development and Chronology. Trans. Gulf Coast Assoc. Geol. Soc., 17:287-315.
- Gagliano, S. M., H. J. Kwon, P. Light, J. S. Peake and J. L. van Beek. 1970. Selected Environmental Parameters of Coastal Louisiana, 1945, 1946, 1959-1965. Rept. No. 10, La. State Univ., Baton Rouge, Center for Wetland Resources, Hydrologic and Geologic Studies of Coastal Louisiana.
- Gagliano, S. M. and J. W. Day, Jr. 1972. Environmental Aspects of a Superport off the Louisiana Coast. Rept. No. 1, Preliminary Recommendations and Data Analyses, Louisiana Superport Studies. La. State Univ., Baton Rouge, Center for Wetland Resources, Publ. No. LSU-SG-72-03, pp. 281-317.
- Gagliano, S. M., P. L. Light and R. E. Pecker. 1972. Controlled Diversions in the Mississippi Delta System: An Approach to Environmental Management. La. State Univ., Baton Rouge, Center for Wetland Resources, Hydrologic and Geologic Studies of Coastal Louisiana, Rept. No. 8.
- Galtsoff, Paul S. (ed.) 1954. Gulf of Mexico: Its Origin, Waters, and Marine Life. U.S. Fish and Wildlife Service, Vol. 55, Fish. Bull. No. 89, 580 pp.
- Geyer, R. A. 1970. The Multi-User Zone of the Gulf of Mexico Its Promise and Problems. Water Resources Bull., 6(4):429-436.
- Glenn, A. H. 1972. Meteorological-Oceanographic Conditions Affecting Tanker Terminal Design and Operations: Grand Isle Block 46, 110 Foot Mean Low Water Depth, Offshore Louisiana. Private rept. to Marathon Pipeline Co., Houston, Texas.
- Hacker, Simon, R. W. Pike and Bert Wilkins, Jr. 1971. Analysis of the Energy, Mass, and Momentum Transfer in the Louisiana Coastal Marsh Region. La. State Univ., Baton Rouge, Coastal Studies Inst. Bull. No. 6 (Special Sea Grant Issue), pp. 109-153.
- Ho, C. L. 1971. Seasonal Changes in Sediment and Water Chemistry in Barataria Bay. La. State Univ., Baton Rouge, Coastal Studies Inst. Bull. No. 6 (Special Sea Grant Issue), pp. 67-84.
- Hood, M. A. 1970. A Bacterial Study of an Estuarine Environment: Barataria Bay, 1970. La. State Univ., Baton Rouge, Master's thesis.
- Hope, J. R. and C. J. Neumann. 1969. Climatology of Atlantic Tropical Cyclones by Two and One-Half Degree Latitude-Longitude Boxes. U.S. Dept. of Commerce, ESSA, Tech. Memo WBTM SR-44.

- Howcott, H. B. 1972. Observations, Notes, Correlations: South Pass, Louisiana Fishing. New Orleans Big Game Fishing Club Information, unpubl. ms.
- Hutchinson, G. E. 1957. A Treatise on Limnology: Volume I, Geography, Physics, and Chemistry. John Wiley & Sons, Inc., New York, pp. 701-704.
- Ichiye, Takashi. 1972. Hydrodynamic Problems Concerning Oil Spillage in the Ocean. Texas A&M Univ., Dept. of Oceanog., prelim. rept.
- June, F. C. and F. T. Carlson. 1971. Food of Young Atlantic Menhaden, <u>Brevortia tyrannus</u>, in Relation to Metamorphosis. U.S. Fish and Wildlife Service, Fishery Bull. 68(3):493-512.
- Laevastu, T. 1972. Reproduction of Currents and Water Exchange in the Strait of Gibraltar with Hydrodynamical Numerical (HN) Model of Walter Hansen. Studies in Physical Oceanography, Vol. 1, Gordon & Breach, N.Y., paper No. 24.
- Laevastu, T. and K. Rabe. 1972. A Description of the EPRF Hydrodynamical-Numerical Model. Naval Postgraduate School, Monterey, Cal., Environmental Prediction Research Facility.
- Larsen, S. and T. Laevastu. 1972. Numerical Analysis of Ocean Surface Currents. Instituto Universitario Navale di Napoli (Naples, Italy), Inst. di Meteorologia e Oceanographia, pp. 55-74.
- Leipper, D. F. 1954. Marine Meteorology of the Gulf of Mexico, a Brief Review. <u>In</u> Gulf of Mexico: Its Origin, Waters, and Marine Life. U.S. Fish and Wildlife Service, Vol. 55, Fishery Bull. 89: 89-98.
- Leipper, D. F. 1970. A Sequence of Current Patterns in the Gulf of Mexico. J. Geophys. Res., 75(3):637-657.
- Lindall, Jr., W. N., J. R. Hall, J. E. Sykes and E. L. Arnold, Jr. 1972. Louisiana Coastal Zone: Analyses of Resources and Resource Development Needs in Connection with Estuarine Ecology. Sections 10 and 13, Fishery Resources and Their Needs. Rept. to U.S. Corps of Engrs., New Orleans, Contr. No. 14-17-002-430, unpubl. rept., 323 pp.
- Louisiana State Parks and Recreation Commission. 1971. State of Louisiana Outdoor Recreation Plan, Baton Rouge.
- Louisiana State University in New Orleans. 1971. Statistical Abstract of Louisiana. Div. of Business and Econ. Res., Coll. of Business Admin.

- Louisiana Wild Life and Fisheries Commission. 1968-69. 13th Biennial Report.
- Louisiana Wild Life and Fisheries Commission. 1970-71. 14th Biennial Report.
- Lund, E. J. 1957. Effect of Bleedwater, 'Soluble Fraction' and Crude Oil on the Oyster. Univ. of Texas, Inst. Mar. Sci., 4(2):328-341.
- Mackin, J. G. and S. H. Hopkins. 1961. Studies on Oysters in Relation to the Oil Industry. Univ. of Texas, Inst. of Mar. Sci., Vol. 7.
- Marmer, H. A. 1954. Tides and Sea Level in the Gulf of Mexico. In Gulf of Mexico: Its Origin, Waters and Marine Life, U.S. Fish and Wildlife Service, Vol. 55, Fishery Bull. 89:101-118.
- McLellan, H. J. and W. D. Nowlin. 1963. Some Features of the Deep Water in the Gulf of Mexico. J. Mar. Res., 21(3):233-245.
- Meyers, S. P. 1971. The Impact of Microorganisms on Oil. Federal Quality Control Admin. Proj. 18080 CDJ, Environmental Protection Agency Progress Rept. for Sept. 1970 through August 1971.
- Mills, E. R. and D. D. Culley, Jr. 1970. Toxicity of Various Offshore Crude Oils to Marine and Estuarine Shrimp. La. State Univ., Baton Rouge, Forestry and Wildlife Management School, Fisheries Section, unpubl. ms.
- Moore, G. T. 1970. Role of Salt Wedge in Bar-Finger Sand and Delta Development. Amer. Assoc. Petrol. Geol. Bull. 54(2):326-333.
- Moore, S. F. 1972. A Simple Model for Estimating the Weathering of 011. A draft, not for publication.
- Morgan, J. P. 1967. Ephemeral Estuaries of the Deltaic Environment. <u>In Estuaries, G. H. Lauff (ed.)</u>. Amer. Assoc. Adv. Sci., Publ. No. 83:115-120.
- Morgan, J. P. 1972. Impact of Subsidence and Erosion on Louisiana Coastal Marshes and Estuaries. Preprint for Coastal Marsh and Estuary Symposium, La. State Univ., Baton Rouge, July 1972.
- Morgan, J. P., J. M. Coleman and S. M. Gagliano. 1963. Mudlumps at the Mouth of South Pass, Mississippi River; Sedimentology, Paleontology, Structure, Origin, and Relation to Deltaic Processes. La. State Univ., Baton Rouge, Coastal Studies Inst. Series No. 10, 190 pp.
- Morgan, J. P., J. M. Coleman and S. M. Gagliano. 1968. Mudlumps: Diapiric Structures in Mississippi Delta Sediments. <u>In</u> Diapirism and Diapirs, Amer. Assoc. Petrol. Geol., Memoir No. 8, pp. 145-161.

- Murray, S. P. 1972. Turbulent Diffusion of Oil in the Ocean. Limnol. and Oceanog. 17(5):651-660.
- Murray, S. P., W. G. Smith and C. J. Sonu. 1970. Oceanographic Observations and Theoretical Analysis of Oil Slicks During the Chevron Spill, March 1970. La. State Univ., Baton Rouge, Coastal Studies Inst., Tech. Rept. No. 87.
- Nathan, Robert R. 1972. U.S. Deepwater Port Study. Annex I-B, Crude Petroleum and Petroleum Products; Annex IV, The Environmental and Ecological Aspects of Deepwater Ports. Prepared for U.S. Corps of Engrs., Inst. for Water Resources, unpubl. repts.
- Nowlin, W. D. 1971. Water Masses and General Circulation of the Gulf of Mexico. Oceanol. Intern., 6(2):28-33.
- Nowlin, W. D., J. M. Hubertz and P. O. Reid. 1968. A Detached Eddy in the Gulf of Mexico. J. Mar. Res., 26(2):117-118.
- Nowlin, W. D. and H. J. McLellan. 1967. A Characterization of the Gulf of Mexico Waters in Winter. J. Mar. Res., 25(1):25-59.
- Odum, W. E. 1971. Pathways of Energy Flow in a South Florida Estuary. Univ. of Miami, Sea Grant Tech. Bull. No. 7.
- Odum, W. E. and A. A. de la Cruz. 1967. Particulate Organic Detritus in a Georgia Salt Marsh-Estuarine Ecosystem. <u>In</u> Estuaries, G. H. Lauff (ed.). Amer. Assoc. Adv. Sci., Publ. No. 83:383-388.
- Odum, W. E., J. C. Zieman and E. J. Heild. 1972. The Importance of Vascular Plant Detritus to Estuaries. Paper read at Coastal Marsh and Estuary Symposium, La. State Univ., Baton Rouge, July 1972.
- Orton, Robert B. 1964. The Climate of Texas and the Adjacent Gulf Waters. U.S. Dept. of Commerce, Weather Bureau, Wash., D.C.
- Parker, R. H. 1956. Macro-Invertebrate Assemblages as Indicators of Sedimentary Environments in East Mississippi Delta Region. Bull. Amer. Assoc. Petrol. Geol., 40(2):295-376.
- Parker, R. H. and J. R. Curray. 1956. Fauna and Bathmetry of Banks on Continental Shelf, Northwest Gulf of Mexico. Bull. Amer. Assoc. Petrol. Geol., 40(1):2428-2439.
- Paulus, W. C. 1972. Physical Processes of the Marine Environment (0il Movement Forecasting). U.S. Naval Oceanographic Office, unpubl. rept.
- Peake, J. S. and R. A. Muller. 1971. Fog in Louisiana. La. State Univ., Baton Rouge, Dept. of Geography and Anthropology, unpubl. rept.

- Penfound, W. T. and E. S. Hathaway. 1938. Plant Communities in the Marshland of Southeastern Louisiana. Ecol. Monogr. 8:1-56.
- Perret, W. S., B. B. Barrett, W. R. Latapie, J. F. Pollard, W. R. Mock, G. B. Adkins, W. J. Gaidry and C. J. White. 1971. Cooperative Gulf of Mexico Estuarine Inventory and Study, Louisiana. Phase I, Area Description and Phase IV, Biology. La. Wild Life and Fisheries Comm.
- Pomeroy, L. R. 1970. The Strategy of Mineral Cycling. <u>In</u> Annual Review of Ecology and Systematics, R. F. Johnston, P. W. Frank and C. D. Michener (eds.), Annual Reviews, Inc., Palo Alto, Cal., Vol. 1:171-190.
- Redfield, A. C. 1958. The Biological Control of Chemical Factors in the Environment. Amer. Scientist, 46(3):205-221.
- Redfield, A. C., B. H. Ketchum and F. A. Richards. 1963. The Influence of Organisms on the Composition of Sea-Water. <u>In</u> The Sea, M. N. Hill (ed.). Interscience Publishers, John Wiley and Sons, N.Y., Vol. 2:26-77.
- Resources Technology Corporation. 1972. Studies and Investigations of the Fate and Effect of the Shell Oil Spill, Platform B, Block 26, South Timbalier Bay, December 1, 1970 through November 30, 1971. Final Rept., Contr. 68-01-0051, prepared for Environmental Protection Agency.
- Riley, G. E. 1937. The Significance of the Mississippi River Drainage for Biological Conditions in the Northern Gulf of Mexico. J. Mar. Res., 1(1):60-74.
- Rivas, L. R. 1968. Fishermen's Atlas of Monthly Sea Surface Temperatures for the Gulf of Mexico. U.S. Fish and Wildlife Service, Circ. 300; Univ. of Miami Contr. No. 58.
- Rounsefell, G. A. 1972. Ecological Effects of Offshore Construction. Mar. Sci. Inst., Bayou LaBatre, Ala., J. Mar. Sci., 2(1).
- Russell, R. J. 1967. Origins of Estuaries. <u>In</u> Estuaries, G. H. Lauff (ed.). Amer. Assoc. Adv. Sci., Publ. No. 83:93-99.
- Schelske, C. L. and E. P. Odum. 1962. Mechanisms Maintaining High Productivity in Georgia Estuaries. Proc. Gulf Carib. Fish. Inst., 14:75-80.
- Scruton, P. C. 1956. Oceanography of Mississippi Delta Sedimentary Environments. Bull. Amer. Assoc. Petrol. Geol., 40(12):2864-2952.

- Shepard, F. P. 1960. Mississippi Delta: Marginal Environments, Sediments and Growth. <u>In</u> Recent Sediments, Northwest Gulf of Mexico, 1951-1958. Amer. Assoc. Petrol. Geol., Tulsa, Okla., pp. 56-81.
- Simpson, R. H. and M. B. Lawrence. 1971. Atlantic Hurricane Frequencies along the U.S. Coastline. NOAA Tech. Memo, NWS SR-58, Southern Region, Ft. Worth, Texas.
- Sonu, C. J., S. P. Murray and W. G. Smith. 1971. Environmental Factors Controlling the Spread of Oil: An Investigation of the Chevron Oil Spill, March 1970. Naval Res. Rev. 24(8):11-19.
- Soros Associates, Inc. 1971a. Evaluation of Offshore Terminal System. Rept. to U.S. Maritime Admin. Study.
- Soros Associates, Inc. 1971b. Evaluation of Offshore Terminal System Concepts. Statement of Work, RFP No. 1-35409.
- Stacy, Gus. 1972. State of Louisiana Comprehensive Outdoor Recreation Plan, 1970-75. Rept. by La. State Parks and Recreation Comm.
- St. Amant, L. S. 1972. The Petroleum Industry as it Affects Marine and Estuarine Ecology. J. Petrol. Tech., April, pp. 385-492.
- Stevenson, R. E. 1967. Gulf Oceanography Program. U.S. Fish and Wildlife Service, Bur. Comm. Fisheries, Circ. No. 268:33-43.
- Stone, J. H. 1972. Predictive Variables for Fishery Harvest off the Louisiana Coast. La. State Univ., Center for Wetland Resources, Sea Grant Proj., unpubl. ms.
- Texas Instruments. 1971a. Oceanographic and Remote-Sensing Survey in the Vicinity of the Shell Oil Spill, Gulf of Mexico. Rept. prepared for Environmental Protection Agency, Contr. No. 68-01-0017.
- Texas Instruments. 1971b. Supplement of Oceanographic and Remote-Sensing Survey in the Vicinity of the Shell Spill, Gulf of Mexico. Rept. prepared for Environmental Protection Agency, April 1971.
- Thomas, Jim and Harold Loesch. 1970. Some Notes on Fish Collected in the Barataria Bay, Louisiana Region. La. State Univ., Baton Rouge, Coastal Studies Inst. Bull. No. 5 (Special Sea Grant Issue), pp. 83-87.
- Trivedi, H. K. 1972. Transport Phenomena in Barataria Bay. La. State Univ., Baton Rouge, Reacting Fluids Lab., Dept. of Chem. Engrs. Research Proposal, May 1972.
- Van Andel, T. H. and D. Poole. 1969. Sources of Recent Sediment in the Northern Gulf of Mexico. J. Sed. Petrology, 30(1):91-122.

- Wagner, P. R. 1973. Seasonal Biomass, Abundance, and Distribution of Estuarine Dependent Fishes in the Caminada Bay System of Louisiana. La. State Univ., Baton Rouge, Dept. of Mar. Sci., Ph.D. dissertation (in preparation).
- Walsh, Don. 1969. Characteristic Patterns of River Outflow in the Mississippi Delta. Texas A&M Univ., Dept. of Oceanography, Ref. No. 69-8-T, 222 pp.
- Wright, L. D. 1970. Circulation, Effluent, Diffusion, and Sediment Transport, Mouth of South Pass, Mississippi River Delta. La. State Univ., Baton Rouge, Coastal Studies Inst. Tech. Rept. No. 84, 56 pp.
- Wright, L. D. and J. M. Coleman. 1971. River Delta Morphology: Wave Climate and the Role of the Subaqueous Profile. Science, 176(4032): 282-284.
- ZoBell, C. E. and J. H. Prokop. 1966. Microbial Oxidation of Mineral Oils in Barataria Bay Bottom Deposits. Zeitschrift für Allgemein Mikrobiologie, 6(3):143-162.
- U.S. Army Corps of Engineers. 1950-1970. Stages and discharges, Mississippi River and its outlets and tributaries. U.S. Army Engineers Dist., New Orleans, La.
- U.S. Department of Commerce. 1931-1971. Climatological data Louisiana.
- U.S. Department of Commerce. Surface water temperature and density, Atlantic coast, north and south America. Publ. 31-1: 1st edition, 1960; 2nd edition, 1965; and 3rd edition, 1968.
- U.S. Department of Commerce. 1970. Louisiana Landings. Natl. Mar. Fisheries Serv., and La. Wild Life and Fisheries Comm.
- U.S. Naval Weather. 1970. Summary of synoptic meteorological observations, North American coastal marine areas, Vol. 6, Area 17 (New Orleans).
- U.S. Weather Bureau. 1971. National Climatic Summary.

Figure 1. Geographic context of study area in Louisiana. S_1 and S_2 are the locations of a hypothetical Superport facility, and C_1 and C_2 are the locations of hypothetical casualty spills. CH is the location of the Chevron Platform spill in 1970, and SH is the location of the Shell platform spill in 1971.

Figure 3. Chronology of the deltas that comprise the Mississippi River deltaic plain (from Kolb and Van Lopik, 1958).

Figure 4. Sequence of development of deltaic facies (from Frasier, 1967).

Figure 5. Areas of mudlump development at distributary mouths of Mississippi River delta (from Morgan, Coleman, and Gagliano, 1968).

Figure 9. Influence of subsidence on delta deterioration (from Morgan, 1972).

5 5 Ę à Q \$ 2 2 ų <u>ह</u>ु 2 <u>h</u>/ 6 2 ۲ 5 t ۶ t ۴ H Depthy in moters. ÷ 2 R 닅 ÷ Ż à ż 2 ٩. ю

Figure 10. Bathymetry of offshore region in study area. Grid pattern coincides with Figure 65. Shoreline represented by dotted line and 30-meter isobath represented by solid line.

Figure 11. X-ray diffraction diagrams for clay minerals separated from Barataria Bay (B.B.) and Lake Laurier (L.L.) sediments (from Ho, 1971).

Figure 12. Location map for north and south sampling areas. North stations are listed as John The Fool Bayou and south stations are listed as Airplane Lake and Lake Palourde in Figures 13, 15, 16, 17, and 18.

Figure 13A. Seasonal changes in organic-C content in sediments (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 13B. Seasonal changes in total-N content in sediments (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 14. Percent soil organic matter in the Louisiana coastal marshes (Chabreck, 1972).

Figure 15A. Seasonal changes in 6N HCl decomposable sulfides in sediments (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 15B. Total-P content in sediments from various stations (from (Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 16. Seasonal changes in dissolved carbonates in waters (from Ho, 1971). See Figure 12 for geographic location of stations.

Figure 17A. Seasonal changes in inorganic forms of nitrogen in Barataria Bay subarea waters (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 17B. Seasonal changes in nitrate and nitrite forms of nitrogen in Barataria Bay subarea waters (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 18. Seasonal changes in total-P in Barataria Bay subarea waters (from Ho, 1971). See Figure 12 for geographic locations of stations.

Figure 19. Generalized gross lithology of sediments on the shelf and upper continental slope. Mud is used here as the unconsolidated equivalent of shale (from Curray, 1970).

Figure 20. A. Station locations. B. Surface distribution of phosphates. C. Surface distribution of chlorophyll (from Riley, 1937).

Figure 21. Annual variation in insolation along the Louisiana coast (adapted from Day et al., 1972). Winter is December, January, and February. Spring is March, April, and May. Summer is June, July, and August. Fall is September, October, and November.

Figure 22. Earliest and latest tropical cyclone occurrences for the period 1886-1970. Numbers within boxes are the month and date of earliest and latest landfalls for the indicated coastal segment (from Simpson and Lawrence, 1971). Texas areas, 5-6; Louisiana areas, 11-12; Delaware areas, 46-47; New Jersey areas, 50-51; and Maine areas, 58.

This histogram and table shows the probability (percentage) that a <u>tropical storm</u>, <u>hurricane</u>, or <u>great hurricane</u> will occur in any one year ina 50 mile segment of the coast line.

Figure 23A. Cyclone probabilities for coastal sector along Gulf and Atlantic Seaboard (from Simpson and Lawrence, 1971). See Figure 22 for geographic locations of each coastal sector.

Figure 23B. Cyclone probabilities for coastal sector along Gulf and Atlantic Seaboard (from Simpson and Lawrence, 1971). See Figure 22 for geographic locations of each coastal sector.

APPENDIX

Coastline Segment Locations

The following latitude/longitude combinations comprise a list of the left endpoints of the coastline segments as referenced from an offshore viewing position and as illustrated in Fig. la. The right endpoint of any segment is the left endpoint of the next higher-numbered segment. There are two exceptions: segment no. 25 in extreme southern Florida; and segment no. 58, the northernmost segment. The right endpoints for the exceptions are indicated in the listings below.

Also, the cities identified below are only for the reader's convenience as points of reference.

Coastline Segment Locations

Coastline			
Segment No.	Left Endpoint		
	Lat.	Long.	
1	25,95	97.15	(Brownsville)
2	26.75	97.35	
3	27.57	97.22	
4	28.23	96.62	
5	28.67	95.80	
6	29.13	95.02	(Galveston)
7	29.60	94.25	
, 8	29.77	93.30	
9	29.52	92.37	
10	29.32	91.43	
10	29.07	90.52	(New Orleans)
12	28.98	89.15	
12	30.20	88.93	
14	30.22	87.97	
15	30.35	87.02	
10			

Figure 23C. Appendix of location for Figures 23A and 23B.

119

••

Coastline			
Segment No.	<u>Left E</u>	ndpoint	
	Lat.	Long.	
16	30.28	86.05	(Panama City)
17	29.68	85.38	
18	29.88	84.43	
19	29.70	83.50	
20	29.08	82.88	
21	27.23	82.87	
22	27.42	82.68	
23	26.67	82.25	
24	25.97	81.77	
25	25.12	81.13 .	Rt. Endpoint: Lat. 25.32, Long. 80.25
26	24.53	81.82	(Key West)
27	24.77	80.93	
28	25.32	80.25	
29	26.13	80.03	
30	27.00	80.05	
31	27.73	80.38	
32	28.55	80.55	
33	29.27	81.02	
34	30.05	81.33	(Jacksonville)
35	30.90	81.42	
36	31.68	81.12	(Savannah)
37	32,33	80.48	
38	32.83	79.70	
39	33.48	79.08	
40	33.77	78.15	(Wilmington)
41	34.43	77.53	
42	34.60	76.53	
43	35.23	75.53	
44	36.05	75.67	(Nortolk)
45	36.85	75.97	
46	37.63	75.60	
47	38.35	/5.0/	
48	39.15	74.70	
49	39.83	74.08	
50	40.58	73.03	
51	40.80	72.57	
52	41.15	/1.00	(Nantucket)
53	41.25	69.95	
54	42.08	09.90 70 40	
22 52	42,72	70.02	(Pontland)
20 57	43.32	70.32 20.22	(rortland)
)/ 59	43.91	09.32 60 95	Pt Vodpoint: Lat 44 90 Jana 44 00
20	44.25	00.23 .	

Figure 23D. Appendix of locations for Figures 23A and 23B.

Figure 24. Generalized surface circulation along Louisiana continental shelf. Compiled from various sources.

Figure 25. Annual variations of Mississippi River discharge and rainfall along Louisiana coast (adapted from Day et al., 1972).

i

Figure 26. Current vectors transverse to the effluent and along the distributary mouth bar of South Pass in Mississippi River delta. A. Ebb tide. B. Flooding tide. C. Flooding tide (from Wright, 1970).

Figure 27. Surface distribution of suspended-concentration at high river stage of South Pass in Mississippi River delta on April 12, 1969. The plume boundary lies approximately between the 60 mg/l and 40 mg/l isolines (from Wright, 1970).

Figure 28A. Track of the M/V Gus III of the Bureau of Commercial Fisheries, Galveston, and the R/V Alaminos of Texas A&M University on cruises after Hurricane Betsy, in September 1965 (from Stevenson, 1967).

Figure 28B. Temperature profiles along the east-west line seaward from the Mississippi Delta. The "blacked-in" portions indicate strong temperature inversions and represent surface layers of brackish water from the Mississippi River. Hurricane Betsy crossed these waters on September 9, 1967 (from Stevenson, 1967).

Figure 29. Station lines occupied aboard the M/V Gus III before and after Hurricane Betsy. The hurricane eye crossed the coast over Barataria Bay. Note the subsidence of the thermocline after the hurricane and the wedge of warm water against the shore (from Stevenson, 1967).

Figure 30A. Temperature profiles seaward from the Mississippi Delta from the data gathered from the M/V Gus III and R/V Alaminos (from Stevenson, 1967).

Figure 30B. Temperature traces of the waters off the Mississippi Delta before and after Hurricane Betsy. The "downwelling" of warm surface waters is noted in depths greater than 50 meters (from Stevenson, 1967).

Figure 31. The three hydrologic units of Barataria and Caminada Bays, Louisiana (Pike and Hacker, 1972, unpublished data).

Figure 32. Gross estuarine circulation in Barataria and Caminada Bays, Louisiana, at ebb tide (Pike and Hacker, 1972, unpublished data).

Figure 33. Gross estuarine circulation in Barataria and Caminada Bays, Louisiana, at flood tide (Pike and Hacker, 1972, unpublished data).

Figure 34. West to east water envelopes having equiv#lent residence times (Pike and Hacker, 1972, unpublished data).

Figure 35. Annual variations in salinities in Barataria Bay, Louisiana (adapted from Day et al., 1972).

Figure 36. Isohaline areas along coastal zone of Louiaiana (from Chabreck, 1972).

HT IN FT (FROM ARBITRARY DATUM FOR EACH CURVE)

Figure 37. Record of rise in mean sea level from three stations along the Louisiana coast (from Day et al., 1972).

Wave refraction diagram for the Louisiana coast (southeastern wave: height = 5 feet, period = 6 seconds; from Becker, 1971). Figure 39.

Figure 40. Hydrologic units and marsh zones along Louisiana coast (from Chabreck, 1972).

Figure 41. Vegetative type map of the Louisiana coastal marshes (from Chabreck, 1972).

Figure 42. Top: Net daytime production of benthic algae and phytoplankton. Bottom: Total respiration of benthos and water column. Both taken in Barataria Bay, Louisiana (from Day et al., 1972).

Figure 43. Productivity of the epiphytic community and standing crop of filamentous algae and epiphytic diatoms (from Day et al., 1972).

Figure 44. Yearly variations in biomass and productivity of <u>Spartina</u> <u>alterniflora</u> in the vicinity of Airplane Lake (from Day et al., 1972).

Figure 45. Production and flow of organic matter in Barataria Bay. Numbers for marsh are g dry wt/m² marsh/yr and g dry wt/m² water/yr for water areas (from Day et al., 1972).

Collection period 1971

Figure 46. Seasonal distribution of total bacteria in three habitats of Barataria Bay (from Hood, 1970, and unpublished data of Hood, 1970).

Figure 47. Annual cycle of zooplankton from salt marshes east of the Mississippi River (from Cuzon du Rest, 1963).

Figure 48A. Distribution of macrofauna in <u>Spartina alterniflora</u> marsh at Airplane Lake (from Day et al., 1972).

Figure 49. Annual variations of biomass and population levels of meiobenthic organisms of the submerged sediments in Airplane Lake (Bennett, 1972, unpublished data).

Figure 50. Variation of biomass of meiobenthic organisms on a transect across Airplane Lake. Note that biomass is higher near shore (Bennett, 1972, unpublished data).

Figure 51. Total biomass and number of fish taken with combined gear at all stations March 1971 - June 1972 (from Wagner, 1972).

Figure 52. Annual patterns of biomass of fishes. Solid line is average of seven sites in western Barataria Bay (see Figure 3) for 1971-72. Dashed line is average of 3 years (1968-1971) at three stations in Lake Grade Ecaille (see Figure 3). Vertical lines are range over 3 years (from Day et al., 1972).

150

Figure 53. Annual biomass variation for brown and white shrimp in Barataria Bay. The two years of data for brown shrimp are 1969 and 1970. The data for white shrimp are for 1971 (from Day et al., 1972).

Figure 54. Pattern of population composition and biomass of birds in the salt marsh (from Day et al., 1972).

Average number of shrimp per unit effort of combined seines and trawls.

Figure 55. Seasonal abundance and distribution of juvenile brown shrimp (<u>Penaeus aztecus</u>) by hydrologic unit (1968-69). Sampling by Louisiana Wild Life and Fisheries Commission, Cooperative Gulf of Mexico Estuarine Inventory. Geographical overlap of catches resulted in division of some hydrologic units into E (east) and W (west) (from Lindall et al., 1972).

Average number of shrimp per unit effort of combined seines and trawls.

Figure 56. Seasonal abundance and distribution of juvenile white shrimp (Penaeus setiferus) by hydrologic unit. Sampling by Louisiana Wild Life and Fisheries Commission, Cooperative Gulf of Mexico Estuarine Inventory. Geographical overlap of catches resulted in division of some hydrologic units into E (east) and W (west) (from Lindall et al., 1972).

Figure 57. Known archeological sites in study area (unpublished data of Neuman, 1972, and Gagliano, 1972).

Figure 58. Areas in Louisiana for population estimates (from Louisiana State Parks and Recreation Commission, June 1971. Comprehensive Outdoor Recreation Plan, 1970-75).

Figure 59. Current and wind data and oil-slick orientation, 13 January 1971, Texas Instruments surveillance (from Resources Technology Corporation, 1972).

Figure 60. Current and wind data and oil-slick orientation, 14 January 1971, EPA spill surveillance (from Resources Technology Corporation, 1972).

Figure 61. Current and wind data and oil-slick orientation, 16 January 1971, EPA spill surveillance (from Resources Technology Corporation, 1972).

(C), composite grab data (D), composite meiofauna data (E), composite megafauna data (F), Sediment distribution of hydrocarbons (A), species diversity (B), mean species diversity (adapted from Resources Technology Corporation, 1972). and trawl data (G) Figure 62.

Figure 63. Comparison of yeast concentrations in oil-treated sediment and sediment not exposed to oil (from Crow, 1972).

Figure 64A. Aerial view of relatively undisturbed marsh, indicating tortuous water courses and ponding associated with active nursery (from St. Amant, 1972).

Figure 64B. Extreme disruption of marshes attendant with intensive oil production--compare with Figure 64A (from St. Amant, 1972).

Figure 65. Grid system used for projection of surface circulation offshore Louisiana. Each grid approximately 29.6 km². Letters identified in Figure 1. Numbering system corresponds to graphic and numerical current vectors.

