

Lowell Wakefield
'LOAN COPY ONLY Fisheries Symposium

Proceedings of the International Rockfish

Symposium

> NATIONAL SEA GRANT DEPOSITORY PELL LIBRARY BULLDNG URI, NARRAGANSETI BAY CAMPUS
> NARRAGANSETT, RI 028822

Anchorage, Alaska USA
October 20-22, 1986

Alaska Sea Grant Report

$$
A K u-W-80-003 \subset 3
$$

cmelounim copt
 Sea Grant Deposition

Proceedings of the

INTERNATIONAL ROCKFISH SYMPOSIUM

Anchorage, Alaska USA
October 20-22, 1986

Symposium Coordinator
Brenda R. Melteff

NATiONAL SEA GRANT DEPOSITORY
FELL LIBRARY BLDG. GEO
UNIVERSITY OF RHODE ISLAND
NARRAGANSETT, PI O2002-1197 USA

University of Alaska

Acknowledgements

The International Rockfish Sympogium, the fifth in the Lowell Wakefield Fisheries Symposium Series, was planned to bring together scientigts and managerg involved with biology and management of Sebastes species to provide information for use in developing management strategies for the rockfish complex.

Program planning committee members ares
H. Richard Carlson
National Marine Fisherieg Service

Robert C. Clasby
Alaska Department of Fish and Game
Steven K. Davis
North Pacific Fishery Management Council
Lewis J. Haldorson
University of Alaska, Juneau
Grace Klein-MacPhep
Narragansett, Rhode Island
Spongors of the International Rockfish Symposium are the Alaska Department of Fish and Game, the National Marine Figheries Service Northwegt and Alaska Figheries Center, the North Pacific Fishery Management Council, and the University of Alaska Sea Grant College Program.

Production and layout of these proceedings is by Sue Keller and the cover art by Karen Stomberg of the University of Alaska Sea Grant College Program. Manuseripts for this publication were provided camera-ready by the authors and complled and printed by the Alaska Sea Grant College Program cooperatively supported by MOAA, Dffice of Sea Grant and Extramural Programs, U.S. Department of Comerce under grant number NAB6AA-D-SG041, project number A/75-01; and by the Univeraity of Alaska with funds appropriated by the state,

Table of Contents

Introduction 1
Lewis Haldorson
Keynote Address
Quality starts with fundamentals 5
S.J. Westrheim
Session I -- History of the Fisheries
The redfish resources off Canada's east coast. 15
D.B. Atkinson
A history of California rockfish fisheries 35
William H. Lenarz
The rockfish fisheries off western Canada, 1860-1985 43
S.J. Westrheim
The history of the rockfish fisheries in Alaskan waters 51
Barry Bracken
Session II -- Life History and Reproduction
Movement studies of nearshore demersal rockfishes in Puget Sound, Washington 63
Kathleen R. Matthews, Bruce S. Miller and Thomas P. Quinn
Ocean climate influences on groundfish recruitment in the California Current 73
Jerrold Norton
Status of early life history studies of northeast Pacific rockfishes 99
Arthur W. Kendall, Jr. and William H. Lenarz
Post-larval copper rockfish in the Strait of Georgia: Habitat use, feeding, and growth in the first year 129
Lewis Haldorson and Laura J. Richards
Reproductive mode and energy costs of reproduction in the genus Sebastes 143
George W. Boehlert, Muneharu Kusakari and Juro Yamada
Seasion III -- Aginge Growth and Mortality
Use of a length frequency simulator to explore the information content in length data for a long-lived species, silvergray rockfish (Sebastes brevispinis) 155
Richard D. Stanley
Age and growth of yelloweye rockfish (Sebastes ruberrimus) landed in southeastern Alaska 171
Victoria Moran O'Connell and Fritz C. Funk
A comparison of age estimates derived from the surface and cross- section methods of otolith reading for Pacific ocean perch (Sebastes alutus) 187
Richard D. Stanley
Long-term cycles of growth in Sebastes: Extracting information from otoliths. 197
George W. Boehlert and Mary M. Yoklavich
Population parameters for rougheye rockfish (Sebastes aleutianus) 209
Bonita Nelson and Terrance J. Quinn Il
Geasion IV -- Stock Assessment
Reaults fron tagging black rockfish (Sebastes melanops) off the Washington and northern Oregon coast 231
Brian N. Culver
Results of a bottom trawl survey of Pacific ocean perch off Washington and Oregen during 1985 241
Mark E. Wilkins and Kenneth L. Weinberg
Rackfish in the Aleutian Islands: Results from the 1980 and 1983 U.S.-Japan cooperative demersal trawl surveys 267
Thomas Wilderbuer
Comparing abundance and productivity estimates of Pacific ocean perch in waters off the United States 287Daniel H. Ito
The British Columbia inshore rockfish fishery: Stock assessment and fleet dynamics of an unrestricted fishery 299
Laura J. Richards and A.J. Cass
Identification of species assemblages and results of management applications for sbelf and slope rockfishes off British Columbia 309
B.M. Leaman and D.A. Nagtegaal
Restricted year-class structure and recruitment lag within a discrete school of yellowtail rockfish 329
H. Richard Carlson
Session V - Management of Stocks
Recent exploitation patterns and future stock rebuilding strategies for acadian redfish, Sebastes fasciatus Storer, in the Gulf of Maine- Georges Bank region of the northwest Atlantic 335
Ralph K. Mayo
Incorporating reproductive value into Pacific ocean perch management 355
B.M. Leaman
lmpacts of management regulations on the catch and utilization of rockfish in Oregon 369
Ellen K. Pikitch
Beasion VI -- Workshop on future nockfish research needs
Workshop summary 385
Robert C. Clasby
Participante 389

Introduction

Lewis Haldorson University of Alaska, Juneau Juneau, Alaska

Abstract

This symposium is one in an minul series, the Lowell Wakefield Fisheries Symposia. It is the first in several years to focus on a finfish resource, and it is noteworthy that the subject of the present symposium is the rockfish species complex, which is comprised of mumerous species of scorpaenid fiches in the genera Sebastes and Sebastolobes, Rockfishes are an important part of North Pacific, and North Atlantic, marine resources. In the Pacific, total landings for the United States and Canada combined metetimated at 6e,5ee, 54, 900 and 51,503 metric tons in the years 1983, 1984 and 1985, respectively. These catches rank at the top of domestic bottomfish iandings; yet, here in Alaska and elsewhery on the Pacific Coast me know that signifigant rockfish resources have been depleted and ary now ot population levels far belom their productive optiman,

In Alaskan waters the most abundint rockfish resource, the Pacific Ocian perch (Sebastes alutus), was depleted before any management was contenplated or feasible, as the pulse-fishing distant water fleets of Russia and Japen worked the continental shelf break in the 1960's. Figure 1 summrizes estimates of those catches from the gurf of hlaska (GOA) statistical region (from Balsiger et al. 1995), In the decade beginming in 1963 the population mubers for that GOA stock of Pacific Deman perch decreased from over $5,400,000$ fish to less than $706,800_{\text {, }}$ bited on cohort analyses (Ito 1982). Clearly, this 85 percent reduction in the GOA Pacific Ocean perch population was an early example of what can happen to erockfish resource exposed to high fishing mortality rates. Recent estimates of Maximum Sustainabie Yield (MSY) for the EOA Pacific ocean perch recource rang from 16,000 to 47,5ed metric tons (Balsiger te al. 19e5), which provides a reasonable meacurt of the degree of oyerfishing to which that stock was subjected.

Figure 1. Pacific ocean pereh landings, in metric tons (MT), in the Gulf of Alaska statistical region for the years 1961 through 1979.

Unfortunately, the Pacific Ocean perch scenario in the Gulf of Alesha has been re-enacted in other areas, and with other species of rockfish. Certainly the recent experience with the widow rockfish (S. -ntomelas) fishery is faniliar to most of you. Catches of this speoiss incrased dranatically in the late 1970 's, followed by reduction in ttock size and catches (Figure e). Other stocks may be experiencing sfeilar boom and bust cycles. In Alagka there is concern for a maller fishery on inshore rockfish species off southeast Alaska. This fishery, eqntered at sitka, has txpanded greatiy, moving from lets than zee, eve 1bs. in 1990 to over $1,200,006$ 1bs in 1994.

The history of rockfish fisheries suggests that mandging such resources is not easy, and that detailed information on stock sizes and biological oherecteristics of the species me required. Although tha Pacific ocean perch attracted early attention, the basic biologicel information on the various species and assessments of stock sizes and condition have historically been sketchy; at least until the lugt decade. With passage of the U. S. Fisheries and Conservation Management Act in 1976, the picture began to change. The importance of the resource, and its management needs, instigated the Coastwide Rookfish Survey of 1977, the results of which wert reported in 1978 sympositin in Seattle, and publisthed in a issue of Marine Fisherips Review in 1980 (vol. 42, No. 3-4). Those studies provided muoh proviously unavailable biological information and stock astessmats.

Figurt Z. Landings, in metric tans (MT,) of widow rockfish in the period 1974 to 1983.

A perusel of the agende for the present symposium suggests thet interest in rockfishes, and the level of information about then, continut to be on the rise. Clearly, sinee the 1978 symposiull there have been mejor advances in rockfish studies. If any one research areme has riveted the attention of rochfish researchers it has bern the aging studies which have stemed from advances accompliethed at the Pacific Biological Station at Namaimo. The concept of individual fish living to ages over 109 years anames fisheries biologists; in fact, many rematin unrepentant skeptics. In the period when the now aging techniques mere energing 1 was engaged in resource astessments and life history studies on the nearshore group of rockfishes of southeast Alaska. On of the most important of those species is the yellowey rockfish (S. ruberrimus). Applying the break-and-burth ageing techniques to yelioweye rochfish revealed a population with age structures and a sequence of life history events that mere diteonemtingly sieilar to the human species. Much of this new informetion is ehanging the way we view the biology and management of these species.

It is appropriate, therefore, that another symposium should be addressing rockfishes. From my perspective, it appears that rockfieh studies are begiming to receive the support and recognition that they have long deserved. The fact that a symposium such as this is being held in Alaske is indicative of this trend. This is the state whope Chapter of the Anerican Fisheries society is calied Oncorhynchus. Furtior south, in California, the California Sea Grant progran has initiated a major enphasis on rockfish studies. It thus appears that this symposiun is timely, and has the opportunity to take a mor role as a vehicle for updating and sumamizing current information and for pointing the direction for Auture studies.

Rockfish studies have not almays enjoyed this level of support and recognition; although there have always been a few biologists who persevered in the study of these interesting fishes. This is a good time to recognise their fforts, of they sometimes had to stoop to we 11 - unconventional methodologies in the practice of their trade. t can think of no better example of this than the note by Love and vucci, published in the 1974 Califormia Fish and Game, entitled: Range extension of the China rockfish (Love and Vucci 1974). The opening sentence is sufficient: "On 24 september 1972 Vueci found a china rockfish, Stobstes nobulosus, $2 \theta 9$ man Sh., in trash can of filloted rockfish carcasses aboard the party boat China Clipper.". Certainly all of the early contributions have been valuable; and none more so than the mork of our heynote speaker. Although Jergen Westrhein may not have scoured the trasheans around Nanaimo, his work hat been extraordinarily valuable to all of us. This symposium is oppropriately timed, if for no other reason than that it marks the officipl retirement of Jergen Westrheim from the Pacific Biological Station. Those who know him will have no doubt that it does not mark his retirement from the study of rockfishes.

Literature Cited.
Balsiger, J. W., D. H. Ito, D. K. Kimura, D. A. Somerton and J. M. Terry. 1995. Biological and economic assessment of Pacific Ocean perch (Sebastes alutus) in waters off Alaska. NOAA Tech. Memorandum NWFS F/NWC-72. Seattle, Washington.

Ito, D. H. 1982. A cohort analyis of Paeific Ocoan porch stocks from the Gulf of Alaska and Bering Sea regions. M.S. Thesis. U. of Washington, Seattle.

Love, M. S. and J. Vucci. 1974. Range extention of the Chini rockfith. Cal. Fish Game 66:149.

Keynote Address: Quality starts with fundamentals

S.J. Westrheim
 Department of Fisheries and Oceans Nanaimo, British Columbia

Introduction

The title of this address is apt, but not original. I borrowed it from an advertisement in the September 1986 issue of the Smithsonian Magazine (p. 99). The ad featured Larry Bird, superstar for the Boston Celtics professional basketball team. The moral was that constant practice and attention to fundamentals were necessary even for superstars.

In our profession, constant practice is not a critical factor, but attention to fundamentals certainly is. One of the major criticisms which can be levelled at fishery scientists is our tendency to underestimate the importance of fundamentals in our eagerness to address the so-called important problems. That is, running before we learn to walk! Let me hasten to add that sometimes scientists are influenced by external pressures to run when they know they haven't learned to walk. However, at other times these pressures are self-induced. Fundamentals are particularly important in rockfish studies because so little is known about these diverse fishes. For the northeast Pacific Ocean, 1 found only one rockfish bibliography, and that was limited to species other than Sebastes alutus (Westrheim and Leaman 1976), and excluded the purely taxonomic literature. The closing date was April 1976. The bibliography contained 171 references and referred to 20 subject categories. Only 13 of the references were published prior to 1950.

Today I wish to lightly review three examples in which fundamentals have received variable attention. These subjects are: identification, age determination, and distribution. The latter is taken in the broad sense, and hence includes behavior.

Is there any more fundamental subject than identification of the species with which we are dealing? And yet, after more than 100 years of study, the taxonomy of scorpaenids is not complete in the northeast Pacific Ocean, nor, I discovered, in some other areas of the world.

Within the region extending from the Gulf of California to the Gulf of Alaska, there are 68 "certified" scorpaenid species, currently classified into four genera--Scorpaena (1); Scorpaenodes (1); Sebastolobus (2); and Sebagtes (64) (Chen 1975; Robins 1980; and Eschmeyer et al 1983). Only Sebastes continues to present taxonomic problems, and will be our exclusive subject for the remainder of this presentation. The Bering Sea, where the ranges of Asiatic and North American scorpaenids probably overlap, has been excluded, because I could find no definitive taxonomic work comparable to that for the northeast Pacific Ocean.

Taxonomic problems of Sebastes at the species level stemmed originally from inadequate technology- Initial criteria were morphological characteristics, such as Cramer's (1895) cranial criteria, whose variation did not necessarily reflect genetic separation. The first step toward to genetic basis for classification of rockfishes was taken by Tsuyuki, Roberts, and Vanstone (1965), who employed relatively simple protein electrophoresis on nine species of rockfishes as well as other marine species.

Subsequent electrophoretic analyses revealed the presence of sibling species, or variants, of \underline{S}. eos (Barrett et al 1966); \underline{S} crameri and S. reedi (Westrheim and Tsuyuki 1967); and \underline{S}. aleutianus and S . diploproa (Tsuyuki et al 1968). More complex and comprehensive electrophoretic analyses by Seeb (1985) revealed the presence of the variants B of S. aleutianus and S . reedi in the Gulf of Alaska, and suggested that S. ciliatus comprised two "sister" species. Tsuyuki, Roberts and Vanstone (1965, p. 209) noted in a footnote that S. ciliatus was actually a "complex of three or four forms."

Seab (1985) also demonstrated the natural hybridization of S . auriculatus and caurinus in Puget Sound, Washington. This may explain the variability in numbers of coronal spines of \underline{S}. auriculatus, reported by Hitz and Delacy (1961).

The variant species of \underline{S}. aleutianus and \underline{S}. reedi are not a serious problem in British Columbia waters, because variant A predominated there in both species (Tsuyuki et al 196B). Variant B of S. aleutianus predominated in samples collected off southeastern Alaska. S reedi electropherograms were not collected north or south of British Columbia.

Perhaps the most graphic example of underestimating the importance of rockfish species identification occurred in the northwest Atlantic Ocean. During 1947-54, extensive and comprehensive trawl surveys were conducted to assess the redfish (Sebastes) resource (Templeman 1959). Unfortunately, during the survey unly one species, S. marinus, was assumed to occupy the region. As late as 1966 only one species was acknowledged (Leim and Scott 1966). Barsukov (1968) reported that there were three species-S. marinus (Linnaeus 1758; S. fasciatus (Storer 1856); and S. mentella (Travin 1951).

While these species are now accepted, identification problems peraist, as indicated by the recent report of Power and Ni (1985).

In the western Pacific Ocean, Sebastes species diversity is similar to that in the eastern Pacific Ocean (Matsubara 1943). Here too problems abound. Chen (1985) reported that \underline{S}. inermis, a ubiquitous and commercially important species, comprises three meristic types which seem to represent three separate species. However, "no known features can clearly differentiate some of the specimens which are meristically intermediate" (op. cit. p 23). Does this sound familiar?

Age Determination

If identification of species is of primary importance, certainly validated age determination must be the next most important subject, and certainly the one most frequently treated in a superficial manner enroute to so-called more important problems. While the resolution of some of the rockfish identification problerns required new technologies developed in the 1960s, such is not the case with age determination problems. Van Oosten (1929) described the basic procedures for age determination and Walford and Mosher (1943a and b) enlarged on these. Unfortunately, few studies have followed their precepts.

Beamish and McFarlane (1983) surveyed 500 studies published during 190780 which included estimates of fish age. Of these, only 65 percent mentioned age validation or attempted to validate the ageing technique, and less than 3 percent of the studies included validation of all age classes. They also reviewed 75 additional reports published in primary journals during 1985-80 which dealt with stock dynamics. Only 40 percent of these mentioned or attempted age validation, and none successfully validated all age classes used in the analysis. Beamish and McFarlane (op. cit.) cite two examples where use of inaccurate ages caused serious problems in management and or understanding of fish populations. One of these examples was $\underline{\underline{S}}$. alutus.

One problem not considered by Van Oosten (1929) or Walford and Mosher (1943a and b) was a change over time in interpreting annuli criteria. Kimura (1973) documented this devastating phenomenon with respect to the Pacific sardine (Sardinops sagax). In a classic study, Walford and Mosher (1943a and b) developed and validated criteria for ageing this species. However, during the next 20 years, scale-reading staff gradually changed, and so did the interpretation of criteria for the first annulus. The result was that growth appeared to increase as the abundance of sardines declined. Densitydependent growth was duly reported (Marr 1960).

In summary, validation of age-determination methods must be considered to be an on-going occupation.

As for rockfishes in the northeast Pacific Ocean, I could not find any species for which ages have been validated for all age classes, as suggested by Beamish and McFarlane (1985). However, the earlier methods employing scales or surface readings of otoliths have been largely discredited, at least for the older age classes, as the result of new techniques described by Beamish (1979), Bennett et al (1982), and Chilton and Beamish (1982). De-
spite the lack of complete validation, there is little doubt now that we are dealing with species whose life span is substantially longer than heretofore considered. More importantly, the slower growth and extended longevity imply a substantialiy lower optimum exploitation rate.

Distribution

Distribution may well be the third most important subject, and certainly the least studied. Accessibility and cost are important inhibitory factors, particularly for the offshore species.

Distribution of S . alutus is at least partially delineated, and is indeed complex. These fish form schools which vary in shape from stratus-like to cu-mulus-like "clouds" which do not always maintain contact with the bottom (Westrheim 1970). Based on on-bottom trawl catches, catch rate, size composition, age composition, and sex ratio vary bathymetrically, both intraand inter-seasonally (Westrheim 1970, 1973, 1975). Furthermore, agelength relationship varies bathymetrically (op. cit. 1973, 1975), and proportions of S . alutus in research vessel catches of rockfish vary with type of bottom (Westrheim 1970, 1974). Buttom type is often ignored as a parameter in studying distribution, or conducting biomass surveys using the swept-area method.

The above-mentioned studies marked a good beginning, but can hardly be considered complete. Unfortunately, similar studies on other important offshore species are minor or non-existent, and may well prove to be more diffcult than those for \underline{S}. alutus.

The distribution/behavior of \underline{S}. alutus has an obvious effect on estimating mortality rates and abundance. Since age composition varies bathymetrically, data collected from commercial landings should be corroborated with research vessel samples which span the more important depth intervals. Abundance estimates, either by CPUEs or biomass estimates, are affected by the schooling behavior. Catchability likely varies inversely with absolute abundance, and if so, CPUE is too low when abundance is high, and too high when absolute abundance is low. The vertical schooling would affect estimates of CPUE and biomass, based on the conventional swept-area method with on-bottom trawls. Such biomass estimates are also affected, in some areas, by the propensity of the fish to prefer certain bottom types, unless this factor has been incorporated into the survey plan.

Summary

My theme of this keynote address is the importance of fundamentals in the practice of fisheries science. The choice of rockfish for examples was only dictated by the subject of this symposium. And now, how well are we doing with respect to rockfish? Currently, I think we are doing as well as possible, considering the inevitable limitations.

We have correctly identified all or nearly all the important commercial species in the northeast Pacific, and most of the others as well. Personally, I hope that electrophoresis will be utilized more extensively here and else-
where in the world. Electrophoresis is not a difficult procedure, and some species might benefit by electrophoretic corroboration of their status.

Age determination has turned the corner. Long life-span and lower optimum exploitation rates are generally accepted. Firm proof of absolute age determination will be very difficult. For example, tagging juvenile rockfish of known age, or adult fish of any age, is technically impossible at this time, for most species including \underline{S}. alutus.

Distribution'behavior is probably our weakest point. There appears to be litthe interest, or support, except for the inshore species, which admittedly are more accessible and less costly to study. Perhaps the research climate will improve before all of you must face retirement.

Literature Cited

Barrett, I., J. Joseph, and G. Moser. 1966. Electrophoretic analysis of hemoglobins of California rockfish (Genus Sebastodes). COPEIA 1966: 489-494.
Barsukov, V.V. 1968. The systematic relationship of redfishes of the genus Sebastes of the northwest Atlantic Ocean. Dokl. Akad. Nauk SSSR 193: 479-482. (Translated from Russian in Kokl. Biol Sci. 193: 734737.)

Beamish, R.J. 1979. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Board Can. 36: 1395-1400.
Beamish, R.J. and G.A. MeFarlane. 1983. The forgotten requirement for age validation in fisheries biology. Trans. Amer. Fish. Soc. 112: 735743.

Bennett, J.T., G.W. Boehlert, and K.K. Turekian. 1982. Confirmation of longevity in Sebastes diploproa (Pices:Scorpaenidae) from ${ }^{210} \mathrm{~Pb} /{ }^{226} \mathrm{Ra}$ measurements in otoliths. Mar. Biol. 71 1: 209-215.
Chen, L-C. 1975. The rockfishes, Genus Sebastes (Scorpaenidae) of the Gulf of California, including three new species, with a discussion of their origin. Proc. Calif. Acad. Sci. Fourth Ser. XL(6): 109-141.
Chen, L-C. 1985. A study of Sebastes inermis species complex, with delimitation of the Subgenus Mebarus (Pices, Scorpaenidae). J. Taiwan Mus. 38: 32-37.
Chilton, D.E. and R.J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60. 102p.
Cramer, F. 1895. On the cranial characteristics of the Genus Sebastodes (rock-fish). Proc. Calif. Acad. Sci, Second Ser. 5: 573-610.
Eschmeyer, W.N., E.S. Herald, and H. Hammann. 1983. A Field Guide to Pacific Cost Fishers of North America. Houghton Mifflin Co., Boston. 336 p.
Hitz, C.R. and A.C. DeLacy. 1961. Variation of the occurrence of coronal spines in Sebastodes auriculatus (GIRARD). COPEIA 1961: 279-282.
Kimura, M. 1973. Inconsistencies in locating the first annulus of Pacific sardines. Calif. Fish Game 50: 191-195.
Leim, A.H. and W.B. Scott. 1966. Fishes of the Atlantic Coast of Canada. Fish. Res. Board Can. Bull. 155. 485p.

Marr, J.C. 1960. The causes of major variations in the catch of the Pacific sardine, Sardinops caerulea(GIRARD). Proc. FAO World Sci. Meet. Biology of sardines and related species. Rome. 14-21 September 1959: 667-791.
Matsubara, K. 1943. Studies on the scarpaenoid fishes of Japan. I. Anatomy, phylogeny and taxonomy. Trans, Sigen. Kenkyu. No. 2. 170 p.
Power, D.J. and I-H. Ni. 1985. Morphometric differences between golden redfish (Sebastes marinus) and beaked redfishes (\underline{S}. mentella and \underline{S}. fasciatus). J. N.W. AtL Fish. Sci. 6: 1-7.
Robins, C.R. 1980. A list of common and scientific names of fishes from the United States and Canada. Amer. Fish. Soc. Spec. Publ. No. 12. 174 p.

Seeb. W.W. 1985. Biochemical systematics and evolution of the scorpaenid Genus Sebastes. Ph.D. Thesis. Univ. Washington. Seattle. 176 p.
Templeman, W. 1959. Redfish distribution in the North Atlantic. Fish. Res. Board Can. Bull. 120. 173 p.
Tsuyuki, H., E. Roberts, R.H. Lowes, W. Hadaway, and S.d. Westrheim. 1968. Contribution of protein eletrophoresis to rockfish (Scorpaenidae) systematics. J. Fish. Res. Board Can. 25: 2477-2501.
Tsuyuki, H., E. Roberts, and W.E. Vanstone. 1965. Comparative zone electropherograms of muscle myograms and blood hemoglobins of marine and freshwater vertebrates and their application to biochemical systematics. J. Fish. Res. Board Can. 22: 203-213.
Van Oosten, J. 1929. Life history of the lake herring (Leucicthys artedi LE SEUR) of Lake Huron as revealed by its scales, with a critique of the scale method. Bull. U.S. Bur. Fish. XLIV (1928): 265-428.
Walford, L.A. and K.M. Mosher. 1943 a . Studies on the Pacific pilchard or sardine (Sardinops caerulea). 2. Determination of the age of juveniles by scales and otoliths. U.S. Fish Wildl. Serv. Spec. Sci. Rep. 21. 29 p. (Reissued in Spec. Sci Rep. Fish. 15: 31-95, 1950).
Walford, L.A. and K.M. Mosher. 1943b. Studies on the Pacific pitchard or sardine (Sardinops caierulea). 3. Determination of age of adults by scales and effect of environment on first year's growth as it bears on age determination. U.S. Fish Wildl. Serv. Spec. Sci. Rep. 21. 29 p. (Reissued in Spec. Sci. Rep. Fish. 15: 96-131. 1950)
Westrheim, S.J. 1970. Survey of rockfishes, especially Pacific ocean perch, in the northeast Pacific ocean, 1963-66. J. Fish. Res. Board Can. 27: 1781-1809.
Westrheim. S.J. 1973. Age determination and growth of Pacific ocean perch (Sebastes alutus) in the northeast Pacific Ocean. J. Fish. Res. Board Can. 30: 235-247.
Westrheim. S.J. 1974. Echo-sounder and trawl survey of Queen Charlotte Sound and southern Hecate Strait, 1972-73. fish. Res. Board Can. MS Rep. 1307. 43 p.
Weatrheim. S.J. 1975. Reproduction, maturation, and identification of larvae of some Sebastes (Scorpaenidae) species in the northeast Pacific Ocean. J. Fish. Res. Board Can. 32: 2399-24 11.
Westrheim, S.J. and B.M. Leaman. 1976. A selected bibliography of northeastern Pacific rockfishes (Sebastes and Sebastolobus) other than Sebastes alutus. Fish. Mar. Surv. Tech. Rep. 659. 70 p.

Westrheim, S.J. and H. Tsuyuki. 1967. Sebastodes reedi, a new scorpaenid fish in the northeast Pacific Ocean. J. Fish. Res. Board Can. 24: 1945-1954.

The redfish resources off Canada's east coast

D.B. Atkinson
 Department of Fisheries and Oceans
 St. John's, Newfoundland

Introduction

The existence of redfish of the Genus Sebastes in the Northwest Atlantic has been known since at least 1856 when Storer briefly described and named Sebastes fasciatus from the Gulf of Maine. Since then, a great deal of work has been carrled out by Canadian, American and other scientists on the distribution and biology of the redfish species in the western Atlantic and important comercial fisheries have been developed, first by the United States, but followed by increasing participation by Canada and other nations.

Today there are 8 different stocks or management units of redfish recognized off the east coast of North America fexcluding West Greenland) and the nominal catch is the second largest of all groundfish species in this area. Of these units, 7 are located off the east coast of Canada. These stocks were originally managed by the Internationa? Commission for the Northwest Atlantic Fisheries (ICNAF) but with extended jurisdiction, are now managed either by Canada alone or internationally through the Northwest Atlantic Fisheries Organization (MAFO). The total allowable catch from these 7 units for 1985, under quota regulation, was about $199,000 \mathrm{mt}$ of which Canada's allocation was $140,870 \mathrm{mt}$. A total of 72,200 mt were taken with a landed value of 15.2 million dollars to the Canadian industry.

This paper presents information on the distribution and biology of the different species of redfish (Sebastes spp.), the history of the fishery, present management practices and ongoing research for the area off the east coast of Canada. The paper is, by no means, meant to be an exhaustive review of this topic.

Geographic distribution

Redfish are distributed fairly extensively in the Northwest Atlantic (Fig. 1). Their southernmost range limit is in the deep waters off New Jersey, and they can be found inhabiting water from $75-750 \mathrm{~m}$ north from this area: off the Nova Scatia and Newfoundland Banks, in the Gulf of St. Lawrence, along the continental slope from the southwestern Grand Bank to Hamilton Inlet Bank and in the area of Flemish Cap. The fish are also present, but fo fewer numbers, northward to off the coast of Baffin lsland, and off West Greenland. This distribution has been determined over a number of years from larvae distribution (eg. Murray and Hjort 1912; Dannevig 1919; Frost 1936), exploratory fishing (eg. Templeman and Handrigan MS 1949; Templeman 1957; Templeman 1961) and conmercial fishing (eq. Savvatimski and Sidorenko 1966).

Within this area of distribution, redfish are found over a wide range of depths. In the Gulf of Maine, although most commonly found in depths greater than about 75 m , they have been, on occasion, found in shallow enough water to be taken on hook and line (Anon. 1956). Off the east coast of Canada, the main concentrations are found between about 200-750 m on the west slope of Flemish Cap, the south and northeast slopes of Grand Bank, the northeast slopes of Funk Island Bank and Hamilton Bank, the north slope of Belle Island Bank, off southwest Mewfoundland and in the Gulf of St. Lawrence (Ni and McKone 1983). According to these authors, the general patterns of distribution and concentration noted between 1978 and 1980 were similar to those determined during 1947-1954 by Templeman (1959).

There is no evidence for any large scale migrations of redfish in the Northwest Atlantic, although it is known that redfish in the GuTf of St. Lawrence move to the mouth of the Gulf during the winter months (Atkinson 1984).

Depth distribution

Numerous studies have shown that the proportion of larger redfish fncreases with depth. Templeman and Knapp-Fisher (MS 1951) noted that, when fishing along the edges of the Grand Bank at greater depths than previously, Targer fish were obtained than had been caught in shallower waters. Perlmutter (1953), Schroeder (1955), Templeman (1955, 1957, 1959) and Hennemuth and Brown (MS 1964) all reported the same phenomenon from analyses of data from the Gulf of Maine to NAFC Difision 2J off Labrador. Other authors have also shown that the distribution of fist up and down the slopes can change with season (Sidorenko MS 1966; Chekova 1972; Nikolskaya MS 1973; Atkinson 1984). All of these studies indicated that redfish generally move into deeper waters during the winter months as hypothesized 1961 by Templeman and Pitt.

Temperature distribution

Templentan (1959) indicated that in North American waters, redfish concentrations were usually associated with water temperatures of $3-6^{*} \mathrm{C}$. He did, however, note that substantial catches were sometimes

Figure l: Map of the Northwest Atlantic showing the distribution of redfish, NAFO Divisions and locations noted in the text.
sometimes taken in areas with temperatures of $1-2^{\circ} \mathrm{C}$. Atkinson (1984) found that during the winter, the largest concentrations of redfish in the Gulf of St. Lawrence were located in temperatures close to $7^{\circ} \mathrm{C}$. It would appear that, given a fairly wide range of temperatures, redfish distribution is more influenced by depth then by temperature.

Diel movements

Tho movement of Northwest Atiantic redfish up in the water column at night and down again during daylight (die] movemenz) is well documented. Steele (1957) noted that catches were greatly reduced when fishing was done at night. Konstantinov and Sheherbino (1958) reviewed changes in commercial catches of redfish on Flemish Cap and slopes of the Grand Bank and noted that at night the redfish were following upward migrations of their prey. Sandeman (1969a) also noted that there were signfficant differences in research catches at different time periods on the edstern slopes of the Grand Bank. Parsons and Parsons (1976) attempted to quantify the differences in day-night catches in NAFO Division 3P. They also found that there was differential diel variation with size, in that it appeared that there were greater proportions of intermediate sized fish $\{22-30 \mathrm{~cm}$) moving of f the bottom at night. They pointed out the importance of these phenomena when considering the design of, and interpretation of results from, trawling surveys aimed at redfish.

Reproduction

The redfish of the North Atlantic are ovoviviparous but the females are quite fecund, producing up to about 58,000 eggs (Jones 1969). Ni and Sandeman (1984) showed that a geographic cline in size at maturity exists with a decreasing trend from north to south. They also found that the size at maturity is much greater for females than males. For beaked redfish, the length at 50% maturity of males ranged from about 29 cm in the north (NAFO Subareas 0 and 1) to about 15 cm in the south (NAFO Division $4 X$) while it ranged from about 45 cm to 25 cm for females over the same area.

In 1955, Magnûsson stated that redfish in Northeast Atlantic waters mated during october-January but Sorokin (1961) postulated that they copulated during August-october. Steele (1957) felt that gonad development in the Gulf of St. Lawrence redfish fit the pattern described by Magnusson and therefore assigned an october-January copulation period. Sidorenko (1965) stated that copulation occurred from August to November in the Northwest Atlantic while Nikolskaya (MS 1973) suggested an August-actober period. More recently, the latter author (1977) suggested that in the region of southern Labrador, the mating season is more protracted, running from July to December. From the results of a large number of samples collected off the south coast of Newfoundland (NAF0 Division 3P), Ni and Templeman (1985) concluded that copulation most likely occurs during the same period as determined by Magnússon (1955) for Northeast Atlantic redfish (f.e october-January), but that fertilization is delayed until February-April.

The larvae are released when about $7-9 \mathrm{~mm}$ in length (Templeman 1959; Bainbridge and Cooper 1971). The extrusion times vary with area. Travin and Pechenik (1962) found that larval extrusion peaked in May in NAFO

Divistons 3 K and 3 L and in June off the Labrador coast. They also reported that peak larval extrusion took place in April-May on Flemish Cap. Bainbridge and Cooper (1971) state that extrusion takes place in June off Labrador and the northeast coast of Newfoundland and that larvae are first extruded in April on Flemlsh Cap. According to Templeman (1976), extrusion on Flemish Cap extends from March or April to July or August with the earliest spawning taking place in deeper water. Ni and Templeman (1985) indicated that larval release takes place from April-July (matnly May-June) off the south coast of Newfoundland, while in the Gulf of St. Lawrence, larvae are released during May-July (Steele 1957). In the Gulf of Maine, larvae are extruded from Aprfl-September (Kelly and Wolf 1959).

Ageing and growth rates
After being released at lengths of 7-9 mm, sharp-beaked redfish grow slowly and attain lengths of between $40-50 \mathrm{~cm}$. The golden redfish grow much larger and can achieve lengths of $60-70 \mathrm{~cm}$.

The agefing and, therefore, growth rates of Sebastes spp. have been contentious issues for a number of years. Saemundsson (1932) mentioned that this fish is slow-growing and long lived. During the 1950's a number of papers (e.g. Bratberg 1955; Sandeman 1957; Kot thaus 1958; Kelly and wolf 1959; Rasmussen 1958) described the growth of redfish in various parts of the Atlantic ocean based on ageing studies using scales or otoliths. Of these authors, Kot thaus alone was of the opinion that the fish were short lived and fast growing. At a Redfish Symposium held in Copenhagen, Denmark in 1959, a decision was reached in favor of slow growth 'though further work is still required to confirm this interpretation" \{Lundbeck 1961).

Today it is generally aceppted that these fish are slow growing but the actual rates are still questioned. Researchers in eastern North America rely on the use of otolith interpretation for the determination of redfish ages while European and Soviet scientists use scales. This has resulted in differences in the ages obtained for fish from the same management units in that at present, Canadian readers age redfish up to age 29 then add a $30+$ group, while European and eastern readers assign a maximum age of about $20-25$ years to the oldest fish caught. Sandeman (1969b) has aged redfish up to 50 years using otoliths. These differences in ageing techniques and resultant differences in growth rates have not been resolved to date.

Using otoliths, Sandeman (1969b) illustrated that differences in growth rates exist between males and females, with females almost always showing greater total growth than males. On average, females were larger then males at any of the older ages. This was considered to be related to the fact that males mature at a much smaller size than do the females. Sandeman's Fig. 17 (reproduced here as Fig. 2) gives a good representation of the differences in ageing and hence, estimated growth rates, that exist to this day between North American (otolith) readers and those from Europe and the USSR (scales (Surkova 1962)).

Recent work on age validation of Northwest Atlantic redfish has been carried out by McKone and Legge (MS 1980) dealing with redfish in the Gulf of St. Lawrence and by Mayo et al. (1981) on redfish from

Figure 2: Growth rates of beaked redfish from Hamilton Inlet Bank (left) and Flemish Cap (right) showing growth curves derived by Sandeman (1969) and mean lengths at age determined by Sekova (1962). (Reproduced from Sandeman 1969b.)
the Gulf of Maine. Mckone and Legge followed the exceptionally strong year-classes of 1956 and 1958 using both research frequencies and estimates of numbers at age derived from combining the frequencies with annual age length keys. They were able to follow these year classes from 1972-1979 and concluded that otoliths were satisfactory for ageing redfish. Mayo and his co-workers validated the use of otoliths on young fish (up to age 7). They followed the seasonal formation of thaline and opaque edges on otolith sections and compared mean length at age with observed modes of length frequencies of the 1971 year-class for the period 1971-1978.

Natural mortality

No precise estimates of natural mortality rate (M) are available for any redfish stock in the Northwest Atlantic. However, it is known that the natural mortality rate for a long lived, slow growing fish such as redfish must be very low related to faster growing species such as cod and herring. For both of these latter fish, a coefficient of 0.2 has been assumed. Westrheim et al. (MS 1972) estimated M to be 0.12 for Paciffc ocean perch and Sandeman (MS 1973) considered that for Northwest Atlantic redfish, M is between 0.1 and 0.05 . Because of the lack of any other evidence, a natural mortality rate of 0.1 has been assumed, for assessment purposes, for a number of years. It is most probable that M lies below this level although a suitable alternative has not been determined at this time. Mayo et al. (MS 1983) assumed a level of 0.05 for Gulf of Matne redfish.

Food and feeding

The food and feeding of redfish off Canada's east coast has not been studied extensively. One of the main problems is that when these fish are brought to the surface, their stomachs are quite often either wholly or partfally everted making any quantitative analysis difficult. Lambert (1960), Yanulov (1962) and Kashintsev (1962) found that redfish are pelagic and bathypelagic feeders, consuming a variety of fish, euphausfds, amphipods, copepods and shrimp. Their studies showed that as redfish grow in size, fish such as capelin and myctophids become more important dietary items. The diet of redfish in various locations around Newfoundland was found to vary but it was thought that this was related to prey avallability. Both Yanulov and Kashintsev found differences in feeding rates with season. In spring, during the pre-hatching and hatching period, almost nothing is eaten by either males or females. Feeding rates start off low during the post-hatching period but increase considerably by the end of the summer and the maximum rates are reached during the fall-winter period. By the second half of March, feeding has again ceased.

Parasites

The best known parasite of redfish is the ectoparasitic copepod Sphyrion lumpi which was first described on a North American redfish by Wison [919, 1931) from the Gulf of Maine area. Nigrellf and Firth (1939) described the apparent pathological effects of the parasite on redfish and described the range of infestation in the Gulf of Maine area (rates of 5-10\%). Templeman and Squires (1960) presented the results of an extenstue survey for incidence of infestation by this parasite in all of the areas off the east coast of canada. They found that pockets of infestation existed off Labrador (rates of 5-15\%) and on the southeast edge of the Grand Bank (rate of about 1-10\%). The parasite could be attached at any point on the body but tended to concentrate in the cloacal region on redfish from Canadian waters in contrast to the Gulf of Maine redfish where the parasite was more commenly located near the base of the first spine of the dorsal fin.

Spectes mix
It may seem that a discussion of the species of Sebastes present in the Northwest Atlantic should cone at a much earlier point in a review paper of this type. However, this is a complicated and, up until recently, a very confused area of research and most of the previously described investigations did not deal with a specific species, but a species mix. As was noted earlier, Storer (1856), described a redfish species in the Gulf of Maine and called it Sebastes fasciatus. This nomenclature was largely ignored after that and the redfish in the Northwest Atlantic were assumed to be $\$$. marinus, the same spectes as that in the Northeast Atlantic.

Around 1940, Lundbeck (see Kotthaus 1961) noted that besides 5 . viviparous, there existed, in the Northeast Atlantic, the common redfish, S. marinus, and another deep water type, the beaked perch. In 1951, this deep water varlety was described by Travin (Templeman 1959) and named S. mentella, a new species. In the Northwest Atlantic, Templeman and Sandeman (1957) first noted that there were apparently two different types of redfish in the waters around Newfoundland, 5. marinus and S. mentella. Templeman (1959) indicated that in the
area from off Baffin Island and West Greenland, south to the Gulf of Malne the mentella-type redfish predominated. He noted that the marinus-type mas found in shallower water, grew larger and became sexually mature at larger sizes than the mentella-type but occurred in much fewer numbers. The taxanomic status of these two 'types' was discussed extensively during the 1959 Redfish Symposium in Copenhagen (see eg Mead and \$indermann 1961).

Afthough Templemar: and Sandeman (1959), Sandeman (1961, 1969b) and Templeman (1967) did note that the North American mentella-type was, or could be, different from the oceanic eastern Atlantic form, up until the early 1970's, only twa species of redfish were thought to exist in the Northwest Atlantic (S. marinus and S, mentella) and research was carried out accordingly. However, in 1968, Soviet scientists began publishing information concerning a third species, $\$$. fasciatus (Barsukov 1968, 1972; Barsukov and Zakarhov 1972; Litvinenko 1974. These authors stated that S. mentella was more prevalent in the north, and less toward the south. Templeman (1976) acknowledged these studies and used the classification of S. mentella to include the true S. mentella as well as the 'American form of the sharp-beaked redfish', 5. fasciatus (Storer).

Beginning in the late 1970's, detailed studies of the species problem was initiated in Newfoundland. Ni (1981a, 1981b) used the extrinsic gas bladder musculature and meristics and morphometrics to separate S. mentella and S. fasciatus in the northeastern Grand Bank area. In 1982, Power and Ni described the gas bladder musculature of S . marinus and indicated that it could be used to separate this species from the beaked species. Ni (1982) described the meristic variation in the North American beaked redfish from Baffin Island and West Greenland to the Nova Scotia Shelf. His findings agreed with the earlier work by the Soviets that there was a gradual transition from S. mentella in the north to S. fasciatus in the south. His findings are summarized in Fig. 3. In 1984, Ni described the meristic differences between 5. marinus and the beaked redfish of the Northwest Athantic. He pointed out that it is easier to separate 5 . marinus from the beaked redfism than to separate 5 . mentella and s . fasciatus. Litvinenko (1979) described the redfish fron the Gulf of Mafne as $\underline{\text { S. fasciatus. }}$

Robins et al. (1980) described S. fasciatus, S, mentella and S. marinus as different species, but consīderable discussion has continued as to whether these are true species or not (e.g. Payne and Ni 1982; Kenchington 1983; Ni 1983; Kenchington 1986). Robins et al. (1986) again treat the three types as separate species. They also address the problem of common names. S. tharinus is called 'golden redfish', 5. mentella is named 'deep-water redfish' and S. fasciatus is designated Acadian redfish'. The authors note that these will be included as separate species in the upcoming (1990) fifth edition of "A List of Common and Scientific Names of Fishes from the United States and Canada".

The sharp-beaked redfish are flame red in color while the golden redfish are more orange or yellow-red. This latter species has a relatively smatler eye and the bony protrusion on the lower jaw is usually blunt or weak. It is usually found in depths of less than

Figure 3: The distribution of S. mentella and S. fasciatus in division-depth blocks. The Thes with positive slope represent 5 . mentella and negative slope represent 5 . fasclatus. Cross hatching represents a mixture of the two species (reproduced from Ni 1982).
about 275 m . The sharp-beaked redfish has a relatively large eye and the bony protrusion on the lower jaw is long and well developed. It is very difficult to discern between S. mentella and S. fasciatus based on morphological characters and in thee ffeld the two are generally treated as 'beaked redfish' without further separation.

Oceanic redfish
There is one other group of redfish of Genus Sebastes that has been found off Labrador. These are pelagic fish that have been taken on long lines over the ocean depths. Templeman (1967) described catches of these fish taken at the mid-mouth of the Labrador Sea. The water depth is $3060-3660 \mathrm{~m}$ in this area. He noted that these fish were heavily infested with the parasite Sphyrion lumpi and were probably part of an oceanic population that had been prevtously shown to exist in a large eddy system extending from Iceland and Greenland to the Labrador and nor theast Newfoundland shelves. This stock does not appear to have any commercial importance in North Anerica, and no recent work has been carried out in this area.

The Fishery

The fishery for redfish in the Northwest Atlantic is primarily based on catches of the sharp-beaked redfish. S. mentella and S. fasclatus. S. marinus are present in only relatively small numbers and are not considered to be important to the fisheries.

Historical catches

In North America, redfish catches have been recorded from the Gulf of Maine (MaF0 subarea 5) from as early as 1916 when 53 mt were taken by United States fishermen (Templeman 1959). There was a considerable increase in this fishery in the mid-1930's when landings jumped from

519 mt to 23,162 mt between 1934 and 1936. At this time, the fishery also expanded somewhat into the area of the Nova Scotia Shelf (MAFO Subarea 4). With time, the landings from the area north of the Gulf of Malne increased and surpassed those from this area. A fishery began in the Gulf of St. Lawrence (NAFO Subarea 4) in 1951 but effort was soon diverted to the Grand Bank area (NAFO Subarea 3) resulting in a decrease in catches from Subarea 4. Commercial landings were first reported from Subarea 2 in 1958 when 77,000 mt were caught (ICNAF 1970). Within the NAFO Convention Area (formerly ICNAF), catches of redfish peaked in 1959 with a total of $389,000 \mathrm{mt}$ being landed. They then fluctuated around about $200,000 \mathrm{mt}$ unt l^{11} the mid-1970's when total landings began to decrease under various quota regulations. Landings in the 1980's have been in the vicinity of 125,000 mit annually.

In the earliest years of the redfish fishery off North America, the United States fleet accounted for 100% of the landings. But, during the mid-1940's, they were joined by fishermen from Canada. In the early 1950's European vessels (Iceland and Germany) began fishing for redfish on this side of the Atlantic and in 1956 the USSR began sending vessels over. Soviet landings quickly grew such that in 1958-1960 they were the greatest for any single country. In recent years, landings by the United States have dropped drastically under strict management practices. From the late 1960's to the present, catches by Canada and the USSR have consistently accounted for greater than 70% of the total redfish landings from the NAFD Convention Area,

Stocks or management units
Discussions of redfish stocks in the Northwest Atlantic have always been assoclated with the management of the fishery. In 1961, Mead and Sindermann suggested that, for management purposes, three stocks of redfish could be identified in the Northwest Atlantic. These were: Flemish Cap, ICNAF (now NAFC) Subarea $2+$ Division $3 K$ and $3 L$, and Division $30+3 \mathrm{P}+$ Subareas 4 and 5 . They noted that the latter two stocks intermingled in Division 3 N but suggested that the situation in this area was not clear. Travin et al. (1962) concluded, on the basis of parasite and morphometric differences, that Subarea 3 could be divided into a northern stock (Division $3 k+n o r t h e r n ~ 3 L$), a Flenlsh Cap stock and a south Newfoundland stock (Divisions 3N. 30 and 3P). They also concluded that intermingling occurred in Division 3 N . Bainbridge and Cooper (1971) concluded that three stocks, as defined by Mead and Sindermann, existed based on the distribution of larvae.

Assessment of redfish began in the mid 1970's. Sandeman (MS 1973) referred to the redfish in the Gulf of St. Lawrence as a 'stock' when discussing management options. Parsons and Parsons (MS 1973) separated redfish from NAFO Divisions 30 and $3 P$ based on differences in growth rates described by Sandeman (19690). They also separated redfish in Divisions 3 L and 3 N from those in Divisions 30 and $3 P$ based on the conclusions of Mead and Sindermann (1961) and Bainbridge and Cooper (1971). The data from Dfvisions 3L and 3N were combined since there was inadequate evidence to indicate separate stocks. Pinhorn and Parsons (MS 1974) presented an assessment of another 'stock', that in MAF0 Subared $2+$ Division $3 K$ and in the same year, Parsons and Parsons (MS 1974a) assessed the status of the redfish on Flemish Cap. Mayo and Miller (M5 1975) presented a preliminary assessment of the redfish in NAFD Divisions $4 \mathrm{~V}, 4 \mathrm{~W}$ and 4 X combined. In the same year, Mayo (MS 1975) presented a preliminary assessment for Gulf of Maine redfish
(Subarea 5). This was treated as a single stock because of jurisdictional considerations between Canada and the United States. Thus, excluding the Baffin Bay-West Greenland area, a total of 8 stocks were defined (see Fig. 1): NAFO Subarea $2+$ Division $3 x$ (Labrador-northern Newfoundland), Divisions 3L $+3 N$ (north and east Grand Bank), Division 3M (Flenish Cap), Division 30 (southwest Grand Bank), Division 3P (south coast of Newfoundland), Divisions 4R. 45 and 4 T (Gulf of St. Lawrence), Divisions $4 V, 4 \mathrm{~W}$ and 4 X (Nova Scotia Shelf) and Subarea 5 (Gulf of Maine).

The separation of the Northwest Atlantic redfish into these stocks, or perhaps more properly, management units, has continued to the present although some of these separations have been questioned. Koeller and LeGresely (MS 1981) regarded the redfish on the southern slope of Laurentian Channel in the Gulf of St . Lawrence as a separate stock. Nikolskaya (MS 1981) concluded that the redfish in Division 3 L differ from those in Divisions 3 N and 30 based on growth rates, maximum age and dominant sizes and ages but Atkinson and Power (MS 1986), after reviewing available data, concluded that the situation in Division 3 N is still unclear. They did note that it was unlikely for serfous problems to arise in the management of Division 30 separate from Divisions 3 L and 3 N .

Attempts at stock definition in the early 1960's were confounded unk nowingly by the existence of the two species of sharp-beaked redfish. Most recently Ni (1982), based on merlstic taxa, proposed 5 matagement stocks off the Canadian coast. These were 1) the Baffin Bay-Labrador stock, 2) Flemish Cap stock, 3) Grand Bank stock and 4) Gulf of St. Lawrence stock and 5) Nova Scotia \$helf stock. His separation of the Grand Bank and Scotian Shelf stocks was not based on any meristic differences, but upon dfferent management jurisdictions within the Canadian Department of Fisheries and Oceans. It seems unlikely that the stocks, as they now exist for management purposes, will be changed in the forseeable future although no other evidence is avallable to indicate that the separation is valid.

Management

As noted earlier, management advice was first provided for the redfish stocks off the east coast of Canada in the early to mid 1970's. This advite was assessed by ICNAF (established in 1949) which was responsible for the management of all stocks in the Northwest Atlantic lying outside the waters of the coastal states. With the extension of jurisdiction to 200 miles by both Canada and the United States in 1977, ICMAF was replaced by two orgamizations. ICNAF itself was replaced by NAFO which now has jurisdiction over stocks lying outside coastal economic zones and also provides advice, when requested, for those stocks which overlap the economic zone of the coastal state (Canada) and the Convention area. The United States is not a Contracting Party of NAFO. The second organization established is the Canadian Atlantic Fisheries Scientific Advisory Cominttee (CAFSAC) which is wholly Canadian and is responsible for providing management advice for those stocks lying completely within Canada's 200 mil . economic zone. Today, only 2 redfish stocks are managed through MAFO; the Flemish Cap stock which lies completely within the NAFO Convention area and the stock in Divisions 3L and 3 N which overlap Canada's economic zone and the Gonvention area.

The initial assessments provided were based on general production analyses fe.g. Parsons and Parsons MS 1973; Parsons and Parsons MS 1974a; Pinhorn and Parsons MS 1974; Mayo and Miller MS 1975), often in association with yield-per-recruit and catch curve analyses (Parsons and Parsons MS 1974b). Quotas were imposed on these stocks based on both the results of these early assessments and average historical catches, but often tempered by 'gut feelings' of stock status or condition. During this period, the reference level for fishing was MSY or maximum sustainable yield. For yield-per-recruit analyses, Fmax (that level of fishing mortality that results in the maximum yield-per-recruit) was used as the reference point. The year of quota imposition and the corresponding quotas were as follows:

Stock	Ffrst Year of quota	Quota (MT)
2+3K	1974	30,000
3LN	1974	20,000
3M	1974	40,000
30	1974	15,000
3P	1974	23,000
4VWX	1974	40,000
SA 5	1973	30,000

Assessments of redfish in the Gulf of $\$ t$. Lawrence were reviewed within ICHAF (e.g. Berthome and Forest MS 1976) but the imposition of quotas was the sole responsibility of the coastal state, Canada. In 1976 an initial TAC (total allowable catch) of 30,000 mit was established for this resource.

As stated previously, management was originally based on a combination of MSY, Fmax , historical average catches and 'gut feelings'. Beginning in the mid- to late 1970 's, some modifications were made to these concepts. For general production models, the reference level of MSY was replaced by 'yield at $2 / 3$ MSY effort' as it was thought to be safer than MSY in that it represented a level more to the left of the downside of the equilibrium curve. The reference of Fmax was replaced by F0.1, that level at which the change in yield-per-recruit with respect to changes in mortality rate is one-tenth of that of the fishery beginning on a virgin stock. These changes were implemented to promote stock rebuilding and improved catch rates as extensive over-fishing of most of the commercial species off Canada's east coast in the early- to mid-1970's had resulted in depressed stocks. They remain in effect today \{in most tases) as reference levels when carrying out assessments of redfish off eastern Canada.

Since 1975, assessments of the 7 redfish stocks have been carried out annually using general production analyses (e.g. Parsons and Parsons MS 1973. MS 1974a; Pinhorn and Parsons MS 1974; Mayo and Miller MS 1975; McKone MS 1979; Atkinson MS 1983; Atkinson MS 1985) as well as sequential population analyses (cohort, VPA) (e.g. Parsons and Parsons MS 1975; Atkinson et al. MS 1980; McKone et al. MS 1980; Maguire et al. MS 1983). General production analyses have been used most frequently although the assumption of equilibrium is knowingly violated. Sequential population analyses have generally not been satisfactory
because of a lack of a sufficiently long time series of commercial catch-at-age data coupled with low levels of fishing mortality. The most recent (1986) TAC's and the basis for them are as follows:

Stock	TAC (MT)	BASIS
2+3k	35,000	Retained starting 1980, based on yield at $2 / 3$ effort MSY.
3LN	25,000	Retained starting 1980, based on yield at $2 / 3$ effort MSY.
3 M	20,000	Retained starting 1979, based on yleld at MSY.
30	20,000	Retained starting 1978, based on yield at MSY.
3 P	18,000	Retained starting 1980, based on FO. 1 catch of 18,000 MT.
4RST	55,000	Based on F0.l strategy with some modifications based on ecomonics.
4vax	30,000	Retained starting 1980, based on yield at $2 / 3$ effort MSY.

Research and the Future
Much of the research on redfish off the east coast of Canada was done when the existence of the two species, S. mentella and S. fasciatus, was unknown. Much of this work needs to te redone and studies in this direction are beginning. The differences in growth rates noted by Sandeman (1969b) may be, in part, due to different proportions of the two species present in his samples from different areas. For example, examination of the depths from which Sandeman's samples were taken, and comparison with Ni's (1982) findings, would suggest that Parsons and Parsons' (MS 1973) basis for separation of Division 30 and $3 P$ redfish (different growth rates) is merely a reflection of sampling differences. It appears that 5 . fasciatus may have been sampled from Division 30, while a mixture was sampled from 3P. This needs to be reexamined.

There appears to be a cline from north to south with regard to the extrusion time of larvae, $N i$ and Templeman (1985) noted that the sequence of larval release off the south coast of Newfoundland appeared to be S. mentella, S. marinus then S. fasciatus, If this is the case, then the different relative abundance of the species may account for some of the previously noted dffferences in release times.

The age and growth (and hence natural mortality) of these redfish still requires a great deat of work. Age determination and validation is ongoing both through otolith interpretation and the use of radioisotopes. For thts work to be valid, there must be a separation of the two sharp-beaked species.

The diel novements of these fish are well documented. These movements have serious implications when conducting trawling surveys for redfish.

The phenomenon is being studied through the use of hydroacoustics. Preliminary data analyses have not yielded any solutions, but instead, indicate that a solution to the problem may be more complicated then a simple quantification of movement related to time of day in that there may be depti, 1 ight and fish density relationships involved.

Investigations are also underway into the use of hydroacoustics for estimating biomass of redfish. Besides the technological problems involved in working in water depths up to 750 m , such things as species identification and target strength need to be resolved.

The assessment methodology presently in use for the evaluation of the status of the redfish stocks has many shortcomings. While sequential population analysis may become more useful as the time series of data is increased and accumulated fishing mortalities become high enough for matrix conversion, problems related to ageing may still remain. General production models usually assume that the stock is in equilibrium (losses due to mortality, either natural or fishing, are balanced by recruitment). These assumptions are clearly violated in many of these redfish stocks where recruitment is highly variable. lising running averages of effort (Gulland 1961) is one way of handling this situation but is in many ways inadequate. Investigations are now underway into the use of a non-equilibrium production mode) (after Rivard and eledsoe 1978) in the assessment of these redfish.

Another point that has been raised in recent years is that of the species mix in the commercial catches. Suggestions have been made that the two sharp-beaked species should be separated for management purposes. Whether this is possible or practical remains to be seen. It is first necessary to learn and understand a great deal more about the distribution of the two species with regard to area, depth and season. An easy, reliable method for species identification in the field, for both fisheries personnel and fishermen, wll have to be developed. In the end, it may not be practical to separate quotas or other management policies based on the distributions of these species.

Today, the redfish fishery off the east coast of Canada is In a healthy state. Markets have improved steadily in recent years and in 1985, the Canadian catch of 72,200 mt represented a landed value of 15.5 milifon dollars and transiated into a total product value of 53.9 million dollars. There is still room for expansion, as the 1985 landings only represented about 50% of Canada's total allocation from the redfish quotas. Continued monitoring of these fisheries coupled with ongoing research will ensure the viability of these fish and their fishery on into the future.

References
Anon. 1956. Biologists tag first ocean perch. Commercial fish. Rev. 18:28.
Atkinson, D.B. MS 1983. $2+$ ЭK redfish. CAFSAC Res. Doc. 93/23.
Atkinson, D.B. 1984. Distibution and abundance of beaked redfish in the Gutf of St. Lawrence, 1976-1981. J. Northw. At]. Fish. Sc1. 5:189-197.
Atkinson, D.B. MS 1985. The redfish of NAFO Division 3M. NAFO SCR Doc. 85/48, Ser. No. N997.
Atkinson. D.B., W.D. McKone, and W.E. Legge. MS 1980. 3P redfish assessment. CAFSAC Res. Doc. 80/62.

Atkinson, D.B. and D. Power: MS 1986, The stock complex of redfish in NAFO Divisions 3KLNOPs. NAFO SCR Doc. 86/38, Ser. No. W1152.
Bainbridge, V. and G.A. Cooper 1971. Populations of Sebastes laryae in the North Atlantic. Res. Bull. int. Cobm. Horthw. Atlant. Fish., No. 8:27-35.
Barsukov, V.Y. 1968. The systmatic relationship of redfishes of the genus Sebastes of the Northwest Atlantic Ocean. Dokiady Akad. Nauk. SSSR, 189:479-482. (Trans1. from Russian in Doklady Biol. Sct., 183:734-737.)
Barsukov, V.Y. 1972. Systematics of the Atlantic redfishes. Trudy PINRO, 28:128-142. (Fish. Res. Bd. Can. Trans1., Ser. No. 2531, 1973.)

Barsukov, V.V. and G.P. Zakharov, 1972. Morphological and biological characteristics of the American redfish. Trudy PINRO, 28:143-173. (Fish. Res. Bd. Can. Transl. . Ser. No. 2488, 1973.)
Berthome, J.P. and A. Forest. MS 1976. Sebastes flshing in the Gulf of St. Lawrence: evolution of the fishery from 1958 to 1974 and estimation of the maximum equilibrium catch. ICNAF Res. Doc. 76/VI/90, Ser. No. 3903.
Bratberg, E. 1955. On the interpretation of the opaque and hyaline zones in the otoliths of fmature redfish. J. Cons. int. Explor. Mer, 22:66-74.
Chekova, V.A. 1972. Yertical distribution of beaked redfish (Sebastes mentella Travin) on the Flemish Cap Bank. Trudy PINRO, 28:199-2U9. (Fish. Res, Bd. Can. Trans1., Ser. No. 2504.)
Dannevig, A. 1919. Canadian fish-eggs and laryae. Rep. Canadian Fish. Exped., 1914-1915:1-74.
Frost, N. 1938. Some fishes of Newfoundland waters. Dept. Nat. Res. Newfoundland, Res. Bull., No. 4:1-16.
Gulland, J.A. 1961. Fishing and stocks of fish at Iceland. U.K. Min. Agric. Fish. Food, Fish. Invest. (Ser. 2), 23: 52 pp.
Hennemuth, R.C. and B.E. Brown. MS 1964. Relationship of length distribution of redfish to depth of catch. ICNAF Document No. 87, Ser. No. 1383.
ICNAF. 1970. Statistical Bulletin Vol. 20 for the year 1970.
Jones, D.H. 1969. Sone characteristics of the pelagic redfish (Sebastes mentella Travin) from Weather Station Alpha. J. Cons. int. Explor. Mer, 32;395-412.
Kashintsev, M.L. 1962. Some notes on rosefish feeding in the Newfoundland area. In Soviet Fish. Invest. in the Northwest Atlantic, VINRO-PINRO, PP 256-265. (Trans1. for U.S. Dept. Int. Nat. Sci. Found. Wash. D.C. by Israel Prog. Sci. Trans1., 1963)
Kelly, G.F. and R.S. Wolf. 1959. Age and growth of the redfish (Sebastes marinus) in the Gulf of Maine. Fish. Bull. U.S., 60: 31 pp .
Kenchington, T.J. 1983. Comment on meristic variation in beaked redfishes, Sebastes mentella and S. fasciatus, in the Northwest Atlantic. Cañ. . Fish. Aquät. Sct., 40:1532-1533.
Kenchington, T.J. 1986. Morphological comparison of two Northwest Atlantic redfishes, Sebastes fasciatus and S. mentella, and techniques for their identification. Can. J. Fish. Rquat. Sci. 43:781-787.
Konstantinov, K.G. and M.N. Shcherbino. 1958. The diurnal migrations of redfish. Rybnoe Khozyaitvo, No, 10:11-13. [Trans1. for Ministry of Agri., Fish. and Food by C.A. Mclean, Fisheries Laboratory, Lowestoft, Suffolk, Trans. N.S. No. 13, 1963.)

Koeller, P.A. and M. LeGresely. MS 1981. Abundance and distribution of finfish and squid from E.E. Prince trawl surveys in the southern Gulf of St. Lawrence, 1970-1979. Can. Tech. Rep. Fish. Aquat. Sci., No. 1028: 56 pp.
Kotthaus, A. 1958. Age and growth of redfish, Sebastes marinus (L.). ICNAF Spec. Publ., No. 1:217-222.
Kotthaus, A. 1961. Contribution to the race problem in redfish (abstract). ICNAF Spec. Publ., No. 3:42-44.
Lambert, D.G. 1960. The food of redflsh Sebastes marinus (L.) in the Newfoundland area. J. Fish. Res. Bd. Can-, 17:235-243.
Litvinenko, N.L. 1974. Coloration and other morphological characters distinquishtig juventle Sebastes fasciatus from jurentle S. mentella (Scorpaenidae). J. Ichthyol., 14:591-595.

Litviñenko, K.I. 1979. Sebastes fasclatus Kellyi (Scorpaenidae) from coastal waters off Easport, Malne, USA. J. Icthyol.,19:1-14.
Lundbeck, J. 1961. The redfish of the North Atlantic, chairman's report and intraductory remarks. ICNAF Spec. Publ., No. 3:7-8.
Magnússon, J. 1955. Microscopical anatomical investigations on reproduction in redfish (Sebastes marinus Linne). Z. Zellforsch. Mikrosk. Anat., 43:121-167. (Fish. Rés. Bd. Trans1. Ser., No. 138, 1958.)