Figure 66. Stability test for Hansen's model by means of water height, in centimeters, at grid location 5,5 as indicated in Figure 65. Total time is a 30-hour run.

MISSISSIPPI DELTA T = 46800.

Figure 67A. Current vectors at 13 hrs (46,800 sec) based on Hansen's model (Laevastu and Rabe, 1972) using winds toward 280° at 7 m/sec. Grid pattern as indicated on Figure 65.

MISSISSIPPI DELTA T = 61200.

Figure 67B. Current vectors at 17 hrs (61,200 sec) based on Hansen's model (Laevastu and Rabe, 1972) using winds toward 280° at 7 m/sec. Grid pattern as indicated on Figure 65.

•	•	•	٠	•	٠	•	•	•	•	•	•	٠	٠	•	•	•
٠	-	•	¥	6	4	4	٠	•	•	3	٠	•	•	•	•	٠
٠	۳	-	*	۰,		s	•	•	•	t	•	٠	•	•	•	•
•	•	~	•	ν.	N	ν.	۱	+		۱	•	•	•	•	•	۰
•	•	~	~	\$	`	•	•	-	1	1	•	•	•	•	•	•
,	7	•	~	N	•	`	•	-	•	١	•	•	٠	•	•	•
•	-	•	*	•	`	N	*	-	م	٢	•	•	•	٠	•	٠
•	-	*	•	~	~	`	•	~	-	-	•	•	•	•	•	•
•	•	٠	~	`	~	\$	1	~	••	-	-	•	•	٠	•	٠
•	٠	•	•	`	`	\$	1	\$	~	••	-	•	•	•	•	•
•	٠	•	\$	Ň	`	\$	N	1	~	~		~	-	٠	•	•
•	•	٠	v	N	۲	\$	\	N	\$	`	•	-	~	,	·	•
•	•	٠	N	Ň	\$	N	\$	¥	Ň	•	•	**	م	~	•	•
•	•	٠	Ň	s.	١	ъ	١	۲	×	•	•	•	-	مر	\$	•
•	•	ł	¥.	r	¥.	L.	L	1	۱.	\$	7	۲	-	•	t	•
•	•	٠	4	۲	1	٢	5	à	a.	ŀ	ŀ	•	~	۲	•	•
•	4	4	4	ł	ŧ	ŧ	ł	Ŧ	4	a	\$	•	•	r	•	•
•	٠	٠	\$	Ł	ł	ŧ	ŧ	ł	J.	ŧ	¥	•	٠	•	•	•
٠	٠	٠	ł	ŧ	ł	ł	Ŧ	Ν	4	4	٦	٠	ŧ	٠	•	•
•	٠	ł	ł	ł	L	1	٨	١	٠	•	٠	t	•	•	•	•
•	٠	•	ł	¥.	ł	L	•	٠	1	t	•	٠	•	•	•	•
•	٠	٠	٠	•	•	٠	•	•	٠	•	•	•	٠	•	•	•

Figure 67C. Current vectors at 20 hrs (72,000 sec) based on Hansen's model (Laevastu and Rabe, 1972) using winds toward 280° at 7 m/sec. Grid pattern as indicated on Figure 65.

•	•	٠	•	•	٠	•	۰	•	٠	٠	٠	•	•	•	•	•
•	•	•	•	٠	•	•	•	٩	•	^	•	•	•	•	•	٠
٠	•	•	•	٠	•	•	•	•	•	1	٠	•	•	٠	٠	٠
٠	•	•		•	٠	•	•	٩	•	^	٠	•	•	•	•	•
	•	•	•		٠	•	•	٠	•	مر	•	•	•	•	•	٠
•	•		ъ	•	•	٠	•	•	•	~	•	•	•	•	٠	•
•	•	`	•	•	`	٠	٠	•	•	مر	•	•	•	•	٠	٠
•	-	٠	•	•	•		•	٠		1		٠	•	•	•	•
•	•	٠		\$	7	v	•	•	•	٠	t	+	•	•	•	•
	•	٠	•			¥	•	ĸ	•	٠	•	t	+	٠	•	•
	•	•	۰,	¥	۲	7	Ŀ	ł.	*	٠	٠		t	-+	•	•
•	•	•	a.	ł	ł.	4	Ŀ.	۱.	•	٠	•	٠	+	~	•	•
•	•	•	٠	¥	ł	•	r	*	•	•	•	٠	٠	1		٠
•	٠	٠	٠	á	٠	٠	٠	٠	٠	٠	•	•	•	•	^	•
٠	•	•	•		4	+	•		•	•	٠	٠	•	•	مر	٠
-	•	•	•	•	•	*	•	٠	•	•	•	•	,	~	•	٠
•	•		4	4	•		•	٠	•	•	•	¢	•	~	•	٠
•	٠	٠	٠	4			*	•	4	•	•	٠	~	•	•	•
•	٠	٠	٠			•	•	•	٠	٠	•	•		•	•	•
•	٠	•	•			-	-	N	~	4	\$	¥.	•	•	٠	٠
•	•	٠	•	4		*	~	•	•	۰	•	•	•	٠	٠	٠
	•	•	٠	•	•	+	•	•	٠	٠	•	•	•	٠	•	٠

Figure 67D. Current vectors at 22 hrs (79,200 sec) based on Hansen's model (Laevastu and Rabe, 1972) using winds toward 280° at 7 m/sec. Grid pattern as indicated on Figure 65.

MISSISSIRRI DELTA T = 93600.

Figure 67E. Current vectors at 26 hrs (93,000 sec) based on Hansen's model (Laevastu and Rabe, 1972) using winds toward 280° at 7 m/sec. Grid pattern as indicated on Figure 65.

Figure 68A. Distribution of a 30,000 ton spill at C₁ after 7 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 68B. Distribution of a 30,000 ton spill at C_1 after 10 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 68C. Distribution of a 30,000 ton spill at C₁ after 15 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 68D. Distribution of a 30,000 ton spill at C₁ after 20 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 brs.

Figure 69. Distribution of a 500 ton spill at C_2 after 10 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 70A. Distribution of a 30,000 ton spill at C₂ after 7 hrs with winds toward 225° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 70B. Distribution of a 30,000 ton spill at C_2 after 10 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 71A. Distribution of a 30,000 ton spill at C_1 after 7 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 71B. Distribution of a 30,000 ton spill at C_1 after 10 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 71C. Distribution of a 30,000 ton spill at C₁ after 15 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 71D. Distribution of a 30,000 ton spill at C_1 after 20 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 72A. Distribution of a 500 ton spill at C₂ after 10 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 72B. Distribution of a 500 ton spill at C_2 after 15 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. 0il released at 5 hrs and completed in 2 hrs.

Figure 72C. Distribution of a 500 ton spill at C₂ after 25 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 72D. Distribution of a 500 ton spill at C₂ after 30 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 73A. Distribution of a 30,000 ton spill at C₂ after 10 hrs with winds toward 280° at 7 m/sec. Based on Hensen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 73B. Distribution of a 30,000 ton spill at C_2 after 15 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 73C. Distribution of a 30,000 ton spill at C₂ after 25 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 73D. Distribution of a 30,000 ton spill at C₂ after 30 hrs with winds toward 280° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 74A. Distribution of a 500 ton spill at C₁ after 7 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 74B. Distribution of a 500 ton spill at C_1 after 10 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. 011 released at 5 hrs and completed in 2 hrs.

Figure 74C. Distribution of a 500 ton spill at C₁ after 15 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 74D. Distribution of a 500 ton spill at C₁ after 20 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 75A. Distribution of a 30,000 ton spill at C₁ after 7 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 75B. Distribution of a 30,000 ton spill at C₁ after 10 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 75C. Distribution of a 30,000 ton spill at C₁ after 15 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 75D. Distribution of a 30,000 ton spill at C_1 after 20 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. 0il released at 5 hrs and completed in 2 hrs.

Figure 76A. Distribution of a 500 ton spill at C₂ after 7 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 76B. Distribution of a 500 ton spill at C₂ after 10 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 76C. Distribution of a 500 ton spill at C₂ after 15 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 76D. Distribution of a 500 ton spill at C₂ after 20 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 77A. Distribution of a 30,000 ton spill at C₂ after 7 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 77B. Distribution of a 30,000 ton spill at C_2 after 10 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 77C. Distribution of a 30,000 ton spill at C₂ after 15 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 77D. Distribution of a 30,000 ton spill at 02 arter 20 hrs with winds toward 315° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 78A. Distribution of a 30,000 ton spill at C₁ after 20 hrs with winds toward 360° at 7 m/sec. Based on Hausen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 78B. Distribution of a 30,000 ton spill at C_2 after 20 hrs with winds toward 360° at 7 m/sec. Based on Hansen's model. Oil released at 5 hrs and completed in 2 hrs.

Figure 79. Schematic diagram of the major features of the coastal zone area of Louisiana. Those features especially appropriate in regard to an oil spill are discussed in the text.

	Mean Annual	Mean Annual	Mean Annual	Mean Annual Discharge Effectiveness		
River	Deep Water Wave Power Ergs/sec/cm crest	Nearshore Wave Power Ergs/sec/cm crest	Discharge Rate (Entire River) (m ³ /sec) x 10 ³	Index (Normalized to Maximum)	Mean Annual Attenuation Ratio	
Mississippi	1.06 x ⁻ 10 ⁸	1.34×10^4	17.69	1.00	7913.3	
Danube	2.30×10^{7}	1.40 × 10 ⁴	6.29	2.14 x 10 ⁻¹	2585.0	
Ebro	7.28×10^{7}	5.09 x 10 ⁴	0.55	4.87 x 10^{-2}	1299.5	
Niger	6.76×10^{7}	6.59 × 10 ⁵	10.90	8.03 x 10 ⁻⁴	102.8	
Nile	1.36 x 10 ⁸	3.21 x 10 ⁶	1.47	5.86 x 10 ⁻⁴	42.46	
São Francisco	3.71 × 10 ⁸	9.97 × 10 ⁶	3.12	2.37×10^{-4}	37.2	
Senegal	1.56 × 10 ⁸	3.77×10^7	.77	4.75×10^{-5}	4.16	

Table 1. Mean annual discharge and wave-power climate indices (Wright and Coleman, 1972).

.

209

Table 2. Dimensions of estuarine study areas, Louisiana, and surface water acres in coastal Louisiana by area and depth interval. Areas 4, 5, 6 and 7 roughly correspond to the study areas in this report, i.e., Mississippi Delta, Barataria Estuary and (6 and 7) Terrebonne Estuary (adapted from Perret et al., 1971).

Surface Water Acres in Coastal Louisiana by Area and Depth Interval (Barrett, 1970)

			Depth (fee	t)	Total Acres
Area	0-3	3-6	6-9	>9	per acre
1	12,903	22,868	59,690	357,625	453.086
2	169,907	182,726	280,335	331.331	964,299
3	157,586	39,685	51,418	84,776	333,465
4	107,333	12,530	8,945	69,279	198.087
៍ ភ្	145,941	75,876	6,955	6.824	235,596
6	87,166	115,500	29,393	5,903	237,962
7	106,669	57,817	9,523	6.814	180,823
8	80,337	214,229	159,569	15,155	469.290
9	137,741	90,434	69,335	8,806	306.316
Total Acro per Depth	es	-	·	· ,	,
Interval	1,005,583	811,665	675,163	886,513	3,378,924

Dimensions of Estuarine Study Areas, Louisiana

S	urf. ² Water	Water ³ Vol.		Surf. ² Water	Water ³ Vol.
<u>Study Areas A</u>	<u>rea (Acres)</u>	(Acre-Feet)	Study Areas ¹ A	rea (Acres)	(Acre-Feet)
AREA 1	453,083	5,098,490	AREA 6	237,962	939,437
Maj. w. bodies			Maj. w. bodies	1	
L. Maurepas	58,191	533,741	L. Barre	21,247	84,613
L. Pontchartr	ain 394,127	4,537,974	L. Raccourci	19,278	63,495
AREA 2 Maj. w. bodies	964,299	7,637,034	Terrebonne Ba Timbalier Bay	y 50,388 79,713	313,039 297,662
Chandeleur So	und 578,003	5,371,632	AREA 7	180,823	616,304
L. Borgne	171,380	1,128,568	Maj. w. bodies	-	-
AREA 3 Mai w hodios	333,465	2,074,416	Caillou Bay Caillou Lake	27,085 7,752	113,132 14,382
Breton Sound	195,330	1,650,716	Four League B L. Mechant	ay 20,402 8,395	63,851 28,292
AREA 4	198,087	2,209,381	L. Pelto	24,633	101,516
Maj. w. bodies East Bay Garden Is. Bay Miss. River West Bay	48,195 7 13,504 34,982 17,646	425,878 44,732 1,399,280 63,343	AREA 8 Maj. w. bodies Atchafalaya B E. Cote Bl. B Vermilion Bay	469,290 ay 134,679 ay 82,314 121,604	2,533,202 616,014 405,757 825,067
AREA 5	235,596	200,917	W. Cote Bl. B	ay 89,902	507,192
Maj. w. bodies Barataria Bay Caminada Bay Little Lake	43,551 14,158 12,888	43,551 200,917 14,158 24,085 12,888 51,552	AREA 9 Maj. w. bodies Calcasieu Lake Grand Lake Sabine Lake White Lake	306,319 e 42,792 31,733 55,858 51,649	1,317,987 210,482 147,194 300,776 234,182
				A ARA AAI	~~

TOTAL (9 areas) 3,378,921 23,140,497

Table 3. Surface area of natural and manmade water bodies, 1931-1942, 1948-1967, and 1970 (from Gagliano et al., 1972).

	Unit	Total Water Area	Natural Water Bodies	Manmade Water Bodles	₩.	Cenals	K	Ponds	R
1931- 1 942	w 4 w	611,48 747,27 962,30	611,01 730.06 953,60	0.47 17.21 8.70	0.07 0.90	0.47 6.66 7.78	0.07 0.89 0.80	- 10.55 0.92	1.41 0.10
1 948-1 967	w4 N	658.58 863.35 1044.27	644.49 792.15 997.21	13.89 71.20 47.06	8.11 8.25 21	12.63 12.63 14.11	1.92 6.34 26.34	1.62 16,49 2.65	0.19 1.91 0.25
1970	6074 R1	680,98 907,79 1078,75	660.27 818.48 1022.48	20,71 89,31 56,27	3.04 9.83 5.21	18.79 71.18 53.25	2.76 7.84 4.93	1.92 18.13 3.02	0.28 1.99 0.28

	Streams	Bays, Lak	es Canals		Gulf	
	and	and	and	Major	Shore-	
Unit	Bayous	<u>Marshes</u>	Dredged	<u>Rivers</u>	line	<u>Totals</u>
I	970.6	3,410.3	<u>Cuts</u> 350.8	43.1	30.2	4,805.0
II	697.5	1,389.0	560.5	77.7	13.9	2,738.6
III	769.9	1.232.0	764.8	149.3	64.7	2,980.7
IV	1,478.2	3,488.3	1,556.5	58.5	43 .9	6,625.4
v	2,089.9	4,914.7	1,499.7	9.4	68.7	8,582.4
VI	292.6	87.4	103.0	32.2	-	515.2
VII	460.2	1,156.1	243.7	9.4	45.3	1.914.7
VIII	184.0	522.3	315.6	37.4	52.1	1,111.4
IX	251.6	437.4	156.0	28.2	44.2	917.4
Totals	7,194.5	16,637.5	5,550.6	445.2	363.0	30,190.8

Table 4. Shoreline inventory by hydrologic unit for coastal Louisiana (from Becker, 1972).

Table 5. Surface water area and water volume estimates for the study area, as indicated in Figure 1, part of the continental shelf of Louisiana (Barrett, 1969, unpublished data).

Depths Feet	Surface Water Acres	%	Volume Acre - feet	%
0-100	4,167,442	51	6,251,000	.6
100-200	1,654,900	20	248,235,000	25.0
200-300	1,085,400	13	271,350,000	28.0
300-400	696,800	8	209,386,000	22.0
400-500	336,675	5	135,838,000	14.0
500-600	202,675	2	101,439,000	10.0
	8,143,892		972,501,000	

Totals for entire Louisiana continental shelf:

-

18,737,841 acres 2,486,611,612 acre-feet

Table 6. Frequency in percent of winds from various direction in Gulf of Mexico (extracted from U.S. Naval Weather, 1970). A. Monthly data. B. Seasonal data.

A. Monthly data.

	Jan	Feb	Mar	Apr	Мау	June	July	Aug	Sept	Oct	Nov	Dec
N	19	13	12	10	10	4	4	4	6	13	18	1.2
NE	16	20	13	18	16	10	10	11	22	34	23	1.8
Ε	21	21	20	32	28	30	28	2 2	33	28	24	22
SE	17	17	27	19	17	23	18	13	13	7	11	16
S	7	10	12	7	6	6	10	8	5	2	6	8
SW	5	3	3	2	3	4	5	7	2	2	2	3
W	5	6	4	4	4	2	4	6	3	2	3	5
NW	10	10	7	7	5	4	4	5	4	4	7	7

B. Seasonal data.

	<u>Fall</u>	<u>Winter</u>	Spring	Summer
NE	26	18	16	10
E	28	21	27	27
SE	10	17	21	18
NW	5	9	6	4

Table 7. Average air temperatures in °F (Celsius equivalent given) for southeast division of Louisiana, 1931-1971 (Climatological data, Louisiana).

-

		Toã	gical d	ala, L	JULISIA	ua/•							e.
Year	J	F	м	A	м	J	J	A	S	о	N	D	Annual Averag F
									70 7	7/ 0	67 9	40 T	40.2
1931	52.4	58.0	56.6	64.7	71.6	79.5	83.0	79.7	/9./	74.0	0/.0	02.7	07.4 40 7
1932	60.8	65.9	58.4	68.3	73.1	81.3	84.1	84.1	82.2	69.2	56.4	58.0	71 /
1933	59.2	58.6	63.3	69.2	79.0	79.2	82.1	82.5	82.9	72.8	63.5	64.8	/1.4
1934	57.2	56.7	61.0	68.5	73.9	81.0	82.0	82.0	78.4	73.7	65.0	55.8	69.0
1935	56.5	57.9	66.7	69.4	76.6	80.2	82.3	83.1	78.7	73.5	62.1	51.8	69.9
1936	55.5	54.2	63.7	66.6	74.4	82.0	82.3	82.0	81.5	72.9	60.6	57.3	69.4
1937	66.1	56.8	58.2	68.1	75.9	81.4	82.5	82.6	79.0	70.1	58.8	54.9	69.5
1938	55.7	60.7	68.9	67.6	75.1	80.8	81.6	82.8	78.2	71.0	61.9	55.7	70.0
1939	58.8	59.9	64.4	68.0	73.4	80.7	82.3	81.7	80.1	72.5	60.1	58.5	/0.1
1940	43.9	54.3	62.1	67.6	73.1	79.5	81.5	81.8	77.2	71.2	62.6	59.7	6/.9
1941	55.8	53.3	57.5	70.2	75.0	80.3	82.5	84.1	81.1	77.9	60.0	58.9	69.7
1942	51.0	53.3	60.2	67.9	74.5	80.4	82.4	81.7	77.2	71.9	64.1	57.4	68.5
1943	54.9	57.6	60.8	69.3	77.8	82.0	82.8	83.3	76.9	67.8	58.5	55.1	68.9
1944	54.1	63.8	63.5	68.5	75.3	82.9	82.8	82.7	80.5	69.1	63.7	55.3	70.2
1945	54.5	61.3	68.8	71.1	73.6	81.7	81.2	82.6	80.3	70.0	64.9	52.4	70.2
1946	54.6	57.4	64.6	70.5	75.2	78.7	81.7	82.6	78.0	72.7	66.3	59.2	70.1
1947	56.8	50.4	57.2	70.5	75.7	81.8	80.9	82.4	80.3	75.5	61.2	55.9	69.1
1948	47.6	58.6	64.9	72.0	76.7	81.9	82.9	81.9	76.5	69.6	63.8	60.6	69.8
1949	60.2	62.1	62.3	67.4	76.5	81.3	81.9	81.9	78.6	74.8	60.3	59.9	70.6
1950	67.5	61.5	60.1	65.3	76.5	81.0	80.6	81.7	78.9	71.7	58.4	53.1	59.7
1951	55.9	56.7	63.1	66.0	74.6	81.1	82.8	85.2	80.2	73.1	57.3	60.0	69.7
1952	63.0	59.4	61.2	65.9	75.3	82.8	82.5	82.8	77.0	64.3	59.8	55.7	69.1
1953	57.3	57.3	66.8	68.8	77.5	82.8	81.9	81.8	78.7	71.5	61.1	54.4	70.0
1954	57.5	60.4	60.8	72.1	72.0	80.9	82.6	83.4	80.7	71.9	59.3	56.0	69.8
1955	54.5	58.7	65.5	71.0	77.6	78.5	81.4	82.2	80.6	70.5	61.4	56.8	69.9
1956	52.6	61.8	62.9	67.7	77.0	78.8	81.9	82.0	78.0	72.7	61.5	62.2	69.9
1957	61.2	64.1	61.6	69.8	77.0	81.1	84.0	82.1	77.7	67.4	62.7	56.0	70.4
1958	49.3	48.4	58.6	68.9	75.5	81.7	81.9	81.8	80.5	70.5	64.6	53.2	67.9
1959	51.1	38.2	59.8	67.2	76.6	80.5	81.5	82.5	79.9	73.4	59.6	55.7	68.8
1960	53.0	51.2	57.3	69.2	72.8	81.3	84.4	81.5	78.8	72.2	64.2	53.3	68.3
1961	48.8	59.4	65.7	65.5	73.6	78.6	81.1	80.4	79.1	69.9	62.6	58.0	68.5
1962	51.6	63.8	58.6	66.9	77.2	80.7	84.5	83.7	80.2	73.9	59.6	53.4	70.2
1963	49.6	50.7	65.1	72.4	76.8	80.6	82.3	82.8	79.2	72.8	62.3	47.7	68.5
1964	51.3	51.7	61.5	70.7	76.0	80.3	81.2	83.2	79 .9	67.1	65.2	5/./	08.8
1965	56.6	55.2	59.5	72.3	75.8	80.1	81.9	80.6	78.5	78.7	66.4	56.7	69.3
1966	49.5	54.1	60.1	69.0	75.3	78.4	82.7	81.1	78.2	68.7	63.7	54.2	67.9
1967	53.6	54.4	64.3	73.2	74.2	80.5	80.5	79.9	75.8	67.8	61.4	59.3	68./
1968	52.5	48.7	57.9	70.3	74.9	81.0	81.3	81.8	77.6	71.7	58.9	53.8	6/.5
1969	54.8	55.4	55.1	69.0	74.3	81.4	83.1	81.2	77.4	70.8	59.4	55.2	00.1
1970	48.0	52.3	60.2	71.0	74.1	79.2	81.4	81.9	80.5	69.4	57.1	59.4	6/.8
1971	55.4	55.3	60.0	67.4	73.5	80.3	81.2	81.2	79.1	72.8	61.7	64.2	69.3
-													
Month	ily Ave	erage '	°F:				_				<pre>/</pre>	F (0	20.7
	54.9	48.4	61.7	68.9	75.2	78.7	80.7	82.2	75.2	/1.3	01.1	20.0	20.7
Month	nly Ave	erage	°C:	-	~ ~	0E 0	a 7 0	27.0	720	218	16 5	13.8	69:3
•	12.7	14.7	16.5	20.5	24.0	23.9	27.0	21.3	2 J+7 12011	<u>د</u> بر م ۸۳۲	10. 2 mal	2	
			¥-	linter	Spr	ing	o numute o no	2	60 /	111A 6 A	3.9		
Seaso	mal A	verage	° F	20./	50	.0	20.0	, 1	20.8	20).5		
Seaso	onal Av	verage	°C	13./	20	г. э	Z1.	*	20.0	21			

Table 8. Monthly precipitation in inches (metric equivalents given), southeast division, 1931-1970. Extracted and derived from National Climatic Summary (courtesy G. Cry).

Year	J	F	м	A	м	J	J	A	S	0	N	D	Annual Total	Annual Mean (In.,	Annual Mean (cm)
1931	4.37	3.79	4.43	2.88	2.35	2.76	8.88	7.52	2.75	6.62	3.31	8.02	57.68	4.81	12.21
1932	5.40	2.64	3.16	5.57	11.26	2.89	5.33	10.65	6.71	8.50	3.21	4.90	70.22	5.85	14.18
1933	4. 77	6.27	7.21	6.41	2.45	1.65	6.40	4.18	2.36	2.10	3.74	2.88	49.92	4.16	10.57
1036	6 84	2 91	4 60	2.83	7.98	6.36	4.72	10.77	2,90	4.91	6.00	2.56	63.38	5.28	13.41
10 15	1.70	4.97	5.28	6.77	2.68	4.63	7.95	6.66	4.65	. 80	1.57	5.92	53.58	4.46	11.33
1036	7 04	5.07	2.71	4.08	5.83	.95	5.98	7.49	4.02	1.75	2.91	3.70	51.53	4.29	10.90
1937	3.96	3, 29	6.00	3.78	2.91	6.56	4.53	7.50	5.55	13.89	2.00	3.70	63.69	5.31	13.49
10 38	4 82	2.40	1.33	3.79	4.14	5.03	8.21	4.89	4.31	2.13	3.22	3.82	48.09	4.01	10.19
1939	2.09	4.36	.96	2.72	9.46	5.05	7.43	6.79	6.93	.98	6.86	2.74	56.37	4.70	11.94
1940	3.55	8.54	3.53	8,80	1.40	8.50	9.43	10.08	5.81	.47	3.01	8.33	71.45	5.95	15,11
1941	3, 56	3.84	4.57	2.10	3.73	8.12	8.10	4.53	7.07	4.63	2.57	4.60	57.42	4.78	12.14
1942	1.87	9.71	6.66	1.93	5.50	11.51	7.74	8.78	7.12	6.25	1.46	4.75	73.28	6.11	15.52
1943	2.72	1.78	7.43	1.71	3.98	5.45	6.85	4.48	14.82	.90	2.8	4.20	57.16	4.76	12.10
1944	9.22	4.42	4.60	8.14	4.71	3.22	5.64	7.11	6.21	1.00	10.64	2.54	67.45	5.62	14.27
1945	4.73	4.91	2.40	3.50	3.26	3.53	11.37	8.31	7.00	3.27	1.81	7.12	61.21	5.10	12.10
1946	5.40	3.50	12.24	2.86	10.79	9.86	7.89	4.26	11.55	. 56	4.47	3.41	76.79	6.40	16.26
1947	8.37	3.38	7.35	7.52	4.75	4.47	2.88	5.86	4.51	2.11	12.43	7.96	71.59	5.97	15.17
1948	4.95	1.54	13.96	2.30	3.45	2.73	7.19	6.15	14.59	1.21	12.49	4.89	75.45	6.29	15.98
1949	2.17	3.49	9.11	8.93	1.35	5.44	8.47	6.67	8.73	4.29	. 39	5.52	64.56	5.38	13.67
1950	2.39	3.15	6.25	6.94	2.74	5.86	8.36	2.95	2.72	2.26	1.00	6.79	51.41	4.26	10.82
1951	3.60	2.20	6.85	6.30	2.70	2.79	6.66	3.65	7.39	1.38	3.43	3.17	50.12	4.18	10.62
1952	2.58	8.98	2.96	5.72	5.42	1.75	7.31	5.96	4.37	.10	2.41	4.98	52.54	4.38	11.13
1953	2.23	6.26	3.78	6.32	1.82	8.03	9.03	7.77	2.07	. 53	8.63	11.11	67.58	5.63	14.30
1954	4.36	1.16	1.76	2.14	4.14	3.82	11.24	2.92	7.26	4.22	2.50	5.59	51.11	4.26	10.82
1955	5.35	3.56	. 25	4.34	4.08	3.29	9.69	9.60	5.82	2.19	4.08	3.26	55.51	4.63	11.76
1956	3.67	7.17	3.06	3.61	4.32	9.06	7.02	4.80	11.33	2.65	1.50	5.59	63.78	5.31	13.49
1957	1.31	-3.34	7.78	7.29	2.96	7.79	5.21	6.58	11.55	2,62	5.83	2.63	64.89	5.41	13.74
1958	7.49	4.64	7.02	2.81	7.65	5.24	9.00	7.73	8.69	2.39	1.44	1.57	65.67	5.47	13.89
1959	3.40	8.80	3.63	4.22	9.17	9.59	11.71	6.52	4.49	9.14	1.44	2.06	74.17	6.18	15.70
1960	4.29	5.20	3.19	5.28	3.77	1.77	5.26	8.77	5.66	5.19	. 32	4.29	52 .9 9	4.42	11.23
1961	6.32	7.14	7.35	3.49	4.76	9.49	7.08	8.08	7.32	1.72	7.11	6.42	77.28	6.44	16.36
1962	4.30	1.14	2.07	2.24	.67	6.87	3.99	5.00	4.23	3.03	2.84	3.24	39.62	3.30	8.38
1963	4.17	5.12	.91	, 88	2.12	7.59	6.34	3.38	7.08	.04	8.72	5.24	51.59	4.30	11.92
1964	7.73	7.25	5.71	5.06	3.18	4.03	9.96	5.56	3.78	5.78	3.51	2.19	63.74	5.31	13.49
1965	4.97	6.01	3.69	1.01	2.96	4.06	6.58	7.47	9.64	1.18	1.79	7.19	36.55	4.71	11.96
1966	11.22	11.07	1.96	5.97	4.05	7.59	9.14	6.93	6.67	3.28	1.57	6.59	76.04	0.34	16.10
1967	4.31	5.56	2.23	1.77	3.86	4.56	6.71	9.36	5.93	6.06	.28	10.13	60.76	5.06	12.85
1968	1.70	3.24	2.67	3.41	4.73	3.57	5.30	5.02	2.96	1.67	4.26	6.4Z	44.95	3.75	9.55
1969	3.63	4.13	6.74	6.86	6.99	1.47	8.25	6.22	2.75	1.08	1.02	5.28	53.62	4.47	11.35
1970	3.38	2.22	7.49	. 81	5.78	4.06	6.27	8.26	0.00	6.23	1.05	3.02	33.23	4.60	11.00
Month	ily Av	erage:									· · ·	1.04			
	5.89	4.70	4.90	4.31	4.50	5.27	1.37	6.63	6.40	3.43	5.74	4.70			
Month	ily Av	erage	(св):				10 70	10.01	16 26	9 20	0 50	12 50			
	14.96	11.84	12.45	10.95	11.43	13,39	10.72	10.04	T0*50	6.20	7.30	1 (CUN) 14132	400	us I	
_				Winter	r (D)F)	spr:	1 ng (144 / 57	501) I	3000081 2	(JJA) 12	rai.	1 (300) 6 66		16	
Seas	onal A	verage	; /\-	5.	14		4.3/		14	142 31	1	1.33	15	10	
•		-	(CD):	13	10		11.01		10		ш.				

Table 9. Percent frequency of specific relative humidity at selected hours for midseasonal months (U.S. Weather Bureau, National Climatic Summary, 1971).

		(N	ew Orle	ans rec	ords: 19	49-195	4)
		~ 30	~4 0	< 50	5 50	570	5 90
Jan	6 ат	0	ı	2	9 8	93	61
	3 pm	3	15	23	77	37	7
Apr	5 am	0	1	2	98	83	53
	3 pm	8	26	43	57	19	7
Jul	4 am	0	0.	0	100	9 8	77
	3 pm	1	2	17	83	43 .	6
Oct	5 am	0	0	3	9 7	90	52
	3 pm	11	33	47	53	13	4

Table 10. Percent frequency of fog occurrence at specific locations in Louisiana. A. Monthly occurrence at Lake Charles and intensity for Grand Isle, Block 46, offshore Louisiana (Glenn, 1972).

			M	ÓNTHỊ	Y OC	CURR	ENCE	OF 1	70G	- 19	64		
Station	Jan	<u>Feb</u>	<u>Ma</u> t	<u>Apr</u>	<u>May</u>	Jun	<u>Jul</u>	Aug	<u>Seə</u>	<u>0ct</u>	<u>ע0 א</u>	Dec	Annual
Lake Chailes	8	2	5	4	3			Ŀ	3	3		11	42
New Orleans	10	2	3	1	1				1	1		8	27

Note: Numbers cited are number of days that heavy tog occurred at each station for the month noted.

<u>Month</u>	Léss Than <u>3 Miles</u>	Less Than 1 Mile	Less Than 1/2 Mile	Less Than 1/4 Mile	Less Than <u>1/3 Mile</u>
Jan	7.9	3:3	2.2	1.6	1.4
Feb	9.0	3.9	2.7	2.0	1.7
Mar	9.6	4.2	2.9	2.2	1.9
Apr	8.0	3.4	2.3	1.7	1.5
May	2.9	1.2	0.8	0.6	0.4
Jun	1.0	0.5	0:3	0.2	0.1
Jul	0.7	0.2	0.1	0.1	٥.0
Aug	0.8	0.2	0.1	0.1	0.0
Sep	1.0	0.5	0.3	-0.2	0.1
Oct.	2.0	1.0	0.6	0.4	0.2
Nov	3.3	1.5	1.0	0.7	0.5
Dac	5.7	2.3	1.6	1.2	1.0
Annual	4.3	1.9	1.2	0.9	0.7

Visibility reductions are caused primarily by fog.

Table 11. Cyclone data for selected Louisiana areas (extracted from Simpson and Lawrence, 1971). See Figure 22 for location of area designation numbers.

	Coastal	Section	
	Terrebonne	Barataria	M. Delta
	10	11	12
Earliest tropical cyclone occurrence*	June	July	August
Latest tropical cyclone occurrence	October	November	October
Probability (%) of occurence in any one year:			
Tropical cyclones	18%	21%	15%
	9%	13%	9%
Great hurricanes		2%	4%

Cyclone Probability percentage (data extracted and derived from Simpson & Lawrence, 1971)

	Trop. Cyclone	Hurricanes	Great Hurricanes	Cyclone
Texas (5-6)	19	13	4	6
Louisiana (11-12)	18	11	3	7
Delaware (46-47)	2.5	1.5	0	1
New Jersey (50-51)	8.5	6	0.5	2.5
Maine (58)	13	5	0	8

*All tropical cyclones means winds 40 mph or higher All hurricanes means winds 74 mph or higher All great hurricanes means winds 125 mph or higher

	1'ro	mical Stor	Su		llurricancs		
		Average Interval	Occurrence		Average Interval	Occurrence	
Period of Nurricane Season	Average Number Per Year	Retween Storms, Years	Probability On Any Day In Period	Average Number <u>Per Year</u>	Between llurricanes, <u>Years</u>	Probability On Any Day In Period	-
May 29 - June 10 (13 Days) (Inactive Early Season)	0.03	33.3	0.23%	0.02	50.0	0.15%	
June 11 - July 5 (25 Days) (Active Early Season)	0.13	7.7	0.527	9.14	7.1	0.56%	
June 6 - August 10 (36 Days) (Inactive Mid-Season)	0.14	7.1	0.39X	0.12	8,3	0.33%	
Aug. 11 - Oct. 20 (71 Days) (Active Mid-Season)	0.43	2.3	0.61%	0.70	1.4	0.99%	
(jct. 21 - Nov. 7 (18 Days) (Innctive Late Scason)	0.03	33.3	0.172	0.20	50.0	311.O	
Entire Season (163 Days)	0.76	1.31	0.47%	1.00	1.00	0.61%	
Maximum Number of Hurricanes	s and Tropic	cal Scorms	in Any Year:	6, 1886			
Minimum number of Hurricanes	s and Tropic	cal Storms	in Any Year:	0, (Occuri	red in several	, (sınay	

Table 12A. Data on occurrence of tropical storms and hurricanes within 180 nautical miles of Louisiana coast (Glenn, 1972).

Table 12B. Occurrence of hurricane and tropical storm centers within 180 nautical miles of the Louisiana coast, 1871-1971 (Glenn, 1972).

			Tropical				Tropical				Tropical			Tropical				Tropical Cyclone*
			Ç yclone [±]				Cyclone*				Cyclone"	V	Daro	Intensity	Year	Date		Intensity
Year	Date	<u> </u>	Intensity	Year	Date	<u> </u>	Intensity	Year	pate	<u> </u>	Intensity	Tear	Date 7	THLEHOLLY	1953	lun	ā.	T
1871	Jun	3	н	1891	Jul	5	Ħ	1911	Aug	11	н т	1935	NOV 7	÷ T	1053	San	18	Ť
1871	Jun	9	ท	1892	Sep	11	T	1912	Jun	12	T	1030	JUL 27	1 11	1953	Sen	25	ĥ
1871	Sep	- 5	H	1893	Jun	14	н	1912	Sep	12	H II	1036	101 31	<u>н</u> т	1954	Inl	27	Ť
1871	0 a t	3	H	1893	Sep	6	н	1914	Sep	18	T	1022	Aug 0	л Т	1955	Ang	1	Ť
1872	Jul	10	11	1893	Oct.	1	11	1912	Aug	10	11	1037	Oct 3	- -	1955	Aug	26	Ť
1873	Sep	10	н	1894	Aug	- 5	т	1912	Sep	29	11	1019	300 14	Â.	1956	Jun	13	T
1874	Jul	2	н	1894	Oct	.7	н	1910	JUL	10	R II	1028	Aug 14		1956	Sen	24	н
1875	Sep	15	н	1895	Aug	14	T	1910	UCC.	10	11	1010	Oct 10	Ť	1957	Jun	8	T
1875	Sep	25	К	1895	Oct	6	T	7971	sep	4	4 V	1030	Jun 14	Ť	1957	Jun	27	li.
1877	Sep	17	к	1896	Ja]	. 6	н	1910	Aug	- 0	R T	1020	Aug 13	ਸ	1957	Aug	9	Т
1877	Oct	2	н	1897	Sep	12	н	1010	101		1	1030	Soc 26	Ť	1957	Sen	7	ī
1877	0ct	25	ห	1898	Sep	19	T	1919	Sep	27	д ч	1940	Aug 6	ม	1957	Sap	18	т
1878	0c t	10	н	1898	Sep	27	1	1920	Sep	21	a v	1940	Son 23	። ተ	1958	Sep	5	Ť
1879	Aug	22	H	1900	Sep	. 6	14 ·	1920	sep	22	л 11	1041	Son 11	Ť	1959	Mav	29	T
1879	Sep	1	H	1900	Sep	12	1	1072	Jun	16	п Т	1941	Sep 23	ਸ਼	1959	Jul	24	н
1879	Qc t	6	н	1900	Oct	11	1	1922	OCL	10	L V	10/2	50p 10	н Н	1959	0ct	8	T
1879	Oct	15	н	1901	Jun	13	1	1022	Oct	17	л. т	1962	Aug 29	н	1960	Sep	14	ĸ
1880	Jua	22	n	1301	JUL	10	1	1076	QCL Son	14	.u	1043	Jul 26	 H	1960	Sep	25	Т
1881	Aug	. 2	н	1901	Aug	16	11 1*	1026	Der	12	T	1943	Sen 18	н.	1961	Sep	10	н
1881	Aug	12	н	1901	aep	26	1 1	1026	1.00	26	· 1	1946	Sep 10	Ť	1963	Sep	17	н
1882	Sep	.9	н	1002	Jun	20	ч	1026	See.	20	14 12	1945	Jul 20	Ť	1964	Aug	7	Ŧ
1885	Aug	29	н	1902	UCL Con	11	n u	1929	tun	28	и И	1945	Aug 27	н	1964	Oct -	2	н
1585	Sep	20	н	1006	Sep No.	1	<u>ц</u> Т	1929	101	15	÷. T	1945	Sep 5	т	1965	ມັນຄ	14	T
1885	Sep	25	R	1005	LOA LOA	17	-	1017	300	13	ĥ	1946	Jun 14	т	1965	Sep	9	11
1836	Jun	14	T	1905	Sep	~ ~	1 T	1032	Aug	31	ਸ ਸ	1947	Aug 22	н	1965	Sep	28	r
1875	Jun	20	EL	1005	UCL	11	1	1012	Son	13	т. Т	1947	Seu 8	Т	1969	λug -	17	11
1836	Jun	101	21	1000	Con	26	ະ ນ	1037	Son	19	Т	1947	Sep 19	Ы	1969	Oct.	- 5	Т
1855	Jul.	10	н	1007	Sep	27	р Т	1932	Oct	15	Ť	1948	Jul 8	Т	1969	0ct	21	н
1885		15	8	1007	Sep	20	1 T	1033	ter1	5	ĥ	1948	Sep 3	Ħ	1970	Jul	21	Т
1886	Cet	11	11	1007	Sep	20	÷	1933	THI	22		1949	Sep 4	T	1970	Sep	15	T
1667	701	2.0	H 11	1907	See	17	÷	1033	Ano		- T	1949	Sep 21	T	1971	Sep	9	н
1887	Uet	13	n ''	1200	əep Tura	27	÷	1934	Tum	16	ĥ	1949	Oct 3	H	1971	Sep	16	н
1922	Jun	10	n T	1000	Jun	30	* T	1934	Jul	25	н	1950	Aug 30	н		-		
1000	Jur	2	1	1909	1.1	20	ů	1934	Ano	27	н	1950	Oct 2	T	* H(H	urr i	can	c)
1668	Aug	13	, tr	1202	Sor	20	r v	1934	000	ŝ	Ť	1950	Oct 18	н	T(T	ropi	ca1	Storti)
1889	Sep	22	ji –	1205	sep	20	n	47.04	000	م	*			•		•		

...

Table 13. Average percentage frequency of occurrence of wind speed direction groups: Grand Isle, Block 46: Offshore Louisiana: July (Glenn, 1972).

-

			W:	ind Spa	eed Gro	oups (1	nph)			
Direction	0-4	5 -9	10-14	15-19	20-24	25-29	30-34	35-40	40 Plus	Total
N	0.3	0.3	0.7	0.2	0.0	0.0	0.0	0.0	0.0	2.0
NE	0.5	1.0	1.0	0.4	0.1	0.0	0.0	0.0	0.0	3,0
E	1.1	2.3	2.4	0.9	0.3	0.1	0.1	0.0	0.0	7.2
SE	2.6	6.0	6.3	2.2	0.4	0.3	0.2	0.1	0.0	18.1
S	3.2	7.5	7,8	2.8	0.5	0.3	0.2	0.1	0.0	22.4
SW	4.3	9.9	8.2	3.2	0.5	0.1	0.0	0.0	0.0	26.2
r.	2,3	5.8	5.0	1.9	0.3	0.1	0.0	0.0	0.0	15.4
XW	0.8	2.0	1.9	0.7	0.2	0.1	0.0	0.0	0.0	5.7
Total	15.1	35.3	33.3	12.3	2.3	1.0	0.5	· 0.2	0.0	100.0

.

Table 14A. Average percentage frequency of occurrence of wind speed - direction groups: Grand Isle, Block 46: Offshore Louisiana: September (Glenn, 1972).

			Wi	ind Spe	eed Gro	oups (1	aph)			
Direction	0-4	5–9	10-14	15-19	20-24	25-29	30-34	35-40	40 Plus	Total
И	0.4	1.3	1.7	1.3	0.8	0.3	0.2	0.1	0,2	6.3
NE	1.5	3.8	5.7	4.8	2,5	0.9	0.8	0.3	0.7	21.0
E	1.6	4.6	7.6	6.3	3.3	1.3	1.0	0.4	0.7	26.8
SE	1.6	4.1	6.5	5.4	2.8	1.1	0.8	0.4	0.8	23.5
S	0.8	2.1	2.9	2.3	1.3	0.5	0.3	0.1	0,3	10.6
SW	0.6	1.2	1,0	0.7	0.5	0.2	0.1	0.1	0.1	4,5
w	0.5	1.4	1.2	0.6	0.3	0.1	0.0	0.0	0.0	4.1
NW-	0.3	0.7	0.9	0.8	0.4	0.1	0.0	0.0	0.0	3.2
Total	7.3	19.2	. 27.5	22.2	11.9	4.5	3.2	1.4	2.8	100.0

Table 14B. Average percentage frequency of occurrence of wind speed - direction groups: Grand Isle, Block 46: Offshore Louisiana: October (Glenn, 1972).

			W :	ind Spa	eed Gro	oups (j	aph)			
Direction	6-4	5-9	10-14	15-19	20-24	25-29	30-34	35-40	40 Plus	Total
N	0.4	1.3	2.6	2.8	2.0	1.3	0.8	0.3	0.5	12.0
NE	1.1	4.5	7.9	7.5	4.6	1.8	1.2	0.3	0.6	29.5
Ξ	0.3	3.5	6.6	6.0	·3.8	1.5	1.1	0.3	0.6	24.2
SE	6.3	2.3	4.4	4.1	2.4	1.0	0.6	0.2	0.4	16.2
5	0.5	1.7	2.6	1.8	0.8	0.3	0.1	0.0	0.0	7.8
58	0.5	8.0	0.6	0.4	0.2	0.1	0.0	0.0	0.0	2.6
W	0.5	0.8	0.6	0.4	0.2	0.1	0.0	0.0	0.0	2.6
210	0.3	3.0	1.3	1.4	0.7	0.3	0.2	0.1	0.0	5.1
Total	4.9	15.7	26.6	24.4	14.7	6.4	4.0	1.2	2.1	100.0

.

_

Table 15. Average percentage frequency of occurrence of wind speed - direction groups: Grand Isle, Block 46: Offshore Louisiana: December (Glenn, 1972).

.

			Wi	nd Spe	eed Gro	oups (1	aph)			
Direction	0-4	5-9	10-14	15-19	20-24	25-29	30-34	35–40	40 Plus	Total
N	0.3	1.0	2.3	3.1	2.7	2.3	1.8	1.2	1.9	16.6
NE	0.4	. 2.1	4.6	6.7	5.1	2.1	1.6	0.8	1.3	24.7
E	0.4	1.6	3.5	4.7	2.8	1.0	0.7	0.3	0.5	15.5
SE	0.4	1.7	3.4	4.6	2.8	1.0	0.7	0.2	0.4	15.2
S	0.4	1.1	2.6	3.1	2,2	0.7	0.3	0.1	0.2	10.7
รพ	0.3	1.2	1.6	1.3	0.8	0.1	0.0	0.0	0.0	5.3
W	0.3	0.5	0.7	0,7	0.5	0.3	0.2	0.1	0.1	3.4
NW	0.3	0.6	1.3	1.8	1.4	1.2	0.8	0.5	0.7	8.6
Total	2.8	9.9	19.9	26.0	18.3	8.7	6.1	3.2	5.1	100.0

Table 16.Average percentage frequency of occurrence of wind
speed - direction groups: Grand Isle, Block 46:
Offshore Louisiana: April (Glenn, 1972).

			W:	Ind Spe	eed Gro	ups (r	noh)			
Direction	0-4	5-9	10-14	15–19	2024	25-29	30-34	35-40	40 Plus	Total
N	0.3	0.7	1,3	1.2	1.1	0.8	0.4	0,3	0.4	6.5
NE	0.6	1.5	2.9	2.7	2,2	0.9	0.4	0.3	0.3	11.8
E	0.7	2.1	3.6	3.1	2.2	0.6	0.3	0.1	0.1	12.8
SE	2.1	5.6	9.7	9.5	4.0	0.9	0.4	0.2	0.2	32,6
5	1.3	4.7	6.5	4.8	2.5	0.7	0.3	0.1	0.1	21,0
SW	0.6	1.7	1.5	1.3	0,6	0.1	0.0	0.0	0.0	5,8
W	0.5	1.1	1.1	0.8	0.4	0.2	0.1	0.0	0.0	4.2
NN	0.2	0.7	1.2	1.2	0.8	0.5	0.3	0.2	0.2	5.3
Total	6.3	18.1	27.8	24.6	13.8	4.7	2.2	1.2	1.3	100,0

Table 17. Current and wind vectors for area near and around Burrwood, Louisiana, which is located on Mississippi River delta (extracted from Scruton, 1956).

Resultant Currents	μļ	<u>ب</u> ها	ΣI	A.	ΣI	ה	١	V	v {	0!	<u>N</u>	۵I	<u>A11</u>
Direction (°)	360°	329°	340°	328°	339°	360°	21°	357°	307°	305°	302°	325°	348°
Speed (nt.m1/da)	2	2	÷	+6	9	4	ъ	2	7	e	2	ŝ	Ś
Speed (knots)	.08	.08	.125	.375	.25	.17	.21	.08	.08	.125	.08	.21	.21
Speed, ft/sec	.135	.135	.21	.63	.42	. 29	.35	.135	.135	.21	.135	.35	.35
Speed, cm/sec	4.12	4.12	6.43	19.29	12.86	8.75]	10.80	4.12	4.12	6.43	4.12	10.80	10.80
<u>Resultant Winds</u>													
Direction (°)	206°	228°	261°	283°	322°	352°	24°	322°	254°	221°	226°	204°	254°
Speed (nt.mi/da)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Speed (knots)	3 1/2	1 3/4	4	31/3	4 1/2	c,	2 1/2	1 3/4	5 1/3	4 3/4	51/2	3 3/4	21/4
Speed, ft/sec	5.9	2.95	6.75	5.62	7.59	5.06	4.22	2.95	8.99	8.02	9.28	6.33	3.80
Speed, cm/sec	180	90	206	171	231	154	129	96	274	244	283	193	116

Burrwood - Resultant Currents and Winds

-

227

and Wind Vectors for Area N tant Currents and Winds 3' N - 90° W	nd Vectors for Area N rrents and Winds 90° W	rs for Area N and Winds	Area N ds		ear and	About (Grand 1	sle, Lo	uisian	a (Scr	uton,	1956) .	
Resultant Currents	ות	۲ ユ	¥)	<u>v</u>	ΣĮ	וח	וח	Ā	v	0	2	۵I	<u>A11</u>
Direction (°)	275°	320°	300°	312°	313°	330°	1°	344°	318°	314°	312°	313°	318°
Speed (nt.mi/da)	ŝ	٢	œ	œ	6	Ś	2	۳ı	9	10	7	÷	7
Speed (knots)	.21	.29	.33	.33	.375	.21	• 08	.125	. 25	.42	.29	.25	.29
Speed, ft/sec	.35	.49	.56	.56	.63	.35	.135	.21	.42	.71	.49	.42	.49
Speed, cm/sec	10.80	14.92	16.98	16.98	19.29	10,80	4.12	6.43]	2.86 2	1.60]	4.92	12.86	4.92
Resultant Winds													
Direction (°)	202°	24 1°	287°	301°	326°	355°	10°	320°	270°	236°	254°	203°	280°
Speed (nt.mi/da)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Speed (knots)	3 1/3	1 3/4	2 1/4	4 3/4	3 3/4	3 1/4	1 1/3	2 1/4	'n	3 1/2	1 1/4	m	2
Speed, ft/sec	5.62	2.95	3.80	8.02	6.33	5.49	2.24	3.80	5.06	5.9	2.11	5.06	3.38
Speed, cm/sec	171	60	116	244	193	167	68	116	154	180	64	154	103

Table 18. Current and wind vectors for area near and around Grand Isle, Louisiana (extracted from Scruton, 1956).

L¢	ιυ	ŤΕ	-
_	~~	_	_
_			_

9. Average annual total surface ocean current² speed direction groups: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

Direction ¹	0.0-0.4	0.5-0.9	1.0-1.4	1.5-1.9	2.0-2.4	2.5-2.9	et/seco 3.0-3.4	nd 3.5 Plu	Total			
Z	1.1	2.4	2.4	1.7	0.9	0.5	0.3	0*0	9.3			
NE	9-0	1.2	1.2	0.9	0.5	0.3	0.1	0.0	4.8			
щ	1.8	3.7	3.8	2.7	1.3	0.8	0.4	0.1	14.6			
SE	1.3	2.7	2.7	1.9	0.9	0.6	0.3	0.1	10.5			
S	0.6	1.3	1.4	1.0	0.5	0.3	1.0	0.0	5.2			
SW	1.3	2.6	2.7	1.9	0.9	0.5	0.3	0.1	10.3			
м	3.0	6.4	6.4	4.6	2.3	1.4	0.7	0.1	24.9			
NN	2.5	5,3	5,3	3.7	1.9	1.	0.5	0.1	20.4			
Total	12.2	25.6	25.9	18.4	9.2.	5.5	2.7	0.5	100.0			
	NOTES	¹ Direct.	ion towan	cd which	current	flows.						
		² Total drift,	surface (and den:	ocean cu sity cur	rrent is rents.	the vect	wns Jo	of the t	idal, wind			
	÷	Б.	×	-	7	•	•					
----------	----------	----------------	--------	-----------	------------	---------------	-----------	-----------	-------	---------------	----------	-----------------
0201			1	1	e	7	7	4	S	0	X	A
0061	1402.2	1805.2	1475.7	1070.5	0.979.0	798.5	613.0	596.6	540.0	420.0	180.3	771 8
1951	771.4	1027.3	1294.0	1220.0	1020.7	674.7	1022.6	626.4	101	7 776		
1952	995.8	1173.8	1018 7	1305 p	0 100	ŗ					C./C.	9/1.4
			1-0147	0.0071	0.106	1.4/0	389.4	285.2	234.4	158.3	148.5	277.8
6641	366.7	556.8	837.5	763.8	940.4	599.1	376.6	297.5	194.0	143.6	142.0	174.8
1954	339.3	447.0	372.6	385.0	659.4	409.3	303.2	205.0	214.3	235.0	285.0	0 164
1955	543.7	495.3	1023.4	1162.6	567.6	433.4	362.0	256.8	182 0	0 646		0.127
1956	156.3	823.5	1038.7	770.5	568.0	428.3	344.8	318 7	8 166	0.14 1	C . 137	8.0C7
1957	405.6	1115.8	647.0	852.0	946.1	11/0 5	3 7 4 6		0.111	71001	0-497	224.8
1059	76.0 /	6 6 7 3			1.024	C * 4 + 7 + 7	C*6//	C.054	254.3	279.0	526.3	842.4
0	100/	£.2C0	008.3	529.3	1149.8	602.2	690.4	982.2	410.2	322.6	240.2	381.5
1959	298.2	856.2	837.0	715.3	560.7	476.7	323.6	315.3	249.8	459.4	369.8	684. 6
1960	721.8	740.0	698.0	980.8	802.6	620.5	622.8	316.0	272.0	219.6	253.4	9.76 B
1961	334.0	0 .6 2E	1159.2	1296.0	1174.2	1056.3	405.8	433.0	335.5	404.7	474. A	7 7 7 7
1962	805.3	961.4	1223.0	1486.8	890.3	462.0	341.4	254.2	277-0	304.4	300.4	3.075
1963	332.1	275.0	598.0	774.0	344.6	306.6	215.1	190.6	152.8	128.0	9.611	162 5
1964	182.0		613.0	639.0	804.0	337.0	299.0	170.0	0-041	195 0		C 4 4 5 6
1965	460.6	478.7	569.2	855.2	638.4	383.7	310.9	216.6	267_6	0 721	1 616	0-70C
1966	389.7	628.3	657.6	365.4	754.0	380.6	202.2	182.1	7.071	167.6	1.12.1	1.022
1967	293.0	280.0	468.4	503.6	613.2	497.3	520.6	282.5	0.991	215.7	2002	6 767 7 76 7
1968	620.2	572.0	360.0	781.9	542.2	714.9	297.7	271.7	181.0	198.8	717 8	273 3
1969	414.8	954.2	499.2	703.5	714.6	385.7	506.2	290.3	222.4	281.8	3 A R	
1970	511.8	416.7	529.3	651.0	875.9	\$33.6	260.7	233.0	216.3	345.6	375.7	360.2
ZJ Yevr											·	
Average	529, 19	707.97	789,89	871.20	787.27	563.93	437.26	340.96	267.3	266,7	638.57	8058.8
Ave sage	Winter (DUP) 512.6		Spring ()	I. 916 (MM		Summer (J	JA) 447.4		Fall (SC	N) 312.5	1

Mississippi River discharge in cfs x 1000 at Darberta Landing, Louisiana. Extracted from stages and discharges, Mississippi River and its outlets and tributaries (from data of U.S. Army Corps of Engineers). Table 20.

Table 21. Results of analysis of variance for mixing and stratification seaward of the mouth of South Pass of the Mississippi River delta (Wright, 1970).

				F-Re	atios	
	Source of Variation	d.f.	(5)	Density Ratio	Depth of Interface	$\Delta \sigma_{t} / \Delta z$
	River Stage	1	41.208**	7.344**	7.794**	5.222*
tors.	Tide (Flood or Ebb)	1	0.138 NS	14.671**	0.031 NS	3.253 NS
/ Fac	Seas (Rough or Calm)	1	5.509*	0.940 NS	1.204 NS	6.482*
(murt)	Line Number	3	0.387 NS	5.422**	1.449 NS	0.694 NS
۲. ۲	Shoreward or Seaward of Bar Grast (Bar Pos.)	<u>l</u>	0.122 NS	14.561**	3.433 NS	8.140*
	River Stage - Tiće	1	3.726 NS	31.547**	5.399*	6.743*
	River Stage - Sea State	1	0.011 NS	5.039*	1.232 NS	3.606 NS
aet loor	River Stage - Line Number	3	0.979 NS	0.872 <u>NS</u>	1.405 NS	0.162 NS
	River Stage - Bar Position	1	0.939 NS	21.568**	5.367*	0.202 NS
Inter	Tide - Sea State	1	0.668 NS	0.959 NS	0.859 NS	0.611 NS
1	Tide - Line Number	3	0.066 NS	0.716 NS	0.888 NS	2.787*
Parel	Tide - Bar Position	1	0.983 NS	3.459 NS	0.008 NS	0.050 NS
ri.	Sea State - Line Number	3	1.982 NS	5.139*	1.533 NS	3.830*
	Sea State - Bar Position	1	0.675 NS	1.383 NS	3.014 NS	3.580 NS
	Line Number - Bar Position	3	0.317 NS	0.217 NS	0.139 NS	0.561 NS
	<pre>9 Distance Seaward of Mouth (Linear)</pre>) 1	25.714**	2.859 NS	7.963**	0.398 NS

Error 111

Total

(Uncorrected) 138

** Significant at .01 level

* Significant at .05 level

NS Not significant

y Continuous variable

Table 22. Flow rates and average residence times per hydrologic unit of Barataria Bay, Louisiana, as shown in Figure 31 (Pike and Hacker, 1972, unpublished data).

Hydrologic Unit	Area <u>(mi²)</u>	Annual Average Flow of Fresh Water through the Hydrologic Unit (ft /day)	Average Resi- dence Time in the Hydrologic <u>Unit (years)</u>
I	92	0.4 x10 ⁶	53
II	120	0.6 x10 ⁶	48
III	219	1.0 x10 ⁶	50
Total	431	2.0×10^{6}	

.

Table 23. Median water temperature in °C at station 3017:PM, Barataria Bay, Louisiana (extracted from unpublished data, courtesy of B. Barrett of Louisiana Wild Life and Fisheries Commission, 1972).

	1962	1963	1964	1965	1966	1967	1968	1969	Average
Jan	12.1	11.1	12.3	16.3	11.9	13.6	12.3	12.8	12.8
Feb	16.1	10.5	13.6	14.3	13.2	14.0	10.6	14.0	13.3
Mar	15.6	18.5	17.1	16 .1	16.6	17.4	15.4	14.0	16.4
Apr	21.3	23.5	20.8	24.1	20.2	25.1	22.4	21.8	22.4
May	26.4	25.1	24.9	24.8	25.3	25.9	25.9	24.6	25.4
Jun	27.1	25.5	29.1	27.4	27.6	29.6	29.1	29.0	28.0
Jul	28.7	27.1	28.1	27.5	2 9. 2	28.5	29.4	2 9 .9	28.5
Aug	28.5	28.3	27.9	27.6	28.9	28.5	30.5	2 9. 4	28.7
Sep	27.2	26.1	27.5	26.6	27.6	26.6	27.9	27.9	27.2
Oct	24.6	22.2	20.7	22.4	22.5	21 .1	25.2	22.7	22.7
Nov	15.1	15.8	20.8	20.5	20.3	17.9	16.7	17.8	18.1
Dec	11 .9	8.2	16.8	14.0	14.5	16.4	13.5	16.4	14.0

Winter	(DJF)	-	13.4
Spring	(MAM)	-	21.4
Summer	(JJA)	-	28.4
Fall	(SON)	-	22.7

.

-

233

Surface water temperature (°C) and salinities (°/,.) 8 miles southeast of Grand Isle, Louisiana on drilling platform, and Eugene Island, Louisiana (C&GS publ. 31-1, 2nd edition, 1965 and 3rd edition, 1968). Table 24.

g	i s		Aler-	oviacia Prindina	ំនំ មហ		чи - 1		က် ချင်ပ လ. က လ	ကိုင်ကိုက္ ကိုင်ကိုက္	-1- 		-2.7
Mînûn			åap	33383	h S S S S		1		たいしょ	ന്നെ നന് ച ്ച്	~~		~
5	E.		ប៊ីតេ ព ហារ ២	NN855	8 8 8 9 8 9		6.9		555	1905.9% 1206-9	23.9		9-52 1
Maxim			2000 2000	288884 28884	å.		ŝ		<u>8888</u>	<u> </u>	22	:	₹
	1.:	_	8.0 0.0	00-400 000-00		0.7		_	200	0 H 0 1 H 4 4	2.5	5.6	
Mean	14 1			000000 000000	::	3-0 2			2002	11222	21.2	1.2	
-	4. 		0 0 0 0 0 0	র্পন্থন হকন্ট্রন্র্র্জ	e -i	8. 8.	-00-		-+0.000	00444	- 100 T- 7	- 9.0	
xem be	<u>а</u> Б		2222	40422 48 4 22	र्त्त २ न	.1 23	2251		0-00-7 - 700 0	4000-0	नन नन	5.6	40°~4
۵ ۲	F.		5.29		്ട്ട്ട്. ഹസ	1 18	9643 2823		ARRA nona	പരംഭശര വലലം പ	ਤਸ ਤੁਨ	n) H	44100
a per	36		ವಿಷನ	SN TSS	ਲੋ ਜ਼	ਜ਼	10.05		ระหว่า อากาอ	onone onone		м г-	999 1997
Now	j.		282.5	21.52	22	51	8573		9.99.99 9.99	22292	្ត័ទ្អ	11	2017 ~~~~~
1 A	j ë		22.5	21.5 221.5 221.7 221.7	21.2	22.6	1997		0000	00010 00114	m±	vi,	22999 70
066	ŧ٩.		9.45 2.52	22.55	24.3	25.0	20 21.9 18		22222	ಕೆ.ಬಿನೆನ ನಿಬನೆನ	21-5	3	ន្តភ្លំងង
1	t.º			00400 40900		а 1	5-9-0-N NC19-3		- 000 - 010-0	1.000	40	5	829 79.45
k ptem	ာ ရှိပ္	*	8.9.2		6.72	9.4.8	0.4 2027		29-2-9-9- 29-2-9-9-9-9-9-9-9-9-9-9-9-9-9	-9255 99.62 99.62	27.9	28:0	ಇ <u>ಲ್ಲಿ</u> ಇಇನನ
ľ	ب ج اع	С. о ђ , Г	446	N440N	νœ	6.9	50.00 00000	≾	ທີ່-1.⊣d	0000m	3.5	2.5	201 21 -
August	4. 26	aites SE	02 0 12 0 12 0 12 0 12 0 12 0 12 0 12 0	22222	17 51 17 51	5.2		LAND,	0	100100 100100	9.5	1-6	405-8
	er e	50	8686 5666 5676	20059N	28 28 28	53	9999	Ме Б	ស៊ីស៊ីស៊ីស៊ី លុខផ្ទៅលាំ	41-91-60 910000	413	e e	na chuir an
- Kinj	6	slattor	6 2 2 2 2 2 2 3 2 3 2 3 2 3 3 3 3 3 3 3	8.78F.8	7 20.	3 20.	69 69	EUGE	60'46' 90'46'	00000 00000	ທີ່ທີ່ ⊶o		부야 특성양격
	Ę,	nling	82,282	କ୍ଳକ୍ରିର୍	88	5	8858 		22222 22222	สิ่งสี่งั่ง	53	8 29	22223 22223
2	1	e) are	17-8 19-3 18-0	19.55 19.55 19.55	14.1 19.3	17.5	8855		0000	1993	00	-	
J.	de c	AND I	28.3 28.3 27.9	888888 9999 9999 9999 9999 9999 9999 9	28.2	28.2	NS20		ର ଅଭିନ୍ୟ	2.65	829	7°82	หลังจ
	10 S	5	001	8000 1000 1000 1000	12.4	16.5	8895 2007 2007		0044 440	00000 99900	- <u>-</u>	0.6	19 19 19 19 19 19 19 19 19 19 19 19 19 1
Maj	đuộ.		v.≠v. ∽r-⇒	0.428.8 N	52.5 52.5	х, 2	50.15 50.15		22 8 24 - 1 25 4	222225 293222	24-3	8. JIS	11.13
	ू इ. :		100	000 HM	°	7.6	ସିମ୍ମନ ପ୍ରିମ୍ବୁ		-100-L	000000	0.0	0.7	0.600
۱	a Έυ		- 297 - 297 - 297		1.1.	0,81	v.∩+ v.o v.o		0.6.1.1	1000-14 1000-14	1.05	. 1.03	ee Fringe
	Ĕ.		·정정 , 년년	សត្ថភ្លត្ត ស្រុកក្រុក	ର ଜୁନ	6 0	0-1-6-0 0-1-6-0		1-2-0 			L-3	400 C
farch	e Ben		61 0	25885 25885	- 9. -	.7 20	39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5.45	- 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12		1-1	សភាពីវី សុក្ ១០ភាគ
	E.		ំថ្មាញ	22222	ا يم ده	9 17	56233 7428			LINNOL FIRE CE	1 33 1 12 12 12 12 12 12 12 12 12 12 12 12 12	ni Li	400F
in an	35		1.25	22222	្លាន	3 20.	58 ST		് ചെച്ച് പ്രച്ച്	កុំដំខ្លាំង ៣៣២២២	i.ini ⊱	ר יי	2319 No.
Febr	Cop.		16.5	33333	15.1	91	29954			o nport		Ę	87.00
ŝ	Dras Jis		2013	0.0400	23.0	22.7	0.000 0.000 0.000		1	e insta Le recente		N. N	
Janu	Ê.		1499 1499 1499	1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900	16.1	16.2	국학 정말인데		100	o go y e ha e La serverte tit é	1 99 1 99	11.6	1200
Years			1944 1950 1950 1950 1950 1950	019994 99994 19994	1956	1.09.V	Mandraum Mean Max. Mean Min. Mindraum		1945-1949 	ાક, દિલ્લામ ગુરુદ્ધો દ્વારા તેમના દેવે છે છે ગુરુદ્ધ દેવે છે છે ગુરુદ્ધ દેવે છે છે	10540 -(1540) - (1.62 .644	Xesu	Matter Mater Max. Neen Max. Mater

Table 25.	Monthly tide levels	along the central	Louisiana	coast,
	1958-59 ^a (Chabreck,	1972).		