Maguitre, J.J., J.P. Lussiaà-Berdou, and P. Rubec. 1983. The 1982 stock status and 1983-84 yield projections for 4RST redfish. CAFSAC Res. Doc. 83/50.
Mayo, R.K. MS 1975. A preliminary assessment of the redfish fishery in ICNAF Subarea 5. ICNAF Res. Doc. 75/59, Ser. No. 3541.
Mayo, R.K., U.B. Dozier, and S.H. Clark. MS 1983. Virtual population analysts of redfish, Sebastes fasclatus, in the Gulf of Maine Gearges Bank region. ICES cm/E:49.
Mayo, R.K., Y.M. Gifford, and A. Jerald Jr. 1981. Age validation of redfish, Sebastes marinus (L.), from the Gulf of Maine - Georges Bank region. J. Northw. At1. Fish. Sci., 2:13-19.
Mayo, R.K. and D.S. Miller. MS 1975. A preliminary Assessment of the redfish, Sebastes marinus (Linnaeus), in ICNAF Divisions 4V-4K-4X. ICNAF Res. Dóc. $75 / \mathrm{TX} / \mathrm{I} 35$, Ser. No. 3688.
McKone, W.D. MS 1979. Assessment of redfish in Divisions 3LA. ICNAF Res. Doc. 79/41/72 (Rev.), Ser. No. 5414.
McKone, W.D., D.B. Atkinson, and W.E. Legge. MS 1980. Gulf of St. Lawrence redfish assessment. CAFSAC Res. Doc. 80/60.
McKone, W.D. and W.E. Legge. MS 1980. Evidence for using otoliths to age redfish. HAFO \$CR Doc. 80/V1/79, Ser. Ho. N133.
Mead, G.W. and C.J. Sindermann. 1961. Systematics and natural marks. ICNAF Spec. Publ., No. 3:9-11.
Murray, J. and J. Hjort. 1912. The depths of the ocean. Macmillan and Co., London, 821 pp .
Ni, [-H. 1981a. Separation of sharp-beaked redfish, Sebastes fasciatus and 5. mentella, from northeastern Grand Bank by morphology of extrinsic gasbladder musculature. J. Northw. At1. Fish. Sci., 2:7-12.
Ni , 1-H. 1981b. Numerical classification of sharp-beaked redfishes, Sebastes mentella and S. fascfatus, from northeastern Grand Bank. Can. J.FTSh. Aquat. 5ci., 38:873-879.
Ni, I-H. 1982. Meristic variation in beaked redfishes, Sebastes mentella and S . fasciatus, in the Northwest Atlantic. Can. J. Fishi. Aquat. scit., 39:1664-1685.

Ni, I-H. 1983. Comment on meristic varlation in beaked redfishes, Sebastes mentella and S. fasciatus, in the Northwest Atlantic: reply. Can. J. Fish. Aquat. Scl., 45:1533-1536.
Ni, I-H. 1984, Meristic variation in golden redfish, Sebastes marinus, compared with beaked redfishes in the Northwest AtTantic. J. Northw. At7. Fish. Sci., 5:65-70.
N1, 1-K. and W.D. Mckone. 1983. Distribution and concentration of redfishes in Newfoundland and Labrader waters. NAFO Sci. Council Studies, No.6:7-14.
N1, I-H. and E.J. Sandeman. 1984. Size at maturity for Northwest Atlantic redfishes (Sebastes). Can. J. Fish. Aquat. Sci., 41:1753-1762.
Ni , I-H. and W. Templeman. 1985. Reproductive cycles of redfishes (Sebastes) in southern Newfoundland waters. J. Horthw. At1. Fish. 5c1., 6:57-64.
Nigrelli, R.F. and F.E. Firth. 1939. On Sphyrion lumpl (Krbyer), a copepod parasite on the redfish, Sebastes marinus (Linnaeus), with special reference to the host-parasité retationships. Zoologica, 24:1-10.
Nikolskaya, T.L. MS 1973. Distribution of beaked redfish (Sebastes mentella Travin) by depths in areas off the Great Newfoundland Bank and Labrador. ICNAF Res. Doc. 73/41, Ser. No. 2980.
Nikolskaya, T.L. 1977. Changes th the stages of gonad maturity of the deepwater redfish, Sebastes mentella, in the region of southern Labrador. J. Icthyof., 19:154-756.
Nikolskaya, T.L. MS 1981. Isolation of deepwater redfish (Sebastes mentella) stocks on the Grand Newfoundland Bank. NAFO SCR Doc. 817V175., Ser. No. M341.
Parsens, L.S. and D.G. Parsons. MS 1973. An evaluation of the status of ICNAF Divisions 3P, 30 and 3LN redfish. ICNAF Res. Doc. 73/88, Ser. No. 3042.
Parsons, L.S. and D.G. Parsons. MS 1974a. An evaluation of the status of Flemish Cap redfish. ICNAF Res. Doc. 74/78, Ser. No. 3312.
Parsons, L.S. and D.G. Parsons. MS 1974b. Yield per recruit assessment of ICNAF Division $3 P$ redfish. ICNAF Res. Doc. 74/79, Ser. No. 3313.

Parsons, L.S. and D.G. Parsons. MS 1975. Status of 3P redfish. ICNAF Res. Doc. 75/137, Ser. No. 3690.
Parsons, L.S. and D.G. Parsons. 1976. Effects of diurnal variation in availability upon estimation of redfish numbers and biomass from stratified-randon bottom trawl surveys. ICNAF Se1. Papers, No. 1 :19-29,
Payne, R.H. and I-H. Ni. 1982. Biochemical population genetics of redfishes (Sebastes) of New foundland. J. Northw. Atl. Fish. Sci., 3:169-172.
Perlmutter, A. 1953. Population studies of rosefish. Trans. N.Y. Acad. Sci., Ser. 2, 15(5):189-191.
Pinhorn, A.T, and L.S. Parsons. MS 1974. Status of the redfish fishery in ICNAF Subarea 2 and Division 3K. ICNAF Res. Doc. 74/5, Ser. No. 3148.
Power, D.J. and I-H. N. 1982. Morphology of the extrinsic gasbladder musculature in the golden redfish, Sebastes marinus. J. Northw. Att. Fish. Sci., 3:165-168.
Rasmussen, B. 1958. Notes on the otoliths of 5 . marinus and S. viviparous. ICNAF Spec. Publ.. No.1:223-225,

Rivarす, D. and L.J. Bledsoe. 1978. Parameter estimation for the Pella-Tomlinson stack production model under non-equilibrium conditions. Fishery Bulletin, 76:523-534.

Robins, C.R., R.M. Bailey, C.E. Bond, J.R. Brooker, E.A. Lachner, R.N. Lea and W.B. Scott. 1980. A list of common and scientific names of fishes from the United States and Canada, 4th edition. Am. Fish Soc. Spec. Publ., 12:i-1if, 174 pp .
Robins, C.R., R.M. Bailey, C.E. Bond, J.R. Brooker, E.A. Lachner, R.N. Lea and W.B. Scott. 1986. Names of the Atlantic redfishes, Genus Sebastes. Fisheries, 11:28-29.
Saemundsson, B. 1932. Sebastes marinus and Sebastes viviparous. Consei 1 Expl. Mer, faume Tchthyologique de l'Atlantic nord, No. 10.
Sandeman, E.J, 1957. Redfish grow slowly. Fish. Res. Bd. Canada, Atl. Prog. Rep., No.67:26-28.
Sandeman, E.J. 1961. Contribution to the problem of the age determination and growth-rate in Sebastes. ICNAF Spec. Publ., No. 3:276-284.
Sandeman, E.J. 1969a, Diurnal variation in the availability of different sizes of redfish, Sebastes mentella. ICNAF Res. Bull., 6:35-46.
Sandeman, E.J. 1969b. Age determination and growth rate of redfish, Sebastes sp., from selected areas around Newfoundland. ICNAF Res. हौना., No. 6:79-106.
Sandeman, E.J. MS 1973. The redfish fishery of the Gulf of St. Lawrence. Biological considerations - past, present and future? Can. Fish. and Marine Serv., Biol. Stat., St. John's, Nfld., Circ. 20:19 pp.
Savvatimsky, P.I. and I.N. Sidarenko. 1966. Results of investigations on deep sea redfish. ICNAF Res. Bull., No. 3:49-54.
Schroeder, H.C. 1955. Report on the results of exploratory otter-trawling along the continental shelf and slope beteen Nova Scotia and Virginia during the summers of 1952 and 1953. Papers Mar. Biol. and Oceanog., Deep-Sea Res., suppl. to Yol. 3:358-372.
Sidorenko, I.N. MS 1966. Distribution of redfish, Sebastes mentella Travin, at different depths of the north Newfoundland Shelf. ICNAF Res. Doc. 66/52, Ser. No. 1662.
Sorokin, Y.P. 1961. The redfish, gametogenesis and migrations of the Sebastes marinus (L.) and Sebastes mentella Travin. ICNAF Spec. Publ., Ho. 3:245-250.
Steele, D.H. 1957. The redfish (Sebastes marinus L.) in the western Gulf of St. Lawrence. J. Fish. Res. Bd. Can., 14:899-942.
Storer, D.H. 1856. A new species of fish Sebastes fasciatus from Provincetown, found in the harbour at that place. Proc. Boston Soc. Nat. Hist., 5:31.
Surkova, E.I. 1962. Size and age composition of Sebastes mentella Tr. in the Northwest Atlantic. in Soviet Fish. Invest. in the Northwest Atlantic VIMRO-PINRO, pp 297-311. (Trans). for U.S. Dept. Int. Nat. Sci. Found. Wash. D.C. by Israel Prog.Sci. Trans1., 1963)
Templeman, W. 1955. Canadian researches, 1954, Subarea 2. Redfish Sebastes marinus (L.). ICNAF Ann. Proc., 5:19-20.
Templeman, मi. 1957. Redfish exploration north of Flemish Cap. Fish. Res. 8d. Can. At1. Prog- Rept., No. 67:14-18.
Templeman, W. 1959. Redfish distribution in the North Atlantic. Bull. Fish. Res. Bd. Can., No. 120:173 pp.

Templeman, W. 1961. Redfish distribution off Baffin Island, Horthern Labrador, and in Ungava Bay in August-September 1959. ICMAF Spec. Publ., No. 3:157-162.
Templeman, W. 1967. Adult redfish, Sebastes mentella, pelagic over oceanic depths in the Labrador Sea. J. Fish. Res. Bd. Can., 24:1275-1290.
Templeman, W. 1976. Biological and oceanographic background of Flemish Cap as an area for research on the reasons for year-class success and fallure in cod and redfish. ICNAF. Res. Buli., No. 12:91-117.
Templeman, W. and G.L. Handrigan. MS 1949. Rosefish. Annual Report of the Newfoundland Brological Station, St. John's, Nfld.
Templeman, W. and R.C. Knapp-Fisher, MS 1951. Increase in size of rosefish with depth. Annual Report of the Newfoundland Biological Station, St. John's, Nfld.
Templeman, W. and T.K. Pitt. 1961. Vertebral numbers of redfish, Sebastes marinus (L.) in the Northwest Atlantic, 1947-1954. ICNAF Spec. PubT., No. 3:56-89.
Templeman, W. and E.J. Sandeman. 1957. Two varieties of redfish in the Newfoundland area, Fish. Res. Bd. Can. At1. Prog. Rept., Ho.66:20-23.
Templeman, W. and E.J. Sandeman. 1959. Variations in caudal pigmentation in late-stage pre-extrusion larvae from marinus-and mentella-type female redfish from the Newfoundiand area. J. Fish. Res. Bd. Can., 16:763-789.
Templeman. W. and H.J. Squires. 1960. Incidence and distribution of infestation by Sphyrion Iumpi (Kroyer) on the redfish, Sebastes marinus (L.), of the western Atlantic. J. Fish. Res. Bd. Can., 17:9-31.
Travin, V., K. Janoulov, A. Postolaky and G. Zharov. 1962. Redfish stock distribution in the ICMAF area. ICNAF Ann. Proc. for the years 1960-1962, 11:87-69.
Travin, Y.I. and L.N. Pechenik. 1962. Soviet fisheries investigations in the Northwest Atlantic. in Soviet Fish. Invest. in the Northwest Atlantic, VINRO-PINRO, pp 256-265. (Transl. for U.S. Dept. Int. Nat. Sci. Found. Wash. D.C. by Israel Prog.Sci. Trans1., 1963).
Westrheim, S.J., D.R. Gunderson, J.M. Meehan. MS 1972. On the status of Pacific ocean perch (Sebastes alutus) stocks off British Columbla, Washington and Oregon in 1970. Fish. Res. Bd. Cah. Tech. Rept., No. 326: 48 pp.
Wilson, C.W. 1919. North American parasitic copepods belonging to the new family Sphyridae. Proc. U.S. Nat. Mus., 55:549-604.
Wilson, C.W. 1931. The copepods of the Woods Hole region, Massachusettes. U.S. Nat. Mus. Bul1. 158: 623 pp.
Yanulov, K.P. 1962. Feeding habits of "beaked" redfish (Sebastes mentella Travin) in the Newfoundland-Labrador area. ICNAF Redbook, 1962, Part 3:132-140.

A history of California rockfish fisheries

William H. Lenarz
 NMFS, Southwest Fisheries Center Tiburon, California

Abstract

Rockfish have been caught off California since prehistoric times. While 60 species are recorded in California waterg, less than 20 species make significant contributions to landings by the diverse gears that are used in the fisheries. This paper reviews dynamics in the size and composition of the fishing fleets and landings. Recent events in the fisheries are compared with the history, and important management and research problems of the present are discussed.

History of Landings

Californians have captured rockfish for centuries. California Indians consumed rockfish in prehistorio times (Fitch 1972). Roekfish had attained commercial importance in California by 1875 (Philifps 1957). By the turn of the century, annual landings had reached about 750 mt and there were about 1,500,000 people in the state. Now, with 25,000,000 people, landings of roekfish have increased to 20,000 mt, a 60% gain in landings per capita. The California Department of Fish and Game began complling fish recelpt data in 1916 (Helmann and Carlisle 1970; Flgure 1). These data include most landings, but some small landings do not enter nomal market ohannels and are not Included.

The landings were fairly stable, generally between 2,000 and 4,000 mt, until the Second World War first interfered with the fishery and then oreated a large demand. Until 1943. most rockfish were caught by nook-and-line gear; only 5t were landed by trawlers. In late 1943, a boat moved from Astoria, Oregon, to Eureka and used a high-rise trakl called a "balloon trawl" (Phillips 1949). The balloon trawl was very

Figure 1. California commercial londings of rockfish, 1916-1985. Source: 1916-1968 (Heimann and Carlisle 1970), 1969-1970 (Bell 1971),
1971 (Oliphant et al, 1973).
1972-1974 (McAllister 1975, 1976).
1975 (Pinkas 1977),
1976 (Oliphant 1979),
1977-1980 (Frank Henry, personal communication), and 1981-1985 (PocFIN).
effective in dapturing rookfish. Use of the balloon trawi spread rapidly and trawl-caught rockfish have dominated the landings since 1944. A peak oceurred in landings in 1945 because of the demand from army camps on the Hest Coast. Landinge decilined at the end of the war when the camps were phased out.

I did not find explanations for fluctuations in landings between 1950 and 1970. During the past 15 years, landings have increased considerably as the result of better market demand, net design, acoustics, and navigation. Landings peaked in 1982. In that year, many boats from Oregon and Washington flahed in northern and central Californta. These vessels made large landings of widow rockish (Sebastes entomelas) as well as other species of rockfish. In addition to the expanded trawl effort in the $1980^{\prime} \mathrm{s}$, glll-net vegsels also have increased effort.

Since 1983, widow rockfish landings and, to sone degree, landings of other speoies have been constrained by Pacifio Fighery Management Council regulations.

The hook-and-line fishery in the early days was fairly primitive. Most trips lasted less than a day and often the orew size was one. Most fighing took place close to port and in water less than tod fathoms (Scofield 1947). Landings were domlnated by black rockfish (S. melanops) in northerr California, bocaccio (S. paucispinis) and chilfpepper (S. goodei) in central California, and vermilion rockfish (S. minlatus) in southern California. After the advent of the balloon trawl, canary rockfish (3 . pinniger) replaced black rockfish in northern calfornia and bocacelo and chilipepper replaced vermilion rockfish in parts of southern Callforma. Catches of widow roekfish were minor before 1979 when ressels with midwater trawls began targeting on then. In very recent years, bank rockfish (S. rufus) have beocoe more fmportant in landings.

Trawl fishery

It is not very meaningful to discuss solely the California trawl fleet, because many vessels fish in wore than one state during the year. The fleet is very dynamic. of the 600 trawlers that participated in the Califorala, Oregon, and Washington ifshery for groundfish between 1981 and 1984, only 400 participated in the 1984 fishery. of the 200 that didn't, records are incomplete for about half (E. Ueber, personal commulcation). We do know that about 50 aank or burned, 30 fished in other areas or for other groups of Iish, and 30 didn't operate because of bankruptey or other problems.

Most trawl-caught rockfish enter the fresh fish market as fillets. In recent years, widow rockfish, bocaceio, chilipepper, and bank rookfish have dominated the trawl landings. The ex-vessel prioe of most trawl-caught rockfish is $\$ 0.275 / 1 \mathrm{~b}$. The trawl landings of rockish in California are worth about $\$ 10,000,000$.

Another important gear for rockfish In southern and central Califormit is the gill net. This gear is prohibited in northern california. Landings by this gean are not as dominated by widow rockifish, bocacolo, and chilipepper as trawl landings are. Yellowtall rockfish (S. flavidus) and blue rockfish (S. mystinus) are also important.

In 1985, almost 900 vessels were licensed to use gill nets (E, Ueber, personal communication). While I do not have accurate data, probably several hundred gill-net vessels landed rockfish in California.

Our data for California gill-net landings are incomplete, but the catch of rockfish was more than 2,700 wt in 1985, Gillnetted fish tend to be worth more than trawl-caught fish. I estimate that 1985 landings were worth several million dollars to the fishermen. While some gillnetted rockfish are filleted, many enter the market as whole or dressed fish.

A number of problems are associated with the gili-net fishery in Calfornia. Besides the usual gear conflicts, there are major incidental kills of seabirds and marine mamals. Because of the problems, there 13 considerable public support to efther ban the gear altogether or severely restrict it.

Hook-and-line fishery

Rookfish are still commerdally oaght by hook-and-line fishermen in California. While this fishery captures the same species as the other gears, there is a greater tendency to fish for specialized markets such as the Chinese restaurant trade. The brown rookfish (S. aurieulatus) and several closely related species are preferred for this market. Fishermen receive as much as $\$ 3.00 / 1 \mathrm{~b}$ for fish in good condition. Sometives the fish are kept alive until just before cooking.

1 don't have a firm estimate of the number of nook-and-line vessels fishing for rockfish in calfornia. It is approximately 300. 1985 landings were about 1,000 mt. I estimate that these landings were worth 1 to 2 million dollars. Most hook-and-line caught rookfish enter the market as whole or dressed fish.

Recreational fishery

Rockfish are very important for recreational fisheries. Besides being good eating, rockfish can be as large as 28 lbs (such as the cowcod, S. levis), can be very colorful (such as the starry rockfish, S. constellatus), and can be very attractive when viewed underwater (such as the treefish, S. serricepa). While catches are usually dominated by one or two species, we have sampled more than 12 species on a single party-boat trip. The variety is appealing to some anglers.

While the California recreational fishery probably is worth more than commerolal fisheries of most nations, it is not very well documented. This is because it is difficult to adequately sample reoreational landings. Statisties have been collected frow the party-boat fishery
through a logbook system since 1936 (Collyer 1949, Young 1969). Since 1981. the entire fishery has been ampled by a phone interview and field sampling program ($0 . S$. Department of Comerce 1986).

The party-boat fishery is concentrated in southern California. Prior to the 1950 's, rockitish did not support a major targeted fishery in southern California. Anglers preferred the then abundant barracuda (Sphyraena argentea). Barracuda numbers declined and rockfish became very important in the party-boat fishery. The party-boat fishery for rockfish is still minor in northern California.

In 1985, recreational anglers landed almost 8,000,000 rockfish in Califorina (U.S. Department of Comerce 1986). The fish weighed about $4,000 \mathrm{mt}$. Fockfish comprised almost $1 / 3$ of all recreational fish landed in the state and are the most important group of species. Forty-six species of rockfish were sampled from recreational catches in 1984. However, three speciea-blue rockfish, black rockfish, and yellowtail rockfish-wepresent zbout 30% of the landings. Boat anglers make more than 90% of the landings. Landings frow party boats and private boats are about equal.

Economists have yet to agree on how to determine the value of a recreational fishery. One method is to appraise all costs associated with fishing trips. Using this approach, econonists estimated that the Califormia recreational fishery for all species is worth about a billion dollars (D. Huppert, personal communication). This is not equi val ent to the comercial fisheries values, because there are many factors included in the recreational value not included in the exvessel value of commercially landed fish. Still it appears that the reoreational value significantly exceeds the commercial value. Agencles recognize this when making management decisions.

Status of righery

Most stocks of traditional rockfigh species in California are at or below the MSY level. Some, such as bocaccio, may be overfished. Present regulations consist of a quota on widow rockfish, 40,000-1D trip limits on comercially caught fish, and a $15-\mathrm{fish}$ bag limit for recreational fish. There are also various gear and area reatrictions. The objective of many of the area regulations is to reduce gear conflicts, partfoularly between recreational and commercial fishermen.

While most of the traditional species are fully utilized, two appear not to be. Recent analysis indicates there is some roon for expansion In landings in ehilipeppert. In addition, bank rockfish landings have increased in recent year's. They occupy a habitat that had only been lightly fished previously.

There are two other abundant, lightly exploited speeies. The splitnose rockfish (S. diploproa) is quite abundant. However, it is a very longlived species and, while the flahery probably could be expanded some. care is needed in such an expansion because the specjes could easily become overfished, it is amarginal commercial fish becauge it produces low fillet yields and ls falrly small. Shortbelly rockfish (S. jordani) is very abundant and short-lived. The species probably could support a fishery about the size of the other species combined.

However, it is quite small (maximum size about 30 em) and must be processed rapidly.

Species targeted by recreational fisheries in southern and oentral California appear to be fully utilized. Some of the expansion of the recreational fishery has come at the expense of the commercial fishery. Several nearshore species--e.g., black, blue, and yellowtail rockfish-appear to be lightly fished in northern California, Recreational fishing in this area is lifited because of the distance from population centers.

Discussion

During historical times the commercial fishery has passed through several phases (Figure 1). Between 1916 and 1947, landfngs were generally between 2,000 and 4,000 mt. During the Second World War, fishing techniques and markets improved and landings increased to between 4,000 and $8,000 \mathrm{mt}$ until 1971. Sinee then, techniques and markets have again improved and landings are now about 20,000 wt. The status of exploited speoies indicates that landings will be between 10,000 and $30,000 \mathrm{mt}$ until other apecies are har vested. If an Increase occurg, it would be a repeat of history. The previous mator increases involved changes in the relative importance of species. A future major Increase also is likely to involye changes in species composition of landingt. Shor'tbelly and splitnose rockfish are likely to contribute to increased landings. As in the past, improved market conditions are a prerequisite to increased utilization of these two speoies.

History may also be repeated in the recreational fishery. Significant expansion of recreational landings of rockfish in southern and central California is not likely to occur without reduction of commercial landings.

Management and researchers involved with California rookfish fisheries face several major problems including conflicts between reoreational and commercial figherieg. I have already mentioned the gill-net problem. There also appears to be some overcapitalization, The industry, researchers, and managers have been discussing varicus forms of limited access management, but implementation of such managenent appears to be years, if not deoades, off. Fluctuations in year"class strength cause the fishery to be somewhat unpredictable. Research almed at this problem 13 discussed in another paper (Kendall and Lenarz 1987). Researchers are also attempting to develop optimsl management strategies that account for the multispecies aspects of the Fishery. Finally, monltoring the flshery is quite expensive. We are working on procedures to make sampling more efficier.t.

Acknouledgments

I gained much of the information contained in thig paper from conversstions with my colleagues. Frank Henry and Tom Jor of the Califorma Department of Fish and Game, Menlo Park, and Sus Kato and Ed teber of NMFS, Tiburon, are particularly knowledgeable of California fisheries.

Bell, R. K. 1971. Californfa marine flah landings for 1970. Calif. Dep. Fish Game, Fish Bull. 154, 50 p.

Collyer, R. D. 1949. Marine sportfishing. In The commercial fish catch of callfornia for the year 1947 with an hatorical review 1916-1947, p. 180-183. Calif. Dep. Fish Game, Fish Bull. 74.

Fitch, J. E. t972. Fish remains, primarily otoliths, from a coastal Indian midden ($\$ 10-2$) at Dlablo Cove, San Luis Oblspo County, California, San Luis Obispo Cty. Arenaeol. Soc. Oceas. Pap. No. 7:101-120.

Heimann, R. F. G., and J. G. Carlisle, Jr. 1970. The California marine figh oatch for 1968 and historical review 1916-1968. Calif. Dep. Fish Game, Fish Bull. 149, 70 p.

Kendald, A. W., and W. H. Lenarz. 1987. Status of early life history studfes of Northeast Pacific Rockflshes. (This Symposiam)

MeAllister, R. 1975. Calfornfa marine fish landings for 1973. Calif. Dep. Fish Game, Fish Buli. 163. 53 p.

MoAlister, R. 1976. California marine fish landinge for 1974. Calif. Dep. Fish Game, Fish Bull. 166. 53 p.

Oliphant, $\begin{gathered}\text { M. S. 1979. Califorma marine fish landings for } 1976 . ~\end{gathered}$ Calif. Dep. Fish Game, Fish Bull. 170, 56 p.

Oliphant, M. S., and Marine Fisheries Statistios Staff Marine Resources Region. 1973. Calif. Dep. Fish Game, Fish Bill. 159, 49 p.

Phillips, J. B. 1949. Reckfish. In The commercial fish oatch of California for the year 1947 with an historical review $1916-1947$, p. 116-122.. Calif. Dep. Fish Game, Fish Bull. 74.

Phillips. J. 3. 1957. A review of the rockfishes of California (family Scorpaenidae). Calif. Dep. Fish Game, Fish Buli. 104, 158 p.

Pinkas, L. 1977. Callforna marine fish landings for 1975. Calif. Ded. Fish Game, Fish Bul1. 168, 55 p.

Scoffeld, W. L. 1947. Drift and set line fishing gear in Califoria. Calif. Dep. Fish Game. Fish Bull. 66, 38 p.
U.S. Department of Commerce. 1986. Marine recreational Pishery statistics survey, Pacific Coast 1985. Current Fishery Statistics No. $8328,109 \mathrm{p}$.

Young, P. H. 1969. The Californa partyboat fishery 1947-1967. Calif. Dep. Fish Game, Fish Bull. 145, 91 p.

The rockfish fisheries off western Canada, 1860-1985

S.J. Westrheim Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

A production history of the rockfish fisheries off western Canada is reported, based primarily on published reports of appropriate agencies. Subjects discussed were: 1) participating nations; 2) production records; 3) principal species; and 4) new fisheries.

Introduction

This report chronicles the history of the rockfish fisheries off British Columbia since 1860 , based primarily on published reports.

Primary data source was Forrester et al. (1978), which provided the only published account of the early fishery for rockfishes, as well as available production records through 1970. Subsequent production records were obtained from publications of the Canadian Department of Fisheries and Oceans (DFO), the International North Pacific Fisheries Commission (INPFC), and the Washington State Departnent of Fisheries (WDF).

The INPFC groundfish statistical areas were used, because they best fit the various data sets. Catch records by area began in 1956, and are continuous to date. Two such areas, Vancouver and Charlotte, encompass the coast of British Columbia (Fig. 1). Unfortunately the southern third of the Vancouver area encompasses the northwest coast of Washington State. This overlap produces some unresolvable problems in segregating national production, particularly after Canada and the United States promulgated their individual 200-mile economic zones in 1977. Prior to 1977, Canadian vessels rarely sought rockfish in that portion of the Vancouver area which now lies in the U.S. 200-mile economic zone. However, during the same
period, U.S. vessels regularly sought rockfish throughout the Vancouver area, as well as the southern portion of the Charlotte area.

Fisheries

Domestic
The first domestic commercial fishery which included rockfish took place off Victoria (S. Vancouver Island) "about 1860" (Lord 1866), This was a hook and line fishery, from canoes or other small vessels, to supply the local Victoria market with flatfish (including halibut), greenling, and rockfish.

Records of the domestic commercial fishery began in 1917 (Forrester et al. 1978; Table 29), and continue to date, in increasingly detailed form.

Non-domestic

Non-domestic rockfish fisheries were initiated by U.S. trawlers during the early 1950s, prior to 1956 (Forrester et al. 1978), and continued into 1981 (Table 11. Other national fleets which targetted on rockfish were those from the USSR (1965-68), Japan (1966-77), and Poland (1975-76).

Table 1. Historical record of national lisheries for rockfishes olT British Columbia, 1956-85.

Time	Canada	U.S.	USSR	Japan	Poland
$1956-64$	+	+	-	-	-
1965	+	+	+	-	-
1966	+	+	+	+	-
$1967-68$	+	+	+	+	-
$1969-74$	+	+	+	+	-
$1975-76$	+	+	+	+	+
1977	+	+	+	+	-
$1978-81^{4}$	+	-	-	-	-
$1981^{b}-85$	+		+	-	-

March 31, 198 L .
${ }^{b}$ April $1,1981$.
Major restraints were imposed on the non-domestic fisheries in 1971 and 1977.

On March 10, 1981, Canada proclaimed fisheries closing lines on the east and west coasts which designated exclusive Canadian fishing zones (Anon. 1971). On the west coast, the closing lines excluded from Queen Charlotte Sound. Hecate Strait, and Dixon Entrance all non-domestic fisheries, except those of the United States.

On January 1, 1977, Canada promulgated its 200-mile economic zone (Anon. 1976), and thereafter all of the non-domestic fisheries were gradually phased out. The U.S. rockfish fishery was the last to be terminated, on March 34 , 1981.

Production

Domestic (1917-85)
Historically, the domestic fishery for rockfish has been arbitrarily segregated into five eras: 1) paleozoic (1917-42); 2) boom I (1943-46); 3) neo-paleozoic (1947-61); and boom Il (1977-85), (Table 2).

Table 2. Production ${ }^{\text {a }}$ eras for the rock fish fishery of British Columbia, 1917-85.

Mean annual landing was 160 t (range $=49-313 \mathrm{t}$) during 1917-42; rose brielly to $1,332 \mathrm{t}(1,010-1,610 \mathrm{t}$) during 1943-46; declined to 336 t (189-703 t) during 1946-61; rose to $2,261 \mathrm{t}(743-4,289 \mathrm{t}$) daring 1962-76; then rose more sharply to $11,504 \mathrm{t}(7,952-17,640 \mathrm{t})$ during 1977-85.

Principal gear was probably some form of hook and line during 1917-42, and primarily on-bottom trawl thereafter.

Rockfish landings have never been reported by species on a regular basis. Sampling programs to estimate species composition began in 1971 (Forrester and Smith 1973). Pacific ocean perch (Sebastes alutus) were first reported in the landings of 1953 (op. cit.).

National (1956-85)

All-nation. During 1956-85, the all-nation catch of rockfish in the Vancouver-Charlotte region rose, irregularly, from $5,059 \mathrm{t}$ in 1956 to a peak of $66,419 \mathrm{t}$ in 1966; declined to $17,041 \mathrm{t}$ in 1971 ; then more or less stabilized at $14,600-31,700 \mathrm{t}^{\prime}$ y, through 1985 (Fig. 2; Table 3).

The principal species throughout the study period was Pacific ocean perch, S. alutus.

Canada. During 1956-76, Canadian landings were generally well below 5,000 t/y, but thereafter rose steadily to 17,140 in 1985 (Fig. 2; Table 3). Pacific ocean perch landings exhibited a similar pattern. Landings remained below 4,000 t/y through 1979 ; rose sharply to $5,290 \mathrm{t}$ in 1980 ; then levelled
off at $5,100-6,700 \mathrm{t} / \mathrm{y}$ through 1985 . The sudden increase in 1980 was due in part to exploitation, for the first time, of a "new" stack in South Hecate Strait. This stock was discovered and surveyed in 1973 (Westrheim 1974). Subsequently biomass surveys were undertaken in 1974, 1978, and 1981, the results of which were summarized by Leaman and Stanley (1985).

The continued increase in production of other rockfish, reflects in part the limited supply of Pacific cod fillets due to a substantial, coastwide decline in Pacific cod abundance.

United States. During 1956-80, the U.S. fishery for rockfish in the Vancouver-Charlotte region ranged from $3,600-13,800 \mathrm{t} / \mathrm{y}$, with peaks in 1963 (10,544 t), 1969 (13,756 t), and 1972 (8710 t) (Fig. 2; Table 3). Pacific ocean perch landings followed a similar pattern through 1977, with a range of $1,300-8,200 \mathrm{t} / \mathrm{y}$, and peaks in 1963 ($7,151 \mathrm{t}$) and 1966 ($8,247 \mathrm{t}$).
However, landings dropped sharply from 1959 t in 1977 to 900 t in 1980; and 238 t in 1982.

USSR. The USSR fishery which targetted on rockfish in the study area began in 1965 and terminated in 1968 (Fig. 2; Table 3). Peak catch was 47,952 t in 1966, and in the other three years, $11,600-17,800 \mathrm{t} / \mathrm{y}$. During 1969-73, annual by-catches ranged from 10 to $1030 \mathrm{t} / \mathrm{y}$, largely from the Pacific hake (Merluccius productus) fishery. Pacific ocean perch catches followed a similar pattern-peak catch of $34,700 \mathrm{t}$ in 1966 and $8,300-12,900$ t/y for 1965 and 1967-68. By-catch during 1969-73 was $10-750$ t/y.

Japan. The Japanese fishery which targetted on rockfish in the study region began in 1966 and terminated in 1977 (Fig. 2, Table 3). Catches ranged from 3000 to $22,900 \mathrm{t} / \mathrm{y}$, with peaks in 1968 ($16,472 \mathrm{t}$), $1972(11,003 \mathrm{t}$), and 1974 (22,883 t). Thereafter, an annual by-catch of $23-110 \mathrm{t}$ was produced, largely by the line fishery for sablefish (Anoplopoma fimbria). Pacific ocean perch catches followed a similar pattern--2,100-14,700 t/y during 1966-77, with peaks in 1968 ($14,772 \mathrm{t}$), 1982 ($10,347 \mathrm{t}$), and 1974 ($10,843 \mathrm{t}$). Annual by-catch during $1978-82$ was $0-21 \mathrm{t}$.

Poland. The Polish fishery targetted on rockfish only in 1975 (12,873 t) and 1976 (3,931 t) (Fig. 2, Table 3). principal species caught were S. entomelas and S.flavidus (Ketchen 1980 b). Pacific ocean perch catches were negligible-- $<48 \mathrm{t}$ in 1967 ; $<17 \mathrm{t}$ in 1968.

Other Rockfish

Canadian and U.S. production records mark the increasing importance of rockfish other than Pacific ocean perch, particularly after 1970 in the U.S. fishery, and after 1975 in the Canadian fishery (Fig. 2, Table 3). Unfortunately species composition of rockfish catches by other, national fleets are not available on a consistent basis.

Species Composition

There are approximately 34 species of rockfishes off British Columbia (Hart 1973). Estimates of species composition of other-rockfish landings from the Vancouver-Charlotte region were reported for Canadian and U.S. vessels
Table 3. Annual production (t$)^{\text {a }}$, by nation, of roekfish (RKF) and Pacific ocean perch (POP) ${ }^{\text {b }}$, from the Vancouver-Charlote

Year	RKF	$\begin{aligned} & \text { ada } \\ & \text { POP } \end{aligned}$	RKF	USA POP	$\mathrm{RKF}^{\mathrm{C}}$	$\mathrm{SR}_{\mathrm{POP}} \mathrm{P}^{\mathrm{d}}$	RKF	POP	$\mathbf{R K F}$	$\begin{aligned} & \text { POF } \end{aligned}$	RKF	otal POP
1956	$23 \overline{9}$	154	4820	2240								
1957	215	91	3909	2034			-		-		5059	2394
1958	426	319	3596	1306							4124	2125
1959	544	247	5290	2581							4022	1625
1960	445	357	5385	2927							5830	2828
1961	267	124	6538	3561							5830	3284
1962	860	544	9366	5160							6805	3685
1963	815	454	10544	7151							10226	5694
1964	930	471	8052	5555							11359	7605
1965	1781	1395	9584	6585	16896	12200					8982	6026
1966	2696	2366	12565	8247	47952	34700	3206	3206			28261	20180
1967	743	391	9297	6193	17824	12900	13047	12874	.		53784	48405
1968 1969	1314	876	10805	5725	11503	8300	16472	14772			44025	29690
1979	2939	1504 2099	13756 11633	5707 5971	132	100	13093	11686	.	-	29420	18997
1971	2285	1337	8989	3990	1030	750	7628 4787	7164 4326		-	22554	15504
1972	4113	2327	8696	3871	499	360	11003	4386 10374			17041	10403
1973	2820	1398	8160	2609	10	10	19991	+3598			24311	16832
1974	2658	1529	6127	2445	?	?	22883	10843			20981	7615 14815
1975	3253	2040	4179	1310	?	?	10169	5428			17601	14815
1976	4289	1745	5485	1323	?	?	7750	5381	12813	<48	17601	8778
1977	7952	2716	*8710	1959	?	?	3047	2140	3931	<17	17524	6599
1978	10472	3864	6771	1285	?	:	110	21			19709	6815
1979	8781	2819	6771	1136			17	2			17353	5170
1980	9766	5290	5479	900			23	2			15626	3957
1981	9960	5103	4668	280			26	.			15268	6191
1982	11076	5983	6770	238			40				17654	5383
1983	12674.	5653	.	.							17886	6221
1984	15210°	6698	.	-							-	
1985	17641	6111	-	-	.	-	-	.			-	

[^0]during 1967-75 (Fraidenburg et al. 1977), and for Canadian vessels during 1978-85 (Smith 1978, 1979, 1980, 1981; Leaman 1982, 1983, 1984, 1985, 1986).

During 1967-75, the top seven species comprised 98.7 percent of the cumulative Canada-U.S. landings (Table 4). Principal species were Sebastes flavidus (48.4 percent), S. pinniger (24.0 percent), and S. brevispinis ($\mathbf{1 5 . 0}$ percent).

During 1978-85, the top seven species comprised 93.6 percent of the cumulative Canadian landings (Table 4). Principal species were S. brevispinis (28.4 percent), S. reedi (18.9 pertent), S. flavidus (16.3 percent), and S. pinniger (16.8 percent).

New Fisheries

Two new fisheries for rockfishes, with a high dollar value, have developed recently, and deserve at least a passing comment at this time. The first to develop, about 1977, was a line fishery in our inside waters (east of Vancouver Island) which targets primarily on S. maliger to satisfy a growing live-fish market in Vancouver. Dr. Richards will be reporting on this fishery later in the program. The second began late in 1982, and involves freeaing-at-sea of trawl-caught rockfishes, mostly red, primarily for export to Japan.

Table 4. Species composition (percent) of Canadian and U.S. landinger of other rockfiah from Vancouver-Charlotte Region, 1967-75 and 1978-85.

$1967-75 a$(Canada-U.S.)		1978-85b (Canada)	
Species	Percent	Species	Percent
S. flovidus	48.4	S. breurpinis	28.4
S. pinniger	24.0	S. reedi	18.9
S. breuispinit	15.0	S. flavidua	16.3
S. paucispinis	8.0	S. pinniger	15.8
S. reedi	1.7	S. proriger	6.4
S. babcocki	1.2	S. aleationmi	4.6
S. entomelos	0.4	S. paucippinit	3.2
Ouher ${ }^{\text {c }}$	1.3	Other ${ }^{\text {d }}$	6.4
Tolal	100.0	Total	100.0

${ }^{2}$ Fraidenburg et al. (1977).
${ }^{\mathrm{b}}$ Smith (1978, 1979. 1980, 1981); Leaman (1982, 1983, 1984, 1985); Leaman (personal communication).
${ }^{c}$ Unspecified.
d 15 species of Sebostes and 2 species of Sebasiolobus.

References

Anon. 1971. Exclusive fisheries zones proclaimed by Canada. Fish. of Can. 23: 10-12.
Anon. 1976. Safeguards built into 200-mile legislation. Western Fish, 93(December): 12-13.

Forreater, C.R., R.G. Bakkala, K. Okada, and J.E. Smith. 1983. Groundfish, shrimp, and herring fisheries in the Bering Sea and Nertheast Pacific--historical catch statistics, 1971-76. Int. North Pac. Fish. Comm. Bull. 41: 100p.
Forrester, C.R., A.d. Beardsley, and Y. Takahashi. 1978. Groundfish, shrimp, and herring fisheries in the Bering Sea and Northeast Pacific-. historical catch statistics through 1970. Int. North Pac. Fish. Comm. Bull. 37: 147p.
Forrester, C.R. and M.S. Smith. 1973. Species composition of rockfish in catches by Canadian commercial and research vessels in Queen Charlotte Sound. Fish. Reas. Board Can. MS Rep. 125B; 11 p.
Fraidenburg, M., J.E. Smith, W.H. Barss, and T. Jow. 1977. Minimum estimates of the all nation removals, North American trawl species composition and CPUE for "other rockfish" in the northeasterm Pacific ocean. Wash. Dept. Fish. Tech. Rep. 34: 31p.
Hart, J.L. 1973. Pacific fishes of Canada. Fish. Res. Board Can. Bull. 180. 740 p .
INPFC. 1981a. Statistical yearbook 1977. Int. North Pacific Fish. Comm. 96 .

1981b. Statistical yearbook 1978. Int. North Pacific Fish. Comm. 123p.
1982. Statistical yearbook 1979. Int. North Pacific Fish. Comm. 113p. 1983. Statistical yearbook 1980. Int. North Pacific Fish. Comm. 115p. 1985a. Statistical yearbook 1981. Int. North Pacific Fish. Comm. 124p.

1985b. Statistical yearbook 1982. Int. North Pacific Fish. Comm. 127p.
Ketchen, K.S. 1980a. Reconstruction of Pacific ocean perch (Sebastes alutus) stock history in Queen Charlotte Sound. Part I. Estimation of foreign catches, 1965-76. Can. MS Rep. Fish. Aquat. Sci. 1570: 46p.
Ketchen, K.S. (Ed.). 1980b. Asgessment of groundfish fish stocks off the west coast of Canada (1979). Can. Data Rep. Fish. Aquat. Sci. 185: $213 p$.
Leaman, B.M. and R.D. Stanley. 1985. Shelf and slope rockfish. Pp. 247342. In: Tyler, A.V. and G.A. McFarlane (Eds.). 1985. Groundfish stock assessments for the west coast of Canada in 1984 and recommended yield options for 1985 . Can. MS Rep. Fish. Aquat. Sci. 1813: 353p.
Leaman, J.E. 1982. Catch and effort statistics of the Canadian groundfish fishery on the Pacific Coast in 1981. Can. Tech. Rep. Fish. Aquat. Sci. 1124: 90p.
1983. Catch and effort statisties of the Canadian groundfish fishery on the Pacific Coast in 1982. Can. Tech. Rep. Fish. Aquat. Sci. 1226: 88p.
1984. Catch and effort statistics of the Canadian groundfish fishery on the Pacific Coast in 1983. Can. Tech. Rep. Fish. Aquat. Sci. 1312: 87p.
1985. Catch and effort statistics of the Canadian groundfish fishery on the Pacific Coast in 1984. Can. Tech. Rep. Fish. Aquat. Sci. 1422: 89p.
1986. Catch and effort statistics of the Canadian groundfish fishery on the Pacific Coast in 1985. Can, Tech. Rep. Fish. Aquat. Sci. 1608: 80p.
Lord, J.K. 1866. The naturalist in Vancouver Island and British Columbia. 1: 358p. (Richard Bentley, London) (eited by Forrester et al. 1978).
Smith, J.E. 1978. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1977. Can. Tech. Rep. Fish. Aquat. Sci. 835: 85p.
Smith, J.E. 1979. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1978. Can. Tech. Rep. Fish. Aquat. Sci. 891: 82p.
Smith, J.E. 1980. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1979. Can. Tech. Rep. Fish. Aquat. Sci. 961: 90p.
Smith, J.E. 1981. Catch and effort statistics of the Canadian groundfish fishery on the Pacific coast in 1980. Can. Tech. Rep. Fish. Aquat. Sci. 1032: 90p.
Westrheim: J.S. 1974. Echo-sounder and trawl survey of Queen Charlotte Sound and southern Hecate Strait, 1972-73. Fish. Res. Board Can. MS Rep. 1307: 43p.

The history of the rockfish fisheries in Alaskan waters

Barry Bracken Alaska Department of Fish and Game Petersburg, Alaska

Abstract

Rockfish (Sebastes sp. and Sebastolobus sp.) catch records were consolidated from several data sources using Lotus 123 spreadsheet to provide a comprehensive sumnary of Alaskam rockfish landings fram 1956 to 1985. Reported landings are presented by fishery, species group, and geographic area for the period 1956 through 1985 . A brief history of earlier fisheries is also presented.

Rockfish catches peaked in 1965 with reported foreign landings of Pacific ocean perch (POP) (Sebastes alutus) in excess of 510,000 metric tons (mt). Harvests decined substantially to an all species catch of 4,352 mt in 1985 . POP accounted for 77% of all reported rockfish landings with 65: from the Gulf of Alaska and 34% from the Bering Sea/Aleutian lslands region. Landings of other rockfish species were evenly divided between the Gulf of Alaska and the Bering Sea/Aleutian Islands region. Foreign landings comprised ower 99% of the total reported rockfish landings since 1956 with donestic and joint venture landings comprising 0.3π and 0.2% respectively. Comestic landings increased from only 2% of the total harvest and 3 峟 of the Gulf of Alaska harvest as recently as 1983 to 41% of the total harwest and 89% of the Gulf of Alaska harvest in 1985.

Regulations effecting harvest levels and fishery allocations are briefly discussed.

Introduction
Rockfish (Sebastes sp. and Sebastolobus sp.) have been harvested from Alaskan waters 5 ince the early 1900's Tholy 1984). There are several reports available that provide good information on various segments of the rockfish fishery in recent years. These reports include

Lynde 1986, Berger, et al. 1986, and Rigby 1984. However, there is no single document available which contatns comprehensive catch data from all rockfish fisheries in Alaskan waters.

This report attempts to fill that gap by providing a consolidation of rockfish catch information from the foreign, joint venture, and domestic fisheries in Alaskan waters from 1956 through 1985 . A brief overview of earlier fisheries is also presented.

Methods

Data from this report was obtained from available documents on Alaskan groundfish fistreries, including the three reports mentioned above. Information from these sources was combined with catch data from Pacific Coast Fisheries Information Network (PACFIN) reports and in-season catch summaries from the Alaska Department of Fish and Game (ADFEG) and the National Marine Fisheries Service (MMFS) to produce a consolidated rockfish catch database for the years 1956 through 1985. A Lotus Development Corporation 1-2-3 spreadsheet, graphics, fnformation management program was run on a Compaq microcomputer for consolidation and graphic presentation of the data.

The catches were compiled by management area (figure 1), fishery, and species group. Because some of the earlier data lacked area resolution, only four management areas were used for this report. The three primary management areas in the Gulf of Alaska, Eastern, Central and Western Gulf were reported independently while the Bering Sea and Aleutian Islands areas were combined. The data is separated into three fisheries, the foreign, joint venture, and domestic fisheries. Species composition is difficult to determine from the available data, particularly prior to the late 1970's and so only two species groups, the Pacific ocean perch (POP) category, which includes Sebastes alutus and four associated species, and "other rockfish" which includes all other species of Sebastes and two species of Sebastolobus are utilized in this report.

Figure 1. North Pacific Fisheries Management Council management areas within the Gulf of Alaska and Bering Sea.

Historic Fisheries

Prior to the 1960 's rockfish landings were primarily of fish that were harvested as bycatch in the directed fisheries for halibut and other species, primarily sablefish (Anoplopoma fimbria) and salmon (Onchoryncus $\frac{5 p}{16}$.). Reparted rockfish landings from the early fisheries averaged I 63 mt between 1939 and 1946 and peaked in 1945 with a harvest of 452 mt . One earlier odd year (1918) produced 154 mt (Rigby 1984). Reported domestic landings were negliglble between 1946 and 1970 . No species composition data is available from these fisheries, but it assumed that the yelloweye rockfish (Sebastes ruberrimus) was the dominant species
landed.

Recent Fisheries (1956-1985)
The more recent fisheries are documented back to 1956 since that was the first year of data fncluded in lynde (1986). Although there were established domestic fisheries dating back to earlier years, it was not until. the foreign trawl fleets entered Alaskan waters in the 1960's that the rockfish fishery fully developed. Joint venture fisheries, in which domestic vessels land fish directly to a foreign processor yessel, occurred beginning in the late 1970's after the passage of the Magnuson Fisheries Conservation and Management Art (MFCMA) restricted foreign fishing activity. However, by 1985 the domestic rockfish fishery had largely displaced both the forefgn and joint venture fisheries.
Foreign fisherfes
The foreign fisheries peaked in 1965 at over $510,000 \mathrm{mt}$ (Figure 2) and declined rapidly thereafter. By 1985 only 131 mat were reported landed by foreign fleets. Reductions in landings prior to 1976 were likely the result of stock reductions. The rapid decline in harvest between 1976 and 1985 can be attributed to regulations imposed on the foreign fisheries after the passage of the MFCMA. Foreign remevals of all species of rockfish from 1956 through 1985 totalled over 2.6 miltion mt and accounted for over 99\% of all rockfish taken from Alaskan waters during that period.

Over 77\% of the foreign rockfish harvest was reported as POP although accurate species composition data is not available prior to the implementation of the forelgn observer program in 1973. Because of inconsistancies in the early catch reports, the actual percentage of POP was possibly even higher. Also, since most of the rockfish harvest was from the deep water trawl fishery, it is likely that at least some of the unspecified rockfish reported from the fishery between 1967 and 1973 (Figure 2) were species which are now included in the five species POP category.

Most of the POP harvest was reported from the Gulf of Alaska regulatory areas which accounted for 66% of the landings (Figure 3), Unspecified rockfish landings were evenly distributed between the Gulf of Alaska and the Bering Sea/ATeutian Island regions with 51% of the harvest reported from the Bering Sea/Aluetian Isiand area (Figure 4).

Figure 2. Foreign rockfish landings from Alaskan waters, 1956 through 1985 showing reported catches of Paciffic ocean perch (POP) and unspecified rockfish.

[CI EAST DT CENT UTA WEST VEAR BS/AL" .XZ UNKN
Figure 3. Distribution of foreign rockfish landings reported from Alaskar waters, 1956 through 1985 in three Gulf of Alaska regulatory areas, the Bering sea/Aleutian Islands region and unknown Gulf of Alaska areas.

Figure 4. Distribution of foreign unspecified rockfish landings from Alaskan waters, 1956 through 1985 in three Gulf of Alaska regulatory areas and the Bering Sea/Aleutian lslands region.

Joint venture fisheries

Joint venture harvests of rockfish were first reported from Alaskan waters in 1978 with orne mit of unspecified rockfish reported. Landings were small until 1983 when $2,420 \mathrm{mt}$ were harvested, peaked in 1984 at $2,657 \mathrm{mt}$, and then dropped to 772 mt by 1985 (Figure 5). Much of the harvest reduction in 1985 was because of festrictions placed on the joint venture fisheries as the domestic fisheries developed. Reductions in allowable harvest as a result of biomass estimates generated from the 1984 triemial survey data also contributed to the decline.

Between 1978 and 1985 the joint venture fisheries reported total rockfish landings of $6,008 \mathrm{mt}$. This accounts for only 0.2% of all rackfish harvested from Alaskan waters from 1956 through 1985 and 5\% of the landings since the joint venture fisheries began in 1978.

Rockfish in the POP category accounted for 87% of the reported joint venture harvest. The remaining 13% were classified in the unspecified rockfish category and could include species in the POP category as well.

Host of the joint venture rockfish hervest was reported from the Gulf of Alaska which accounted for 79\% of the total landings. Dver 77\% of the POP and 90% of the unspecified rockfish harvests were reported from the Gulf of Alaska regulatory areas. The Hestern Gulf was the primary area of joint venture rockfish harvest with nearly 69% of all joint venture landings reported from that area.

Figure 5. Joint venture rockfish landings from Alaskan waters, 1978 through 1985 5howing reported catches of Paciffc ocean perch (POP) and unspecified rockfish.

Domestic fisheries

Although domestic catches were reported from earlier years, only 12 mt of rockfish were reported between 1956 and 1970. A reported harvest of 620 mt of unspecified rockfish from the Eastern Gulf in 1970 was the highest on record until 1984. With the exception of the 1970 landings. the harvest was small until 1975 when slightly over 200 mt was reported. From 1971 through 1983 harvests were very stable averaging 312 nt, but the catch increased rapidly to 2,326 int in 1984 . In 1985 the domestic harvest increased again to $3,449 \mathrm{mt}$ (Figure 6) and is expected to continue to increase at the expense of the foreign and joint venture fisheries.

Domestic rockfish harvests between 1956 and 1985 totalled 9,336 mit which is only 0.3% of all rockfish tanded during that time period. The species groupings were fairly evenly distributed with 33% reported as POP. 26% as other rockfish, and 41% as unspecified rockfish (Figure 6). However, most of the unspecified rockfish was reported from the Eastern Gulf and is assumed to be primarily of species in the other rockfish management category. POP landings were not reported in the domestic fishery until 1981.

Over 75\% of the total domestic rockfish harvest was reported from the Gulf of Alaska regulatory districts with 60% from the Eastern Gulf alone. No domestic rockfish landings were reported from the Western Gulf until 1983 and were minimal in all regulatory areas with the exception of the Eastern Gulf prior to 1984 . The Bering Sea/Aleutian Islands region accounted for over 33% of the total POP landings, but only 7% of the other rockfish and 2% of the unspecified rockfish landings.

Figure 6. Donestic rockfish landings from Alaskan waters, 1956 through 1985 showing reported catches of Pacific ocean perch (POP), other rockfish, and unspecified rockfish.

Discussion

It is obvious from this review that foreign fleets have dominated the Alaskan rockfish fishery. As mentioned earlier in this report, foreign fisheries took over 99% of the rockfish harvested from Alaskan waters in the past 30 years. Even since 1978 , when the Gulf of Alaska Groundfish Fisheries Management Plan was adopted, the foreign fleets harvested neariy 90\% of all reported rockfish landings (Figure 7).

All rockfish species are currently considered depressed in Alaskan waters and, because of this, harvest has been greatly restricted in recent years. Much of the depressed stock condition can be directly attributed to the extensive forelgn harvests between 1964 and 1976 . In fact, the rockfish fishery was essentially over before the implementation of FCMA in 1976.

The total harvest for all rockfish species reached 4,352 mt from Alaskan waters in 1985 . This is only 3% of the estimated maximum sustainable yield (MSY) which was set at 157,200 mt for all rockfish species in Alaskan waters. The estimated MSY level has been exceeded only six times in the past 30 years including the peak harvests of 1964 and 1965 (Figure 8) and the harvest has not reached anywhere near that level since 1971. This suggests that the MSY estimate is probably too high for these spectes and should be reevaluated. Use of newer blalogical information such as older ages and slower growth would tend to reduce the yield estimates substantially for these species. The total harvest has also been substanially below optimum yield (OY) levels set for these species in recent years. It is unclear if this indicates that quotas are not attainable at current stock levels or if there are other factors influencing rockfish harvest.

Figure 7. Rockfish Tandings from Alaskan waters, 1978 through 1985 showing catch by fishery.

Figure 8. Harvest of all rockfish from Alaskan waters from 1956 through 1985 showing the 1985 MSY and OY estimates in relationship to actual harvest.

After the consalidated rockfish landing spreadsheet was completed information was received that some of the data in the HAL database (Lynde 1986) may not be totally accurate (personal communication R. Majors, National Marine Fisheries Service, Northwest and Alaska Fisheries Center, 7600 Sand Point Way NE, Seattle, WA 98115). Verification from the Northwest and Alaska Fisheries Center is suggested for actual catch values for specific fisheries and species groups between 1956 and 1980 . If erroneous data is found, the discrepancies are expected to be relatively minor and should not effect the trends indicated in this report,

The consolidated rockfish catch spreadsheet can easily be changed to make corrections to the existing data or to include additional data. It will run on any IBM compatible computer with at least 640K of internal memory using the LOTUS i-2-3 softwear program. Copies of the spreadsheet can be made avallable on request from the author of this report.

References

Berger, J.D., J.E. Smaker, and K.A. King. 1986. Foreign and joint venture catches and allocations in the Pacific Northwest and Alaska fishing area under the Magnuson Fisheries Conservation and Management Act, 1977-84. U.S. Dept. Commer, , NOAA Tech. Memo. NMFS F/NWCC-99, 53 p.

Lynde, M.V.H. 1986. The historical annotated landings (HAL) database: Documenation of Anmual Harvest of Groundfish from the Northeast Pacific and eastern Bering Sea from 1956 to 1980 . U.S. Dept. Commer., NOAA Tech. Memo. NMFS F/NWC-103, 197 p.

Rigby, P.W. 1984. Alaskan domestic groundfish fishery for the years 1970 through 1980 with a review of two historic fisheries - Pacific cod (Gadus macrocephalus) and sablefish (Anoplopoma fimbria). Alaska Dept. Fish and Game Tech. Data Rep. $108,446 \frac{1}{\text { p. }}$

Session II -- Life History and Reproduction

Movement studies of nearshore demersal rockfishes in Puget Sound, Washington

Kathleen R. Matthews, Bruce S. Miller and Thomas P. Quinn University of Washington Seattle, Washington

Abstract

An underwater tagging program was initiated to determine if habitat influences the movement patterns of copper, quillback and brown rockfishes. A total of 222 rockfishes were tagged on three reef types: high relief rocky reef, high relief artificial reef, and low relief rocky reef. Rgckfishes confined their activities to smaller areas (80% within $20 \mathrm{~m}^{2}$) on high relief reefs than on the low relief reef (68% within $400 \mathrm{~m}^{2}$). Most of the copper and quitlback rockfishes left the low relief reef in the fall after residing there during the spring and summer and some (7 of 61 tagged fish) moved offshore to the deeper artificial reef. In translocation experiments (up to 400 m) from reef to unstructured (flat-bottomed) areas, all of the 43 displaced copper and quillback rockfishes returned to the high relief reafs but none of the 14 displaced rockfishes returned to the 10 w relief reef. Translocations from one reef type to another demonstrated that copper and quillback rockfishes returned to high relief reefs when displaced to low relief area but did not return to the low reltef reef when displaced to high relief reefs.

INTRODUCTION

Rockfishes, genus Sebastes, are an important component of the recreational and commercial fisheries along the west coast and therefore it is important to understand their life history characteristics to facilitate management. One important aspect of rockfish biology, their movement patterns, is quite variable among the 100 species of found worldwide (Love 1980, Barsukoy 1981). Sedentary rockfishes could be overexploited by heavy fishing if there is no localized movement (Love 1980). Existing information regarding the

[^1]movement patterns of nearshore demersal rockfishes presents an unclear picture. Most nearshore demersal rockfishes are considered to be sedentary, some may be perennial residents of reefs and not move more than 50 m after establishing adult residences (Larson 1980a, Love 1980). Tagged demersal rockfishes are generally recaptured in the same area of the reef where they were originally caught, thus dempnstrating their sedentary nature (Mathews and Barker 1983). Diver surveys also indicate that rockftshes are quite sedentary (Moulton 1977, Larson 1980b). Additional evidence that adult rockfishes are sedentary comes from the observation that heavily fished areas can be rapidly depleted of rockfishes, suggesting that little adult movement occurs to replenish reefs (Barker 1979).

It is important to note that most studies describing demersal rockfishes as sedentary have been conducted on high relief reefs and such behavior may not characterize rockfishes in other habitats. There is evidence that the same species of rockfishes reported as sedentary may be mobile. Moulton (1977) documented decreasing densities of copper, Sebastes caurinus, and quillback, S. maliger, rockfishes on reefs in winter and spring. More dramatic movement of these sedentary rockfishes is exhibited when adult rockfishes quickly colonize artificial reefs (Solonsky 1985). Movenent up to 1.6 kn by black-and-yellow, S. chrysomelas. gopher, S. carnatus, and brown, S. auriculatus, rockfthes has been documented from low rellef rocky reefs to higher relief artificial reefs and Mathews (1985, 1986) proposed that they hove a lower affinity for low relief reefs, resulting in roaming to locate better habitats.

This difference in movement raises the question of whether the tendency of rockfishes to move depends on habitat type. Therefore, to learn more about the movements of copper, quillback, and brown rockfishes in relation to habitat, an underwater tagging study was designed to determine: 1) Does home range size vary with habitat type? and 2) Are rockfishes more likely to return to certain habitats than others after experimental displacement?

MATERIALS \& METHODS
Study sites
Study sites typifying three habitat types: high relief rocky reef, high relief artificial reef, and tow relief rotky reef were selected within central Puget Sound (Fig. 1). The high relief rocky reef, Drchard Rocks, is located on the southeastern side of Balnbridge Island approximately 600 m offshore. The entire Orchard Rocks reef covers an area of approximately 5 ha. The portion of the reef used as the study site is 15 m deep and consists of large boulders and rocky ledges that rise up to 5 m off the bottom. The reef has a surface canopy of Nereocystts luetkeana and a dense understory of Agarum fimbriatum and Pterygophora californica. The high relief artifictal reef, buTlt in 1980, is located 5 km south of Bainbridge Island off Blake Island. The reef consists of concrete rubble, slabs, rectangular boxes, and tires forming vertical reljef up to $\mathbf{4} \mathrm{m}$ off the bottom and covers an area of approximately $2500 \mathrm{~m}^{2}$ (Laufle 1982). The Low relief rocky reef is 400 m Inshore of the Blake Island artificial reef; the two reef types are separated by a steeply sloping bottom of

Figure 1, Map of central Puget Sound, showing Orchard Rocks and Blake island reef sites. Low relief rocky reef is approximately 400 m inshore of Blake Island artificial reef.
sand. The low relief reef is quite extensive (approximately 10 ha) forming the entire inshore region of southwest Blake Island. The low reliff reef is $10-15 \mathrm{~m}$ deep, has a dense canopy of Nereocystis and consists of flat, featureless rock with only a few isolated areas of vertical relief (1 m) off the bottom.

Underwater tagging

Rockfishes were tagged, measured and released without ever being removed from the water, using a technique devetoped by Debra Murie and co-workers (University of Victoria, Victoria, B.C.). A fish anesthetic (methamidate hydrochloride) which was transported in a 10 liter plastic water bottle at a concentration of $2 \mathrm{~g} / 1$. A I m section of surgical tubing and a 1 m clear plastic tube was added to the shut-off valve of the water container enabling a diver to approach and administer a small dose (150 ml) of the drug to an individual rockfish. Once a fish was slowed down by the drug (approximately $10-30 \mathrm{sec}$), it was captured with a hand net and tagged with a Dennison tagging gun and a Floy spagetti tag. A plece of flexible numbered white plastic (10mm $\times 10 \mathrm{~mm} \times 1 \mathrm{~mm}$ thick) marked with indelible black ink was added to each spagetti tag for greater yisibllity. The white plastic was attached to the tag by drilling a hole, which was the same diameter as the floy tag, through the piece of white plastic and then burning the end of tag to prevent loss of the white plastic. The addition of the numbered plastic to the spagetti tag enabled divers to individually identify rockfishes underwater from a distance of $1-2 \mathrm{~m}$, Fish were tagged, measured (TL) on an underwater slate, and immediately released. Fish were observed after release to ensure that they had recovered from the anesthetic, generally about $1-2 \mathrm{~min}$. The entire tagging process from capture to release took approximately 2 min and a maximum of 13 individual rockfish have been tagged on a single dive. For each reef the mean size of tagged fishes was computed for the three species.

Analysis of Movements

Divers surveyed the reefs and adjacent areas to locate tagged fish and their exact position on the reef was recorded. Thus, recapture data began inmediately with subsequent dives after the fish were tagged, in contrast to conventional tagging studies where researchers must wait for tags to be returned. Dive lights were used to illuminate holes and crevices. The number of observations of tagged rockfishes were then tallied and home range areas estimated. In addition, adjacent areas were surveyed to determine if tocalized roaming occurs. Home range was defined as the area in which the animal nomally lives (Brown and Orfans 1970), and for rockfishes includes feeding and resting areas. A series of progressively larger rectangular areas were marked on three discrete areas on each reef and on subsequent dives a search was made within the marked off areas to locate tagged fishes and note the ir exact location. For example, a $20 \mathrm{~m}^{2}$ area was marked off and if on diving suryeys 100 of 150 observations of tagged fish were made wfthin the $20 \mathrm{~m}^{2}$ area, then the home range estimate would be 66.6% of observations within a $20 \mathrm{~m}^{2}$ area. This technique is different from the convex polygon method employed by many researchers (Stickel 1954, Miller and Menzel 1986). Our relocation information,
however, provided more precise locations of tagged fish when compared to trapping results or triangulation lotation estimates uttlized from telemetry studies. Therefore, it is a useful comparative estimate of the home ranges utilized by rockfishes on the three reefs.