	Mean High	Mean Low Tído	Mean Water Level	Highest Individual Tide	Lowest Individual Tide
Month	<u>11de</u>		Feet		
January	. 39	35	.02	1.5	-2.0
February	. 56	26	.15	1.6	-1.8
March	.60	18	. 21	1.3	-1.5
April	.78	.09	.43	1.2	7
Mav	1.13	. 40	.76	2.4	7
June	1.19	.18	. 69	1.7	7
July	.83	06	. 39	1.5	-1.0
August	.83	.11	. 47	1.6	8
September	1.26	.69	.97	2.6	2
October	1.06	. 39	.72	1.8	5
November	.85	.07	.46	1.5	-2.1
December	. 37	62	12	1.4	-2.2
Annual	. 82	.04	.43	2.6	-2.2

^aFrom Chabreck and Hoffpauir, 1962.

-

Table 26. Normal astronomical tide characteristics: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

Maximum Astronomical Tide	2.5 Feet
Nean High Water	1.2 Feet
Mean Tide Level	0.8 Feet
Nean Low Water	0.2 Feet
Lowest Astronomical Tide	-0.8 Feet
Maximum Ranga	3.3.Feet
Mean Range	1.0 Feet

Table 27. Annual wave climate summary for coastal Louisiana (from Becker, 1972).

Way	7e	Di	irection Fr	om Which W	ave is Co	aing
H, ft	T, sec	E	SE	S	SN	Subtotals
3.0	4.5	13.4%	20.9%	7.5%	5.0%	46.8%
5.0	6.0	8.9%	20.6%	8.7%	7.6%	45.8%
7.0	7.0	1.2%	1.2%	0.8%	O	3.2%
8.5	8.0	1.4%	0.5%	1.5%	0.8%	4.2%
 Subtotals		24.9%	43.2%	18.5%	13.4%	100.0%

*The percentages cited are relative to portion of time during the year when wind velocities exceed 10 km/hr. Winds >10 km/hr prevail during 43.3 percent of the year on the average. Table 28.1-year storm tide and wave characteristics: Grand Isle,
Block 46: Offshore Louisiana: 110 foot mean low water
depth (Glenn, 1972).

Mean Low Water Depth	110.0	Ft.
Maximum Astronomical Tide	2.5	Ft.
Storm Tide	0.8	Ft.
Total Tide	3.3	Ft.
Still Water Depth	113,3	Ft.
Height of Maximum Wave	26.6	Ft.
Period of Maximum Wave	9.3	Sec.
Length of Maximum Wave	431.2	Ft.
Crest Elevation of Maximum Wave Above Bottom	128.3	Ft.
Trough Elevation of Maximum Wave Above Bottom	101.7	Ft.

Table 29. 5-year storm tide and wave characteristics: Grand Isle, Flock 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

-

Mean Low Water Depth	110.0 Ft.
Maximum Astronomical Tide	2.5 Ft.
Storm Tide	1.1 Ft.
Total Tide	3.6 Ft.
Still Water Depth	113.6 Ft.
Height of Maximum Wave	34.5 Ft.
Period of Maximum Wave	10.8 Sec.
Length of Maximum Wave	548.7 Ft.
Crest Elevation of Maximum Wave Above Bottom	133.7 Ft.
Trough Elevation of Maximum Wave Above Bottom	99.2 Ft.

.

Table 30. 10-year storm tide and wave characteristics: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

Mean Low Water Depth	110.0	Ft,
Maximum Astronomical Tide	2.5	Ft.
Storm Tide	1.4	Ft.
Total Tide	3.9	Ft.
Still Water Depth	113.9	Ft.
Height of Maximum Wave	38.8	Ft.
Period of Maximum Wave	12.4	Sec
Length of Maximum Wave	658.3	Ft.
Crest Elevation of Maximum Wave Above Botton	137.2	ft.
Trough Elevation of Maximum Wave Above Bottom	98.4	Ft,

Table 31. 25-year storm tide and wave characteristics: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

Mean Low Water Depth	110.0	Ft.
Maximum Astronomical Tide	2,5	Fc.
Storm Tide	2.2	Ft.
Total Tide	4.7	Ŧ٤.
Still Water Depth	114.7	Ft.
Height of Maximum Wave	45.6	Ft.
Period of Maximum Wave	13.4	Sec
Length of Maximum Wave	769.5	Fc.
Crest Elevation of Maximum Wave Above Bottom	143.2	۲ ٤.
Trough Elevation of Maximum Wave Above Bottom	97.6	Ft.

-

Table 32. 50-year storm tide and wave characteristics: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

Mean Low Water Depth	110.0 Ft.
Maximum Astronomical Tide	2.5 Ft.
Storm Tide	3.0 Ft.
Total Tide	5.5 Ft.
Still Water Depth	115.5 Ft.
Height of Maximum Wave	51.6 Ft.
Period of Maximum Wave	15.3 Sec.
Length of Maximum Wave	906.9 Ft.
Crest Elevation of Maximum Wave Above Bottom	150.2 Ft.
Trough Elevation of Maximum Wave Above Bottom	98.6 Ft.

Table 33. 100-year storm tide and wave characteristics: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth (Glenn, 1972).

-

Mean Low Water Depth	110.0 Ft.
Maximum Astronomical Tide	2,5 Ft.
Storm Tide.	3.6 Ft.
Total Tide	6.1 Ft.
Still Water Depth	116.1 Ft.
Height of Maximum Wave	54.3 Ft.
Period of Maximum Wave	16.0 Sec.
Length of Maximum Wave	967.0 Ft.
Crest Elevation of Maximum Wave Above Bottom	153.6 Ft.
Trough Elevation of Maximum Wave Above Bottom	99.3 Ft.

Table 34. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth: Annual (Glenn, 1972).

Direction	0-1.9	Si 2-3.9	gnifica 4-5.9	nt Wave 6-7.9	Height 8-9.9	Groups 10-15	(Ft.) 15 Plus	Total
N	1.5	2.7	2.1	1.5	0.7	0.2	0,0	8,7
NE	2.9	5.8	4.6	2.9	1.2	0.5	0.1	18,0
E	2.5	5,2	4.1	2.7	1,4	1.1	0,3	17,3
SE	2.5	5,3	5.4	3.9	2.0	1.7	0.3	21.1
S	2.1	4.5	3.6	2.3	1.1	0.7	0.2	14.5
SW	1.9	3.5	1.8	1.0	0.5	0.2	0.0	8.9
V	1.6	2.3	1.1	0.6	0.2	0.1	0.0	5.9
NW	1.7	2.1	1.1	0.5	0.2	0.0	0.0	5.6
Total	16.7	31,4	23.8	15.4	7.3	4.5	0.9	100.0

Table 35. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth: April (Glenn, 1972).

Direction	0-1.9	Si; 2-3.9	gnifica 4-5.9	nt Wave 6-7.9	Height 8-9.9	Groups 10-15	(Ft.) 15 Plus	Total
N	1.0	2.0	1.8	1.2	0.4	0.1	0.0	6.5
NE	1.6	4.7	3.3	1.7	0.4	0.1	0.0	11.8
E	1.9	3.8	3.6	2.3	0.8	0.3	0.1	12.8
SE	3.3	6.3	10.6	6.7	3.6	1.9	0,2	32.6
S	2.0	4.8	6.5	4.4	2.1	1.1	0.1	21.0
SH	0.8	·1.5	1.7	1.2	0,4	0.2	0.0	5.8
W	0.7	1.4	1.1	0.7	0.2	0.1	0.0	4.2
NW	1.3	2.4	1.1	0.4	0.1	0.0	0.0	5.3
Total	12.6	26.9	29.7	18.6	8.0	3.8	0.4	100.0

Table 36. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth: July (Glenn, 1972).

Direction	0-1.9	Si 2-3.9	gnifica 4-5.9	at Wave 6-7.9	Height 8-9.9	Groups 10-15	(Ft.) 15 Plus	Total
21	1.1	0.7	0.2	0.0	0.0	0.0	0,0	2.0
NE	1,2	1.3	0.4	0.1	0.0	0.0	0.0	3.0
E	2.8	2.9	1.1	0.3	0,1	0.0	0.0	7,2
SE	4.9	8.9	2.9	1.0	0.3	0.1	0.0	18.1
S	5.9	10.9	3.7	1.2	0.6	0.1	0.0	22.4
SW	7.0	12.9	4.3	1.4	0.5	0.1	0.0	2 6,2
¥.	5.3	7.4	2.0	0.6	0.1	0.0	0.0	15.4
277	2.9	2.1	0.6	0.1	0.0	0.0	0.0	5.7
Total	31.1	47.1	15.2	4.7	1.6	0.3	0.0	100.0

-

Table 37. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore, Louisiana: 110 foot mean low water depth: September (Glenn, 1972).

Direction	0-1.9	S1 2-3.9	gnifica 4-5.9	nt Wave 6-7.9	Height 8-9.9	Groups 10-15	(Ft.) 15 Plus	Total
N	1.5	2.2	1.3	0.8	0.4	0.1	0.0	6.3
NE	4.1	6.5	5.3	3.2	1.3	0.5	0.1	21.0
Ē	4.4	7.9	6,1	4.5	1.8	1.6	0.5	26.8
SE	2.4	5.4	6.1	4.7	2.0	2.1	0.8	23.5
S	1.1	2.5	2.7	2.1	1.0	0.9	0.3	10,6
SW	0.9	1.2	1.1	0.8	0.4	0.1	0.0	4.5
W	1.1	1.1	1.0	0.7	0.2	0.0	0.0	4.1
NW	1.2	1.4	0.5	0.1	0.0	0.0	0.0	3.2
Total	16.7	28.2	24.1	16.9	7.1	5.3	1.7	100.0

,

Table 38. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore Louisiana: 110 foot mean low water depth: October (Glenn, 1972).

Direction	0-1.9	Si 2-3.9	gnifica 4-5.9	nt Wave 6-7.9	Height 8-9.9	Groups 10-15	(Ft.) 15 Plus	Total
N	2.3	4.0	3.0	1.9	0.7	0.1	0.0	12.0
NE	4.8	10.0	7.8	4.3	1.7	0.8	0.1	29.5
Е	2.5	7.0	5.8	4.0	2.5	1.9	0.5	24.2
SE	1.2	3.2	4.0	3.4	1.9	2.1	-0.4	16.2
S	1.0	2.1	2.3	1.4	0.6	0.3	0.1	7.8
SW	0.5	0.7	0.7	0.4	0.2	0.1	0.0	2.6
W	0.6	0.8	0.7	0.4	0.1	0.0	0.0	2.6
NW	1.2	2.5	0.9	0.4	0.1	0.0	0.0	5.1
Total	14.1	30,3	25.2	16.2	7.8	5.3	1.1	100.0

Table 39. Average percentage frequency of occurrence of significant wave height - direction groups: Grand Isle, Block 46: Offshore, Louisiana: 110 foot mean low water depth: December (Glenn, 1972).

Direction	0-1.9	Si 2-3.9	gnifica: 4~5.9	nt Wave 6-7.9	Height 8-9 .9	Groups 10-15	(Ft.) 15 Plus	Total
N	1.5	4.5	4.1	3,6	2.1	0.7	0.1	• 16.6
NE	2.6	6.7	6.2	5.4	2.7	1.0	0.1	24.7
E	1.2	4.4	3.7	2.6	1.7	1.6	0.3	15.5
SE	0.7	2.6	3.6	3.1	2.2	2.6	0.4	15.2
S	0.6	2.1	2.7	2.3	1.6	1.1	0.3	10.7
SW	0.4	1.1	1.3	1.1	0.8	0.5	0.1	5.3
W	0,4	0.8	0.9	0.6	0.4	0.2	0.1	3.4
N70	1.7	2.1	2.3	1.7	0.7	0.1	0.0	8.6
Total	9.1	24.3	24,8	20.4	12.2	7.8	1.4	100.0

Table 40. Intensity of offshore waves for coastal Louisiana (from Becker, 1972).

Month 	Deep-Water Power	Month	Deep-Water Power	
January	358	July	134	
February	298	August	64	
March	477	September	305	
April	191	October	190	
Мау	167	November	329	
June	24	December	269	

Table 41. A. Variables selected for study of Louisiana coastal fisheries for 1962 through 1969. B. Treatment of variables by category of relationships (Stone, 1972).

Α.

	VARIABLE	UNIT AS A MONTHLY MEAN	SOURCE*
No.	Name		
l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 9	<pre>Mississippi River Discharge Tide Range, Mobile, Ala., Predicted Tide Range, Eugene Island, La. Tide Range, Humble Oil Platform, La. Tide Range, Bayou Rigaud, La. Tide Currents, Mobile, Ala., Predicted Sea Level, Eugene Island, La. Sea Level, Eugene Island, La. Sea Level, Humble Oil Platform, La. Sea Level, Bayou Rigaud, La. Wind Direction, South Central La. Wind Speed, South Central La. Air Temperature, Mean °F, South Central La. Air Temperature, °F, Departure from Mean, South Central La Air Degree Hours ≥ 65°F, Negative Departure Rainfall, Mean Inches, South Central La. Mater Temperature from Mean, South Central La. Water Temperature Median, °C at 3017 PM:11 Number of Hours Sater Temperature ≥ 20°C at 3017 PM:11 Wind Direction & Speed, Grand Isle, La. Fish Harvest Oft Louisiana</pre>	cubic feet/second feet feet feet feet feet feet feet fee	Army Corps Tide Tables NOAA NOAA Tide Currents NOAA NOAA NOAA Clim. Clim. Clim. Clim. Clim. Clim. Clim. Lim. LWLF LWLF LWLF LWLF La. Landings
B. No. 1 Linear Curvil Intera	<pre>through No. 19 are defined as independent variables and y 1 r Relationships: X₁ through X₁₉ linear Relationships: X₁₂, X₁₃, X₁₄, X₁₅, X₁₆, X₁₇, and X₁₈ actions: X₂ through X₅ respectively with X₆, X₇, X₈, X₉, X₁₀ X₁₀, X₁₁ and X₁₉ respectively with X₁₂, X₁₃, X₁₄, a X₁₅ and X₁₆ respectively with X₁₀, X₁₁, and X₁₉ (nu Corps: U.S. Army Corps of Engineers. "Stages and Dischar;"</pre>	s defined as the dependent varia (numbered No. 20 through No. 26) , χ_{11} , and χ_{19} (numbered No. 27 ad χ_{17} (numbered No. 55 through mbered No. 67 through No. 72) ges, Mississippi River and Its (0	uble, through No, 54) No, 66) utlets and
Tide	Tributaries." U.S. Army Engineer District, New Or. Tables: U.S. Coast and Geodetic Survey. "Tide Tables, Hi	gh and Low Water Predictions."	U.S.

Government Printing Office, Washington, D.C., 1962 through 1969. Data furnished by U.S. Department of Commerce, National Oceanic and Atmospheric Administration,

National Ocean Survey. Rockville, Maryland 20852 Tide Currents: U.S. Coast and Geodetic Survey. "Tidal Current Tables." U.S. Government Printing Office,

Washington, D.C. 1962 through 1969. "Climatological Data." U.S. Department of Commerce, Environmental Science Service Administration, Unimatorogical bata. 0.5. Department of commerce, invironmental science service Administration Environmental Data Service, Louisiana, 1962-1969, Ashville, N. Carolina.
 Louisiana Wild Life and Fisheries Data, X₁₇ derived from X₁₈ from station in Barataria Bay, La.
 La. Landings: National Marine Fisheries Service, in conjunction with the Louisiana Wild Life and Fisheries Commission. Louisiana Landings. Washington, D.C. 1962-1969.

Table 42. Analyses of variance for Louisiana's coastal fishery, 1962-1969, using 72 variables for straight forward regression and correlations between observed and predicted data (Stone, 1972).

Source	Degrees of Freedom	Sums of Squares	Mean Square
Regression	72	396,489,101,160	5,506,793,072
Error	22	13,648,769,024	620,398,592
Corrected Total	94	410,137,870,185	
F Value	Pr	obability, F	R-Square
8.9		0.0001	0.97
Correlation Coefficien	ts (Between ob at p = 0.0	served and predicted	fishery hartest
All Data		0.95	
May through September		0.93	
April through Septembe	r	0.96	
April through October		0.96	
October through March		0.54	
October through April		0.57	

Table	43.	Sig har ste Sta	nif ves pwi tis	ic st se	ant off rep cal	va Lo gre An	riable uisia ssion alysi:	es* a na, l usín s Sys	nd 962 g (tem	the th A) (S	eir Trou Gen SAS)	R-s igh iers pi	squ 19 11 12	are 969, 3 Foods grams	values as ide s (GF) (Stor	s for fis entified) and (B) ne, 1972)	sheries by
	NTIVE R-SQUARE**			0.75	0.81 0.83	0.85	0.86 0.87			0.75	0.81	0.84	0.86	La. 0.87		the previous variable. 81% of the data	
	CUMUL													tform,		ach of t for	
			ſ	t 3017 PM:11) ²	re <u>></u> 20°C at 3017 PM:11	c	from Mean, South Central La.) ² La.			t 3017 PM:11) ²	: 3017 PM:11 A Contral La /2	i from Mean, South Central La.) ²	•	cted x Sea Level, Humble Oil Plat		s a summation of the effect of ea lo. 25 and variable No. 18 account	
	VARIABLE	. GF Program	o. Name	5 (Water Temperature, Median °C a	8 Number of Hours Water Temperatu	l Mississioni River Discharge	l (Air Temperature, °F, Departure 8 Sea Level, Humble Oil Platform,	. SAS Program	o. Name	5 (Water Temperature, Median °C a	7 Water Temperature, Median °C at	1 (Air Temperature, "F, Departure	7 Sea Level, Eugene Island, La.	9 Tide Range, Mobile, Ala., Predi	*For A, p $\stackrel{<}{\sim}$ 0.05 and for B, p = 0.0001	*Each cumulative R-square value implic Under part A, for example, variable N variance, etc.	
		×.	ž	2	щ.		5	ä	ž	Ň	H C	1		3	-	×	

Marsh	Vegetative Types								
Zones	Saline	Brackish	Intermediate	Fresh	Total				
		T	nousands of Ad	res					
Chenier									
Plain	47.3	364.9	354.6	425.1	1,191.9				
Sub-delta	868.5	907.0	224.9	744.9	2,745.3				
Active									
Delta	15.6	23.1	106.8	129.4	274.9				
Total	931.4	1,295.0	686.3	1,299.4	4,212.1				

.

Table 45A. Plant species composition of vegetative types in the Louisiana coastal marshes (Chabreck, 1972).

	Vegetative Type									
Species	Saline	Brackish	Intermodiate	Fresh						
			Percent							
· · · · · · · · · · · · · · · · · · ·	- -	. 10	.30	. 02						
Acnida alabamensis				. 67						
Aeschynomene virginica		- -	2.47	5.34						
Alternanthera philoxetoides		.08	.44	. 13						
Aster sp.	60									
Avicennia mitida	.00			.13						
Azolla caroliniana		10	.56	. 02						
Baccharis halimifolia			.28	.34						
Bacepa caroliniana		63	4.75	1.14						
Bacopa monnieri		11	. 32							
Bacepa retundifolia		• • •								
Batis maritima	4.41	• •		.08						
Bidens laevis										
Borrichia frutescens	.67		- -	. 57						
Brasenia schreberi				.71						
Calena caroliniana				02						
Caran sp.			16	.12						
Centella crecta			* 10	21						
Cephalanthus occidentalis				1 50						
Cerctophyllum demersum				 GA						
Cledium jensicense				.0-						
Colocasia antiquorum										
Cuscuta indecora		.02								
Cumodon dactylop				. 10						
Cycorus compressus				.02						
Cyceros compressos		.84	2.18	:						
Daubantonia fevanz			.0-	. 17						
Deciden verticillatus			• •	.51						
Decouver colorata				.03						
	14.27	13.32	.36	. 13						
Discounts spicaca										
pryopletis cherypteris				, 44						
var. Exilent and Ford		.36	2.72	. 77						
Echinochica Walceri				1.43						
Elchornia crassipes	- -	2.46	.49	. 54						
Eleccharis parvuta		. 62	3.28	10.74						
Eleccharis sp.				. 05						
Eupstorium capilintolium		. .	.08	. 03						
Eupatorium sp.		11	. 12							
Fimbristylis castanea	.04	. 68								
Gerardia maritima	.01	02		· • •						
Reliotropium curassavicum			. 10	.05						
Hibiscus lasiocarpus				. 02						
Hydrocotyle bonariensis				.11						
Hydrocotyle ranunculoides			. .	1.93						
Hydrocotyle umbellata			. 04	.14						
Hymenocallis occidentalis				.07						
Hypericum virginicum				03						
Ipomoea scolonifera										

.

.

	Vegetative_Type						
Species	Saline	Brackish	Intermediate	Fresh			
			Percent				
Ipomoea sagittata		. 13	.84	-19			
Iva frutescens	. 03	. 10					
Juncus effusus				- 11			
Juncus roemerianus	10.10	3,93	. 72	. 60			
Jussiaea diffusa			• -	.74			
Jussiaea sp.				.84			
Kosteletzkya vírgínica	••	. 02	.18	.07			
Lemna minor	· ·	. 02	. 16	2.31			
Leptochloa fascicularis		.32	2.17	.49			
Leptochloa filiformis			.04				
Limnobium spongia				16			
Lippia nodiflora				.06			
Lycium carolinianum	.07						
Lythrum lineare	.01	.16	. 18	07			
Myrica cerifera				16			
Myriophyllum spicatum		. 15	. 44	1 56			
Myriophyllum heterophyllum				19			
Najas quadalupensis		· ·	1.03	1 07			
Nelumbo lutea				54			
Ny⊐phasa odorata/tuberosa				1 15			
Nymphoides aquaticum				11			
Osmunda regalis			16				
Ottelia alismoides				.45			
Panicum hemitemen			.76	25 62			
Panicum repens			.92	22.01			
Panicum virgatum		. 14	2.51	.2.			
Panicum sp.				10			
Paspalum dissectum			40	.10			
Paspalum veginatum	• -	1.38	4 46	35			
chilexerus vermicularis			08				
Phragmites communis		. 31	6 63	2 54			
luchea foetida			0.05	2.04			
luchea camphorata		87	2 26	. 02			
clyzenum sp.			2.20				
ontederia cordata				. 20			
otamogeton nodosus			28	.07			
ctemozeton pusillus			.20	.03			
uppia maritima		3 63	. 24	. 62			
acciolegis striata		5.05	.04				
agittaria falrara			 	.06			
azittaria latifolia			0.4/	15.15			
saittaria platyphylla			* -	.21			
avittaria en				.23			
alicorpia bivelovii	11		, vð				
alicornia virginica	67		* -				
alix niora	.03						
AUTUTUS CATOLUS				.06			
cirpus americanus				.16			
cirnus californicus			1.27	.13			
cirpus carrornicus		1 07	1.83	.42			
cirpus webucht		4.9/	3.25	.45			
cilpus robustus	.65	1.78	. 58				

Table 45B. Plant species composition of vegetative types in the Louisiana coastal marshes (Chabreck, 1972).

Table 45C. Plant species composition of vegetative types in the Louisiana coastal marshes (Chabreck, 1972).

	Vegetative Type							
Species	Saline	Brackish	larermediate	Fresh				
		Percent						
Scirous validus		.08	- -					
Sechania evaltata		.06	.20					
Securice nortulacastrum	. -	.04	• -					
Separia glauca	. .	.06						
Seconda manag		- -		.03				
Colidero en			.04	.08				
Consting alterniflora	62.14	4.77	. 86					
Station arecentides		.89	1.19	. 02				
Sparting Charlend	5 99	55.22	34.01	3.74				
Sparting patens	01	. 04	1.48					
Startina sparcingae				.20				
Spiroceli polyrnize	- 							
Survea linearis	.20		02					
Darimatum officinale				.02				
lancéium distichum	- -		ng	1 57				
Tyşta sep.	• •		. 55	1 62				
Utricularia cornuta				1.00				
Coricularia subulata				. 4 1				
Vallisneria americana		.08						
Vites recens		1.20	3.84	1.43				
Versuersia virginica			- •	.28				
Zfachionsis miliacea				1.20				

	Vegetative Types						
<u>Species</u>	Brackish	Intermediate	Fresh				
Alternanthera philoxeroides			a,c,d				
<u>Bacopa monnieri</u>		a					
<u>Ceratophyllum</u> <u>demersum</u>			d				
<u>Distichlis spicata</u>	a,c,d						
<u>Eichornia</u> crassipes			a,d				
Juncus roemerianus	đ						
Lemna minor			a,c				
<u>Myriophyllum spicatum</u>			a				
Panicum repens		a					
Phragmites communis	a,d	a,b,c,d	a,b,c,d				
Scirpus americanus		c,d					
Scirpus robustus	a						
Spartina alterniflora	a,c,d	a,c,d					
Typha <u>latifolia</u>		c	c,d				

Reported by:

÷

(a) This report (Tables 12, 13, and 14).
(b) Brown (1936)
(c) Lloyd and Tracy (1901)
(d) O'Nei1 (1949)

	Vegetative Types								
Species	Saline	Brackish	Intermediate	Fresh					
Alternanthera philoxeroides				đ,h					
<u>Avicennia nitida</u>	b,g,j								
<u>Cladium jamaicense</u>			h,j	d,h					
<u>Distichlis</u> spicata	a,b,g,h,j	a,f,i,j							
Juncus roemerianus	a,b,d,g,h,j	a,c,i,j							
Panicum hemitomon				a,d,h					
<u>Sagittaria</u> <u>falcata</u>			а	a,j					
<u>Scirpus californicus</u>			j	h,j					
Scirpus olneyi		c,e,f,g,h,i							
<u>Spartina</u> <u>alterniflora</u>	a,d,g,h,j								
<u>Spartina</u> <u>cynosuroides</u>		f,i,j	а						
<u>Spartina</u> patens	a,b,d,h	a,c,e,f,g,h,i,	j						
Typha latifolia				d,h,j					
Vigna repens		g	a						

Table 47.	Published reports of major plant species of vegetativ types within the inactive delta marsh zone (Chabreck, 1970).
	17/07-

Sources of information:

(a) This report (Tables 11, 12, 13, and 14)
(b) Brown (1936)
(c) Chabreck and Hoffpauir (1962)
(d) Eggler (1961)
(e) Harris and Chabreck (1958)
(f) Harris and Webert (1962)
(g) Lemaire (1961)
(h) O'Neil (1949)
(i) Orton (1959)
(j) Penfound and Hathaway (1938)

		Hydrologic Unit								
Type of Area	. I	II	III	IV	V					
Marshes:			- Acres							
Natural marsh De-watered marsh	261,198 18,300	143,850 2,373	81,738 	469,311 27,748	583,101 18,226					
Water Bodies:										
Ponds and Lakes Bays and Sounds Bayous and Rivers Canals and Ditches	603,306 1,019,066 26,040 9,234	49,517 212,260 5,888 7,075	95,391 122,625 17,004 12,476	292,056 108,841 43,795 5,198	228,390 320,082 16,965 9,365					
Swamp			÷	15,419	22,853					
Dry Land ^a	263,835	27,108	27,234	327,428	202,172					
Total	2,200,979	448,071	356,468	1,289,796	1,401,154					

Table 48. Acreages of the subdivision of hydrologic units of the Louisiana coastal marshes, August, 1968 (Chabreck, 1970).

.

		Hydrologic	Unit	
VI	VII	VIII	IX	Total
		- Acres		
40,554 	271,087 4,511	396,353 54,773	212,362 39,858	2,459,554 165,789
20,825 64,668 3,288 1,095	33,904 332,127 4,781 5,328	230,747 4,174 3,849	228,552 3,262 3,855	1,782,688 2,179,669 125,197 57,475
21,920	8,256			68,448
4,383	54,204	26,456	51,746	984,566
156,733	714,198	716,352	539,635	7,823,38
	VI 40,554 20,825 64,668 3,288 1,095 21,920 4,383 156,733	VI VII 40,554 271,087 4,511 20,825 33,904 64,668 332,127 3,288 4,781 1,095 5,328 21,920 8,256 4,383 54,204 156,733 714,198	HydrologicVIVIIVIIIAcres40,554271,087396,3534,51154,77320,82533,904230,74764,668332,1273,2884,7814,1741,0955,3283,84921,9208,2564,38354,20426,456156,733714,198716,352	Hydrologic Unit VI VII IX 40,554 271,087 396,353 212,362 4,511 54,773 39,858 20,825 33,904 230,747 228,552 64,668 332,127 3,288 4,781 4,174 3,262 1,095 5,328 3,849 3,855 21,920 8,256 4,383 54,204 26,456 51,746 156,733 714,198 716,352 539,635

^aincludes active beaches, cheniers, spoil deposits, ridges and elevated bayou and lake banks.

Table 49. Acreages of subdivisions of vegetative types in hydrologic unit III of the Louisiana coastal marshes, August, 1968 (from Chabreck, 1970).

	Vegetative Type								
Type of Area	Saline	Brackish	Intermediate	Fresh	Non-marsh				
			Acres						
Marshes:									
Natural marsh		17,039	36,324	28,375					
De-watered marsh									
Water Bodies:									
Ponds and lakes		10,231	10,231	74,929					
Bays and sounds	11,336	85,160	18,180	7,949					
Bayous and rivers		1,141	4,427	11,336					
Canals and ditches		4,527	4, 527	3,422					
Swamp									
Dry Land ^a					27,234				
TOTAL	11,336	118,098	73,78 9	126,011	27,234				

^aIncludes active beaches, chemiers, spoil deposits, ridges and elevated bayou and lake banks.

Table 50.	Acreage of subdivisions of vegetative types in hydrologic
	unit IV of the Louisiana coastal marshes, August, 1968 (Chabreck, 1970).

	Veretetive Tupe					
Type of Area	Saline	Brackish	Intermediate	Fresh	Non-marsh	
			Acres			
Marshes:						
Natural marsh De-watered marsh	144,214	125,296	20,084	179,717	 27,748	
Water Bodies:						
Ponds and lakes Eays and sounds Bayous and rivers Canals and ditches	61,547 108,841 14,253 2,332	96,920 11,791 1,166	3,498 3,498 200	130,091 14,253 1,500	 	
Swamp					15,419	
Dry Land ^a		- -	~ -	- ÷	327,428	
TOTAL	331,187	235,173	27,280	325,561	370,595	

^aIncludes active beaches, chemiers, spoil deposits, ridges and elevated bayou and lake banks.

Table 51. Acreage of subdivisions of vegetative types in hydrologic unit V of the Louisiana coastal marshes, August, 1968 (Chabreck, 1970).

	Vegetative Type				
Type of Area	Saline	Brackish	Intermediate	Fresh	Non-marsh
			- Acres		
Marshes:					
Natural marsh	184,086	135,996	37,714	225,305	
De-watered marsh				- -	18,226
Water Bodies:					
Ponds and lakes	99,403	68,559	4,487	55,941	
Bays and sounds	268,768	39,958	11,356		
Bayous and rivers	7,992	5,608	1,122	2,243	
Canals and ditches	1,122	2,243	1,200	4,800	
Swamp	÷ -				22,853
Dry Land ^a					202,172
TOTAL	561,371	252,364	55,879	288,289	243,251

^aIncludes active beaches, cheniers, spoil deposits, ridges and elevated bayou and lake banks.

	Vegetative Types			
Species	Saline	Brackish	Intermediate	Fresh
•••••••••••••••••••••••••••••••••••••••		Per	cent	
<u>Alternanthera</u> philoxeroides			2.60	8.69
Bacopa monnieri			10.41	
<u>Cyperus</u> <u>odoratus</u>				
<u>Distichlis spicata</u>		8.54		
<u>Echinochloa walteri</u>			1.49	
Eichornia crassipes				5.53
<u>Eleocharis parvula</u>		2.85		
Eleocharis sp.	· <u> </u>		3.12	
Lemna minor				7.85
<u>Mvriophyllum</u> spicatum		-	4.09	25.29
Panicum hemitomon	-`-		2.97	
Panicum repens			8.55	3.95
Phragmites communis		10.82	43.64	37.30
<u>Pluchea camphorata</u>			2.16	
<u>Potamogeton pusillus</u>			1.49	2.90
<u>Ruppia maritima</u>			1.49	
<u>Sagittaria falcata</u>		, – –	4.09	
<u>Sagittaria pletyphylla</u>				3.69
Saururus cermais				2.11
Scirpus americanus		 .	3.72	
Scirpus robustus		7.5 9		
<u>Scirpus validus</u>		3.79		

Table 52. Plant species composition of vegetative types in hydrologic unit III of the Louisiana coastal marshes, August, 1968^a (Chabreck, 1970).

Table 52. (con't)

Species	Saline	Brackish	Intermediate	Fresh		
	Percent					
<u>Spartina</u> <u>alterniflora</u>		58.44	6.17			
<u>Spartina patens</u>		6.64	1.49			
<u>Spirodela polyrhiza</u>				2.69		
Other Species ^b		1.33	2.52			

^aIncludes only natural marshes

^bIncludes only plants making up less than 1.00 percent of the species composition
	Vegetative Types						
Species	Saline	Brackish	Intermediate	Fresh			
		P	ercent				
Alternanthera philoxeroides				3.43			
<u>Bacopa monnieri</u>			23.97	1.82			
<u>Batis</u> maritima	3.08						
Cyperus odoratus			5.34	3.21			
<u>Decodon</u> verticillatus	- -			1.16			
<u>Distichlis spicata</u>	10.05	28.96	3.05				
<u>Echinochloa</u> walteri				2.15			
Eichornia crassipes				1.99			
Eleocharis parvula		5.49					
Eleocharis sp.		1.40	2.29	12.31			
Ipomoea sagittata			1.53	<u> </u>			
Juncus roemerianus	14.90	3.26					
Panicum hemitomon				41.35			
Pluchea camphorata			16.79				
<u>Polygonum</u> sp.				1.60			
<u>Sagittaria</u> <u>falcata</u>			3.82	17.42			
Salicornia virginica	1.19						
<u>Scirpus olneyi</u>		2.26	÷ -	1.48			
Spartina alterniflora	62.79	9.03					
Spartina patens	7.77	45.84	41.99				
Typha spp.				2,59			
Vigna repens				1.16			
Zizaniopsis miliaceae	÷ =			1.36			

Table 53. Plant species composition of vegetative types in hydrologic unit IV of the Louisiana coastal marshes, August, 1968^a (Chabreck, 1970).

Table 53. (con't)

	Vegetative Types					
Spacies	Saline	Brackish	Intermediate	Fresh		
······································			Percent			
Other Species ^b	.22	3.76	1.22	6.97		

^aIncludes only natural marshes

^bIncludes only plants making up less than 1.00 percent of the species composition

	Vegetative Types				
Species	Saline	Brackish	Fresh		
Alternanthera philoxeroides		P	ercent	2.42	
Aster sp.			1.12		
Avicennia nitida	1.52				
Bacopa monnieri	~ _		3.72	2.73	
<u>Batis maritima</u>	6.58				
Cyperus odoratus		2.31	2.98	1,92	
Decodon verticillatus				1.10	
<u>Distichlis</u> spicata	11.66	13.09	1.86		
Dryopteris thelypteris				1.43	
Echinochloa walteri			2,60		
<u>Eleocharis</u> sp.		1.93	1.27	18.03	
Hydrocotyle umbellata	· - -			4,32	
Ipomoea sagittata			1.12		
Juncus roemerianus	3.69				
Leptochloa <u>fascicularis</u>		~ -	9.23		
Najas quadalupensis			3.35		
Osmunda regalis		~ –	1.49		
Panicum hemitomon			4.09	42.17	
Paspalum vaginatum			2,98		
Phragmites communis			1.49		
Pluchea comphorata		• •	3.12	1.19	
Sagittaria falcata			2.45	7.67	
Scirpus olneyi		6.57	7.07		
Scirpus validus		1.50			

Table 54. Plant species composition of vegetative types in hydrologic unit V of the Louisiana coastal marshes, August 1968^a (Chabreck, 1970). Table 54. (con't)

	Vegetative Types						
Species	Saline	Brackish	Intermediate	Fresh			
		Pe	rcent				
Spartina alterniflora	67.73	2.08					
Spartina cynosuroides		1.13	- +				
Spartina patens	6.81	63,39	34.23	1.22			
Typha spp.			5,95	1.58			
Vigna repens		4.08	7.07	1.04			
Zizaniopsis miliaceae				3.18			
Other species ^b	2.01	3.92	2.81	10.00			

^aIncludes only natural marshes

^bIncludes only plants making up less than 1.00 percent of the species composition

Table 55. Partial list of the major primary producers in the Barataria Bay, Louisiana (Day et al., 1972).

Angiosperms	Bpiphytic diatoms	Benthic diatoms	Phytoplankton
Spartina alterniflora	Amphiprora	Amphora	Merismopedia
S. patens	Amphora	Denticula	Actinoptychus
Avicennia germina	A. angusta	Diploneis	Biddulphia
Distichlis spicata	Camphylodiscus	D. interrupta	Chaetoceros
Juncus roemerianus	Cocconeis	Gyrosigna	Coscinodiscus
Batis maritima	C. disculoides	Navicula directa	Ceratium fusus
Salicornia	C, disculus	Nitzschia	C. hircus
	C. placentula	Opephora	C. trichoceros
	Cylindrotheca fusiforma	Parelia	C, tripos
Benthic macrophytes	Denticula	Amphiprora	C. vultur
	Diploneis bombus	Caloneis	Dinophysis caudata
Enteromorpha flexuosa	Gyrosigna terryanum	Mastogloia	Gonyaulax monilata
E. intestinalis	Hantzschia	Pleurosigma	Peridinium
Ectocarpus	Navicula	Surirella	Prorocentrum gracile or micans
Bostrychia rivularis	Nitsschia	Cylindrotheca closterium	Prorocentrum maximum
Polysiphonia havanensia	N. paradoxa	-	Skeletonema
Ulva lactuca	Pleurosigna		Ditylum brightwellii
Gracilaria foliifera	Rhopalodia gibberula		Thalassionema
Cladophora repens or	Surirella amoricana		Cylindrotheca closterium
Cladophora gracilis	Grammatophora marina		Nitzschia pungens
	Melosira distans		Rhizosolenia
	Isthmia nervosa		
Benthic cyanophyta	Cylindrotheca closterium		

Oscillatoria Lyngbya Spirulina Chrocrococcus Merismopedia Anacystis

270

Table 56. Primary production in the Barataria Bay, Louisiana, in g dry wt/m²/year (Day et al., 1972).

	Production		Consumer Respiration	Community Net Production
MARSH	Gross	<u>net</u>	<u>heop210111</u>	
Grass: Streamside	14,000	2,960		
Inland (50 m)	9,750	1,484		
Average over marsh	8,418**	1,518**	754**	/64**
Epiphytes:				60
Streamside	103.9			-18.4
Inland (2 m)	27.3			10.,
Average (to 2 m)	32.2	25.8		
1.				764

Total:

	Produc	tion		Community Net
WATER	Gross	Net*	Respiration	Production
	598	418		
Benthic Plants	698	488		<u>_</u>
Nator Colump#			450	
Benthos and Nekton			798	
Total:	1296	906	1248	48

*Net production is less respiration of plants **Takes into consideration bare areas on marsh #Phytoplankton, zooplankton, and bacteria

271

PRODUCERS		Angiosperms Epiphytic diatoms Benthic Macrophytes Benthic diatoms Phytoplankton
CONSUMERS	March	
	Meisu	Bacteria, Fungae Meiofauna Snails Crabs Polychaetes Modiolus Insects Birds and manuals
	Submerged Sediments	Microbiota Meiobenthos
	Water	Bacteria Zooplankton Blue crabs Brown and white shrimp Oysters Fish Birds

Table 57. Components considered in the marsh-estuarine system (Day et al., 1972).

n ange

Table 58. Bacterial populations in various habitats of the marshestuarine system in Barataria Bay. Numbers are average over the year. From standard dilution and plate techniques (Day et al., 1972).

	% Moisture	# Cells/g dry wt or m1 H ₂ 0
Sparting - top		15.7×10^8
Spartina - mid portion	66	30.0×10^8
<u>Spartina</u> - bottom portion	94	30.0×10^9
Marshland soil	66	6.6 x 10 ⁸
Submerged sediment	73	4.8×10^{6}
Water		9.5 x 10^4

Organism	Dis shore	stance in 3m	nto Marsh 10m	from Wat	ters Edge 50m	300m	average biomass to 50 m
Polychaete	<u>.</u>						
Aug,	0	0	.1/22	.2/8	.4/36	.3/16	.4691
Oct.	.2/ 8	.22/20	0	.29/10	.36/20	0	.3364
Dec.	.69/40	.47/12	.07/4	0	0	0	.1250
							x = .31
<u>Neritina</u>							
Aug.	0	0	1.2/36	1.3/200	.8/20	0	.9743
Oct.	.07/4	0	1.4/28	1.6/52	.25/4	0	.9411
Dec.	0	.08/4	0	6.9/136	.4/8	0	2.8857
							x = 1.6
Sesarma							
Aug.	7.9/4	5.8/8	0	0	0	0	.8764
Oct.	0	3.6/3	4.2/8	.03/4	0	0	1.1251
Dec.	1.1/4	5.5/8	0	0	0	0	.4688
							$\overline{\mathbf{x}}$ = .8234
Fiddler							
Aug.	<u>3.0/</u> 8	14.8/20	4.7/8	1.8/4	0	0,	3.0107
Oct.	0	1.7/4	6.7/8	2.1/2	7.5/12	0	4.4743
Dec.	0	4.7/8	0	0	0	0	.6407
							x = 2.71
Blue Crab							
Aug.	0	0	0	0	0	0	0
Det.	0	2.75/8	0	.02/ 2	.016/4	0	.5783
Dec.	.0188/4	0	0	0	0	0	.005
							$\bar{x} = .1927$

Table 59.	Distribution	of marsh	fauna in	Airplane	Lake,	Louisiana
	(Day et al.,	1972).		•		

Table 59. (con't)

-

.

 ^ #*****							average
Organism	Dist	tance int	to Marsh	from Wate 20m	ers Edge 50m	300m	to 50 m
	shore	201	TAU				
<u>Littorina</u>							
Aug.	2,8/28	6.3/52	4.9/36	16.9/112	0	0	8.4394
Cct.	3.6/32	7.6/76	6.3/52	10.0/76	0	0	5.9991
Dec.	0	1.1/8	8.9/56	6.7/40	0	0	4.4067
							$\mathbf{\bar{x}} = 6.2817$
<u>Melampus</u>							
Aug.	1.2/316	3.6/688	4.1/444	1.3/208	6,1/1088	4 .3/ 680	3.5675
Oct.	1.1/112	2.4/497	1.6/216	0.4/108	1.4/284	.7/52	1.1724
Dec.	6 .2/ 68	3.3/600	1.6/176	.14/16	.07/28	0	.8751
							x̄ = 1.8716
<u>Modiolus</u>							
Aug.	0	3.6/64	6.6/148	0.6/24	2.0/80	0	2.3457
Oct.	.5/4	4.8/44	.9/12	6.3/64	3.4/72	0	4.3587
Dec.	1.4/36	9.5/40	3.3/16	3.0/20	0	0	2.3076
							$\bar{x} = 3.1706$

Table 59. (con't)

Organism	Dis	stance in 3m	to Marsh 10m	from Wat 20m	ers Edge	300m	average biomass to 50 m
	31101 (Jan .	<u>10iii</u>	2.041	Joint	100.12	
<u>Neritina</u>							
	0	0	0	0	.2/16		.3129
Sesarma							
	3.2/1	0	o	0	0		.1251
B : 1 12	2.~/4	~	0	0	0		•
Fiddler							
	3.2/20	34.9/80	11.7/20	5.6/16	1.3/4		8.5122
Littorina							
	3.6/40	2.9/40	13.3/148	9.8/80	13.5/88		10.3587
Valormua					•		
Merampus							
	.2/28	1.4/392	3.1/672	1.3/260	0.2/20		1.2100

Table 60. Check list of fishes of the Caminada Bay, Louisiana (Wagner, 1972).

Class Chondrichthyes Crder Squaliformes Carcharhinidae-Requiem Sharks <u>Rhizoprionodon terraenovae-Atlantic Sharpnose Shark</u> Carcharhinus leucas-Bull Shark

Order Rajiformes Dasyatidae-Stingrays <u>Dasyatis</u> <u>sabina</u>-Atlantic Stingray

Class Osteichthyes Order Semionotiformes Lepisosteidae-Gars <u>Lepisosteus</u> <u>oculatus</u>-Spotted Gar <u>Lepisosteus</u> <u>platystomus</u>-Shortnose Gar <u>Lepisosteus</u> <u>spatula</u>-Alligator Gar

Order Elopiformes Elopidae-Tarpons <u>Elops</u> <u>saurus</u>-Ladyfish

Order Anguilliformes Congridae-Conger Eels <u>Congrina</u> <u>flava</u>-Yellow Conger

Ophichthida=Snake-Eels Ophichthus gomesi-Shrimp Eel

Order Clupeiformes Clupeidae-Herrings <u>Alosa chrysochloris</u>-Skipjack Herring <u>Brevoortia patronus</u>-Gulf Menhaden <u>Dorosoma cepedianum</u>-Gizzard Shad <u>Dorosoma petenense</u>-Threadfin Shad <u>Harongula pensacolae</u>-Scaled Sardine <u>Coisthonema oglinum</u>-Atlantic Thread Herring <u>Sardinella anchovia</u>-Spanish Sardine

Engraulidae-Anchovies <u>Anchoa heusetus</u>-Striped Anchovy <u>Anchoa lyolepis</u>-Dusky Anchovy <u>Anchoa mitchilli</u>-Say Anchovy Table 60. (con't) Order Mycbophiformes Synodontidae-Lizardfishes Synodus foetens-Inshore Lizardfish Order Siluriformes Ariidae-Sea Catfishes Bagre marinus-Gafftopsail Catfish Arius felis-Sea Catfish Ictaluridae-Freshwater Catfishes Crder Satracholdiformes Catiish Batrachoididae-Toadfishes Opsanus beta-Gulf Toadfish Porichthys porosissimus-Atlantic Midshipman Order Gobiesociformes Gobiãsocidae-Clingfishes Gobiesox strumosus-Skilletfish Order Lophiiformes Antennariidae-Frogfishes Histrio histrio-Sar gassumfish Order Gadiformes Gadidae-Codfishes Urophycis floridanus-Southern Hake Cphidiidae-Cusk-Eels + Brotulas Leoophidium graelisi-Blackedge Cusk-eel Gunterichthys longipenis-Gold Brotula Crder Atheriniformes Exocostidae-Halfbeaks and Flyingfishes Hyporhampus unifasciatus-Halfbeak Hirundichthys rondeleti-Blackwing Flyingfish Pelonidae-Meedlefishes Strongylura marina-Atlantic Needlefish Cyprinodontidae-Killifishes Adenia xenica-Diamond Killifish Cyprinodon variegatus-Sheepshead Minnow Fundulus confluentus-Marsh Killifish Fundulus grandis-Gulf KIllifish Fundulus similis-Longnose Killifish Lucania parva-Rainwater Killifish Poeciliidae-Livebearers Gambusia affinis-Mosquitofish Poesilia latipinna-Sailfin Molly

Atherinidae-Silversides <u>Membras</u> <u>martinica</u>-Rough Silverside <u>Menidia</u> <u>beryllina</u>-Tidewater Silverside

Order Gasterosteiformes

Syngnathidae-	Pipefishes + Seanorses
Syngmathus	floridag-Dusky Pipefish
Synanathus	louisianae-Chain Pipefish
Syngnathus	scovelli-Gulf Pipefish
A State Stat	

Order Perciformes Serranidae-Sea Basses <u>Centropristes</u> philadelohicas-Rock Sea Bass

Pomatomidae-Bluefishes Pomatomus saltatrix-Bluefish

Carangidae-Jacks and Pompanos <u>Caranx hippos</u>-Crevalle Jack <u>Caranx latus</u>-Horse-eye Jack <u>Chloroscombrus chrysurus</u>-Atlantic Bumper <u>Oligoplites saurus</u>-Leatherjacket <u>Selene vomar</u>-Lookdown <u>Trachinotus carolinus</u>-Florida Pompano <u>Trachinotus falcatus</u>-Permit <u>Vomer setipinnis</u>-Atlantic Moonfish

Coryphaenidae-Dolphins Coryphaena equisetis-Pompano Dolphin

Lutjanidae-Snappers Lutjanus griseus-Gray Snapper Lutjanus synagris-Lane Snapper

Lobotidae-Tripletails Lobotes surinamensis-Tripletail

Gerreidae-Mojarras

<u>Eucinostomus</u> argenteus-Spotfin Mojarra <u>Wucinostomus</u> gula-Silver Jenny

Rachycentridae-Cobias Rachycentron canadum-Cobia Pomadasyldae-Grunts Orthopristis chrysoptera-Pigfish Table 60. (con't)

```
Sparidae-Porgies
<u>Archosargus</u> probatocephalus-Sheepshead
<u>Lagodon</u> rhomboides-Pinfish
```

Sciaenidae-Drums

Bairdiella chrysura-Silver Perch Cynoscion arenarius-Sand Seatrout Cynoscion nebulosus-Spotted Seatrout Larimus fasciatus-Banded Drum Leiostomus xanthurus-Spot Menticirrhus americanus-Southern Kingfish Micropogon undulatus-Atlantic Croaker Pogonias cromis-Black Drum Scianops ocellata-Red Drum Menticirrhus littoralis

Ephippidae-Spadefishes Chaetodipterus faber-Atlantic Spadefish

Mugilidae-Mullets <u>Mugil cephalus</u>-Striped Mullet <u>Mugil curema</u>-White Mullet

Sphyraenidae-Barracudas Sphyraena guachancho-Guaguanche

Polynemidae-Threadfins Polydactylus octonemus-Atlantic Threadfin

Uranoscopidae-Stargazers <u>Astroscopus</u> <u>y-graecum</u>-Southern Stargazer

Blenniidae-Combtooth Blennies <u>Hypsoblennius</u> ionthas-Freckled Blenny

Electridae-Sleepers <u>Dormitator maculatus</u>-Fat Sleeper <u>Electris pisonis-Spinycheek Sleeper</u> <u>Frotelis emaragdus civitatum</u>-Emerald Sleeper <u>Gobioidas broussonnetti</u>-Violet Goby <u>Gobionellus boleosoma</u>-Darter Goby <u>Gobionellus hastatus</u>-onarptail Goby <u>Gobiosoma bosci</u>-Naked Goby <u>Gobiosoma robustum</u>-Code Goby <u>Microgobius gulosus</u>-Clown Goby? <u>Microgobius thalassinus</u>-Green Goby <u>Gobionellus shufeldti</u>-Freshwater Goby <u>Evorthodus lvricus</u>-Lyre Goby

Trichiulridae-Gutlassfishes <u>Trichiurus lepturus-Atlantic</u> Gutlassfish Table 60. (con't)

Scombridae-Mackerels and Tunas <u>Scomberomorus</u> cavalla-King mackerel <u>Scomberomorus</u> maculatus-Spanish Mackerel

Stronateidae-Butterfishes <u>Peprilus</u> <u>alepidotus</u>-Harvestfish <u>Peprilus</u> <u>burti</u>-Gulf Butterfish

Triglidae-Searobins

<u>Prionotus</u> <u>tribulus</u>-Bighead Searobin <u>Prionotus</u> <u>roseus</u>-Bluespotted Searobin

Prionotus rubio-Blackfin Searobin

Order Plauronectiformes

Bothidae-Lefteye Flounders <u>Ancylopsetta guadrocellata</u>-Ocellated Flounder <u>Cicharichthys spilopterus</u>-Bay Whiff <u>Etropus crossotus</u>-Fringed Flounder <u>Paralichthys albigutta</u>-Gulf Flounder <u>Paralichthys lethostigna</u>-Southern Flounder

Soleidae-Soles <u>Achirus lineatus-Lined Sole</u> <u>Trinectes maculatus</u>-Hogchoker

Cynoglossidae-Tonguefishes Symphurus plagiusa-Blackcheek Tonguefish

Order Tetraodontiformes Balistidae-Triggerfishes and Filefishes <u>Aluterus schoepfi</u>-Orange Filefish

Tetraodontidae-Puffers <u>Schoeroides</u> nephelus-Southern Puffer (also <u>Sphoeroides</u> parvus) Table 61. Dominant fishes in Caminada Bay, Louisiana (Wagner, 1972).

Total <u>Number</u>	Avg. No. per Trip	% Total <u>Number</u>	Total <u>Biomass</u>	Area Biomass per Trip	% Total <u>Biomass</u>
52,633	2392	65.1	34201.4	.27	11.4
14,782	672	15.4	23012.9	.14	7.7
5,786	263	6.0	20404.7	.13	6.8
5,300	241	5.5	22949.2	.13	7.1
2,166	98	2.2	52539.2	.34	17.6
	Total <u>Number</u> 52,633 14,782 5,786 5,300 2,166	Total NumberAvg. No. per Trip52,633239214,7826725,7862635,3002412,16698	Total NumberAvg. No. per Trip% Total Number52,633239265.114,78267215.45,7862636.05,3002415.52,166982.2	Total NumberAvg. No. per Trip% Total NumberTotal Biomass52,633239265.134201.414,78267215.423012.95,7862636.020404.75,3002415.522949.22,166982.252539.2	Total NumberAvg. No. per Trip% Total NumberTotal BiomassArea Biomass per Trip52,633239265.134201.4.2714,78267215.423012.9.145,7862636.020404.7.135,3002415.522949.2.132,166982.252539.2.34

Table 62. Total length range in millimeters for 6 most abundant fishes per trip in Caminada Bay, Louisiana (Wagner, 1972).

		Bay		Sea	Atlantic		White
There is an	Deta	Anchowy	Menhaden	Catfish	Croaker	Spot	Trout
<u>lrip</u>		Anonoty					
	2/06/71				46-85		
÷	1/20/14				28-120		
2	4/10-1(/11				31-145		
4_5	5/14(/(+ r/or o(/7)	20.76	10-217	71-385	51-132	75-1 71	60-87
>	5/25-20/11	27-10	38_201	102-377	61-225	85-202	33-120
6	0/14-10/11	17-14	1.2-1.37	116-298	76-210	97-123	26-128
7	7/7-0/71	20-14	76.018	61-373	96-185	107-202	46-109
8	7/28-29/71	22-17	00-120	61-350	1/16-210	157-228	55-164
9	8/28-29/11	19-00	40 185	52-104	116-185		25-115
10	9/21-22/71	21-74	0 9-105	75-225	11.1-150	139-210	51-132
11	10/14-15/71	20-75	149-119	78	11_105	113-185	62-156
12	11/4-5/71	19-80	0A-TOT	77 152	11-50	140-194	95-100
13	11/23/71	16-72	-05	90 L20	11-65	140-274	,,,
14	12/16/71	26-79		02-420	16-90	26-51	
15	1/12-13/72	24-75	22-201		10-90	1.2-173	
16	2/2/72	21-75	25-108		16 105	18_162	
17	2/24/72	34-80	29-190	(5-302 210-250	16 112	27-05	
18	3/14-15/72	27-79	25-216	219-359	10-113	21-72	27-33
19	4/4/72	31-80	25-51	30-452	20-130	50-105	21-55
20	4/29-30/72	17-92	35-210	99-320	29-170	50-100	20-27 42 80
21	5/17-18/72	18 - 80	60 -23 5	113-370	41-150	05-149	67-02
22	6/7-8/72	17-79	35 - 65	102-150	50-228	(5-124	01-134
23	6/28-29/72	17-79	37 - 97	113-385	71-216	01-191	40-138

	<u> </u>	Bay		Sea	Atlantic		White	% Total
Trip	Date	Anchovy	Menhaden	Catfish	Croaker	Spot	Trout	Number
r	2 /26 /71	1.50	୍କ	20	250	1.25	0	00 03
<u>,</u>	1./26/12/21	4777	72 28	20	277	4420	0	97.U) 07.75
ີ ລົ່າ.		2477	100	4 C	10	211	<u>∡</u> 9	7(+12
,)=4 	5/1=(/(1	1012	±72 19	5	270	109	75	94+05
2	5/25=20/11 6/11-36/73	1240	11.28	22	505	47	62	00.10
7	7/7_8/71	825	24450	20	50	8	6)	74.74 10 89
י א	7/2 8-20/21	5568	247	20	4 (08	11	60	47⊕0C 03 €3
0	8/28-20/71	71.03	10	1288	10	10	09	72+23 81, 38
10	0/20-23/11	(47)	21	1200	8	10), F	1.0 50
10	10/14-16/71	1666	51	120	2	16	42	81 22
12	10/14-10/11	2580	56	218	<u>د</u> 46	1.3	18	02 12
12	11/22/71	558		210	166	43	70	72 84
14	12/16/71	1116	ŏ	с Б	673	ĩ) 0	06 58
15	1/12-13/72	1260	207	, Ju	255	18	ŏ	66 32
16	2/2/72	1245	201 65	4	210	28	Ő	70 01
17	2/2)/72	1031	175	36	51.0	571	0	05 36
18	3/11-15/72	5079	*12 791.6⊭	ر د	176	シュー	ŏ	99.10
10	J/14-13/ {2	1555	861	1.8	608	2424 535	ž	97 50
20	4/4/12	1081	57	40	705	533	2	80 10
20	4/27-30/12 5/17-18/72	1300	ז כ רב	1.8	207	222 252	11.	07+10
21	6/7-8/72	072	806	40 53	108	1.8	2)	86 7
22	6/28-20/72	712	ه ا	37	200	58	10	77 1
ر ب	0/20-27/12	2222	5	וכ	< 1	20	10	
Ŧ		2392	672	98	21.1	263	22	
Tota	al all trips	52,633	14,782	2,166	5,300	5,736	493	
% Te	otal Number	55.1	15.4	2.2	5.5	6.0	0.5	
x /m ²		•37	.09	.01	•03	.03	.003	

Table 63. Total number of 6 most abundant fishes per trip (all gear) in Caminada Bay, Louisiana (Wagner, 1972).

*Hit one large school in Airplane Lake seine

Trip_	Dgte	Bay Anchovy	Nenhaden	Sea Catfish	Atlantic Crosker	Spot	White Trout
1	1/26/71	_			802.2		
-		11.Po 1			0,16 ها- 7 بلبل		
2	3/16-17/11	0.30			0.09		
باسير	5/1-7/11				822.4 0.13		_
5	5/25-26/71	891.2	258.9	54,04.4	2453.9	454.9	213.6 - Ok
4	6/11-16/71	0.15 863.1	0.04 8782.5	2660.4	907.1	492.5	366.0
Ð	0/14-20/12	0.13	.96	.29	,10 826 0	.05 85.8	-06 -98-9
7	7/7-8/71	603.3 0.09	.25	.28	.14	.01	.02
8	7/28-29/71	5414.3	218.0	3995.9	761.0	1,26.9 .05	241.5 .04
•	8/28-29/71	.03 4586.4	180.2	7280.6	729.8	1090.7	98.5
	• / /	.70	.03	•79 •29.1	.08 268.1	.12	138.5
10	9/21-22/71	.09	.05	.07	.04		.02
n	10/14-15/71	1320.5	254.3	4117.5	58 .1 .01	1387.7	.01
12	11/b-5/71	1237-7	409.7	2412.7	91.9	2688.3	175.0
		.19	•06	•26 30-1	•01 27•6	.29 163.8	18.6
13	11/23/71	444-0 •07		.00lu	.00lı	_06	,003
14	12/16/71	621.7		906.7	145.4	.006	
15	1/12-13/72	747.5	1390.2	1580.3	1.21.5	33.9	
	-,,	.11	.15	.17	.02 196.8	255.9	
15	2/2/12	.14	.004		.03	.235	
17	2/24/72	2287.9	224.9	3046.9 .39	502.0 .08	.04	
18	3/14-15/72	4265.6	6401.6	672.0	477.6	3165.6	
10	1.4./20	.66 8 0980	.70 271.7	.07 5671.3	.07 2352.9	• <i>57</i> 1970.9	.5
TÀ		2090.0 .44	.OL	.78	.32	•27 al-a0_8	.0000
20	4/29-30/72	1456.9	1479.7	1223.3	,66 ,66	بلبا.	.001
21	5/17-18/72	836.2	721.1	5378.2	3528.6	2873.9	146.0 .007
	4/2 9/23	.13 567.h	.08 Jul 3.2	.59 659.4	. 30 136կ.8	405.4	190.5
22	0/1-0/12	.08	.06	.09	.19	.06 816 6	.03 101.2
23	6/28-29/72	+ 1885.9 .29	12.5 _001	5204.7 .67	,10	.10	.02
Tota	1:	34201.4	23012.9	52539.2	22949.2	20404.7	1779.6
Σ gi	/_2	-27	.14	ىلار.	.13	.13	.02
1 To (15.	tal -23)	11.4	7.7	17.6	7.1	0.0	0.9
		Sampling d	lone with:		727	5a ²	
		6 tran	s, 2 seine.	l trammél	784	2m ²	
		6 trawl	s, 2 seine		651 575	5 m ² 5 m 2	
		6 traul	s, 1 seine	1 tramel	ンパン 708	2m ²	
		6 trawl	A. 2 Beine.	2 tramel	916	9m ²	

Table 64.	Total biomass in grams (wet weight) of 6 most abundant fishes
	per trip in Caminada Bay, Louisiana (Wagner, 1972).