To determine the affinity of rockfishes for the 3 reef types, a series of translocation experiments were performed. To establish their residency on the reefs, tagged rockfishes that had been resighted a minimum of 5 times over a 2 month period were candidates for translocation experiments. Fishes were recaught using the anesthetic technique. A minimum amount of anesthetic was used and, whenever possible, an attempt was made to capture the fish without the drug. Once caught, the fish was placed in a opaque canyas bag. Fishes were moved either by divers on the bottom or by boat to release sites. In either case, fishes were always released on the bottom by divers and were checked to ensure that they generally appeared healthy, with no swimbladder problems. The first set of translocat tons involved moving the fishes $50-400 \mathrm{~m}$ from reef to non-reef (sand) sites. In the second set of translocations, fishes were moved from one reef type to another: low relief rocky reef to high relief artificial reef, high relief artificial reef to low relief rocky reef, and high relief rocky reef to low relifef rocky reef. The translocation experiments were carried out with copper and quillback rockfishes.

RESULTS

From June through October 1986, a total of 222 copper, quillback, and brown rockfishes were tagged on the three reefs (Table 1). On the high relief reef, 79 rockfistes were tagged: 22 brown, 29 copper, and 28 quillback, on the artifictal reef 82 rockfishes were tagged: 36 copper and 46 quiltback. Sixty-one rockfishes were tagged on the low relief rocky reef: 41 copper and 20 quillback.

On the high relief rocky reef, tagged copper rockfish averaged 25.8 cm (range $=18-34 \mathrm{~cm}$), quilloack rockfish averaged 25.4 cm (range $=18-32$ $\mathrm{cm})_{\text {, }}$ and brown rockfish averaged 29.5 cm (range $=24-40 \mathrm{~cm}$). On the artificlal reef copper rockfish were a mean size of 25.0 cm (range $=$ $17.5-31 \mathrm{~cm}$) and average stze of quillbacks were 19.4 cm (range $=17-25$ cm . On the low relief rocky reef copper rockftsh averaged 23.0 cm (range $=18-31 \mathrm{~cm}$) and quiliback rockfish averaged 18.2 cm (range = 14-22 cm).

The tagged rockfishes (information on copper and quillback was similar and therefore pooled) on the high relief rocky confined their actiyities to small areas; 98 of 113 observations (87\%) were within $13 \mathrm{~m}^{2}$ area while the remaining 15 coservations (13\%) were within $80 \mathrm{~m}^{2}$ (Table 2). Similarly, on the artificial reef, 77 of 97 observations (79.4\%) found the tagged rockfishes within a $20 \mathrm{~m}_{2}^{2}$ area and the remaining 20 \{20.6\%] observations were within $80 \mathrm{~m}^{2}$. On the low relief rocky reef, larger areas had to be surveyed to locate tagged fishes and 64 (68%) observations were made within $400 \mathrm{~m}^{2}$ and 30 (32\%) within $1500 \mathrm{~m}^{2}$.

Table 1. Number of rockfishes tagged from 6/86-10/86 on the three reefs in Puget Sound, Hashington.

High relief	High relief artificial reef	Low relief rocky reef reef

Brown rockfish 22

Copper rockfish	29	36	41
Quillback rockfish	28	46	20
Total	79	82	61

Grand total $=222$ rockfishes
Table 2. Hone range estimates for copper and quillback rockfishes on three reefs in Puget Sound, Washington. Observations of locations of tagged rockfishes within marked off areas were surned for each reef and percentages reported. Number of observations will total more than the number of fishes tagged as fishes were sighted more than once.

High relief rocky reef	High relief artificial reef	Low relief rocky reef
87% within $13 \mathrm{~m}^{2}$	79.4% within $20 \mathrm{~m}^{2}$	58% within $400 \mathrm{~m}^{2}$
13% within $80 \mathrm{~m}^{2}$	20.6% within $80 \mathrm{~m}^{2}$	32% within $1500 \mathrm{~m}^{2}$
113 observations of tagged fishes	97 observatifons of tagged fishes	94 observations of tagged fishes

No tagged rockfishes were located away from tagging sit on the high relief rocky and artificial reefs. However, by the end of September, the low relief rocky reef was virtually devoid of rockfishes. An offshore movement of rockfishes occurred as seven (6 copper and 1 quillback) of the 61 tagged copper and quillback rockfishes from low relief rocky reef were resighted on the artificial reef, 400 m offshore. These tagged rockfishes left the tow relief rocky reef and travelled over sand to the artificial reef where they are currently residing.

Of the 24 rockfishes (11 copper and 13 quillback) that were moved up to 400 m from the high relief racky reef, 22 (9 copper and 13 quillback) returned to within $10 \mathrm{~m}^{2}$ of the their original home site and 2 (copper) returned to an adjacent ridge on the reef, approximately 30 m from removal site. Sixteen of nineteen displaced fishes (7 cgpper and 9 quillback) from the artificial reef returned to within $18 \mathrm{~m}^{2}$ of the removal site and 3 (1 copper and 2 quillback) have been sighted on concrete pipe 25 m away from the originat site. Mone of the fourteen rockfishes (10 copper and 4 quillback)
translocated from the low relief rocky reef have been resighted.
On the reef-reef displacement experiments, 5 rockfishes displaced (3 quillack and 2 copper) from the high relief rocky reef to the j ow relief rocky reef (400 m) returned to the removal site (within $10 \mathrm{~m}^{2}$). Five (3 quillback and 2 copper) of the six (4 quillback and 2 copper) displaced from the high relief artificial reef to the low relief rocky reef (400 m) returned to within $15 \mathrm{~m}^{2}$ of removal site. of six rockfishes (4 copper and 2 quillback) displaced from the low relief rocky reef to the artificial reef, 3 copper rockfish returned to the low relief area (within $400 \mathrm{~m}^{2}$) and the 2 quillback rockfish stayed on the artificial reef.

DISCUSSION

Although these data and experiments are preliminary, they indicate that rockfishes confine their activities to small areas and will return to home sites on high relief reefs. This information suggests that denersal rockfishes have a preference for high relief habitat and may result in less movenent. Rockfishes on low relief rocky reefs have larger home range areas, suggesting that a resource may be in short supply and the fishes may move over larger areas in order to locate prey or hiding places. Larson (1980b) reported that the home range size of black-and-yellow and gopher rackfishes increased with depth, presumably due to a decrease in prey availability requiring rockfishes to move over a larger area to locate prey. In addition, the rockfishes on the low relief rocky reef occupied that habitat from June-0ctober and subsequently vacated the reef. Thus, this site may be only marginally suitable on a seasonal basis. The mechanisms utilized by rockfishes to locate new habitat or relocate home sites are unknown but it is unlikely that they rely solely on familiarity with the immediate area. Copper and quillback rockfishes on high relief reefs were able to relocate their home sites after having been displaced over 400 m , which is well beyond their observed home range. Rockfishes may be utilizing some homing mechanism although we can not exclude the possibity of random search to relocate the ir home sites. Displaced yellowtail rockfish, \underline{S}. flavidus, returned to home sites after being moved up to 22.5 km (Cartson and Haight 1976). Furthermore, brown rockfishes displaced from fishing piers in San Francisco Bay have returned to home sites after being displaced 25 km , considerably beyond their familiar area (W. Lenarz, Southwest Fisheries Center, MFS Tiburon, Ca. 94920, pers. comm.).

The method described of underwater tagging has many advantages over conventional tagging. As opposed to traditional tagging studies where the goal is to tag as many fish as possible, and rely on the recreational and commercial fisheries to supply the tag recoveries, this tagging program was designed to tag fewer fish but closely follow the ir movements through SCuBA surveys. By resighting the fish through SCUBA surveys, the tag return information begins immediately without waiting the months or years it often takes for tag recoveries to filter in from the fisheries. Furthermore, by capturing and returning fishes to the exact spot where they are encountered, the problens of returning fish over the side of a boat with uncertainty of whether they return to the bottom or find their hame site are reduced. Moreover, traditional tag-recapture studies are often hampered by low
returns. For example, Mathews and Barker (1983) tagged 342 quitlback rockfish in northern Puget Sound but only recovered 11 tags. By comparison, at the end of 4 months we have over 300 observations of the locations of tagged rockfishes.

The adaptive significance of different movement patterns related to habitat is a stimulating research area. Southwood (1962) maintained that the primary evolutionary advantage of migratary movement lies in enabling species to keep pace with changes in their habitat. One might thus expect a higher level of migratory movement in those species associated with a less predictable environment. Denersal rockfishes may be sedentary on suitable habitat (high relief reefs) but may be more mobile on less suitable habitats. Viewing movement as an indicator of habitat suitability may explain the exodus of rockfishes from the low relief rocky reef at the end of the summer. This low relief reef may be unsuitable during the fall and winter, perhaps owing to the reduction in the only structure on the reef, the surface canopy of Nereocystis.

These preliminary observations and experiments provide some interesting new information on how habitat type may influence rockfish movement. Movement in rockfishes may be quite small in comparison to long distance migrations made by other fishes. However, management of these fishes may necessitate an understanding of how rockfishes may be moving in response to quality or seasonality of their habitat. For example, heavy fishing pressure on high relief reefs could subject rockfishes to overexploitation, especially when movement from nearby low relief reefs occurs. Therefore, as a management tool some high rellef reefs could be set aside as rockfish preserves and closed to fishing. Future movement work planned to more completely understand rockfish movement includes ultrasonic tracking to closely follow day-night and seasonal migrations, Tonger distance translocations to determine from what distance rockfishes can relocate their homesites, following tagged fishes from the low relief rocky reef to determine if they return to the reef after their fall and winter exodus, replicating experiments on additional reefs, and additional reef-reef displacement experiments to further understand rockfish preference for habitat type.

ACKNOWLEDGHENTS

We would like to thank the Washington Department of Fisheries, specifically Greg Bargmann, Cyreis Schmitt, and Wayne Palsson, for assistance in carrying out this project. Robert Reavis has provided untiring diving assistance and good cheer during the never ending SCUBA operations. Debra Murie from the University of Victoria graciously shared her underwater tagging techniques. In addition, the University of Washington Graduate School. Fisheries Research Institute, and Washington Department of Fisheries asssisted in covering trave? expenses to attend the the 1986 Lowell Wakefteld International Rockfish Symposium.

Barker, M.W. 1979. Population and fishery dynamies of recreationally exploited marine bottonfish of northern Puget Sound. Pti.D. Dissertation. University of Washington, Seattle, Wa. 134 pp.

Garsukov, V.V. 1987. A brief review of the subfamily Sebastinae, J. Ichthyol. 21:1-26.

Brown, J.L. and G.H. Drians. 1970. Spacing patterns in mobile animals. Anxt. Rev. Ecol. Syst. 1:239-267.

Carlson, H.R. and R.E. Haight. 1975. Evidence for a home site and homing of adult yellowtail rockfish, Sebastes flavidus. J. Fish. Res. Bd. Cari. 29:1011-1014.

Larson, R.J, 1980a, Territorfal behayior of the black-and-yellow and gopher rockfish (Scorpaenidae, Sebastes). Mar. Biol. 58:111-122.
-=-=-=-=-=. 1980b. Competition, habitat selection, and the bathymetric segregation of two rockfish (Sebastes) species. Ecol. Monogr. 50(2):221-239.

Laufle, J.C. 1982. Biological development and materials comparison on a Puget Sound artificial reef. Wash. Dept. Fish. Tech. Rep. No. 72. 183 pp.

Love, M. 5. 1980. Isolation of olive rockfish, Sebastes serranotides, populations off southern Califormia. U.S. Fish. Bu11. 77(4):975-983.

Mathews, S.B. and M.W. Barker. 1983. Movements of rockfish (Sebastes) tagged in northern Puget Sound. U.S. Fish. But1. B2(1):916-922.

Mathews, K.R. 1985. Species similarity and movement of fishes on natural and artifictal reefs in Monterey Bay, California. Bull. Mar. \$c1. 37(1): 252-270.
----n------- 1986. Movement of two nearshore territorial rockfishes previously described as non-movers and implications for management. Calif. Fish Game. 8(3):42-49.

Miller, M.L. and B.W. Menzel. 1986. Moyements, homing, and home range of muskellunge, Esox masquinongy, in West Okoboji Lake; Iowa. Env, Biol. Fish. I万(4):243-255.

Moulton, L.L. 1977. An ecological analysis of fishes inhabiting the nearshore regions of northern Puget Sound, Washington. Ph.D. Dissertation. University of Washington, Seattle, Wa. 181 pp.

Solonsky, A.c. 1985. Fish colonization and the effect of flshing activities on two artificial reefs in Monterey Bay, Callfornia. Bull. Mar. Sci. 37\{1\}:336-347.

Southwood, T.R.E. 1962. Migration of terrestrial arthropods in relation to habitat. 8iol. Rev. 37:171-214.

Stickel, L.F. 1954. A comparison of certain methods of measuring ranges of small mammals. Jour, Manm, 35(1):1-15.

Ocean climate influences on groundfish recruitment in the California Current

Jerrold Norton NMFS, Southwest Fisheries Center Monterey, California

1.Introduction

In this study, patterns of rockfish (genus Sebastes) recruitment variation are shown to be similar to patterns of variation in physical parameter values which describe the rockfishes' environment. The patterns of similarity occur et interannual and longer scales in the 1965 - 1980 period. Although it is important to obtain detailed knowledge of the rockfishes' complete reproductive cycle, including physiological and behavioral adaptations of the young-of-the-year, the approach used here does not depend on having this knowledge.

Studies that link groundfish recruitment success to variation in the physical environment are not new (Ketchen 1956, Templeman 1972, Cushing 1973, Parrish et al. 1981). A number of interesting relationships have been at least partially illuminated. It is hoped that the present investigation will augment the ongoing exploration process that will lead to scientifically based resource management methods.

The focus of the present study is on the large amplitude recruitment fluctuations that remain apparent years and even decades later in the data obtained from commercial fishery samples. The course of the investigation was determined by the following constderations and assumptions.

1. Because of specific adaptations, rockfish population tize and structure reflect physical environmental events occurring during the life history
of the population's members (Darwin and Wallace 1858), It is unlikely that co-occurring species can react identically to the range of physical variability occurring in the california current environment.
2. Probable recruitment success of alscrete cohorts of a given species of rockfish can be inferred from catch-age (catch-at-age) composition data derived fron otolith (sagittae) readings for a population subset (Hightower and Lenarz 1986, Henry 1986). Imprecision in determining the calendar year of otolith initiation (fishes first year) increases- as specimen age increases (Boehlert and Yoklavich 1984).
3. Tlme geries of physical environmental measurements exist that delineate events of diel to decadal time scales. These may have amplftudes of several standard deviation units and may extend over tens of degrees of latitude. (Mooers and Robinson 1984, Norton et al. 1985, Chelton et al. 1982). This study is fooused on events of interannual and longer time scales because these events are easiest to define and rockfish recrultment variability at these scales is evident in catch-age composition data.
4. Because of uncertainties in aging and the lack of knowledge concerning the effects of environmental change on all stages of rockfish development, the best chance of showing relationships will be found by examining physical conditions during the first year of the fishes' life (Hjort 1914, Hunter 1982). Extremes in first year succees (as determined from catch-age composition data) and physical events are important as posaible single factor maxima that stand above "noise" that obscures underlying relationships. The rockfish parturition date is taken as January first. So, the calendar year is taken as the fishes' first year.
5. The effects of variation in any particular physical unknown. parameter on the young-of-the-year is So, the approach used in this study is to describe each year in terms of several physical parameters. Because of the reduction of quantitative time series into three bins ("+," "0" and "-"), short time series and qualitative nature of some of the data sets, pattern matching is emphasized.

The major data relationships are seen in Table I which organizes the information into binned data series to emphasize common patterns. The physical data are binned by numerical magnitude into three groups relative to the long term means. In general, the bins are labeled "+" for above average or positive anomaly, "0" for a defined average range where random anomaly might be assumed and "-" for below average or negative anomaly. Extremes are labled "++" and "=." Widow (S. entomelas) and chilipepper(s. goodei) rockfish recruitment and zooplankton abundance data series
are given in Table 1 with the highest values indicated by "W," "C" and "Z" respectively. Asterisks show extremes and lowercase letters indicate above average values. The "x" symbol indicates low values of recruitment or abundance. For all series " n " means that the data for this period is not available. Relationships between high first year survival (population recrultment) and various physical parameters are shown for widow and chilipepper rockfish (RF) in Table 1 . Row 12 of Table 1 gives a sumation of the physical parameters and may be taken as a combined physical indicator. Note that widow RF and chilipepper RF have most succesaful recruitment under different environmental conditions. Widow RF recruitiment appears enhanced during "warm" years which have positive values in row 12 and chilipepper RF have their best recruitment during "cool" years that have negative values in row 12 of Table 1.

Sections two and three of this report are intended to explain and give additional background on the physical and biological data series used in Table 1 . Sections four and five expand and discues the results given by Table 1.

2. Biological Data Series

A zooplankton abundance data series is presented with the widow and chilipepper RF recruitment time serles to allow consideration of the young-of-the-year rockfishes' biological environment. All biological systems are affected by physical environmental changes. Comparison of the three series (rows 1,7 and 11 in Table 1) supports this.

Widow rockilsh (S. entomelas). Widow RF recruitment data (row 1, Table 1) were obtained from the cohort analysis of the 1980 - 1985 catch-age composition data from commercial fishery sampling in Washington, Oregon and California (Hightower and Lenarz 1986). These are summarized in figure 1. Greatest population recruitment was in 1968 and 1970. The recruitment level shown for 1971 and 1969 may be overestimated because of imprecision in aging 10 and 12 year old fish, i.e. peak spreading. Widow RF are a component of the recreational fishery as far south as Santa Barbara (Love 1981), but the peak commercial catch has been off oregon with only occasional commercial catch south of San Francisco.

Since 1978 widow RF have become the object of a targeted single species fiehery. Unlike fishing methods for other $R F$ species (e.g. chilipepper), which are by daytime bottom trawl, the adult widow RF are more vulnerable to nighttime mid-water trawling. Dense vertically-oriented schools form at night and disperse at dawn, when widow RF become incidental in the daytime bottom trawl fishery (Wilkins 1986). The dense single species aggregations were discovered in 1978. By 1980 annual harvest increased 20 fold to 21 thousand metric tons. The "boom" years of 1980 through 1983 were sustained by the highly successful 1968 and 1970 year classes. As these cohorts were exhausted in the absence of succeading good year classes, the fishery
Table 1. Comparison of sequences of annual values for widow and chilipepper rockitsh recruitment (rows 1 and 11), indieators of the composite
10 (row Row the arming event Mod fБит山дем -50 degrees north) first
ow 4 (AL index), Aleutian 25m; row 4(AL index), Aleutian Low atmospheric pressure indicator, "+" means greater developnent; row
 California Current; row 7 (Zooplank.), zooplankton abundance indicator: row 8 (Downwelling), winter coastal downelling indicator at 42 degrees

 divided into three bins: "+" above average, "o" for average, "-" below average, "++" and "=" indicate extremes. Split symbols, e, g. "+/-", mean above the mean for at least 3 months at the start of the year, remainder "-" Note that the winter evente or values shown in rows 2 , ${ }^{3}$, 7иə以न during "warm" years which have $n+1$ values in row 12 . Chilipepper rockfish appear to have better recruitment during "cool" years which have "-" values in row 12.

Figure 1. Cohort analyeis estimates of widow rockfish recruitment at age 5 for the 1968 - 1980 year classes. Instantaneous rate of natural mortality was set at 0.15 (broken line) and 0.20 (solid line). The last three year classes may not be fully recruited to the fishery. Analysis and table from Hightower and Lenarz (1986).
slumped (Wilkins 1986, Gunderson 1984). Figure 1 shows poor widow RF recruitment for five consecutive years from 1972 through 1976. These were cool california current years with mild winters (Table 1, rows 4, 5, 8). The 1976-1977 winter brought a climatic shift to conditions that were again favorable to widow RF recruitment.

Chilipepper rockflsh (S, goodei). Chilipepper rockfish has commercial importance mainly in central california. Annual catch is 2,000 metric tons, all south of the northern California border. Except for zonal distribution, ite ecology and also its morphology appear similar to Pacific ocean perch (S. alutus) (Adams 1980). Catch-age composition data submitted to the Pacific Fisheries Management council by Henry (1986) are summarized in Table 2. Table 2 was abstracted to give row 11 of table 1 . Table 2 lists the eight most important cohorts contributing to the total California commercial trawl catch between 1978 and 1983. Each column lists year classes in descending importance to the total catch. The number in parentheses is the number of thousands of fish in the most numerous cohort. Relative abundance of the seven other most important cohorts is indicated as percent of the most abundant contributor.
Table 2. Sumary of the chilipepper catch-age data for 1978-1983. The eight most important year classes contributing to the total California comercial trawl catch are listed for each year. Each column lists year
classes in descending importance to the total catch. The number in parentheses is the number of thousands of fish in the most numerous cohort sampled by the commercial fishery, Relative abundance of the seven other most important cohorts is indicated as percent of the most abundant contributor. For the entire series, the major contributing cohorts in

An average or better year class will enter the ilst of eight most mumerous year classes in its third, fourth or ifith year. It will be found in the four most abundant year classes for three or more years (e.g. 1974). Finally, the cohort will drop from the list of most numerous year classes as 1ts numbers are depleted by fishing (e.g. 1972). Relative year class strength can be estimated from the time dependent ranking of cohorts and the persistence of its residence among the top catch contributors (Table 2). The results of quantitative catch-at-age analyses (Deriso et al. 1985) are comparable to the results developed below (Henry 1987).

For the entire series, the major contributing cohorts in descending order are: 1975, 1973, 1974, 1971, 1976, 1970, 1969, 1968 (column 7, Table 2). The 1975 year class became the second most important cohort in its fourth year and remained a top contributor for the entire period. This was an unusually successful recruitment year and was the most abundant year class in the record high landings of 1980. The 1973 cohort was not sampled until its sixth year, but its place as second overall suggests that it also was an unusually abundant cohort. The 1974 year class was optimally sampled by the 1978 through 1983 period and there is probably some spreading of the 1973 and 1975 modes into 1974 because of aging 1mprecision. There is insufficient information to conclude that the 1974 period was much better than a high average year in terms of recruitment. The 1971 cohort appears strong in that it was a major contributor to the fishery throughout the period even though it was not sampled until its eighth year. The increase in importance of the 1971 cohort from sixth in 1981 to first in 1983 may be the result of deeper trawling necessitated by the 1982 -83 El Nino conditions. The 1976 cohort became important in its third year, but its ranking in the catch has always been lower than fourth. Aging imprecision probably lead to the overestimation of this year class because of its proximity to the very strong 1975 year class. There may have been a moderately good year class in the 1968 - 1970 period, possibly 1969. The cohorts of 1972, 1977 and 1978 are weak, in this order of decreasing abundance. The 1979 cohort is unusually numerous compared to the two predecessors (Henry 1986). It was aeventh in importance in 1ts third year and fourth the following year (Table 2).

Resulta of fishery-independent trawl surveys by the Northwest and Alaska Fishery Center/NMFS suggest that the 1965, 1969, 1974 and 1975 chilipepper RF year classes have been more successful than average (Coleman 1986). This is in general agreement with the results presented by Henry (1986) and has been used to complete the 1965-70 section of the chilipepper recruitment time series.

Zooplankton abundance. Continental shelf rockfish are known to feed on zooplankton (Brodeur and Pearcy 1984). Overall zooplankton abundaree in the California current aouth of san Francisco an given by Chelton at al. (1982) is
sumarized in row 7 of Table 1 . The yeare thought to be most successful for both widow and chilipepper RF were average zooplankton years. This may represent a balance in ealoric competition at the planktonic level. That is, a balance between having low enough planktonic predation to survive and having high enough planktonic food to grow may be important in rockfish planktonic stages. The zooplankton index is not included in the combined physical parameter (Table 1, row 12).

3. Physical Parameters

The physical parameters used in this study were chosen for completeness in the 1965 - 1980 period, for possible generality in reflecting physical conditions in areas of greatest chilipepper and widow RF abundance, and for general availability. The following subsections will give additional detail on the abstracting and binning of the physical data sets used in Table 1 . Table 1 row headings are included with the subsection headings.

California Current Warming Eventg(EN/AL). Although the Sebagtes environment in the California Current region is over the continental shelf and slope, the forces that affect this environment may originate thousands of kilometers distant in the tropical and north Pacific (Quinn 1978, Uda 1962, Norton et al. 1985, Mysak 1986). Row 2 in Table 1 indicates the occurrence of two warming event types (EN = El Nino, AL $=$ Aleutian Low Intensification). The observed coastal impacts of the El Nino and Aleutian Low warming occur in fall and winter thus extending over two calendar years (Breaker and Mooers 1987), e.g. 1972-73 or 1976-77. In Table 1 the notation for these events are placed in the second year, 1973 and 1977 respectively.

The California Current System (CC) is a broad eastern boundary system of weak but persistent north to south surface flow off the west coast of the united states (Hickey 1979). The cc inner boundary is the coast and the outer boundary is a broad transition zone 3-400 kam offshore The origins of two California current warming event types are diagramed in Figure 2. El Nino effects are carried into the CC region from the tropics by poleward traveling coastally trapped downwelling wave packets which depress the thermocline and cause coastal warming. (Huyer and Smith 1985, Chelton and Davis 1982, Enfield and Allen 1980, Picaut 1985, Myeak 1986). These El Nino perturbations that originate as equatorially trapped Kelvin waves (Cane 1983) are denoted by the solid arrows in Figure 2. Coastal bathymetric and bathythermal irregularities cause the eastern boundary trapped waves to leak energy to the west as downelling baroclinic Rossby waves. (Rienecker and Mooers 1986, Mysak 1986)

The second warming event type is associated with an intensification of the Aleutian Low Pressure System and its counterclockwise circulation (around "L" in Figure 2).

Figure 2, origins of two callfornia current (CC) warm event types. The outer boundry of the cc transition zone is indicated by the dotted line. El Nino effects are brought to the cc region by poleward traveling coastally trapped waves originating as equatorially trapped Kelvin waves (small solid arrows). Intensification of the Aleutian Low atmospheric pressure system (block L) affects the cc throughout its range by intensification of winds that oppose its normal flow to the south (open arrows). As the low expands, the eastern limb of the cyclonic circulation brings anomalous south to north winds to the coast which enhance winter downelling. The atmospheric pressure pattern shown in this diagram is representative of the early March mean.

Intensification of the Aleutian Low pressure system is a deepening or increasing magnitude of negative pressure anomalies in the lower atmosphere (Wallace and Gutzler 1981). This has effects throughout the north Pacific. The california current is affected throughout its range by anomalous winds that oppose its normal flow to the south. As the Low expands, the eastern limb of the cycionic circulation brings south to north winds along the coast. Then local and remote wind forcing combine to augment processes that depress the thermocline in the California current and warm the coastal ocean, but this effect is usually limited to the upper 150 m (Norton et al. 1985, 1987).

There is a tendency for deep Aleutian lows to develop during El Nino years when there is extensive equatorial warning as in the winters of 1969-1970 and 1976-1977 (Wallace and Gutzler 1981), but sometimes the low doas not intensify even when there is extensive equatorial warming as in 1965 and 1972 (Douglas et al. 1982). The Aleutian Low may also intensify without apparent tropical warming as in 1967-1968 and 1979-1980 (Norton et al. 1985).

Patterns of dependence among physical parametera. Patterns of dependence among physical parameters are shown in Table 3. This table shows the association tendency among the physical parameters discussed in this study. The three interannual event types diatinguished in this paper are shown. During an El Nino year (Table 3, col. 1), the warming effect on the California current (CC) may be called the "Californla El Nino." During the California El Nino the sea level height and northward transport anomalies increase (Huyer and smith 1985). Along parts of the coast there is northward surface flow as a persistent year-round feature (Bird et al. 1984, Hickey 1979.)

The Aleutian Low Index (AL Index in Table 1) may be above or below average during a California El Nino and coastal downwelling may be above or below average (Tables 1 and 3). Since the california El Nino brings warm water into the coastal zone, the north to south flow tendency of the CC is decreased. During Aleutian Low warming (Table 3, col. 2), the Aleutian Low index will increase indicating intensification of the north Pacific Low pressure system. Unusually etrong coastal downwelling is common during an Aleutian Low warming. Other effects will be gimilar to those of the California El Nino. One of the several definite relationships shown in Table 3, is the connection between winter downwelling (row 3), onshore transport of surface water and increased transport to the north. If coastal wind gtress is from south to north along the coast, surface water will be transported onehore (row 6) and downelling will occur. As an adjustment to redistribution of water, northward flow will be increased (row 5). Increased northward flow is the reault of onshore flow, which may result from California El Nino, Aleutian Low or local forcing. Onshore tlow may be important in producing conditions leading to increased widow RF first year survival. During the CC cool event (Table 3, col. 3), all the parameters will tend to reverse (become "-") in value except transport to the south, which will increase. onshore transport usually brings warmer water to the coast. consequently, SST (row l) and sea level (row 4) will be increased. Table 3 represents an idealized view of the relationships among physical parameters preaented in Table 1 .

The relationships among the phyaical parameters involve the change from one point to another on a functional surface which results in increased or decreased varlable value. Many comblnations of binned variable

Table 3. Idealized representation of three California Current Interannual Events (colunns) in terms of common parameter anomalies (measurements). The rows are: Sea Temperature, row 1; Aleutian Low index, row 2; winter downelling, row 3; sea Level height anomaly, row 4; Worthward Transport tendency, row 5; Onshore Transport, row 6 and CC southward flow. The warming events will have positive anomaly measurements except for California Current transport to the south which will be reduced. Anomalies whll have reverse tendency during cool events (col. 3). The "+/-" entries reflect opposite possibilities. The California El Nino mey occur with or without Aleutian Low induced warming (row 2) and enhaced winter downwelling may or may not occur during Aleutian Low warming events (row 3).

Event $>$ Measurement		California El Nino warming	Aleutian Low warming	California current cool event
Sea Temp.	(1)	$+$	+	-
AL Index	(2)	+/-	+	-
Downwelling	(3)	+ ${ }^{-}$	+/-	-
Sea Level	(4)	+	$+$	-
N. Transport	(5)	+ (north)	+	-
Onshore Trans	(6)	+	+	-
Cal. Cur.	(7)	-	-	+ (south)

values are possible in a given event type, even when scaled to long term means (Table 1). Observed combinations will depend on the event intensity and the state of the cc and north Pacific atmosphere when the signals arrive. For instance, the 1972-73 E1 Nino was intense in the tropics, but an intensified Aleutian Low did not develop, and northward flow tendency increased during the 1972-1973 winter. Then flow shifted strongly to the south in late 1973 (Chelton et al. 1982, Huyer et al. 1978).

First difference 25 meter temperature (1st dif. 25m T). The first difference of the standardized temperature anomaly at 25 meters depth for a 200 km wide coastal strip extending from 30 to 50 degrees north latitude is shown in row 3 of Table 1. Data in this area were also averaged for a period from october through March (Norton et al. 1987). The Year designation is the same as for the associated January. First differences are the average standardized temperature anomaly for a given year minus the value from the preceding Year. This procedure emphasizes interannual change. A "+" entry means the current year is warmer than the preceding year and "++"("=") means that the warming was maximum (minimum) or within 10 of the maximum (minimum) value. Note that the first difference coastwide standardized anomaly is positive for every warming event in the 1965-80 series (Table 1). That is, each of the "EN" and "AL" years produced a signal in the coastwide anomaly that indicates warming over the preceding year(Table 1 , rows 2 and 3).

Aleutian Low (AL Index). Aleutian Low Intensification (Table 1, row 4) was measured directly by the negative mean monthly anomaly of the 500 millibar atmospheric helght at 45 degrees north latitude by 165 west longitude ("L" in figure 2). The sign of the anomaly is reversed and bins assigned according to the conventions of Wallace and Gutzler (1981). A "+" notation in row 4 indicates intensification of the Aleutian Low Pressure System over the mean. The " ++ " notation indicates a particularly intense Aleutian Low. The "0" means average Aleutian Low development. An Aleutian Low that is more intense than average will also be larger than average. As it expands, the Eastern Pacific High is shifted southward and winds from the south become more common over the CC system (Figure 2). The deepest Aleutian Lows were coincident with the best years for widow FF recruitment.

British Columbia Sea Surface Temperature (B. C. SST). British Columbla $S S T$ (row 5 in Table 1) was derived from monthly mean temperature anomalies (from a 30 year monthly mean) at Race Rocks on the southern tip of Vancouver Island (Tabata 1985). Symbols were assigned to divide the data into three bins as follows: "+," anomaly greater than +.25 degree celsius; "o" for anomalies of absolute (unsigned) vaiue less than .25; "++" and "=" indicate extreme values. In some cases it was not possible to unambiguously state that the entire year was above or below average. So, " $+/=1$ means that the first part of the year at least three monthe) was above average temperature and the last part of the year (at least three months) was below average temperature. Note that "-" values typical of the 19711976 period correspond to the best recruitment years for ch1lipepper RF.

Northward California Current Transport (N. Transport). An Integrated index of northward CC flow (row 6, Table 1) in an area 200-400 kilometers from shore extending from 26 to 38 degrees north is extracted from chelton et al. (1982). The symbols "+" and "n" mean northward transport and no data respectively. Fortunately, this unique time series is nearly complete in the 1965 to 1980 interval of interest. Although its exact meaning might be subject to considerable interpretation, agreement in independent measurements over the continental shelf and slope (Huyer et al. 1978, Mclain and Thomas 1983, McLain et al. 1985) suggest that this transport tendency index has some applicability in assessing the rockfishes' environment. In general it appears that, northward transport has favored widow RF recruitment and southward transport has favored chilipepper RF recruitment.

Winter Season Downwelling Index (Downwelling). An annual index of coastal downwelling (row 8, Table 1) during the winter season at 42 degrees north was derived by Norton et al. (1985) by accumulating the monthly mean upwelifing
index values of Bakun (1973) and reversing the sign. The convention of plus and minus symbols is similar to the parameters already discussed. In terms of percent of the highest value, the bins wers assigned as follows: 0-25\%, "=t" 25-60\%, "-;" 60-80\%, "0;" 80-95\%, "+;" 95-100\%, "++." The numerical average value was at about 68\% of the maximum value. The three extreme downwelling years, 1970, 1978 and 1980 were favorable to widow RF recruitment.

Central California Sea Surface Temperature (Cen. Cal. SST)
The central California SST indicator (row 9 of Table 1) was derived from monthly mean anomalies at the Southeast Farallon Islands, 46 km west of san Francisco and at Pacific Grove at the Bouthern end of Monterey Bay 100 km south of San Francisco (Anon. 1981). These two stations represent different coastal environments and the combined data is presented as temperature indicator closely associated with the chilipepper environment. combination of the data allowed a complete data set to be derived from two nearly complete data sets. Binning conventions are generally the same as for British Columbia sea surface temperature (above). The most extremely negative value in 1975 corresponds to the most succeesful (known) chilipepper year class, but this relationship does not appear to hold for all other chilipepper year classes.

San Franciaco Sea Level (SF Sea Level). The detrended San Francisco sea level was adapted from McLain (1983) for row 10 of Table 1 . Sea level anomaly is an indicator of coastal current tendencies and integrated sea temperature (higher sea level anomaly suggests more northward flow and higher integrated temperature anomaly of the water column) (Chelton and Davis 1982, Norton et al. 1985). The division of the anomaly range into three bins and extremes was based on taking the range of anomalies less than 5 cmabsolute value as average or "0." Extremes and anomalies within 10% of the extremes are given "++" and " $=$ " symbols. In several cases, negative anomaly corresponds to good chilipepper RF first year survival and positive anomaly appeared to favor enhanced widow RF first year survival, The role of sea level extremes does not imply a direct relationship between sea level at San Francisco and rockfish recruitment.

4. Results

The individual measurements of the physical environment have been combined in a simple straightforward way by first dividing the data series values into three categories or bins to show patterns. Then the binned values were added together to give an overall representation of the pattern. The reault of this process is given in row 12 of Table 1 . This combined parameter was then compared to the recruitment data for widow and chilipepper rockfish (table 1, rows 1 and 11). The major results of these pattern comparisons are listed below.

1. Different physical conditions are required for optimum widow and chilipepper RF recruitment, Certain intermediate years, in terms of the combined physical parameter (Table 1, row 12), may support moderate recruitment in both species.
2. Widow RF recruitment is favored by winters with deep Aleutian Lows, violent winter storms on the coast, above average sea temperatures, enhanced northward flow in the the california current and anomalously high coastal sea level. Widow $R F$ recruitment seams to be facilitated by the common large scale warming events (Table 1, row 2). However an El Nino alone, unaccompanied by anomalously deep Aleutian Low development as in 1966 and 1973, does not appear to favor enhanced widow RF recruitment. The Aleutian Lows that expand over the coast and bring frequent winter storms with strong winds from the south to intensify coastal downwelilng seem more important than the Californai El Nino in entancing Widow RF recruitment (Table 1).
3. Chilipepper $R F$ fish recruitment appears to be facilitated by cool water, and increased southerly cc flow conditions as described ideally in table 3 , column 3 , or more realistically in table 1 under 1971 and 1975. Exceptionaliy good chilipepper recruitment does not occur in years of exceptionally good widow RF recruitment.
4. The coastal ocenn from central califormia to Vancouver Island has undergone three climatic shifta In the 1965 - 1980 period. First, there was a warm period of five years which included two California El Ninos and two Aleutian Low events. In 1970 the two warm event types combined to create conditions that appeared exceptionally favorable to widow RF recruitment. After 1970 a shift to an ocean climate of cool sea temperatures and increased southerly flow in the cc occurred. This cool period lasted until 1976 and included all the most numerous chilipepper RF cohorts contributing to the 1976 to 1983 catch. In 1976 the ocean climate mifted back to the warmer regime. Again young-of-the-year widow $R F$ gurvival appears to have been enhanced as ce warming events became more frequent.

The catch-age composition data suggest that 1969 and 1971 were moderately good recrultment years for widow RF. These were also at least moderately good years for chilipepper RF recruitment. It is probable that because the very successful 1968 and 1970 widow RF cohorts ware not aged until they were over ten years old, there is some peak spreading due to aging imprecision. The 1969 year clasa would be most likely to be overestimated if aging impreciaion $1 a$ Gaussian, since it la betwaen the two most numerous cohorts. However, if it is more likely that
annular otolith rings will be missed more frequently than erroneously added, then the 1971 year class would be the most likely to be overastimated because it follows the most numerous cohort. The 1969 year class will be second most likely to be overestimated. Combining this reasoning about aging imprecision with the findings that chilipepper RP recruitment is facilitated during cool events (Table 3), can lead to the not unreasonable conclusion that the apparent ambiguity in reoruitment data for 1971 is the result of overestimation of the size of the 1971 widow RF cohort. The physical environment of 1971 appears favorable to chilipepper RF recruitment (Table l).

Environmentally, 1969 and 1971 were very different. If better than average recruitment was to occur in both chilipepper and widow $R F$ in the same year, it would be expected to occur in a year such as 1969 when the sum of physical parameters is not conspicuously in the minus or plus domain. The catch-age composition data for chilipepper RF does not give definite information about the strength of this year elass compared to the strong year classeg of the 1970s. It is likely that the 1969 widow RF year class was also overestimated, but the extreme positive sea level anomaly suggesta that this year was mors favorable to enhanced widow RF recruitment. High coastal sea level is consistent with increased northward flow along the coast. This is confirmed by the northward flow indes (Table 1, rows 6 and 10). Increaaed northward flow may be the factor in comon with Aleutian Low warming events that facilitate widow RF recruitment (Table 3). Chilipepper RF recruitment may have been enhanced in 1969 relative to 1968 and 1970 and may have been poor compared to 1973 and 1975.

Results of the Northwest and Alaska Fishery Center's 1980 Bottom Trawl Survey nhow that the 1965 chilipepper RE cohort was especially numerous (coleman 1986). This is consistent with the relationships which are also evident during the 1971 - 75 period (Table 1).

The 1972 year class is conspicuously weak in the chllipepper catch-age composition data of Henry (1986), but the envirommental data appears favorable to a strong chllipepper year class. The inshore cc was affected by the 1972-73 El Nino in the spring of 1972 (Enfield and Allen 1980, Chelton and Davis 1982, Huyer and Smith 1985) and this may have had an impact not reflected in the physical parameters presented. Likewise the 1976-77 El Nino may have curbed survival of the 1976 year clases of chilipepper RF. The 1965 and 1969 chilipepper year classes, however, appear as though they may be exceptions to the reasoning just used to explain poor recruitment in 1972 and 1976.

5. Discugation

The combined physical parameter developed above givee a numerical value to the ideal california current event types ; Al^utian Low induced warming, California El Nino
coastal warming and California Current cool events (Table 3). The larger unsigned values belong to years with warn or cool events undiluted by opposite event types (Table 1). The best years for chilipepper and widow rockfish recrultment occur when the value of combined parameter is at or near its maximum unsigned value. Negative anomalies favor recruitment in chilipepper rockfish, while poaitive anomalleg favor widow rockfish recruitment (Table 1). This result, suggests that the present approach may be appropriate, but it does not necessarily mean that the mast important physical terms have been included in the analysis. Future research must be sensitive to other parameters, ability to match patterns of fish stock recruitment and add dimension to descriptions of the fighes' environment.

The simple bystem used here allows some knowledge of the biological systems to be gained without knowing exactly how the biological aystems are affected by the physical environment or even what particular aspect of the physical anvironment is most important. Also, the assumption that the biological system is reacting in a simple etraightforward way need not be abandoned. The assumption that can be avoided in using the multidimensional approach is that the rockfish eystems react directly to physical parameters as we happen to measure them; e.g. temperature, sea level, etc.

Species distinction has been shown to be important. If, for instance, recrultment of chilipepper and widaw RF were summed, it would be much more difficult to form associations with physical environmental patterns. Another species distinction is that the value a particular physical data set will have in helping to understand recruitment will depend on the species involved. The data presented in table 1 are somewhat more successful in describing the widow $R F$ recruitment data set than in describing the chilipepper recruitment data set. Widow RF recruit best under the Aleutian low, El Nino and downwelling conditions. The only apparent exception is 1971, the year following the most numerous year class in the record. This may not be an exception because 1971 is the year class most likely to have its size overestimated because of the tendency to miss annular rings in aging older fish.

Figure 3 summarizes some of the points made above. It is a scale-less grid or coordinate system with two main axes. The vertical axis represents advective current flow in the cc system. Increased northward flow is toward the top of Figure 3, while increased flow to the south is represented by the space below the horizontal axis. Negative atmospheric pressure anomaly or an intensified Aleutian Low Pressure system is toward the right on the horizontal axis. Positive anomaly representing a less developed Aleutian Low is to the left. The right side of the norizontal axis is further divided into two areas. When the winter-time Aleutian Low extends over the coastal

Southward Trangport Enhanced

Figure 3. Coordinate system organizing rockfish recruitment data and physical parameter tendencies into four quadrants. The verticle axis represents advective current flow in the CC system. Increased northward flow is toward the top and increased southward flow is represented by the space below the horizontal axis. Negative atmospheric pressure anomaly In an intensified Aleutian Low is to the right. The positioning of the year designations was done on the basis of the combined parameter (table 1 , row 12). Arrows associated with the date give inferred direction of change during the year. Years that favor chilipepper rockfish are in the the lower left quadrant (broken hatching) and years that favor widow rockfish recruitment are in the upper right quadrant (solid hatching).

When the winter-time Aleution Low extends over the coastal California current system, it trequenty results in increased winter downelling (Figure 3, right of dotted line). The area in the upper right quadrant between the main vertical axis and the dotted vertical ancillary axis would contain years when the Aleutian Low did develop but was blocked from the coast by a high pressure ridge as in the 1976-1977 winter (1977 in Tabie 1). The 1967-1968, 1977 - 1978 and 1979 - 1980 winters (1968 , 1978 and 1980 respectively in Table 1) would be to the right of dotted line in the upper right quadrant. The upper left quadrant is the area of California El Ninos that occur without Aleutian Low intensification. El Nino years of 1966 and early 1973 would be in this quadrant. Columns 1 and 2 in Table 3 would represent the area above the horizontal axis in the left and right quadrants respectively. If the event types occurred together in a combinad avent as in 1969 1970, the year would be placed in the upper right quadrant. The high downeliing value for 1970 moves the year further to the right past the dotted line. These yeara are usually warm with elevated coastal sea level and increased onshore transport in the coastal ocean's burface layers (table 3).

The space below the horizontal axis in Figure ${ }^{3}$ corresponds to the cool CC years whan transport to the south is enhanced. (table 3; col. 3). The lower left quadrant would contain the cool years of the early and mid-1970"s. Aleutian Low enhancement la not as frequent or intense during cool periods, so few years will be characteristic of the lower right quadrant. In the 1965-80 eeries, 1971 in a possible example. The lower left quadrant contains 1965 (early), 1972 (early), 1973 (late), 1974, 1975, 1976 (early), and 1979 which were definitely cool and largely devoid of warming event influence as these influences are described in this study.

Yeare that appear to favor chilipepper recruitment are in the lower left quadrant and those that favor widow rockfish recrultment are in the upper right quadrant of Figure 3. The best widow rockfish years are to the right of the dotted line indicating that the beat widow rockfish recruitment years have intense coastal winds which bring wariang of the surface layers of the coastal ocean and leading to northward transport. Increased onshore, cross shelf, transport will accompany increased northward transport. This will carry pelagic larvae and weakiy swiming early juvenile stages toward shore.

This possible mechanism for increased widow RF recruitment fits the generalities proposed by Parrish ot al. (1981) that explain fish species diatributions ulong the Washington, Oregon and California coasts. Thay state that the Caiffornia Coast between Cape Mendocino and Point conception is unfavorable to recruitment of epecies with pelagic eggs and larvae because of the vigorous aurface offshore transport that accompanies the nearly year around upwelling circulation (Parrish et
al. 1981, Bakun and Parrish 1980). At present there is no way of knowing if onshore transport is the important environmental factor in widow RF recruitment, but the data suggest an important winter mechanism that has dynamics in common with northward and onshore ce system transport. If widow RF depend on winter onshore transport to maintain early life stages in favorable enviroments for settling and the onshore transport is wind driven (apparently the more the better, table 1), then it is not surprising that the commercial fishery for widow RF does not extend south of San Francisco, and that the targeted fishery of the early l970s was centered off oregon where winter winds from the seasonally intensified Aleutian Low are a conspicuous feature of the mean annual cycle. It may be that the prolonged upwelling season and associated offshore transport, or divergent flow, characteristic of the central California Coast carries planktonic stages of widow RF larvae offshore into enviroments hostile to survival and growth. If planktonic stages of widow RF are characteristically in the surface layers, then it is probable that this is the mechanism inhibiting population maintenance off central california.

It is clear the chilipepper rockfish which have maximum abundance on the central california coast are dependent on different conditions than those favoring excelient widow rockfish recruitment. Chilipepper rockfish recruitment is favored by cool years, but the fact that there was good recruitment in 1973 suggests that the cool conditions of the later part of 1973 were more important to young-of-the-year survival than that year's warm initial months. That is, the later part of 1973 appears to fit the pattern that would favor chilipepper RF recruitment. It may be that the character of the winter months at the beginning of the chilipepper rockfishes' first year is less important in determining chilipepper $R F$ survival than they appear to be in determining widow RF survival. The fact that chilipepper rockfish are nost successful on the central California coast suggegts that they have specific adaptations in their early life history that allow them to avoid being swept offshore in larval and planktonic juvenile stages by the surface offshore transport that accompanies the characteristic upwelling circulation.

Other rockfish species. Preliminary studies of the kind described above are being conducted on yellowtail (S. favadus) and canary (S. pinniger) rockfish. Data from the 1960-70 period, suggest that yellowtail rockfish recruit better during El Nino Years. Years with and without intensified Aleutian Low development may be equally favorable. This would place yellowtail $R F$ in the upper two quadrants of Figure 3 indicating that their recruitment is enhanced by any event forcing northward cc flow. canary rockfish appear to have better recruitment when there is more southward transport. So, the years favoring canary rockfish recruitment would fall below the horizontal axis in Figure 3. More definite conclusions regarding these
species will have to await more complete and accurate recruitment time series.

Fisheries management and investment planning. Understanding the probabilistic nature of recruitiment periodicity is essential to resource managers as well as investors looking for maximum return on their investment. Knowing the olimatic regime that favors or inhibits recruitment in a targeted species, could lead to better knowledge of how sustainable a fishery might be and what limitations on exploitation may be necessary to maintain a sufficient stock of adults to take advantage of good recruitment conditions when they occur.

Since several time aeries of physical parameters exist of five to ten decades length, it may be possible to treat these as proxi-variables of recruitment and get quantitative information on expected variability in recruitment.

Widow rockfish boom and bust. The knowledge of the spectacularly good widow rockfish recrultment of 1968 and 1970 followed by very poor recruitment from 1972 through 1976 suggests an explanation for the boom and bust history of the targeted widow RF fishery (Gunderson 1984). It is possible that the discovery of the midwater widow RF fishery in the late 70 's was the result of the excellent recruitment conditions of 1968 and 1970. Suddenly, eight years later, there was a large exploitable biomass of widow rockfish which had not been noticed before because it was not there, After the abundant widow rockfish regource was discovered, the fishery increased twentyfold in two years based on the unusualiy good 1968 and 1970 year classes. The decline in the fishery that began in 1982 was the result of depletion of the two strong year classes. The cool, strong cc years that followed 1970 inhibited widow rockfish recruitment, providing no additional input to the fishery resource in the early 1980's. It will be interesting to note how successful the 1980 widow rockfish year class will be. Aecording to the data presented in table 1,1980 should be a very good year and initial catch-age composition data suggest that it is a numerous cohort (Figure 1). Data at full recruitment are not presently available.

The combined physical and biological data presented in this report suggest that the bio-economic boom to bust event chronicled by Gunderson (1984) for widow rockitish is perfectly natural considering the pulsed recruitment common in this species and the climatological background of the event. When more is known of the physical conditions favoring the 1968 and 1970 year classes, it will be possible to analyse the historlcal records and determine expected frequency of proper conditions for exceptionally good recruitment.

Acknowledgements

The author would like to thank Bill Lenarz of the Southwest Fisheries Center's Tiburon Laboratory (NMFS) and Frank Henry of the California Department of Fish and Game for their patience and instruction concerning the rockfish data used in this report. This manuscript would not have been completed without the help of Rosemary Troian, Marlene Hughes and the many hours of consultation and encouragement received from other members of the Pacific Fisheries Environmental Group.

REFERENCES

ADANS, P., 1980. Morphology and distribution patterns of several important species of rocktish (Genus Sebastes) Mar. Fish. Rev., $42(3-4)$: 80-82

Anonymous 1981. SIO Reference 81-30
Surface water temperatures at shore stations United States west coast. Marine Life Research Committee and Marine Life Research Group, University of California, Scripps Institution of Oceanography, La Jolla, CA, 92037, 45pp.

BAKUN, A., and R. PARRISH, 1980. Environmental inputs to fishery population models for eastern boundary current regions. In Workshop on the effects of environmental variation on the survival of larval palagic fishes. Ed. by G. Sharp. Intergovernmental Oceanographic Comiseion, UNESCO, Paris. IOC Workshop Rep., 28:67-104.

BAKON, A., 1973. Coastal upwelling indices, west coast of North Americe 1946-1971. NOAA Tech. Rept. MMFS SSRF 671, 103p.

BIRD, A. , R. KOOB, T. HICKHAM and C. MOORRS, 1984. Hydrographic data from the slope waters off central california. 26 November 1978 - 26 June 1980., Dep. of Oceanography, Tech. Rep NPs 68-84-010, Naval Fostgraduate School, Monterey, CA 93943.

BOEHLERT, G. AND M. YOKLAVICH, 1984. Variability in age estimates in sebastes as a function of wethodology, different readers and different laboratories, Caiff. F1gh and Game, 70(4): 210-224.

BREAKER, L. AND C. MOOERS, 1987. Oceanic variability off the central califormia coast, Prog. Oceanog. (in press)

BRODEUR, R. AND W. PEARCY, 1984. Food habits and dietary overlap of some shelf rockifishes (genus Sebastes) fron the northeastern Pactifc Ocean. Fish. Bull., U.S., 82(2): 269-293.

CANE, M., 1983. Oceanographic events during El Nino. Science, 222:1189-1194.

CHELTON, D. , P. BERNAL and J. McGOWAN, 1982. Large-scale interannual physical and biological interaction in the California current., J. Mar. Res., 40(4):1095-1125.

CHELTON, D. and R. DAVIS, 1982. Monthly mean sea-level variability along the west coast of North America. J. Phys. Oceanog., 12:757-784.

COLEFAN, B., 1986, The 1980 Pacific Nest Coast Bottom Trawl survey of groundelsh resourcer: Estimates of aletribution, abundance, length and age composition NOAA Technical Memorandum NMFS F/NWC-100. Northweet and Alaska Pisheries Center NHFS/NOAA 7600 Sand Point Way NE, Seattla, wh 98115.

CUSHFNG, D., 1973. Recruitment and parent stock in fishes. WsG 73-1. Wathington gea Grant, University of Washington, seattle wR 98195.

DARWIN, C. and A. WALLACE, 1858, on the tendency of species to form varieties: and on the perpetuation of varieties and species by natural means of selection. Jour. Proc. Linnean Soc., Zoo., vol 3. Communicated by C. Lyell and J. Hooker July 1, 1858.

DERISO, R., T. QUINN, P. NEAL, 1985. Catch-age analyais with auxiliary information, Can. J. Aquat. Sci., 42: 815-824.

DOUGLAS, A., D. CAYAN and J. NAMIAS, 1982. Large-seale changes in North Pacific and North Aperican weather patterns in racent decades. Mon. Weat Rev., 110:1851-1862.

ENFIELD, D., and J. ALLEN, 1980. On the structure and dynamics of monthly mean ges level momalies along the Pacific coast of North and south Anerica. J. Phys. Oceanog., 10(4) : 557-57B.

GUNDERSON, D., 1984. The great widow rockfish thunt of 1980-1982. N. Arer. Jour. of Fish. Managenent, 4 : 465-468.

HENRY, F., 1986. Status of the coastwide chilipepper (Sebastes gooded) fishery. (Document submitted to the Pacific Fisheries Management Council, Portiand, Oregon, optober 1986). California Department of Fish and Game, 411 Burgess Drive, Menlo Park, CA 94025.

HENRY, F., 1987. California Department of Fish and Game, 411 Burgebs Drive, Menlo Park, CA 94025. (Personal communication)

HICKEY, B., 1979. The California current system hypotheses and facts. Prog. Oceanog., 8:191-279.

HIGHTOWER, J.E. and w. H. LENARZ, 1986. Status of the widow rockflsh fishery. (Document submitted to the Pacifie Figheries Management Council, Portland, Oregon, October 1986). Southwest Fisheries Center, National Marine Fisheries Service, NOAA, 3150 Paradise Drive, Tiburon, CA 94920.

HJORT, J. 1914, Fluctuations in the great fisheries of northern Europe viewed in the light of biological research Rapp. P. V. Raun. Cons. Perm. int. Explor. Mer, 20:1-228

HUNTER, J. 1982. Feeding ecology and predation on marine fish larvae, In Marine Fish Larvae Ed. by R. Lasker, Washington sea Grant program, University of Washington, Seattle.

HUYER, A., R. SMITH and E. SOBEY, 1978. Seasonal differences in low-frequency current fluctuations over the Oregon continental shelf. J. Geophys. Res., 83: 5077-5089.

HUYER, A. and R. SMITH, 1985. The signature of El Nino off Oregon in 1982-83, J. Geophys. Res., 90: 7139-7142.

KETCHEN, K., 1956. Factors influencing the eurvival of lemon sole (Parophrys vetulus) in Hecate Strait, British Columbia. J. Flsh. Res. Board Can., 13(5): 647-694.

LOVE, M., 1981. Evidence of movements of some deepwater rockfishes (Scorpaeridae: genus Sebastes) off southern California. Calif. Fish and Game, 67(4): 246-249.

MOOERS, C. and A. ROBINSON, 1984. Turbulent jets and eddies in the california durrent and inferred cross-shore transports. science, 223: 51-51.

MYSAK, L., 1986. El Nino, interannual varibility and fisheries in the northeast Pacific ocean. Can. J. Fish. Aquat. Sci., 43:464-497.

McLAIN, D., 1983. Coastal ocean warming in the northeast Pacific, 1976-83. In The influence of ocean conditions on the production of salmonids in the North Pacific, a workehop, Ed. by W. Pearcy, Sea Grant college Program. Rep. ORESU-w-83-001. Oregon State Univ. Newport, P.61-86.

MCLAIN, D. and D. THOMAS, 1983. Year-to-year fluctuations of the California countercurrent and effects on marine organisms. Cal. Coop. Fish Inv. (CalCOFI) Rep., 23:165-181.

NORTON, J., D. MCLAIN, R. BRAINARD, and D. HUSBY, 1985. The 1982-83 El Nino event off Baja and Alta California and its ocean climate context. In E1 Nino North, Ed. by w. Wooster and D. Fluharty, pp 44-72, Washington Sea Grant Program, Univeralty of Washington, Seattle.

NORTON, J.,D. MCLAIN, D. HUSBY and R. BRAINARD, 1987. Evidence for downward propagation of coastally trapped wave energy found in analysis of California current warming event. Pacific Fisheries Environmental Group, Southwest Fisheries Center, NMFS/NOAA P.O. BOX 831, Monterey, CA 93942 (in prep).

PARRISH, R., C. Nelson and A. Bakun, 1981. Transport mechanisms and reproductive success of fishes in the California current. Biol. Oceanog., 1(2): 175-203.

PICAUT, J., 1983. Propagation of the seasonal upwelling in the eastern equatorial Atlantic. J. Phys. oceanog., 13(1):18-37.
prCAUT, J. 1985. Major dynamics affecting the eastern tropical Atlantic and Pacific Oceans. Cal. Coop. Ocean. Fish. Inv. (CalCoFI) Rep., 26: 41-50.

QUINN, W., D. ZOPF, K. SHORT and R. KUO YANG, 1978. Historical trends and statistics of the southern oscillation, El Nino, and Indonesian droughts. Fish. Bull., U.S., 76(3): 663-678.

REINECKER, M. AND C. MOOERS, 1986. The 1982-1983 El Nino signal of northern California. J. Geophys. Res., 91(C5): 6597-6608.

TABATA, S., 1985 El Nino effects along and off the Pacific coast of Canada during 1982-83, In El Nino North, Ed. by w. Wooster and D. Fluharty, pp. 85-96, Washingtion Sea Grant Program, Univeraity of Hashington, Seattle.

TEMPLEHAN, W., 1972. Year-clags ouccess in some north Atlantic stocks of cod and haddock. Int. Comm. Northw. Atlant. Fish. Spec. Pub. No. 8, pp.223-238.

UDA, M., 1962. Cyclic correlated occurrence of world-wide anomalous oceanographic phenonena and fieherles condition. J. Oceanogr. Soc. Jpn. 2oth Anniv. Vol: 368-375.

WhLIACE, J. and D. GUTZLER, 1981. Teleconnections in the geopotential height field during the northern hemisphere winter. Mon. Hea. Rev., 109:764-812.

WILKINS, H. 1986. Development and evaluation of methodologies for assessing and monitoring the abundance of widow rockfish, sebaste日 entomelas. Fish. Bull., U.S. (84) 2: 287-310

WICKHAM, J., 1975. Observations of the California Counter Current. J. Mar. Res., 33:325-340.

Status of early life history studies of northeast Pacific rockfishes

Arthur W. Kendall, Jr.
NMFS, Northwest and Alaska Fisheries Center Seattle, Washington and
William H. Lenarz
NMFS, Southwest Fisheries Center Tiburon, California

Abstract

Rockfishes (Sebastes spp.) are highly unusual in that they have internal fertilization of a large number of eggs ($>10^{5}$) and give birth to planktonic laryae at the first feeding stage. Following the planktonic larval stage, juveniles develop in a variety of habitats, depending on the species. Some remain pelagic for several months, while others becone demersal at a small size. Since about 70 species of rockfish occur in the northeast Pacific, identifying the larvae and juveniles is a major problem. Recent studies have greatly enhanced our ability to identify these young stages, which allows us to contemplate using them to address fishery-related problems. Current studies are focused on relating the abundance of larvae and juveniles of rockfish to the adult populations, to measure both adult biomass and recruitment. These studies show promise, but the unusual biology of the genus limits somewhat the potential of such studies for fishery management purposes.

\section*{Early Life History Pattern}

Rockfishes have an unusual reproductive pattern with important implications for their ecology and fisheries on their populations. Most fish that reproduce in marine waters lay free-floating planktonic eggs that are fertilized and undergo embryonic development as independent organisms in the open sea. Hatching is followed by a yolk-sac period about one-half as long as incubation, during which the larva develops eye pigment and feeding mechanisms. In rockfishes, however, fertilization occurs internally and the eggs develop and hatch inside the ovary of the female. It has recently been found that the embryos ingest ovarian fluid as a supplement to the yolk (see Boehlert. Kusakari,

and Yamada, this volume). When the larvae are extruded after several weeks, they have little yolk left and are ready to begin feeding. These larvae are about $3-7 \mathrm{~mm}$ standard length (SL), comparable in size to first-feeding larvae of species with planktonic eggs.

Mortality of planktonic fish eggs, due primarily to predation, is high for the few species that have been studied in enough detail to make reliable estimates. Generally more than 50% of the pelagic eggs spawned by a fish die before hatching (Hempel 1979). Mortality of yolk-sac larvae in the field is even more difficult to examine but predators that feed on eggs probably also consume yolk-sac larvae. Thus, less than 20% of eggs spawned may survive through the yolk-sac perlod to become free-feeding larvae. Boehlert et al. (this volume) estimate that there is about 25% mortality of young in rockfishes between fertilization and parturition. Thus, the number of surviving first-feeding larvae in rockfishes is about 75% of the number of eggs that undergo ovulation, rather the 20% or less of that number in fishes spawning pelagic eggs. Also, the reproductive pattern of rockfishes reduces the amount of dispersion of planktonic stages by ocean curreits.

Fecundity of rockfishes is high (104-106 eggs per female) and is only slightly lower than it is in fishes spawning pelagic eggs. In fish with more extensive protection of the young, or those that produce considerably larger eggs, fecundity is reduced substantially. It would seem that rockfishes have not achieved the concomitant reduction in fecundity generally associated with increased parental contribution to the welfare of individual progeny. The evolutionary advantage of gestation in rockfishes is unclear, but apparently it is not completely explained by protection of the egg and early larval stages. Internal fertilization may allow distinct but similar species to co-occur with little chance of cross-fertilizing their gametes. Behavioral or other prezygotic barriers would prevent copulation among closely related species. This reproductive strategy may have contributed to the genus becoming so speciose in the North Pacific.

Seasonality of Reproduction

Reproductive events in rockfishes follow this sequence: spermatogenesis, vitellogenesis, mating, ovulation, fertilization, embryonic development, hatching, and larval extrusion. Males mature up to severa) months before the females, and mating may precede fertilization by several months. Embryonic development takes about 40-50 days, and the larvae hatch about 1 week prior to extrusion. Although most rockfishes release larvae during the first 6 months of the year, there is quite a bit of variation among the species, and within a species among years.

When comparing information on seasonality of reproduction, the wilethods and criteria used and the sample sizes must be evaluated. Host work to date has been done off British Columbia and north/central California. Wyllie Echeverria (in press) has summarized information on reproductive seasonality of 34 species of northeast Pacific rockfish. The duration of larval release varies from 1 to 9 months among the species studjed, and a few species demonstrated two periods of release during the year (Table 1). In general, species can be grouped into those that extrude larvae in winter and those that extrude larvae in spring-summer.

Table l.--Periods of release of rockfish larvae. Based on Wyllie Echeverria (in press).

Figure 1. --Number of rockfish spectes releasing larvae off north / central Californla and British Columbia by month. Based on Wyllie Echeverria (in press).

Parturition seems to occur earlier in the year in the southern part of the species' range, although data sufficient for such a comparison is available for few species. Annual differences in timing of release of larvae seem to be environmentally determined. In some species studied by hylle Echeverria (in press), parturition during the anomalous El Nino year of 1983 was delayed compared to the other years from 1981 to 1985.

Sumbarizing the data presented by Wylle Echeverria (in press), there seems to be a silght tendency for rockfishes in the north (British Columbla) to release young later in the year (AprllJune) than those off north/central Calffornia which release young majnly from January to May (Fig. 1). Also, a longer period of release is apparent off north/ central California than off British Columbia (Table 2). The median period of release off British Columbia is 1 month, whereas off north/central California it is 3 months. These differences could partially be due to differences in sampling density.

Table 2.--Duration of parturition period of rockfishes by area and number of species (based on Wyllie Echeverria, in press).

Number of months	Area					
	G of A	BC	Wa unbe	Or	N/C	5 Ca
1	3	21	2	6	3	2
2		2	1	6	5	5
3	2		2	I	8	1
4				4	2	2
5				2	7	1
6					5	2
>6					5	
total	6	23	5	19	35	13 ${ }^{\text {¹ }}$

*3 species have split season with no release in March or April.