~

...

285

Table 65. Stomach contents of 6 dominant fish species of Caminada Bay, Louisiana (extracted from Day et al., 1972).

Anchoa mitchilli:	crab megalops, zooplankton				
(anchovy)	Other studies:				
	copepods, detritus, small fishes and microbenthos				
Brevoortia patronus	phytoplankton, detritus				
(menhaden)	Other studies:				
	phytoplankton, zooplankton and detritus				
Leiostomus xanthurus:	amphipods, copepods, detritus				
(spot)	Other studies:				
	pelecypods, copepods, detritus, annelids, microbenthos				
<u>Micropogon</u> <u>undulatus</u> : (croaker)	amphipods, annelids, copepods, detritus, fish, insect larvae				
	Other Studies:				
	shrimp, annelids, fish, crabs, mollusks, diatom, decapods, mysids, microbenthos, zooplankton				
Aries felis:	crab megalops, fish, detritus				
(sea cat)	Other studies:				
	macrobenthos, zooplankton, small crabs, amphipods, mysids				

.

Table 66. Seasonal abundance and food habits of principal marsh birds (Day et al., 1972).

Food Habits Species Wading Birds minnows, 67%; shrimp & crabs, 10; small mammal, 5% (3) Great Blue Heron fish, 27%; crustaceans, 45%; insects, 16% (2) Little Blue Heron Louisiana Heron (2)(2) American Egret small fishes, crustaceans, snails, insects (2) Snowy Egret mostly insects (3) Cattle Egret crustaceans, 60%; fish, 13%; snails, 13%; insects, 13% (2) White Ibis crustaceans, insects (2) Wood Ibis White-faced Ibis (3) Water Fowl plants, 68% (1)Puddle Ducks animal, 31.5%; mollusc, 29% (1)Shoveler (1)crabs, 3% Cadwa11 (1)Pintail (1)Mallard plant, 75.2% (3) Mottled Duck animal, 24.8%; snails, 11% Blue-winged Teal (1)insects, 4% Green-winged Teal (1)(1)fish, 2% Diving Duck (1)Lesser Scaup American Merganser (1)(1)Wooded Merganser (1)Coots Shore Birds (1)Herring Gulls (3) Laughing Gulls minnows & open water fish (1)Ring-billed Gulls (3) Forster's Tern (3) Royal Tern (2) shrimp Least Tern (3) Caspian Tern (2)Gull-billed Tern (3) Plovers, willets (3) Sandpipers (1)fish White Pelicans Marsh Proper crabs, snails, insects (2) Rails insects, 70%, plant material, 20%, small snails,10% (2) Sea Side Sparrow

(1) more abundant in cold months

(2) more abundant in warm months

(3) equal abundance all year

Table 67. Louisiana fisheries landings in 1970. Given in terms of volume and value for principal species (extracted from Current Fisheries Statistics No. 5794, Louisiana Landings, Annual Summary 1970).

POUNDAGE

	Species	Pounds	×	cummulative
1.	Menhaden	959,809,800	86 .05	86.05
2	Shrimo	90,938,900	8.15	94.20
ā.	Crab	10,254,200	.92	95.12
Í.	Ovster	8,638,900	.77	95.89
5	Catfish	5,547,000	.50	96.39
6.	Crawfish	3,173,300	.28	96.67
7.	Unclassified	27,286,100	2.45	99.12

VALUE

1. 2. 3. 4. 5. 6.	Shrimp Menhaden Oyster Catfish Crabs Crawfish	34,611,931 18,930,641 3,630,560 1,594,292 1,007,538 945,463	55.36 30.28 5.80 2.55 1.61 1.51 1.89	55.36 85.64 91.44 93.99 95.60 97.11 99.00
7.	Unclassified	1,186,648	1.89	99.00

-

Teble 68.	Average annual harvest (1963-67) of the major commercial
10010 000	City and shall fish produced in Louisiana waters (Lindall
	fish and shellinsh produced in hodistand worth (
	et al., 1972).

Species	Pounds (Million)	Percent of Total	Value ^{3/} (Million)	Percent of Total
Menhaden	713.06	84.6	10.12	23.5
Shrimp	73.51 ^{1/}	8.7	26.68	61.4
Groaker	23.71 ^{2/}	2.8	0.42	0.9
Oyster	9.97	1.2	4.39	10.1
Blue Crab	8.27	1.0	0.73	1.7
Catfish and Bullheads	4.59	0.5	0.78	1.8
Spot	4.622/	0.6	0.08	0.2
Seatrout (Spoited and White)	4.112/	0.5	0.19	0.4
Red Drum	0.53	0.1	0.09	0.2
Total	842.37	100.0	43.48	100.0

1/ Live weight (computed by NMFS Statistical Office, New Orleans). The general conversions of heads-off to live weight are: 161 for brown, 1.54 for white, and 1.60 for pink.

2/ Includes industrial bottom fish

3/ 1967 exvessel prices (\$)

Species	Pounds <mark>1</mark> / (Million)	Value ² / (Million Dollars)
Nenhaden	142.09	2.00
Shrimp	7.70	2.50
Croaker	12.803/	0.23
Oyster	1.18	0.51
Blue Crab	0.34	0.03
Spot	2.503/	0.04
Seatrout (Spotted and White)	1.943/	0.06
Red Drum	. Oʻt	0.01
Total	168.59	5.28
	···· <u>·································</u>	

Table 69.	Average annual landings of major commercial fish and shellfish
	taken from Louisiana waters and landed in adjacent states
	(1963-67) (Lindall et al., 1972).

1/ Live weight

2/ 1967 exvessel price

3/ Includes industrial bottomfish

Table 70. Production and value of major commercial estuarine-dependent fisheries by hydrologic unit. Data based on five-year (1963-67) average annual harvests and 1967 exvessel prices (Lindall, et al., 1972).

				Hydro	ologic Uni	lt			
Species	I and III/	111	IV	V	VI	VII	<u>viii</u>	IX	TOTEL
•••••									
Nenhaden 2/	1 4 0 23	30 20	115.83	64.80	28,30	41.10	12.40	41.10	713.06
Production-	109.33	0 43	4.77	0.92	0.40	0.58	0.18	0.58	10.12
Value3/	2.20	0.45		••••					
Shrimp				22 01	2.00	3.20	0.50	2.90	73.51
Production	18.30	3.70	20.00	42.71	0.73	1.17	0.19	1.05	26.68
Value	6.64	1.34	1.45	0.71	Q1 .0	••		•	
Croaker				- / 1	1.10	2.11	0.30	2.11	23.71
Production	4.33	1.20	4,93	1.03	0.02	0.04	0.01	0.04	0.42
Value	0.07	0.02	0.08	Ų.14	0.04				
Auster					0.00	0.01	0.00	0.29	9.97
Production	4.68	0.00	4,14	0.85	0.00	0.01	0.00	0.13	4.39
Value	2.06	0.00	1,82	0.37	0.00	0.005			
Blue Crab						0.06	0.04	0.62	8.27
Production	3.66	0.03	2.46	1,12	0.20	0.005	0.004	0.05	0.73
Value	0.32	0,003	0.22	0.10	0.03	0.005			
Enat						n 53	0.11	0.53	4.62
Production	0.57	0.23	0.85	1.58	0.22	0.01	0.002	0.01	0.08
Value	0.01	0.004	0.01	0.03	0.004	0.01	0.00-		
Carfich and Bullheads					1 70	6.07	0.22	0.003	4,59
Production	0.16	0.00	1.94	0.41	1+19	0.01	0.04	0.001	0.78
Value	0.03	0.00	0.33	0.0/	0.50	0.01			
Seatrout		÷ •1	1 08	0.31	0.18	0.42	0.08	U.42	4.11
Production	1,41	0.21	0.05	0.01	0.01	0.02	0.003	0.02	0.11
'Value	0-07	0.01	0.05	••••					
Red Drum				0.13	0.005	0.00	0.00	0.02	0.53
Production	0.23	0.02	0.12	0.13	0.000	0.00	0.00	0.003	0.09
Value	0.04	0.003	0.02						
Total 2/			37: 35	00 76	33.87	47.50	13.65	47.99	842.37
Production	192.68	33.37	3/1.33	0.07	1.50	1.84	0.43	1.85	43.48
Value -2/ 4/	11.50	1.01	312	419	153	323	13	13 ¹ 4	3,283
Estuarine vater	11104	105					050 0	258.1	256.6
Production,	109.2	218.3	1,182.5	230.0	221.0	14(.1 1,	0,010		
pounds/acre Value dollars/acre	6.5	11.1	46.3	23.8	9.8	5+7	33.1	14.0	13.2
• •									_

1/ Hydrologic Units I and II were grouped because of overlap of Breton and Chandeleur Sounds and probable overlap of catch designations therein

- 2/ Millions of pounds
- 3/ Millions of dollars
- 4/ Thousands of acres

Year	Thousands of Pounds	Year	Thousands of Pounds	Year	Thousands of Pounds
1880	-	1932		1954	270,094
1887	-	1934		1955	298,309
1888	-	1935	-	1956	320,521
1889	-	1937	••	1957	162,817
1890	~	1938	•	1958	241,813
1897	-	1939	-	1959	442,740
1902	-	1940	-	1960	470,108
1908	-	1945	-	1961	581,682
1918	-	1948	88,110	1962	689,157
1923	-	1949	165,914	1963	633,484
1927	-	1950	207,755	1964	599 , 538
1928	-	1951	209,574	1965	682,435
1929		1952	283,373	1966	555,900
1930	~	1953	307,492	1967	510,414
1931	-				

Table 71.	Louisiana historical commercial landings of menhaden,	1880-1967
	(Lindall et al., 1972).	

Landings years 1880-1965 from Lyles (1967a). Landings 1966 and 1967 from Lyles (1968 and 1969).

Table 72. Seasonal are based Life and ranges, a	abundance and 1 on catch per Fisheries Com 11d seasonal c	distribution unit effort mission from atches are mo	<pre>t of menhaden of combined t April 1968 tl onthly averag</pre>	juveniles in seines and tr irough March es (Lindall e	Louislana es awls taken by 1969. Temper t al., 1972).	tuaries. Re Louisiana W ature, salin	sults ild ity
Hydrologic Unit	н	II	IV E Bay Adam Arca	IV W Barataria Area	V E Pelto to T <u>i</u> mbalier	V W Caillou Area	West of V
SEASON							
Spring (MarMay) Temp. Range (C°) Sul. Range (O/00)	13.8-24.4 7.8-12.9	23.1-31.1 12.0-16.0	14.4-26.7 11.6-17.3	9.2-24.9 5.3-18.1	12.1-27.3 17.9-23.0	12.7-25.4 6.8-12.3	13.2-25.3 1.9-11.1
Summer (June-Aug.) Temp. Range Sal. Range	30.0-31.6 11.2-17.2	29.5-32.2 13.2-17.6	29.5-30.5 9.4-15.0	28.2-31.4 13.4.16.2	29.3-31.2 19.7-24.4	25.4-31.0 10.0-18.4	28.6-34.5 1.5-14.4
Fail (SepNov.) Temp. Range Sal. Range	14.8-27.9 11.4-19.9	11.5-27.2 16.4-23.9	12.5-30.0 18.6-23,0	11.1-23.8 18.3-26.2	12.2-27.8 21.0-25.5	12.7-27.7 5.8-15.7	13.5-27.0 3.8-23.5
Winter (DecFeb.) Temp. Range Sal. Range	12.7-13.6 8.3-13.3	12.1-14.9 10.9-16.3	11.8-15.6 13.9-27.6	10.9-16.3 14.4-18.4	10.6-15.8 18.7-24.7	10.4-15.2 9.8-23.5	10.9-15.7 3.8-6.8
Brevoortia patronus Spring Summer Fall Winter Yearly Average	10.5 10.5 18.0 18.0 18.0	10.9 1.17 1.11 1.11	241.2 375.3 1 ¹⁶ .7 186.0	28.5 150.8 19.8 110.3	12.4 27.2 96.2 34.0	49.6 64.4 64.4 21.1 35.0	93.1 131.4 11.6 14.1 66.0

Table 73. Production of harvested menhaden per hydrologic unit based on 5-year average (1963-67) (Lindall et al., 1972)

Nydrologic Unit	Nursery Areas (Acres)	Million Pounds	Pounds per Acre
I and II	1,764,000	159.33	90.3
111	163,000	30.20	185.3
IV	314,000	335.83	1,069.6
v	419,000	64.81	154.7
VI	153,000	28.30	185.0
VII	323,000	41.10	127.2
VIII	13,000	12.40	953.8
Xĭ	134,000	41.10	306.7
TOTAL	3,283,000	713.07	217.2

MENHADEN

(1963-67)	
other states (
by	
landings	
including	
Louisiana	
offshore	
from	z).
menhaden	t al., 197
L Of	L1 e
Harves	(Linda:
74.	
Table	

			Offshore Grid				Year Total
	12	13	14	15	16	17	
Five-year Total	107,036,800	537,520,700	288,470,400	872,856,000	530,305,000	695,707,400	3,031,896,300
Five-year Average	21,407,360	107,504,140	57,694,080	174,571,200	106,061,000	139,141,480	606,379,260
Value (\$	369,157	1,506,084	883 , 753	2,301,635	1,484,099	2,058,520	8,603,245

Jalendar Year	Barrels Shrimp (210 lbs.)	No. of Scines	No. of Trawls	Calendar Year	Barrels Shrimp (210 lbs.)	No. of Seines	No. of Trawls
1913	50,000	131	_	1041	554,35k	5	3 028
1014	52,381	131	-	1042	180 173	'n	2,020
1915	57.143	268	-	1013	hh1, hh5	<u>т</u>	2,500
1016	85.714	_	-	1944	544.378	ů.	1 866
1917	57.143	F	-	1945	495,994	ų	2,373
1918	71,429	300	17	1946	464.981	4	3,030
1919	76, 190	-	-	1947	365.617	4	3,408
1920	152,381	97	499	1948	376.695	4	3,200
1921	163,012	135	983	1949	376,040	14	3.310
1922	109,050	111	600	1950	361,365	3	2.819
1923	153,749	128	1,021	1951	396,980	-	5.248
1924	150,624	143	905	1952	393,952	-	2,277
1925	154,722	180	1,010	1953	437,340	10	3,543
1926	123,967	143	(0)S	1954	451,647	4	3,1,1,2
1927	150,896	120	913	1955	365,542	5	3,276
1928	195,303	261	1,454	1 956	318,130	7	3,072
1929	210,033	125	1,486	1957	181,061	9	2,419
930	197,550	172	1,176	1953	208,586	9	4,400
1931	178,815	126	1,131	19 59	25%,1438	8	4,154
1932	152,373	66	600	1960	306,774	7	4,896
1933	166,058	67	1,045	1961	148,423	8	4,577
193!+	2 26,576	107	1,441	1962	263,920		5,453
1935	252,931	125	1,433	1963	384,828	-	7,025
1936	286,749	30	1,920	1964	262,852	-	7,397
1937	362,942	35	2,313	1965	297,993	8	7,296
1938	3 63,656	13	1,662	1966	296,520	21	7,215
1939	395,050	26	1,621	1967	358, 571	29	9,089
1940	397,189	5	3,016	1963	322,702	37	8,996

Table 75. Louisiana shrimp landings and number of trawls and/or seines (1913-1968) (Lindall et al., 1972).

Source: Louisiana Wildlife and Fisheries Commission, 13th Biennial Report, 1968-69

Table 76. Production of harvested commercial shrimp per hydrologic unit. Figures based on 5-year (1963-67) average harvests and proportion of juveniles determined by samplings by the Gulf of Mexico Estuarine Inventory, Louisiana Wild Life and Fisheries Commission (Lindall et al., 1972).

Hydrologic Unit	I and II	III	IV	V	VI	VII	VIII	IX	Total
Estuarine Waters (Thousand acres)	1,764	163	314	419	153	323	13	134	3,283
Shrimp harvest (Millions of pounds	18.3 ;)	3.7	20.0	22.9	2,0	3.2	0.5	2.9	73.5
Pounds per acre	10.4	22.7	63.7	54.7	13.1	9.9	38.5	21.6	22.4

Table 77. Harvest of shrimp (live weight) from offshore Louisiana including landings by other states (1963-67) Lindall et al., 1972).

Five-year Total	4,305,500	43,852,100	35,324,000	62,557,400	34,353,000	34,017,900	214,329,900
Five-year Average	861,100	8,770,420	7,064,800	12,511,480	6,870,600	6,803,580	42,865,980
Value (\$)	239,467	3,200,864	2,812,116	4,667,973	3,013,788	2,640,298	16,574,50 6

Harvest of shrimp (liveweight) from inshore Louisiana including landings by other states (1963-67).

pive-year Totel	I 9,264,100	11 14,428,900	III 8,173,000	1V 38,286,100	v 68,469,100	VI 47,900	VII 8,000,060	VIII 1,400	1X 6,544,100	Year Total 153,214,660
Mve-year Average	1,852,800	2,885,780	1,634,600	7,657,220	13,693,820	9,580	1,600,012	280	1,308,820	30,642,932
Value (\$)	611,430	952,307	539,418	2,526,682	4,518,960	3,161	528,003	92	431,910	10,112,163

Table 78. Louisiana historical commercial landings of oysters, 1880-1967 (thousands of pounds of meat) (Lindall et al, 1972).

Year	Landings	Year	Landings	Year	Landings
1880	1,189	1932	2,978	1954	8,361
1887	2,733	193 ⁴	5,591	1955	9,396
1888	2,902	1935	5,743	1956	10,056
1889	3,367	1937	8,048	1957	10,490
1890	3:392	1938	10,222	1958	8,265
1897	3,866	1939	13,586	1959	9,667
1902	4,830	1940	12,412	1960	8,311
1908	11,953	1945	9,884	1961	10,139
iq18	4,522	1948	9,016	1962	10,160
1023	4,119	1949	9,688	1963	11,563
1027	6.640	1950	8,716	1964	11,401
1028	6,246	1951	8,164	1965	8,343
1020	4,549	1952	11,402	1966	4,800
1930	4,846	1953	9,435	1967	7,742
1931	3, 590				<u> </u>

Landings years 1880-1965 from Lyles (1967a). Landings 1966 and 1967 from Lyles (1968 and 1969).

Figure 79. Oyster grounds in Louisiana (1969). Number of acres leased by parish, in seed ground reservations, in the "red line" area, and in public reefs. Information furnished by Louisiana Wild Life and Fisheries Commission (Lindall et al., 1972).

PARISH		ACRES	
Iberia Jefferson Lafourche Orleans Plaquemines St. Bernard St. Mary St. Tammany Terrebonne Vermilion		701 10,758 7,955 333 37,654 36,939 713 208 20,347 709	
	Total	116,318	
SEED GROUND RESERVATIONS			
Sister Lake (productive reef only) Bay Junop Bay du Cheine (Hackberry Bay) Bay Gardene		7,356 (600) 2,416 4,015 2,666	
	Tota l	16,453	
"RED LINE" AREA			
Mississippi Sound Breton and Chandeleur Sounds		219,158 445,233	
	Total	664,491	
PUBLIC REEF			
Calcasicu Lake (productivo reaf only)		6,737 (581)	
	Total	6,737	
Total Oystar Grounds(Committee	3)	803,999	

Estimated production of cannery oyster meats in pounds per acre of lease by hydrologic unit (1963-67) (Lindall et al., 1972). Table 80.

Kydrologic Unit	H	H	III	IV	۵	Т	IIA	IIIA	IX	Total	
Acres of private leases (1963-67 average)	30,531	10,401	0	35,517	16,574	578	1,157	0	0	94 , 758	
Estimated acres in production	9,159	3,120	0	10,655	4 , 972	173	348	0	0	28 , 427	
Annual private lease harvest (1963-67 average in pounds of meat)	1,438,280	1,682,780	0	3,800,120	853,460	0	11,500	0	0	7,786,140	
Approximate annual production per acre leased	157	539	0	357	172	0	ŝ	o	Ģ	274	
Hydrologic Unit	Ycar	State	Private Gr Spring	Je spuno Fall	Public G Spring	rounds b/ Fall	Tot. Pounds of Meat	al Value (\$)			
--------------------	--------------------	---------------------	----------------------	------------------	--------------------	-------------------	---------------------------	------------------			
	Five-ye All Uni	aar Total - .ts	29,609,600	9,321,100	8,119,600	2,7∂8,100	49,838,400	16,280,699			
	Flve-Ye All Uni	aar Average - ts	5,921,920	1,864,220	1,623,920	557,620	9,967,680	3,256,140			

Harvest of oysters from Louisiana waters including landings by other states (1963-67). Statistics include cannery oysters only (Lindall et al., 1972).

Table 81.

a/ harvests from leased grounds

b/ harvests from public reefs and seed ground areas

8,465,400

5,236,200

9,620,800

13,891,700

12,624,200

	(Lindall et al., 197	2).	.		
Year	Blue Crat	Year	Blue Crab	Year	Blue Crab
1880	238	1931	5, 106	1953	8, 619
1887	172	1932	5,977	1954	7, 5 ¹ 40
1888	1 65	1934	12,328	1955	11,392
1889	989	1935	12,941	1956	10,002
1890	981.	1937	15,046	1957	9,110
1897	1, ⁴ 59	1938	10,781	1958	9,913
1902	1,312	1939	11,443	1959	10, 175
1908	322	οηστ	14,314	1960	10,564
1918	282	1945	33,650	1961	12,530
1923	316	1948	22,018	1962	9,867
1927	1,227	6461	18, 329	1963	8,311
1928	2,503	1950	13,470	1964	5,892
1929	2,755	1951	9,060	1965	9,488
1930	ł, 332	1952	7,782	1966	8,000
				1967	8,705

Landings years 1880-1965 from Lyles (1967a). Landings 1966 and 1967 from Lyles (1968 and 1969).

Louisiana historical commercial landings of blue crab, 1880-1967 (thousands of pounds) Table 82.

catched	
annual	
average	•
50	ה
based	1., 197
unit	et al
ydrologic	(Lindall
per h	otles
rab	juve
lue c	n of
q p	tio
ste	1 T D U
arve	lstr
ц Ц	ų. P
u u	an
Productic	(1963-67)
83 .	
Table	

Fydrologic Unit	I and II	III	ΛI	А	И	IIV	IIIA	IX	Total
Estuarine Water (acres)	1,764,000	163,000	314,000	419,000	153,000	323,000	13,000	134,000	3,283,000
Million Pounds	3.66	0.03	2.46	1.12	0.28	0.06	0.04	0,62	8.27
Pounds∕acre	2.1	0.2	7.9	2.7	1.9	0.2	3.8	4.7	2.5

Harvest of hard-shelled blue crabs from inshore Louisiana including landings by other states (1963-67) (Lindall et al., 1972). Table 84A.

Year	н	II	III	ΛI	٨	IA	VII IIA	III	IX	Year Total (Pounds)
r1	12,171,200	4,670,900	1	п, 744, 100	4,853,300	1,339,900	219,600	1	2,990,300	37,642,000
ບມີນມ	2,434,240	934,180	ı	2,348,820	970,660	267,980	43,920	1	598,060	7,528,400
	170,396	65,392	ł	164,417	67,946	18,758	9.074	1	-	

Harvest of blue crabs (soft) from inshore Louisiana (1963-67). There were no landings by other states in this period (Lindall et al., 1972). Table 84B.

State	7667				Hydrologi	c Unit					Voor
		н	II	III	ΛI	٨	IA	IIA	IIIA	XI	Total (Pounds)
Louisiana.	1963	177,200	005,66	ĩ	51,600	٩.	t	1		1	328.300
Louisians	1964	108,700	75,100	ı	24,100	I	ı	ŧ	,	1	207.900
Louisiana	1965	92,900	70,100	ł	39,800	ı	t	ı	ı	1	202 800
Louisiana	1966	47,000	27,900	1	38,000	ı	,	ı	ı	ı	
Louisiana	1967	68,700	26,100	ı	51,500	1	ı	,	I	ı	006 211
Flve-Year	Total '	494,500	298,700	,	205,000	1		1		.	998,200
Five-Year	Average	98,900	59,740	r	41,000	• 1	I	ı	ï	ı	073 661
Value (\$)		92,087	49,584	I	34,030	r	ł	1	I	1	.165, 701

Lable 84C.	Harvest of hard-shelled blue crabs from offshore Louisiana including landings by other states
	(1963-67) (Lindall et al., 1972).

				, U	fshore Grid			Year Total
	Year	12	13	14	15	16	17	(Pounds)
ftvo-⊻oar	Total	١	143,300	100,000	1,550,800	403,500	360,000	2,557,600
Flvo-Yoar Valuo (\$)	Averago	1 i	28,600 1,514	20,000 1,200	310,160 1 6 ,753	80,700 4,794	72,000 4,865	29,136

Year	Thousands of Pounds	Year	Thousands of Pounds
1890	<u>1</u> /	1045	1/6
1997	₅₂ 2/	10/8	240 AA
1007	5/2/	1040	44
1000	150	1949	63
1888	150	1950	29
1890	158	1951	27
1897	329	1952	25
1902	155	1953	36
1908	369	1954	27
1918	383	1955	12
1923	219	1956	30
1927	186	1957	32
1928	.169	1958	4,983
1929	81	1959	57
1930	60	1960	35
1931	59	1961	18-
1932	44	1962	7
1934	301	1963	25
1935	408	1964	20
1937	137	1965	15
1938	78	1 966	20
1939	113	1967	56
1940	33		

Table 85. Historical commercial landings of croaker in Louisiana (1880-1967) (Lindall et al., 1972).

 $\frac{1}{Not}$ available.

 $\frac{2}{1}$ Includes Spot.

Landings years 1880-1965 from Lyles (1967a). Landings 1966 and 1967 from Lyles (1968 and 1969).

Table 86. Seasonal abundance and distribution of juvenile croaker in Louisiana estuaries. Results are based on average number of fish per unit effort of combined seines and trawls taken by Louisiana Wild Life and Fisheries Commission from April 1968 through March 1969. Temperature and salinity ranges are monthly averages (Lindall et al., 1972).

Hydrologic Area	I.	11	IV Bay Adam Area	IV W Barataria Bay Area	V E Lake Pelto to Timbalier Bay	V W Caillou Bay Area	West of V
SPECIES							
<u>Micropogen</u> <u>undularus</u> (Croaker)							
Spring Surmer Fall Winter	70.4 24.6 1.4 10.7	124.7 25.7 1.7 9.8	306.2 74.7 4.9 26.0	159.0 14.5 0.8 20.6	360.5 52.8 2.0 22.8	335.8 125.2 19.1 46.7	350.5 175.1 29.1 128.1
Yearly Average	35.0	47.0	113.0	47.0	109.0	132.0	174.0

Hydrologic Unit	Nursery Areas (Acres)	Million Pounds	Pounds Per Acre
I and II	1,764,000	4.33	2.5
111	163,000	1.20	7.4
IV	314,000	4.93	15.7
V	419,000	7.63	18.2
VI	153,000	1.10	7.2
VII	323,000	2.11	6.5
VIII	13,000	0.30	23.1
IX	134,000	2.11	15.7
Total	3,283,000	23.71	7.2

Table 87A. Production of harvested croaker per hydrologic unit based on five-year average (1963-67) (Lindall et al., 1972). Harvest of croakers from inshore Louisiana waters including landings by other states (1963-67) (Lindall et al., 1972). Table 87B.

					Hvdr	ologic Un	ŕt				Year
	Year	н	II	III	IV	Α	ΛI	IIV	TIIV	IX	Total (Pounds)
Total per unit		14,400	12,100	13,700	8, 50U	t	ł	-	•	ł	49,100
Five-year Average		5,560	5,740	;	5,740	5,760	1	:	ł	07	22,840
Value (\$)		389	401	ł	401	603	ł	}	;	ฑ่	1,597

Harvest of croakers from offshore Louisiana including landings by other states (1963-67) (Lindall et al., 1972). Table 87C.

			Offshore	Grid			Year
	12	13	14	15	16	17	Totạl (Pounds)
Total per Grid	2,200	379,300	1	4,300		l l	385,800
Five-year Average	440	89,760	075	2,000	;	:	92,640
Value (\$)	22	7,370	24	123	;	1	7,539

Table 88. Seasonal waterfowl population estimates¹ for Southeast Louisiana below intracoastal canal in the parishes of Terrebonne, Lafourche, Jefferson, and Plaquemines (unpublished data from H. Bateman, Wild Life and Fisheries Comm., LA, 1971).

- - - - - - - - September 1970 through August 1971 - - -

	Pudd <u>le Ducks</u>	Diving Ducks	<u>Geese</u>	Coots	<u>Total</u>
Fall	905,000	184,000	75,000	566,000	1,730,000
Winter	400,000	445,000	75,000	892,000	2,812,000
Spring	309,000	77,000	0	133,000	519,000
Summer	41,000 ²	0	0	0	41,000

¹Figures based on 90% of total puddle ducks and 60% of total diving duck estimates for southeast Louisiana. Louisiana Wild Life and Fisheries Commission, 1970-1971.

²Mottled duck and blue-winged teal only.

(unpublish	ed data court	esy of St	tate of Louisia	na, 1972).
			<u>Year 1969</u>	-1970
Muskrat fur	1,232,052	41%	\$1,512,052	25%
Muskrat meat	550,000	5%	44,000	5%
Nutria fur	1,604,175	53%	3,826,680	64%
Nutria meat	9,500,000	90%	760,000	85%
Total all species fur	3,002,043		\$5,965,700	
Total all species meat	10,480,000		890,000	
Total pelts and meat			\$6,855,700.2	5
			<u>Year 1970</u>	<u>-1971</u>
Muskrat fur	777,960	37%	\$1,230,246	27%
Muskrat meat	400,000	3%	32,000	4%
Nutria fur	726,739	35%	2,180,217	48%
Nutria meat	8,000,000	65%	640,000	86%
Total all species fur	2,090,761		\$4,512,968.5	0
Total all species meat	12,370,000		746,000	
Total pelts and meat			\$5,258,968.5	0
Highest production 194	58 milli	on muskr	ats	

Table 89. Nutria and muskrat fur and meat statistics in Louisiana

lowest production 1964.....unknown

Nutria: increased from 0 in 1942 to 1.5 million in 1966

MUSKRATS*	<u>Saline</u>	<u>Brackish</u>	<u>Intermediate</u>	Fresh
Unit III			18.5	4.0
Unit IV	73.0	81.5	93.0	15.0
Unit V	82.5	266.0	98.8	12.0

*Figures given are numbers of muskrats per 100 acres

Table 90. Population estimates on alligator in inactive and active areas of coastal Louisiana. See Figure 40 for locations. (Palmisano, 1972).

	<u>Sub-delta</u>	<u>Active-delta</u>
Private	16,740 brackish	1,200
-	9,720 intermediate	4,200
	15,680 fresh	2,800
Public (gm mgmt	3,400 fresh (Salvador) 2,160 fresh
and refuges)	2,820 fresh	1,320
	240 intermediate	1,320
	640 Biloxi brackish	920 intermediate

Table 91.	Benthic organisms of the Central Gulf Coast per salinity
	class and per taxon (extracted from Resources Technology Corporation, 1972).

		Salinity				
	<u>0-5</u>	<u>1-10</u>	<u>5-30</u>	<u>10-30</u>	20-40	<u>35-45</u>
Gastropoda	2*	1	2	2	5	12
Crustacea	2	2	0	3	0	2
Pelecypoda	0	4	5	7	12	9

*Number of species occuring in given gradient of salinity

	<u>Total Genera</u>	<u>Total Species</u>
Crustacea	13	14
Pelecypoda	53	67
Gastropoda	25	33
Echinodermata	6	6
Coelenterata	1	1
Scaphoda	1	1

Resources Technology Corporation "Fate and Effect Studies of Shell Oil Spill, Dec. 1970" Final Report, pp. 3-6 to 3-12 Table 92A. Sequential macro-organismal faunal successions for the Central Gulf Coast (taken from Resources Technology Corporation, 1972).

Freshwater/Brackish Water Assemblages (0 - 5 º/oo) Gastropoda Α Littorina irrorata А Neritina reclivata Crustacea С Uca pugilitor Α Cambarus sp. Low-salinity Assemblages (0 - 10 0/00) Pelecypoda С Rangia cuneta 0 Rangia flexuosa 0 Rangia carolinesis Ċ Macoma mitchelli Gastropoda -0-C Littoridina sphinctostoma Crustacea С Callinectes sapidus o Macrobrachium sp. Intermittent Variable-salinity Assemblages (5 - 30 °/00) Pelecypoda O-C Rangia cuneata 0-C Rangia flexuosa R Macoma mitchelli Α Crassostrea virginica С Petricola pholadiformis Gastropoda 0 Littordina sp. 0 Amnicola sp. Variable-salinity Oyster Reef Assemblages (10 - 30 0/00) Pelecypoda Α Crassostrea virginica C-A Brachidontes recurvus

Table 92B. Sequential macro Central Gulf Coa Corporation, 197	-organismal faunal successions for the st (taken from Resources Technology 2).
<u>Variable-salinity Oyster Re</u>	ef Assemblages (continued)
Gastropoda	
Crepidula plana	0-C
Crustacea	
Balanus eburneus Balanus amphitrite	с о-с
Variable-salinity Non-reef A	ssemblages (10 - 30 ⁰ /00)
Pelecypoda	
Nuculana acuta Nuculana concentrica Mulina lateralis Iagelus plebius Ensis minor	RO C A C C
Gastropoda	
Retusa canaliculata	R-O
Echinodermata	
Amphiodia limbata	C
Intermediate-salinity Inshore	e Coastal Assemblages (20 - 40 ⁰ /00)
Pelecypoda	
Aequipectern irradians Trachycardium muricatum Mercenaria mercenaria Chione cancellata Tagelue divisus	А А А С-А А
Gastropoda	
Nassarius vibex Neritina virginea Nelampus bidentatus	C R-O C
Intermediate-salinity Inshore	Shallow Water Assemblages (20 - 40 ⁰ /00)
Pelecypoda	
Abra aequalis Corbula contracta Diplodonta punctata Mulina lateralis Nuculana concentrica Pandora trilineata	A C R-O A C R-O
Periploma fragile	R-0

Table 92C. Sequential macro-organismal faunal successions for the Central Gulf Coast (taken from Resources Technology Corporation, 1972).

Intermediate-salinity Inshore Shallow Water Assemblages (continued)

Gastropoda

Nassarius acutus Retusa conaliculata	с о-с
High-salinity Oyster Reef Asse	emblages (34 - 45 ⁰ /00)
Pelecypoda	
Anomia simplex Brachidontes exustus Diplothyra smithi Ostrea equest ris	C C O A
Gastropoda	
Anachis avara Anachis obesa Mitrella lunata Thais haemostoma floridana	с с с-с
Crustacea	
Crangon heterochelis Menippe mercenaria	C O $34 - 45^{\circ}/00$
Pelecypoda	lages (34 40 7007
Amygdalum papyria Anomalocardia cuneimeris Laevicardium mortoni Phacoides pectinatus Pseudocyrena floridana	C A C R-O C
Gastropoda	
Bittium varium Caecum pulchellum Cerithidea pliculosa Cerithium variabile Haminoea succinea Modulus modulus Tegula fasciata	A C C R-O R R-O
Vermicularia fargoi	C

Table 92D. Sequential macro-organismal faunal successions for the Central Gulf Coast (taken from Resources Technology Corporation, 1972).

Inshore/nearshore Inlet and Pass Assemblages

Pelecypoda

Atrina seminuda Crassinella lunulata Lucina amiantus Lucina crenella Tellidora cristata	R-O C C C C
Gastropoda	
Anachis avara Polinices duplicatus Sinum perspectivum	R-0 C R-0
Scaphoda	
Dentalium texasianum	0-C
Echinodermata	
Arbacia punctulata Hemipholis elongata Luidia clathrata Mellita quinquiesperforata Ophiolepis elegans	0 R-0 0 C C
Coelenterata	
Astrangia astreiformis	с
Crustacea	
Dromidia antillensis Heterocrypta granulata	R-O R-O

Table 92E. Sequential macro-organismal faunal succession for the Central Gulf Coast (taken from Resources Technology Corporation, 1972).

Nearshore and Offshore Facies

Intertidal Surf Zone

Pelecypoda

ercel.	pour		
Donax	variabilis	variabilis	A
Donax	variabilis	texasiana	A
Donax	tumida		С

Gastropoda

Olivella	mutica		C
Terebra d	rinerea		A

Crustacea

Emerita	talpoida	A
Octpode	albicans	С

Constant-salinity Littoral Zone

Pelecypoda

Atrina serrata	С
Chione intapurpurea	C
Dinocardium robustum	С
Dosinia discus	С
Dosinia elegans	R
Labiosa plicatella	R-O
Solen viridis	С
Spisula solidissima	С
Tellina tayloriana	. A

Gastropoda

Anchitectonica nobilis	C
Rueucon plasiosum	С
Oliva sayana	C
Pholium granulatum	С
Tenebra dislocata	A
TELEDIG GEOLOGICE	

Echinodermata

Luidia	clathrata	С
Mellita	quinquiesperforata	A

Variable-salinity Littoral Zone (15 -36 °/00

Pelecypoda

Abra lioica	A
Macoma tageliformis	С
Mulina lateralis	C-A
Nuculana concentrica	С

Table 92F. Sequential macro-organismal faunal succession for the Central Gulf Coast (taken from Resources Technology Corporation, 1972).

Variable-salinity Littoral Zone (continued

Gastropoda

Anachis avara	С
Nassarius acutus	С
Polinices duplicatus	С
Crustacea	

Portunus gibbesi	0-C
Squilla empusa	C-A

Offshore Littoral Zone - Soil or Mud Bottom

Pelecypoda

Nucula proxima	. C
Nuculana concentrica	С
Pandora bushiana	С
Pitor cordara	Ċ
Varicorbula operculata	Ā

Gastropoda

Anachis sain	itpairiana	A
Nassarina gl	Lypta	С
Nassarius an	biguus	C

Offshore Littoral Zone - Sandy Bottom

Pelecypoda

Aequipecten gibbus	С
Aequipecten mucosus	С
Chione clenchi	А
Chione arus	С
Gouldia cerina	А
Laevicardium laevigatum	R-O
Lucina sombrerensis	С
Pecten raveneli	R
Phylloda sauamifera	с
Quadrans lintea	С
Samela nurnurescens	С
Solecurtus cuminaianus	R-0
Tellina georgiana	С

Gastropoda

Antilliphos candei	С
Distorsio clathrata	С
Murex fulvescens	С
Murex pomum	С
Strombus alatus	R-0
Tonna galea	R-0

						UTATER (DIP)
			SPRING (MAM)	SUPPER (JJAS)	FALL (ON)	(and woman
••	ŀ	Insolation	Increase	Maximum	Decline	Lovest
	5.	Air Temperatures	Increase	Maximum	Decline	Louest
PHYSTCAL.		Hater Temperatures	Increase	Maxt num	Decline	Lovest
FACTORS		Rainfall	Moderate	Maximum	Lovest	Increase
	<u>ي</u>	Mean Water Level	Increase	Decline then Increase	Na x1 mum	Lowest
		Rithar Innut	Maximum	Decline	Lowest	Increase
	; ~ 	bulk	Decrease (SE)	Calmest then increase (SE, (NE	Increase (NE)	Windlest (NE)
_	/ 1.	Marsh Grass	Maximum Production	High Production	Maximum Standing Crop	Annual Die Back
		Dead Grass	High	Low	Lowest	Highest Standing Crop
PRIMARY		Detritus	Peak Loss Rates	Moderate	Secondary Peak Loss Rate	Low
PRONICTION	2.	Phytoplankton	Increasing	Maximum Production	Decline	Low
		Epiphytes	Maximum	Low	row	Max 1 mum
		Benthos	Decreasing	Lovest	Righ	Haximum
		Racteria				
	i 	Marsh	High	Hígh	Highest	High
	_	Sediment	Eighest	Minimum	Minimum	Secondary Peak
MAJOR		Water	Highest	Minimum	Minimum	Secondary Peak
CONSUMER	∕~	Fungi	Increase	Secondary Peak	Maxi muz	Decline
SPECIES	, ,	Metofauna	Maximum	Low	Lowest	Low
		Zooplankton	Maximum	Low	Low	Low (secondary peak)
	- v-	Menhaden	Maxtmum	Decrease (adults out)	Lowest	Increase (post larvae in)
	فة : 	Shriup	Mariana {brown shrimp in	Maximum then Decrease	Low brown sarimp out	Increase (white shrimp out)

The major components of the estuarine system of Louisiana especially Barataria Bay (Stone, 1972). Table 93.

Table 94. Archaeological sites and brief description in study area. See Figure 57 for locations (unpublished data of Neuman, 1972 and Gagliano, 1972).

Marine Science #	Museum of Archaeology #	
	menacorogy #	Description
1	16PL24	Pelican Tale beach dependent
2	16PL13	Earth mound
3	16PL30	Beach deposit, marine shell more abundant the
		chenier material
4	16PL3]	Beach deposit, few rangia
5	16PL7	Oyster midden - few rangia
6	16PL5	Rangia and few oyster mounds 100 wds w 25 wts w 210
7	16PL8	(1) 65' x 30' x 5 $1/2'$ above march lows!
		$89' \times 54'$ (bottom of the nit)
		(2) irregular 30' x 21'
		(3) irregular 30' x 21'
		Site area 300' x 200', including 5 smaller bears of
		shell, three mainly oyster and two mainly ranging
•		pottery from mound
8	16PL26	Beach deposit, rangia and pottery
9	16PL19	Island, shell midden
10	16PL10	200' x 15' x 1' deep (eroded and disannearing 1036)
		Rangia midden
	16PL9	Rangia and soil midden
12	16JF3	Shell Midden
13	16JF47	The Graveyard (no information)
14	16JF12	Very large shell midden, rangia 3' above water lavel
		Several trappers shacks
15	16 JF11	Well Preserved shell midden have halos 2' halow
16	16JF10	Well Preserved, beach deposit
17	16JF34	Beach deposit
18	16JF9	Beach deposit
19	16JF8	Beach Deposit
20	16JF7	Beach Deposit
21	16JF37	Shell mounds and middens. 400 wds long

.

Table 95. Statistics of parishes and cities bordering estuarine study areas in Louisiana (Perret et al., 1971).

	Para		Ares (m. ml.)	Pag. De (no. par 1	nyüy N. M.)
	Thick	19182		3960	-5945
Name of Parida	17,991	20,918	#\$7	50.4	FR.4
Harne of City of Town	1148				· · ·
Repeletaville	145.475	107,437	1,104	1#1.B	182.7
Mame of City or Town					
DeQuinay	3,015 16,779				
Hollyword	1,750				
Laka Charlen	63.393	73,990			
Maplewood	2,437 11,429	18,848			
Salphur South	1,851				
Vinton	9,911 9,911				
	4.900	7,926	1,444	4	15
Magan of City or Town					
Dertin	\$1,657	\$1, 1 31	gaint.	67.9	106.1
Nume of City or Town	6,548				
Legenvulle	655	14.511			
More Borris	1,120				
	208,769	252,615	409	610.9	#1#.1
Mania of City or Twen					
Grund late	21.047	25,141			
Hernheit	6,275				
Jefferson Reights	17,037	28,000			
Watergo	9,815				
Tefferum Davis	21,625	32,851	654	41.3	51.6
Name of City or Town	1.305				
Jamings	11,207	18,398			
Lake Arthur	3,541				
Funice	439				
Lafetrela	85,30L	e1,110	1,167	47.0	61.4
Name of City or Town	8.097				
Lorut	2,796				
Lockport	. 2.631 . 3.666				
Thisedaut	33,443	16,097			
firintili	. 417,525	65-0,521	119	ិធ្ងរ ង់ដឹក	2.1000
Mame of City or Town	837 525	600.521			
New Oriente	and that		96.	22.5	27.7
Plaquentites	22.045	21.213			
Port Suppor	2,008				
Burne-Triumph				411	71.4
St. Bernard	12,110	38,142	B 24.	44.4	
Network of Cody of 1944	-		204	49.6	84.4
St. Charles Name of City or Town	. 14,215				
Alemande	1,167				
Laker	2,172				
New Barry	4.082				
Salut Rose	1,099				
St. Marr	. 48,833	\$9,006	605	80.7	\$7.5
Mame of City or Town					
Baldwin	1,180				
Frenklin	. 8,473	14 744			•
Patternen	1,823				
B. Townsed		44,834	905	42.6	49,54
Name of City or Tawn		-			
Abita Eprings	4,754				
Polaten .	. 125				
Nadynydia Mandevilla	1,740				
Poarl River	PG4				
	. 214				
Terretories		67,917	343	74.0	H.6
Name of City or Town					
Araite City	10,568	12,225			
Renned Last	1,462				
Inceptation	. 1,01				
Pen-hairela	1 1 1 1				
Tangipahoa	465				
Thirty	317				
Terrebenne		T6,612	1,291	43.7	p1.4
Name of City or Town. Barron Came	. \$,173				
DaigieviDe	6,906	-			
	. 12,941				
Vargetting		44,150	1,304	81.4	-0.J
Alberide	10,414	18,141			
Deleamber	2.019				
Gurylan	2,156				
Keptan					

Supervit: 3 U. S. Company of Population: 1940, Final Report PC (1)-30A. Significant State Department of Health, Division of Tabulation and Analysis, 1959.

Population predictions for State of Louisiana (Comprehensive Outdoor Recreation Plan -1970-75, Louisiana State Parks and Recreation Commission, June, 1971). Table 96.

Ruyline 131 1270 131
Weylering Main
Neutrulium No
Neuthern
Neutlant Neutlation
Reujium 10
Neyton
Neylen
http://documentation filter filter filter 1 1960 0 0 0 0 2 1960 0 0 0 0 3 1,225,287 37.6 27.0 1,591,446 40.9 29.9 2 393,937 12.1 31.6 510,844 13.1 29.9 3 416,127 12.8 17.5 491,626 13.1 29.9 4 221,264 6.8 39.4 271,820 7.0 22.8 5 277,1174 8.5 8.4 305,156 7.8 10.1 6 410,105 12.6 4.3 305,156 7.8 10.1 7 313,125 9.6 4.1 274,440 7.0 12.4 5 277,105 12.6 4.1 3,896,293 100.0 12.4
Register Proputation Proputation Proputation Proputation 1 1,225,287 37.6 27.0 1,591,446 40.9 2 393,937 12.1 31.6 510,844 13.1 2 393,937 12.1 31.6 510,844 13.1 3 416,127 12.8 17.5 491,696 7.0 4 221,264 6.8 39.4 271,820 7.0 5 277,174 8.5 8.4 305,156 7.8 6 410,105 12.6 4.1 274,440 7.0 7 313,125 9.6 4.1 274,440 7.0 7.4 3.257,022 100.0 21.1 3,896,293 100.0
Reylion Topulation Topulation 1 1960 0 0 1 1,225,287 37.6 27.0 1 1,225,287 37.6 27.0 1 1,225,287 37.6 27.0 2 393,937 12.1 31.6 3 416,127 12.1 31.6 4 221,264 6.8 39.4 5 277,174 8.5 8.4 6 410,105 12.6 4.3 7 313,125 9.6 4.1 7 313,125 9.6 4.1 2tate 3,257,022 100.0 21.1
Reyton Repartation Regen 1 1960 0 0 1 1,225,287 37.6 27.0 1 1,225,287 37.6 27.0 2 393,937 12.1 31.6 3 A16,127 12.1 31.6 4 221,264 6.8 39.4 5 277,174 8.5 8.4 6 410,105 12.6 4.3 7 313,125 9.6 4.1 5tate 3,257,022 100.0 21.1
Reylion Propulation Signal Si
Reylion Pepulation 1 1960 1 1,225,287 2 393,937 3 416,127 4 221,264 5 277,174 6 410,105 6 410,105 7 313,125 5 257,022 5 3,257,022 5 3,257,022
keyton 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

*Source: Bobo, Etheridge and Weed, (1968); The Population of Louisiana

79.9

10.8

641,930

58.1

0.11

564,117

39.5

11.3

497,857

23.8

11.4

441,675

27.8

10.9

356,807

8 1 Table 97. Projected population changes for 6 years of age and over in State of Louisiana (Comprehensive Outdoor Recreation Plan - 1970-75, Louisiana State Parks and Recreation Commission, June, 1971).

Section 1A	<u>1970</u>	<u>1975</u>	1980	<u>1985</u>
Jefferson	332,308	467,779	646,864	907 ,867
Orleans	602,326	643,080	692,854	735,523
St. Bernard	39,896	48,943	60,569	75,029
TOTAL	974,530	1,153,802	1,400,287	1,736,419
Section 1B				
Assumption	15,605	15,837	16,157	16,523
Lafourche	55,745	61, 617	68,309	75,769
Plaquemines	26,713	32,470	39,309	49,285
St. Charles	18,6%	21,710	25,434	29 ,92 6
St. James	18,575	20, 776	23,497	26,769
St. John	17,868	19,530	21,533	23,846
St. Tanmany	46,874	56,117	67,592	81,823
Tangipahoa	56,397	59,666	63,168	66,756
Terrebonne	65,739	73,931	88,299	102,577
Washington	42,053	44,557	47,485	50,904
TOTAL	364,265	406,211	461,280	524,178

Table 98A. Participation activity of persons six years and older, Region 1A, part of coastal Louisiana (Comprehensive Outdoor Recreation Plan - 1970-75, Louisiana State Parks and Recreation Commission, July, 1971).

		REGION 1A	_		
ACTIVITY		1970 User Days	1975 Usen Days	1980 Usca Days	1985 Usen Days
SVIMMING - ROOL	SUMMER 1/	4,872,650	5.769.010	7.001.435	8,682,095
BEACH	SUMMER SUNDAY	2,757,919 29,428	3,265,259	3,932,812 - 114,125	250,044 4,914,065 141,525
BICYCLING	SUMMER SUNDAY	6,012,850 173,170	7,118,958 205,025	8,639,770 248,825	10,713,705
DRIVING FOR PLEASURE	SUMMEN SUNDAT	4,044,299 116,475	4,788,278 137,902	5,811,191 167,362	7,20%,138 207,556
PLAYING OUTDOOR GAMES	SUMMER SUNDAY	3,800,667	4,499,827	5,461,119 157,200	6,772,034
FLAMING	SUMMER SUNDAY	3,050,278 87,848	3,611,400 104,008	4,382,898	5,434,991 195,527
WALKING FOR PLEASURE	SUMMER SUMMER SUNDAY	2,718,938 78,305	5,215,107 92,710	3,906,800 112,515	4,844,609 139,524
SIGHTBEEING	SUMMER SUNDAY	2,358,362 67,920	2,792,200 60,415	3,388,694 97,594	4,202,133
ATTENDING OUTBOOR SPORTA EVENTS	SUMMER SUMMER SUNDAY	2,046,513 58,939	2,422,984 69,781	2,940,602 84,689	3,646,479 105,018
PICNICKING	SUMMER SUNDAY	1,744,408	2,065,305	2,506,513	3,108,190 89,515
Moton Beating	SUMMER Summer Sunday	1,676,191 48,274	1,984,5 39 57,154	2,408,493	2,986,640
Hunting	FALL/WINTER	1,617,720	1,915,311	2,324,476	2,682,456
CAMPING - TRAILER	SUNDAY SUMMER	21 501	899,765	1,092,223	1,354,406
GAMPING - TENT	SUMMER SUNDAY	545,236 15 212	646,12%	784,160	972,304
CAASSING	SUMMER SUNDAT	299,114 23,014	946,117	1,148,235	1,423,863
HOASEBACH RIDING	SUMMER SUNDAT	701,651 20,207	830,737 23,925	1,008,206	1,250,221
BIRD WATCHING	SUMMER SUMMER SUNDAY	652,935 18,804	773,047 22,263	938,192 27,019	1,163,400
WATER SKIING	SUMMER SUNDAY	584,218 16,839	692,281 19,937	840, 172 24, 196	1,041,851 30,005
CRAWFISHINS	SUMMER SUNDAY	477.519	565,362 16,282	686,140 19,760	850,845 24,504
PCRYJNG GOLP	SUMMER	438,538	519,210	630,129 18 147	781,388
NATURE WALKS	SUMMER SUNDAY	399.557 11 507	473,058	574,117 16,534	711,931
HIKING	SUMMER SUMMER	321,594	380,754 10,965	462,094	573,014 16,502
ATTENDING OUTDOOR Concerts, PLATS	SUMMER SUMMER	146,179	173.070	210,043 3.049	260,462
CANGEING	SUMMER COMPANY	136,434	161,532	196,040	243,098 2.001
SAILING	SUMMER SUNDAT	68,217 1,964	80,766	98,020 2,822	121,549 3,500

Table 988. Participation activity of persons 6 years and older, Region 1B, part of coastal Louisiana (Comprehensive Outdoor Recreation Plan - 1970-75, Louisiana State Parks and Recreation Commission, July, 1971).

			REGIC	N LB		
ACTIVITY			1970 User Days	1975 User Da <u>ys</u>	1980 User Days	1985 User Days
Swimming - Pool	Summer Summer S	Sunday	1,821,325 52,454	2,031,055 58,494	2,306,400 66,424	2,620,890 75,481
Beach	Summer Summer S	Sunday	1,030,869 29,689	1,149,577 33,107	1,305,422 <u>37,596</u>	1,483,423 42,722
Bicycling	Summer Summer S	Sunday	2,247,515 64,728	2,506,321 72,182	2,846,097 81,967	3,234,178 93,144
Driving for Pleasure	<u>Summer</u> Summer S	Sunday	1,511,699 43,536	1,685,775 48,550	1,914,312 55,132	2,175,338 62,649
Playing Outdoor Games	Summer Summer S	Sunday	1,420,633 40,914	1,584,222 45,625	1,798,992 51,810	2,044,294 58,875
Fishing	<u>Summer</u> Summer	Sunday	1,140,149 32,836	1,271,440 36,617	1,443,806 41,581	1,640,677 47,251
Walking for Pleasure	Summer Summer	Sunday	1,016,299 29,269	1,133,328 32,639	1,286,971 37,064	1,462,456 42,118
Sightseeing	<u>Summer</u> Summer	Sunday	681,521 25,387	983,030 28,311	1,116,297 32,149	1,268,510 36,533
Attending Outdoor Sports Events	Summer Summer	Sunday	764,956	853,043 24,567	968,688 27,898	1,100,773 31,702
Picuicking	Summer Summer	Sunday	652.034 18,778	727,117 20,940	825,691 23,779	938,278 27,022
Motor Boating	Summer Summer	Sunday	626,535 18,044	698,682 20,122	793,401 22,849	901,586 25,965
Hunting	Fall/Win Fall/Win	<u>ter</u> ter	604,680	674,310	765,725	\$70,135
		Sunday	32,048	35,738	40,583	46,117
Camping - Trailer	<u>Summer</u> Summer	Sunday	284,126 8,182	316,844 9,125	359,798 10,362	408,858
Camping - Tent	Summer Summer	Sunday	203,988 5,674	227,478 6,551	258,316 7,439	293,539 8,453
Crabbing	<u>Summer</u> Summer	Sunday	298,397 8,602	333,093 9,593	378,249 10,893	429,825 12,378
Horseback Riding	<u>Summer</u> Summer	Sunday	262,270 7,553	292,471 8,518	332,121 9,565	377,408 10,869
Bird Watching	<u>Summer</u> Summer	Sunday	244,057 7,028	272,161 7,838	309,057 8,900	351,199 10,114
Water Skiing	<u>Summer</u> Summer	Şunday	218,559 6,294	243,726 7,019	276,768 7,970	314,506 9,057
Crawfishing	<u>Summer</u> Summer	Sunday	178,489 5,140	199,043 5,732	226,027 6,509	256,847 7,397
Playing Golf	Summer Summer	Sunday	163,919 4,720	182,794 5,264	207,576 5,978	235,880 6,793
Nature Walks	Summer Summer	Sunday	149,348 4,301	166 ,546 4,796	189,124 5,446	214,912 6,189
Hiking	Summer Summer	Sunday	120,207 3,461	134,049 3,850	152,222 4,383	172,978 4,981
Attending Outdoor Concerts, Plays	<u>Summer</u> Summer	Sunday	54,639 1,573	60,931 1,754	69,192 1,992	78,625 2,264
Canceing	<u>Summer</u> Summer	Sunday	50,997 1,468	56,869 1,637	64,579 1,859	73, 38 4 2,113
Sailing	Summer Summer	Sunday	25,498 734	28,434 818	32,289 929	36,692 1,056

Table 99.	Rankings by hydrocarbon sedfments and catches (extract	ed
	from Resources Technology Corporation, 1972).	

		Miles			Sedim CC1	ent Hydro 4 Extract	carbon able	l
		From Rig		N		NW		S
Sediment	Distribution	1		3.20		2.80		2.75
		2		3.05		1.80		1.25
		3		2.50		2.75		2.60
		4		.70		.60		1.00
		5		1.10		1.00		1.00
		6		1.40		3.00		
		7		1.70		1.25		
			Simple	Divers	ity	Mean	Divers	ity
. .			17	NTJ	T.T	м	NUT	c

		-		-			•
Composite Megafauna		N	NW	W	<u>N</u>	NW	S
Diversity	ľ	10	20	20	1.25	- 80	.75
	2 3	19	23	31	1.60	1.40	1.10
	4	19	16	18	1.15	1.20	.80
	5	18 17	18 16	18 	1.45	1.00	1.13
	7	12	14		.65	. 80	

Composite Van Veen Crab Catch Data Count Per m²

Composite Crab Catch		N	NW	<u> </u>
Data	1	2	12	11
	2	5	9	31
	3	48	9	18
	4	10	11	10
	5	16	15	8
	6	12	14	
	7	4	39	
			Counts Per	m ²
Composite Meiofaunal		N	<u>NW</u>	<u> </u>
Mean	1	2	12	11
	2	4	9	28
	3	42	8	16
	4	8	10	9
	5	14	13	8
	6	11	12	
	7	1	36	

Hydrocarbon Sediments Ranked With:

	Simple	Mean		Composite
	Diversity	Diversity	Crab	Meiofauna
North Transect	6339	1339	4642	3571
Northwest Transect	+.2947	+.1786	1160	1517
South Transect	+.8929	+.4331	+.7679	+.7679

Table 100. Prevailing winds for January offshore Louisiana. See Figures 59, 60 and 61 for location (Texas Instruments, 1971a and b).

-

Direction (from)	Speed (knots)	Percent
North	10-16	23
Northeast	10-16	11
East	6-10	11
Southeast	6-10	16
South	6-10	15
Southwest	6-10	4
West	17-21	6
Northwest	10-16	14

Table 101.	Yeast populations in Gulf of Mexico area following oil ri
	fire and spill ^a (Meyers, 1971).

TIME OF COLLECTION AFTER INITIAL EXPLOSION	CONCENTRATION (CELL/100	OF YEASTS ML)	IDENTIFICATION
2 WEEKS	66 - >	200	RHODOTORULA/RHODOSPORIDIUM
6 WEEKS	2 - >	500	RHODO TORULA/ RHODOSPORI DI UM <u>CAN DI DA</u> TRI CHOSPORON
13 WEEKS	0 - 2		TRICHOSPORON CANDIDA

 $^{\rm B}$ concentrations calculated from approximately 30-40 samples over "Control" and oil-contaminated region

Table 102. Results from employing minimum dilution method to estimate the relative abundance of aerobic oil-oxidizing bacteria in mud collected from oil-polluted areas of Barataria Bay and adjacent regions (Zobell and Prokop, 1966).

Results from employing minimum dilution method to estimate the relative abundance of aerobic oil-oxidizing bacteria in mud collected from oil-polluted areas of Barataria Bay and adjacent regions.

Total number of samples examined	84
Number in which oil-oxidizing bacteria were present	82
Number of samples having at least 10 ² oil oxidizers per gram	47
Number of samples having at least 103 oil oxidizers per gram	31
Number of samples having at least 104 oil oxidizers per gram	25
Number of samples having at least 105 oil exidizers per gram	11
Number of samples having at least 100 off chidders per gram	8
Number of samples having at least 10° off Oxidizers per gran	-

Results from employing the minimum dilution method to estimate the relative abundance of bacteria in mud samples from the Barataria Bay region which oxidized oil under strictly anaerobic conditions as indicated by sulfate reduction.

Total number of samples tested	100
To the second se	78
Number of samples positive with 1.0 gram of wat mud	36
Number of samples positive with 0.1 gram of wet mud	10
Number of samples positive with 0.01 gram of wet mud	12

Table 103. Effect of crude oil on marsh plants and its persistence under natural field conditions on coast of Louisiana. The oil was retained in 16 ft² pens by 4 x 4 ft wooden bulkheads (Zobell, 1962).

	Amount of oil applied per pen				
	none		375 ml	750 ml	1500 ml
Calculated amount of oil per acre (U.S. gallons)	0	134	269	539	1078
Time oil remained visible on water surface (days)	-	30	30	60	60
Time oil persisted in bottom mud (days)	-	60	60	100	180
Plants surviving in pen after 2 months (percent)	100	100	90	8 5	75
Plants surviving in pen after 1-year (percent)	100	100	100	50	10

Table 104. Yeast populations in marshland sediments before and after saturation with oil (Meyers, 1971).

Species	Per cent of tota	l population ^a
	Before	After
Pichia_spartina_	20-30	<10
P. saitoi	20-30	<10
Kluyveromyces drosophilarum	10-25	<10
P. ohmeri	<10	25-30
Trichosporon sp.	<10	15-30
Rhodotorula/ Rhodosporidium	<10	25-30
Cryptococcus sp.	<15	<10
Sporobolomyces sp.	<15	<10
Mean Population	9000 ^b	<u>18300^b</u>

^abased on colony differences and use of selective agar (Meyers et al., 1971).

^bcolony forming units per cc of sediment.

Table 105. Results of physical and chemical analysis performed by the E. W. Saybolt Company, Inc., on the test crude oils (Mills and Culley, 1972).

Property -	Q-30	W-30	Q-4-D	W-4-D
Gravity, API at 60 F	33.5 [°]	29.30	32.3°	22.4°
Viscosity, S.U. at 100 F	45.4 sec	63.5 sec	50.4 sec	188.1 sec
Asphaltones	NIL	NIL	NIL	NIL
Naphtha	23%	26%	14%	15%
Gas Oil 390-620 F	36%	24%	40%	22%
Heavy Distillate 620-760 F	27%	36%	36%	13%
Reșiduum	14%	14%	10%	50%
Sulfur ASTM D1551	0.22%	0.33%	0.30%	0.83%

Table 106A. Approximate 48-hour LC_0 , LC_{50} and LC_{100} values for <u>Penaeus</u> shrimp and crude oil (ppt) (Mills and Culley, 1972).