Rockfish larvae are about $3-7 \mathrm{~mm}$ SL at birth and have pignented eyes and a functional mouth (Fig. 2). The trunk and tail is surrounded by an undifferentiated $f 1$ nfold and larval pectoral fins are present. Pignent generally consists of small discrete melanophores in characteristic positions. Al though there is considerable interspecific variation in melanophore amount and placement, from nearly absent in 5. hel vomaculatus to a dark banded pattern on the body of S . aurora, In almost all spectes some pignent is found on the gut and there is usually a series of postanal ventral midline melanophores. Depending on the species, melanophores may also occur on such places as the jaws, top of head, nape, pectoral fins, dorsal postanal midilne, or midiaterally on the caudal peduncle and near the tip of the notochord. Superficial pignent is added in definitive patterns as the juvenile period is approached.

Figure 2.--Development of Sebastes dalli (from Moser and Butler 1981). A. 5.1 min larva; 8. 6.2 min Tarva; C. 7.1 mm larva; D. 10.1 min larva; E, 21.7 men pelagic juvenile.

With development, the body deepens somewhat and the head enlarges. In postflexion larvae head length is about $28-48 \%$ of the body length, preanal length is about $42-66 \%$ of the body length, and the maximum body depth is about $21-42 \%$ of the body length (Table 3). Head spines start to develop early in the larval period, and soon reach their maximum number and relative size. A full or nearly full complement of spines develops during the larval perlod, but some are usually lost during the juvenile period to produce the adult pattern that is a specific character. The first head spines to form are the pterotics, several of the preoperculars, and the parietals. Spines continue to be added and to increase in size as the larvae develop. The parietal spines, some of the preopercular spines, and the supraocular ridge become serrate in some species. The parietals and central preoperculars are the longest spines, the parietals reaching 27% of the head length in 5 . helvomaculatus (Richardson and Laroche 1979). Fin ray formation follows this sequence: caudal, pectorals, pelyics, dorsal, and anal. Fin rays are generally not particularly elongate, although there is variation in the length of the pectoral rays with S. paucispinis pectorals reaching 37% body length in postflexion larvaé (Moser et al. 1977). Pelvic rays develop uniquely early in 5 -mm larvae of s. paucispinis, and reach the same elongate proportion as the pectorals:

Table 3.--Morphometric characters of postflexion larvae of 16 species of northeast Pacific rockfishes, expressed as ranges of percent standard length (SL).

Species	Head length	Body depth	Preanal length	References*

[^2]Two approaches, or a combination of both, are used to establish the identity of larval fish. The direct approach invalves rearing larvae from known parents. The indirect, or series approach, involves finding specimens in field samples that are large enough to have definitive adult (mainly meristic) characters, but small enough to retain some laryal characters (such as pignent). A series of similar looking but smaller specimens is accumulated from field samples until the smallest larvae can be recognized, With northeast Pacific rockfishes, yolkbearing larvae of 50 species have been reared, but only seven species have been reared to caudal fin formation, and only one species has been reared through the larval period. The caudal fin formation larvas are helpful, but not completely definitive, in establishing the fdentity of field-caught specimens, and the yolk-bearing larvae offer little help at the level to which they have been studied. Thus, with rockfishes larval identification has depended mainly on establishing series. A few species such as S. jordani, S. paucispinis, S. aurora, and S. melanostomus have proven to have very distinctive Tarvae at al stages of development (Fig. 3) but mast, particularly before notochord flexion, seem to look very similar. In several descriptions based on the series approach, larvae smaller than $8 \mathbf{- 1 0}$ rimi SL could not be recognized with confidence.

Figure 3.--Flexion stage larvae of (top to bottom) S. jordani (from Moser et al. 1977), 5. melanostomus (from Moser and Ahlstrom 1978), S. aurora (from Moser et al. 1985), and S. paucispinis (from Moser et al. 1977).

Descriptions of larvae and pelaglc juyeniles of various rockfishes are slowly accumulating in the literature, making it reasonable to contemplate using the planktonic stages in field samples for fisheries studies. Anong northeast Pacific rockfishes, illustrations have been produced for yolk-sac or preflexion larvae of 50 species, complete larval series of 8 species, and pelagic juveniles of 39 species (Table 4).

Table $4_{+}=$Key to sources of illustrations of rockfish larvae from the northeast Pacific Ocean. Numbers key to references in Literature Cited.

Westrheim (1975) concluded, based on work with preextrusion larvae of 31 species, that "interspecies similarities and intraspecies differences in morphometric and meristic characteristics of preextrusion Sebastes larvae delineated in this study clearly preclude accurate identification, based only on these criteria, of Sebastes larvae caught at sea." He also found that larvae of several species reared to yolk exhaustion changed significantly in pigment pattern from preextrusion laryae. The yolk-sac period in most fishes is characterized by changes in pigment pattern as embryonic pigment migrates and is increased to form the larval pignent pattern. The larval pigment pattern is still not well established in yolk-exhaustion rockfish larvae, so it does not appear possible to anticipate what more adyanced plankton-caugnt larvae of a particular species will look like based on $\mu \mathrm{f}$ yment observed in reared preextrusion or yolk-exhaustion larvae.

In spite of these problems there are indications that more detailed studies of reared yolk-sac larvae of rockfishes may be helpful for identifying field-caught specimens. Examining the published illustrations of yolk-sac larvae of 46 species of rockfishes, we established 26 loci where $\mu \mathrm{igment}$ was observed (Fig. 4). We then scored each species based on the presence or absence of piyment at these loci. We found that only two pairs of species could not be separated on the basis of this pigment eriterion. There may be problems in comparability of the illustrations because of different illustrators, intraspecific pigment variations, different stages of development, and uncertainty with some adult identifications. However, this excercise indicates that there indeed may be enough interspecific difference in pigment to warrant further study.

Also, we noted, in the published illustrations and on specimens of several species at our disposal, considerable variation in the apparance of the melanophores that are present on or near the hindgut. The number, size, and location of these seem to be rather consistent within a species, and there is considerable variation among species. Further study will be required to test the utility of this pigment for species separation.

While some chanyes in pigment occur between hatching and yolk exhaustion, we were struck in the several series we examined by the consistency of pigment in some areas. This indicated that the problem of comparing illustrations and descriptions of preextrusion and yolkexhaustion larvae may not be severe enough to neyate their value completely.

Besides μ igment, yolk-bearing larvae have other characters that may be profitable to evaluate. Morphonetric characters such as size at staye of development, body depth, and preanal length may prove inportant. All of the illustrations summarized by Westrheim (1975) were produced by sketching pigment onto a basic template drawing of a rockfish yolk-sac larva. Thus, no morphometric comparisons can be made of these illustrations. Further, the pectoral fins were not included on these illustrations, so the pigment characters of the pectoral fin can mot be evaluated for these larvae.

Western Pacific rockfishes, which are larger at extrusion than those in the eastern Pacific, have been reared in large numbers through the juvenile stage for release to enhance natural production (see Moser and

Figure 4.--Pignent loci on yolk-sac larvae of rockfishes. In the body of the table, " 1 " means pigment present, "2" means pigment absent.

Species					5	5		B	$\underline{1}$				$\frac{13}{13}$	$\frac{10}{14}$	$\frac{p c \cdot 1}{15}$						2122			2520
5. entomelds	1	1	1	L	1	1	1	1	1	1	1	1	L	1	1	2	Σ	1	L	1	12	2	1	11
5. 5111atat	1	1	l	1	1	1	1	1	1	1	I	1	1	1	2	1	2	2	1	2	17	2	1	31
5- srameri	1	1	7	1	1	1	1	1	1	1	7	2	2	1	2	2	2	1	1	1	12	2	I	31
S. \#ystinurs]	1	1	1	1	1	1	1	1	1	I	1	1	1	1	1	2	1	1	1	12	2	1	1
5 \% utus	L	1	I	L	1	1	1	1	1	!	2	1	1	1	1	1	2	1	1	1	12	2	1	1
	1	1	1	1	1	1	1	1	1	1	2	1	1	1	1	1	2	1	7	1	32	2	1	11
5 - rubuerrinus	1	1	1	1	1	1	1	1	1	1	?	1	1	1	1	2	2	1	1	1	12	2	1	21
5. hapktmsi	1	1	1	1	7	1	1	1	1	1	2	1	1	1	1	2	2	1	2	1	12	7	1	11
5- variyatus	1	1	1	1	1	1	1	1	1	1	?	1	1	2	1	2	2	1	1	1	17	2	1	21
5. Grevispinis	1	1	1	1	1	I	1	1	1	1	2	2	!	1	1	1	2	1	1	1	12	2	1	$\stackrel{1}{2}$
5 - reter	1	1	1	1	1	1	I	1	1	1	t	2	I	1	2	I	2	1	1	1	12	2	1	21
S. aleutianus	1	1	1	1	1	1	1	1	L	L	2	2	2	2	2	2	2	1	1	7	12	7	1	$2 \quad 2$
5. methomicutatus	1	1	1	l	1	I	I	1	1	2	1	1	I	1	1	1	2	1	1	1	12	2	1	11
5. tismutus	1	1]	1	1	1	1	1	1	2	2	1	1	1	1	1	2	1	2	1	22	2	1	1 :
$\overline{5}$ - flavidu5	1	1	1	1	1	I	1	1	1	2	2	1	1	1	1	2	2	1	1	1] 2	2	1	2
F, pacentitus	1	1]	l	1	1	1	1	1	2	2	2	2	1	1	2	2	1	2	2	12	2	2	22
7.	1	1	I	1	1	I	I	2	2	1	\%	1	1	I	1	χ	2	1	1	2	12	2	1	11
F. rosatems	1	1	1	1	1	1	1	2	3	2	2	1	1	2	1	1	2	1	1	1	22	2	1	1 i
3. corseri	1	1	1	L	1	1	$?$	7	1	f	$?$	1	1	1	?	1	Z	1	1	1	12	2	1	21
5. Filfus	1	1	1	1	1	2	1	1	I	1	2	1	1	1	1	1	2	1	2	1	11	2	1	11
5. saxicala	1	1	1	1	1	$\}$	1	1	I	I	Z	1	1	1	1	1	τ	1	2	1	22	?	i	I
5. jFortyer	1	1]	1	1	2	,	1	L	1	2	1	,	2	2	2	2	1	1	2	12	\square	1	22
F. elonydatus	I	1	1	1	1	2	1	1	1	1	2	1	2	2	1	1	2	1	1	1	? 2	7	1	-
5. diploprod]	1	1	,	1	2	1	1	1	2	2	1	1	1	a	2	c	1	1	1	12	2	1	21
$\overline{5}+$ babocock 1	L	1	1	L	1	2	1	l	L	2	t	1	2	$?$	1	7	I	1	3	,	72	\%		22
\mathcal{F} - macdonatdi	1	1	1	1	1	2	7	2	L	1	2	1	2	2	1	1	2	1	1	1	12	\cdots	1	1
5. ordani	1	1	1	2	1	1	1	1	I	1	2	1	1	I	2	1	2	1	$?$]	1 ?	T]	,
5. Sprricipus	L	1	1	2	1	2	1	1	,	1	2	1	,	2	1	2	2	1	1	1	12	$\overrightarrow{2}$,	ह 1
5. bralis	!	1	1	2	1	2	2	1	1	1	2	1	L	1	1	2	2	1	7	1	12	2	1	11
5.8 grodel	1	1	1	2	1	2	2	2	2	1	2	7	7	1	$?$	2	$?$	1	1	1	12	2	1	11
5. तब17	1	1	1	द	2	2	1	1	1	1	\pm	1	L	I	1	2	2	1	2	1	12	2	2	11
5-711i	1	1	1	2	2	2	z	1	1	1	2	t	1	2	2	2	2	l	2	1	12	2	$?$	21
E. cinntellatus	2	!	1		1	1	1	1	2	2	7	1	1	2	1	l	2	1	1	1	12	2	1	11
5. ensiler	2	1	1	1	1	1	I	1	2	$?$	2	1	1	2	1		2	1	,	1	22	2	1	11
S. phmmiter	2	1	1	1	1	1	1	2	1	2	r	1	L	1	1	I	2	1	2	1	12	2	1	21
5. Cosemthitti	2	1	1		1	1	1	2	2	E	2	1	,	2	1	2	2	t	1	1	22	2	1	11
5. mas	2	1	1	,	1	1	1	7	2	7	2	1	1	2	1	2	2	1	1	1	22	c	1	11
5. Wrarrosus	2	1	1		1	1	1	2	2	$\underline{7}$	2	1	2	2	1	1	7	1	1	1	12	2	1	11
5. chlorostictus	2	I	1	-	,	1	1	2	$?$	5	i	1	2	2	1	2	2	1	1	1	22	2	1	11
5. malistr	2	l	!	-	,	2	,	,	1	2	7	2	1	1	1	1	1	2	7	1	7 ?	2	1	11
5. mimiatus	t	1	1	3	2	2	1	1	1	d	2	7	1	1	1	3	7	1	1	1	17	2	1	21
5. ${ }^{\text {cadifinus }}$	2	l	1	2	2	2	$?$,	1	2	2]	2	2	2	2	7	2	7	1	22	2	1	1
5. leris	2	1	1	c	2	2	2	2	$?$	J	2	1	1	1	1	3	7	1	1	1	17	7	1	1
E.	2	L	z	2	2	7	I	1	1	2	2	1	1	1	1	2	2	2	2	1	22	2	1	11
S melanostemus	\%	3	4	1	2	2	1	2	2	2	2	?	7	1	1	1	7	1	1	1	13	1	1	11

Butler in press). However, only one eastern Pacific species (S. dalli) has been reared beyond caudal fin formation (Moser and Butler T981). Among the other most successful eastern Pacific rearings, \underline{s}. rufus lived to 46 days, S. constellatus to 38 days (Moser and Butler in press), and S. caurinus to 35 days (Stahl-Johnson 1985). Eastern Pacific rockfishes seem amenable to standard techniques developed in other marine fish, but concentrated efforts are needed to obtain healthy full-term laryae from females, and to have proper rearing conditions available for this work. Further progress in rockftsh laryal identification is largely dependent on rearing developmental series of a wide variety of species.

Larval Oistribution

Largely because of identification problems, occurrences of rockfish larvae from ichthyoplankton surveys in the northeast pacific are usually reported at the generic level (Sebastes spp.). Lisovenko (1964) discussed purported catches of S. alutus Tarvae made in the Gulf of Alaska in 1963, at a time when the population of S. alutus was much larger than at present. The proportion of S. alutus and other rockw fishes in these catches is unknown, since no description of S. alutus is available, and Lisovenko (1964) did not provide diagnostic characters for the larvae he identified as S. alutus.

Mo field work has been designed specifically to collect rockfish larvae. Dccurrences of particular species have been reported in the descriptions of the few species described from field collections (Table 5). Fhese distributional data probably are more indicative of where sampling was conducted, and what samples were examined, than the actual distribution of the larvae. However, the larvae occur to considerable distances offshore (up to 306 km from shore), and several species were not reported nearshore (6 of the 14 species were not found closer to shore than 24 km). Most larval occurrerices were in the first 6 months of the year, with the period of occurrence of 7 of the 14 species including April. The season of three species extended to August.

Table 5. - Occurrences of larwae of rockfishes in the northeast Pacific Ocean reported by species.

\$pecies	Major Features of occurrences				
	$\operatorname{size}_{\{\operatorname{masi}\}}$	Ared	Bistance from shore (km)	Season	Refererces*
5. aurora		San Franciseucentral Baja CA	110170	Apr- June	18
S, torteit		Gulf of ca		Mar	15
S. crameri	4. 10	Mexport, Luk	83. 93	Apremay	19
5. entomelas	10-15	off 0regon	5306	Apremey	9
S. flayidus	10-20	off Oregan	24-266	Apre May	8
S. hel romaculatus	8. 20	Newport, of	83-120	July-Aug	19
S. jorgan		San Francisco San biego	inshore	Jatr Feb	לי
S. levis		California Bight.		Jank June	15
S. racdonaldi		central Baja Ca		Mar	15
5. mel anops	1020	off Uregon	$5-266$	Apromay	8
S. meldaustonus	large	Los Angeles to Baja 4	5. 220	Apr-Aug	14
S. paucispinis		CA to baja ca	nearshore	Jar- Feb	15
S. pimiger	220	Newpurt, of	43-120	Mar- June	19
5. zacentios	710	off Uregon	46-143	Aus	9

[^3]Collections of larvae identified as Sebastes spp. (rockfish) from the eastern bering Sea, the northern Gulf of Alaska, and from off the Hashington, Oregon, and California coast have been documented (Table 6). The following sumarizes what we know about the distribution of rockfish larvae in these areas. Information based on the occurrences of larvae identified as rockfishes is of limited value, because several species are likely to be included in the collections, and each presumably has a specific pattern of distribution that overlaps those of other species.

Rockfist larvae are vulnerable to collection in plankton nets over a relatively narrow length range. Hoser and Butler (fin press) found that among over 11,000 rockfish larvae from California Cooperative Oceanic Fisheries Investigations (CalCOFI) plankton collections nearly 50% were less than 5 mm SL, and more than 90% were less than 7 mm SL. In plankton samples taken off Washington, Oregon, and northern Californla from March through November, little difference in mean size of the laryae was found; they ranged from 4.29 mm in November to 5.61 mm in March= June, and 5.22 min in August (Northwest and Alaska Fisheries Center (NHAFC) files). Apparently, there is a severe mortality of larvae less than 7 mm , or their avoidance ability increases dramatically at that size. Notochord flexion and the concomitant development of the caudal fin occurs at about $7-8 \mathrm{~mm}$ in most species, so increased escapement of larger larvae is probable. Lengths of rockfish larvae have not been reported from other studies, but based on the above nearly all are probably less than 10 mm . Larger larvae and pelagic juveniles of at least some species are collected in neuston nets, where in eight surveys off Washington, Oregon, and northern California the mean length of the 1,112 rockfishes caught was 19.25 mm (NWAFC files).

One consequence of the small size of rockfish larvae in planktan collections is that the larvae are close in time and position to where they were released from the females. Thus, distribution of larvae can probably be used to give a fairly accurate idea of where and when release occurs. off southern California most rockfish larvae are found in winter; off Washington, Oregon, and northern California most are in spring and summer; and in the Gulf of Alaska and in the Bering Sea most are in summer. Thus, it seems that release of larvae occurs progressively later in the year proceeding from south to north. This agrees with infomation already cited on seasonality of reproduction based on studies of gonads. The shift in timing of larval release may reflect the seasonal development of oceanographic conditions conducive to producing food suitable for the larvae.

Juvenile Identification

The transition from larval to juvenile stage often is defined to occur when counts of fin rays, 9111 rakers, and lateral line pores reach adult levels. This stage occurs in many species of rockfish at about 20 min. Some species do not become juveniles until about 30 man. Using this definition, many specimens reported as juveniles in the literature and this paper are actually large larvae.

Until the last decade the majority of specimens of juvenile rockfish were identifled as Sebastes spp. Several workers have advanced the
Table 6.--Summary of data on Sebastes spp. larval collections from major ichthyoplankton programs in the eastern Bering Sed and the northeast Pacific Ocean.

Area	Reference	Yedrs sampled	Nonths sumpled	40. of cruises	collecting stations	Sebastes spic. occurrences
Eastern Bering Sel	Naldron [1981]	1955-79	A11, mostly Spring-Sumier	43	2,435	At 89 stations on 10 cruises, in spring and sumer mainly near shet ${ }^{+}$break, mostly south of $60^{\circ} \mathrm{M}$.
	Walline 1968	1979	June-july	1	114	In over 50 of oblique bongo tows throughout samplimg areamalniy near shelf break south of St. Matthew's Islams,
	Heryu et al, 1985	1970-79	June-August	14	418	592 laryse caught, throughout the southeastern Bering Sea.
Gulf of Alaska	Kencall and Dunn 1985	1972, 1977-79	All except Dec and Jan	11	707	Found late spring through early fall, peak in sumer, shift tinshore as season progressed.
Washington-Cregon- H. California	MMAFC Files*	1980-84	$\begin{aligned} & \text { Mar-June, Mug, } \\ & \text { Oct-Dec } \end{aligned}$	\checkmark	873	Hearly equally abundant spring and summer, less abundant in fall, winly offshore keyond Continental Shelf.
Oregon	$\begin{gathered} \text { R4 chardson et al. } \\ \mathbf{1 9 8 0} \end{gathered}$	1972-75	March-April	6	306	mainly seyond Continental Shelf.
Calfifornia Baja Callformid	*ilstrom et al. 1978**	1950-75	Al1	157	26,619	Most in winter, decresse abundance in southern part of area, mostly nesrshore.

[^4]state of the art so now we can identify most juveniles captured off Washington, Oregon, and California. We were able to identify more than 992 of specimens of juvenile rockfish collected by midwater trawl off central California. Important papers on Identification are Laroche and Richardson (1979 and 1980), Moser and Ahlstrom (1978), Moser et al. (1977), Moser and Butler (1981), Moser and Butler (in press), Moser et al. (1985), and Richardson and Laroche \{1979\}. The preceding studies used material collected at sea or fron rearing studies. Investigators employing scuba have conducted several nearshore studies of juvenite rockfish off California. Anderson (1983), who includes photographs of 17 species, is the most complete source on identification of Juveniles in nearshore areas. The Tlburon Laboratory has developed a key that uses pignentation patterns and meristics. Laroche is preparing a well-illustrated identification guide. Pelagic juventles of 37 species will be illustrated in the laboratory guide being prepared by Matarese et al. (in press).

Larval and Juvenile Growth
Little is known about growth of rockfish larvae and juveniles. Under laboratory rearing conditions, change in length with time has been noted for larvae of seven northeast Pacific species. Only 5 . dalli lived beyond 40 days and a length of 10 mm . There is quite a wide variation shown in growth with some larvae reaching 9 mm in 24 days. whle others were only a little over 7 mm after 38 days (Fig. 5). Since larval rearing has not been routinely successful in rockfishes, it is unknown how closely these growth rates reflect those found in the wild, or how much variation is due to different responses to rearing conditions.

Figure 5.--Growth of northeast Pacific rockfishes based on several rearing experiments.

Boehlert (1982) and Boehlert and Yoklavich (1983) held field-collected pelagic juvenile S. diploproa and benthic juvenile S. melanops under a variety of laboratory conditions of food, temperature, and photoperiod and noted effects on growth using stepwise multiple regression. Growth rate generally increased with increased ration; it was maximal at intermediate temperatures in S. diploproa, but continued to increase at higher temperatures in 5 . melanops. The temperature of maximal growth increased with fish size in S. diploproa. Growth rates observed in the laboratory under satiation rations were similar to those reported in the field (Boehlert and Yoklavich 1983).

Daily growth increments have been observed on the otoliths of a few juveniles of two species found in albacore stomach contents. The juveniles ranged in length from 15 to 31 mand in age from 47 to 101 days. The growth rate, determined by otclith aging, of 21 field-collected juvenile (9.0-42.7 mm) S. diploproa (Boehlert 1982) was considerably less than that of the other two species so studied (Fig. 6). When these juventle data are graphed along with data from reared S . dalli, a coherent picture emerges suggesting slow growth from 5 to 10 mm followed by more rapid growth through 30 mm , al though $\$$. diploproa growth seems to continue at a slower rate (Fig. 6). Median fin formation occurs in these species at about 10 mm and possibly the enhanced mobility this provides facilitates the observed increase ith growth rate starting at this age.

Figure $6 .--G r o w t h$ or reared Sebastes dalli and size-at-age of fieldcollected juvenile S. aurorã, S. diploproa, and S. melanostomus. Based on Boehlert (1982), Moser and Ahlstrom (1978), Moser and Butler (1981), and Moser et al. (1985).

The life histories of rockfish are diverse and complex. it appears that some species may spend nearly their entire lives in a very restricted area. In other cases it appears that life histories may be as complex as those of salmon.

Turner et al. (1969) found $12-\mathrm{mm}$ S. dalli in crevices and caves in proximity to adults, and proposed that the young were released there. The authors did not describe identification procedures. It is possible that identification was incorrect, since larval and juvenile descriptions were not published until 1981 by Moser and Butler. However, there are no records $i n$ the literature of pelagic larvae or juveriles of S. dalli.

Work conducted by the Tiburon Laboratory indicates that the life history of S. auriculatus is quite complex. Gravid females occur in San Franciscó bay, but much more often in offshore waters as deep as 80 m . Most S. auriculatus in San Francisco Bay are immature. Pelagic juveniles occur offshore April through June. Benthic juveniles are found in nearshore waters and are abundant in San Francisco Bay. Jagging studies have shown that juveniles spend up to several years within a very restricted home range while in the bay. The fish then gradually move into deeper waters and offshore. Fish tagged as juveniles in the bay have been recaptured several years later more than 80 km away in offshore waters.

While rockfishes possess a range of life history strategies, many species appear to have a juvenile stage which is either pelagic or assoiated with drifting objects such as kelp. However, in addition to \underline{s}. dalli there are other exceptions to the general rule that rockfishes have an open ocean juvenile stage. Pelagic juveniles of the subgenus Sebastomus (e.g. S. consteliatus, S. chlorostictus, and S. rosaceus) as well as 5 . alutus and 5 . rufus are noticeably missing or rare in pelagic collections. S . atrovirens, \mathbb{S}. carnatus, \mathfrak{S}. caurinus, and \mathfrak{S}. chrysomelas recruit to the kelp habltat as lamge larvae Anderson 1983). These four species first associate with the kelp canopy and then gradually migrate to the bottom. Thus, their strategy may be a variation of the strategy of species associated with drifting objects as juveniles.

The first review of rockfishes associated with drifting objects is by Mitchell and Hunter (1970). They found juvenile 5 . diploproa, 5. paucispinis, S. rubrivinctus, S. serranoides, and S. serriceps assāciated with dexfting kelp off southern California and Baja California. This stage is particularly important in the life history of s. diploproa (Boehlert 1977). Juvenile S. diploproa were associated with drifting kelp throughout the year. Peak abundance was in May-lune. The juveniles appeared to leave the drifting kelp habitat and settle to the bottom between May-June and November-December. Juveniles are about 1 year old when they reach the bottom. Pelagic sampling gear rarely captures juveniles of this abundant species. Boehlert (1977) also presented information on S. paucispinis, \$. rubrivinctus, and 5 . serriceps. S. caurinus and 5 . nigrocinctus were associated with a dfifting glass float found in queen charlotte Sound (hitz 1961). Data presented in the paper suggest that specimens identified as 5 .
caurinus could have been S. maliger. Since Boehlert's work, the literature contains little about juvente rockfishes associated with drifting objects. It may prove to be an interesting subject to study north of southern California.

Pelagic sampling gear has captured juveniles of many rockfish species, The two most extensive studies are by Pearcy and Laroche (Table 7) and Adams, Lenarz, Moreland, and Hyllie Echeverria (Table 8). Pearcy and Laroche captured 15 species of juvenile rockfish off 0regon and Washington using purse seines. S. entomelas, \underline{S}. flavidus, S. melanops, and 5 . mystinus were abundant in their collections. Peak catches for 12 of the 15 species were in June. Catches of \underline{S}. diploproa, S, nigrocinctus, and 5 - proriger were low and peaked in September. They do not report juvenile s. alutus, which is a common species in their area. Adams et al. captured 22 species of juvenile rockfish off central California with a midwater trawl. They captured significant numbers of \underline{S}. auriculatus, S. entomelas, \underline{S}. flavidus, \underline{S}. goodei, S.

Table 7.--Catches of juvenile rockfisnes by purse seine sets off Oregon and Washington, 1979-1984. Mesh size was 3.2 cm (stretched); ($\mathrm{N}=$ number of juveniles, $\mathrm{Y}=$ number of years of occurrence) (Personal communication W. Pearcy and W. Laroche, Oregon State University, Newport, Oregon).

Month Number of Sets	May		June		July		August		September	
	124		335		119		67		152	
Species	N	Y	N	Y	N	Y	N	Y	N	Y
S. crameri	0	0	2	2	0	0	0	0	0	0
S. diploproa	0	0	1	1	0	0	0	0	13	1
S. emphaeus	1	1	0	0	0	0	0	0	0	0
S. entomelas	9	1	283	5	0	0	0	0	0	0
S. flavidus	0	0	589	6	0	0	0	0	0	0
S. goodei	1	1	1	1	0	0	0	0	0	0
5. jordani	9	2	73	6	1	1	0	0	0	0
S. maliger	0	0	1	1	0	0	0	0	0	0
S. melanops	1	1	369	5	0	0	0	0	0	0
S. mystinus	1	1	432	3	2	1	0	0	0	0
S. nigrocinctus	0	0	0	0	0	0	0	0	18	2
S. paucispinis	0	0	14	3	0	0	0	0	0	0
S. pinniger	1	1	8	1	0	0	0	0	0	0
S. proriger	0	0	0	0	0	0	0	0	14	1
S. Saxicola	0	0	17	1	0	0	0	0	0	0

Table 8.--Catches of juvenile rockfishes by midwater trawls off of central California. A $25-m$ head rope length trawl with a $1.3-\mathrm{cm}$ stretched mesh cod end was used. Towing depth varied from 10 to 100 m . April was sampled 1985 and 1986. Late May and June were sampled 1983-1986. ($\mathrm{N}=$ number of juveniles. $0=$ number of occurrences, $Y=$ number of years of occurrence). (Personal communication P. Adams, W. Lenarz, S. Moreland and T. Wyllie Echeverria, Southwest Fisheries Fisheries Center, Tiburon, California).

Month	April			Late May-June		
Number						
Species	N	0	Y	N	0	Y
S. auriculatus	205	12	1	532	83	2
S. caurinus 1/	0	0	0	9	6	1
S. crameri	0	0	0	15	10	2
S. diploproa	1	1	1	3	3	1
S. entomelas	0	0	0	15,335	99	4
S. flavidus	0	0	0	893	86	4
5. goodei	460	21	2	603	57	3
S. hopkinsi	1	1	1	1,374	41	3
5. jordani	134	17	2	84,828	180	4
S. levis	0	0	0	1	1	1
5. melanops	0	0	0	99	23	3
S. miniatus	1	1	1	0	0	0
S. mystinus	11	7	2	2,817	47	3
S. nigrocinctus	0	0	0	3	2	1
s. paucispinis	7	6	2	1,029	81	3
S. pinniger	16	8	2	242	65	3
S. rastrelliger	0	0	0	1	1	1
S. saxicola	16	10	2	65	22	3
S. semicinctus	0	0	0	10	7	2
S. serranoides	0	0	0	12	5	2
S. serriceps	0	0	0	3	3	1
S. wilsoni	4	3	1	20	8	3

hopkinsi, S. jordani, S. mystinus, S. paucispinis, and S. pinnigerPeak catches of most species occurred in Tate May-June, but S. auriculatus, S. goodei, and S. saxicola are more abundant in April. They did not capture S. rufus, which is abundant in their area. in addition to the list of species collected as juveniles in Tables 7 and 8, S. helvomaculatus is reported by Richardson and Laroche (1979). S. macdonaldi by Moser (1972), S. melanostomus by Moser and Ahlström (1978), and §. zacentrus by Laroche and Richardson (1980).

Studies have found newly transformed benthic juveniles of many species both in nearshore and offshore waters. Anderson (1983) provides data on the timing of settlement in the nearshore habitat off central Califormia for 15 species (Table 9). His data indicate that S. entomelas, S. goodei, \underline{S}. jordani, and \underline{S}. paucispinis only occasionalTy used this study area. The remaining 11 species regularly used the area. He also obtained a few specimens of $\$$. semicinctus and S. rosaceus. Feder et a1. (1974) report juveni才e 5 . atrovirens, 5 . miniatus, S. mystinus, 5 . paucispinis, and S. rastrelliger in keTp beds off southern California. Hobson (pers. commun. Sept. 1986, Southwest Fisheries Center, Tiburon, Californial has found significant numbers of S - caurinus, S . flavidus, S . melanops, and S . mystinus in kelp beds of northern California. Turner et al. (1969) Found juvenile S. auriculatus, S. caurinus, S. dalli, and S. serranoides associated with man-made reefs in nearshore waters off southern California,

Sherwood and Mearns (1981) captured large numbers of juvenile \mathbf{S}. saxicola, S. diploproa, and 5 . jordani using a bottom trawl off southern California. Moser and Ah1strom (1978) captured benthic juvenile S . melanostonus off southern California. Chen (1971) captured juventTe S. rosenblatti and S. umbrosus on the bottom off southern California.

Table 9.--Number of juvenile rockfish in nearshore waters ($<25 \mathrm{~m}$) off central California (Anderson 1983).

	Feb	Mar	Apr	May	Jun	Jul	Aug	5 p	Oct	Nov	Dec
5. atrovirens	0	0	0	0	0	56	50	88	47	90	35
S. carnatus -	0	0	0	2	82	312	91	43	20	7	0
S. chrysomelas											
S. caurinus	0	0	46	95	207	115	7	67	27	4	\cup
5. entomelas	0	0	4	0	11	17	5	0	0	0	0
s. flavidus	U	4	9	14	141	119	76	32	22	51	1
S. goodei	0	0	0	0	6	0	1	1	0	0	0
5. jordani	0	0	0	0	5	6	2	0	0	0	0
s. melanops	0	0	3	6	113	68	44	20	9	20	0
5. miniatus	18	6	4	5	7	6	${ }^{2}$	19	16	3	0
s. mystimus	0	0	13	101	326	129	77	40	36	9	0
5. paucispinis	2	2	6	18	59	14	111	8	${ }^{8}$	4	0
S. pinniger	0	0	15	154	130	111	17	35	38	22	0
5. Saxicola	0	0	14	3	59	11	214	100	109	0	0
5. serranoides	0	0	4	19	144	82	42	49	11	10	7

Love and Lee (1974) report on S. rubrivinctus caught by bottom trawl off Santa Barbara. Lenarz et $\mathbf{1 1}$. Tpers. commun. Sept. 1986, Southwest Fisheries Center, Tiburon, California) captured juveniles of 11 species with a bottom trawl off central California (Table 10). s . saxicola was particularly abundant. Apparently, midwater traw 1 gear does not adequately sample 5 . crameri, S. saxicola, and S. semicinctus in April-June off central california (Tables \bar{B} and 10). Benthtic juveniles of S . flavidus and 5 . melanops were collected off Oregon by Laroche and Richardson (1979); S. entomelas and 5 . zacentrus by Laroche and Richarason (1980); and S. crameri, 5 . helvomaculatus. and S. pinniger by Richardson and Laroche (1979). Car Son and Haight (1976) report that juvenile S . alutus begin settling in Alaskan fiords when they reach around $40-55$ min in length. 5 . alutus do not appear to settle until their second year of life.

May, June, and July are important months for juvenile rockfishes off Washington, Oregon, and California, when the young fish are important forage items for other fish (Merkel 1957) and for birds (wiens and Scott 1975) and are at peak abundance in midwater catches (Table 7 and B). Also, most major species transform to benthic juveniles during this time. Anderson (1983) reports peak catches of small benthic juvenile s. flayidus, S. melanops, S. mystinus, s. paucispinis, and 5 . serrañoides during June cable' 9%. These catches süggest that june $\overline{\text { is }}$ the peak month of transfer from the pelagic to nearshore stage for these species. Hobson (pers. commun. Sept. 1986, Southwest Fisheries Center, Tiburon, Californial has found during the past 10 years that S.
Table 10.--Catches of juvenile rockfishes by 30 bottom trawls off of central California during June 1984. A $12-\mathrm{ml}$ head rope length trawl with a $1.3-\mathrm{cm}$ stretched mesh cod end was used. Bottom depths were less than 200 m . $\mathrm{N}=$ number of juveniles, $0=$ number of occurrences) (Personal communication W . Lenarz, S. Moreland and T. Hyllie Echeverria, Southwest Fisheries Center, Tiburon, California).

Species	N	0
S. auriculatus	1	1
S. constellatus	1	1
S. crameri	17	4
S. flavidus	5	3
S. hopkinsi	12	2
S. jordani	3	2
S. paucispinis	1	1
S. pinniger	10	3
s. saxicola	201	12
S. semicinctus	7	3
S. wilsoni	2	2

flavidus, S. melanops, and S. mystinus first begin recruiting to nearshore habitats of northern California between late May and late June. Hobson's observations also provide some insight into other aspects of the juvenile stage. He has observed that the size of newly recruited juveniles is noticeably larger in some years than others. This suggests that size is not the only factor that triggers transition from one juvenile stage to another. He also has observed that during some years recruitment of these species to the nearshome habitat is concentrated into a period of less than a month, whereas during other years it is spread over several months.

Juvenile Field Studies

A study of rockfish recruitment was initiated in 1983 by the Tiburon Laboratory. Reports are available on progress through 1985 (Lenarz and Moreland 1985, Hobson et al. 1986). This section reviews these reports and adds some information obtained in 1986.

The study has three major objectives. The first is to develop methods for predicting year-class strength for economically important species of rockfish. Host species of rockfish are not recruited to fisheries until the age of $4-10$ years. The study attempts to estimate year-class strength in the first year of life, and thus give fishermen and managers a basis for planning. The goal is to detect severalfold changes in year-class strength. Such precision has been shown to be appropriate for managenent purposes (e.g, Lenarz 1971). The study area originally included the coastal and offshore waters between Point Sur and Cape Mendocino, California. Beginning in 1986, the offshore work was 1 imited to the area between Monterey and Bodega Bay. The study emphasizes seven species of rockfish that are important in the area: S. entomelas, $\frac{5}{5}$, flayidus, \underline{S}. goodei, \underline{S}. jordani, S. melanops, \underline{s}. mystifus, and S. paucispinis.

The second objective is to gain a better understanding of factors that affect strength of recruitment, the most important factor underlying the success of fisheries. Although there must be a relationship between recruitment strength and the quantity and quality of eggs or larvae produced by adults, that relationship is obscured by poorly understood environmental factors. The Tiburon Laboratory is studying annual changes in reproductive physiology of adults, the relationship between oceanic conditlons and recruitment success, and the fine-scale timing of reproductive success (daily ages of juveniles).

The third objective is to develop a better understanding of the ecological niches of juveniles of important species. About 60 species of rockfish occur in California and about 20 spectes are fairly abundant in the study area. These closely related species are similar in appearance in the juvenile stage. The ecology of some juvenile rockfishes is fairly well known during the nearshore stage, but little is known about the ecology of any species during the pelagic juvenile stage. We are studying feeding habits and environmental factors that affect distribution of pelagic juveniles, as well as adding to the existing knowledge of the nearshore stage.

Samples in the offshore area are collected with a midwater trawl that is slightly modified from the gear used by Mais (1974). The net has a $25-\mathrm{m}$ headrope and $1.3-\mathrm{cm}$ mesh liner in the codend. Tows 15 minutes
in duration are made during darkness. Daylight tows were tried and discontinued because of low catches. Standard warp is 30 m for tows in deptins less than 92 m and 90 m in deeper waters. Replicate tows are made at some stations for comparative purposes. Most of the work is conducted from late May througn the end of June, but some work is done in April.

Analysis of replicate midwater tows made at some stations indicated that only one tow per station was necessary. The $90-m$ warp catches were larger than the $30-\mathrm{m}$ warp catches, but the differences were not statistically significant. The power of the test was low because of small sample sizes. However, catches at these two depths were significantly correlated. We are collecting more data on depth distribution.

Midwater catches were lowest in 1983 and highest in 1995. Catches were similar in 1984 and 1986. An analysis of variance produced significant differences between 1984 catches and 1985 catches of S . flavidus, $\underline{5}$. goodei, 5 . jordani, and \underline{S}. paucispinis, but not \underline{S}. entomelas.

Previous to 1996 one set of midwater traw stations was occupied between Point Sur and Cape Mendocino. The 1985 season demonstrated to us that settlenent can occur in late May-early June. We thus narrowed the area to Point Sur to bodega Bay and will attempt to sample all stations three times during the season. The highest replicate will be used for the index of abundance.

Results froin Oncorhynchus tshawytscha and nearshore Ophiodon elongatus stomach content analyses are promising. We believe that we may be able to eventually replace midwater trawl surveys with stomach content analyses to produce routine indices of abundance for important species of juvenile rockfish.

Scuba surveys are made in shallow nearshore waters of northern California's Sonoma and itendicino coasts. The laboratory conducts scuba surveys to about 35 m every 2 to 3 weeks as weather peraits. Two or three divers equipped with marking slates note numbers of juveniles during tined segments along rancon courses in representative habitats.

The nearshore studies are providing data on two species that do not appear to be sampled weil by the midwater trawl survey, S. melanops and S. mystinus. In addition, the nearshore results are similar to the affshore results for S. flavidus. Statistically significant differences were found in 1983, 1984; and 1985 for 5 . flavidus, 5 . melanops, and 5 . mystinus.

The Laboratory began work on adult reproductive physiology and daily age deterininations during the past year. It is premature to present a progress report on these two studies.

The Tiburon Laboratory plans to follow the basic field plan for the next several years. He intend to make statistical comparisons of the midwater trawl and stomach content data in a few years. We will arop the inidwater trawl work if the stomach data appear to be adequate. We are attempting to obtain another vessel during May-June to examine some questions we have on the relationship between oceanic conditions and the distribution of the juvenile rockfishes.

It will be a number of years before we know how well the indices of abundance perform as predictors of year-class strength. However, there is already some evidence that indices will produce satisfactory results for S . paucispinis.

Implications for Management

Adult biomass estimation
The lack of pelagic eggs in rockfishes has several consequences for fisheries scientists. The use of surveys of pelagic eggs to estimate spawning bionass of fish populations is becoming a standard practice in several fisheries. This technique has been considered for several decades, and now is reaching a level of sophistication that makes it the method of choice for population estimates in several cases. Since rockfishes do not have pelagic eggs, this method cannot be considered for these fish. The pelagic laryae of fish can be used to estimate spawning biomass, but as the time between spawning and collecting increases, the effects of mortality and dispersion make the estimates less and less reliable. This method could be considered for rockfishes known to have very distinctive early larvae (e.g. 5 . jordani and S . paucispinis); however, early larvae of most rockfishes alt look quite similar and it may not be possible to identify them routinely in plankton samples. To use eggs or larvae for a population estimate, details of reproductive paraneters such as fecundity and distribution of spawning must be known rather precisely. This information is being accumulated for rockfishes, but is not yet generally available for these applications.

Laryal identification

Since there are so many rockfishes in the northeast Pacific, and since larvad of few of them appear to be readily identifiable, their use in recruitment studies seems doubtful in the near future. Laryai series (illustrations of a yolk-sac and/or preflexion larva, a flexion 1 arva, and a postflexion larva) are only known for 9 of the 71 species. Among these are four species with distinctive larvae (S . aurora, $\$$. jordani, S. melanostomus, and $\$$. paucispinis), but the others may be confused with species that have not yet been described. Descriptions of larvae of other species are accumulating slowly, and rearing of northeast Pacific rockfish larvae has proven difficult so far. A further complication to the larval identification problem is that most of the rockfish larvae collected in plankton surveys are too small (<8 mim) to have distinctive meristic characters. The critical stages for establishing series, those between flexion larvae and pelagic juveniles (which have distinctive pignent patterns and adult meristic characters), are very rare indeed in plankton collections. It should be noted in particular that develophent of S. alutus, the most common and heavily fished rockfish in the Gulf of Alaska and Bering Sea, remains undescribed between the yolk-sac larvae and pelagic juvenile stages. while the use of rockfish larvae in fisheries studies is not impossible, scientists and managers should realize their limitations and gear expectations accordingly.

Longevity

The adult life nistories of rockfishes are as varied as the early ife histories. In this section we will discuss longevity, its effect on management, and implications for using estimates of year-çlass strength made during the year of birth.

S+ jordani is a very abundant unexploited species (Lenarz 1980). It is relatively short-lived (rarely older than 10 years). This species could probably sustain relatively high rates of exploitation. Consequently, a fishery would probably be supported by one to several year classes. Early estimation of year-class strength is important for such a fishery because a year class only produces significant contributions to fandings for a few years at most.
S. entomelas is a moderately-1ived species (fish older than 30 years uncommon). The species supports moderate levels of exploitation (Hightower and Lenarz 1986). Strong year classes occur every few years. Uncertainty in the strength of incoming year classes has resulted in errors of about 25 in estimation of acceptable biological catch For the Pacific Fisheries Managenent Council.
S. alutus is a very long-lived species loldest specimens approach 100 years). This species can only support low rates of exploitation (Ito et a1. 1986), and stocks are depleted in most if not dil areas. Fish do not fully recruit to the fishery until age 10 or more, and strong year classes occur only about once per decade. The ability to detect such year classes at an early age would provide managers and industry with a valuable planning tool.

While there is a wide range of longevity in rockfish, it appears that in general, mandgement and industry would benefit from estimates of year-class strength at an early age. We hope to make such estimates from pelagic and nearshore surveys of juvenile rockfish densities.

Literature Cited ${ }^{\text {l/ }}$

1. Ahlstrom, E.H.
2. Kinds and abundance of fishes in the California Current Region based on egg and larval surveys. Calif. Coop. Oceanic Fish. Invest. Rep. 10:31-52.
3. Ahl strom, E.H., H.G. Moser, and E.M. Sandknop.
4. Distributional atlas of fish larvae in the california Current region: Rockfishes, Sebastes spp., 1950 through 1975. Calif. Coop. Oceanic Fish. Invest., Atlas $17: x i 1+178$ p.

Anderson, T.w.
1983. Identification and development of nearshore juvenile rockfishes (genus Sebastes) in Central California kelp forests. M.S. thesis. CaTif. State Uniw., Fresno. 216 p.

[^5]Boehlert, G.W.
1977. Timing of the surface-to-benthic migration in juventle rockfish, Sebastes diploproa, off southerm California. U.S. Nat1. Mar. Fish. Serv., Fish. Sul1. 75:887-890.

Boehlert, G.W.
1982. The effects of photoperiod and temperature on laboratory growth of juvenile Sebastes diploproa and a comparison with growth in the field. U.S. Nat1. Mar. Fish. Serv., Fish. Bull. 79:789-794.

Boehlert, G.W., M. Kusakari, and J. Yameda. (this volume). Estimating the cost of viviparity in the genus Sebastes.

Boehlert, G.W., and M.M. Yoklavich.
1983. Effects of temperature, ration, and fish size on growth of juvenile black rockfish, Sebastes melanops. Environ. Biol. Fish. 8:17-28.

Carlson, H.R., and R.E. Haight.
1976. Juvenile life of Pacific ocean perch, Sebastes alutus, in coastal fiords of southeastern Alaska: Their environment, growth, food habits, and schooling behavior. Trans. Am. Fish. Soc. 105:191-201.

Chen, L.C.
1971. Systematic5, variation, distribution, and biology of rockfishes of the subgenus Sebastomus \{Pisces, Scorpaenidiae, Sebastes). Bull. Scripps Inst. Oceanogr. Univ. Calif. 18, 115 p .
3. Delacy, A.C., C.R. Hitz, and R.L. Dryfoos.
1964. Maturation, gestation, and birth of rockfish (Sebastodes) from Washington and adjacent waters. Wash. Dep. Fish., Fish. Res. Pap. 2:51-67.
4. Efremenko, V.N., and L.A. Lisovenko.
1970. Morphological features of intraovarian and pelagic larvae of some Sebastodes species inhabiting the Gulf of Alaska. In Soviet fisheries Investigations in the Northeast Pacific. Part Y, P.A. Moiseev (ed.), pp. 267-286, Trans1. from Russian; available from NTIS, Springfield, Va., as TT71-50127.
5. Eigenmann, C.H.
1892. The fishes of San Diego, Galifornia. Proc. U.S. Nat1. Mus. 15:123-178.

Feder, H.M., C.H. Turner, and C. Limbaugh. 1974. Observations on fishes associated with kelp beds in Southern California, Calif. Fish. Bull. 160, 138 p.
6. Harling, W.R., M.S. Smith, and N.A. Webb.
1971. Preliminary report on maturity, spawning season, and larval identification of rockfishes (Scorpatenidae) collected during 1970. Fish. Res. Board Can., Manuscr. Rep. Ser. 1137, 23 p.

Haryu, T.T., T. Nishiyanla, Y. Tsujita, H. Ogi, and S. Mishima. 1985. Kinds and distribution of fish larvae in the surface layer of the Bering Sea in summer. Mem, Kushiro Cty. Mus. 10:7-18.

Hempe 1, G.
1979. Early life history of marine fish: The egg stage. Univ. Washington Press, Seattle.

Higntower, J.E. and W.H. Lenarz.
1986. Status of the widow rockfish fishery. In Status of the Pacific coast groundfish fishery through 1986 and recomended acceptable biological catches for 1987. Pac. Fish. Manage. Counc., Portland, Or.

Hitz, C.R.
1961. Occurrence of two species of juvenile rockfish in Queen Charlotte Sound. J. Fish. Res. Board Can. 18:279-281.

Hobson, E., P. Adans, J. Chess, D. Howard, and W. Samiere. 1986. Temporal and spatial variations in the numbers of first-year juvenile rockfishes off Northern California. SHFC Admin. Rep. T-86-02, Southwest Fisheries Center, National Marine Fisheries Service, NOAA, La Jolla, Calif.

Ito, D.H., D.K. Kimura, and M.E. Wilkins.
1986. Status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon. In Status of the Pacific coast groundfish fishery through 1986 and recommended acceptable blotogical catches for 1987. Pac. Fish. Manage. Counc., Portland, Or.

Kendall, A.W., Jr.
1982. A catalog of information, primarily illustrative, on larval development of Sebastes. NWAFC Processed Rep. 82-01, 23 p . Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, Seattle, Hash.

Kendall, A.W. Jr., and J.R. Dunn.
1985. icnthyoplankton of the continental shelf near Kodiak Island, Alaska. U.S. Dep. Commer., NOAA Tech. Rep. NMFS 20, 89 p.
7. Laroche, W.A.

In prep. Guide to larval and juvenile rockfishes (Sebastes) of North America. Box 216, Enosburg Falls, YT 05450.
8. Laroche, W.A., and S.L. Richardson.
1979. Development and occurence of larvae and juveniles of the rockfishes Sebastes flayidus and Sebastes melanops
(Scorpaenidae) aff Oregon. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 77:901-924.
9. Laroche, W.A., and S.L. Richardson.
1980. Development of larvae and juveniles of the rockfishes Sebastes entomelas and 5 . zacentrus (family Scorpaenidae) and occurrences off Jregon. with notes on head spines of s . mystinus, S. flavidus, and S. melanops. II.S. Natl. Mar. Fish. Serv., Fish. Bull. 79:231-257.

Lenarz, W.H.
1971. Modeling the resource base. Calif. Coop, Oceanic Fish. Invest. Rep. 15:28-32.

Lenarz, W.H.
1980. Shortbelly rockfish, S. jordani: A large unfished resource in waters off California. U.S. Natl. Mar. Fish. Serv., Mar. Fish. Rev. 42:34-40.

Lenarz, W.H. and S. Moreland (ed.).
1985. Progress report on rockfish recruitment studies at the Tiburon Laboratory. SWFC Administrative Rep. T-85-02. Southwest Fisheries Center, National Marine Fisheries Service, La Jolla, Calif.

Lisovenke, L.A.
1964. Raspredelenie lichinpk Tikhookeanskogo morskogo okunya Sebastodes alutus Gilbert y zalive Alyaska [Distribution of larval Pacific ocean perch (Sebastes alutus G.) in the Gulf of Alaska]. In Sowiet fisheries investigations in the northeastern Pacific Ocean, Part 3 (Sovetskie rybokhozyaist-vennye issledovaniya v severovostochnoi chasti Tikhogo okeana, vyp. 3). Tr. Yses. Nauch.-issled. Inst. Morsk. Ryb. Khoz. Okeanogr. 53 (izv. Tikhookean. Nauch-issled. tnst. Morsk. Ryb. Khoz. Okeanogr. 52): 223-231. (Trans7. pp. 217-225 avail. Nat1. Tech. Inf. Serv., Springfield, Va., as TT $67-$ 51205.)

Loeb, V.J., P.E. Smith, and H.G. Moser.
1983. Geographical and seasonal patterns of larval fish species structures in the California Current area, 1975. Calif, Coop. Oceanic Fish. Invest. Rep. 24:132-151.

Love, M.S. and R.S, Lee.
1974. New geographic and bathymetric records for fishes from Southern California. Calif. Fish Game 60:212-216.

Mais, K.F.
1974. Pelagic fish surveys in the California Current. Calif. Dep. Fish Game, Fish Bull. 162, 79 p.
10. Matarese, A.C., A.W. Kendall, Jr., D.M. Blood, and B.N. Vinter. In press, Laboratory guide to early life history stages of northeast Pacific fishes. U.S. Dep. Commer., NOAA Tech. Rep. NMFS.

Merkel, T.J.
1957. Food habits of the king salmon, Oncorhynchus tshawytscha (Walbaum), in the vicinity of San Francisco, California. Calif. Fish Game 43:249-270.

Mitchell. C.T. and J.R. Hunter.
1970. Fishes associated with arifting kelp, Macrocystis pyrifera, of the coast of Southern California. Calif. Fish Game 56:288-297.
11. Morris, R.W.
1956. Early larvae of four species of rockfish, Sebastodes. Calif. Fish Game 42:149-153.
12. Moser, H.G.
1967. Reproduction and development of Sebastodes paucispinus and comparison with other rockfishes off Southerr California. Copeia 1967:773-797.
13. Moser, H.G.
1972. Development and geographical distribution of the rockfish Sebastes macdonaldi (Eigenmann and Beeson, 1893), family Scorpaenidae, off Southern California and Baja California. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 70:941-958.
14. Moser, H.G., and E.H. Ahlstrom.
1978. Larvae and pelagic juveniles of biackgill rockfish, Sebastes melanostomus, taken in midwater trawls off southern Califormia and Baja California. d. Fish. Res. Board Can. 35:981-996.
15. Moser, H.G., E.H. Ahlstrom, and E.M. Sandknop.
1977. Guide to the identification of scorpionfish larvae (family Scorpaenidae) in the eastern Pacific with comparative notes on species of Sebastes and Helicolenus from other oceans. U.S. Dep. Commer. NOAA Tech. Rep. NIVFS Cir. 402, 71 p.
16. Moser, H.G., and J.L. Butler.
1981. Description of reared larvae and early juveniles of the calico rockfish, Sebastes dallii. Calif. Coop. Oceanic Fish. Invest. Rep. 22:88-95.
17. Moser, H.G., and J.L. Butler.

In press. Descriptions of reared larvae of six species of Sebastes 5 - constellatus, 5 . entomelas, $\frac{5}{}$. ovalis, 5 . rubrivinctus, $\frac{S}{}$. rufus, s. serranoides) In W.H. Lenarz and D.R. Gunderson (eds.), Proceedings of the Widow Rockfish Workshop, December ll-12, 1980, Tiburon, California. U.S. Dep. Commer., NOAA Tech. Rep. NMFS.
18. Moser, H.G., E.M. Sandknop, and D.A. Ambrose. 1985. Larvae and juveniles of aurora rockfish, Sebastes aurora, from off California and Baja California, p. 55-64. In A.W. Kendall, Jr., and J.B. Marliave (eds.l, Descriptions of Early Life History Stages of Selected Fishes: From the 3rd International Symposium on the Early Life History of Fishes and gth Annual Larval Fish Conference. Can. Tech. Rep. Fish. Aquatic Sci. 1359, 82 p.
19. Richardson, S.L., and W.A. Laroche.
1979. Developnent and occurrence of larvae and juveniles of the rockfishes Sebastes crameri, Sebastes pinniger, and Sebastes helvomacilatus Tfamily Scorpaenidae) off Oregon. U.S. Nat1. Mar. Fish. Serv., Fish. Bull. 77:1-46.

Richardson, S.L., J.L. Laroche, and M.D. Richardson. 1980. Larval fisk assemblages and associations in the northeast Pacific Ocean along the Oregon coast, winter-spring 1972-1975. Estuar. Coast. Mar. Sci. 11: 671-699.

Sherwood M.J., and A.J. Mearns.
1981. Fate of post-Tarval botton fishes in a highly urbanized coastal zone. Rapp. P.-y. Reun. Cons. Int. Explor. Mer 178: 104-111.
20. Stahl-Johnson, K.L.
1985. Descriptive characteristics of reared Sebastes caurinus and S. duriculatus larvae, p. 55-76. In A.W. KendalT, Jr., and $\underset{\text { a }}{ } \mathrm{B}$. Marliave [eds.], Description of Early Life History Stages of Selected Fishes: Froil the 3rd International Symposium on the Early Life History of Fishes and 8th Annual Laryal Fish Conference. Can. Tech. Rep. Fish. Aquatic Sci. 1359, 82 p.

Turner, C.H., E.E. Ebert, and R.R. Given. 1969. Man-made reef ecology. Calif. Dep. Fish Game, Fish Bull. 146, 221 p.
21. Waldron, K.D.
1968. Early larvae of the canary rockfish, Sebastodes pinniger. J. Fish. Res. Board Can. 25:801-803.

Waldron, K.D.
[1981]. Ichthyoplankton. In D.K. Hood and J.A. Calder (eds.), The edstern Bering Sea shelf: oceanography and resources. 1:471-493. U.S. Gov. Print. Off., Washington, D.C.
22. Wales, J.H.
1952. Life history of blue rockfish, Sebastodes mystinus. Calif. Fish Ganne 38:485-498.

Walline, P, o.
1981. Distribution of the ichthyoplankton in the eastern Bering Sea during June and July 1979. NWAFC Processed Rep. 81-03. 13 p. 13 Figs. 3 Tables. Northwest and Alaska Fisheries Center, National Marine Fisheries Service, NOAA, Seattle, Hash.
23. Westrheim, S.J.
1975. Reproduction, maturation, and identification of larvae of some Sebastes (Scorpaenidae) species in the northeast. Pacific Ocean. J. Fish. Res. Board Can. 32:2399-2411.
24. Westrheim, S.J., W.R. Harling, and D. Davenport. 1968. Preliminary report on maturity, spawning season, and larval identification of rockfishes (Sebastodes) collected aff Eritish Columbia in 1967. Fish. Res. Board Can., Manuscr. Rep. Ser. 951, 23 p.
25. Westrheim, S.J., W.R. Harling, D. Davenport, and M.S. Smith. 1968. Preliminary report on maturity, spawning season, and larval identification of rockfishes (Sebastodes) collected off British Columbia in 1968. Fish. Res. Board Can., Manuscr. Rep. Ser. 1005, 28 p.

Wiens, J.A., and J.M. Scott.
1975. Model estimation of energy flow in Oregon coastal seabird populations. Condor 17:439-452.

Wyllie Echeverria, T.
In press. Thirty-four species of California rockfishes: maturity and seasonality of reproduction. U.S. Natt. Mar. Fish. Serv., Fish. Bull.

Addendum

MacGregor, J. S.
1986. Relative abundance of four species of Sebastes off California and Baja California. Calif. Coop. Oceanic Fish.' Invest. Rep. 26: 121-135.

This paper was published too late to be included in our review. It contains an analysis of occurmences of rockfish larvae collected in the CalCOFI program, and discusses distributions of \underline{S}. jordani, S. paucispinis, \underline{s}. macdonaldi, and \underline{S}. levis specifically.

Post-larval copper rockfish in the Strait of Georgia: Habitat use, feeding, and growth in the first year

Lewis Haldorson
University of Alaska, Juneau
Juneau, Alaska
and
Laura J. Richards
Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

Many denersal marine fishes have pelagic larvae which subsequently settle into benthic habitats. The pelagic-demersal transition is a critical event for these young fishes, ss many have specific habrtat requirements. Some of these species are able to discriminate among micro-habitats at the time of the pelagic-demersal transition (Marliave 1977). After initial settlement, young-of-the-year (YoY) fishes may select habitats besed on factors such as food availability glones 1984), sheltar availability SShulman 1984, 1985, Ebeling and Laur 1985), predator density (Shulman 1985) and presence of conspecifics (Smeatman 1983). The pelagie-demersal transition may result in high mortality, depending on the success whth which the young fish locate suitable shelter and appropriate prey.

Coppar rockfish (Sepastef caurinus) is found in shallow rocky-reef habitats from California to Alaska (Hart 1973). It release pelagnc larvae, mhich subsequently recruit to shallow reef environments (Carr 1983). Throughout most of its range, copper rockfish is one of a number of rockfish spectes found in nearshore waters. However, in the Strayt of Georgia, British Columbia, rockfish diversity 15 low, and capper rockfish is the most conmon shallow water (C 26 m) specias. As a result, copper rockfish is an important component of nearshore reef communities of the Strait of Georgia, and is exploited by both reareational and commercial fisheries (Richards 1986).

The process of recruitment is poorly understood for most rockfishes; although, for temperate reef fishes, macrophytes apparently are important features in post-larval habitats. In the Labrid species Pseudalabrus celidotus, for example, recruitment was consistently higher in certain habitats, defined principally by macrophyte type (Jones 1984). In Califormia, several post-settlement rockfishes first appear in kelp canopies, fallowed by ontogenetic shifts to more benthic

thabitats (Carr 1983); similarily, Boehlert (1977) found that pre-juvenile splitnose rockfish (5. diploproa) frequent patches of floating kelp prior to their demersal transition. In the study reported here; we examined patterns of habitat use by post-larval yov copper rockfish in the Strait of Georgia, including changes in density, size distmbutions, and feeding habits over time. The primary objective was to identify which shallow reff environments wight be especially valuable to copper rockfish in their first year.

Study Ared

The study was conducted off Snake Island, a small isiand 10.52 km by 0.24 km) located in the Strait of Georgia on the east coast of Vancouver Isiand (Fig. 1). This site was chosen because of the diversity of benthic habitats available, and becasue of its relative isolation. The nearest land mass is a small island 2.3 km awdy, whoh is sepmrated from Snake Isiarad by channel with depths over iBG m. The nearest headiand is 2.4 km distant, with deep interveming channe 1 s .

Habitats were eategorized on the basis of the presence or absence of dominant macrophytes. They ore; kelp forest (KF), Agarum slope (AG), eelgrass bed (EG), or sand (SN) (Table 1). In the following sections we identify habitats by their two letter designators, and, in the case of the KF habitat, the bottom and canopy are separately identified as KF -bottom and KF -canopy.

Methods

Fish densities were estimated while SCUBA diving. Visual counts were made by swimming along randomly placed 25-m transect lines in each of the four mabitats in each of three time periods. Ten replicate transects comprised each habitat/time sample. Fish were recorded if they wipe observed in the water column within 1 m of enther side of the transect linf. In areas with dense algal cover, such ps rocky slopes covered with Agarum, divers searched the algae to flush any hidden individuals. In the KF habitat, where stands of Nereocystis formed an extensive canopy, initial counts were made withon $1 . \overline{5} \mathrm{~m}$ of the bottom, followed by a second count in the kelp canopy. The two counts wre combined for the KF transect total. Copper rockfish were identified as Yơ, Juvenile or adult, based on size.

Transect counts were conducted August 15-22, September 24-27, and October 17-22, 1985. Transects in each habitat were surveyed on at least two different days in each time period. All dives were performed between 6906 and 1300. Algal cover in each habitat mas estimpted in August and September from four randomly placed 15 -m transects. In addition, while counting fish in the KF habitat, divers recorded the number of Nereocystis stipes within the $2-m$ wide transect band.

Figure 1. The Snake Island study site in the Strait of Georgia, British Columbia, Canada.

Table 1. The major habitats at the Snake Island study site. Depths are relative to mean sea level.

1. Kelp Forest (KF) 5-11 m. An area characterized by dense stands of the giant kelp herepcystis leutkeana, with a canopy extending to the sea surface. The understory is dominated by the kelp Agarum fimbriatum [75: cover).
2. Agarum slope (AG) $6=14$ m. Rocky slopes dominated by the understory kelp Agarum fimbristum ($86 x$ cover). Occasional broken rocks provide additional vertical relief.
3. Eelgrass Bed (EG) 7 - 11 m. Areas where the perennial eelgrass Zostere marina occurs in dense stands, rooted in sandy substrate. Individual plants reach a height of 1.6 . The bottom is gentiy sloping. Algal drift material is common.
4. Sand (SN) E - 30 m . Areas of sandy substrate with no rooted macrophytes. The bottom is sparsely covered with algal dryft dispersed from the rocky areas ($31 x$ cover whth drift algae, mostly Agaruml.

YOY copper rockfish were collected after denstiy counts had been completed in each time period. Divers armed with small-mesh hand nets coptured fish in the order in which they were encountered, selecting no more than a few fish frow a single school. In August, fish from the KF habitat were collected from canopy and bottom locations. By September, densities in the KF and SN habitats were too low to continue sampling. Fish mere placed on ice immediately after capture, and were frozen whthon a few hours. Later, the frozen fish were thawed in ice water, damp-dried with paper towels, measured for fork length to the nearest mm , and weighed to the nearest centigram. otoliths (saggrtae) were removed and stored in alcohal, and stomachs were removed and fixed in $18 x$ formalin.