011 Number	LCO	LC ₅₀	^{.C} 100
Q-30	<1.0	7.5	15.0
W-30	2.5	5.0-7.5	>10.0
W-4-D	10.0	40.0	50.0-75.0
Q-4-D	دا. 0	1.0-2.5	7.5

Table 106B. Approximate 48-hour LCO, LC50 and LC100 values for <u>Penaeus</u> shrimp and oil spill removers (ppm) (Mills and Culley, 1972).

Oil Spill Remover	^{LC} 0	LC ₅₀	LC ₁₀₀
Corexit	500.0	5,000.0	>7,500.0
Ameroid	40.5	2.5	5.0
Data on resultant current vectors in terms of speeds (cm/sec) and direction (degrees) at 7 m/sec. Winds toward 280° for each grid of Figure 65 at 46,800 sec (13 hrs). Table 107A.

0-+135 0--135-0..135. G. -135. 0..135. 0..135. 0..134, 0. -134. 0..135. 0..135. 0..135. 0..1354 0..134. 0..135 0. -134. 0+ +1 35+ 0++1354 0++135 0. -135. 0++135. 0++1350 0++135+ 5 0++135+ 28++ 4+ 23++349+ 18++343+ 11++355+ 30e+ 2+ 26+352+ 24++347+ 13++ 6+ 15+ - 354. 15-, 359-2447 10 21413590 1687 80 1361 94 10++306+ 0..135. 7...320. 13++347+ 8..319. 9..313. 10..299. 11 ... 30... 11...324. 10+-325-5..321. 9.13474 10..298. 94.310. 28++3+6+ 23++333+ 17++317+ 11++315e 8++333+ â 234,358, 224,3574 14,13384 0..135 194 .358 14. 334 11. 324. 28.. 3. 25..360. 24.. 0. Z# 23++ C+ ZD++ 2+ 134.3404 26++346+ 23+,337+ 17+,324+ 30++ 3+ 9...3224 16...2044 28..341. 19.,315. 11..306. 14++294. 15.. 296. 17..305. 16..330. 13. 1336. 9..332. Dev134. 0.134. 0.135. ŝ 0.135 27..342. 21..330. 29.4340. 23. 326. 1441 74 114.3474 27..345. 17..326. 294.344. 24.130. 60++196+ 68++351+ 48++ 14+ 34++ 21+ 29++ 22+ 20++ 11+ 20++356+ 17++346+ 23. 350. 16. 350. 204+334+ 2. 24.,359. 21...340. • 0..135. 20413434 254+352 2 29... 26.. 6...90.23.. 1. 0. 105. 0.132. 0.133. C. 134. • 27. 35., 14. 14 × 28.1 · 8. 9, 29, 1, 29, 3, 25, 359, 8. 35., 3. 33, 35. 654 1988 70453494 4884 44 3844 144 3344 114 304 4 23 59.11944 601.357. 424. 374 314. 44. 228. 41. 17. 27. 80++229+ 53+ 40+ 45++ 49+ 41++ 50+ 31++ 794 A7++ 48+ 44++ 35+ 38++ 23+ 34++ 13/ d3e+180e 6ie+ 56e 58e+127e e5e+1352e 13e+ 1e 35e+ 5, 32e+ 6e 30e+ 3, 29e+159e 27e+353e 62**324% 54**336* 43**350* 38**356* 34**354* 36**348" 0=r999a 54=187= 81=1347a 55413561 43+13604 364.357+ 32,+352, 0. 9994 0. 9994 0. 9994 0. 9994 0. 994 0. 90. 2347 1. 0. 1134 53+ 242+ 87++ 41+ 62++ 39+ 46++ 24+ 00 300.3550 28.43515 490.346s 414.357e 35e+3561 32s+3565 3. 43. 4. 4. 37. 366 , 32. 356. 40.. 30. 40. 39. 29. 47. 22. 52. 31. 38. 35. 28. 34. 19. 31. 11. 67er 52e 53e-33fe 47e+3e1e 43e,350e 39e+355e 36e+358e 33e+457e 31e+354e 29++348= 50**338* 44**347* 39**354* 35**356* 32**353* 30°*349. G. 999. 57. 222. 118. 41. 39. 29. N, 16. 29. 13. 29., 6. 25., 2 ó24+ 274 440+ 284 Jús, 294 255+ 294 234+ 294 284+ 284+ 255 374+ 204 304+ 42... 510. 47. 39., 73. 51.,102,106., 45, 59., 37. 2 5. 41... 49a+351a 43e+354+ 38a+358a 35e+ 1e 33e+ 2e 32e+ ø 69.196. 77.,349. 55., 69+197+ 73++350+ 52++ 45.. 8. 40.. 15. 33.. 18. 28.. 18, 27.. 18. 28.. 68.192. 50.257. 47.1355. 41m. 3. 35.. 9. 31.. 11. 30.. 12. 30.. 0. 1999. 59.1276. 59.1270. 66..268. 78.,233. 22., 66. 62., 27. 764.3204 æ +1+ - +59 • 67., 48. 57., 326. 494+1884 70++ 454 46.160. .999. 0, 1999**.** *666**¢ 0. . 999. *655**0 φ *6661 *0 *666 * *0 *566**0 0..999. -000..0 000 · · 0 •666 · •0 *666**0 ****** +20E. •EI 0...999. 49.. 180. *666**0 00.1999. ****** 000.000 0**999-010 - 00 De 0. 1999. 0..999 0...999 61..203. 39s - 340s 60..359. 0...999. ** 666 * * D 9--999-59.. 18**0.** •666 • •0 0*+ coo* •6 660 •0 0..999. -666. -0 59.+205. 81 ** 23 1* 57 ** 182 * 04.9994 9.00 ... 0 *666**0 •666••0 0...999. 59. 197. 42. 330. 4665 ··· 0 0.1599. m •• • 9 9 9 • 0...999. ****** \$4 - 999. *666**0 *656**0 *666**0 +666+ *0 0..999. *666**0 *666**0 *666**0 -666...0 -000--0 *665****0** • • • 666 • • 0 0.+ 999. N 0 + 1 9994 0...999. *566**0 ****** 0..999. *666 **0 0.1999. 0..999. 0 ** 999***** *666**0 -000 ·* 0 *666**0 •656 •• 0 •055 • •0 *666**0 0..999 000.00 -000--0 -1099 -566...0 *666**0 21 N N •• m đ n ø æ 1 N 5 2 ь. o g M £ ្ឋ 4 81 8

Data on resultant current vectors in terms of speeds (cm/sec) and direction (degrees) Winds toward 280° at 7 m/sec. for each grid of Figure 65 at 61,200 sec (17 hrs). Table 107B.

0..135. 0.,135. 0a +134a 0. .13Å. 0++134= 0++134= 0..1354 0...135e 0..135s 0• •135• 0--134-0e+134e 0e e 1 34e 04.1344 0..135. 0++135+ 0++135+ 0e .135e 0= +1 35e 0++1.35+ 0..1354 0...135. 5 14e+ 48= 10e+ 38= 7++ 27= 0++134+ 0++134+ 0++134+ 0++135= å 204: 24: 24: 20: 20: 17: 15: 14: 22. 23. 18. 18. 14. 16. 9**354* 15**358* 29++ 22+ 24++ 16+ 19++ 14+ 16++ 13+ 21++ 36+ 16++ 31+ 16++ 26+ 12++ 20+ 9**359* 11**340* 1644 T. 64+3544 84,3484 9** 28* 18.. 44. 12.. 40. 10++ 44+ 741 354 0..135. 7.. 32. 10++ 39+ 194. 37. 11e. 30. 465 -44 2 16e. Te 16er 32. 23. 33. 33. 10.. 25. 9++ 7= 25.. 51. 17.. 42. 11.. 33. 15... 20. 25++ 46s 21++ 43+ 22++ 33+ 23.. 44. 19.. 49. 39. 25. 42. 15.1 40. 314. 25. 19. 23. 10. 19. 12. 358. **0.**.135. 8.. 39. 2 31e: 24. 23e: 25e 3141 180 24m4 13e • é 30.. 17. 24.. 12. 0.135. 25.. \$7. 19.. 39. 22++ 42+ 26.. 45. 23.. 44. 22+ · 56+ 13+ · 50+ <u>*</u> 314+ 15+ 23++ 334+ 17+ 18++ 24... 29. 17.. 58. 26. . 44. 0..135. ÷, 2 30... 264. 27.0.0 0.:999**. 47.:205. 48..348. 36..** 12. 32.. 25. 30.. 29. 31.. 27. 0++999+ 44+-207+ 46++345+ 32++ 12+ 30++ 32# 30++ 37+ 27++ 33/ 0*,999* 41**207* 44**348* 32** 23* 27** 42* 27** 49* 24** 45* 394+2014 364+356+ 294+ 494 284+ 64+ 254+ 69+ 224+ 564 0.. 90. 12.. 1. 0.121. 0.132. 0..133. 0..133. 44 37ss 20a 36ss 23a 34ss 21s 0...990. 32...192. 53...348. 40... 7. 36.. 19. 35.. 23. 33.. 22. 294:180. 434. 464 374:3364 354:3534 354. 78 354. 194 364. 244 354. 26. 354. 24. 34..359. 31.. 13. 28.. 25. 27.. 33. 28.. 38. 24.. 38. 30.. 38. 31.. 38. 31.. 37. 29.. 30. 0..999. 34.188. 42..339. 35..359. 32.. 8. 32.. 17. 32.. 24. 33.. 29. 33.. 31. 31. 31. 31. 31. 31. 29. 01,999# 370,1000 430, 454 359,338, 330,353, 330, 8x 341, 184 340, 244 35x, 284 35x, 204 35x, 20 440: 440 390.3340 379.3510 360. 12. 370. 21. 360. 23. 340. 22. 0..999. 46..202. 50..349. 39. 11. 35. 22. 33.. 25. 31.. 22. 410.2100 100.3130 394. 500 334. 810 45001040 8601 510 434. 580 3401 620 300. 550 510.2311 390. 430 350. 570 330. 750 32n. 920 420. 65. 370. 610 330. 57. 300. 510 294:3438 304: 364 321: 524 254: 714 234: 84+ 304: 67+ 324: 59+ 314: 534 294: 492 330,329. 340. 11m 300. 250 200. 350 240. 43. 250. 470 270. 460 290. 450 300. 430 280. 434 40++180= 39++ 49+ 40++331= 33++ 1+ 30++ 16+ 30++ 25+ 30++ 31# 32++ 34+ 35+ 35+ 34+ 31++ 33+ 284 474 0...999. 30..219. 85.. 51. 40.. 56. 44., 37. 18.,233. 71., 53. 55., 61. 38., 58. 0**999* 0**999* 0**999* 0**999* 0** 90* 12** 1* 0**125* 21 464: 276 3340 360 2800 450 2200 580 2200 630 2700 572 2901 520 3041 480 E 2 ø 0++999# 28++180+ 43++ 40+ 48++329+ 37++ 42= +270= ¢ 49..234. 19.. 71. Q. 1999. 42.1277. • •666••0 0°* 1000* ÷ *666* *0 • 666 • • 0 -666. .0 0**399* 29**180* 0°,999. 0e - 999e -266. -0 -666 - •0 *666**0 0** 999* 0**999* 46e=269e ø -666.-0 0..999. •666 • •0 4566 **8 9.00 · · · 0 •666 • • •0 0.. 999. *665.*0 00+999a 0++999= * 4066 * 40 •665 •• Q 4665 * 40 •066 • • 0 -666. -0 -666...0 0 es 999e 001599 37...184 -666 **0 0 . . 999. 0...599. *666**0 30..213. • • • 88.6 • • 0 52..235. 15 0. +999. 0..999. 46661.00 -666..0 *666**0 0..099. -060--0 -666..0 0..999. •666 • •0 394 +2054 44..198. -000---0 *665**0 °665**0 04,0994 ~ •666••0 0. 1999. -999+ -0 -000--0 9999 . . 9 .00..099. 00.0990 .000.00 0...999. 9665 **0 1 0.. 499. •056••0 0019990 0er 999e *666**0 0.,999. *566**0 941-9994 51 23 9 2 1 8 ŝ 2 8 2 11 2 2 ø

Data on resultant current vectors in terms of speeds (cm/sec) and direction (degrees) Winds toward 280° at 7 m/sec. for each grid of Figure 65 at 72,000 sec (20 hrs). Table 107C.

0..135. 0+ +1 35e 0++135+ 0--135 0..135. 0. .135s D..135. 0..135. 0..134. 0..134. 0..135. 0. 1135 0...135. Qe 1135a 0461.00 0++1344 0..134. 0++135+ 0..135. 0. •135a 0++135+ 0++135s 23 0++135. 13. 54+ 71+ •0• 34+ 24+ 84+357+ 144. 11. 27. 34. 68. 3a . 76a 4e+ 75+ 644 TS+ 4.4. 59. \$ 15.. 19. 14.. 27. 13.. 27. 10.. 29. 7.. 37. 0..135. \$ 11... ŝ ł 15... 10... 9.. 51. 0..135 75+ 10++ 72+ 74. 60. 0.. 39. 8.. 32. 15.. 31. 18.. 33. 18.. 34. 0 .. 135. 7... 76. 74. 80. 8++ 75+ 10.. 71. 11 .. 75. 12... 70. 134. 72. 8... 43. 9... 41. 1144 284 15++ 33+ 14.. 30. ŝ ŝ 0..135. 12... 80. 13., BO. 14. TB. •19 26.. 34. 15.. 31. 18. 28. 19.. 32. 20., 35. 37. 17++ 38+ 13.. 71. 12.. 60. 12... 83. 72. 17.. 69. 19.. 47. 20.44 326 0.,134. ě 15e. 54e 15e. 46e 4 10. 19.. 17++ 76= 14++ 15... 18. 17 •GE 0++135+ 18.. 8D. 18.. 84. 17.. 82. 17+- 79+ 16.. 73. 68**.** •09 24.1 514 24++ 45+ 25... 43. 254 - 354 25.. 32. ł 20.. 41. 17.. 45. 0++134+ ŝ 1941 20.. 23... 2341 0.. 90. 1..162. D..135, 13•• 2• 15••345• 15•• 10• 18• 28• 21•• 38• 23•• 44• 25•• 46• 20•• 47• 26• 46> 2++ 0+ 12++ 5+ 14++353+ 16++ 16+ 19++ 30+ 23++ 39+ 25++ 43+ 27++ 43+ 27++ 41+ 0++999+ 11++280+ 18++342+ 18*+ 19* 21++ 354 23*+ 39* 24*+ 37* 94. 12, 124. 56. 15a. 54. 154. 620 3. 70. 28. 74. 243. 77. 28.. 84. 24. 54. 84. 74. 19. 74. 17+-352+ 15+- 17+ 15+- 38+ 16++ 51+ 18++ 57+ 19++ 58+ 21++ 59+ 22++ 59+ 21++ 60+ 124+3564 16+43514 19+1 26a 234+ 374 254+ 394 26a+ 374 0+.999+ 17+.263+ 18+,332+ 164+ 15+ 19+. 36+ 21+. 41+ 22+. 39+ 04-999± 214-2654 20+3184 114+ 34 144+ 44m 17m 51a 18m+ 495 6e, 49e 12e, 78e 15e, 82e 15e, 79c 0..134. 200 - 87, 20...83. 13+. 30+ 14+. 58+ 14+. 87+ 14+.102+ 16+. 894 19+. 85+ 20+. 81+ 19+. 78: 664 200 67a 24++ 55, 24++ 54c 50. 25. 51. 25. 49. 264. 41. 26., 39. 18 . 45. 21.. 42. 21 0++134. 14.. 82. 17..102. 20.. 83. 20.. 88. 20.. 88. 14++262+ 10++320+ 16++ 38+ 13++ 74+ 18++103+ 34++ 58+ 19++ 87+ 20++ 94+ Ξ 20 20••325• 17•• 1• 14•• 26• 13•• 48• 14•• 63• 15•• 69• 18•• 69• 20•• 67• 20•• 55**.** -11-9. 16.. 36. 14. 0. 124. 9. 14e.355. 18. 17. 21e. 33. 254. 39. 0..135. 0..134. 12m+ 54. 11m+ 52m 31m, 68. 2 17.. 50. 19.. De 10e: 29a 17e: 42a 19a: 50a 21a: 53a 23a. 20 100 220 1001 350 2001 430 2201 480 2400 04.999**.** ••• 000* ۰ 144. 0..499. 0..999. 0..999. 18..287. 17..270. 20+.263, 19.,325. 0++994 21++206+ 17++315+ 0+,999+ 15+,263+ 10+,318+ 1..162. 20=+ 15e 15e+ 34e 13e+ 56e 12e+ 79e 14e+ 86e Ð 04 . 90 74. 39. Þ ******* 14++ 54+ 9..281. 0..999. 1.. 0. *666. •O *000* *0 ٩ • 666• • 0 0..999. *666**0 • 666• •0 l 7a + 284e 11 ... 286. 15. . 29. ****** +666- +0 0..999. 0. +999. 0.+999. ŵ 15... 19e+344e 16e+ *666**0 0..999. *665 **0 04-330° 17.+339+ 19. 332. 0.1999. *566**0 0.00 - 00 04.9994 *656**0 ••• 336° *555**0 *666**0 • 21...336 2 .. 180. *** 000* 04.19994 0 .. 599. 0...599. 14..272. 14..289. 16413454 124.2824 1665110 -565--0 0..999. •666 ••0 • • 6 6 6 • • 0 *** 88.5 * *** 0** •666 •• 0 \$666**Q 9 ** 595* 0...999. m 144 .262. 0. 1999. 0.,999. *665* *0 9655190 15++267+ •••000••0 • • • • • • • • *555**0 0.+ 999a *666**0 0. . 999. -046..0 4666440 4000.00 34+160+ -000--0 0. 1999. 0.1999. *566**0 •666 ••0 ٩I 04.999. ***** 0.1 999. 9666**0 0. .999. 0..999. *666 **0 4666. *0 0.41 3994 04+9994 -000--0 4666 *** 0. .999. 0..999. 0.000 0...099 00 + 999 e .999..0 0. . 999. -----• ø æ E I •0 2 2 2 ± ŝ 2 5 æ 2 8 21 N

Data on resultant current vectors in terms of speeds (cm/sec) and direction (degrees) at 7 m/sec. Winds toward 280° (22 hrs). for each grid of Figure 65 at 79,200 Table 107D.

64+1354 0.135. 0.1354 (••135• 04 +135 04.1354 0..135, 0.135 0,,135, 00.1350 J. .135. 0++1353 0.1135 0..135. 0..135. 0.135. 0.1135 6e.135o 0..135. ...135. 2 1... 86. 3 16. 2 **6** • 31. 33 10. 32. чо 20* 5++ 33+ 5.+135. 3..144. 4..146. 2..124. 2 ... 1B. ÷ 74. 29. 0.,135. 2..150. 3++163+ 1.157. 2..102. 2 8... ֥9 4 4 4 10... ..6 44. 51,5 44 12... 43. 12....... 61. 48. 73+1463 No. 97. *** 101* . . . 10.. 38. 9.. 39, 00+135+ 0211359 6,.11. 3, 50. ee. 99. 6 . · 123. 7. 132. 6.126. 15 \$ ъ. В 11... ***** 4 5 •8• 4 1 4.7 e ÷9 4 1 \$Q. 66.1 12.. 47. 6e. 6v. 0..135. 9. . 1 J . 11.1 941 8.. 494 0.1135 12.4119. 9.12. 19.11034 11... 73. 13-11-3- 13-150-10..124.5 9.122 4 12 11... 12... 116. 13. 13. 13... 13... 9°9'9 16. 52. 14. 49. 14, 52. 11. 54. 5., 78. ...135. ...135. 12.117 12..139. 15., 73. 7.. 63. 14..126. 12.1275 12441-224 12,, 87. 15., 68. 16.. 630 16.. 49. 9.. 56. 13.123. 2 17. 17...71. 16. 55. 12...57. 10. 59: ••• 33• 17. 57. 54. Å.. 67. 5.. 83. 0. 1135. 15.. 78. 665 18++ 63+ 14.120. 15. .129. 13.-118, 13.1094 134. 864 0--141: 13., 97. 15..130: 14++126. 12 1.8.1 2..147. 6 l. 27+.193+ \$ 12.. 61. 9** 65* 7... 71. 3+ ,115. 04+135+ ÷ 9, 11 79. 13.125. 8..121. 10..124. IL. 116. 12..112. 13. 87. **.**09 •69 12. 67. 15., 51. 5.. 80. i 6...152. 14.136. 15...146. 13., 99. 1 17... lla. 72. 13. 69. 16. 67. 17. 15... 154. 66. 164. 9** 66* 11** 70* 14** 73* 15** 74* 16** 4..222. 2.,107. 8.. 70. 7**Z34* 0..1304 9e+136+ 12m+132e 12...101. 120. 89. **60 6**9 54+ 7.34 2. .209. •06 ••0 0..999. 25.. 43. 124+149+ 26+ - 51 . 140 . 175. 14..169. 2 1441 t 6a e 7...235. 0..1.3. 12. 71. 18..221. 15..244. 4..212. 9..239. 11... 77. 13.. 79. 3 .. 121. 13.,237. 04.9993 11.4.2014 e..156. 10..102. 9.+ 86. 11.+ 88. ÷. 9.. 80. ø 14... 9411798 12..102. 10. . 194. 36++339, 12++219+ 14.42304 17.4.+2354 18..232. 74+138+ *666**0 16.. 82. 10.. 90. 5..290. 8. .103. 12. 69. 20.197. 3..161. æ .00 . .U 24. +264 + 0. .999. 3L. 132. 8.. 77. 37...335. 37. 332. 36+.329. *666 **0 11... 67. -90CE - 19 5. 1120. 0. 10. 8. 95. 32.4+3.38+ 7..301. 4.,145. 64. 98. 7...81. 84. 69. 24+2484 ~ 0...999. *665* *0 C... 999. 22++266+ 2544 04 5**00** 550 5. B7, 6e+999+ .999. Ce+399+ 8.243. 1. .286. 24. 93. 5. 62. 5**. 55**. 5.. 65. ÷999+ 33.. 38. 5. .290. 3.. 75**.** ٩ 3, •3380 •666• •0 1965 . S J. .999. * *6Fi6 000.000 *666**0 °666 • • 7 3. 1322, 3. 349. 45. 1. 2. 22. 24..272. 26++ G+ .099.40 0...9992 •665 • •0 10..346. 8..301. 5++317+ 4 ... 7. 19. 63. ŵ •566 • • 3 94,2794 26..280. *666**0 *555**0 *666**0 *666**0 84.351. 5..345. 27.4 0.4 0.1999. \$665 ** ¢ ****** •666 ••0 8++302+ 29++352+ 8..322. 7a. 323a *666**0 \$466° ** •666••0 35++ 30+ *655 ** 0 30...336. °** 666** 0 10.1999. *666 **0 -666-10 ***** 31...289. 30.. 0. 1011999. 1665**0 •666••0 9 ** 556* ÷566• ° ? *666**0 0049995 30.4.3534 10+.337+ 134,305. *666**0 35.1 28. C. . 999. m 4 •666. •0 32. 342. *666**0. C++999+ 0. · 999. *666**0 *666* *O ₽666'*0 0..949a 37..343. 4666.40 *656**0 • 666• •0 0°°999° 0..9996 0.+999+ ••• 666• 0.099. ŝ 324+ C. 1999. ...999**.** +066++0 3... 999. *566**0 10.099a • • • • • • • *656**0 0.. 999. .000.00 9665**0 *666**0 C. 999. 4666440 •666.•0 9868 ** C .9994 .000.00 C. . 999. °666**0 -4 ri T 4 ŝ 16 17 18 2 8 2 NN ¢ 2 11

terms of speeds (cm/sec) and direction (degrees) (26 hrs). Winds toward 280° at 7 m/sec. for each grid of Figure 65 at 93,600 Data on resultant current vectors in Table 107E.

úe +135e 0.1350 Qe +1 36e 04 +1352 6e.1J5, C..135. 0.135, C...135. 0.,135, 0..135. 0•136, D. 136. 0.136. ú•+136• 00.1362 0.136. 0. • L 36. 0..135 0.136. 04+135+ ú...135. 0.116. 2 24+2114 11.1219. 0+.135 7..215. 1 C.. 225. 9..218. 14.,229. 10..234. 7..231. 5. +206. 7..184. 9.1190. 10...201. 8..212. 6..242. 6. -254. 0..135. 6e. i 95. 13. .196. 9..206. 7..215. 7..230. 2 21012120 30.135 c 4...188. 14..201. 19**2170 14..2270 5c+198+ 18..254 19. 228. 6..194. 4 ... 194. 61.197. Ha. 207. 9++216+ 10..238. 11..250. 94.2214 9..208. A. 204. 10++226+ 11 •• 262• 0..136. ŝ 17..202. 20..216. 16..228. 12..227. 14..239. 04+1354 7--1620 14.1350 18.217. 20+,214+ 21. .219-214+215+ 2---191. 13-192. 18..19C. 14..197. 16. 177. 11.1444 15..191. 10.189. 14..201, 19..201, 11..215. 15...252. 16..262. 0.,136. 18.+235. 4 0.1.15. 23,+2780 13-+194+ 220+2940 214+211. 21-+228. 18.1145. 210.251. 2...232. 23..210. 22..212. 21.4.139. 15..188. 15..217. 18..240. 234.262. 14+137. n I 48..196. 39.+214. 32.+223. 26.4227. 23.4227. 23. 211 > 24..239. 254 +211, 21++204+ 20. 197, 20..192 . 18..196. 28**205* 22**207* 18**205: 264+252. 0--137-54.. 33.111..222. 33..214. 20..203. 20++192+ 19++191+ 19++189. 19..186. 24++217+ 19+215+ 29.+203+ 0..148. 34++215v 28++216. 17. .190. 28..210 12 0.. 90. 23. 180. 26±+271, 62++244+ 45++ 45+ 80±+228# 58++226= 62a+248a 31++153+ 30+166# 25a+185+ 23a+192+ 20a+192+ 25..197. 21..198. 49..226. 35..219. 37..226. 32..217. 28.+215. 24.4216. 25.4212. 22. . 211. 23. 207. 21..202. 60++266+ 21++15¢+ 21++199+ 2C++207+ 20++207+ 19++205+ 20++203+ 20++200+ 21++198+ 20.1954 20.193. 19.1190. 47++201+ 39+221+ 36++234+ 30++238+ 33. 249. 374.262. 0..138. 1 C..139. 20++257+ 27++234+ 29++222+ 21..204. 32...216. 38++244+ 46...257. 21++190-្ឋ 0.151. C4.999. 38+ 225, 29. 234, 240.237, 180.240, 180.235, 220,240 0+,999+ 69+.346+ 33++2454 24++2025 22++1994 21++199+ 20+199+ 20+198+ A...272. 51..285. 92..229. 18..221. 20..215. 45.,144. 29.,182. 50..191. 39.,208. 45.,207. 53.,249. • • • 9 9 9 • 33. 271. 42. 237. 22. 192. 21. 193. 48. .205. 44..231. 19.+213+ 20.,207. 24..182. 22..189. 53.182. 36.196. e u. 99, 23. 180. . 999. 44.1 90. æ ...599. 74. .354. 14.169. 27.240. Jic.244. 24.253. 70.+351 440. 90. 35..262. 23+*219+ 23**227+ 20,*228, 18+,226* 74++357a 23++214s 20++207a 21s+215+ 19++217+ 18++215s 23.189. 644 .245. 66++347+ C. 999. 75. 355. 69*:349× 64..348. 26. 159. 25. 173. ۴ 00-999+ Ce +999 h 46664 •j 774. 463 420-245. 37- 253. 0. 939. 57e. ie *566**3 •666 ••0 *666* *0 220.182. 0e • 999a °666°°' ø 666.10 61..253. 57e+ 5e 21..172. *666* *3 6,,352, 380+247. 4666* *n C++ 990. 0...999. 001001 1665.02 ú**• •**999, 04 993 56-- 867 ŵ 5 *666°°0 .999. *\$55**0 C.+ 999. 0**9990 58** Ce *666**0 *555 **0 *666**0 ** 66 *** 80.. AU. 61 .. 25 A. 0000.00 *556**0 *666 ** 0 0...999. q 61 e -04 • 099. 1005100 °665 ** c 0...099. 0, . 9995 62 11 100 A2 .. 41. 64.. U. 9665 * ¢ •565 •• 0 °565**9 0 •• 599**•** 120,150. \$665*** 4, +999. 04,5095 1005119 .0999. F) 0 a 1 999e 0..9994 •666. •0 ***** 0.000 63. . 358. •••••• 0. 1999. 0..999a 0.,9994 0..999 ****** •666. •0 04.999. *6661*0 04 1999 •••• ſ. *666**0 *666**0 3.9994 1056.40 4.9994 0. . 999. 0 * * 9 9 9 • 0.+999+ .000..0 966 · • ¢ -666.40 00000 ÷666.•0 če: 999. **0664 **** 006- 10 0...999. 0..999. 000.000 •666• •D 0.1999 ø ĝ Ξ N 2 4 ŝ 91 21 61 2 ŝ 21 N Q

Table 108. Summary of wind conditions and types of oil spills used at C_1 and C_2 (see Figure 1) used with Hansen's model for projecting the distribution and abundances of hypothetical spills. See Figures 68 to 78.

Wind toward (at 7 m/sec)	Spilled	at C1	Spilled at C ₂			
	500 ton	30,000 ton	500 ton	<u>30,000 ton</u>		
225°		thru 20 hrs Fig. 68	thru 10 hrs Fig. 69	thru 10 hrs Fig. 70		
280°		thru 20 hrs Fig. 71	thru 30 hrs Fig. 72	thru 30 hrs Fig. 73		
	thru 20 hrs Fig. 74	thru 20 hrs Fig. 75	thru 20 hrs Fig. 76	thru 20 hrs Fig. 77		
360°	-	thru 20 hrs Fig. 78A		thru 20 hrs Fig. 78B		

Tabl	e 109.	Monthly of wind	wind vec drift (w	tors off ind data	ishore Lextr	of Gra acted :	and Isl from Sc	e, Lou :ruton,	uisian 1956	a, and).	beachi	ng tin	aes bas	ed on	3.7%	
		Knots	3.7% of			Site #	Ч		C #1		•1	Site #	2		C #2	
Month	Dir.*	Speed	Speeds	Knots	MN	Hrs	Days	WN	Hrs	Days	M	Hrs	Days	MN	Hrs	Days
Jan	200	3.3	0.12													
Feb	240	2.1	0.08													
Mar	285	2.2	0.08								22.6	283	11.8	18.7	234	9.8
April	300	4.7	0.17		42.5	250	10.4	30.0	176	7.3	16.I	95	4.0	14.3	84	3.5
May	325	3.9	0.14		28.2	201	8.4	20.0	143	6.0	14.0	100	4.2	11.5	82	3.4
June	355	3.1	0.12		22.9	190	7.9	17.5	146	6.1	17.1	143	6.0	14.5	121	5.0
July	10	1.3	0.05		25.0	500	20.8	19.2	384	16.0	20.3	406	16.9	18.5	370	15.4
Aug	318	2.2	0.08		30.0	375	15.6	24.0	300	12.5	14.0	175	7.3	11.4	143	6.0
Sept	270	2.9	0.11													
Oct	235	3.4	0.12													
Nov	255	1.4	0.05													
Dec	205	3.0	0.11													
Annual	280	1.9	0.07								35.5	507	21.1	32.6	466	19.4
5 F 4 7 7 7 4	5 5 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2															

*wind blowing towards

.

Barrels Per Day	Init Plu Wić ft	ial me lth	Fina Plu Wid ft	1(1) me th m	Time Re D =50 y	equired : D =100 y	in Hrs(2) D _y =200 y	Length km	Area (km) ²
1.2	200	60	2,000	600) 1	0.5	0.2	0.5	0.2

- 4

- 9

1.0

2.0

11.0

2.0

4.0

21.0

2.2

5.0

24.0

1.4

5.0

53.0

120 4,000 1,200

180 6,000 1,800

400 13,000 4,000 44

2.3

4.2

8.5

400

600

1,300

Table 110. Area of visible influence of various levels of a continuous oil spill (Ichiye, 1972).