Settilement date was estimated by counting dally otolith increments. A distinct mark, whech 15 structurally identical to the metamorphic mark documented by V ictor (1983), occurred 10 most otoliths, and is assumed to mark the time of the pelagic-demersal transition (Figure 2). In July 1996, a recently metamorphosed YOY copper rockfish was collected in the Strait of Georgia, near Namalmo. The otolithe from that fish clearly show a recently formed clear area with no peripheral increments (Figure 2). We regard this as a provisional valudation of the metamorphic mark, pending further studies. Otoliths were mounted on microscope slides and wiewed at $400 x$ magnification through an orl immersion lens. otoliths from specimens collected in August were read whole, whereas otoliths from later specimens were mounted on microscope sindes with clear fingernail hardener and ground down on 608 grit sandpaper. The number of increments Deripheral to the metamorphic marh was assumed to equal the number of days since settlement.

Food habits were quantified by examining stomach contents of each fish under a binocular dissecting microscope- lndividual prey items were sorted into homogeneous taxonomic groups, and counted. Percent volume of each prey group was estimated by spreading prey tems to a uniform thichness over a background grid of 1 mm squares, then counting the area covered. in the case of larger prey items, such as shromp, the area covered was multiplied by their estimated thichness relative to

B.

Metamorphic Mark
the thickness of smaller items. The mean percent volume (IV) was calculated as the average of all values for individual specimens in each sample. The percent occurrence of prey catagories in each sample is the percent of specimen stomachs in which the prey catagory was fourd.

Transformations of density and site data did not produce distributions with homosecdestic variances. Hence we used a nomparametric test (Kruskal-Wallis) to compare densities and sizes among habitats withon a time period, and among time periods within a habitat. We usta the Wilcoson two-sample test in all cases where there were only two medians to compare.

Results
Spatial and temporary variation in density.
Yoy copper rockfish were the most abundant fish encountered on tringects. Older juvenile and adult copper rockfish also occurred, but at maximum density of 1.9 fish/transect (AG habitat in September). No other rockfish species occurred on transects. Lingcod, probabiy the major predatom on YoY copper rockfish, had maximum density of 0.8 fish/transect in the AG habitat in September and in the EG hubitat in October.

The distribution of YoY copper rockfish varied considerably awong habitats (Figure 3). In August, densities werp highest in the \mathcal{M} habitat, somewhat lower in the EG and AG habitats, and lowest in the SN habitat. By September, densities in the $K F$ and $S N$ habitats had decilined to near zero, but remained relatively migh in EG and ag habitats. The trend continued in October, with low densities in KF and SN habitats, and relatively high densities in $E G$ ind Ag habitats. Differences in density were significant (pr.001) across habitats for each month, although there were no significant differences between the AG and EG habitats in August and October, based on pairwise comparisons. In September, the density of yoy copper rockfish was significantly greater ($p(.008$) in the EG habitat than in the $A G$ habitat.

There mere also significant changes in density of Yoy rockfish over time in each habitat, with the exception of the as habitat, Density peaked in the EG habitat in September $\{p<.65\}$, wherids density decreased dramatically in the $K F$ and $S N$ habitats after August $\{p<. \theta 日 i$). During August, most YOY copper rockfish in the KF habitat were associated with the kelp canopy. However, in Soptember and october yoy copper rockfish were only found on the floor of the kelp forest. A notable decrease accurred in the density of Nereocystis plants during the study, as the mien mumber of stipes in the KF habitat (in stipes/transect, decreased from 29 in August, to 17 in September and 8 in October (pR. 801, Kruskal-Wallis test).

Date

Figure 3. Dersity, in number per transect (50 square meters), of yoy copper rockfish in four habitats over three months at the Snake Isiand study site in the Strait of Georgia.

Spatial and temporal variation in size.

Size differences mere apparent for YOY copper rockfish collected from different hataitats in each time period (pc.e01, Table Z). In August, when Yoy copper rockfish oceupied 211 four habitats, the largest fish were collected from the KF -bottom habitat, followed by EG; KF-canopy, SN and AG habitats. Fish in the KF-bottol habitat were significantiy larger than fish in other habitats by pairwise comparison tests. In September and October fish in the EG habitat were marginally larger than fish in the $A G$ habitat ($p<.05$ and p\#,05, respectively).

The largest size increbse for Yoy copper rockfish occurred over the August - September period ($p($ Odi for both EG and AG mabitats). Size increases between September and Oetober were significant for the EG habitat $\{p<, 01\}$, but not for the $A G$ habitat. Growth rates between August and October averaged 0.15 and 0.16 me/day in the AG and EG habitats, respectively.

Settlement Oate.

The number of otolith increments peripherpl to the metamorphic mark in August and September specimens provided the distribution of settlament dates in Figure 4 . Settlement appears to have occurred in one major episode during the first week of August. The daily mature of the otolith increments is verified by comparison of settlement dates from August and September specimens. The distributions of settlement dates back-calculated from the two sampling periods are virtually identical (Figure 4); thus, the number of increments added between the callection
dates in August and September is approximately equal to the rumber of calendar days in that interval.

Table 2. Sample sizes (N), mean length and standard error (SE) in me for Yoy copper rockfish collected at Snake Island. Habitat abbreviationt are given in Table 1.

TIME/HABITAT	N	LENGTH	SE
August			
AG	89	36.5	0.4
KF-bottoin	49	42.2	0.7
KF-canopy	99	39.2	0.3
EG	61	38.9	0.7
SN	66	37.3	0.6
September	59	44.6	0.7
AG	83	46.4	0.6
EG			
October	59	45.6	1.2
AG	48.4	0.6	

Food habits.

Recently settied copper rockfish juveniles fed on ariety of planktonic zooplankton, epi-benthic crustaceans, and benthos- or macrophyte-associated mobile invertebrates (Tables 3 and 4). Harpacticoid copepods, gammerid amphipods, caprellid amphipods; mysids and shrimp were especially important prey groups. Generally they appear to feed opportunistically.

In August, pelagic phanktonic prey were an important component of the diet of fish in KF (calanoid copepods) and AG (crab zoea) habitats. With those exceptions, prey were prodominately epibenthic or demersal. Harpacticoid copepods were the most commonly found prey in the diet in August, especially in habitats outside the kelp forest; and were the eost 1 mportint $(i n$ ZV) single prey group in AG and SN habitats.

Time series of diet compositions were avaliable for fish from AG and EG habitats. Some prey groups were consistently used, but there also were same ontogenetic shifts in feeding habits (Tables 3 and 4). In the AG nabitat, harpacticold copepods remalmed important prey in September (1i 4, and October (19 XV), although shift to larger prey was evident by the increase in shrimp in Septenber (31 XV) and October (18 ZV), and mysids $i n$ october ($2 B \operatorname{ZW}$). In the EG habitat, shrimp were a main diet component in August (26 YV), and continued to be important in September (30 z V) and October (45 zV). After August, fish in the EG habitat wre feeding almost exclusively on large epi-benthic or benthic crustaceant (shrimp, gamerid amphipods and mysids).

JULIAN DATE

Figure 4. Back-calculated date of settlement for Yoy copper rockfish it the Snake Island study site collected in August ($n=348$) and Septenber ($n=37$), baced on number of otolith increments. Distributions shown are based on total numbers in each three day interval, beginning on Julian Day 200 (July 20). Maximum settlement 15 me interval beginning August 4.

Table 3. Frequency of occurrence of major taxonomic groups of prey found in YOY copper rockfish stomachs. KFB: KF-botton habitat, KFC: KF-canopy habitat; other habitat abbreviations are given in Table 1 .

PREY GROUP	AUGUST					SEPTEMEER		OCTOEER	
	AG	EG	KFB	KFC 31	SN	AG 43	EG	$\begin{aligned} & \text { AG } \\ & 29 \end{aligned}$	EG 34
SAMPLE SILE		32		31					
Calanold Copepod	. 16	. 11	.17	. 00	. 63	+18		. 15	
Harpacticold Copepod	. 93	.93	. 58	. 52	. 96	. 50	.06	. 63	. 25
Crab Zoea	.16								
Gammerid Amphipod	. 13	. 14	. 29	. 16	. 31	. 26	. 70	. 44	. 33
Caprellid Amphipod	. 06	. 29	. 45	. 42	. 37	. 83		.07	.04
Stomatopod	.03	. 04		.03	.03			.84	.88
Mysid	- 29	. 11	. 19	. 86	. 16			. 37	. 54
shrup	.83	.18	.13		.10	. 3 E	. 42	.22	. 54
Polychaete		. 11	.29	. 10	. 21	. 06	. 18		. 64

Table 4. Percent volume, expressed as the mean proportion of the total stomach volume in each prey catagory, for Yoy copper rockfish sampled from each habitat at the Snake island site in esch month. KFB: KF-bottom; KFC: KF-canopy; all other habitat abbreviations are given in Table 1.

PREY CATAGORY	august					SEPTEMBER		OCTOBER	
	AG	EG	148 32	HFC 31	SN 32	AG 43	$\begin{aligned} & \text { EG } \\ & 41 \end{aligned}$	$\begin{aligned} & \text { AG } \\ & 2 B \end{aligned}$	$\begin{aligned} & \text { EG } \\ & 34 \end{aligned}$
SAMPLE SIRE	32	32	32	31	32	43			
Calanoid copepod	. 02	. 61	11	. 25	29	.02		.81 .19	. 01
Harpacticoid copepod	. 28	. 14	.11	. 68	.20	.11	-	.19	.01
Crab zoea	. 13								
Gammerid	. 64	. 03	. 11	. 65	.06	.21	. 29	.09	. 16
amph pod Caprellid ampherpod	.04	.12	. 23	. 25	.21	. 61		. 02	-
Stometopod	-	.02		-	-			-	.61
Mysid	.67	. 06	.19	.01	.04			.28	. 15
Shrimp	.02	. 26	.15		.18	.31	. 30	.10	. 45
Polychaete		. 11	. 88	. 05	. 01	.06	.05		. 06
Unident.	. 39	. 25	. 12	. 36	.27	.28	.33	.22	. 14

Discussion

There was probably little mixing of yoy copper rockfish among habitats during the initial poft-larval summer period, as there were significant among-habitat differences in mean fish size in August. Subsequent changes in density could result from additional recruitment from plankton, migration of post-larval juveniles from nearby sites, dispersion among habitats, mortality, or any combination of these factors. It is unlikely that settlement from the plankton contimued at Snake Island after the start of the study, as the otolith ages and length frequencres of the samples give no indication of new settlement. lt is also unlikely that densities were affected by migration from other retf areas, because of the relative isolation of Snahe Island. Therefore, we assume that ill_{11} density changes reflected movements emong hobitats and/or mortality.

Ontogenetic shifts in habitat use occur in response to changing resource values, such as shelter from predation or prey availability (Werner and Gilliam 1984). Bluegill sunfish switch foraging habitats when the relative food values of the habotats change (werner et al. 19832), although these fish may forage in less prey-rich habitats with more chelter when in the presence of predators (Werner et al. 1993b). Jones (1984) found that post-1arvae of a temperate reef fish
preferentially used habitats with high algal biomess and increased proy density, although he recogniztd the difficulty in sepmrating the effects of food availability and protection from predators. Predation is undoubtedly factor in habitat resource value in the Strait of Georgia. Potential predators in the study area include ingeod (Milier and Geibel 1973) and adult copper rockfish (Prince and Gotshall 1976, Moulton 1977), and various bird species (Carr 1983).

Post-larval rockfish juveniles have been observed to shift habitats as they grow (Carr 1983), with associated changes in feeding habits (Singer 19es). Copper rockfish in the Strait of Georgia follow a simitar pattern, although we observed them to initially accupy a greater diversity of habitats than observed in Califormia (Carr 1583). The scope of our study did not allow the controlled field experiments necessary to quantify the relative importance of prey vs. predatars as factors in habitat selection. However, we did examine prey use by habitat, over time. During the three months of this study, yoy copper rockfish consistently exploited certain prey types wition a habitat. For example, fish in the AG habitat ate harpacticoid copepods throughout the study, *ven though in October the fish were larger than in earlier samples. We suspect, therefore, that the reduction in use of kelp forost habitats between August and September was a result of reduced shelter availability andior reduced density of all prey types, and was not a result of changing prefermees by growing fish.

In the Strait of Georgia, post-larval copper rockfish initialiy utilize - variety of reef-associated habitats. Kelp forests are an especially important habitat during this phase. However, the relative food and shelter values of shallow reef habitats change seasonally with the production cycles of the dominant macrophytes and their associated invertebrate populations. Within the first few months of settlement YoY copper rockfish shift to demerial habotats with peremial macrophytes. For YOY copper rockfish the avallablitity of reef areas with both summer kelp forests and winter perennial macrophytes is a feature that potentiflly enhences first year survival. Such areas may, therefore, be especialiy valuable as nurfery press, and could possibly contribute disproportionately large numbers of irndividuls to alder age classms.

Acknow1edgements

Diving assistance was provided by A. Cass atud R. van den Broek. J. Gamling essisted in laboratory analyses and many aspects of the field work. L. H. was supported by a Canadian Studies Faculty Research Grant.

Literature Cited

Boehtert, G. W. 1977. Timing of the surface-to-benthic migration in juvenile rockfish, Sebastes diploproa, off southern Califormia. Fish. Bul1. U.S. 75:887-890.

Cart, M. H. 19日3. Spatial and temporal of patterns of
reoruitment of young-of the-year rockfishes (6emus Sphastes) into a cerremil Califormia kelp forest. M.Se. Thesis, San Francisco State University, California.

Ebeling, A. W. and D. R. Laur. 1985. Th influenea of plant cover on surfperch abundance ot an offahore temperate reef. Envir. Biol. Fish. 12:169-179.

Hart, J. L. 1973. Pacifio fishes of Caradu. Fish. Res. Bd. Canada Bull. 180.

Jonet, 6. P. 1984. Population ecology of the temperate reef fish Pseudalabrus celidotus Bloeh Sohneider (Piscest Labridtal. I. Factors influenctrig recmitaent. J. Exp. Mar. Biol. E001. 75:287-276.

Marliave, J. B. 1977. Subetratum preferences of settling larvate of Earine fithes reared in the laboratory. J. Exp. Mar. Biol. Eool. 27:47-66.

Miller, D. J. and J. J. Geibel. 1973. Sumery of blue rookfish and lingcod life historissi e reef ecology study; and giant kelp, Heprocy位is pyrifera, experinents in Honter California. CBlif. Dept. Fish Gunt. Fish Bull. 138.

Moulton, L. L. 1977. An ecologioal anilysis of fishes Inhabiting the rocky merghore ragions of northern Puget Sound, Washington. Ph.D. Thesis, Universtty of Washington, Septtle.

Princa, E. D. and D. W. Gotshall. 1976. Food of the copper rockfish, Sebastege caurinus Richardson, stsociated with on artificial reef th south Humboldt Bay, California. Cal. Fish Gave 62:274-285.

Riohards, L. J. 1906. PSARC Horking Paper 6e6-1. 1996 ascestiment for commercially exploited rockfish stocks in the Strait of Georgia. Can. HS Rep. Fish. Mquat. Sci. 1085 : 55p.

Shulean, m. J. 1984. Resource liwdtation and reeruitment pattems in a coral reef fish asamolagt. J. Exp. Mar. Biol. Ecol. 74:85-109.

Shulwan, M, J. 1985. Recruitment of corial reff fishesi effocts of distribution of predators and shelter. Ecology 66:1956-1966.

Singer: M. M. 1905. Food habits of juvenile rockfishes (Sebastes) in eentral California kelp forest. Fish. Bull. U.S. 83.531-541.

Smentman, H. P, A. 1983. Influence of consptecifics on choief of settlement by larvas of two pomacentrid fishas (Dascyllus aruarns and D. retieulatus) on coral retfs. Mar. Biol. 754225-229.

Victor, B. C. 1993. Settlewent and larvil metamorphosis produce distinct earige on the otoliths of the siippery dick,

Halichoeres bivittitus. Ing The ecology of detp and shallow coral reefs. pp 47-51. M. L. Reakt. (ed.). U.S. Dept. Commerce. Hashington, D. C.

Werner: E. E., G. G. Mittelbach, D. J. Hall and J. F. Gilliam 1983a. Exprerimental tests of optimal habitat use in fish: the role of relative habitat profitability. Ecology 64:1525-1539.

Werner, E.E., J. F. Gtlliam, D. J. Hall and G. G. Mittelbach. 1983b. An experimental test of the ffects of predetion risk on habitat use in fish. Ecology 64:154e-1548.

Werner, E. E. and J. F. Gillizan. 1984. The ontodentic miche and species interactions in sititstructur*d populations. Ann. Rev. Eco1. Syst. 15:393-426.

Reproductive mode and energy costs of reproduction in the genus Sebastes

George W. Boehlert NMFS, Southwest Fisheries Center Honolulu, Hawaii, Muneharu Kusakari Hokkaido Institute of Mariculture Shikabe, Japan and
Juro Yamada Hokkaido University Hakodate, Japan

Abstract

The genus Sebastes has historlcally been consfdered to be ovoviviparous, with all energy for embryonlc development coning from the yolk present at fertilization. Recent studles have shown that embryos of two specles recelve nutrition in adoltion to that supplled In the yolk. Embryonlc catabolism (estimated from In yitro oxygen consumption) required a signiflcant portion of the yolk energy; comblned with energy content of the larva at blrth, total energy was much greater than the initlal egg energy. One can access the accuracy of ln yltro embryonlc oxygen consumption by determining the excess respiration by pregnant females above that of males and immature females. In Sebastes schlegell, thls excess oxygen consumptlon is slgnlficant. The additional oxygen consumed by gestating females is greater than that predlcted for oxygen consumption of the embryos early ln gestation but less later in gestatlon, suggesting that In ydtre estimates are approximately b0f high. we discuss the lmplicatlons of these estlmates to earlier calculations of viviparlty. Energy taken up through lngestion and absorption of ovarlan fluld in the hindgut, however, stlll conflrms viviparity.

Lntroductlon

Live-bearlng fishes are characterlzed by a wide range of energetic relationshlps between maternal and embryonic systems. The genus Sebastes has histor 1 caliy been considered to be ovoviviparous, and that no additionel nutrition is provided to the embryo during gestatlon (Serlmshaw 1945; Amoroso 1960). The reasons for this deserlption have been besed upon inference, however, slnce inltlal egg size is small, larvae are small at blith, and fecundity 15 very high (Phlilips 1964; Hoser et el. !977; Boehlert at al. 1982). Recentiy, however,
energetic studtes have demonstrated that embryos of two rockfish species recelve 50 me form of nutrition during later stages of gestotion and are thus vivlparous (Boohlert and Yoklavlch 1984; Boehlert at a. 1986). The source of nutrition mas postulated to be a nitrogenous substance dertued from resorption of unfertillzed ova through ingestion of ovarlan fluld and subsequent uptake in the hindgut.

The work demonstrating viviparlity compared indirect with direct calorlmetry of embryos durling development. The indirect calorlmetry used Ln yitrg oxygen consumption to determine catabolic needs in development. Oxygen consumption ln vitre lnereases with Inereasing developmental stage elther linearly (S. malanops. Boeblert and Yoklavich 1984) or exponentlally (S. caurlaus, Dygert 1986; S. schlegal. Boohlert et al. 1986). An important assumption of all previous vork is that la yitre oxygen consumption 15 closely ralated to that in klya. Many studies have estlmated embryonic oxygen Consumption of Ilve-bearers In yitre (Moser 1967; Webb and Brett 1972; Berglund et al. 1986), but few have considered oxygen consumption rates $\mathrm{L}_{\mathrm{y}} \mathrm{y}$ lyg. Baehlert ot al. (1986) questioned the accuracy of In viltre oxygen consumption rates and suggested that they may be higher than in vive rates, thus inflating estimates of catabolic energy use. In this paper we discuss the manner in which viviparity was demonstrated In S. malanops and S schlegell and then, by considering the relative increase in oxygen consumption by gestating female S. schlegell as compared with spent or Immature females or males (Webb and Brett 1972), provide Inslghts to the accuracy of the ln vلrtre meas urements.

Materials and Mothods

Methodology used in the enbryonle energetles studies has bean described in Boablert and Yoklavich (1984) for S. melaneps and Boenlert of al. (1986) for S. schlequil and will be only briefly described here. Developmental stages of embryos were classifled according to a modification of Oppenhelmer (1937) and Yamada (1963) (Kusakarl unpublished). Gestation time and duration of different stages of development were determlned trom samples of embryos taken from females held in the laboratory. Fish were catheterlzed at varlous intervals and an analytical relationshlp between the stage of development and the duration of each stage was developed. From this relationshlp stage of development was converted to tlme since fertlllzation.

Oxygen consumption was determined for embryos at several stages of development in alison differential resplrometer at $10^{\circ} \mathrm{C}$ using standard technlques (Umbrelt et al. 1972). At the end of each experiment, the embryos were counted and used for dry welght and carbon and nitrogen determ|nations; some embryos were preserved for determinatlon of developmental stage. Ash-free dry welght (AFDW) was determined from groups of 35-100 embryos. Calorlc content was determined from percent carbon usting the hitrogen-corrected equation of Salonen et al, (1976).

For experiments on resplration rotes of adult S, schlegelle fish from captlve populatlons ware used. Two days before beginning experiments, flish were weighed, measured, and sex determined after anesthetization In MS-222. Fenales wore catheterized, developling entryos removed and
staged, and estimates of timesince fertilization (as a function of developmentai stage) were calculated following techniques of Boehlert et al. (1986).

Flsh were starved at least 2 d before respiration experiments. The resplrometer consisted of a cyllndrlcal fish chamber constructed of acrylic tubling 20 cm in diameter 1 th a volume of $\mathbf{i 3 . 2} \mathrm{flters}$. The respirometers were held in a $1.8 \times 1.1 \times 0.65$ m tank which was partially covered with black plastic during experlmants. Fish activity and oxygen content of the outflowing water wers monltored at 5-10 min intervals. Flow-through methodology was used and oxygen concentrations determined with a polarographle oxygen electrode. Oxygen consumption rates ($\mathrm{m} / \mathrm{O}_{2} / \mathrm{h}$) were datermined by multipiylng the change in oxygen concentration of inflowing and outtlowing water by the flow rete. For each antmal, a mean value was computed from two replicates. Our estimates may be considered mroutinem metabolle rate (Fry 1971). Control experlments were run with empty resplrometers and the drop In oxygen content was negliglble.

Specimens 1 n our experiments were divided Into two groups based upon reproductive status. The first group was composed of males, Immature females, and spent females and the second group females with gestating embryos at different stages of development. Resplration rates as a function of welght for the first group were fittod to a curve which could then be used as a predictive model of "normal" or non-gestating resplratlon rates. The estlmates of thls curve could then be applled to the second group; the dlfference between observed and predicted resplration rates was attributed to oxygen consumption by embryos within the female systam plus assoclated costs of llve-bearling.

Besults and_Dlscussion

Stage duration calculatlons show that early stages are passed through rapldiy and that later stages, whleh encompass more significant morphological change, take considerably longer. The integrated relatlonshlps suggest that fertilization to blrth takes 37 d for S . melanops (Boehlert and Yoklaylch 1984) and 51.5 d for S. schlogell, Which has a signiflcantly larger egg (Boehlert ot al. 1986). Comparisons of these estimates with data from Individual females show agreement but may be somewhat variable under natural conditions. Oxygen consumptlon, which was determined for both spectes from embryos at saveral developmenta; stages, lncreased with time slnce fertillzation; the relationshlp was nearly llnear for S. melanops (Boehlert and Yoklaylch 1984) and was exponentlal for S. schlegell (Fig. 1). For embryos in later stages of development, many hatched from the dellcate chorion and Ilmited swimming actlvity occurred in the resplrometer flasks. This may result in inflated values of oxygen consumption for late stage embryos.

The curves, titted to the oxygen consumption as a function of time slnce fertllization, were integrated to estlmate the total oxygen consumed during gestation. This value can be converted to calorles using an oxycaloritle equivalent (Lasker 1962) to determine the total catebolic energy expenditure durling gestation. A comparlson of these data with the actual energy contalned in the embryos (Table i) suggests that edditional energy must be used during gestation. if Sebastes was strictly ovoviviparous, the sum of flinal embryonlc

Flgure 1. Oxygan consumption in embryonic Sebastes schلegell. Each point (± 2 SE) represents the mean of three or four repllcates wlth embryos from the same temale (trom Boahlert ef al. 1986).

Table 1. Changes in the energy content of indlvidual embryos of Sebastes trom direct estimates of calorlc content compared to catabolic energy utilization estimates (from Boehlert and Yoklavich 1984; Boehlertet al. 1986).

Sebastes schlegell
Sebastes melanops

Initial caloric content	1.59	0.43
Final caloric content	1.48	0.35
Catabolle calorles	1.40	0.28

caloric content and catabolle energy utilization durling gestation should equal the liltial calortc content. The sum Is signiflcantly greater for both specles, but more so for S . sishlegall.

The relative changes in these values durling gestation is graphically lllustrated for S. schlegell lin Figure 2. The catabolic and direct comparlsons of energy utilization glverge relatively early in s. schlegell, and the results are clearly indicative of additional nutrition provided to the embryos during gestation. The catabolic energy utillzation suggests that the percentages of orlginal yolk energy remalning at birth would be $36 \$$ for S . melanges and only 125 for S. schlegell (Table 1; Fig. 2).

Flgure 2. Summary of the energetics of development tn embryonic Sapastes schlegel. The y-axis is the percent Inltlal energy, where 100% represents 1.59 calorles. The solid IIne represents expected energy remalning with time based on subtraction of cumulatlve catabolism. The dashed Ilne and data polnts represent actual calorlc content of embryos at different stages (from Boehlert et al. 1986).

As mentioned earller, overestlmating embryonic resplration could also result in overestlmates of catabolic energy utilization. There are two major factors which may be possitile sources of error, flrst, activity by later stage embryos when removed from the maternal system may 1 ncrease oxygen consumptlon. As an example, "active" resplration rates for Paclflc sardlne larvae may be from 1.3 to 3.5 times those of "inactive" rates (Lasker and Thellacker 1962). Second, oxygen tension in the Gilison resplrometer is initlally at saturated, atmospherlc levels (Umbreit et al. 1972) whereas oxygen tension inslde the ovary may be low; low amblent oxygen can lower resplration rate in embryos (Carlson and Selfert 1974). It is theretore possible that the rate of development of embryos ln vevo tmay be under the control of oxygen avallablilty and that the long gestation times and stage durations may be a result. Although there is no evidence for thls In Sebastes, Triplett (1960) noted more rapld development in yltro for emblotocid embryos.

Resplration measurements on adult S. schlegeil were thus used as a check on ln vitre measurements. Gestating flish were typlcally much more robust at a given length than ware male, 1 mature female, or spent females. The welght increase of gestating females over nongestatling S. schlegell is most marked after about 32 cm SL and the divergence between the two curves Increases with increasing length, most likely due to the rapldy increasing fecundity with length. We determined oxygen consumption rates for 23 non-gestating tish, including 19 males, 2 lmmature temales, and 2 spent females for comparlson with rates for 17 pregnant females with embryos between stages 1 and 30. Resplration rates typicaliy Increased with lncreasing body walght for non-gestating and gestating flsh (Fig. 3). Date from nongestatling fish were fitted to the curve

$$
\begin{equation*}
Q=46.734 W^{0.7515} \quad n=23 \quad r^{2}=0.524, \tag{1}
\end{equation*}
$$

where $Q=$ oxygen consumption rate ($\mathrm{ml} \mathrm{O}_{2} / \mathrm{h}$) and $W=$ body weight (kg). At a given body welght, resplration rates were much higher for females with developing embryos. Data from these females were fltted to the curve

$Q=62.383 \quad w^{0.9014}$

Figure 3. Oxygen consumption rates ($\mathrm{ml} \mathrm{O}_{2} / \mathrm{h}$) as a function of fish body welght for Sabastes schlageli. Trlanglas represent values from gestatIng females, and dlamonds for males, immature femsles, and spent females; IInes represent fltted curves (from Boehlert et al. In prep.).

$$
\begin{equation*}
n=17, \quad r^{2}=0.81 . \tag{2}
\end{equation*}
$$

These two curves (Fig. 3) are signlficantly different \{analysis of covarlance, P < 0.01). Differences are even more protound when comparlsons are made for fish of equal length due to a much greater weight-at-length for pregnant fenales.
"Excess resplration" may be defined here as the amount of oxygen consumed by a gestating female In excess of that predicted for a nongestating flsh of the same length (Equation 1). This value will be the sum of embryonic respiratian requirements and additional itvebearing costs, which tinclude work assoclated with Increased cardiec and branchlal pumping and the added costs of lonic and osmotic regulation as more blood passes the gills. Calculation of this value 15 confounded by the welght of the female flsh and the stage of development of the embryos. For thls reason we standardized the measured oxygen consumption rates of gestating females cusing the welght exponent In Equation 2) to a unlform walght of 1.5 kg . This value corresponds to a tish of 35.6 cm SL, with estlmated postfertflization fecundity of 126,921 embryos (Boehlert et al. 1986) and estlmated total embryontcoxygen requlrement (fecundity times in vitre embryonlc oxygen consumption) which varled with stage of embryonlc development from 3.13 to $74.86 \mathrm{ml} \mathrm{O}_{2} \mathrm{~h}^{-1}$. A flah of this length in non-gestating condition would have a corresponding welght of 1.3 kg with a resplration rate of $56.92 \mathrm{ml} \mathrm{O}_{2} \mathrm{~b}^{-1}$ (Equation 1) The mean excess resplration of these adjusted data $1533.39 \mathrm{ml} \mathrm{O}_{2} \mathrm{~h}^{-\mathrm{f}}$ and values show a positive relatlonship with total enbryonic oxygen demands. Subtracting the embryonle resplration rate from the excess resplration, however, results in values which show a negative relationship with the time since fertilization (Fig. 4). This relatlonshlp suggests that the added oxygen consumption of gestating females is high early in gestation and decreases, eventual dy becoming negative with further embryonlc development (FIg. 4). The value approaches zero at about 30 d , near the tlme when the mouth opens and ovarlan fluid is apparently consumed (Boehlert et al. 1986). Embryos at thls stage are characterlzed by plgmented eyes, nearly complete lens, and fully formed otoliths, rectum, and urlmary bladder (Kusakarl unpubllshed).

If we assume that actlyity $1 n$ post-30 dembryos 1 s a major cause of Increased ln yitro embryonic resplration rates, we can estlmate the pattern of resplratlon without these data. Retltting the curve tor

Figure 4. Elevation of resplratton rate above that attributed to embryonic resplration In gestating female sabastes schlegell as a function of time slace fertllization, Al values are standardized to a welght of 1.5 kg for the gestating femala (from Boehlert ot al. 1 п prop.).
embryonic oxygen consumptlon (fig. 1) with only those values less than 30 d since fertilization allows recalculation of total respiration, which would be 0.70 catabolle calorles per embryo. Compared to the estimated $\frac{1}{n}$ vitre catabollc utilization of 1.40 cal (Table 1), the values of in ylyo embryonle resplration may be Intlated by as much as 855.

Respiration rates may be indirectly estlmated by another method as well. Boehlert et al. (1986) suggested that the addltional nutrition for embryos comes from resorption of those embryos dying eariy in gestation. If we assume that this is the only source of energy, then from en energy standpoint the ovarles are a closed systemi. This would assume that the maternal systen only provides exchange of resplratory gases and metabollc waste products. Thls ldea ls supported by observed ingestion of yolk proteins by late stage embryos durling a tlme when such materlals are not present In the plasma of females (A. Takemura and K. Takano pers. commun.). The energy decrease In the ovary durling gestation for the $\$.5 \mathrm{~kg}$ female S . schegjeli is about 95.2 kcal. This is based upon the reduction in fecundity (by embryo death) and the decreased energy content per newly hatched larva as compared to a newly fertillzed egg (Table 1 l . Partitloned over the embryos which survive, thls amounts to some 0.75 cal each, which is close to the la ylve catabollc estlmate derlved above.

From these results, it wouid appear that the 10 yltre estimates of catabolic energy utillzation by embryos of S schlegell lBoehlert ot al. 1986) are high. If the value is ladeed near 0.75 cal, the catabolic curve for S . schlageli (F 1 g - 2) mould show about 538 of the initial energy remalning at birth, still below that estimated by direct calorimetry. Other evidence also supports viviparity. First, uptake of substances by the hindgut occurs in late stage embryos of both 5 pecles studled Boehlert anc Yoklavich 1984; Boenlert et ai. 1986). Further, in Individual S. schlegeli embryos, ash-free dry weight increases with time since fertilization, and significant decrease in carbon and Increase In nltrogen (as a percentage of AFDW) occur durlag gestation (FIg. 5). The increasing AFDW and increasing percent nltrogen combine to reswit In a marked increase In nitrogen over the course of development, unlike most ovlparous flshes, which show signiflcant decreases in nitrogen over development (kogers and Westin 1981).

The ovarlan oxygen demand from embryonic respiration represents a signiflcant proportlon of the gestating temale's excess respiratlon.

Figure 5. Changes in embryonle ash-free dry welght (AFDW) (A), carbon (B), and $n i t r o g e n$ (C) as a function of time slnce fertllization (days). Carbon and nitrogen are both expressed ts percentages of ash-free dry waight (from Boehlert et al. 1986).

The otner part of this excess is apparently assoclated with costs of llve-bearing, lncluding supply of respiratory gases and removal of waste products. That the total "excess" resplration of temales during the gestation perlod remalns falrly constant, however, suggests there I5 some "upper Ilmit" for oxygen consumption. Metabolic scope may be deflnad as the difference between the maxlmum actlve metabolic rate supportable by aeroblc metabollsm and standard metabolic rate ifry 1971); thls toplc has recently been reviened by Priede (1985). Although the added welght and resplratory demands of developling embryos wlli contribute to a general decrease In the metabolic scope, other factors must also de conslderad, including general swimming activity and energy for digestion (speciflc dynamic actlon, SDA; Beam1sh 1974). Yahl and Davenport (1979) demonstrated an lncrease of 601 in the metabolic rate in Blennius pholls assoclated with a large ration and attributed this increase to apparent SDA; they suggested that tin thls fish and other specles a single large ration may decrease the scope for actlvity by some 50\% for several hours. Priede (1985) suggested that many flish specles must tlme thelr feeding activity to keep the metabolic rate withtn the ilmits of metabollescope. over the extended perlod of gestation, Sebastes may need to make accommodatlons for the reduced metabolic scope assoclated with the lncraased raspiratory load. Sebastes females store significant amounts of fat which are apperently depleted durling the gestation period (Gulllemot etal. 1985). Interannual varlablilty in onvironmental factors may result ln variablilty in the level of nutrition provided to embryos in other viviparous flshes (Trexler [985). The effects of flsh size, food avallability, and physlcal factors thus have important impllaatlons to reproduction in the genus Sebastes.

Acknowledanents

This research 15 part of a project of the United States-Japan Cooperative Sclence Program. he acknowledge funding from the Natlonal

Sclence Founcetion (Grant No. INT-84-06664) and from the Japan Soclety for the Promotlon of Sclence. We thank M. M. Yoklavich and S. Ralston for revlews of the manuscript,

References

Amoroso, E. C. 1960. Viviparity In flshes. Symp. Zool. Soc. Lond. 1:153-181.

Beamlsh. F. W. H. 1974. Apperent speciflc dynamic action of largemouth bass, Micropterus salmoldes. J. Flsh. Res. Board Can. 31:1763-1769.

Berglund, A., G. Rosenqulst, and 1. Svensson. 1986. Reversed sex roies and parental energy Investment in zygotes of two pipeflsh (Syngnathldae) specles. Mar. Ecol. Prog. Sar. 29:209-215.

Boehlert, G. W., W. H. Barss, and P. Lamberson. 1982. Fecundity of the wldow rockflsh, Sebastes entomelas, oft the coast of oregon. Flsh. Bull., U.S. 80:881-8B4.

Boahlert, G. W., M. Kusakari, M. Shimizu, and J. Yamada. 1986. Energetles during embryonic development In the kurosol, Sebastes schlegeli Hilgendorf. J. Exp. Mar. Blol. Ecol. IOt:239-256.

Boehlert, G. W., M. Kusakarl, and $\mathrm{J.}_{\mathrm{H}}$ Yamada. In prep. Oxygen consumption during gestation In female Sebastes schlegeli and a comparison with embryonlc oxygen requirements.

Boehlert, G. W., and M. M. Yoklevich. 1984. Reproduction, embryonle energetlcs, and the maternal-fetal relationship in the viviparous genus Semastes (Plsces: Scorpaenldae). Blol. Bull. (Woods Hole) 167:354-370.

Dygert, P. H. 1986. Management implications of varlabllity In reproduction and growth of commerclal marlne fishes. Ph.D. Dissertation, Unlv. Wash., Seattle, 275 p.

Carlson, A. R., and R. E. Selfert, 1974, Effects of reduced oxygen on the embryos and larvae of lake trout (Salveltaus namaycush) and largemouth bass 《Mlicoptorus salmeldes). J. Fish. Res. Board Can. 31:1393-1396.

Fry. F. E. J. 1971. The effect of enviromental factors on the phystology of fish. In W. S. Hoar and D. J. Randall (edtors), Fish physlology 6:1-99. Academlc Press, NY.

Guillemot, P. J., R. J. Larson, and W. H. Lenarz. 1985. Seasonal cycles of fat and gonad volume ln five species of northern Callformla rockflsh (Scorpaenidae: Sebestes). Flsh. Bull., U.S. 83:299-311.

Lasker, R. 1962. Efflciency and rate of yolk utilization by developing embryos and larvae of the Paclfic sardine Sardlnops caerylea 〈Girardi. J. Fish. Res. Board Can, 19:867-875.

Lasker. R., and G. H. Thellacker. 1962. Oxygen consumption and osmoregulation by single Pactitic sardine aggs and larvae (Sardingos catarules Glrard). J. Cons. Cons. Int. Explor. Mer 27:25-33.

Moser, H. G. 1967. Reproduction and development of Sebastodes paucliplois and comparlson with other rockflshes of fouthern California. Copela 1967:773-797.

Moser, H. G., E. H. Ahlstrom, and E. H. Sandknop. 1977. Gulde to the Identification of scorpionflsh lervae (Famlly Scorpaenidee) In the eastern Paclific with comparative notes on spec les of Sebastes and Hallcolenus from other oceans. U.S. Dep. Commer., NOAA Tech. Rep. NMFS CIrc-402, 71 p.

Oppenhelmer, J. M. 1937. The normal stages of Eundulus heteroclitus. Anat. Rec. 68:1-15.

Phillips, J. B. 1964. Life history studles on ter species of rockfish (genus Sebastedes). Callf. Dep. Fish Game, Fish Bull. 126, 70 p.

Prlede, I. G. 1985. Metabollc scope In tlishes. In P. Tytler and P. Calow (editors), Flsh energetics: New perspectives, p. 33-64. Johns Hopklns Univ. Press, Baltimore, Md.

Rogers, B. A., and D. T. Westin. 19a1. Laboratory studies on effects of temperature and deiayed initlal feeding on development of strlped bass larvae. Trans. Am. Fish. Soc. 110:100-110.

Salonen, K., J. Sarvala, I. Hakala, and M. L. Viljanen, 1976. The relation of energy and organic carbon in aquatic invertebrates. Limnol. Oceanogr. 21:724-730.

Scrimshaw, N. S. 1945. Embryonlc development in poeacilitd fishes. Blol. Bull. (Woods Hole) 88:233-246.

Trexler, J. C. 1985. Yarlation in the degree of viviparlty in the salifin molly, Pooclla latlpinda. Copela 1985:999-1004,

Triplett, E. L. 1960. Notes on the life blstory of the barred surfperch, Amphlstlchus argenteus Agasslz, and a technlque for culturing emblotocid embryos, Calit. Fish Game 46:433-439.

Umbrelt, W. W., R. H. Burrls, and J. F. Stauffer. 1972. Manometrite and biochemical technlques. Burgess Publ. Co., Minneapolis, 387 p.

Yakl, O., and J. Davenport, 1979. Apparent speciflc dynamic action of food in the fish Blennlus oholis. Mar. Ecol. Prog. Ser. 1:109-113.

Hebb, P. W., and J. R. Brett. 1972. Oxygen consumption of embryos and parents, and oxygen transfar characteristics within the ovary of two specles of viviparous seaperch, Rhacochllis yacea and Emblotaca Lateralls. J. F1sh, Res, Board Can. 29:1543-1553.
Yamada, J. 1963. The normal developmental stages of the pond smelt, Hypomasus olldus (Palias). Bull. Fac. Flsh., Hokkaldo Unly. 14:121-126.

Session III -- Aging: Growth and Mortality

Use of a length frequency simulator to explore the information content in length data for a long-lived species, silvergray rockfish (Sebastes brevispinis)

Richard D. Stanley Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

Length data for silvergray rockfish (Sebastes brevispinis) is examined with a poputation model which incorporates stochastic variation in recrultment and length. The model, which predicts length frequency composition, is usefur both for graphicaliy estimating total instantaneous mortality from actual samples and for examining the information that can be gained from length data for long-lived species with low growth rates. The modelling exercises indicated that the expected length distribations were relatively insensitive to year-class variability. The distributions were sensitive to variation in instantaneous total mortality, partial recruitment and growth, but the shape and location of the right-fand descending limb was a still better indicator of total instantaneous mortality than mean or median length. Theoretical distributions representing different mortality rates were compared with two actual samples. Graphically determined estimates of Z based on length corresponded well with estimates derived from the age composition.

Introduction

Fishery stock assessment is often limited by a lack of information on age composition. Direct ageing of hard parts is either not possible, as is the case for many tropical species, or it is too costly in personnel-time to age enough samples for catch-at-age andysis. This lack of information has led investigators to develop methods for estimating vital rates or age composition from length data. Techniques have been proposed for estimating age composition directly from length frequencies given estimates of growth rates (Schnute and Fournier 1980), for using length data dírectly in catch-at-length models (vones 1984), or for using length data to estimate vital rates (Beverton and Holt 1956; Hoenig, Lawing and Hoenig 1983; Pauly 1984).

These analytical techniques work best for short-lived, fast growing species for which there is contrast in size between the dominant age classes (Pauly 1984). They typteally rely on the assumption of constant recruitment and equal growth by all members of a cohort. They also tend to assume knife-edge recruitment.

The Department of Fisheries and Oceans, Ganada is responsible for assessment of all species of rockfish (genus Sebastes) on Canada's Pacific coast. This currently encompasses approximately 16 confmercially important stocks (Leaman 1985; Stanley 1985). While length and otolith samples are routinely collected from commercial and research catches, ageing of the otoliths by the cross-section technique (Chilton and Beamish 1982) is too time consuming to develop extenslve catch-at-age time series for more than one or two stocks. We therefore have turned to length frequency analysis as a means of gaining insight into the dynamics of many of the rockfish stocks. Unfortunately, rockfish represent the antithesis of an ideal candidate for length frequency analysis. They are long-lived with slow growth and do not fully recruit to the fishery until they are in the asymptotic phase of their growth. For example, aged samples of male silvergray rockfish (Sebastes brevispinis) shown in Figure 1 indicate full recruitment at between 25 and 30 years of age. Mean size at age for the same silyergray rockfish, presented in Figure 2, shows that the more than 60 exploited cohorts are compressed within 20 cm of growth. The mean lengths of the fully recruited cohorts are distributed within 7 cm . The 1 imited growth during adult life and a mean standard deviation in length at age of 2.63 cm removes much of the contrast in length among ages.

Given the fadequacy of existing models for length frequency analysis of rockfish, : have utilized a simple graphical tectnique for estimating the total instantaneous mortality rate (Z) from length frequency information. The present paper documents the procedure using data for male silvergray rockfish. The technique involves generating an expected length frequency, given estimates of von Bertalanffy growth parameters and total mortality, and comparing the expected results with sample resuits. The key features are the stochastic parameterizations of mean length at age, individual length about mean length, and year-class strength.

Methods

The situlator

Theoretical length frequencies are generated from an adapted version of a simulator provided in Breen and Fournier (1984). The simulator generates expected numbers at age for a given total mortality mate. These are then corrected to recruited numbers at age with partial recruitment factors. A random number generator randomly selects individual specimens from the recruited population and converts the observation from age to length. Each length is stochastically estimated based on the von Bertalanffy equation. The simulator inftially generates a set of mean lengths at age, with the mean length at each age randomly determined as:

$$
\begin{equation*}
l_{i}=L_{\infty}\left(1-e^{-k\left(i-t_{0}\right)}\right) e^{\varepsilon_{i}} \tag{1}
\end{equation*}
$$

Figure l. Loge frequency of male silvergray rockfish by age. Samples from commerctal landfings, 1977-81, southern and central coast of B.C. (INPFC statistical areas: Vancouver and Charlotte).

Figure 2. Mean length at age of male silvergray rockfish. Bars 1ndicate 95\% confidence limits of sample distribution. Samples from commercial landings, 1977-81, southern and central coast of B.C. (INPFC statistical areas: Vancquver and Charlotte).

Where l_{f} is mean length at age i and i is a random normal deviate with a mean of zero and a specified standard deviation. Individuat length (l_{j}) is also randomly determined as:

$$
\begin{equation*}
l_{j}=l_{i} e^{\varepsilon_{j}} \tag{2}
\end{equation*}
$$

The simulator mimics real samples in that it can produce individual lengths or mean lengths that exceed the given value for L . The simulator allows the user to vary sample size and simulate variable recruitment by randomly varying population proportions by age according to the formula:

$$
\begin{equation*}
P_{i}=P_{1} e^{\tau_{i}-Z_{i}} \tag{3}
\end{equation*}
$$

where P_{i} is the relative abundance at age $; P_{1}$ is the abundance in age class $1, Z$ is instantaneous total mortality, and i is a random normal deviate mith mean zero and a provided standard deviation. I modified the published simulator to include the partial recruitment feature, and to produce length observations rounded to the nearest whole centimeter. To summarize, the model produces a theoretical length frequency given the information shown below in Table 1 .

Table 1. Principal parameters used in the length frequency simulator (adapted from Breen and Fournier 1984).

1. n, the sample size.
2. Z, the instantaneous total mortality rate.
3. Partial recruitment factors by age.
4. von Bertalanffy growth parameters: t_{0}, k, L_{∞},
5. Standard deviation (ε_{1}) of mean length about predicted mean length at age i from the von Sertalanffy equation.
6. Standard deviation (E_{j}) in individual length about mean length.
7. Permitted random variation (s_{i}) in population proportions for each age i, to similate recruitment variability,

I estimated partial recruitment parameters from a set of silvergray conmercial samples which had been collected between 1977 and 1981. These were aged using the cross-section technique. Loge frequency at age is shown in figure 1 . Total instantaneous mortality (Z), for the calculation of partial recruitment, was estimated as the slope of the predictive regression of $\log _{\mathrm{e}}$ frequency against age (Ricker 1975). For calculation of partial recruitment, I restricted the range of ages used in the regression to include only those ages
which had undergone fishery exploltation. Silvergray rockfish have been exploited significantly in B.C. since the mid-1950s and the most recent collection in this set of data was from 1981, so I used the 25 age classes starting with the first age, 28 , that was unquestionably part of the linear segment of the descending limb. The chosen points and regression lines are shown in Figure 1. Also shown is an eye-fitted loge frequency curve for age classes younger than 28. Partial recruitment was determined as the ratio of the transformed $\log _{e}$ frequency from the eye fitted curve (<28 years) to the transformed $\log _{e}$ frequency predicted from the regression on age-classes starting at 28 . The same data sets were used to estimate the standard deviation of mean length about age and the standard deviation in length about mean length. Growth parameters ($\mathrm{t}_{\mathrm{o}}, \mathrm{k}, \mathrm{L}$. ${ }^{\text {d }}$ were taken from Archihald et al. (1981).

Estimation of Z

The model's accuracy in estimating Z was examined with two recently aged samples, Z was first estimated graphically from length data by overlaying the observed length frequency of a sample on a selection of expected distributions derived from different values of 2 . One of the samples was obtained from the northwest coast of Vancouver Island, the other was collected in Moresby Gully, a more northerly region of the B.C. coast. Two sets of length frequency distributions were therefore derived from the corresponding growth rates of silvergray rockfish for these two regions (Archibald et a1. i981). For comparability, I equalized the scale of expected and actual distributions by decreasing the numbers at length in the expected distributions by the ratio of numbers observed to the theoretical sample size of 10,000 .
Z was also estimated from the age conposition of these samples. The sample sizes were too small to employ the regressions method used in the calculation of partial recruitment so Z was estimated as the reciprocal of mean age from the fully recruited age classes (Pauly 1984).

Results

The age and length information used for calculating partial recruitment and variation in mean length and individual length at age is provided in Table 2. The effects of changing the parameters of Table 1 on expected length composition are illustrated in Figures 3 through 8. In all the figures, the comparative or "standard" length composition is for males based on the set of growth parameters representing southern and central stocks of silvergray rockfish from the coastal waters of British Columbia (Archibaid et a1. 1981). Unless noted, the standard distribution represents a sample size of 10,000 , a Z value of 0.15 , the partial recruitment factors of Table 2, and a standard deviation of length about mean length of 2,63 for all ages. I found no correlation between age and the wariability in individual length about mean length (Table 2). No variation in population proportion among ages was included in the standard distribution ($\tau_{j}=0$). The standard distribution shown in the comparisons was one example of a random distribation based on a standard deviation in length about mean length of 0.26. Changing the random seed with this level of variation in mean length had

Table 2. Length and age information and partial recruitment factors for silvergray rockfish (Sebastes brevispinis) based on comnercial samples tollected between 1977 and 1981 from central and southern B.C. waters.

Age	Mean				Mean				
	n	length (cm)	s	Partial recruitment	Age	Π	length (cm)	5	Partial recruitment
9	2	40.0	1.41	0.01	40	12	55.0	3.07	1.00
10	2	47.0	4.24	0.02	41	3	54.3	4.93	1.00
11	2	45.5	0.71	0.03	42	7	57.0	2.31	1.00
12	6	44.3	1.37	0.05	43	4	56.0	2.16	1.00
13	3	44.7	4.73	0.07	44	5	56.6	1.95	1,00
14	11	46.5	2.58	0.09	45	2	58.0	0.0	1,00
15	9	47.5	3.00	0.12	46	1	58.0	-	1.00
16	12	47.2	3.38	0.16	47	2	56.0	0.0	1.00
17	16	49.6	3.46	0.21	48	0	-	-	1.00
18	12	48.8	3.35	0.26	49	2	55.5	0.71	1.00
19	11	49.5	4.25	0.34	50	5	56.4	2.70	1.00
20	9	50.1	2.15	0.43	51	1	56.0	-	1.00
21	16	50.6	2.68	0.52	52	1	57.0	-	1.00
22	26	51.5	2.49	0.61	53	1	59.0	-	1.00
23	32	51.6	2.73	0.71	54	0	-	-	1.00
24	26	51.6	2.18	0.81	55	3	56.3	3.21	1.00
25	24	51.6	2.32	0.90	56	1	56.0	-	1.00
26	22	52.9	1.97	0.98	57	2	57.0	1.41	1,00
27	25	51.8	2.55	1.00	58	0	-	-	1.00
28	23	52.9	2.63	1.00	59	0	-	-	1.00
29	20	52.4	2.33	1.00	60	2	59.5	2.12	1.00
30	24	53.6	2.45	1.00	61	1	60.0	-	1.00
31	15	54,0	3.48	1.00	62	1	62.0	-	1.00
32	7	53.6	2.76	1.00	63	1	54.0	-	1.00
33	9	53.2	2.28	1.00	64	0	-	-	1.00
34	9	53.9	2.67	1.00	65	2	60.0	0.0	1.00
35	8	53.5	2.27	1.00	66	0	-	-	1.00
36	9	53.9	2.26	1.00	67	1	56.0	-	1.00
37	10	55.0	2.58	1.00	68	1	57.0	-	1.00
38	11	54.8	2.09	1.00	69	0	-	-	1.00
39	5	54.4	1.67	1.00	70	0	-	-	1.00

little impact on the expected distributions. The expected length frequencies for Z values of $0.05,0.15$, and 0.30 are shown in Figure 3. Figure 4 shows a comparison between the standard curve and the expected distribution given no variation in mean length or individual length.

The impact variable recruitment on length distributions is shown in Figures 5 and 6 . Figure 5 shows the effect of allowing random variation in populations proportions. x_{i} values were set at 2.0. The actual proportions at age for this example are provided in Table 3. Figure 6 illustrates a deterministic approach towards variable recruitment, where I arbitrarily chose one year-class (15-yr old or $20 \mathrm{yr-old}$), and multiplied its abundance by 10.

The effect of altering the partial recruitment factors is shown in Figure 7. The partial recruitment factors of Table 2 show a gradually increasing walue from ages 9 to 27. with low levels (<0.26) persisting unt 11 the final 10 years (18-27). For comparison, a distribution was generated from a set of factors with full recruitment reached by 20 years and partial recruitment increasing in increments of 0.10 between ages 11 and 20 . The effect of sample size on variability in length frequency distributions is shown in Figure 8 for 2 different random samples of 250 specimens. They are presented to show the extent to which small samples can imply dominant length modes which do not really exist.

Figures 9 and 10 show male length frequencies for one sample from the northwest coast of Vancouver Island and one from Moresby Gully superimposed on the expected length frequencies for z values of $0.05,0.15$ and 0.30 for these two areas.

The Z estimates, graphically estimated from the length frequency overlays and fron the age composition, are summarized in Table 4. The age composition is presented in Table 5.

Discussion and Conclusion

The simulator
The length frequency simulator serves two purposes in being an experimental model and an analytical tool for estimating total mortality rates. If one assumes constant natural mortality, varying the parameters provides insight into how much information can be expected from a limited amount of length data for a long-lived species wth determinant growth. Figure 3, for example, indicates that, im spite of the relative lack of contrast in size at age, it is possible to characterize mertality rates from length data.

One of the principal characteristics of the simulator is the stochastic parameterization of length. There can be a tendency to assume that the presence of larger fish near the size of L_{o} indicates the continued abundance of older fish. This in turn implies a low historical value for F, the rate of instantaneous fishing mortality. Figure 4 shows the extent to which variability about mean length and mean length at age can flatten and extend the descending right-hand limb and incorporate greater abundance of

Table 3. An example of percent age composition of the recruited population with a ξ_{1} value of 2,0 .

Age	*	Age	\%	Age	$\%$
9	0.06	29	1.03	49	0.00
10	9.06	30	1.80	50	1.35
11	0.28	31	0.40	51	0.02
12	0.04	32	0.12	52	0.01
13	0.06	33	7.41	53	0.03
14	2.94	34	0.15	54	0.01
15	0.09	35	0.60	55	0.00
16	0.01	36	0.26	56	0.06
17	0.03	37	0.01	57	0.02
18	2.22	38	0.00	58	0.18
19	14.39	39	0.20	59	0.01
20	0.55	40	0.33	60	0.01
21	0.08	41	0.07	61	0.00
22	0.05	42	0.01	62	0.00
23	47.88	43	0.00	63	0.00
24	0.14	44	0.00	64	0.00
25	2.32	45	0.06	65	0.00
26	0.18	46	0.13	66	0.01
27	0.01	47	0.34	67	0.00
28	4.90	48	0.04	68	0.03

Table 4. Comparison of length frequency and age frequency estimates of instantaneous total mortality (2) for two commercial samples of male silvergray rockfish.

Sample	π	t_{0}	k	Lom	7	
					Length frequency	Age frequency
Kains 15.	57	-4.13	0.088	57.0	0.05-0.10	0.09
Moresby	125	-4,13	0.101	54.9	0.10	0.08
Gully						

Table 5. Numbers at age for two samples of male silvergray rockfish.

Figure 3. Expected length frequencies of ma'e silvergray rockfish for instantaneous total mortality rates of $0.05,0.15$ and 0,30 .

Figure 4. Expected length frequency with no variation in individual length or mean length at age in comparison with variation in both parameters.

Figure 5. Expected length frequencies for warying ($x_{i}=2.0$) and non-varying population proportions.

Figure 6. Expected length frequencies where population size at age is increased by 10 times for 15 year-olds or 20 year-olds.

Figure 7. Expected length frequencies for "standard" partial recruitmert factors (full recruftment at 28 yr) and "test" partial recruitment factors (full recruitment at 20 yr).

Figure 8. Expected length frequencies for two random samples of 250 specimens.

Figure 9. Comparison of a length frequency sample of male silvergray rockfish from the Northwest coast of Vancouver Island with expected length frequencies corresponding to $Z=0,05, Z=$ 0.15 and $Z=0.30$.

Figure 10. Comparison of a length frequency sample of silvergrey rockfish from Moresby Gully with expected length frequencies corresponding to $Z=0.05,0.15$ and 0.30 .
larger, but not necessarliy older, fish.
The slow growth of older fish combined with variability in length creates a smoothing effect which tends to obscure the impact of year class variability on length frequencies. The example of randomly varying recruitment incorporates a wide variation in proportion at age as shown in Table 3; but the resulting length frequency distribution shown in Figure 5 bare'y differed from the standard form.

Figure 6 , which shows the effect of varying only one year-class, foplies that for a genuinely large incoming year-class to be discernible in length data, it would apparently have to be nuch greater than 10 times the average level of recruitment. Interestingly, while the large $15-y r$ old and $20-y r$ old year class spikes flatten and shift the length frequency distribution to the left as expected, the shape and location of the descending right-hand limb is largely unaffected. This suggests considerable stability in this portion of the distribution and that attempts to infer the magnitude of total instantaneous mortality should concentrate on this feature of the distribution. The mean or median length may be a less conservative indicator of the proportional contribution of older fish and therefore mis-represent a change in the mortality rate. The stability of the distribution with respect to randomly varying proportion at age is further testimony to the smoothing effect of the variability in size and minimat growth among recruited ages. Conversely, the model indicates that if length frequency data indicate distinct modes, the modes are more likely to be sampling artifacts from too few observations (Figure 7), or a result of some other factor like segregation by size or age in the fished schools.

Varying the partial recruitment factors appears to mimic a change in the mortality rate (Figure 8). This emphasizes the need for accurate calculation of these parameters which can be difficult if the aged samptes cover a period when a particulariy large year-class is passing through the partially recruited ages. Although not presented here, a similar impact on the length distribution is incurred by varying the growth parameters. One might assume these to be relatively stable for rockfish but there is evidence of lability in these parameters with respect to Pacific ocean perch (Sebastes alutus) (B, M, Leaman pers. comm.). There is also evidence of systematic variation in L_{m} as shown in the two published values included in Table 5. Rockfish species in 8.C. waters tend to show a south to north cline of decreasing L_{*} (Archibald et al. 1981).

Estimation of "Z"
The length and age based techniques produced similar estimates of Z. Both length distributions appear to lie between the distributions corresponding to mortality rates of 0.05 and 0.15 in approximate agreement with age-derived estimates of 0.09 and 0.08 for the Vancouver Island and Moresby Gully samples respectively. The Vancouver lsland sample falls within the $z=0.05$ distribution except for the absence of large specimens (560 cm). The dominant size classes of the Moresby sample more closely resemble the $Z=0.15$
distribution. however, the overall distribution, is closer to the $Z=0.05$ example. These two samples are typical for silvergray rockfish in British Columbia waters.

While perhaps more objective, the numerical techniques for estimation of vital rates (reviewed by Pauly 1984) have difficulty accomodating the slow, determi nant growth and longevity of rockfish. The simulation-graphical method represents an alternative and perhaps more practical means for estimating vital rates. It also is a useful tool for examining what kind of conclusions can be drawn from rockfish length frequency information.

Additional work will include continued comparison with aged samples, preferably with more contrast, and refining the parameter estimates required for the mode?. As the analyses and comparisons will always be conducted on recrulted ages, performance of the simulator would be improved by using a more general growth model (Schnute 1981).

The objectivity in estimating Z might be improved by using an analytical procedure for comparing the fit of the actual with the theoretical distributions. The parameterization of Z will be altered to incorporate additional information on variation in F.

Ack nowledgments

I appreciate the efforts of the port samplers, Nevill Venables, Frank Crabbe, and Jan Lucas for collection of the samples and Shayne Maclellan and Sue Janz for the age determinations. Jeff Fargo, Bruce Leaman and Al Tyler kindly reviewed the manuscript.

References

Archibald, C. P., W. Shaw, and B. M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal waters, 1977-1979. Can. Tech. Rep. Fish. Aquat, Sct. 1048: 57 p.

Beverton, R. J. H. and S. J. Holt. 1956. A review of methods for estimating mortality rates in exploited fish populations with special reference to sources of blas in catch sampling. Rapp. Pr.-Verb Reuns. Cans. Perm. Int. Explor. Mer 140: 67-83.

8reen, P. A. and D. A. Fournier. 1984. A user's guide to estimating total mortality rates from length frequency data with the method of Fournier and Breen. Can. Tech. Rep. Fish. Aquat. Sci. 1239: 63 p.

Chilton, D. E. and R. J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60: 102 p.

Koenig, J. M., W. D. Lawing, and N. A. Hoenig. 1983. Using mean age, mean length, and median length data to estimate the total mortality rate. 1.C.E.S. C.M. 1983/D:23. (Cited with permisston of the senior author.)

Jones, R. 1984. Assessing the effects of changes in exploitation pattern using length composition data (with notes om UPA and cohort analysis). FAO Fish. Tech. Pap. (256): 118 p.

Leaman, B. M. 1985. Slope rockfishes. Tyler, A. V. and G. A. McFarlane (ed.) 1985. In: Groundfish stock assessments for the west coast of Canada in 1984 and recommended yield options for 1985. Can. MS Rep. Fish. Aquat. Sci. 1813: 353 p.

Pauly, D. 1984. Fish Population Dynamics in Tropical Waters: A manual for use with programmable calculators. ICLARM Studies and Reviews 8, 325 p. International Center for Living Aquatic Resources Maragement, Manila, Philippines.

Ricket, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bull. Fish. Res. Board Can. 191: 382 p.

Schnute, J. 1981. A versat ile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38: 1128-1140.

Schnute, J. and D. Fournier. 1980. A new approach to length-frequency analysis: growth structure. Can. J. Fish. Aquat. Sci. 37: 1337-1351.

Stanley, R. D. 1985. Shelf rockfishes. Tyler, A. V. and G. A, McFarlane (ed.) 1985. In: Groundfish stock assessment for the west coast of Canada in 1984 and recomnended yield options for 1985. Can. MS Rep. Fish. Aquat. Sci. 1813: 353 p.

Age and growth of yelloweye rockfish (Sebastes ruberrimus) landed in southeastern Alaska

Victoria Moran O'Connell Alaska Department of Fish and Game Sitka, Alaska and
 Fritz C. Funk
 Alaska Department of Fish and Game Juneau, Alaska

Abstract

The rate of growth of yelloweye rockfish (Sebastes ruberrimus) was examined using length-at-age data from three areas in southeastern Alaskan waters. Otoliths were collected from landed commercial catches in Sitka (Central Southeast Outside area or CSEO) and Ketchikan (Southern Southeast Outside area or $\$ 5 \mathrm{EO}$). Age-frequency data fron Ketchikan were biased towards large fish because processors would not permit otoliths to be removed from round fish. Filleted and head-and-gutted fish were usually over six pounds. Ages were determined using the break-and-bum method. The maximum age observed was 114 in the SSEO samples and 97 in the CSEO samples. Older fish were more abundant in the SSEO areas. A log-transformed allometric growth model was fit to the length-at-age observations, and area and sex strata were compared using analysis of covariance. Growth rates were not significantiy different between sexes in any of the areas compared, although the relatively high variability in the length-at-age data may have masked minor differences in growth rate. Sexes were analyzed separately in the comparisons among areas. Because rates of growth between the two areas from SSEO were not significantly different, data from these two areas were pooled for comparison with the central area. Length-atage data with age greater than 30 years were used to compare growth rates between CSE0 and the pooled SSEO areas as the SSEO data were biased toward older fish. No significant difference was found in growth rates between these two areas. The two areas were pooled to describe growth rates by sex. Using additional information from a small sample of young fish from all areas, von Bertalanffy growth curves were fit to the data for each sex.

Age distributions were different between sexes and areas. Male yelloweye rockfish have a strong early mode which declines rapidly, while

female yelloweye are more evenly distributed over the entire age distribution. This trend was seen in all areas and in a small sample of age data collected during a research survey in the CSEO area during 1981.

Introduction

Juring the past six years a domestic longline fishery for yelloweye rockfish (S. ruberrimus) has been rapidly developing in the southeastern Gulf of Alaska (Bracken and Ito 1985; Bracken and 0'Connell 1986). Little specific life history information is available on this species. Yelloweye rockfish or Pacific red snapper are distributed over rocky bottom from Baja California, Mexico to Prince William Sound, Alaska (Phillips 1957; Rosenthal 1980). Yelloweye rockfish are a large red rockfish reaching a maximum length of 91 cm (Hart 1973). They are ovoviviparous and give birth to young from April through June in southeastern Alaska (O'Connell 1986).

The only published information on age and growth of yelloweye rockfish is based on surface aging of otoliths (Rosenthal et al. 1982). Recent research indicates that surface-aging techniques may underestimate ages of rockfish, particularly in older year classes, and that reading of otolith sections via the break-and-burn method is a more valid approach to evaluating the impact of fisheries and developing sound management regimes for long-Iived species. The intent of this paper is to present age and growth information on yelloweye rockfish landed in the commercial fishery in the southeastern gulf of Alaska.

Materials and Methods

Otoliths were coilected from commercial landings of rockfish in Sitka and Ketchikan during 1983 and 1984 from three areas of Southeast Alaska (Figure 1). Area A comprises the Central Southeast Outside (CSEO) management area and areas 8 and C comprise the Southern Southeast Outside (SSEO) management area. Fishermen used longline set gear and fished over rocky bottom between 20 and 80 fathoms. Commercial landings were sampled for length, sex and stage of maturity and otoliths were collected when possible. Fork length was measured on round fish to the nearest centimeter. Processors would not allow round fish to be sampled for otoliths so only fish that were filleted or headed and gutted were sampled. In Ketchikan these were predominately large fish. Otoliths were aged at the Alaska Department of Fish and Game's (ADF\&G) Kodiak Aging Laboratory using the break-and-bum method (Beamish and Chilton 1982). A small sample of break-and-burn age data collected in Sitka during 1981 was made available by the University of Alaska, Juneau (UAJ) for comparing growth rates and age distributions over time (Haldorson 1986, UAd, unpub1. datal. The fish in this sample were collected using jigging machines during research surveys (Rosenthal et al. 1982). The otoliths were aged at UAJ. Some length-at-age data for young fish from the 1980-1982 surveys were used to fit the von Bertalanffy model. These fish were aged using surface-aging methods. The method of collection and aging are described in Rosenthal et al. (1982).

Because sampies were collected from commercial fisheries targeting on large individuals, growth data for young fish with relatively rapid growth rates were not available for most areas. For this reason, von Bertalanffy growth curves could not be fit to the yelloweye growth data

Figure 1. Commercial fishing sites and management areas in the Southeast Alaska rockfish fishery.
from the conmercial catch samples without additional constraining assumptions on at least one of the parameters. A simpler allonetric growth model ($y=a x^{b}$) cescribed the 1 imited amount of curvature in the growth data as well as the von Bertalanffy model and facilitating the comparison of the rates of growth among areas, since only two parameters were involved. The length-and-age observations wers \log transformed because the variance of these data tended to increase with increasing age in several of the area strata. An analysis of covariance was applied to the log-linear allometric model, $\ln ($ length $)=\ln (a)+b(\ln ($ age $))$, to compare the rates of growth among areas and between sexes.

Least-squares regression procedures were used to estimate the log-linear allometric growth model parameters. The multivariate secant iterative method was used to obtain least squares estimates of the nonlinear and von Bertalanffy parameters. The effects of logarithmic transformations on the length-at-age residuals were examined using the KolomogorovSmirnov test for departures from nomality as well as tests for kurtosis and 5 kewness.

Results

A century of year classes is represented in the age sample (Figure 2). The fish sampled for otoliths from the commercial catch ranged in age from 13 to 114 years (1871 year class).

Figure 2. Age distribution of $\frac{S}{}$. ruberrimus from Southeast Alaska commercial rockfish landings, 1983 and 1984 , sexes combined.

The length-at-age data combined for all areas and both sexes show the lack of curvature in the samples (Figure 3). This is due to the absence of young fish in the conmercial catch.

Figure 3. Length-at-age observations of \$. ruberrimus sampled from the Southeast Alaska rockfish fishery.

Growth Rate Comparisons

Yelloweye rockfish landed in the CSEO (area A) and SSEO (areas B and C) commercial fisheries were sampled for differences in growth between sexes by area of catch. Analysis of covariance on the log-linear allometric model was used to compare growth rates between sexes and areas.

The ANCOVA technique tests for differences in slope between independently fitted lines then, if slopes are not different, tests for differences in intercepts given the same slope. In general, growth rates are similar for males and females in areas A, B, and C (Figure 4). No significant differences were found in either slope or intercepts between sexes for any of the three areas although when plotted separately the allonetric model indicates s?ightly faster growth for males (Table 1). Length-atage observations for sexes were not pooled as the relatively high variability in the length-at-age data may have masked minor differences in growth rates and other rockfish growth studies have found significant differences in male and female growth rates in some species (Miller and Giebel 1977; Six and Horton 1977; Boehlert 1980; Fraidenburg 1980; Wilkens 1980).

Tab1e 1. Analysis of covariance statistics for differences in growth rates between sexes by district.

		Slope		Intercept	
Areà	Number	F Value	Prob $>$	F Value	Prob>
A	146	2.16	.1438	1.08	.2998
B	149	.79	.3770	.84	.3598
C	367	.02	.8889	.28	.5984
A/Survey	74	1.28	.2614	.80	.3739

Area

The two southern areas sampled, areas B and C, were tested for differences in growth rates for each sex separately. No significant difference in slope or intercept for either sex was determired so these two areas were pooled to comprise the $\$ \$ E 0$ data (Table 2).

Table 2. Analysis of covariance statistics for differences in growth rates between districts B and C, by sex.

Sex	Number	Slope		Intercept.	
		F Value	Prob>F	F Value	Prob>F
Male	254	3.6	. 0589	3.74	. 0543
Female	262	. 21	. 6502	. 74	. 3917

Figure 4. Length-at-age observations and allometric growth models for S. ruberrimus, by commercial fishing site.

Table 3. Analysis of covariance statistics for difference in growth rates between areas $55 E 0$ and CSEO, ages 30 years and older, by sex.

Sex	Number	Slope		Intercept.	
		F Value	Prob>F	F Value	Probs F
Male	257	3.66	. 0569	2.74	. 0988
Female	310	. 06	. 8063	. 15	. 6972

In order to generally describe yelloweye rockfish growth over a broad age range, a small sample of length-at-age data for young fish (less than 20 years) fron a previous study (Rosenthal et a1. 1982) was combined with the pooled length-at-age data for all ages from this study. The ages of the young fish were determined using surface-aging techniques which is assumed to be reliable for young ages. Von Bertalanffy growth parameters were estimated using the pooled data (Figure 6). Growth of yelloweye rockfish increases steadily until about 30 years of age where it levels aff, although fish continue to live for many decades.

The only pubiished lengtn-at-age data for yelloweye rockfish is based on surface-aging techniques and therefore not directly comparable to ages from this study (Rosenthal et a1. 1982). UA. provided us with a small sample of break-and-burn otoliths collected in the CSEO area during 1980 and 1981 (Figure 7). An ANCOVA comparison of their study deternined no significant differences in either slope or intercept (Table 4).

Table 4.

Sex	Number	F Value		Srope	
			Intercept		
Male	89	3.38	.0697	3.35	.0705
Female	131	3.47	.0648	3.16	.0778

Age Distributions

Al though there were no significant differences in growth rates between areas there were some notable differences in age distributions, both by area and sex.

Fewer young fish were represented in the SSEO data than in the CSEO data. This is most likely due to market differences between Sitka and Ketchikan during 1983 and 1984. Most smail yelloweye were discarded at sea in the Ketchikan fishery so the shore-based delivery samples consisted of otoliths from fish that were being filleted or headed and gutted in port. These were usually larger fish. In order to compare growth rates over similar ranges of ages, only fish 30 years and older were used to compare growth rates between CSEO and SSEO (Figure 5). If plotted separately the allometric growth curves indicate a slight tendency toward slower growth in the southern area, particularly for males. However, ANCOVA results were nonsignificant for both males and females (Table 3).

Figure 5. Length-at-age observations and allometric growth models for S. ruberrimus 30 years and ofder; comparisons between CSEO and SSEO by sex.

Figure 6. Von Bertalanffy growth mode1s, by sex, for S. ruberrimus, Southeast Alaska, (ages younger than 20 from surface-aged survey data).

Figure 7. Length-at-age observations of S. ruberrimus sampled from 1981 survey, CSEO.

Sex
In both areas and in the 1981 survey data, distributions of male and female age frequencies were markedly different. There were far fewer old males than old females. Males ranged in age from 13 to 103 years. The male age distribution show a stong mode prior to 40 years, with the frequency declining rapidly as age increased. Females ranged in age from 13 to 114 years. The female age distributions are more equally distributed over a very broad range of ages.

Area

There were no differences in age distributions evident between area B and area C so the data was pooled. In $\$ 560$ ages ranged from 15 to 114 years with most ages greater than 30 (Figure 8). Yelloweye rockfish appear to be fully recruited into the fishery by age 35 . Young ages (less than 30 years) are not adequately represented in the SSEO samples due to sampling limitations. Based on five year increments the model age group for males was 31-35 years and for females, 61-65 years. Males exhibited a strong mode in distribution at $31-35$ years, then decreased in frequency as age increased. Females were more eventy distributed over all ages with modes at 41-45, 51-55, 61-64 and 81-85 (Figure 8).

Figure 8. Age distribution of S. ruberrimus from SSEO, by sex.
In CSEO sample ages ranged from 13 to 95 years. Yelloweye rockfish from CSEO appear to be fully recruited by age 30 . Males again display a strong mode at relatively young age groups, $26-30$ years, then decline in frequency over the rest of their distribution. Females were more evenly distributed than males displaying modes in occurrence at 16-30, 41-45, 56-60, and 71-80 years of age (Figure 9).

CSEO had a lesser percentage of very old fish than did SSEO, particularly fish greater than 75 years. Modes in age distribution do not correspond between the two areas. The differences in distributions between areas is apparent, with the CSEO female distribution, in particular, having fewer old fish (Figure 10).

Figure 9. Age distribution of S. ruberrimus from CSEO, by sex.

Figure 10. Age distribution of S. ruberrimus 30 years and older, by area and sex.

The 1981 survey data from CSEO ranged from 12 to 99 years with most ages less than 50 years. Males again had a young mode; however, the mode was more widely distributed, from 26 to 45 years with gradual decline. No males were aged at 61 to 75 years although there were small modes at 5560 and $76-80$ years. Females were more eveniy distributed with a broad mode at $26-30$ years, gradually declining to 45 years, and smaller peaks at 51-55, 66-75 and 81-85 years (Figure 11).

Figure 11. Age distribution of S. ruberrimus from 1981 survey, by sex.

A comparison of the 1984 7ongline data from CSEO from this study with the 1981 survey data, adjusted for differences in years collected, shows some differences in age distribution by sex. Males between 35 and 50 years of age were relatively abundant during the early survey but are poorly represented in the later sample, where the mode eccurs at 26-30 years and then rapidly declines. The female distributions are less divergent although a lesser percentage of fish between 31 and 50 years and very old fish are present in the 1984 longline samples than in the 1981 survey survey data.

Discussion

Based on the fish landed in the commercial fishery, yelloweye rockfish growth in southeast Alaskan waters is typical of growth in other rockfish species. The initial period of growth increases steadily, then levels off to a fairly constant rate for many decades. In this species the growth rate levels off at approximately 30 years of age. It is unfortunate that no very young ages (less than 10 years) are available in this analysis as the von Bertalnaffy growth model, fitted to the available data, may not describe the growth of the younger fish. However, very small yelloweye rockfish are rarely recruited to the longline fishery.
Growth rates were similar for males and females in all three areas, although maie yelloweye rockfish show a siightly faster growth rate than females when the data are fit to a log-linear allonetric growth model. Differences in growth rates between sexes have been reported for some species of rockfish. In most cases where growth rate differs females
grow at a faster rate than do males (Milier and Giebel 1973; Six and Horton 1977; Bcehlert 1980; Fraidenburg 1980; Wilkens 1980). Growth rates are mot always different and different studies do not always find the same results. Fraidenburg (1980) found that female yellowtail rockfish (S. flavidus) had a faster growth rate than male yellowtail rockfish, while Rosenthal(1982) reports male yellowtail rockfish from southeast Alaska with a faster growth rate than female yellowtail rockfish. Several species of rockfish from California have no differences in growth rates by sex (William Lenarz, MMFS, 10/86 pers. commun.)

Differences in growth by latitude have been observed for some rockfish species; however, the trends are not always similar (Archibald, Snaw and Leaman 1981). Westrheim (1973) found Pacific Ocean perch (S. alutus) to have a slower growth rate in northern latitudes while olive rockfish (S. serranoides) and splitnose rockfish (S . diploproa) are reported to have faster growth rates in northern latitudes (Love 1980, Boehlert and Kappenman 1980). No significant differences in growth rates between yelloweye rockfish from CSEO and SSEO were found. If growth was piotted separately for the two areas, fish from CSEO exnibit sightly faster growth rates. It is possible that the slightly faster growth in CSEO may reflect a short-term density dependent response to fishing pressure. The CSEO area has been subject to intensive domestic fishing pressure since 1981, while the domestic fishery in the SSEO area did not begin in earnest until 1984. Yelloweye rockfish in CSEO may have a lower relative abundance due to fishing mortality and therefore may exhibit increased growth. It should be noted that the differences were not significant and that the two areas are fairly close geographically (55030' vs 570 N latitude), so it seems likely that differences in growth between these two areas would be due to regional differences in abundance of yelloweye rockfish and prey items rather than to different life history strategies.

Age frequency distributions determined from the samples of fish delivered to shore-based plants in CSEO and SSEO were different. This is due at least in part to the differential discarding of small fish due to differences in market preferences in the two ports. This is one of the problems with relying on the fishery to select samples. However, besides the sampling biases there appears to be real differences in age distributions as well. The similarity in age distributions between the commerciai fistery samples from CSEO and those of an earlier survey sample indicates that at least in the CSEO area the fishery can supply age-frequency samples that are representative of the underlying population.

Male and female age distributions are markedly different in all areas, and in both this study and the 1981 survey. The reason for this difference in distribution is not known. It may be due to behavior differences between the sexes, perhaps associated with territoriality.

Finally, the use of the break-and-burn method for aging rockfish has not been validated for this species. Growth rates estimated from this study using ages determined at the ADF\&G Aging Laboratory are similar to those of an earlier study using ages determined at UAJ. This helps support the validity of the break-and-burn technique and indicates that between-reader variablity may be low, at least between these two readers. If there were problems with censistency or accuracy of an individual reader, significantly different growth rates would be expected,

Joan Organ of the Kodiak Aging Laboratory, ADF\&G read the otoliths. Lewis Haidorsen, UA, provided the length-at-age data from the 1981 survey, Linnea Neuman and Jerry Koerner assisted in port sampling and otolith collection. The Fresh Fish Company, Northern Lights, Seaboy Alaska Longline, Silver Lining Seafoods, and Sitka Sound Seafoods and their fishermen allowed us to sample commercial landings.

References

Archibald, C.P., W. Shaw, and B.M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C, coastal waters. 1977-1979. Can. Tech. Rep. Fish. Aquat. Sci. No. 1048.

Beamish, R. U., and D.E. Chilton. 1982. Preliminary evaluation of a method to determine the age of sablefish (Anaplopoma fimbria). Can. J. Fish. Aquat. \$ci. 39:277-287.

Boehlert, G.W. and R.F. Kappenman. 1980. Varfation of growth with latitude in two species of rockfish (Sebastes pinniger and S. diploproa) from the Northeast Pacific Ocean. Mar. Ecol. Prog. Ser. 3(1):1-10.

Boehlert, G.w. 1980. Size composition, age composition, and growth of the canary rockfish (Sebastes pinniger) and the splitnose rockfish (Sebastes diploproa) from the 1977 Rockfish Survey. Mar. Fish. Rev. 42:57-63.

Bracken, B.E. and D.H. Ito. 1986. Other rockfish, In R.L. Major (editor), Condition of groundfish resources of the Gulf of Alaska region as assessed in 1985. 221-234 pp. U.S. Dept, Comm. NOAA Tech. Memo NMFS F/NiC-106.

Bracken, B.E. and V.M. 0'Connell. 1986. Other rockfish, In R.L. Major (editor), Condition of groundfish resources of the Gulf of Alaska region as assessed in 1986. 113-124 pp. U.S. Dept. Comm. NOAA MMFS, NW and Alaska Fish. Center, 7600 Sand Point Way NE, BIN C15700, B7dg. 4, Seattle, WA 98115.

Fraidenberg, M.E. 1980. Yellowtail rockfish, Sebastes flavidus, length and age composition of California, Oregon, and Washington in 1977. Mar. Fish. Rev. 42 (54-56).

Hart, J.L. 1973. Pacific Fishes of Canada. Bull. Fish, Res. Bd. Can. 180:1-740.

Love, M.S. 1980. Isolation of olive rockfish Sebastes serranoides, population off Southern California. Fish. Buil., U.S. 27:(4)975983.

Miller, D.J. and T.J. Geibel. 1973. Summary of blue rockfish and lingcod life histories, a reef ecology study; and giant kelp, Macrocystis pyrifira, experiments in Monterey Bay, California. Calif. Dept. Fish and Game, Fish. Bull. 158:137 p.

O'Conne11, V.M. 1986. Spawning seasons for some Sebastes species landed in the Southeast Alaska longline fishery for nearshore rockfish. In prep. for pub.

Phillips, T.B. 1957. A review of the rockfishes of California. Calif. Dept. Fish and Game Bull. 104:157 p.

Rosenthal, R.J. 1980. Shallow water fish assemblages in the northeastern Gulf of Alaska: habitat evaluation, species composition, abundance, spatial distribution and trophic interaction. NOAA, OCSEAP Program. 84 p.

Rosenthal, R.J., L. Haldorson, L.J. Field, V.Moran-0'Connell, M. LaRiviere, J. Underwood, and M.C. Murphy. 1982. Inshore and shallow offshore bottomfish resources in the southeastern Gulf of Alaska (1981-1982). Alaska Dept. Fish and Game, Juneau, Alaska. 166 p.

Six, L.D. and H.F. Horton. 1977. Analysis of age determination methods for yellowtail rockfish, canary rockfish, and black rockfish off Oregon. Fish. Bull., U.S. 75(2):405-414.

Westrheim, S.J. 1973. Age determination and growth of Pacific Ocean perch (Sebastes alutus) in the northeastern Pacific Ocean. J. Fish. Res. Bd. Can. 30:235-247.

Wilkens, M.E. 1980. Size composition, age composition, and growth of Chilipepper, Sebastes goodel, and bocaccio, S. paucispinis, from the 1977 Rockfish Survey. Mar. Fish. Rev. 42(3-4):48-53.

A comparison of age estimates derived from the surface and crosssection methods of otolith reading for Pacific ocean perch (Sebastes alutus)

Richard D. Stanley
Department of Fisheries and Oceans
Nanaimo, British Columbia

Abstract

A sample of Pacific ocean perch (Sebastes alutus) otoliths, which had been aged in the mid-1970s using the surface reading technique, was re-aged by examining the cross-section. The objective was to examine whether the agreement for younger ages was sufficient to justify using catch-at-age data based on a time series of surface readings. Kesults indicated slighty biased but close agreement to age 14 (as determined by surface reading) in mates and 15 in females. Otoliths estimated to be 17 or greater by the surface method showed very poor correlation with cross-section determinations.

Introduction

The application of the cross-section technique to ageing of rockfish otoliths (Chilton and Beamish 1982) has led in some cases to a reassessment of rockfish (genus Sebastes) biology. The greater apparent lifespan has altered estimates of size at age and significantly lowered estimates of natural mortality rates (Archibald, Shaw and Leafran, 1981). These lower estimates have, in turn, led to a more conserwative perspective toward rockfish management (Leaman and Beamish 1984).

While the change in technique has hopefully led to improved management, it has also raised the problem of how, or even whether, to make use of the extenstue catch-at-age time series which had been developed for rockfish through use of the original surface technique.

This problem was addressed by Archibald, Fournier and Leaman (1983) in their catch-at-age analysis of the Pacific ocean perch (Sebastes
alutus) stock in Goose Island bully by first conducting a preliminary comparison of surface versus cross-section readings.

They concluded that there was satisfactory agreement through age 16 , and so utilized these younger ages while treating the remaning age classes as $17+$ in thefr catch-at-age mode? (Fournier and Archibald 1982). This conclusion was supported by eariier work of Westrheim (1973) who showed that the large 1952 year-class for Queen Charlotte Sound could be followed as a distinct age mode with surface readings unt $\dagger 1$ the age of 17 .

This comparison should have involved re-aging a sub-set of otoliths from the 1953 to 1977 surface-read material which had been used in the analysis. This would have imcorporated any additional bias contributed by the indfuiduals who were responstble for ageing the 1963 to 1977 data, and would have accurately reflected the surface readings prior to a general "awareness" about the greater lifespan. However, all the original otoliths were thought at the time to have been destroyed in a warehouse fire. Therefore a new sample was aged with the surface technique prior to being re-aged with the cross-section technique. Archibald et al. (1983) decided to engage the services of an individual who had little experience or familiarity with fish ageing to conduct the surface determination. In this way, they avoided using the experlenced technicians who had participated in the transition of procedures and whose surface readings had begun to reflect the added expectation of greater ages:

We subsequentrly have found a small sample of the original otoliths which had been surface-aged as part of the 1963 to 1977 data set. As we were never fully satisfied with the original comparison and because the population analysis based on these surface readings remains the only catch-at-age analysis of rockfish in B.C. waters, we had this ofd material re-aged using the cross-section techrique.

Our purposes in conducting the comparison were to: 1) examine the validity of using surface readings for the previous assessment; 2) determine whether 17+ was the most appropriate cutoff age for luming the older age classes; and 3) resolve whether we could append additiona years of catch-at-age data based on the cross-section technique to the original catch-at-age time series based on surface readings.

Methods and Results

The original otoliths that we re-discovered had been sorted by sample and sex and stored in a glycerin-and-water mixture in glass vials. The otoliths within the vials were grouped corresponding to the l-centimeter length intervals of the sampled fish. With nothing to distinguish one otolith from another within a length interval, we could only identify a known-age otolith if it were the only otolith corresponding to a length interval or, if all the otoliths in an interval had been assigned the same age. The latter case was obviously more common the fewer the otoliths in the interval and therefore tended to correspond to length intervals nearer the extremes of the length distribution. Numbers of otoliths by length of the whole fish are shown in Table 1 . The original method of surface reading was described in Westrheim (1973). The
cross-section method that we used to re-age the sample is described In Chiltor and Beamish (1982).

Table 2 and Figures 1 and 2 present mean cross-section age by surface age. Tables 3a and 3b present the overall distribution of readings. Figures 3 and 4 show the converse of Figures 1 and 2 , mean surface age corresponding to each cross-section age.

Cross-section readings for each age group of otoliths, as grouped by surface ages, showed considerable variability but limited bias for the younger age groups. Cross-section readings for males tended to be lower for ages 6 to 8 and higher for ages 9 to 15 , although when treated as individual samples, only the mean difference for age 12 was significantly different from 0 ($=0,05$). The mean difference between readiags (cross-section minus mean surface) was ≤ 1.0 for ages 6 to 14 , then increased to 1.3 for $15-y r$ olds and 2.1 for $16-y r$ olds. Beyond 16 there was virtually no agreement, and beyond 23 there was virtually no correlation.

Mean cross-section age for females was less than the surface age for each age group younger than 16 , except for the 6 and $10-\mathrm{yr}$ olds. Only the mean difference

Table 1. Length frequency by sex for the re-aged sample of Pacific ocean perch from Goose Island and Mitchell's gullies.
Length Male Female
(cm)

31	28	14
32	29	19
33	24	27
34	23	31
35	10	25
36	14	16
37	10	17
38	12	22
39	10	19
40	21	26
41	21	25
42	26	21
43	17	14
44	11	15
45	5	11
46	0	21
47	0	11
48	0	6
49	0	1
50	0	1
51	0	0
52	0	1
Total	261	343

Discussion

The 1 inear relationship between the two ageing techniques for ages 6 to 14 in males and 5 to 15 in females indicate that Archibald et al. (1983) were justified in using the surface readings for their assessment. While there was apparent bias, though not significant in most ages, the differences were minima? relative to the requirements of the model. The biases could be assunned to have been constant over the 15 years of the time series and, since the model only attempts to detect general changes in stock abundance, a bias of consistently less than 1 year per age group would have had little impact on the overall conclusions about biomass trends.

The results indicate that $15+$ or $15+$ would be a more appropriate cutoff age for lumping the older age classes in future assessments. This parameterization was examined in the initial assessment but

Table 2. Mean cross-section age for otoliths grouped by surface-read ages; Pacific ocean perch from Goose lsland and Mitchell's gullies.

Surface age (yr)	Cross-section age					
	0			π	$\frac{\text { Femal es }}{x}$	5
6	2	6.00	0.00	4	7.00	2.00
7	14	6.93	0.83	5	6.40	0.55
8	17	7.41	1.54	9	7.67	1.50
9	13	9.15	1.41	17	8.76	1.25
10	33	10.30	1.07	26	10.46	1.42
11	21	11.33	1.06	38	11.00	1.45
12	21	13.00	2.05	45	11.40	1.14
13	9	13.78	1.30	29	12.41	2,43
14	14	15.29	2.92	26	13.73	2.29
15	8	17.12	6.06	25	14.76	1.88
16	5	21.40	2.07	19	18.84	7.52
17	10	21.80	7.19	5	20.80	6.83
18	10	22.70	3.62	10	25.20	9.75
19	9	26.56	3.88	5	23.00	2.45
20	10	32.40	10.47	11	24.64	4.08
21	12	35.00	13.54	11	34.18	15.05
22	14	33.79	14.51	14	34.07	15.09
23	10	44.50	14.26	14	31.79	8.49
24	11	41.73	13.14	11	36.09	16.58
25	7	50.71	17.81	5	49.83	8.35
26	5	52.80	19.88	7	46.57	10.15
27	4	42.50	5.26	4	41.50	18.05
28		40.00	.	1	71.00	-
29	0	.	-	1	34.00	-
30	1	49.00	-	-	-	-

 bradets at the bretion of the metading surfact afe collent

Cras-xation																									
(*)	6	7	8	9	10	11	12	13	14	15	46	17	18	19	20	21	22	23	24	25	3	7	8	3	30
6	2	4	6																						
7		d	3	2																					
*		1	6	1	1																				
9		1	1	6	5	1						1													
10				2	TF	4	1																		
11				1	3	5	i		1	1															
12			1	1	7	9	b	1	1																
13						2	2	4	2																
14							6	1	1	1		1													
15							t	2	5	3															
16								1	1		0		t												
17										1		1													
19													0												
19									1	1	1			0											
20							1		\%		1	1	2		0	1			1						
21									1		1				1	0									
22												1					0								
23											1	\dagger	3	2	1		1	0							
24											1		3	2			2		1						
25												2		1	2	2	2			F					
26														1		1					1				
27															1							0			
28																	1						0		
29																								0	
30												1	1	2		2			1						0
31										1							2	1							
32															1	1	1			1					
33												1													
3																	1		(4)						
35															1	1	2	1	(4)			1			
36																		1	(50)						
37																		3	(5)		1				
3																(42)		53)							
39															1	1		(65)	1	(6)	(6)				
40															(4)	4+1	A7)	(3)	43)	(67)		6 7	1		
41															(6)	(77)	(79)	1	1	(72)	(69)	(4)			(49)

 tradets at the bottan of the minding sufface way colur.

Quab-astion			Sratace age (ys)																						
(yr r)	6	7	0	9	10	11	12	13	榱	15		15	7	18	1	20	21	22	33	24	8	3	7	38	2
6	3	3	2					1																	
7		2	2	3	1	1																			
8			4	4		1	1	1																	
9				6	6	1		1																	
10	1			2	6	9	6	2																	
11			1	2	7	t5	17	5	3		1	1													
12					4	7	5	+	+																
13					2	2	5	4	4		2	2								1					
14						1		6	9		9	1	\dagger												
15						\dagger	1	3	5		0	5													
16								1			1	2													
17								1					1	1											
18														0											
19											1			2	0										
20													1		1	1									
21											1	+	1	2	1	2	1	1							
22																		0		1					
23									1			2				2			2						
24														1	2	2	2	1	2	0					
25												1				1	2	5	1	2	0		1		
26														2	1			1		1		0			
27																1		1					0		
28														1			1		2					0	
25																1			1				1		0
30																									
31																									
32													1				1								
33																		1	1						
34																1				1					1
35																	1				1	1			
36																			1			(45)			
37																	1			2	(5)	${ }^{(8)}$			
30																			(41)		(51)	1			
38																		©)	1	64)	61)	69)			
40																		(5)	(4).	(2)	(51)	1	(*)		
41												(4)		(5)			(6)	(咞)	(4이)	(6)	(61)	(61)	(6)	(7)	

Figure 1. Mean cross-section age for male Pacific ocean perch plotted against surface age.

Figure 2. Mean cross-section age for female Pacific ocean perch plotted against surface age.

Figure 3. Mean surface age for male Pacific ocean perch plotted against cross-section age.

Figure 4. Mean surface age for female Pacific ocean perch plotted against cross-section age.
produced results very similar to the published results which used 17+ as the final age group (B. M. Leaman pers. comm.).

1 had intended to use the results to generate a correction matrix for converting the original surfate-aged material including older ages to their equivalent cross-section distribution. I could then append any additional years of cross-section catch-at-age information to the original "corrected" data set derived from surface estimations. However, the older ages provided too little information for predicting cross-section ages. Wh \ddagger le surface ages of 16 to 23 were correlated with increasing mean cross-section age, the percent agreement was a)most nil (Tables 3 a and 3 b) and the varfability in cross-section readings was large (Table 2). Surface determinations older than 20 provided virtually no finformation about expected cross-section age. Furthermore, although the distribution of cross-section ages for each of the younger age groups (6-15) was significantly skewed to the left, in many cases the bias was not large and the variance could be accomodated in the Fournier and Archibald model by virtue of the nodel's parameterization of ageing error. Findly, using the results from this comparison to convert an ent1re catch-at-age series would have incorporated the typical problems of extrapolation from age-length keys (Westrheim and Ricker 1978).

The issue of whether cross-section catch-at-age information could be appended to surface-read information was resolved by examining Figures 1 to 4 . Figures 1 and 2 indicate, as stated earlier, reasonable agreement of mean cross-section to surface readings to ages 14 in males and 15 in females. The converse relationship of mean surface reading to each cross-section age, which is shown in Figures 3 and 4 , indicates reasonable agreement (≤ 1 year mean difference) to age 17 in males and females. The general agreement persists to a greater age in this configuration because the distribution of cross-section ages for each surface age contains the occasional old individual. This effect is not seen in the distributions of surface readings corresponding to each cross-section age (Tables 3 a and 3b). Results therefore indicate that additional catch-at-age derived from the cross-section ageing technique can be appended to time series derived from surface readings. The imprecision in agreement between the two techniques however, implies that while sequential population analyses based on mixed catch-at-age data should identify general biomass trends, it will have considerable difficulty in correctly characterising year-class variability.

Acknowledgments

I wish to thank Shayne MacLellan and Dick Nagtegal for re-ageing the old material. Ray Foucher and Mark Saunders reviewed the manuscript.

Literature Cited

Archibald, C. P., W. Shaw, and B. M. Leaman. 1981, Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastai waters, 1977-1979, Can. Tech. Rep. Fish. Aquat. Sci. 1048: 57 p.

Archibald, C. P., D. Fournier, and B. M. Leaman. 1983. Reconstruction of stock history and development of rehabilitation strategies for Pacific ocean perch in Queen Charlotte Sound, Canada. N. Am. J. Fish. Manage. 3: 283-294.

Chilton, D. E. and R. J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60: 102 p.

Fournier, D. and C. P. Archibald. 1982. A general theory for analyzing catch-at-age data. Can. J. Fish. Aquat. Sci. 39: 1195-1207.

Leaman. B. M. and R. J. Beamish. 1984. Ecological and management. implications of longevity in some northeast Pacific groundfishes. Int. North Pac. Fish. Comm. Bull. 142: 85-97.

Westrhefm, S. J. 1973. Age determination and growth of Pacific ocean perch (Sebastes alutus) in the northeast Pacific Ocean. J. Fish. Res. Board Can. 30: 235-247.

Westrheim, S. J. and W. E. Ricker. 1978. Bias in using an
age-length key to est mate age-frequency distributions. J.
Fish. Res. Board Can. $35(2)$: $184-189$.

Long-term cycles of growth in Sebastes: Extracting information from otoliths

George W. Boehlert
NMFS, Southwest Fisheries Center
Honolulu, Hawaii and
Mary M. Yoklavich
Oregon State University Newport, Oregon

Abstract

Tlme sertes of information about fish populations are useful in understanding their natural fiuctuatlons and responses to varlation in physical factors. Most time serles on fish, however, concern population size, typically estimated from historical catch records. We describe a technique by which growth Information can be extracted from otollths of long-lived specles such as sebestes through sectlonjing and careful measurement. As an example, data trom recently collected Sebastes dloloproa and S. pladger are used to describe growth at ages 1 through 6 durling several decades of this century. We describe the technlque and its Itmitations, and make suggestlons for application of the resulting data.

Introduction

The study of long-term changes in marthe fish populatlons has recently recelved a great deal of attention. Understanding the responses of flsh populations to physical and biotle varlability can lead to predtctive capability; Indeed, many current studles lin flsheries oceanography examlne the causes of past populatlon change with the goal of modelling future trends in populations. Obviously such information can be most useful for purposes of flsherles management.

Several cetegorles of long-term change in marline ftsh populations have been linestigated. Population or stock slze has generally been estimated from historical catch records of flsherles, and data from many decades are avallable, as for some Pacific salmonld stocks (Mysak et al. 1982) and several North Atlantic ftshertes (Cushing 1982). Spectes assemblages and blotlc Interactions have been described on the decade scale by current work of the Callfornia Cooperative Oceanlc

Fisherles Invegttgations thoob et al. 1983; H. G. Moser, Southmest Fisherles Center, Natlonal Marline fisherles Service, NOAR, Le Jolle, CA 92038 pers. commun.), and on the century scale by Soutar and isaacs (1974) for the same reglon.

Methods of data collection for developlng time serfes elther come fron continuous data collection or extraction of naturally stored information. The former often occurs over generations of blologists. Since starting a new serles may not allow achlevement of objectlves for 30 or more years, zuallable time serles (which are often collected for other purposes) are used. In some cases, however, maturally stored information can be used to extract historlcal population tinformation. A classic example of this approach 15 the study of cycles of population abundance for Engraulls, Sardiops, and Merluccilus by Soutar and Isacs (1974). By measisulting the abundance of scales in anoxlc sediments, they were able to def the natural cycles of abundance of these specles for 150 yr. Information is also stored in the otol ths of Individual flish (Radtke 1984). The study of age in fishes and the use of otollths for back calculation are simple examples of extraction of historfcal Informetion, and others have used Isotopic composition to deflne thermal habltats occupled by Individual f1sh (Mulcahy et al. 1979).

The study of growth in flshes has typleally been concerned with relatively short-term growth of cohorts or populations, most often wlth fished stocks. Differences in growth may exist between stocks (Templeman and Squtres 1956; Borlsoy 1979), geographical reglons (Boehlert and Kappenman 1980), and among years (Margetts and Holt 1948). Such growth differences may be genetically based (Borlsov 1979), the result of denslty dependence (Margetts and Holt 1948), or caused by several environmental factors, most Importantly temperature (Brett 1979). Unfortunately, compartsons of growth with time often come from different studles, frequently made difficult by changes in sampling, agelng methodology, or interpretation (Boetlert and Kappenman 1980).

Because estlmates of flsh growth are generally made at a single polnt tn time, time serles on the order of several decades do not exist for any specles. Since otoliths act as recording chronometers, however (Radtke 1984; Campana and Nellson 1985), beck calculation technlques allow one to establish growth patterns early ln the it fe history of flshes, even In older fish. Extreme longevity has recently been conflrmed in the scorpaenld genus Sebastes (Bennett of al. 1982), and ages In excess of 60 yr have been reported for several spectes (Archibald ot al. 1981; Boehlert and Yoklaylch 1984; Leaman and Beamlsh 1984). Thus otoltths of these specles hold the potentlal to derlve estimates of growth from several decades ago in this paper we describe a modification of back calculation techniques, from which historical growth petterns can be obtathed, and we apply thls technique to two specles, the splitnose rockfish, Spbastes diploproa, and the canary rockfish, S. alonloar.

Materlals and_Hathods

Otol lth samples were collected during roektlsh surveys conducted by the Northwest and Alaska FIsherles Center, Natlonal Marine Fisherles Service, NOAA, during 1977 (Boshlert 1980), 1980 (Boehlert and

Yoklaylch 1964), and 1983 (wilson 1985). Collection technlques followed Gunderson and Sample (1980). Slnce one objective was to represent as many years of growth as posslble, we besed otolith selection upon age alone; old fish in this study thus greatly outwelgh thetr relative ebundance in a rendom sample. Otaliths were sectloned and age determlned as outlined In Boehlert and Yoklaylch (1984).

Back calculations and measurement of growth increments were Ilmited to the first 6 yr of grow th. This I imitwas imposed because otolith Increments become smaller with increasing age; eventual ly, I Inear growth stops and the otollth beglng to thlcken (Bennett et al. 1982; Boehlert 1985). We used two different techniques for otollth measurement. For S. diploprod. whose otollths are typlcally more opaque and tncrements smaller, we measured from dorsal to ventral distal edges of ennuli 1-6. In the faster-growifg S. plandger, in Which otoltths are clearer, we measured from the focus to the dorsal distal edge of exch increment (Flg. 1).

Figure $1 . \quad$ Schemptic drawing of an otollth sectlon from Sabastes showing the axes of measurement used tn the current study. Measurements for Se dloloncon were from dorsel to ventral distal margins (l.e., VZ to 02); measurements used for S. nindger were from focus to dorsal distal mergln) (1.e., F to DZ).

Dota analysis and interpretation

Avaliable data lncluded sex, longth, date of collection, location information, total age, and widths of the measured annull for ages i6. The growth tncrement (GI(I), where I = t to 6, determined by subtraction of measurements of adjacent annult rather than the full metsurementl, was used so that growth in a given year was not cumulative and therefore did not reflect past growth. Age was subtracted from year of collection to determine the year of blrth. For esech tish, each growth Increment (1-6) was associated with a spectflc "Yetr of growth." Data on 6 yr of growth were therefore avallable for each flsh with the exception of those younger than stx at the time of sampling. As an example, a fish collected in 1980 and aged as 40 yr was born th 1940; growth meesurements from this individual were therefore avatlable for yars 1940 through 1945. Table 1 demonstrates a subset of the date array evaliable for thls serles.

Table 1. A subset of the data array for growth increments used in the present study. The numbers under growth Increment represent the years of birth for these growth years. The first growth Increment ts deflned to occur in the year of blrth, the second growth Increarent in the followling year, and so forth.

Growth year	Growth Increment, GI					
	1	2	3	4	5	6
1940	1940	1939	1938	1937	1936	1935
1941	1941	1940	1939	1938	1937	1936
1942	1942	1941	1940	1939	1938	1937
1943	1943	1942	1941	1940	1939	1938
1944	1944	1943	1942	1941	1940	1939
1945	1945	1944	1943	1942	1941	1940
1946	1946	1945	1944	1943	1942	1941

The majorlty of specimens used in the study were males. To increase the sample size, however, otoliths were collected from both males and fembles. Slnce grow th, perticularly after sexual maturity, alffers between sexes for these two specles (Boehlert and Kappenman 1980), it was necessary to test for differences in the grow th measurements to allow a comblnation of growth data from males and femeles Independent of the years tested. We separated the data by sex and then aggregated the data for each growth increment such that each year of birth had a single, mean value. Differences In growth between sexes were tested by comparing the respective grow th increments with a paired t-test for all years where both male and famale data were availabla. The results of thls test showed that no differences were evident between sexes for either spactes.

Yearly means of GI(t)'s were calculated and these were the values upon which further calculations were made. A long-term average and standard deviation were calculated for each serles of yearly mean grow th Increments and the standardized grovth anomalles A(i) were calculated as follows:

$$
A(I)=\frac{[G I(t)-(\text { mean GI(t) })]}{(S D G I(1))}
$$

These anomalles have a mean of zero and a standard devlation of one, allowing comparison of the growth anomalles In different growth years wlthout concern for the effects of growth Increment magnitude. Comparisons between species would also be facliltated by thls conversion.

Results and_Oltcussion

A total of 902 S . diolopron (651 males and 131 females) and 942 S. pinalger (616 males and 326 females) were used In thls study. The S. diplopron ranged In age from 1 to 86 yr and had a birth date distribution from 1896 to 1979 (FIg. 2A). Spectmens of S. flondger ranged In age trom 2 to 60 yr bid had a corresponding blrth date

FIgure 2. Distribution of the years of birth of specimens used in the present study. Males and females are comblned. A. Sebestes dlploproa. B. S. plnalger.
distribution from 1920 to 1978 (Ftg 28). The total numbers of growth Increments avallable were 4,714 for S. doporain and 5,600 for S pinaleer. In the discussion of the resalts to tollaw, several sources of arror contribute to the varlablitty of these results. From a methodological standpolnt, three errors are quickly apparent. First, m Inor changes th the location of the section of the atollth (fig. 1) may result in silightly different inerement measurements; we expect this to introduce relatively minor errors, however, since the sectlonlng technique (Boehlert and Yoklavich 1984) was consistent throughout the study. The second source of error occurs in the estimate of total age. Errors in this ostimate will result in assjgnment of the incorrect yeer of blrth and subsequent years of growth for each growth lnerement (Table 1). Finally, errors in annulus splection while making metsurements on the section can occur. None of these errors are expected to be systematic, however, and thelr cumulative effects should not signlficantly mask trands in the data.

A concern from blological standpolnt is the Implicit assumption that there Is no linkage of longevity and growth. That is, if long-lived individuals are characterized by alther faster or slower growth rates during the first 6 yr of Itfe than Individuals with shorter Ilfespans, we can encounter problems when comparing young with old fishes. A genetic basis for such a difference in growth and age at sexual maturlty hes been suggested for cod (Bortsov 1979). An Investigation tinto the blochemfcal genettes of S. Alplopron using electrophoresis at 29 loel showed no variation associated with age (hishard and Boehlert, unpubl. datal. Although nagetive rasults cannot rule out a difference, our growth results do not show a consistent trend which would support a genettic besis for growth dtfferences.

As one would expect from growth data, there is def Intte varlablitity in the growth anomalles for both specles (FIgs. 3,4). No clear trends in etther faster or slower growth ower the full time serles are apparent for elther spectes. The $5-y r$ running averages, however, shom at lnteresting pattern. In s. diploproa (Fig. 3), most of the age classes shom a trend of positive anomalies before about 1925, and negative anomalles from about 1955 to 1970; positive anomalles after 1970 are also apparent in most of the records. The relationships among the age classes are also of tnterest. Generally, there is a relationshtp among anomaltes 2-6 for this spectes, but the anomaly for year 1 is uncorrelated with growth in any other year. Sahastas diflopron is a deeper living member of this genus as adults, but the first year is spent in surface waters (Boehlert 1977); thus the factors which are limportant in growth in the tirst year may differ from those which determine growth in subsequent years. Temperature, which can have an tmportant Impact on Juventle rockfish grouth (see summary In Boehlert and Yoklavich 1983), mey differ between deep and shallow water (Kruse and Huyer 1983).

For S. planlger, the record is somewhat shorter but shows interesting
 anomaly through about 1952 followed by a perlod of negative growth untll about 1970. Age classes 5 and 6, however, seem to show the opposite trend during these perlods. All age classes show concordance, however, In the pattern of positive anomaltes after about 1970. This same trend, although much reaker, was observed for S. difloproa (FIg. 3).

The technlque which we describe in thls paper allows development of the serles of growth for long-lived spectes of fishes. The results we have presented for these two species will need further statistical analysis to discern trends in the data and to lnvestigate the passible sources of variation In growth patterns. For example, time serles analysls may show relationshlps with physical factors, os described by Chelton at al. (1982) and Mysak (1986). Blologlcal causes for growth varlatlon may also be implicated. In thls regard. it ls significant that the apparent increase in growth after 1970 (Figs. 3,4) is temporally related to the depletlon of coastal stocks of Sohnstes as described by several papers In this volume. Does thls hint at density dependent growth petterns? Future research on thls data base will address these questlons.

References

Archlbald, C. F., W. Shaw, and B. M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenldee) trom B.C. coastal water5, 1977-1979. Can. Tech. Rep. Ftsh. Aquat. Sct. 1048, 57 p.
Bennett, J. T., G. W. Boehlert, and K, K. TurekIan. 1982. Contirmation of Iongevity In Sobastes diolopron (PIsces: Scorpeenldae) trom ${ }^{210}{ }_{\mathrm{Pb}} / 226_{\mathrm{Ra}}$ measurements In otol iths. Mar. Btol. (Berl.) 71:209-215.

Boehlert, G. W. 1977. Timing of the surface-to-benthlc migration in Juvenlle rockfish, Sahastes dlplopros, off southern Calffornlt. Flsh. Bull., U.S. 75:887-890.

Boehlert, G. W. 1980. Size composition, age composition, and growth of canary rockflsh, Sahathes dmadar, and splitnose rockflsh, S . diplopros, from the 1977 rockflsh survey. Mer. Fish. Rev. 42(3-4):57-63.

Boehlert, G. W. 1985. Using objectlve criteria and multiple regression models for age determination in fishes. Fish. Buil.. U.S. 83:103-117.

Boehlert, G, W_{2}, and R. F. Kappentan. 1980. Varlation of growth w th latitude in two spectes of rockfish thobastes plnaloer and s. diploproal trom the northeast Pactftc Ocean. Mar. Ecol. Prog. Ser. 3:1-10.

Boehlert, G. M., and M. M. Yoklavich. 1983. Effects of tempereture, ration, and fish sfze on growth of juvenile black rockfish, Sebastes melanops. Environ. Blol. Fish. B:17-28,

Boehlert, G. W.: and M. M. Yoklavich. 1984, Varlability in age estlmates in Sebnstes as a function of methodology, dtferent readers, and difterent Iaboratorles, Calif. FIsh Game 70:210= 224.

Borlsov, Y. M. 1979. The selective effect of fishing on the population structure of specles with a long llfe cycle, J . lehthyol. 18:896-904.

Brett, J. R. 1979. Environmental factors and growth. ل10 W. S. Moer, D. J. Randall, and J, R. Brett (editors), Fish physiology, Vol. VIII. Bloenergetlcs and growth, p. 599-677. Acad. Press, N.Y.

Campana, S. E., and J. D. Nellson. 1985. Mlarostructure of fish otol Iths. Can. J. Fish. Aquat. Scl. 42:1014-1032.

Chelton, D. B., P. A. Bernal, and J. A. Megowan, 1982. Large-scole Interannual physical and blological Interaction in the Callfornia Current. J. Mar. Res. 40:1095-1 125.

Cushlng, D. H. 1982. CJImate and flsherles. Acad. Press, N.Y., 373 p.
Gunderson, D. R., and T. M. Semple. 1980. Distributlon and abundance of rockflsh off Washington, Oregon, and Galffornla during 1977. Mar. F1sh. Rev. 42(3-4):2-16.

Kruse, G. H., and A. Huyer. 1983. Relatlonshlps among shelf temperatures, coastal sea level, and the coastal upwelling Index off Newport. Oregon. Can. J. Fish. Aquat. Scl. 40:238-242.

Leaman, B, M, and R. J. Beamlsh. 1984. Ecologlcal and management Implications of longevity in some northeast Paclflc groundfishes. Int. North Fac. Fish. Comm., Bull. 42:85-97.

Loeb, Y. J., P. E. Smlth, and H. G. Moser. 1983. Recurrent groups of larval flsh spectes in the Callfornala Current area. Callf. Coop. Oceanic Flsh. Invest. Rep. 23:152-164.

Margetts, A. R., and S. J. Holt. 1948. The effect of the 1939-1945 war on the English North Sea traw 1 fisherles. Rapp. P.-V. Reun. Cons, Int. Explor. Mer 122:26-46.

Mulcahy, S. A., J. S. Killingley, C. F. Phleger, and W. H. Berger. 1979. Isotoplc composition of otollths from a benthopelagle fish, Coryphaenaldes acrolepls, Macrourldae: Gaditormes. Oceanol. Acta 2:423-427.

Mysak, L. A. 1986. EI NIno, Interannual varlability and fisherles in the northeast Peciflc Ocean. Cen. J. Fish. Aquat. Sci. 43:464497.

Mysak, L. A., W. W. Hsieh, and T. R. Parsons. 1982. On the relatlonshlp between interannual boroclinic waves and flsh populations in the northeast Paclfic. Blol. Oceancgr. 2:63-103.

Radtke, R. L. 1984. Cod flsh otoltths: Information storage structures. In E. Dahl. D. S. Danlelssen, E. Moksness and P. Solemdal (editors), The propagation of cod Gadus morhua L., p. 273-298. Flodev 1 gen Repp. Yol. 1.

Soutar, A, and J. D. Iseacs. 1974. Abundance of pelagic fish during the 19th and 20 th centurles as recorded in anaeroble sediment off the Callforntas. Flsh. Bull., U.S. 72:257-273.

Templeman, H., and H. J. Squires. 1956. Relatlonghlps of otolith lengths and welghts in the haddock Melamogrammus egoleflnus (L.) to the rate of growth of the flsh. J. Fish. Res. Board Can. 13:467-487.

Hilson, C. D. 1985. The effects of different otolith agelng techniques on estimates of growth and mortallty for two species of rockflshes, sebastes alnolaer and Sebastes diploproa. M.S. Thesls, Oregon State Unlve, Corvallls, Oregon, 107 p.

Acknowleroment

We acknowledge fundligg for thls work from the Northwest and Alaska Fisherles Denter under contracts 40-ABNF-5-262 and NA-85ABH-00025.

Population parameters for rougheye rockfish (Sebastes aleutianus)

Bonita Nelson and Terrance J. Quinn II
University of Alaska, Juneau Juneau, Alaska

Introduftion

Rockfish (genus Stebates) are an important component of the marine community in the northestern Pacific Ocean (Love and Westphal 1961). Hejor catches have occurred in the foreign high seas fisteries in the Gulf of Alaska and Bering Sea (Bakkala it 1. 1979). Thirty-two species of rockfish have been identified from groundfish catches from the Eastern Bering sea and Aleutian Islands regions (ito 1986a). The demersal fish catenes of California, Mashington and onegon are dominated by rockfish (Gunderion and Lenarz 1989). Canedian rockfish catches have been important (Carter and Laman 1901). Finaliy, a steadily growing fishery has been established in southeantern Alaska for several species of nearshore rockfish (L. Haldorson, pers. come.).

Historically, fishing patterns for demersal fishes have severely depleted tococks and altered the structure of their populations (Love 1980). The demersel fisheries in the Gulf of Alaska and Bering Sea have changed significantly and are nom manaed under the implementation of the Magmuson Fishery Management and Conservation Act Major 1906, Prefacel. Although overall production has increased, the catch of only pollock has increaced steadily. Catohes from wast other species groups, notably the rockfish, have declined sharply. Annual landings of rockfish taken from the Gulf of Alaske have declined from 395,481 to 3,221 et from 1965 to 1965 . U.S. and Canadian rockfish stock leveis are very 1 om (J. Fujioka, pers. com.). This is attributed to the over-exploitation of stocks during the 1960-1978's. The current status of the Gulf of Alatha Pacific ocean perch (POP) complex and "other rockfish" stocks is depresefd. Pacific ocean pereh stocks in the Eastern bering sea and Aleutian region have remained stable but low for miny years (3. Fujuoka, pers. comn.).

Rockfish research has traditionally been underfundedy consequently the majority of the research attention given to Sebastes focuses on the species of greatest comereial importance woh es the Paeific ocean perch (Westrheim 1973). Basic biological inforeation including age structure and reproductive biology is not available for miny of the fifty species of rockfish which inhabit the western coastal water of North America (Love and Westphal 1901). Acquiring this information is important hacause new interest in demersal fish stoeks has been generated by the decline af the POP stocks and increpeing manmopment controls on traditional fisheries such as salmon and halibut (Archibald et al. 1901J. Rockfish populations aro managed as an aggregate. For manple; POP (Sebistes siutus) is managed with 4 other species of Sebastes (ilputianus, borenlig, polyspinis, and zacentrus). as the "pop complex", or red rockfish, that inhabit the slope and shelf depths. Also, other rockfith caught in the high seas fishery ore luaped together for management purposes in a category called mother rochfish" (Carison et $\mathbf{3 1 .}$ 1986). While new demersal fisheries may not key in on many of the rockfist species, they will be caught incidentally.

The purpose of this study is to perform a comprehensive analysis of the basic age, growth, and mortality parameters of the rougheye rockfish (Gebastes aleutianus) in southeastern Alaska. This study examines one edult ind two juvenile populations in southemstern Alaske. Otolith meristic measurements are investigated for age prediction as an alternative to direct ageing.

A description of age structure of rockfish stocks would provide information bout stock dynamics; growth, mortality and sustainable yifld (Lemen and Bearish 1984). Intensification of Gulf and Bering Sea fisheries males managemant and conservation of the demersal stocks a complicated task (Carlson et al. 19B6). Often, rockfish stock informa tion is limited and of poor quality making it difficult to formulate yield options (Lemban ath Stanley l985). Limited funding to the mpnogement agemcies inhibits their ability to monitor age structure because agting rockfish is extremely labor intensive. Therefore un ageing method which is precise par not time consuming is meeded to conetruct the correct models for understanding these long-livad ftocks and insuring adequate management and yields to prevent overharvesting.

Very little information on adult mougheyes and virtually none on juveniles exists in the literature. This species is of interest for two reacons. First, it is managed as part of the POP complex (Carlgon ot. a7. 1996) in the Gulf of Alaske and Eering 5 ges and has even been misidertified as POP in commercial catches (1to 1986b). Second, it is thought to be the the oldest living rockfish (Chilton and Beateish 1982), being aged to 140 years. This species is caught incidentally in the Bering Sea trawl fishery (Bakkala tt al. 1979) and is of minor comercial importance in the Gulf of Alaska (Alton 1981). It is 4leo landed by the Canadian triwi fishery in tignificant numbers (Carter and Leaman 1981) and is incidentally cuught by the suthefish and halibut longline fisheries in the waters of southeastern Alaska (Haldorson, pers. com.). The tstimated catches of rougheye from the eastern Bering Sea as reported from U.S. observer deta has declined from 1,044 to $99 t$ from 1977 to 1984 (Ito 1986b), following the overall decline of 211 rochfish eatches during the same period. A similar pettern of decline exists for the Aleutian Islands region, from 1,12日 to 24 from 1977 to

In order to assess the usefulness of otolith meristic mensurements for ageing fish, estinates of otolith prowth in thickness; length, width and weight are considered. Cummently the preferred ageing structure for Sapastes is the sagittal otolith (Patten 1973). The age is determined by visually counting the alternating hyalimefopaque rings colled annuli. These rings are observed from the surface, from sectioned piece or by breaking and burning the otolith. A controversy currently exists as to which reiding method gives the most accurate and concistont age fitimatt (Leanan and Beamish 1994). Surface counts have been found to underestimate ages of many long-lived species dolder than 15 years). The break and burn or section methods way reflect the true ag f of the fish more accurbtely than the surface method, but both are ties-consuming and require a highly skilled technician. For some species of 豆bletas, an experienced otolith ager can only age 6-B fish/hr using the sectioning method, and 10-15/ hr using the break and Burn wethod (Bomiert 19e5). In addition, it is difficult to acquire inter- and even intra- agency agreement as to how to interprot the annuli on the otolith of older (>15 yr.) specient.

Otolith length and width are positively correlsted to fish length (Bothlprt 19e5). For Pacific halibut, otolith weight is the best predictor of fish length and fish weight (Cuinn th al. 1983). Ofton when a fish approaches an asynptotic length, the otolith ealates to grow longer and mider, but does continut to grow thicker and therefore increase in weight (Eowhlert 19e5). This increase in thickness mecounts for more wecurnte ageing of otoliths that are sectioned or broken and burnt. Additional rings ars added to the middle surface after the otolith stops growing in length and width. Boohlart (1985) developed predictive relationships of age for two species of rockfish using muttiple regression techniques, being one of the first to suggest this appronch.

Mathods end Materials

Field data aollection
The primary juvenite site mas Outer Point on Douglas Island (Figure i). This population mas sampled three times during 1982 and 1983. Ihe sampling datet were: Sept. 21, 1982; Mar. 23 and Apri1 7, 1993. The somplef mere collected by the NOAA research vessel, John N. Cobb. Fish were caught with 4 mea mes Eastern otter traw equippedmith weighted mooden doors. One or two tows mere made per day drigging between 50 to 75 fathoms for approximately 30 minutes. A total of 200 fish were collected from the hauls at the Outip Point loci** tion. Specimens werf brougitt back to the laboratory and frozen before processing.

The second juvenile population mas tampled fron Port Althorpe located on the outer coast of Chichagof Isiand (Figure i). The sampling date was July 15, 1993. The MOAA refearch vescel MURRE II, e 25.9 m. power barge collected the samples. The equipatit used wes otandard 12.2-m nylon flat shrimp side tranl with 2.54 - cm 2 - mesh and wighted wooden doors. The ret was towt once for approximately 30 minutes at 50 fathoms. 76 specimens were collected. Fish were frozen on board before being brought peek to the laboratory by other scientific personnel.

Figure 1. Study sites for rougheye rookfish.

The adult population was sampled from the outside waters of Southeast AK from the areas between Yahutat and Sitka (Figure 1). Samples were cotilected by the Japantse longline vessel; RYUSHO MARU No. 15. The survey period was between August 2 e and September 10, 1992. Long7ine gear was used for sampling and eonsicted of 45 mooks per hachi tied to a 190 meter groundine with 1.2 meter gingion spaced 2 meters apart, 166 haetio were set per sampling site. The gear was fished for 5 to 6 mours and set in direct arngles to the contour lint to cover a depth range from 106 to 1900 meters. Hooks were baited with squid.

The samples were processed fresh on board by the crew of the vescel. Fish wert measured for fork length to the nearest ca and sexod, and both sigittal otoliths mere taken. The otoliths were cleaned and tored in 502 thanol in senll vials. 390 specimens wre prooessed and an additional 75 fish were frozen whole and returned to the laboratory.

Processing of semples consisted of ditermining sex if possible, macuring fork length to the nearest cm , and collecting both ingittal otoliths. The otoliths were cieaned and stored in smalf vials containing 50x ethinol or glycerin.

Laboratory processing of otoliths
Ageing- the juvenile populations were aged by both the surface mothod described by westrheim (1973) and a modified brealk and burn method described by Chilton and Besmish (1992). The adult population mes aged with the modified breable and burn method only.

The surface method of ageing otoliths involves placing the otolith in a selill black-bottomed dish and counting the rings under a disaecting microscopp. For this study the lid of a 168 ml. sampling jar mas used as a sampling dish. A small amount of water, enough to submerge the otolith, was placed in the dish so that reflected light adequately illuminated the otolith. m 106 powered Leitz dissecting microscope mas used to count the otolith rings. All surfaced aged otoliths wre aged two separate times before afinal ig* wis ossigned as suggested by Chilton and Beamish (1982).

The break and burn procedure (Chilton and Beamish 1992; Bophlert and Yoknlovich 19a2) was modified by breaking the otolith in half by hand because sectioning equipment was not available. Eseh half of the otolith was slightly burnt with an alcohol burrier and placed in modeling elay so the burnt section faced up. A tadilamount of glycerin was applied to the burnt surface with a still paint brush. The rings were counted by using a Wild dissecting microscope at $30-109$ power with fiber optics. Each otolith wif aged twice at separate intervals before finil age mas assigned. The sex and fork length of each specimen was not known while it was being sged. When one otolith mould not yield a consistent age, the other one was broken and burnt and aged. The same ${ }^{\text {gep }}$ had to be determined two separate times before a final age mply ussigned to the specimen.

Validation of rockfish ages and ageing techniques is very difficult (Chilton and Bembish 1982). The ageing technique used in this study was vilidated by taking a subsample of otoliths previously fopd to the Pacific Biological Station in Nanaimo, B. C. and to the MiFs Montlake Laboratory in Seattit, Mashington for comparison of ages. The two agencies imterpret anmuli differentiy, pspecially when using thy bremk and burn method. Our technique agreed with the method of interpretation of anmuli as mas done at the Nanaino laboratory.

Meristic measurements of otoliths. Meristic melisurements were made on mll groups of otoliths. A handheld micrometer was used to measure one otolith from each pair. Each otolith was mescured for lingth, width ard thickness to the mearest .01 mo. When part of the otolith was broken or chipped, it wait not used for a measurement. Ench otolith wes measured once. All otoliths were placed in an oven for 5 hours at 120 degrets C before they mere meighed to the netarest 01 g with an samtorius electronic balance.

Analytical methods
Data was pritered and managed on a Compan microcomputer. Data sumaries end *tatistical analyses were performed using SYSTAT software. Standerd regression techniques (Sokal and Roh1f 1969) and exploratory data analysis (Tukey 1977) were used to investigate the data. Models were derived to estimate age from various otolith morphometrios using stepwise multiple regression techniques. Models wert derived for both sexes combined and for each sex separately for the pdult population. Models were derived for only both sexes combined for each of the two guvenile populations.

Distribution and reqression analysis: First, the shape of tach ymriable's distribution was examined to see if the data meaded to be
transformed. The data were examimed with exploratory date techniques (Tukey 1977) and analyzed graphically. Each variable was plottod in a stem and leff diagran to look for symmetry and to get the letter values (lvals) of the distribution. The lvals (median, hinge, eights, sixtetinthes and extremes) mere summarized and the bidpoints were calculated. If the stem and leaf diagram showed skewneis and if the midpoints (mids) fluctuated or showed an upward or downward trend, then the dita were transformed. Transformations were made until the distributions appeared symmetrical and the mids were stable.

The second step of regression analysis consisted of looking for multicallinearity problems. First, the independent viriables were plotted againct each other and the resulting scatterplots were examined. Next, a Pearson correlftion matrix of the variables was calculated.

The data was then entered into series of stepwise multiple regression models. The best model mas chosen by comparing each test statistics arxd by restdual analysic. Residual analysis helped to assess if problems had occurred with model or error specification, and if heterofcedasticity had occurred. A scatterphot of the residualis versus the dependent vari= able whi analyzed for such pitterns. Also, outliers ar hi leverage points were identified. Residuals were plotted in a stem and leaf diagram to further investigate departures from underiying esesumptions.

The regression models derived for each population were compared using malysis of covariance (Kleintaun and Kupper 1978). First, the two juvenile population were compared using a duminy variable regression eodel that indexed location. Mext, the date from the two juvenilies mas pooled and was compared to the data from the adult population.

Growth analysis: Growth of individual fish was modeled with a von Bertelanffy growth curve, using non-linear least squares to obtain parameter estimates, as described by Gallucci and Guinn (1979). The data frow the adult population mats analyzed for both stexp combined and for each sex separately. Pooled data consisting of all three populations with both sexes combined and with both sexes teparately was also analyzed. The analysis of covariance procedure mate used to see if any difference was apparent in the generated growth equations. The pooled juvenile data set was not used alone because no asymptotic length was found in the dita set.

Mortality extimption. Catch curve regression analysis (Ricker 1975) mas used to estimate survivel sind total mortality rates. Estimetes were made for each sex separately and for both combined. Jensen (1585) showed that catch curve regression analysts was preferable to other methods, when variation was smill to moderate. The major assumptions are that the overali mortality rate does not change over time, that recruitment is the same for each yoar class, and that past some critical age the survival rate is uniform (Ricker 7975).

Logarithas of the percentuge representations of each age class were plotted againgt age. Next, linear regrestion analysis mas used to calculate the sfope of the descending right arm of the catch curve, which is the estimate of the instantaneous mortality rate (Z). For the adu7t population, this ourve started at age 40 for both sexes alone and combined. For the juveniles, the curve started at approximately age 5 .

Survival (S) was estimeted by the fuation: $5=\exp (-2)$. Its standard error was estimated by S s.e. (Z) from the delts method (Seber 1982, p. 7-9).

Results - Prediction of Agt

Adrult population
Sumary Statistics. A total of 370 speciens, 178 femelo and 200 male, wert collected for this population. Ages ranged from 10 to 95 years, with the mein at 33.8. The majority of the fish aged for each sex were betmetn 20 and 40 years. The mean age for femilos was 32.7 years and for males mas 34.8 yearts. 14.0 percent of the total population was at least 59 yeare or older. The age frequency distributions for both sexes were similar. Fork length distribution for the sample ranged from 38 to 74 em with mean \quad at appraximately 44 cm for both the errtire sample and for pach sex. Most fish sampled whre between $40-50 \mathrm{~cm}$.

Descriptive and Predictive Reletionships. The stem-and-1eaf and the letter valum ("ival") diegrams indicated the following transformations should be made on the dath. The distributions of age, otalith width and otolith thichnesf were made more symetrical by converting them to natural logarithms. Since transformations only slightly improved the distribution of length, both the raw and transformed dite were used ceparately in regression andysis. Transformations did not improve the distribution of otolith length.

As an exaliple of this approach, "lvil" diagrans for the age distribu* tion in the raw and natural logarithm form are shown in Table 1 . Ine mids are rising for the raw data, indicating ned for transformation. For the log-transformed data, the mids are very stable, in= dicating that the transformation improved the symmetry of the distribution.

Table 1. "lval" diagrams for distributions of age and in(age), adnlt population, sexes conbined.

Ag*:	$\mathbf{N}=\mathbf{3 7 7}$				MIOS	SPREAD
	188		33		33	19
	94h	23		42	32.5	
	46	20		52	36	
	24	15		62	38h	
	12	14		67	4eh	
	1	18		95	52h	

The fids are rising indicating the meed for transformation.

In(29e) :		3.49	3.49	.09	
	3.14		3.73	3.43	
	2.96		3.95	3.42	
	2.71		4.12	3.41	
	2.60		4.20	3.46	
	2.30	4.55	3.43		

The mids are stable and the spread is much smaller than far age.

To assess multi-collinearity problems, bivariate plots of the independent variables revealed that strong positive linear relations exist. All independent variables had corriation coefficients above 0.7e3. of the independent variables, the most highly correlated were otolith thickness and otolith weight. This result indicates that care must be tahen in selection of the independent variables in miltiple regression. Too many variables may result in bias of the regression eofeficients (Sokal and Rohlf 1969).

The data mere fitted to several multiple regression models to explore the relationship between age and the independent variables. The independent variables were entered inte the stepwise model in the following order: length, ln(o.weight), In(o.thicuress), In(o.width) and o. length where in denotes natural logerithen and o. denotes otolith. The dependent variable mas ln(age). A separate model mas also ealeulated using 1n(length) and the above mentioned variables in the same order.

Multiple regression models for the adult population were calculated for both sexes combined and for each sex separately. The eain emphasis and most effort mas applied to the models of both sexes combined, because management strategies often involve port sampling where the fish have been + viscerated. Therefore, lengths are taken and otoliths are collected without hnowing the sex.

For sexes combined, all of the independent variablet were enterud into - multiple regression model (Table 2). The In(o.width) and o.length varisbles were not found to be significant in the overall multiple regression model. This all-variable model explained 74.1 percent of the variation in age as measured by the coffficient of multiple determination, $\mathbf{R d}^{4}$. The midpoints of the residuals mere all mar 0 $(0,-61,0, .66,-01)$ and the plot of the residuali versus $\ln (a g e)$ shomed no distinct pattern.

All variables but otolith width were then entered into atepwise mode 1 (Table 2). All variables except otolith length were found to be significant. This model described 74.32 of the variation in age. The mids of the rosiduals were steady near $0(0,6, .01, .63, .63)$ and no obvious pattern was seen in the residual scatierplot.

In a effort to minimize the effects of multi-collinearity, the data were also fitted to several other multiple regression models. This mas dorne in an attempt to find a model which adequately describes age from the fowst number of independent variables. A total of 20 different models using various combinations of raw and transformed variables were calculated in this analysis.

The R^{2} value wes very consistent (betmeen .680 - .741) for all models and the F statistic was always highly significant ($\mathrm{P}=.800$). Therefort; the deciding factors which distinguished the bett models were the models that had the fewest number of independent significant variable coefficients, and residual analysic. The final model chosen to describe and predict age from length and otaith meristic data for the deta set thet inciudes both sexes combined, had only two variables: length and $7 n(0-m e i g h t)$. This madel predicts 71.62 of the variation in age. The "lval" diagrams of the residuals showed no trends (Table 2). A plot of predicted and observed age showed that the model was realistic in spite of the variability in the data (Figure 2),

Table 2. Regression coefficents and associated test statistics, adult population, sexes combined.
A. All variables: $\mathrm{N}=\mathbf{2 9 7}$

Variable	Comfficient	S.E.	P	Multiple $\mathrm{R}^{(}$	F
constant	3.816	0. 783	. 804	. 741	.809
1erngth	0.012	0.064	. 801		
1n(0.weight)	0.484	$0.13{ }^{\text {c }}$. 089		
In(o,thick)	9.579	0.210	.047		
1n(otwidth)	-9.228	0.279	. 416		
0.length	0.ent	6.812	. 46		

B. Stepwise procedure: W = 298

Variable	Coefficient	G.E.	P	Multiple Re	*
constant	2.456	6.480	. 48	.743	.409
ln(0.meiglt)	0.418	e.181	. 46		
7ength	0.911	6.844	. 8 e		
In(o.thick)	0.595	6.294	. 9		
o. length	0.923	0.812	. 65		

C. Final model: $\mathrm{N}=333$

Variable	Copfficient	S.E.	P	Huttiple R	F
constart	3.567	0.229	. 848	. 716	. 898
In(o.meight)	0.697	0.663	-808		
length	0.613	6.044	.098		

D. Summery of midpoint values of regiduels for final model

			Mids
167		0.04	0.00
04	-0.15	0.19	6.02
42	-0.27	0.26	0.005
22	-6.33	0.34	0.005
11	-6.39	0.44	0.03
1	-6.61	6.63	6.09

For adult females, an analogous pattern of anhlysis ensurd. The best model had signifiesmt values for length and inco.wight) and describad 73.62 of the variation in age (Table 3). The seaterplot of the residuals versus ln(age) shomed no obvious patterns. The eidpoints of the residuals were steady at 6 (.05,.00,.61,.01, .05).

For adult males, the best model used only length and o.meight (Table 3). This model predicted 69.45 of the variation in age and had a sigmifieamt F statistic. Theresidudl amalysit revealed two possible cuthiters, but the scintter wes randon. The the midpoints mere steady it e.

Figure 2. Predicted vercus oberved age for the adult population, combined sexes.

Predicted vs. Observed Age Adults

Juvenile population = Outer Point
Data analyses for juvenile populations were similar to the procedures for the adults, except that data were only analyzed for both sexes combined, becouse sex could not be determined on miny of the specieens collected at both sites.

Sungenry statistics. A total of 174 fish (of which 71 wert fomelos, 76 wort mits and 29 mere of unidentified sex) mere smpled from the outer Point population. Ages ranged from 2 to 18 years, with the mean at 7 yepre. Most of the fish smmpled were 5 and 6 years old. The fork length distribution renged from 6 to 37 cm , with a mean length at 23.6 em . The majority of fish sitepled uere 20 ciel or greater.

Descriptive and predictive repationshigs. Fhe amalysis of the dictribu= tions of the variables indicated that 211 of the variables except otolith thickness netded a natural logarithem transformation.

The variables mere analyzed for possible multi-collinearity problems. Biveriate plots of the independent variables and examination of the correlation coefficients revealed that some of the variables wire very highly correlittad, and some were not. The leact comrelated were otolith thickress and length (.649) and the most correlated ware otolith width and otolith weight (.926).

For this population, In(age) was the dependent variable. The best model included only 1n(length) and in(o.weight), (Table 3). It predicted 77.6x

Table 3. Best multiple regresfion models
A. Adult population, femeles: $\mathrm{N}=156$

Veriablr	Confficient	S.E.	P	Muttiple $\mathrm{R}^{\boldsymbol{4}}$	F
constant	2.858	0.339	. 008	. 734	. 008
length	9.e94	0.605	. 909		
1n(o.meiglt)	0.498	6.099	-804		

B. Adult population, meleft $N=177$

Varicble	Copfficient	S.E.	P	Multiple $\mathrm{R}^{\text {a }}$	F
constarit	2.156	0.142	.9ee	. 694	. 604
length	9.415	0.944	. 808		
- . + eight	1.735	0.199	.008		

Variable	Coefficient	S.E.	P	Multiple ${ }^{(1)}$	F
constant	0.936	0.653	. 154	. 776	.096
In(0.meight)	0.683	0.099	. 808		
1n(1ength)	0.795	0.149	. 609		

D. Althorpe Bay juvenile population, sexes combined: $\mathrm{N}=29$

Variable	Coefficient	S.E.	P	F
length ${ }^{\text {a }}$	0.689	0.189	.eer	.008
In(0.meight)	39.765	7.496	.091	

E. Combined juvenile popurations: $N=127$

Variable	Coefficient	S.E.	P	F
1n(Tength)	6.915	0.024	. 090	.000
In(o.*eight)	6.468	0.036	.8e9	

of the veriation in age and the F statistic was significant. The residual scattemplot revealed no patterns and the mids mere centered around ($.61, .985, .914, .95, .94$).

Juvenile populigtion - Althorpe Bay
Stionty Sthtistice A total of 29 fish mere sminpled from hlthorpe Bay. The sex of the majomity of these fish could not be determined. The egef rarged from 2 to 12 years with menn at 6 years. The fork lengths ranged from 7 to 32 cm . The memin length mas 22.6 cm.

Peforintive end meadiotive relptignships. Amplysis of the distributions of the variables revealed that the fallowing transformations mere meeded. Length mas transformed by square roots. Otolith width, thickmets and otolith length wore transforeed by natural logs. Agt and

The variables were analyzed for milti-collimearity problems. All independent variables werp very highly correlated. The highest correlation wre between otolith wight and length (.ges) and otolith length and otolith weight (.965). The lowest correlation wis for otolith meight and otolith thieknese (.913). Thest independent variables had higher cor= relation copfficients overall than the other two populations.

The best multiple regression model included the transformed length and otolith weight varisbles; but did not include a constant (Table 3). This nodel deseribed $97.7 x$ of the variation in age. This high value stams from using fiew data points that did not comtain many missing values. The F statistic was sigmificant. The residull scatterplot indicates that the variance doss incrage with increasing oge. The midpoint values fluctuated around 6 .

Comparison of populetions

The final regretivion cofficients from ench of the models frow all three populations studied were compared using analysis of covariance (K1einbhum and Kupper; 1978). The juvenile date were compared first. The data from both locations wert pooled and a dumay variable regrefifion teemnique mas used to compare data sets by looking for significance of the resulting regression coefficients.

The resulte are shom in table a and show that the overall regression coefficients of 1 n (length) and $1 \mathrm{n}(0 . \mathrm{m} i \mathrm{int}$) wert kignificant (P x.ept for both). The location trim was not significant ($P=275$) indicating that both data sets had the same intercept. The tost for equal slopes and then therifore for coincident lines indicated that the length component of the data mas not different betweth the two populations ($P=.374$). The otolith weight component had significsme level of ($P=.977$) which was judged to be insignificant. Thus, the data could be pooled and then compared to the adult data set.

A stepwise multiple regression aralysis was then performed on the pooled juvenile data set. The only regression coefficients that were significant when all variables were entered into the model were the in(length) and In(o.twight) (Table 3). The seateter of residuals mas randos however two outlifrs were observed. These dats points mere rechecked and wert found to be valid dath points. A plot of predicted and observed age shows that the model is mesilistic (Figure 3).

The next step was to compare the pooled juvenile date sot to the adult date set using amilysis of coviriance (Table 4). The regression coefficients for lin(length) (Pa.e96) and 1 ln (o.weight) (P土.e26) were sig= nificant. The location varisble was also significart (P=.043) indietting that the intercepts of these two date sets were not the same. The ine teraction term of location with ln(length) was not stgnificant (Pz.az9)
 the intercepts were not the same and ome of the slope components are also different, we concluded that the en two data sets should not be pooled.

Figure 3. Predieted versus obenved nge for the pooled juvenile population, combined stekes.

Predicted vs. Observed Age Juveniles

In sumary, the best overall mode 1 for the populations studied consists of an adult and juvenile curve. The best equation for the adult population is:
In(age) $=3.567+.613$ length +.691 1n(o.weight)
5.e. .220 .094 . 063

The range of length valuts is 28 to 74 cm , ond for otolith weight is 0.128 g to 0.990 g.

The best equation for the combined Juvenile populstions is :
1 n (age) $=.915 \mathrm{ln}(1$ migth $)+.469$ in(o.weight)
s +e. . 824 . 836
The range of length values for the juvenile population is 6.6 to 37.0 cm and for otolith weight is 0.033 g to 0.270 g .

R-5ulte - Growth Andysis

Analyses were performed on the adult and the pooled juvenite and adult data set. Only refults from the pooled data set are presented; because the goal whs to obtain a growth curve for all moes. Analyses were performed for females, males, and sexes combined (Table 5). The L-infinity estingte was the greatest for the fanales (59.0 cm), and sivilar for the males (59.4 cm) and for both sexes combined (54.7 cm). Thege values were less than the maximulm value recorded in the data set, indicating that longth is highly varisble at older ages. The estimate of the growth parameter K was o.04 for fomplas, and was the about the sam for the ma7es and combined data (0.05). The t. estimate for sexes conbined (4.21 ym) is similiar to the estimate for mies (-4.09 yr) and is higher

Table 4. Analysis of covartance results for comparing populations.
A. Comparison of juvenile populations: $N=126$

ANALYSIS OF COVARIANCE

Source	SS	DF	M ${ }^{\text {S }}$	F-ratio	P
In(langth)	0.689	1	0.6e9	17.757	. 609
7n(o.meight)	1.479	1	1.479	37.961	. 096
looation	0.647	1	0.647	1.204	. 275
location: 3n(1ength)子ocation*	0.124	1	0.124	0.795	. 374
1n(0.metight)	¢.031	1	6. 031	3.191	.977
Error	4.684	120	0.039		

B. Comprisison of combined juvenile with adult populations $N=420$

ANALYSIS OF COVARIANCE

Source	SS	DF	MS	F-Ratio	P
Inctengtm)	1.221	1	1.221	21.181	.609
1n(o.wight)	9. 268	1	¢. 286	4.976	. 026
7ocation	9.237	1	6. 237	4.111	. 043
1ocstion*	6.655	1	0.055	0.954	. 329
1n(1ength) locationw 1n(0.weight)	0.798	1	0.760	12.292	. 001
Error	23.861	414	0.080		

than the ore for females (-5.56 yr). Standard errors wore similar for the three groups and were selall in comparison to the estimates.

Analysis of covariance was used to compare the curves generated for each sex of this pooled date set. The F statictic (F (59, 575)=6.625) was mot tignificant (P>e.5) and therefore no difference was foumd betwern the eurves generated for sach Eex.

Thus, the best model which describes describes growth is from the pooled juvenile and adult data:

```
    Le = 54.74[1 - exp4 -0.0503 (t- (-4.21)) >] with R" = .806.
    4.0. 6.72 0.0%2s 0.46
A plot of the data and this von Bertplamffy equation is shown in Figure
4.
```

Table 5. Estimates of von Bertalanffy growth parameters, combined adult and juvenile data.
A. Sexel Combinedt $N=579 \quad R^{*}=.996$

Parameter	Estimpto	S.E.	T-value	95\% C-I
L-infinity	54.74	0.72	75.9	53.33-56.15
K	4.4503	0.90醇	19.7	. 0464 - . 0553
t	-4.21	0.46	-9.1	-5.12--3.30

Resid DF : 575 Resid $55: 9630.90$ Resid $4 S: 16.74$

Resid DF : 273 Restd $5 S$: 5244.82 Resid MS : 19.29

Refilltas - mortality

Estimates of instantaneous mortality 2 and survival 5 for adults arei

	2	5.E.(Z)	5	5-6.(S)
mexes combined;	6. 837	0.097	6.966	0.007
femate:	8. ${ }^{\text {dereg }}$	0.819	0.973	0.016
nalet	0.830	0.805	0.971	0.095

Estimates of instantaneous mortality Z and survival s for the pooled juvenila data mrei

	2	5.f. (2)	S	E.t.(S)
sexes combined:	6.261	9.e2e	0.771	6.022
fatale:	0.208	¢. 037	0.813	B.839
meler	E.219	0.653	0.063	0.643

The catch curve for the adult population is shown in figure 5 , having been smoathed by a nonlinear data smocther froe SYSTAT. The veriubility in logaritheic frequency at older egeis is apparent and is due to enall
sample sizes at thase ages. The irregulerity in the curve is probably due to recruitment trends over time.

Figure 4. Growth dath and the von Bertalanffy fit for $\$ 11$ roughey rockfish data.
von Bertalanffy Curve All Fish Combined

These velues of survival represent all forces of mortality, which we presume includes natural mortality, incidental mortality from longines, and probably minor directed mortality at the time of study. The method ascumes that recruitment has teen constant over the age span considered, but we have no information about recruitment.

Pisenssion

Ageing of long-lived species such $2 s$ Sepretes is difficult but necessary task to insure proper management of thece populations, usually accomplished by reading the rings on otoliths. Although this methodology does give the necessary inforeation, several problems with it still remain to be solved, Primarily, these problews involve lack of agreement and objectivity in interpretation of annulit among agors cooth within and between egencifs) (Boehlert, 1905) and that it is timeconsuming and expensive. Therefore, other means of extrepolating this information accurately in addition to otolith reading are desirable, such as using otolith meristics in addition to fish iength. otolith meristies meqsurements have been correleted with fish length and age for many species of fish including rockfish (Boehlert 1905).

In this study, we found that otolith meristics and fish length were useful predictors of age for rougheye rockfish, after traditionm agming
techniques established a baseline relationship of lemgth, age, and otolith mpesurements. Multiple regression models for the three populintions used otolith meight and fish length as the best predictor vari= ables for fish age.

Figure S. Catch curve for adult roughty rockfish, sexes combinad.

Catch Curve Adults Both Sexes

The advantages of using such a predictor model are many for long-1ivad species such es the rougheye rockfish. After initisl egeing has been done by traditional methodology, wiess-skilled technician could eccuratily make reproducible otolith meristic measurements that could be used to prefict age. If agencies could egree on baspline age-lemgth keys for spacific stocks, then a higher agretweit of the sge structure could be reached because these meristic eodels require no subjectivity. Finmily, since these models rely on measured variables instead of "interpretation" of rings, they lend themselves to automation.

The major disadvantage of using predictor variablet it that such relationships are subject to error and may change over tima and area. This technique way be nore suited to older adult populations than to juvenile populations, beceuse ageing juverilot i* much pasier and quicker than ageing adults. Consmquently, readers tend to agree on these eges and ein reproduce their results more often.

The rockfish literature does not contain much information on growth and mortality for the rougheye rockfish, perhaps the longest living menber of the family Scorpentidate. The oldest specimens aged in this study were 95 yearg old. The maximum length recondied was 74 cm . The vor Bartalanffy growth parametirs eftimated in this study are in agremerrt with
other species of rookfish. For ckaple, estinates of growth paranoter K ramged from e.e4 to 0.es. These viluas are in the rafige of values for other menbers of this fanily (Arehiblidet 3. 1981, Westrivilim and Harln ing 1975). The to values are comparable to other valuts for rochfish (betwein -4.09 and -5.56).

Total instantmeous mortality rates (2) were astimated for the both sexes of adults and juveniles. The eftimpten for the adults ranged from 6.06 to 6.94 and are comperible to estimates made by archibald ot al. (19e1) for the rougheye rockfish off of the coost of Britith Columbia which ranged frow ©.0i to 0.e4. Thefe rates are similar to those for other mebbers of the Pecific eesan perch complex. The instantaneous mortality rates for the juvenile populations were much higher then for the edults. These values renged from e.2l to 6.26.

Mangerant of fisheries of long-lived species, such as Sebistes is very complex for many reasons. These populations are usually mutti-species; targeted on by multionational fisheries using a varioty of gear types and are often caught incidentally. Additionally, acquiring adequate and acouraty ttock characteristics such as growth paraneters, mortality copfficients, population estimates and stock identificstion information is often difficult and expensive to attain as discuseded earlier. intensification of fisheries and the lack of mesiliency of these populations once they have been over axploited complicate the issue even furthar.

The importance of longevity has been addresced recently in the literature as the result of the older ages discovered by the break and burn technique of ageing demersal fishes (Leanan and Bebuish 1994). This concept needs specis? thtention since better underetanding of these stocks and subsequent marmgenent decistions eay help avoid the prolonged periods of 1 ow yieid or terminations of fisheries after exploitation. Further study is needed concerning stock-recruitment relationships and variation in yemrelases strength in multi-age populations of rochfith. Anmual recruitment aly be kery smell proportion of the virgin stock biomats and this fact can easily complicate the attempts to mangoment the fishery. managing these long-lived species which have evolved strategies that insure a long reproductive period rather than eaxidizing the population growh rate must be done as carefully and efficiently pes posible.

Acknow7edement:

Alaske Sea Grant provided a graduate trainetithip and travel support to this meting. L. Haldorson, R. Fagen, and R. Carison made helpful suggestion during this study, D. Clausen assisted in collection of the data. This peper is extrimeted from the senior author's mister's thesis at U. of Aleskic, Jurnesu.

Reforencet

Alton, M.S. 1901. Gulf of Alaska bottomfish and shellfish resources. WOAA Tech. Memorimilun NWFS F/NHC-18. Northwest and Atlantic Fisherins Conter, Seattle, HA. 10 p.

Archibald, C.P., W. Shaw, and B.m. Leman. 7981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. copstal waters,

Eakkalian R., H. Hirschberger, and K. King. 1979. The groundfish misources of the etestern Bering Ses and Aleution Isisnds region. Marine Fish, Roview 41(11): 1-24.

Bothlert, G.W. and M.Yoklavich. 19e2. Growth in the gerux Sebestes and new methodology for age deternimution. Final Report, cooperative Agrepment No. 6B-ABH-W0949 between Oregon State University and the Morthest and Alaska Fisheries Cemter; NWFS, Seattle, Heshington. 105 p.

Boehlert, G.W. 1985. Lsing objective critpria and multiple regression models for agt determination in fighes. Fish. Bulitin 83(2): 1\%3-117.

Carter, E.W. and B.M. Leaman. 1981. Exploratory fishing of Bowie Semount by the autometed longliner M.Y. Viking Star, mugust 20 - Sept. 12, 198e. Can. Tech. Rep. Fish. Aquat. Sci. 266: 30 p.

Carlson, H.R., D.H. Ito, R.E. Haiglt, T.L. Autecki, and J.F. Karimen. 1996. Pacifie Ocean Perch. In Riohard L. Major (editor), Condition of Groundfish Resources of the gulf of Hlagka Region le Ascesced in 1985, p- 155-210. U.S. Dept.

Chilton, D.E. and R.J. Bearish. 1982. Ago determination methods for fishes studied by the Groundfish Progran at the Pacific Eiological Station. Can. Spec. Publ. Fish. Aquat. Sci. 6e: 102 p .

Gallucei, U.F. and T.J. Qutnn 1I. 1979, Raparanterizing, fitting, and testing a simple growth mode1. Trans. Ampr. Fish. Sec. 198: 14-25.

Gunderion, D.R. and w.H. Lentriz 190e. Cooperntive Survey of rockfish and mhiting resources off Califormia, Washington and Oregon, 1977. Marine Fish. Review 42: 2.

Ito, D.H. 1966 a. Other Rockfish. In R.G. Bakteratand Loh-Lep Lom (editors), Condition of Groundfish Resources of the Eastern Bering Sen and Aleutian fegion in 1995, p. 139-14B. U.S. Dep. Come., NOAh Tach Memo. Wios F/hich-1e4.

1996 b. Pacific Oeean Perch. In R.G. Bakkala and Loh-Lee Lom (editors), Condition of Groundfish Renources of the Esptern Bering Sea and Aleutian Region in 19e5, p. 1曹1-132. U.S. Dep. Comm., NOAA Tech. Mamo. NWS F/MAC-104.

Jensen, A.L. 1985. Comparison of catch-curve methods of estimetion for mortality. Trans. Amer. Fish. Soc. 114: 743-747.

Kioinbmun, D. G. and L.L. Mupper. 197B. Applied Regression Analysis and Other Multivariable Mothods. Dusbury Press, Bostan, Mass.

Leman, B.M. and R.J. Beanish. 19e4. Ecological and manogenert inplications of longevity in some Northesest Pacific groundfisher. Itit. N. Pac. Fish. Comin. Bull $42: 85-97$.

Leamin, B.M. and R.D. Stanlty. 19s5. She $1 f$ and shope rockfishes. In A. W. Tyler and 6.M. McFarlan (*ds.), Groundfish Stock Assestiments for the West const of Cenada in 1994 and Recommended Vield Options for 1985. Can. Me. Rep. Fish. Aquat. Sci. 1813: 247-271.

Love; M.S. i9pe. Isolation of 01 ive rockfich, Sebactes serranoides, population off southern California. Copeie 1967: 773-79e.

Love, M.S. and W.V. Mestpha1. 19e1. Growth, reproduction, and food habits of olive rockfish, Sebastes serranoides, off central Califormia. Fish. Bul1. 75(2): 412-416.
R.L. Major. 1996, Condition of Groundfish Resources of the Gulf of Alasha Region es Assessed in 19 gs. U.S. Dept. Comin., NOAA Tech.

Patten, B.6. 1973. Biological information of Copper rockfish in Puget Sound, Washington. Trans. Amer. Fish. Soe. 102: 412-416.

Quinn, I.J., ll, L. Bijsterveld, I.R. McGregor and E.A. Best. 1983. Sam pling Pacific halibut landinge: History, evaluation and estimetion. Int. Pac. Halibut Come., Sei. Report 68: 56 p.

Richer, W.E. 1973. Comptitation and Interpretation of Biological Statistics of Fish Populations. Fish. Res. Board Can, Bull. Ho. 119, 300 p.

Seber, 6.A.F. 1982. The Estimation of Animal Abundance * Second Edition. Sriffin, London.

Sokn1, R.R. and F.J. Roh1f. 1991. Biometry. H.H. Freeman and Company, San Francisen.

Tukey, J.W. 1977. Exploratory Dete Analysis. Addison Westey, Reading, Mass. 688 p.

Westrheim, S.J. 1973. Age determination and growth of Pacific Ocean perch (Sfpartere lutus) in the Hortheast Pacific Ocean. J. Fish. Res. Board Can. 361 235-247.

Westrhein, 5.J. and w,R, Harling. 1975. Age-length relationships for 26 scorpatenids in the northelst Pacific ocean. Fish, and parine Service, Tech. Rtp. No. 565: z-11.

Session IV -- Stock Assessment

Results from tagging black rockfish (Sebastes melanops) off the Washington and northern Oregon coast

Brian N. Culver Washington Department of Fisheries Montesano, Washington

Introduction

Recoent rethritions in mport and commercial salmon aeasons and harvent quotan have reaulted in increased fishing preasame directed toward black rockfish (Sebeaster melances) mtock off the mashington coast. Black rockfish are the primary eqpocies harve日ted by the expanding coastal bottonfigh chastertoot fibhery, comprising ower 90\% of the total catch. Recreational harvest of black rockfish off the Hashington copst increamed froth 79,000 fish in 1980 to over 226,000 finh in 1984 (Washington Department of Figheries 1980, 1984). Black rockfish ane also harvested by the shallow-water trawl fishery and are increasingly being targeted by commervial jig figherfon. The harvent of rockfiah (erimarily S. melanctay) in Wabhington coastal waters by the commercial jig fishery incresed from 8,779 pounds in 1975 to 191,082 pounde in 1985.

Concurrent with this increasing utilization has been a growing concern anong uper groupe, prinarily the charterboat inchutry, reganding the fiture availability of coastal black rockfish stocks and potential harvesting conflicts between fisheries. Although a limited amount of black rockfiah tagging had been oontucted prior to this gtudy in Puget. cound, the Strait of Juan de Fuca and off the Oregon coast (Barker 1979: Coombs 1979), little research had been undertalken concerning migration and stock integrity of black rockfish off the coast of rashington. A tagging eturty intitiated in 1981 by the mashington Departront of Figheries in conjunction with the Nashington State Charter Boat Agsociation (MSCBA) has continued through 1985 to begin develqunent of this information. This sturty was sppplemented in 1984 by a cooperative effort with the thiveraity of Warhington which meleamed tagged fish off Neah Bay. Washington during 1984 (Kuzis 1965).

Tagging wad conduted aboard a variety of veseela, primerily the hur 56 ft. patrol/reasarch vesmel $G+H$. CorliISS and a ramber of $42-55$ ft. charter vereels donated by the kBCBR. Several maller vegesels (14-24 ft.) were employed in the 1984 nearghore tagging in the vicinity of Neah Eay. Permonnt consisted of rtaff from the rop Marine Fish Progrom asaisted by manercus volunterer workers. Perbonnel from the thiversity of Mamington Fieheries Cocperative Regearch Unit participated in 1984 tagging efforte. Typical operation required a two to three-fan tagging erew and eight to fifteen anglerg capturing fish for tagging. Figh were caught uaing rod and reel with one to three aingle-hook jige per line.

After capture, fieh were inepected for air bledier inflation, mpasured, tagged and inmedintely released. Figh which guffered mevere air bladier inflation or other physical trauma which made aurvival doubtiul, were not tagged. No fimh were artificially decompremped. To avoid problems with too rapid decompression, fieh echools were urally hydroaconstically located within 20 fathong of the eurfacse prior to targeted fighing.

Finh were tagged with a three-inch Floy FD-68B T-end anchor tag inearted between the pterypiophores in the dormal mraculature with a Demnimon tagging gn. Tags mere merially nambered and carried the printed legend "Wi, DEPT. FIGH OLY WN." Apporoximately 6\% of the figh were double tagged to peovide ingight into potential tag shedding.

During the firat three years of the thtuly, approximately 20\% of the tagged fish were injected intraperitonealy with a solution of orytetracycline hydrochloride (OIC) at a dopage rate of 50 milligrams per killogran of brdy weight. OIC is incorporated into bony tireneg leaving a check on the otolith which is visible under tultraviolet lighting. Ocmparison of otolith growth aubeechent to the OIC check with time at liberty can poovide indight on the validity of current ageing theory. Seven tagged fish mere retained in an an aqparium with an oqen ocean circulation systen during 1981 and 4 figh in a net-pen during 1992 to evaluate tagging mortality and tag logs.

As an incentive to fishermen to return taggect figh, HDr offered a $\mathbf{\$ 2 . 0 0}$ reward for each returned tag plus a randmily selected bomes remand of $\$ 10.00$ for 5% of the melemeed tage and $\$ 50$. 00 for 1% of the releamed tages. The study was well publicized and posters mere placed throughout: coastal ports harvesting black rockfish. In addition, the twestport Charter Amgociation began concorting an annalal "Gomper Derby" in 1981 which offerred a 550,00 reward for the retarn of a tegged figh caught by a derty ticlcet holder. Charter officesp in the ports of Neah Bay and Ilwaco began participating in the derby haring 1985.

Tagging conchacted daring 1981 through 1985 has resulted in the releane of 14,795 tagged black rockfish off the coast of washingtion and mortherm Oregon. Mean length of tagged fish was 41.1 centimeters. Tag neleases and recoveries by year are shown in Table 1.

YEAR REIEASED	$\begin{aligned} & \text { NGBER } \\ & \text { TAGGGD } \end{aligned}$	$\begin{gathered} \text { R E } \\ 1981 \end{gathered}$	$\begin{aligned} & \operatorname{cov} \\ & 1982 \end{aligned}$	$\begin{gathered} \text { ER I } \\ 1983 \end{gathered}$	$\begin{aligned} & \text { E S } \\ & 1984 \end{aligned}$	$\begin{aligned} & \text { B Y } \\ & 1985 \end{aligned}$	$\begin{aligned} & \text { Y E A } \\ & 19966 \end{aligned}$	$\begin{aligned} & \text { R } \\ & \text { TOTAL } \end{aligned}$	*REC.
1981	4,739	19	53	50	32	8	2	164	3.54
1982	2,544		5	27	6	2	1	41	1.6\%
1983	2,033			23	17	14	1	55	2.7%
1984	675				3	8	3	14	2.18
1985	4.804					153	57	210	4.44
total	14,795	19	58	100	58	185	64	484	3.36

Table 1. Tag Releanes and Recowerien by Year
Tagn were released from four major areas along the washington and northern Oregon coast (Eigure 1). Tag release and recovery information, by area, is given in Table 2.

REL EASE AREA	NUEER REIEASED	NUMER RECOVERED	\% REC.
WESTPCRT	7.518	345	4.59\%
SEALION Fock	1,723	15	0.878
TILLAMDOK HEAD	2,637	61	2.31\%
NEAH HAY	2,917	63	3.27\%
TOIAL	14,795	484	3.27\%

Table 2. Tag Releases and Recoveries by Area of Releane
Tagging was condwoted exlugively in the westport area during 1981. Tage were released in all areas except rillamook tand during 1982. All areas exceyt Sealion Fock were addreared during 1983 and 1985. Weah Bay was the only area where tags were released curing 1984 .

Over half the tags have been recowered by the charter fighery. Aqproximately 25% of the tag returmb were from Washington and Oregon trawl fiaheriea (Table 3).

FIStiex	$\begin{gathered} \text { TRES } \\ \text { REOOVEREP } \end{gathered}$	PER GATL OF TORAL
CRAGHR	248	51.9\%
OREGGN TRAKTL	86	18.0\%
PRIVATE EOAT	63	13.24
HRSHIMGIUN TRAEL	35	7.34
Cothercial JIG	24	5.0%
SAIMMN TEOLC	15	3.24
EFIRE MMEERS	5	1.0\%
SCHEA DIVERS	2	0.4\%
TOIAL	478	100.0\%

TABCE 3. Tag Recoverien by Fishery of Recovery

Novenent

Tage with known necovery location were returned from 464 fish. Of these, 321 (69.2\%) were recovered within 10 milen of the releage aite while 143 (30.8\%) were recovered more than 10 milen frot the releane site. Fifty-six figh (12.1\%) were recovered more than 50 miles from the releape site. One finh tagged off Tillamook laid, Oregon wan reoovered 345 miles anay off cape Mendocino, California. Since different, patterns of novenent appear to be denonstrated by fiah tagged in different areas, it is helpful to oonmider each tagging area eeparately.

Nath Bay area. None of the recoveries from this area occurred more than 10 miles from the release site.

Soalion Rock aren. Four of the tage from this area were reocovered between 10 and 80 miles south of the release site at a mean distance of 34 miles. Eleven tags were recovered on site.

Westrort ares. Movement indicated by recoveries from this area was again primarily southward. Ninety-bix tage were recovered between 10 and 64 miles to the south at a mean distance of 41.6 miles. wany of theme recoveries (54) cocurred in the vicinity of a garken grain freighter referred to by local fiehermen as the "wheatahip". This wreck is the site of a nearahore trawl fiahery targeting black rockfish. Nine tags were recovered between 12 and 69 miles to the
north at a mean distance of 28 milea. Eecovery location of leat than 10 mi leen from the release site was recorded for 220 (68\%) of the tags frow this area.

Tillamook Head area. Twenty-nine tags from this area were reocvered within 10 thi lea of the release site. of the taga which were recovered at diatances greater than 10 miles from the release site, the majority were to the north. Twenty-eight tage were recovaned from 17 to 72 miled to the north. Twenty-teven of these recoperied were from the "Wheatship" ares and one from the area off Mlestport. Three tage were recovered to the wouth, two at 24 miles and one at a distance of 345 milee off Cape Mendocino, Califormia.
orytetracycline injection

During the first three yearn of the study, 1,978 tagged fish were injected with orc. Thus far, 23 injected fich have been returned. Tine at liberty has ranged up to 997 days. Leanan and Nagtegaal of Department of Fiah ant Oceans in Nanaimo, Aritiph Columbia have analyzed and photographed otoliths from 13 of theme fish, employing both sarface ageing and break and burn techniquen. The ONC mark kas generaily been mell-defined and resulta to date have been consistent with the formation of one annulus per year at liberty. The anmalus afpears to have been formed soon after the OIC mark which Lesman Eugests is indicative of fall formstion of the annulus or a safpremsion of gronth remulting from the streas of tagging and injection. Reaults from this facet of the stadiy ahould become more informative as figh with greater time at liberty are recovered.

There appeart to be a phbtantial mortality associated with ORC injection. Analypis of tag returns for injected and non-injected fish releaged during the gane day have shown injected fiah to be reocversd at only 677 of the level of return of non-injected figh. Pive black rockfiah being retained in an acpuriun were injected with oIC at the gane doage rate used for tagged fish. All five fiah renained alive after 60 daya. It is posaible that the apparent mortality indicated by differential tag returna resolte from physical injury mastained during injection rather than from the effecta of the OTC.

Tag loser

Holding experiment:. All meven tagged fish beld in an aquarium during 1981 were alive after a period of 1 month. One tagged fish died after 34 days and another after 48 days. Both fiah had areas of necrotic tissare aurrounding the isthans, posaibly an infection reanlting from handling the fish by the lower jaw during tagging. During this time, one of the 12 non-tagged Eish held in the aquarivo also died. This fiah, as well as other non-tagged individuals in the aquarius, had lesions on the head and body, suygeeting that conditions in the agparium may have contributed to the observed infection and salbecpuent mortality. One mobeerved mortality occurred among the group of tagged
finh tometime after the mecond month in the aghariun. Four of the tagged fiah remained alive after weven montho when the experiment was terminated. No tige were loet from any of the fish. Four tagged firh held in a net-pen during 1904 were all healthy, with tage intact, after 47 days when they disarpeared through an apparent act of vandalime (Kuzia 1985).

Double tagging. Onfortumately, a navber of failed and replaced taga were recouded in the data daring 1981 in auch a manner that they were indietinguiable frum double tagged releasea. Dowble tagged returne from 1981 were therefore not included in the analytia. A total of 865 double taga were released drring 1982-1985. Ten of thene fish have been reocovered with time at liberty ranging from 20 to 419 daya. Four of the fish had mhed one tag 1204 of the total returned taga). If consideration in limited to taga at liberty oner 200 days, eatimates of tag ehedding increase subatantially. Three of the four fish recovered after 200 days had ahed one tag 937.5% of the total return). These are minimal ertimates of tag shedding eince fish lowing both taga are not considered here. Future double-tagged returns ahould indicate whether the tag shedding rate continues to increase after 200 days.

Discturaion

Moverant

Tag recovery ia almoet oertainly influenced by localized ooncentrationd of finhing effort as evidenced by the large number of tags recovered in the "wheatehip" fishery. Acoceting that an analysis of movenent of tagged fish will be biased by the epatial distribution of the finheriea, it is atill possible to offer a few general hypotheses concerning movenent of black rockfiah etocke along the coast of Whehington and northern Oregon:

Fish off the northern Whatington coast and outer Strait of Juan de Fuca exhibit no significant movement.

Fiah arpear to move from the central Mashington coast eauthward to the Columbia River but not into waters off oregon.

Novement displayed ky fish off the northern Oregon ooast is primarily northwand to the Columbia River. Overall hypothesized movenent is depicted in Eigure 2.

Several obeervationd are germane to this epeculation:

1) Fifty-six tags from the westport releatem were recovered near the Oolumbia River. No taga were recovered more than 10 miles south of the Columbia River. It would be reamonable to erpect more goutherly recoveries if the movement indicated by these returns were sustained for greater distances.

figure 1. Tag releases by area.
Figure 2. Hypothesized Movement of black rockfish off the washington and northern Oregon coast.
2) The large mafority of tagr (月8\%) which dieplayed movenent from the Tillamok Head area were reocovered to the north off the Columbia River.
3) Substantial fisheries for black rockfish cocur off centiral Oregron. Black nockfish harvest out of Garibaldi and Newport alone was estimated at 43,398 fish for the months of July and Angnst of 1985 (Butler 1906). Derpite this harvesting capability, only three tagged fiah from this etudy have been recovered aouth of the Tillamok Blead release site (two 24 miles eouth off Tillanook Bay and one 345 miles to the eouth off morthern Califormia).
4) An Oregon black ruckfiah tagging stury released 3,850 and 3,906 tagged finh out of Caribaldi and Newport. Oregon reapectively during the apting of 1985. An of December, 1985, 114 tagged fieth had been recovered, none more than 8 mileg from the releame gite (Butler, 1986). Since that time, two figh tagged off rewport were recovered at the "Wheat-hip". One Garibaldi tag was reoovered to the south off Newport (Jerry Eutler, Oregon Department of Fish and Wildlife, pergonal commication).

One poasible explanation for the obrerved movement is a cyclical migration in rempore to long-shore Elow and food availability. Elack rockfiah feed almont exclusively in the water colun (Leanan 1976, Steiner 1978). The food demgnds of large aggregationt of black rockfish mey canse them to actively aeek out prey over ooraiderable distanceat.

Tog lown

The rate of tag shdiding aypeary to accelerate with time. One pogaible cauge of this phenomenon is the biological growth which occurt on tage, Derpite the fact that tags treated with algicide were epployed caring most of the etudy, the majority of tage returned were heavily encrusted with various flora and famn, tags at liberty for lear than 2 monthe have been recovered with encrusting growth up to 2 centimeterg in diameter. One tag at liberty for 1,047 days was host to a cluster of mumels ranging up to 5 centimetert. The drag created by such growth could easily contribute to the tag pulling from the tag wourd. This growth oould also digguige the tag and contribute to nomeporting of recaptured fish.

Ourment What and Recompendations

As the irportance of black rockfish to Whatington coartal figheries grown, the need for manggenent information will also increage. Washington Department of Figheries (hDP) is currently conducting a malti-stage, mark-recapture tagging stuaty which will be analyzed according to Jolly (1965) and seber (1965) to obtain ertimateg of the exploitation rate of black cockfish off the wachington coast. wDP has
almo begu acoustical stock assesempit work on constal black nockfish populations. Collection of oatch and effort data frow fisheries for black rockfigh and biological earpling of the catch has been intensified to more clearly docusent harveet and catch ocmposition by area. Resulte of thim work will further illuminate tag return analyses. It would also be upeful to evaluate the retention rate of taga other than the T-end anchor tag.

LITEPATLRE CITED

Barker, M.W. 1979. Population and fishery dymanics of recreationally exploited marine bottomfish of northern Puget sound. Phad. Dismertation, Univ. Wash., Sesttle. 134 p.

Butler, J. 1986. Stock delineation stundy of black rockfigh, Sebantes melanops, off the oregon coast. Ore. Dept. Fiah and wldlf. Anmal Prog. Rept. 17 p.

Conmb, C.I. 1979. Reef fishes near Depoe Bay, Oregon: moverent and the recreational fishery. M.S. Thesia, Oregon State Oniv., Corvallis. 39 p .

Jolly, G.M. 1965. Explicit eatimates from capture-recapture data with both death and inmigration - atochastic model. Bianetrika 52: 225-247.

Kuzis, K. 1986. A study of the black rockfish, Sebaster melancps, population in the waters off Neah Bay, Washington. Wash. Dept. Fish. Prog. Bept. 216. 38 p.

Leanan, B.M. 1976. The association between the black rockfish (Sebastes melanops Girard) and the beds of the giant kelp (Macrocyetia intergrifolia Bary) in Barkley Sound, British Columbia. M.S. Thesis, Univ. British Columbia, Vancouver, B.C. 108 p.

Seber, G.A.F. 1965. A note on the multiple recapture censan. Bicnetrika 52: 249-259.

Steiner, R.G. 1978. Food habite and apecies compoaition of neritic reef fishes off Depoe Bay, Oregon. M.S. Thesis, Oregon State Univ., Corvallis. 59 p+

Washington Department of Fiaheries. 1980. Washington State Sport Catch Report 1980. L..J. Hoines, W.D. Mard, and G.D. Nye (eds.) 65 p.

Washington Department of Fisheries. 1984. Washington State Sport Catch Report 1984. L.J. Boines, W.D. Ward, and C. 3 mitch. 58 p.

Results of a bottom trawl survey of Pacific ocean perch off Washington and Oregon during 1985

Mark E. Wilkins and Kenneth L. Weinberg NMFS, Northwest and Alaska Fisheries Center Seattle, Washington

Abstract

The fishery on depleted stocks of Pacific ocean perch (Sebastes alutus) off Hashington and Oregon has been regulated by limiting forefgn landings to incidental catch since 1977 and imposing trip limits on donestic fisherraen since 1978. These limits have been imposed in an attempt to rebuild the stocks to a point where they can produce maximum sustainable yields. Cohort analysis has suggested that such rebuilding might be accomplished in approximately 20 years. Industry and managers have pressed for a reassessment of the resource to evaluate the effectiveness of catch limits toward achieving the rebuilding goal. The resource was assessed with a bottom trawl survey in the spring of 1979 to determine abundance, distribution, and population biology of the stocks. A comparable survey was conducted during the spring of 1985 to examine population changes during that 6 -year period.

The 1985 Pacific ocean perch survey essentially replicated the one conducted in 1979, al though some changes were necessary to standardize sampling gear and depth coverage which were inconsistent during the 1979 survey. Abundance estimates were calculated from catch data from 214 successful trawl hauls. Pacific ocean perch blomass was estimated to be 2,028 metric tons (t) in the U.S. portion of the Vancouver (U.S.Vancouver) International Horth Pacific Fisheries Commission (INPFC) statistical area and $6,606 \mathrm{t}$ the Columbia INPFC area. The precision of the 1985 estimates was faproved over the 1979 results, probably due to steps taken to standardize data collection and a more uniform distribution of the population. Population size compositions were bimodal in both INPFC areas. The distribution in the H.S.-Vancouver area was quite broad with relatively even numbers of fish at all lengths. The Col umbia area population exhibited modes at $27-31 \mathrm{~cm}$ and $36-40 \mathrm{~cm}$.

The abundance of Pacific ocean perch, as determined from the results of these trawl surveys, has apparently declined by 638 in the i. Yancouver area and by 18% in the columbia area between 1979 and 1985. The size and age composition of the populations in both areas show Slightly more young fish in 1985 ($25-31 \mathrm{~cm}$ and $4-6$ years old), suggesting some improvement in recruitment in recent years. Continued juvenation of the population due to fishing is also apparent, especially in the U.S.-Yancouver area.

Introduction

Commercial fishing for Pacific ocean perch (Sebastes alutus) in the northeast Pacific Bcean began in 1946. Catch levels were incidental until 1951. Thereafter the fishery, which began off the coasts of Washington and Oregon, expanded into the Canadian waters of queen Charlotte Sound. Until 1966 commercial harvests continued to be made chiefly by the U.S. trawl fleet with the remainder landed by the Canadian traw1 fleet (Alverson and Westrheim 1961; Major and Shippen 1970). Trawlers from the U.S.S.R. began fishing this species in 1959 in the Bering Sea. The activities of the Soviet Pacific ocean perch (POP) fishery gradually moved eastward and southward, entering the waters off British Columbia, Washington, and Oregon in early 1965. Japanese trawl fleet also developed a fishery on this species which followed a similar expansion pattern approximately 1 year behind the Soviet fleet (Westrhelm et al. 1972; Gunderson et al. 1977; Quast 1972). Production of this fishery in the International North Pacific Fisheries Commission (INPFC) Vancouver and Columbia statistical areas combined in 1966 exceeded 27,600 metric tons (t), more than three times the largest previous harvest of 8,921 made 1 year earlier. The catch peaked in 1967 at $37,459 \mathrm{t}$ and remained high in 1968 at $21,979 \mathrm{t}$. The effects of the trigh exploitation rates during these 3 years (as high as 68% in the Columbia area) began to show in 1969 as the catch in these two areas fell nearly 85% to $5,906 \mathrm{t}$. Catches remained 10 w through 1976, when forelgn fleets were prohibited from fishing for pop in these areas.

The condition of Pacific ocean perch stocks off British Columbia, Washington, and Oregon have been assessed periodically since the Intense exploitation of 1966-68. The mean exploitable biomass in the Vancouver area during 1966-68 was estimated to be $34,000 \mathrm{t}$ by dividing mean landings ($13,419 \mathrm{t}$) by the estimated exploitation rate (0.39) (Westrheim et al. 1972). Subsequent biomass estimates in the Vancouver area, based on declining mean weighted catch per untt of effort (CPUE) for the Washington-based fleet, were 18,700 t during 1969-71 (Technical Subcomnlttee 1972) and $16,700 \mathrm{t}$ during 1972-74 (Gunderson et a1, 1977). The CPUE rose slightly in $1975-77$, raising the biomass estimate to $17,800 \mathrm{t}$, although this estimate is probaoly biased toward the high side by the fleet's recent switch to a more efficient trawl (Fraidenburg et a1. 1978). Calumbia area biomass estimates since 1966 have been calculated by dividing landings by estimated exploitation rates and indicate that the biomass has declined from 23,000 t during 1966-68 to $7,300 \mathrm{t}$ during 1969-72 and 4,300 t during 1973-74 (Gunderson et al. 1977). Fraidenburg et al. (1978) estimated the biomass in 1977 at between 8,000 and $9,600 \mathrm{t}$ using an area-swept extrapolation of conmercial CPUE data, although this estimate is suspected to be high since the commercial fishery operated in areas of high abundance.

Research surveys have provided information defining migration, seasonal avallability, growth, maturity, reproductive patterns, and other blological characteristics of POP (Gunderson 1971, 1972, 1974). A coastwide survey of rockfish resources was conducted in 1977 (Gunderson and Sample 1980) with the objective of defining the distribution and measuring the abundance of the major species taken in bottom trawls. The relative imprecision of diomass estimates derived for POP from that survey and the possibility that recent strong year classes had significantly increased the stock size prompted requests from the fishing industry and resource managers for better assessments of the status of this resource. In response, the National Marine Fisheries Service (NMFS) coordinated, with the Oregon Department of Fish and Wildlife (ODFW) and the Washington Department of Fisheries (WDF), a cooperative assessment survey of the POP stocks off Washington and Oregon in MarchMay 1979 (Wilkins and Golden 1983). That survey provided more precise biomass estimates which were similar to those calculated from the 1977 survey. The 1977 coastwide survey was repeated (with some modification of the survey design) in 1980 and 1983, yielding two more fisheryindependent assessments of the resource (Weinberg et al. 1984; Coleman 1986). The Canadian perch stocks were surveyed in the fall of 1979 (Lapi and Richards 1981) and again in the fall of 1985 . The results of these surveys indicate that those stocks declined by approximately 56% over that period (B.M. Leaman, Pacific Biological Station, Nanaimo, B.C., Canada, personal communication). Virtual population (Gunderson 1979, 1981; [to et al. 1986) and stock reduction analyses (Ito et al. 1986) have been performed for these stocks also.

All resource assessment results plainly show a dramatic decline of Pacific ocean perch abundance during and after the intensive fishing in 1966-68 (Fig. 1). Fishery managers acted to conserve the resource by restricting foreign catches of this species to incidental levels in 1977 when Canada and the United States extended their fishery jurisdiction. The sizeable fleet of U.S. trawlers fishing in Canada were excluded from the Queen Charlotte Sound grounds in 1977 and, consequently, the groundfish stocks off the Washington and Oregon coasts were subjected to increased fishing when these vessels moved their operations south. Landing limits for ocean perch have been in effect for Oregon and Washington trawlers since late 1978 (Tabie 1) to reduce fisthing mortality and promote the Pacific Fishery Management Council's (PFMC) goal of rebuilding the ocean perch stocks off Washington and Oregon. Gunderson (1979) estimated through cohort analysis that by limiting acceptable blological catches to 600 t and 950 t in the U.S. portion of the Yancouver (hereafter referred to as U.S.-Yancouver) and Columbia areas, respectively, these stocks could be rebuilt in approximately 20 years to a level at which they could produce maximum sustainable yields (Pacific Fishery Management Council 1980).

The 1985 NMFS Pacific ocean perch survey was initiated to determine how the stocks off Washington and Oregon have responded to 6 years of restrictive catch regulations aimed at rebuilding population size. The primary objective of the survey was to obtain abundance, distribution, size composition, and age composition estimates that could be compared with results of similar survey conducted in 2979 (Wilkins and Golden 1983). This paper presents a brief explanation of the differences between the 1979 and 1985 surveys, including the results of an adjunct study conducted to evaluate the relative fishing power of the standard

Figure 1.--Sumary of various estimates of blomass for the stocks of Pacific ocean perch in the International North Pacific Fisheries Commission Vancouver (V) and Columbia (C) areas. The different methods used to derlve biomass estimates are indicated by different line patterns.
Table 1.--Sumary of management regulations of the Pactict ocean percm fishery in the International North Pacific Fisheries Commissian Vancouver and Columbia areas (U.S. waters only). Weight restrictions are in metric tons.

Effective date	Area	Effect of Regulation
October 26, 1978	Washington Oregon	Trip limit of 4.54 t or 25% of catch (whichever greater) Trip limit of $9.07 t$
January 1, 1981	Washingtom and Oregon	Trip limit of 4.54 t or 10 t of catch (whichever greater)
February 1, 1982	Washington and Oregon	Trip linit of 2.27 t or 10% of catch (whichever greater)
November 10, 1983	Col umbia area	Ho landings permitted
January 1. 1984	Hashington and oregan	Trip limit of 2.27 t or 10 x of catch (whichever greater)
August 16. 1984	Columbia area	Mo landings permitted
January 1, 1985	Washington and Oregon	Trip limit of less than 20% of catch
April 28, 1985	Hashington and Oregon	Trip limit of 2.27 t or 208 of catch (whichever less)

Noreastern survey trawl versus that of the Mystic trawl which was used in 1979 in the southern portion of the survey area. The focus, however, is on the comparison of the results of the two surveys and the effectiveness of the stock rebuflding program.

Methods

Survey design.
The 1985 survey was conducted using the same bastc survey design used for the 1979 survey (W1|kins and Golden 1983) to allow for the most direct comparison of results. The stations at which trawl hauls were made off the Washington coast were identical for both surveys. Those 1979 stations off the Oregon coast were standardized to the survey design for 1985 to allow for the best symoptic survey and to simplify comparisons with any future assessments. Consequently, the differences between the survey designs were that the 1985 survey covered the depth range of $165-475 \mathrm{~m}$ from $44^{\circ} 37^{\prime} \mathrm{N}$ lat. to the U.S.-Canada border, whereas the 1979 survey covered from 165 to 420 m between $44^{\circ} 37^{\prime}$ and $46^{\circ} 21^{\prime} \mathrm{N}$ lat. and from 165 to 475 m between $46^{\circ} 21^{\prime} \mathrm{N}$ lat, and the U.S.-Canada border.

Figure 2.--The survey area, subareas, and high density sampling strata used in the design of the 1985 Pacific ocean perch survey.

The depth range to be sampled was chosen after analyzing CPUE trends in the commercial fishery during spring months (March-May), the season when Pacific ocean perch are most available. This analysis showed that CPUE could be expected to be higher between 165 and 320 m than in the 321 to 475 m depth range, so the areas were stratified by depth accordingly.

It became apparent from the CPUE analysis that large catches of POP were coming fron localized grounds within the survey area. Eleven such subareas were delineated within the survey bounds (F1g. 2). Relatively more sampling effort was expended in the high density strata and the shallow depth zone in an attempt to reduce the sampling variance and improve the precision of the abundance estimates.

Approximately 250 stations could be sampled with the resources available for this survey. These samples were allocated among high density strata proportionally to their area (km^{2}) and the desired sampling density (Table 2). Sampling densfty was established by examining historical CPUE values and predicting levels of precision for abundance estimates in

Table 2..-Descriptions, sample densities, and mean Facific ocean perch (POP) catch per unit effort (CPue) for strata used in the analys is of results of the 1985 POP surwey. All catch rates in the Colunbia sowth subared have beter adjust to the

Stratum	Depth (in)	$\begin{aligned} & \text { Area } \\ & \left(k \pi^{2}\right) \end{aligned}$	2110- cated tows	$\begin{aligned} & \text { Allo- } \\ & \text { cated } \\ & \text { toms/kep } \end{aligned}$	Success tows	Sut $=$ tess town/ km^{2}	$\begin{aligned} & P O P \\ & C P U E \\ & (\mathrm{k} g / \mathrm{k} \in) \end{aligned}$
U.S.-Varitauver	165-475	1584.4	95	1.17	80	1/20	23.9
Migh density	165-319	560.4	54	$1 / 10$	49	1/11	36.6
High dersilty	320-475	215.9	20	1/11	19	1/11	17.0
Low density	165-319	700.8	12	1/5日	9	1/78	6.0
Low density	$320-475$	107.3	9	1/12	3	1/36	6.0
Columbia Morth	165-475	800.6	53	1/15	43	1/19	36.2
High density	165-319	355.8	28	1/13	27	1/13	62.1
Hiym density	320-475	180.6	14	1/13	14	1/13	2.6
Low dersity	155-319	175.7	7	1/25	1	1/175	09.6
Low denstiy	320-475	88. 5	4	1/22	1	1/89	6.4
Calumala midale	165-475	1967.7	52	1/39	44	1/45	19.3
High oensity	165-319	692.4	31	1/22	27	1/26	49.6
High density	320-475	281.7	11	1/26	9	1/31	5.4
Low density	165-319	584.5	5	1/117	5	$1 / 117$	1.7
Low density	320-475	409.4	5	1/B2	3	1/136	4.3
Columba South	165-475	2620.5	47	1/56	47	1/56	6.2
High density	265-319	1039 . 3	22	1/47	22	1/47	6.0
HIyh density	320-475	1581،2	25	1/67	25	1/63	6.4
Colmala Total	165-475	5389.8	152	1/35	134	1/40	25.2
Hfyh denssity	165-319	2007.5	81	1/26	76	1/27	48.6
High density	320-475	2043.5	50	1/41	48	1/43	4.2
Low density	165-319	497.5	12	1/41	6	1/83	16.4
Low density	\$20-475	760.3	9	1/84	4	1/190	4.8

different portions of the survey area. The positions of the stations in a given stratum were assigned on evenly spaced tracklines drawn perpendicular to the depth contour so as to provide a systematic coverage of the depth range within the stratum (Wilkins and Golden 1983).

Vessel. gear, and sampling methods.
Survey operations were conducted aboard the 26.5 m chartered trawler, Marathon. The standard trawl deployed throughout the survey was the Noreastern trawl equipped with roller gear. $1.5 \times 2.1 \mathrm{~m}$ steel V doors, 55 m triple bridles, and a 32 mm mesh codend liner. The average horizontal and vertical openings of this net during fishing have been previously measured acoustically to be 13.4 m and 9.1 m , respectively [F. Wathne, Nortmwest and Alaska Fisheries Center, National Marine Fisheries Service, Seattle, WA, personał commnication).

Traw1 hauls were made at the predetemined stations along the designated depth contour. The trawl was towed for 30 minutes at a speed of approximately $5.5 \mathrm{~km} / \mathrm{h}$ after allowing it to settle on the bottom. Catches were brought aboard, sorted by species, weighed, and counted. Blologital data were collected from random samples of species of interest in the catch, including fork lengths of POP and other commercially important species. Otoliths were collected from POP for age determination.

A major problem with the analysis of the 1979 survey results stemmed from the use of three different types of trawls during the field work. This predtcament came about because the two vessels chartered by the OOFW lacked sufficient power to pull the Noreastern. The Noreastern trawl was used in the U.S.-Yancouver and Columbla North areas ($46^{\circ} 21^{\prime \prime} \mathrm{N}$ lat. to the U.S.-Canada borderl, a modified 400 -mesh Eastern trawl in the Columbia Middle area ($45^{\circ} 22^{\prime}$ to $46^{\circ} 21^{\prime} \mathrm{N}$ lat.), and a Mystic trawl in the Columbia South subarea ($44^{\circ} 37^{\prime}$ to $45^{\circ} 22^{\prime} \mathrm{N}$ lat.). A comparison of fishing powers among the three trawl types was not possible in 1979.

A comparative fishing experiment was implemented as part of the 1985 survey with the objective of relating the effectiveness of the Noreastern and Mystic trawls for capturing Pacific ocean perch. The comparative trawling was conducted in the Columbia South area where the Mystic trawl was used in 1979. No comparisons were attempted between the Noreastern and 400 -mesh Eastern trawls due to the lack of time and the absence of documentation on the modifications that had-been made to the 400 -mesh Eastern trawl used in 1979. The Mystic trawl used in the comparative fishing power experiment was the same type as that used in the Columbia South subarea during the 1979 POP survey and was deployed using the same doors used with the Noreastern, a pair of 73 m bridles, and no codend liner, Anecdotal sources estimate the average horizontal and vertical openings for the Mystic to be 8.5 n and 6.7 m , respectively (J.T. Golden, Oregon Department of Fish and Hildlife, Hewport, OR, personal communication), al though it was not measured during this survey. The predetermined stations in this subarea were sampled by alternating the trawi type used at consecutive stations. This is an adaptation of the "alternate row" comparison experiment (Wakabayashi et al. 1985), allowing fishing power data collection without the large cost in time and logistic effort needed for side-by-side fishing conparisons. Catch rates for POP were then analyzed to test whether the population of CPUE values observed from hauls made with one trawl was distinct from the population of CPUE values from hauls made with the other trawl (Gelsser and Eddy 1979). Two models were constructed, one asserting that the two populations of CPUE values were indistinguishable and the other asserting that they were distinct. Model selection was based on which better predicted the data (i.e., the model with the smallest discrepancy between the observed values from predicted values, in this case the sample mean, was selected). If the distinct population model is selected, a fishing power correction needs to be applied. This coefficient is calculated from the ratio of the catch per effort of one net to the catch per effort of the other net (catch per effort in this case is calculated by dividing the sum of the catch from all hauls of one net by the sum of the effort (km trawled) expended by that net).

Analytical procedures.
Procedures used to analyze data from the 1979 survey were applied to the 1985 survey data and are explained in detail by Wilkins and Golden (1983), Results are presented by INPFC statistical areas (U.S.Yancouver, $47^{\circ} 30^{\prime} \mathrm{N}$ lat. to U.S.-Canada border; Columbla, $44^{\circ} 37^{\prime}$ to $47^{\circ} 30^{\prime} \mathrm{N}$ lat.) because the resource is managed by these areas. Some portions of the analyses are presented by subareas of the columbia area to facilitate comparison between the results of the 1979 and 1985 surveys. Catch rates of $P Q P(\mathrm{~kg} / \mathrm{km}$ trawled) and their variances were
calculated from catch and haul information and used to derive estimates of population biomass and numbers within strata (INPFC areas, subareas, and depth zones) with associated 90% confidence intervals. The population, size compositions were estimated by extrapolating length data, appropriately weighted by catch rates, to the estimated population number. Size compositions were then converted to age compositions by means of age-length keys constructed separately for the Yancouver and Columbia INPFC areas from age data collected during the survey.

The method used for ageing Pacific ocean perch has changed since structures collected in 1979 were read. Formerly, age determination for rockfish involved discriminating anmuli on otolith surfaces (Westrheim 1973) which underestimates the age of older fish. The currently accepted method is sectioning or breaking the otolith and identifying annuli on the new surface (Beamish 1979a, b; Chilton and Beamish 1982; Bennett et al. 1982] which seens to provide more accurate age and growth information, especially in older fish. These two techniques may provide readings that will result in different grow ch curves since the ages of fish determined to be over 20 years old by surface ageing have usually been underestimated (Beamish 1979b). Otolith samples from the 1985 survey were read using the current methodology, so thorough comparisons between age composition estimates from the two surveys wfil not be possible.

Results

Successful trawl hauls were completed at 214 of the 247 planned stations. Catches ranged from 2.3 to $6,643.0 \mathrm{~kg}$ and consisted of 89 fish species. Pacific ocean perch was the most abundant species in the survey area with a mean CPUE of $25.2 \mathrm{~kg} / \mathrm{km}$ trawled 113.3% of the tota mean (PUE). Rockfish as a group comprised 56% of the survey catch. Pacific ofean perch was the dominant species in this group, comprising 23.98 of the rockfish catch. Catch rates of POP were usually higher in high density strata and in the shallow depth zones (Table 2). The dominance of rockfish, particularly POP, indicates some degree of success in delineating the survey area.

The distribution of POP catches is shown in Figure 3. The mean catch rates were highest for the shallow depth strata ($165-320 \mathrm{~m}$) with mean CPUES of $31.5,47.8$, and $40.8 \mathrm{~kg} / \mathrm{km}$ for the $U .5$.-Yancouver, Columbia, and combined shallow survey areas, respectively. By comparison, the deeper strata ($321-475 \mathrm{~m}$) had mean catch rates of $14.8,4.5$, and 8.4 $\mathrm{kg} / \mathrm{km}$ in the U.S.-Vancouver, Columbia, and combined areas, respectively. In the Columbia area POP catch rates increased from south to north (table 2).

In the Columbia South subarea 23 Noreastern and 24 Mystic traw] hauls were completed and used in the examination of relative fishing power. The analysis determined that the CPUEs were significantly different, which implies the need for a correction factor to equate results from the two traw1 types. When analyzed by depth zone the results showed that a correction factor was not warranted in the shallow zone (11 hauls for each trawl) where the Mystic outfished the Noreastern by a factor of 1.42. In the deep zone (12 Noreastern and 13 Mystic hauls), the Mystic outfished the Noreastern by a factor of 4.50 and the need for a correction factor was indicated. The Mystic trawl was found to be approximately 2.64 times as effective as the Noreastern at capturing

POP when tows from all depths were considered (Table 3). This factor accounts for the difference in path width of the trawls as well as for their relative catching efficiencies. The results of the fishing power analysis for all species of fish and invertebrates found to require correction factors are presented in the appendix.

The data set used for the comparative analysis was rather small for obtaining precise results, so we compared the fishing power of the two nets on a group of slope rockfish species which co-occur with POP \{the "slope complex"). If we can assume that the species of the slope complex, which occupy similar habitats and have similar distributions, also behave like POP when fished by the two types of trawl, we should expect to obtain comparative fishing power results which are sindiar to those found for POP. Species were included in this complex on the basis of recurrent group analysis of catch data from all hauls in the current survey (Fager 1957; Fager and Longhurst 1958) and included sharpchin (Sebastes zacentrus), rosethorn (5 . heivomaculatus), silvergray (S. brevispinis), redbanded (S. babcocki), splitnose (S. diploproa), greenstriped (5 . elongatus), and darkblotched ($\$$. crameri) rockffshes, Pacific ocean perch, and shortspine thornyhead (Sebastolobus alascanus). Results of this analysis were similar to that for POP alone; a correction factor of 2.60 was needed. \$1ailar results were also found when catch data for all rockfishes (Genus Sebastes and Sebastolobus) were comblned (Table 3). The correction factor for POP derived for samples from all depths (2.64) was selected as the most appropriate measure of the relative fishing power of the

Tatie 3.--Sumary of results of fishing power comparison (FPC) for rackfish between the Moreastern (HE) and Mystis trawls in the Columba south subarea. Catch rates and fishing power converston factors are calculated by dividing total catch by total effort.

Species	Depth zone	$\begin{gathered} \text { FPC } \\ \text { needed } \end{gathered}$	$\frac{\text { Catch }}{N E}$	rates Mystic	$\begin{aligned} & \text { Convers } \\ & \text { HE to } \\ & \text { Mystic } \end{aligned}$	$\begin{aligned} & \text { ion factor } \\ & \text { hystic to } \\ & \text { NE } \end{aligned}$
Pacific	165-319 m	Ho	7.67	10.85	0.71	1.42
ocean	320-475 mim	Yes	4.62	20.83	0.22	4.50
perch	165-475 m	Yes	6.12	16.14	0.38	2.64
slope complex*	165-319 m	Yes	31.65	84.13	0.38	2.56
	320-475 m	Yes	20.27	52.33	0.39	2.58
	: $65-475 \mathrm{~m}$	Yes	25.85	67.28	0.38	2.60
All rackfish	265-319 m	yes	33,68	85.87	0.39	2.55
	320-475 m	Yes	24.30	64.00	0.38	2.53
	165-475 m	Yes	28.90	74.28	0,39	2.57

*Slope complex was comprised of rockfish species which co-accur with Pacific ocean perch and included Pacific ocean perch. shortspine thornyhead, rosethorn, sharpchin, splitnose, silvergray, redbanded, yreenstriped, and darkblot.ched rockfish.
two trawls. The difference in results using data from the two depth zones is probably due to the small sample of hauls. Using the selected correction factor it was possible to calculate an abundance estimate in terms of Mystic trawl catch rates that is compatible with results from the 1979 survey in the Columbia South area. Similarly, an abundance estimate could be derived in terms of Noreastern trawl catch rates which would correlate with those derived for the other 1985 survey areas.

It was not possible to compare the Noreastern trawl with the modifled 400 -mesh Eastern trawl used in the Columbla Middle area during the 1979 survey, so no attempt was made to adjust catch rates for comparability. We were forced to assume that the nets were equally efficient at catching perch and calculated abundance estimates separately for each gear based on their respective horizontal fishing dimensions.

Estimates of POP stock biomass, population numbers, and associated 90\% confidence intervals are presented by subarea and depth zone in Table 4. These estimates are based on the depth coverage of $165-475 \mathrm{~m}$ and trawl catch rates adjusted to Noreastern trawl catch rates using a correction factor of 2.64. Eighty-four percent of the estimated POP biomass in the survey area occurred in the shallow depth zone. Only in the Columbia South subarea, which accounted for 14\% of the total perch biomass, was abundance greater in the deep stratum than in the shallow stratum. This subarea is unique because the deep stratum is 52% larger than the shallow straturn. In all other subareas the shallow strata were $85-390 \%$ larger than the deep strata. The total POP biomass within the survey bounds was $8,633 \mathrm{t}(+/-24 \%)$; 23.5% of the estimated biomass (2,028 $t+-57 \%$) was found in the U.S.-Vancouver area and 76.5% $(6,606 \mathrm{t}+/-27 \%)$ in the Columbia area. Confidence intervals around the biomass estimates ranged from $+/-24 \%$ to $+/=94 \%$ for various survey subareas, a marked improvement in precision over the 1979 survey
results. Discussion of the comparison between these two surveys is presented later in this report.

Table 4,--Pacific ocean perch (POP) abundance estimates from the standardized analysis of the 1985 POP survey (based on Noreastern catch rates and suryey depths of $165-475 \mathrm{~m}$). Confidence 1 intervals are expressed as a percentage of the biomass estimate.

Area	Biomass(t)	90x Confidence limits (t)			Population$\text { (} \mathrm{no}, \times 1000 \text {) }$	Mean weight (kg)	Mean length (c)
		LOWER	UPPER	7 of B			
U.S.-Yancouver							
165-319 m	1709.5	574.2	2844.8	($\pm 667)$	2484	0.7	34.5
320-475 m	318.0	145.7	490.4	(± 545)	413	0.8	37.9
165-475 m	2027.5	880.6	3174.5	(${ }^{\text {+ }} 578$)	2897	0.7	35.0
Columbia North							
165-319 m	2739.4	1889.2	3589.5	(+ 314)	3390	0.8	37.2
320-475 m	76.0	50.6	101.3	($\pm 337)$	87	0.9	39.9
165-475 m	2815.3	1964.8	3655.8	(\#304)	3477	0.8	37.2
Columbia Middle							
165-319 m	2327.9	783.5	3872.4	(+864)	2989	0.8	36.7
320-475 m	242.5	14.6	470.4	(\ddagger 94\%)	185	0.7	37.0
165-475 m	2570.5	1020.6	4120.3	(${ }^{\text {605) }}$	3174	0.8	36.7
Columbia South							
165-319 m	465.9	202.4	729.5	(+577$)$	884	0.5	31.8
320-475 m	754.2	384.1	1124.4	(\ddagger 497)	957	0.8	37.8
165-475 ต	1220.1	774.8	1565.4	(\pm 36\%)	1841	0.7	34.9
Columbia Total							
165-319 m	5533.2	3783.7	7282.8	(\pm 32\%)	7263	0.8	36.3
320-475 m	1072.7	635.4	1510.0	(\pm 418)	1377	0.8	37.7
165-475 m	6605.9	4813.2	8398.6	(${ }^{(1275 \text {) }}$	8640	0.8	36.5
Total Survey Area							
165-319 m	7242.7	5201.5	9283.9	(\pm 28x)	9747	0.7	35.8
320-475 \%	1390.7	938.6	1842.8	($\pm 335)$	1790	0.8	37.8
165-475 m	8633.4	6550.0	10716.9	(\pm 245)	11537	0.7	36.1

Estimated population size composition curves for Pacific ocean perch from the 1985 survey are shown in Figure 4. Catches of the Horeastern and Mystic trawls in the Columbla South area were examined for evidence of differential size selectivity of ocean perch which could bias estimates of population size composition. Separate estimates of population size composition were made from length frequency data collected with each of the two trawls. There was an indication that the Mystic was more effictent at catching larger fish, but the size range of fish caught by each net was very similar (Fig, 5) despite the 32 mimesh 1 iner in the Noreastern codend (vs. the 108 mim mesh codend material of the Mystic). The results of relative fishing power and size composition analyses suggested that the two neţs were performing sfailarly in

Figure 4.--The population size composition and mean lengths (L) of Pacific ocean perch estimated from results of the 1985 Pacific ocean perch survey by depth zone and International North Pacific Fisheries Commission area and for the total survey area. (Lower curve $=320-$ 475 m depth zone, middle curve $=165-319 \mathrm{~m}$ depth zone, and upper curve $=165-475$ m depth zone).

Figure 5.--Size selectivity of the Noreastern and Mystic trawls shown by cumulative percent size composition estimated from the catches of each trawl during comparative fishing in the Columbia South subarea.
the shallow stratum and that the major difference appeared to be their relative efficiency for catching larger fish ($>34 \mathrm{~cm}$), which make up virtually the entire deep stratum population. Since no difference in size selectivity was seen between the two nets, population size composftion was estimated using length frequency data from all hauls. The population in the U.S.-Yancouver area was characterized by a rather even distribution of lengths between 24 and 45 cm . The length distribution in the Columbia area was bimodal with a major mode at $37-39 \mathrm{~cm}$ and a smaller mode at $27-31 \mathrm{~cm}$. Yirtually all perch caught in the deep strata were over 33 cm , while those caught in the shallow strata spanned the entire range of lengths.

The sex ratio for Pacific ocean perch within the survey bounds was 53.78\% males. Examination of sex ratios by LNPFC area revealed a considerably lower percentage of males in the U.S.-Vancouver area than in the Columbia area with estimates of $\mathbf{4 8 . 2 5}$ and 55.63% males, respectively. Sex ratio estimates for all subareas and depth zones are presented in Table 5. The deep zone in the U.S.-Yancouver area had a higher proportion of males than the shallow zone (51.57 vs. 47.70% males, respectively). The opposite trend was seen in the Columbia area where the fish in the shallow and deep zenes were 56.42 and 51.468 males, respectively.

Table 5.--Sex ratios (F males) of Pacific ocean perch populations in the International North Pacific Fisheries Commission Vancouver and Columbia areas (U.S. waters only) from results of the 1985 Pacific ocean perch survey by subarea and depth zone. Values in parentheses represent results which have been adjusted for comparison with 1979 results (depths to 420 m and catch rates adjusted to the Mystic traw 1 in the Columbla Soith subarea).

Area and depth zone	1979	1985	
U.S.-Yancouver area			
165-319 m	46.54	47.70	
320-475 m	46.67	51.57	
165-475 m	46.57	48.25	
Columbia North subarea			
165-319 m	51.70	54.19	
320-475 m	43.03	36.05	
165-475 m	51.13	53.74	
Coliumbia Middle subarea			
165-319 m	44.17	58.73	
$320-475 \mathrm{~m}$	33.05	48.02	(48.77)
165-475 m	43.96	57,66	(58.15)
Columbia South subarea			
$165-319 \mathrm{~m}$ $320-475 \mathrm{~m}$	53.17 46.26	57.17 54.06	(57.16)
165-475 m	49.80	55.56	(55.14)
Columbia area			
165-319 m	49.63	56.42	(56.55)
$320-475 \mathrm{~m}$	45.91	51.46	(52.61)
165-475 m	48.54	55.63	(55.53)
Total survey area			
165-319 m	48.45	54.20	(54.58)
$320-475 \mathrm{~m}$	46.13	51.48	(52.49)
165-475 m	47.84	53.78	(54.09)

Ages of Pacific ocean perch were estimated by reading the broken and burned otolfths of 1,635 specinens $(500$ from the $U . S$.-Vancouver area and 1,135 from the Columbia area). Ages ranged from 2 to 71 years in the Vancouver area and from 3 to 76 years in the Columbla area. The age composition figures for both areas (Fig. 6) show important contributions to the population from the $1979-80$ year classes ($5-6$ years old). The 1981 year class is also relatively important in the U.S.Vancouver area. The Columbia area population is also supported strongly by the 1970-75 year classes ($10-15$ years old). The growth curves and won Bertalanffy growth parameter estimates for both areas were nearly identical (Table 6, Fig. 6), and indicated that virtually all growth in length is completed in the first 15 years.

Comparison of 1979 and 1985 survey results.
The primary objective of the current survey was to assess the distribution, abundance, and blological features of the POP resource so that results would be comparable to those from a similar survey conducted in

Table 6.--Estimated von Bertalanffy growth parameters for Pacific ocean perch sampled durting the 1979 and 1985 Pacific ocean perch surveys. Samples collected in 1979 were aged by surface readings of otoliths and those collected in 1985 were aged with the break-and-burn method.

Year/area	Male			Female		
	Linf	k	t_{0}	Linf	k	t_{0}
1979						
W.5.-Vancouver	42.11	. 176	-1.15	45.21	. 146	-1.45
Columbia	40.75	. 187	-1.09	43.23	. 164	-1.32
1985						
U.S.-Vancouver 38.66	38.66	. 205	-. 80	41.73	. 171	-1.02
Columbia	38.86	. 224	-. 32	41.64	. 183	-. 97
Total area	38.84	. 215	-. 55	41.65	. 183	-. 82

US VANCOUVER 1985

COLUMBIA

Figure 6.--Age composition of Pacific ocean perch populations estimated from results of 1979 and 1985 assessment surveys by International North Pacific Fisheries Commission area and sex. Growth curves are also presented for the 1985 results.
1979. Inconsistencies in the 1979 sampling resulted from three agencies conducting different portions of the fleld work. The most serious of these involved the use of three different trawls by four different vessels and variable depth coverage ($165-475 \mathrm{~m}$ off Washington and $165-420 \mathrm{~m}$ off Oregon). The 1985 survey was designed to standardize the survey in all areas and to partly compensate for the differences between the two surveys to allow the most valid comparisons. For comparison with the 1979 results, catch rates of the Noreastern traw were adjusted to Mystic trawl catch rates in the Columbia South subarea using a correction factor (2.64) relating their respective efficienctes for catching POP. Also, hauls deeper than 420 m in the Columbia Middle and South subareas were excluded from the data when calculating the 1985 abundance and size composition estimates so that results would relate to the same portion of the resource.

The apparent abundance of the Pacific ocean perch resource in the survey area declined by 33% in biomass and 37% in numbers between 1979 and 1985 (Table 7, Fig. 1). The largest decline (63% less biomass and 57% fewer fish) was seen in the U.S.-Vancouver area. Stocks in the Columbia area decreased by 18% in biomass and 29% in numbers of fish. Although these differences appear large. they were not significantly different. Standard normal variates were calculated by:

$$
Z=\frac{\left(B_{85}-B_{79}\right)}{\operatorname{Var}\left(B_{85}\right)+\operatorname{Var}\left(B_{79}\right)} .
$$

Test statistics for the U.S.-Vancouver and Columbia areas were -1.48 and -0.66 , respectively, neither of which exceeds the test value of 1.96 (a)pha $=0,05$). The large varlances assoclated with the 1979 abundance estimates tend to dampen the sensitivity of this statistical test. Although the observed changes in stock size were not statistically significant, the sensitivity of the tests used to determine significance, particularly in the U.S.-Vancouver area, is questionable.

The depth distribution of the population was similar in both survey years. Approximately 85-95\% of the estimated population occurred in the shallow zone. The depth distribution in 1985 was more uniform than in 1979 when examined by 20 m depth intervals (Fig. 7). The population was also distributed more evenly latitudinally in 1985 (Fig. 8). The Columbia Morth and Middle subareas each contained only 12% of the population in 1979 while in 1985
 they contafned 26 and 238 of the population. The Columbio South and U.S.-Vancouver subareas contained 42% and 34% of the population, respectively, in 1979 and 32% and 19\% of the population, respectively.

Figure 7,-- The depth distribution of Pacific ocean perch in 1979 and 1985 (survey results) shown by mean catch per unit effort by 20 m depth intervals.

Iade $1 .=-$ Pacific ocean parch abundance estinates from an analysis of the 19791 and 19062 5urwey data．

Area	Btomass （t）	90\％Con lower	fidence upper	$\begin{gathered} 1 \text { 1甽ts (t) } \\ 3 \text { off } \end{gathered}$	Population （ 10 m ）	Mean weight （kg）	
$\begin{aligned} & \text { U. } 5 .- \text { Yancouver } \\ & 1979 \end{aligned}$							
155－319	4573.3	443.6	B703．0	（＋90\％）	5281	0.9	
320－475 п	\＄55．3	13．2	1829．5	（ ± 915 ）	1456	0.7	
$\begin{gathered} 155-475 \\ 1985 \end{gathered}$	5515.8	1397.6	9633.9	（\＃75\％）	6736	0.8	37.7
165－319 nt	1709.5	574.2	2844.8	（ + 665）	2484	0.7	34.5
320－475 m	318．0	145.7	490．4	（ $\pm 547)$	413	0.8	37.9
165－475 n	2027.5	880.6	3174.5	（ $\mp 57 \%$ ）	2397	0.15	35.0
$\begin{aligned} & \text { Col unb is } \\ & 1979 \end{aligned}$							
165－319	1794.5	128．2	3460.8	（ +938 ）	203］	0.9	
320－415 п	123.4	）	398.0	（＋2231）	143	0.9	
$\begin{gathered} 165-475 \mathrm{~m} \\ 1985 \end{gathered}$	1917.9	249.6	3586.2	（ +874 ）	2180	0.9	38.6
165－319 п	2739．4	1899．2	3589． 5	(± 315)	3390	0.8	37.2
320－475 m	76.0	50.6	101.3	（\％ 337 ）	87	0.9	39.9
165－475 m	2815．3	1964，8	3665．6	（\％3¢7）	3477	0.8	37.2
Columita Middle 1979							
165－319 ${ }^{\text {m }}$	1905.1	0	4239.2	（ + 123\％${ }^{\text {\％}}$	31044	0.6	
320－420	45.2	6.6	83.9	（＋865）	61	0.7	
$\begin{gathered} 165-420 \quad \\ 1985 \end{gathered}$	1950．3	0	4284．7	$(\pm 120 \%)$	3105	0.6	35.2
165－319 m	2327．9	783.5	3872.4	\｛＋66\％）	2989	0.8	36.7
320－420 m	136．日	0	335， 8	（ $+145 \pm$ ）	1\＄5	0.7	37.2
165－420 m	2464.7	918.6	4010.8	T＋637）	3174	0.8	38.7
Columbla 5outh 1979							
$165-319$ m	2968．1	853.9	5082． 3	（4．717）	56.95	0.5	
320－420 m	3691．3	1002．9	6299.7	（\％715）	5416	0.7	
$\begin{gathered} 165-420 \\ 1985 \end{gathered}$	6659.4	3359.1	9959．7	（4）50\％	11112	0.6	34.6
165－319	1229.2	533.9	1924．6	（ 4 578）	2323	0.5	31.8
320－420	2143.6	1114．6	31172.5	（ \ddagger 48\％）	2124	0.8	35.0
165－420	\＄312．8	2151.1	4592.5	（ ± 367 ）	5046	0.7	35.0
$\begin{aligned} & \text { Col umbla Total } \\ & 1979 \end{aligned}$							
165－319	6667.7	3266.4	10069.0	（ +515 ）	10776	0.5	
$\begin{array}{r} 320-420 \mathrm{~m} \\ \text { or } 475 \mathrm{~m} \end{array}$	3859，9	1269．8	6450．0	（\＃± 72 ）	5520	0.7	
$\begin{array}{r} 165-420 \text { in } \\ \text { or } 475 \end{array}$	10527．6	6323.91	14734．3	（4 40\％）	16397	0.6	35.2
1685	6296．5	4441．3	8151．8	(± 297)	8701	0.7	35.6
320－420	2371.5	1339.8	3403．2	（ +445 ）	3015	0.8	37．8
165－420	8668．0	6577．6	10753．5	（玉 245）	11716	0.7	36.1

${ }^{1 /} /{ }_{1979}$ estimates based on survey depths of $165-475 \mathrm{~m}$ north of the columbla River and 165－420 m south of the Columbia River；Moreastern trawi eatch

 M1at，
$2 /$
This analysis of the 1985 date incorporstes adjustments ta make the results es closely comparable to the 1979 results as possible．suryey depths used in the malysis were $165-475$ a north of the Col mbia tiver and 165－420 m south of the river．Horeastern trawl catch rates were used
 were adjusted to Hystic tranl catch rates by multiplying then by 2.64. Consequantly，the Colunibla Total estinates 11 so reflect the use of Pustic traml catch rates in the Colubla south ared．

Figure 8.--The latitudinal distribution of Pacific ocean perch in 1979 and 1985 (survey results) shown by mean catch per unit effort by 15 minute latitude intervals.

Figure 9.--The population size composition of Pacific ocean perch in 1979 and 1985 (survey results) in the International North Pacific Fisheries Commission Vancouver (U.S. portion) and Columbia areas. The 1985 results have been adjusted to Mystic catch rates in the Columbila South subarea and depth coverage to 420 m off Oregon for comparison with the results of the 1979 survey.
in 1985. The more uniform distribution of the population and more consistent sampling procedures were undoubtedly major factors in the improved precision of the 1985 abundance estimates.

Major aifferences are evident between the population size composition estimates from the two surveys (Fig. 9). The majority of the 1979 population in the U.5.-Yancouver area composed a mode at $34-42 \mathrm{~cm}$. The 1985 population was spread more evenly between 22 and 46 cm . The population size composition in the Columbia area was bimodal in 1985 with a major mode at 34-42 cm and a smaller mode at 27-31 cm . The large mode of 34 cm fish seen in 1979 appears to be still relatively strong 6 years later as laryer ($36-41 \mathrm{~cm}$) fish. Slight ly more small fish ($20-30 \mathrm{~cm}$) were seen in both areas during 1985 than in 1979. suggesting that recruitment in recent years may be better than it was in the late 1970s. Larger fish dominated the size composition in the deep strata consistently in both years and all areas, a pattern seen in many rockfish species.
The proportion of males in the population increased notably from 47.844 in 1979 to 53.78% in 1985. This change in sex ratio was consistent in all strata (Table 5). The proportion of males in the shallow zone of the Columbla area was higher than in the deep zone, al though the opposite trend was found in the U.S.-Yancouver area. This pattern occurred during both survey years.

The age composition of the population looks quite differer between the two survey years, although the use of different ageing met rods confounded the comparison. The maximum ages estimated frcin the 1985 otolith sample were much older than those estimated from the 1979 sample (76 vs. 26 years). Results from the 2 years can only be compared to about age 15 , since there is relatively good agreement between surfaceand section-aged observations from the same otolith up to that point (Beamish 1979b). The abundance of the older age classes, even within this range, is usually overestimated by using surface-aged data. The 1985 age composition in the U.S.-Vancouver area shows slightly more young fish (4-6 years) than in 1979, although the older fish are much less abundant. Young fish (5-6 years) are also slightly more abundant in the Columbia area in 1985, but the strong year classes of the early 1970s (ages $10-15$ in 1985) still make up a significant part of the population. The growth curves were not compared between years because the 1979 surface-aged data would be misleading.

Discussion

The most difficult problem faced in the comparison of the 1979 and 1985 survey results was relating abundance estimates which had been derived from catch rates of two or three different types of trawls. Since no information is available to relate the fishing power of the Noreastern trawl to that of the 400 -mesh Eastern trawl used in the Columbia Middle subarea in 1979, the comparison of catch rates in that subarea is unreliable. The results of the comparative fishing experiment in the Columbia South subarea indicated that the Mystic trawl, with only one-half the mouth opening area of the Noreastern, was over two and one-half times as effective at catching POP. Similar relative fishing power factors were calculated for the slope complex and for all rockfish species combined. Further, despite the smali-mesh codend liner used only with the Noreastern, there was no detectable difference in the size composition of perch caught by the two nets.

The difference between the catch rates of these nets may be related to the way the width of the effective fishing path is estimated. While the fishing path of a trawl is usually assumed to be the distance between wingtips of the net itself, some studies (Carrothers 1981; Foster et al. 1981; Harden Jones et al. 1977; Main and Sangster 1983) recognize that a considerable herdting effect may result from the mud clouds created by the trawl doors and dandylines and that a more appropriate measure of the effective fishing path might be the distance between the trawl doors or some function of that distance. The dandylines used with the Mystic trawl were 33% longer than those used with the Foreastern. Generally, longer dandylines will allow the doors to spread wider, although direct measurement would be necessary to determine the effect. The doorspread would also likely be affected by the relative resistances of the two nets moving through the water. Presumably the smaller Mystic net, with no small-mesh codend liner, hould encounter significantly less resistance, allowing the doors to spread wider. These factors probably increased the Mystic trawl's effective path width, which may partly explain that net's greater fishing power, even though its actual dimensions are smaller than the Noreastern's.

The validity of these relative fishing power estimates should be further examined. Pacific ocean perch and many other rockfish species are noted for having very contagious distributions and, consequently, large
variances are usually associated with mean catch rates for these species and wide confidence intervals accompany abundance estimates. Additionally, comparative fishing experiments require the results of many trawl hauls in order to dampen the effects of this variability. The experiment conducted in 1985 involved relatively few tows covering a wide depth range over which abundance varied substantially. More samples would probably have reduced the effect of distribution and yielded a more representative comparison of fishing power. Although the comparative fishing data is relatively limited, it allows us to compare the results of the two surveys in the Columbia South subarea,

The weakest assumption made during the analysis was that the net was capturing all fish encountered by the net mouth. This weakness is common to all trawl surveys and will continue to be until reliable relationships between fish behavior and sampling gear can be established. We have also assumed that the stocks were fully available in the survey area during the survey period, which is usually a weak assumption. Consequently, the results of resource trawl surveys must be considered to be conservative and should be viewed as such by resource managers.

The length composition of Pacific ocean perch samples from hauls made with each type of trawl were similar enough to conclude that the various components of the population (sex, size, and age groups) were being sampled in the same proportions by both gears. Estimates of size and age composition and sex ratio are probably not affected by pooling the biological data collected by both types of gear.

Abundance estimates were more precise in 1985 than in 1979. The distribution of the population was more untform in 1985 (Figs, 7, 8). Some sources of sampling variability were also removed by conducting the survey with one vessel, a standardized trawh, and a standardized survey patterin throughout the study area. These two factors were probably responsible for much of this improved precision.

Biomass, population, and size composition (population number at each size class) are all calculated by the same area-swept algorithm and subject to the same assumptions. The catch rates and biological data are assumed to truly reflect the abundance and composition of the population being sampled and the fishing gear is assumed to be sampling the population consistently. The variance and confidence intervals calculated for these estimates should accurately reflect the sampling variance, including the distributional variability of the population.

The accuracy of resource surveys can usually be appraised only by comparing their results with those from assessments which use other methods and data bases. Fortunately, the POP resource fin the INPFC Vancouver and Columbia areas has been monitored fairly closely since the mid-1960s and many independent assessments of the resource are available for various times during that period. In addition to surveys, abundance has been estimated by calculation of explotable biomass (dividing catch by the estimated exploitation rate), extrapolation of commercial CPUE data to an "area-swept" estimate, cohort analysis, and most recentiy by stock reduction analysis. Abundance estimates from major assessment efforts are summarized in Figure 1. By all indications, the resource was sharply reduced by intense fishing in 1965-67 and continued to decline through the mid-1970s until forelgy landings were prohibited.

The declines have slowed since then but continue despite restricted landings aimed at allowing the stocks to rebuild. Continufing declines were expected through at least 1975 because of the potential loss of reproductive capacity of the population (Quast 1972; Hestrheim et al. 1972).

The cohort analyses performed by Gunderson (1979, 1981) predicted that Pacific ocean perch stocks could be rebuilt if harvests were limited to low levels for approximately 20 years. Using the assumptions from those analyses and landing statistics, the stocks in the U.S.-Vancouver and Columbia areas should have increased by 80% and 43%, respectively, between 1979 and 1985. The survey resul ts show the opposite trend. The differences between predicted bionass and survey biomass estimates was significant (alpha $=0.05$ and test value $=1.96$) in both INPFC areas. The U.S.-Vancouver stock declined from 5,516 t to $2,208 \mathrm{t}$ instead of rebuilding to a predicted level of $9,936 \mathrm{t}(2=-12.38)$. The Columbia stock declined from 10,528 to $8,668 \mathrm{t}$ instead of increasing to $15,081 \mathrm{t}$ ($2=-5.13$). Results of a new cohort analysis and stock reduction analysis (Ito et al. 1986) support the conclusion that the stocks have not rebuilt and are possibly smaller than when the rebuilding plan was implemented. Gunderson assumed that recruitment to these stocks would be constant and equal to the mean recruitment of the 1956-68 year classes (3,297 and $2,236 \mathrm{t}$ in the Vançouyer and Columbia areas, respectively). Stock reduction analysis (Ito et al. 1986) indicates that these recruitment estimates were too high and determined average recruitment to these stocks to have been about $2,000 \mathrm{t}$ annually in each area. The natural mortality estimates used in Gunderson's calculations may also have been overestimated since recent evidence shows POP to be a much longer-lived species than previously believed (Beamish 1979b; Chilton and Beamish 1982). The natural mortality rate is probably closer to 0.05 than the 0.15 or 0.10 Gunderson used for the Vancouver and Columbla areas, respectively (Archibald et al. 1981, 1983; Shaw and Archibald 1981; Ito et al. 1986).

Another reason stocks have failed to rebuild is that fishing mortality probably has been underestimated. The POP fishery has long been subject to significant discards of fish smaller than the market will accept. Enforcement of trip limits aimed at reducing landings have probably aggravated this problem. Discard rates of demestic trawlers have only recently been researched and evaluated and seem to be quite variable depending on the season and the fishing strategy being pursued. Data collected by observers aboard domestic bottom rockfish trawlers off Newport, Oregon, tndicate discard rates of approximately 24.8% in weight and number for pop during fourteen trips in july through September, 1985 (Pikitch, this volume). The within-trip discard pattern suggested a tendency for all POP to be retained near the beginning of the trip until the 1 fmit was approximately met, after which nearly all were discarded, Discard rates were lower for the periods October-December 1985 and January-June 1986 and also for other fishing strategies (midwater, nearshore mixed species, and deepwater Dover sole fisheries) due to lower POP catch rates. The survival of discarded rockfish is negligftle due to physiological damage from expanding air bladders when the fish are brought to the surface. Consequently, when adjusted for discard rates, removals from the population could actually exceed reported landings by more than 20% for some segments of the trawl fishery.

Rebuilding in the U.S.-Yancouver area may also have been thwarted when Canadian fishery managers allowed an experimental overharvest of Parific ocean perch in the Canadian zone of the Vancouver area between 1980 and 1983 (Stocker 1981). The purpose of this policy was to evaluate the stock's sensitivity to large relative, though small absolute, changes in landings. Researchers believed that due to the already severe depletion of the stock, "the penalty for error in such a system would be much lower than in other 5. alutus stocks, while the potential benefits to our understanding of stock dynamics may be large." Results of Canadian trawl surveys show that the POP stocks in the Canadian sector of the Vancouver area have apparently declined by 56\% between 1979 and 1985 (B.M. Leaman, Pacific Biological Station, Nanaimo, B.C., Canada, personal comanication). Although this experiment was limited to Canadian waters, it is possible that it has contributed to the apparent 63\% decline in the resource's abundance in the U.S. portion of the Vancouver area.

The effects of discard rates, overestimated recruitment, and the Ganadian overfishing experiment would lead one to expect less stock rebuilding than predicted by Gunderson's cohort analyses. On the other hand, overestimating natural mortality for the cohort analyses would have led to an underestimate of the stock's potential to rebuild itself, but would have also led to underestimates of fishing mortality (since $F=Z-H$) and, consequently, underestimates of exploitation rates. The net result could likely be consistent with the declines in abundance shown by the survey results. The most probable rebuilding scenario examined by Ito et al. (1986) indicated that it would take at least 50 years for the stocks in the Vancouver and Columbia areas to rebuild to a level ($25,000 \mathrm{t}$ in each area) at which they could produce maximum sustainable yield.

In conclusion, all evidence suggests that the Pacific ocean perch resource off Washington and Oregon remains in poor condition and has even taken a seriois turn for the worse in the U.S.-Vancouver area. The apparent 638 decline in biomass in the U.S.-Vancouver area between 1979 and 1985 was substantiated by a corresponding 56% decline in the Canadian portion of that area. The survey results and those of recent cohort and stock reduction analyses show that landing restrictions have not resulted in increased stock size as predicted, but the stocks appear to be declining further despite the regulations. Biomass levels are currently only about $5-10 \%$ of the virgin biomass in both areas and recruitment failure at these low levels is a strong possibility (Ito et. al. 1986). Without increased catch restrictions and favorable recruitment, this resource may well decline to the point where interspecific competition and economic costs of rebuilding programs will seriously impede rebuilding these stocks to productive levels.

References

Alverson, D.A., and S.J. Westrheim, 1961. A review of the taxonomy and biology of the Pacific ocean perch and its fishery. Rapp. P.-v. Reun. Cons. Int. Explor. Mer 150:12-27.

Archibald, C.P., W. Shaw, and B.M. Leaman, 1981, Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal waters, 1977-1979. Can. Tech. Rep. Fish. Aquat. Sci, 1048, 57 p.

Archibald, C.P., D. Foursier, and B.M. Leaman. 1983. Reconstruction of stock history and derelopment of rehabilitation strategies for Pacific ocean perch in queen Charlotte Sound, Canada. N. Am. J. Fish, Manage. 3(3):283-294.

Beamish, R.J. 1979a. Differences in the age of Pacific hake (Merluccius productus) using whole otoliths and sections of otoliths. J. Fish. Res. Board Can. 36(2):141-151.

Beamist, R.J. 1979b. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Board Can. 36(11): $1395-1400$,

Bennett, J.T., G.H. Boehlert, and K.K. Turekian. 1982. Confirmation of 1ongevity in Sebastes diploproa (Pisces: Scorpaenidae) using ${ }^{210} \mathrm{pb} /{ }^{226} \mathrm{Ra}$ measurements in otoliths. Mar. Biol. 71(2):209-215.

Carrothers, P.d.G. 1981. Catch variability due to variations in groundfish otter trawl behaviour and possibilities to reduce it through instrumented fishing gear studies and improved fishing procedures, p. 247-257. In W.G. Doubleday and D. Rivard (eds.), Bottom trawl surveys. Can. Spec. Publ. Fish. Aquat. Sci. 58.

Chilton, D.E., and R.J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60, 102 p.

Coleman, B.A. 1986. The 1980 Pacific west coast buttom trawl survey of groundfish resources: Estimates of distribution, abundance, length and age Composition. U.S. Dep. Commer., NOAA Tech. Mento. NMFS F/NWC-100, 181 p .

Fager, E.H. 1957. Determination and analysis of recurrent groups. Ecology 38(4):586-595.

Fager, E.K., and A.R. Longhurst. 1968. Recurrent group analysis of species assemblages of demersal fish in the Gulf of Guinea. J. Fish. Res. Board Can. 25(7):1405-1421.

Foster, J.J.. C.M. Campbell, and G.C.W. Sabin. 1981. The fish catching process relevant to trawls, p. 229-246. In W.G. Doubleday and D. Rivard (eds.), Bottom trawl surveys. Can.- Spec. Publ. Fish. Aquat. sci. 58.

Fraidenburg, M.E., J.E. Smith, W.H. Barss, and T, Jow. 1978. Minimum estimates of the all nations renovals, North American trawl species composition, and CPUE for "other rockfish" in the northeastern Pacific ocean. Wash. Dep. Fish. Tech. Rep. 34, 31 p.

Geisser, S., and W.F. Eddy. 1979. A predictive approach to model selection. J. Am. Stat. Assoc. 74:153-160,

Guncerson, D.R. 1971. Reproductive patterns of Pacific ocean perch, Sebastodes alutus, off Washington and British Columbia and their relation to bathymetric distribution and seasonal abundance. J. Fish. Res. Board Can. 28(3):417-425.

Gunderson, D.R. 1972. Evidence that Pacific ocean perch, Sebastes alutus, in queen Charlotte Sound form aggregations that have different biological characteristics, J. Fish. Res. Board Can. 29(7):1061-1070.

Gunderson, D.R. 1974. Availability, size composition, age composition, and growth characteristics of Pacific ocean perch, Sebastes alutus, off the northern Washington coast during 1967-1972. J. Fish. Res. Board Cat. 31(1):21-34.

Gunderson, D.R. 1979. Results of cohort analysis for Pacific ocean perch stocks off British Columbia, Washington, and Oregon, and an evaluation of alternative rebuilding strategies for these stocks. Unpub. report, 20 p. Available Pacific Fisheries Managenent Council, Metro Center, Sutte 420, 2000 S.W. First Avenue, Portland, OR, 97201.

Gunderson, D.R. 1981. An updated cohort analysis for Pacific ocean perch stocks off Washington and Oregon. Report to the Pacific Fishery Management Council, 29 p. Available Pacific Fisheries Management Council, Metro Center, Suite 420, 2000 S.W. First Avenue, Portland, 0R, 97201.

Gunderson, D.R., and T.M. Sample. 1980. Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. U.S. Natl. Mar. Fish. Serv. Mar. Fish. Rey. 42(3-4):2-16.

Gunderson, D.R., S.J. Westrheim, R.L. Demory, and M.E. Fraidenburg. 1977. The status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Hashington, and Oregon in 1974. Fish. Res. Board Can. Tech. Rep. 690, 63 p.

Harden Jones, F.R., A.R. Margetts, M. Greer Walker, and G.P. Arnold. 1977. The efficiency of the Granton otter trawl determined by sector-scanning sonar and acoustic transponding tags. Rapp. P.-v. Reur. Cons. Int. Explor. Mer 170:45-51.

Ito, D.H., D.K. Kimura, and M.E. Wilkins. 1986. Current status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon in 1986, 44 p . In Pacific Fishery Manayement Council. Status of the Pacific Coast groundfish fishery through 1986 and recommended acceptable biological catches for 1987. (Document prepared for the Council and its advisory entities.) Available Pacific Fisheries Management Council, Metro Center, Suite 420, 2000 5. W. First Avenue, Portland, OR, 97201.

Lapi, L.A., and J.E. Richards. 1981. Data collected during rockfish (Sebastes spp.) assessments of west Langara Island and west coast Vancouver Island fishing grounds in 1978. Can. Data Rep. Fish. Aquat. Sci . 286, 117 p.

Main, J., and G.l. Sangster. 1983. Fish reactions to trawl gear--a study comparing light and heavy ground gear. Scott. Fish. Res. Rep. 27, 17 p.

Major, R.M., and H.H. Shippen. 1970. Synopsis of biological data on Pacific ocean perch, Sebastodes alutus. FAO Fish. Synop. 79, 38 p.

Pacific Ftshery Management Council. 1980. Pacific Coast Groundfish Management Plat. Available Pacific Fisheries Management Council, Metro Center, Suite 420, 2000 S.W. First Avenue, Portland, OR, 97201.

Pikitch, E.K. 1986. Impacts of management regulations on the catch and utilization of rockfish in 0regon. This volume.

Quast, J.C. 1972. Reduction in stocks of the Pacific ocean perch, an important demersal fish off Alaska. Trans. Am. Fish. Soc. 101(1):64-74.

Shaw, W. and C.P. Archibald. 1981. Length and age data of rockfishes collected from B.C. coastal waters during 1977, 1978, and 1979. Can. Data Rep. Fish. Aquat. Sci. 289, 119 p.

Stocker, M. 1981. Groundfish stock assessments off the coast of Canada in 1981 and recommended total allowable catches for 1982. Can. Manuscr. Rep. Fish. Aquat. Sci. 1626, 312 p.

Technical Subcommittee. 1972. Unpublished report of the Technical Subcormittee, International Trawl Fishery Committee, 13th annual meeting, June 28-30, 1972, 45ρ. Available Pacific Marine Fisherjes Commission, 528 S.W. Mill St., Portland, OR, 97201.

Wakabayashi, K., R.G. Bakkala, and M.S. Alton. 1985. Methods of the U.S.- =dapan denersal trawl surveys, p. 7-29. In R.G. Bakkala and K. Wakabayashi (eds.), Results of cooperative U. S. - Japan groundfish investigations in the Bering Sed during May-August 1979. Int. North Pac. Fish. Comm. Bull. 44.

Weinberg, K.L., M.E. Wilkins, and T.A. Dark. 1984. The 1983 Pacific west coast bottom trawl survey of groundfish resources: Estimates of distribution, abundance, age and length composition. U.S. Dep. Commer., NOAA Tech. Memo. NMF $\$ \mathrm{~F} / \mathrm{NWC}-70,376 \mathrm{p}$.

Westrheim, S.J., D.R. Gunderson, and J.M. Meehan. 1972. On the status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Washington, and Oregon in 1970. Fish. Res, Board Can. Tech, Rep. 326. 48 p.

Westrheim, S.J. 1973. Age determination and growth of Pacific ocean perch, Sebastes alutus, in the northeast Pacific Ocean. J. Fish. Res. Board Gan. 30(2):235-247.

Wilkins, M.E., and J.T. Golden. 1983. Condition of the Pacific ocean perch resource off Washington and Oregon during 1979: Results of a cooperative trawl survey. N. An. J. Fish. Manage. 3(2):103-122.

Appendix.--Surmary of results of fishing power comparison between the Noreastern and Mystic trawls in the Columbia South subarea during the 1985 Pacific ocean perch survey. Only species determined to require fishing power correction factors are included in this summary. Catch rates ($\mathrm{kg} / \mathrm{km}$ trawled) and fishing power conversion factors are calculated by dividing the sum of the catch by the sum of the effort.

Species	$\frac{\text { Catch rates }}{(\mathrm{kg} / \mathrm{km})}$		$\begin{aligned} & \text { Conversi } \\ & \hline \text { Mystic } \\ & \text { to } \mathrm{NE} \end{aligned}$	$\begin{aligned} & \text { factor } \\ & \begin{array}{l} \text { NE to } \\ \text { mystic } \end{array} \end{aligned}$
Rockfish				
Pacific ocean perch	6.12	16.14	0.38	2.64
Rougheye rockfish	0.95	4.40	0.22	4.61
Shortspine thornyhead	8.16	18.53	0.44	2.27
Splitnose rockfish	4.25	19.28	0.22	4.54
Other roundfish				
Eulachon	0.24	0.01	17.95	0.06
Sablefish	23.81	77.60	0.31	3.26
Flatfish				
Dover sole	7.46	25.50	0.29	3.42
Rex sole	2.98	5.43	0.55	1.83
Slender sole	0.40	0.06	7.01	0.14
Cartilaginous fish				
Longnose skate	0.65	3.08	0.21	4.76
Spiny dogfish	0.06	0.24	0.27	3.66
Spotted rat fish	0.12	0.69	0.18	5.66
Invertebrates				
Brisaster latifrons	0.73	0.01	86.63	0.01
Orange-pink sea urchin	11.95	0.06	202.63	0.005
Sea cucumber	0.68	0.002	403.51	0.002
Squid	0.05	0.005	10.03	0.10
Starfish	0.39	0.02	23.44	0.04

Rockfish in the Aleutian Islands: Results from the 1980 and 1983 U.S.-Japan cooperative demersal trawl surveys

Thomas Wilderbuer
 NMFS, Northwest and Alaska Fisheries Center Seattle, Washington

Abstract

Abstract

The Aleutian Islands reyion is an important habitat for the rockfish resource found alony the Outer Continental Shelf and upper slope of the North Pacific Ocean and the Bering Sea. The dominant rockfish species found to inhabit the Aleutian Islands from trawl surveys is the Pacific Ocean perch (Sebastes alutus) followed in lesser concentrations by northern rockfish (S. polysuinis), shortraker rockfish (S. borealis), rougheye rockfish (s. aleutianus), and shortspine thormyhead (Sebastolobus alascanus).

In 1980, the National Marine Fisheries Service of the United States and the Far Seas Fisheries Research Laboratory of the Fisheries Agency of Japan conducted the first comprehensive resoturce assessment survey of the Aleutian Islands to collect information on the distribution and abundance of the principal groundfish species and to provide estimates of biomass and the biological stock parameters for each species. The survey area included the Continental shelf and upger slope both morth and south of the Aleutian Islands from Unimak Pass to Stalemate Bank with the sampling depth ranging from 31 to 919 m . Successful sampling was completed by three vessels at 319 trawl stations.

The survey was repeated in 1983 using a sampling plan which was developed to improve the precision of the bionass estimates based upon the the distribution and abundance of the principal species as determined by the 1980 survey. The 1983 survey had the same geographic and bathymetric coverage as in 1980 with 377 successful demersal trawl stations completed by three vessels chartered by the two nations' management agencies.

Biomass estimates were standardized to the U.S. Moreastern trawl for comparing survey results between years and provided Pacific ocean perch
estimates of $12 c, 000 t$ and $152,000 \mathrm{t}$ for 1980 and 1983, respectively. The 1980 and 1983 bionass results for other rockfish species closely associated with Pacific ocean perch were 9,000 and $17,000 \mathrm{t}$ for northern rockfism; $8,000 t$ and $40,000 t$ for shortraker rockfish; and $16,000 \mathrm{t}$ and $23,000 \mathrm{t}$ for rougheye rockfish. Biomass estimates for shortspine thornyhead which inhabit the Continental Slope waters were $10,000 \mathrm{t}$ for both survey years.

Introduction

The Northwest and Alaska Fisheries Center (NWAFC) of the U.S. National Marine fisheries Service (NMFS) and the Far Seas Fisheries Research Laboratory of the Japan Fisheries Agency (JFA) conducted the first comprehensive systematic resource assessment survey of the Aleutian lslands during July-November 1980. The survey objectives were to collect information on the distribution and abundance of the principal groundfish and invertebrate species, to establish estimates of total trawlable or available biomass by species, and to define the biological stock parameters of each species and to ascertain how they change with time. Designed to be repeated every 3 years, the survey has established a time series of data to be used in management of the groundfism resource of the Aleutian Isiands region and assessment of stock conditions in future years. This report summarizes the 1980 and 1983 survey results for the five dominant shelf and slope rockfish species.

The Aleutian Islands region is an important rockfish habitat area of the North pacific 0cean and the eastern Bering Sea. This resource, which is primarily found along the Outer Continental Shelf and upper slope regions, is dominated by Pacific ocean perch (POP) (Sebastes alutus), followed in lesser concentrations by northern rockfish ($\underline{\text { s }}$. polyspinis), shortraker rockfish (S. borealis), rougheye rockfish (\underline{S}. aleutianus), and shortspine thornyhead (Sebastolobus alascanus). With the exception of northern rockfish, these species are captured in North Pacific waters from central California northward through the Gulf of Alaska, the Aleutian Islands, and the Bering Sea. Northern rockfish, with a more limited distribution, are found in the Gulf of Alaska from Yakutat westward to the Aleutian Islands and north to the Bering Sea. Nine species of rockfish were encountered during the 1980 and 1983 Aleutian Islands trawl surveys (Table 1).

Rockfish resources have supported major Japanese and Soviet trawl fisheries in the Aleutian Islands, and to a lesser extent in the Bering Sea, since 1962. Foreign reported commercial catches in the

Aleutian Islands of species of the Pacific ocean perch complex peaked in 1965 at 109,000 metric tons (t) (Table 2) and have declined steadily since. For 1986 the domestic quota in the Aleutian Islands and Bering Sea International North Pacific Fisneries Commission (INPFC) management area for species of the POP complex is set at 6,8000 t and these species now support one of the few fisheries fully utilized by domestic trawlers in the Bering Sea-Aleutian lslands and the Gulf of Alaska managenent regions.

The earliest fishery Investigations of the resources of the Aleutian Islands were conducted by the U.S. Fish Commission steamer Albatross in 1896. The Sowiet Union implemented several scientific expeditions into the island chain during the 1960s to compile information on the seasonal changes in the hydrography of the region and to organize future fisheries for flounders, rockfish, and Atka mackerel. The Japan Fisheries Agency (JFA) also performed several limited-scale otter trawl surveys of the Aleutian islands in the early 1970 primarily to collect information on the biological characteristics of the groundfish species.

Survey Methodology

Since neither the National Marine Fisheries Service nor the Japan Fisheries Agency had conducted an extensive trawl survey of the Aleutidn Islands prior to 1980, littie data were available to provide information on groundfish and invertebrate distributions needed to formulate an effective sampling plan. For this reason a sampling plan was developed which assured a wide geographic and bathymetric coverage of the survey area with maximum sampling density in the time allotted (hilderbuer et al. 1985). The Continental Shelf and upper slope regions north and south of the Aleutian Islands from Stalemate Bank to Unimak pass were divided into sampling sections 30 minutes of longitude wide. Each sampling section was further divided into six depth intervals:

$$
\begin{aligned}
& 1-100 \mathrm{~m}(1-54 \text { fathoms }) \\
& 101-200 \mathrm{~m}(55-108 \text { fathoms) } \\
& 201-300 \mathrm{~m}(109-162 \text { fathoms }) \\
& 301-500 \mathrm{~m}(163-273 \text { fathoms }) \\
& 501700 \mathrm{~m}(274322 \text { fathoms }) \\
& 701-900 \mathrm{~m}(383-492 \text { fathoms })
\end{aligned}
$$

One trawl station was assigned to each depth interval of each sampling section. In sampling sections where the depth intervals were over 5 nautical miles (mi) wide, additional sampling was designated as follows:

5 to 10 mmi wide -1 additional station
11 to 15 nmi wide -2 additional stations
16 to 20 nmi wide - 3 additional stations
The total survey area extended over three International North Pacific Fisheries Commission (INPFC) statistical areas: The southern portion of the southeastern Bering Sea area; the Aleutian Islands area including Bowers Ridge; and the western portion of the Shumagin area. The survey was analyzed and is presented by these three distinct areas with the Aleutian Islands region further divided at 180 degrees longitude into the morthwest, northeast, southwest and southeast subareas (Fig. 1). The suryey area north of 53 degrees N latitude is the Bowers Ridge subarea.

Three vessels were chartered by the two research agencies to perform the survey in 1980. Both U.S. vessels, the Half Moon Bay and the Ocean Haryester are $32.9 \mathrm{~m}(108 \mathrm{ft})$ west coast type combination crabber/trawlers which completed 129 and 89 on-station bottom trawls, respectively. The Hatsue Maru No. 62, a 45.6 m (153 ft) land-based stern trawler, was the principal participant during the survey completing 217 denersal trawh stations.

All bottom trawling by the U.S. chartered vessels was conducted with a Noreastern trawl (27.4/32 trawl) with roller gear. The headrope and footrope were 27.4 and 32 m long, respectively, with vertical and horizontal openings of 6.1 and 17.9 m , respectively. The Noreastern trawl was fished with 1.8×2.7 m steel V-type otter boards and triple 54.9 m dandylines; the codend was lined with 1-1/2 inch stretched mesh nylon webbing.

Two Japanese conmercial trawls were used by the Hatsue Maru No. 62 during the survey. A 31.8 m headrope trawl ($32 / 44$ trawl) was fished during the first half and was later replaced by a 54.8 m headrope trawl (55/65 trawl) during the second half. Both trawls were equipped with roller gear constructed of 57 cill diameter car tires in the central portion and 53 cm diameter gum and steel boobins along the wings. Vertical openings of the trawls used during the first and second halves of the survey were 5.2 m and 4.5 m , respectively.

The average horizontal opening for the Japanese trawl was estimated at 21.6 m during the first leg and 28.5 m during the second leg. Both
trawls were rigged with 82 m dandylines (a single 32 min section branching into two 50 m bridles) and fished with $2.2 \mathrm{~m} \times 3.4 \mathrm{~m}$ otter boards weighing approximately $2,400 \mathrm{~kg}$.

The groundfish survey was repeated in 1983 by the two research agencies with the fallowing changes. In an attempt to improve the precision of the survey estimates, a sampling plan was developed based upon the distribution and abundance of the primcipal species as determined by the 1980 Aleutian Islands survey. Sampling density was increased in areas of highest fish abundance. Analytical areas were selected based upon the abundance of the principal species encountered during the 1980 survey, and sampling densities were allocated based on the variance of the abundance estimates using the Neyman allocation method (Cochran 1977). The resultiny 1983 sampling distribution was then partitioned into the same longitudinal depth strata used in 1980.

TwG NOAA research wessels, the Miller Freeman and the Chapman, and the Japanese stern trawler the Daito Maru No. 38, were used to conduct the 1983 Aleutian Island survey. The Daito Maru Mo. 38, a 51.8 m (170 ft) Hokuten trawler and the principal participant in the survey, completed 263 survey stations. Both U.S. vessels had a more limited participation. The Miller Freeman, a 65.6 m (215 ft) stern trawler, completed 99 survey stations while the Chapman, a 38.5 mm (126 ft) research vessel, completed 63 survey stations. The sampling effort (number of successful stations) was 319 in 1980 and 377 in 1983 (Table 3).

All bottom trawling by the U.S. research vessels was conducted with the Noreastern trawl (27.4/32 trawl) with roller gear, the same year used in 1980. A larye Japanese commercial trawl was used by the Daito Maru No. 38 during the survey. The headrope and footrope were 45.0 and 53.0 m long, respectively, with a vertical opening of 5.0 m and a horizontal net opening of 28.3 m , The trawl was equipped with roller gear constructed of 35 and 53 cm gum bobbins and 30 and 41 cill gum discs. It was fished with 80 m dandylines and $2.25 \times 3.45 \mathrm{~m}$ otter boards.

All research catches from the 1980 and 1983 surveys were processed wsiny standard sampling techniques desiyned to assure random sampling of the principal species in the catch (Hughes 1976). Biomass estimates were calculated from the

cremit	"pre:	***	J04 1
sce.enver:	, m	,	,
	19, 吅	$\stackrel{11}{17}$	3
	\%-me	"	1.
		$\stackrel{8}{9}$	
8...-.ta*	-		3
	crem	${ }_{15}$	i11
	cose	${ }^{3}$	-
Pramert.			
	$\therefore=-200$	*	3
	\cdots	:	
	-	\%	\cdots
	10. ${ }^{\text {anc }}$	\cdots	\therefore
	3, ${ }_{30}$	1	${ }_{73}$
	S0,	5	$\frac{17}{107}$
	-		
	\%-	;	2
	\%	$\frac{17}{4}$	$\frac{3}{1}$
S.inmen meins sea			
	-	\because	d
	-	$\stackrel{3}{ }$;
	-	$\frac{3}{4}$	i ${ }^{3}$
	m:a	m	\cdots
unuen sempan	\cdots	;	.
	䢒	,	
	sal	\pm	
	${ }_{\text {c }}$	\square	-
	4 4+w	: 1	"

vessels and gear were analyzed using catch data from 26 pairs of U.S. and Japanese trawl stations conducted within a 2 -week time period and classified as comparative trawl hauls. Relative fishing power correction factors were calculated from the ratio of the mean catch per unit effort (CPUE) of the two trawls and were applied to species catch rates which varied between the U.S. Noreastern trawl and the Japanese commercial trawl.

Fishing power differences between the U,S, and Japanese trawls in 1983 were analyzed as in 1980 with the 1983 relative fishing power correction factors calculated from 42 paired survey stations classified as comparative trawl hauls. Since the Noreastern trawl was fished on the U.S. vessels during both survey years, CPJEs were standardized to the Noreastern trawl to provide a comparison between the 1980 and 1983 surveys.

Results

Pacific ocean perch was found to be the most abundant rockfish species inhabiting the Aleutian islands region, comprising 73 and 62.5% of the estimated biomass of the dominant rockfish species from the 1980 and 1983 surveys, respectively (Tables 4,5). Following in magnitude of the rockfish resource were shortraker rockfish, rougheye rockfish, and northern rockfish. Shortspine thornyhead had the lowest estimated biomass of the doninant rockfish species averaged over both survey years.

513hamen	Sjuclay									
	Parifite acean ferch		Shortedider EOcR[197		Nortinetn romikith		Rouqheye rockfiam		Shortepjine Charmyfient	
	1980	1983	1989	1993	19.40	19as	1990.	19.83	1990	1983
Southeret	29.174	24.857	1,446	7,431	2, 131	6,030	2,42H	4.497	5.112	2,900
Soutrueas	31.09 .3	11.712	1,969	5,174	6. 05.8	4. 130	4, 1842	3,904	342	1,433
Hgithrer 5	16.222	2,425	1,76.3	3.157	118	5,322	1,441	1.295	2.374	2.195.8
hertheast	44.782	16.293	2.184	10,622	346	80.8	4,514	7.605	773	1.137
Bowers fidite	45	3.915	271	160	0	376	174	2,940	1 r 359	$1 r_{\text {r }} 7 \mathrm{SH}$
Fruthert										
Aminiot Sma	6.912	61.703	44:	+2,413	121	568	440	2.436	874	873
Tor:il	124.149	162, 915	*.251	415,457	9.174	17.234	76.234	23.4!	10.6484	10.377

Pacific ocean perch.
Distribution and abundance. Pacific ocean perch were found to be distributed throughout the survey area in 1980 and 1983, occurring in concentrations on the average 10 times more dense than the other dominant rockfish species (Tables 6,7). Highest average CPUE values were found in the eastern Aleutian Islands during both survey years, with less consistent density estimates resulting from the western

	ה140,									
	рест:		shivettaketrimikfifn		Nor thern rockitsn		Fourgh iyp reckti:-		Shortspl ne th ornyhent	
[weptith 1my	1 17 H]	14*83	19 B	1963	1.800	1963	19 BO	13145	1 180	1485
$1-3010$	332	450	43	74	54	113.376	1,041	90	61	23
10:-2611	43.7004	90,001	97	174	8.785	b,Usz	86.7	$2 . \mathrm{H} 27$	171	20
231-700	-3,715	52, 147	dHS	+,570	313	250	2,013	5.98 y	73.7	238
301-200	15.0555	2,100	6.747	34.376	11	136	11,93H	14.238	1,475	2,68日
501-300	6.3	4	H44	4.1538	6	3	S04	296	9,384	7.261
--										
Tritel	122,153	152,502	$\mathrm{Hr}_{2} \mathrm{~S} 1$	WJ.157	9, 174	13.274	16.239	23,411	10,884	10.229

 hleutian Iflardmo

	5 Pexien									
	Fackit pe	$\begin{aligned} & \text { e beean } \\ & \text { rch } \end{aligned}$	shortraker rocktest		Morthern rocktista		Hrughrye rackfimh		Shartspine thronthernd	
Subares	1990	1983	1980	1997	1980	19 cc 1	1980	1983	1980	1983
Soutinwert	$0+37$	$12+65$	0	$3+50$	6.894	2.f44	1.23	2.12	2.29	1.37
30utheart	14.41	$20+50$	0,73	$2+604$	2,809	2.045	3.26	1.90	0.19	12.71
Nottinest	11.56	1.62	1,26	$2+11$	Q.0e	1.55	1.03	D. 旽	1.69	1.37
Northenst	20,83	7.36	1,063	4.82	0.24	0.36	2.01	5.45	0.34	0.54
Bowers Ridge	0.05	1.81	4.27	0.74	$0+60$	8.35	th, 10	2.947	1.37	1.71
Goutnherl Bering Ses	$5 \cdot 38$	9+184	0.35	$10+13$	$0+10$	0.44	0,35	2.23	11.45	$\mathrm{O}, \mathrm{B} \cdot 4$
Orerali	19.89	15.47	0.70	3.97	0.*9	1.70	1.62	2.32	1.43	1.01

Aleutians. Sampling in the southern Bering Sea subarea resulted in the largest variation of estimates between years indicating sampling problems (Table 8). Pacific ocean perch were encountered in highest densities between 101 and 500 m in both survey years. Only trace anounts of POP were found in continental slope waters deeper than 500 m .

Survey catches indicate POP are found to occur together with the dominant Aleutian Islands rockfish species. Catches from waters less than 100 m deep are characterized by a POP-northern rockfish assemblage, in 101-530 m depths a P0P-rougheye-shortraker assemblage. and a POP-rougheye-shortraker-shortspine thornyhead assemblage at depths greater than 500 m .

 gifyays of ene Aleutian Ialands．

	SFESars									
		erch	Shartrakre racktinh		Northerth rowkilish		Aundigteyre Trenfith		5 ちの阴の	spl ne yheaxi
口upth ¢a！	1780	1987	1900	1963	1900	1983	1950	1993	1960	1）白き
1－100	3.17	0.29	C． 112	0.05	0.179	6.73	D， 54	$0+85$	4.03	0.01
$101-200$	19．34	42.35	0.04	ก．．9ヶ	3.96	2,63	0.37	1．22	0.018	$\mathrm{O}, 0 \mathrm{O}$
201－300	45.24	40．54	5.17	O．93	0.24	（1， 1 ¢	1.61	4.64	0.30	0.14
901－500	9.32	1． 70	4.21	21．50	$0+01$	C＋0 ${ }^{\text {a }}$	7.39	8.88	0.94	1．67
501.900	13.182	¢． 1717	0.32	1，2）	0.46	CLO	0.12	0.06	7．Afi	$2 \cdot 21$
gurenl］	1\％．0\％	13.13	0.70	4.06	n．49	1.70	1－6．2	$2+31$	$1+43$	1．01

Sumarea	Epmeime									
	parich		Snortramet rnokfimh		Horthern rockitah		Rougheya rocktigh		Sher espl ne thor nythend	
	1980	198.7	1980	1983	1990	199\％	1980	1983	1980	1983
Guırinuest	124	45	$0 \cdot$	100	171	85	47	44	H9	35.
sour ${ }^{\text {aneat }}$	156	65	4.1	140	1493	325	㫙	172	竦	49
Jat Ehume	42	95	149	135	170	265	56	105	50	40
Nartheaser	66	76	4	146	12	111	96	139	a）	310
Hawori Rfana	\＄6	25	461	170	b	1150	c	944	6.7	55
Tetal Mleytim مutceren 5	57	39	316	67	12b	70	44	59	50	18
Seltrmart Becifin sea	213	111	205	304	110	139	211	3才5	日 9	37
Totas suruty hred	51	U	$3{ }^{3}$	4	119	58	40	53	51	16

${ }^{5} 7$ ge cetah．

To examine the variability in Pacific ocean perch CPUE from both surveys, an Analysis of Variance (ANOVA) was performed using the method of Rubin (Rubin 1982) to test for between-subarea effects and betweenyear effects in catch rate differences. Results indicate that for P0P CPUE grouped by geoyraphical subarea and year no significant differences exist between subareas and between years (Table 9). This indicates that either no statistically siynificant density difference exists for POP between analytical subareas and years, or that the trawl surveys were unable to detect any statistically significant changes that do exist.

The analysis was repeated using POP CPUE data calculated for each depth interval pooled over the entire survey area and year (Table 9). Results show that the main effects due to depth distribution and year are also not statistically significant.

Although a cursory inspection of the estimated CPUE values appear quite different by depth, the large variances associated with the estimates and the small surwey sample sizes mask the ability to detect statistically significant differences between depth stratum effects and the main effect due to year.

Size and age composition. The size and age structure of the Aleutian Islands FOP stock is examined using figures presenting the size and age composition weighted by relative population density resultiny from the 1930 and 1983 surveys (Fiy. 2). For POP, size composition is also presented by subarea and depth for both survey years (Figs. 3, 4). Only age structures from POP collected during the 1983 survey have been

 perch from the qyoo and liga coopmratiw

 U. 5-mapan Aleutian Ia landi groundfiah aurvey.

 U.S.-Jdann hlebtian Iflandg ground fith Eucvey.
analyzed and are available for this report. The comparison of size composition of POP for the total survey area between years shows a decrease in mean length from 32.4 cm in 1980 to 30.2 cm in 1983 (Fig. 2). The dominant length mode of $33-35 \mathrm{~cm}$ contributed over 302 of the total stock in 1980 acompanied by a notable recruitment of smaller 22-26 cm perch. By 1983 these small perch believed to be the 1976 year class as shown by the 1983 age composition (Fig. 5), grew to occupy the dominant length mode of the stock (27-30 cm) comprising nearly 30% of the stock available to the demersal trawl. Drly a trace amount of smaller fish ($16-20 \mathrm{~cm}$) were encountered in 1983, an indication that the 1976 year class is strong relative to the later year classes.

Survey results from both years indicate that the size structure of pop is different between the north and south side of the Aleutian Islands (Figs. 3, 4). The size composition of the southwest and southeast subareas contained mostly POP from the 1976 year class, resulting in smaller dominant mode lengths and mean lengths.

This was particularly noticeable in 1980, where the dominant length mode ($33-35 \mathrm{~cm}$) of larger fish was encountered in the northwest and northeast subareas, but was a less important component of the size composition of the south side of the Aleutian chain. The largest size POP were found in the Bowers Ridge subarea during the 1983 survey.

The distribution of size composition by depth shows POP are encountered in larger size with increasing depth, similar to many shelf and slope species. Without exceptiom, mean lengths were larger in the $301-500 \mathrm{~m}$ depth interval than in the $101-200 \mathrm{~m}$ depth interval for all subareas in both survey years. Recruitment processes occurred in the 101-200 m depth interval throughout the 1980 survey but were only found to develop in shallow waters of the northeast subarea, and to a lesser extent the southeast and southwest subareas, in 1983.

Aye data for Pacific ocean perch from NMFS resource assessment surveys are available from otol${ }^{\text {th }}$ readings. A sample of 1,519 otol iths from the 1983 Aleutian Islands survey were processed by the NWAFC age determination unit using the oreak-and-burn technique. The resulting age-length key was applied to POP size composition data from the total survey area in 1983 to calculate age composition (sexes combined). Figure 5 shows the estimated age composition of POP from the 1983 Aleutian Islands survey.

Pacific ocean perch ranged from age 1 to 98 , with the dominant mode at age 7. Age 7 POP are the 1976 year class which comprised 26% of the estimated POP stock in 1983 and had an average length at aye of 26.3 cm . Considering this

PACIFIC OCEAN PERCH

Total survey area
Sexes
combined

 ourch from 1, Bly otalihh collected during
 inlandi aurvery,
and examining the size composition of POP in 1983 (Fig. 4), it appears age 7 PDP were abundant throughout the survey area (except at Bowers Ridge), particularly at depths below 100 m.

Shortraker rockfish.
Distribution and abundance. Shortraker rockfish exhibit a widespread distribution throughout the Aleutian Islands and were encountered in all geographical subareas both survey years (Tables 4-7), but were found in much less dense concentrations than POP. The Bowers Ridge subarea produced the lowest average CPUE for shortraker rockfish both years. Similar to POP CPUE estimates, the largest variation in estimates between survey years for shortraker rockfish occurred in the southern Bering Sea subarea, an indication of further sampling problems (Table 8). By depth, shortraker rockfish were primarily distributed between 301 and 500 m and were commonly caught with Pop and rougheye rockfish. Shortraker rockfish were found to decrease in abundance at depths less thar 300 m , and also at depths greater than 500 m .

Size composition. The estimated size composition for shortraker rockfish captured throughout the surwey area in 1980 and 1983 are presented in Figure 6. A broad length range was encountered both survey years with the mean lengtn increasing from 41.4 cm in 1980 to 44.4 cm in 1983. The 1980 lenyth composition was broadly unimodal with a nearly nomal distribution of lengths about the mode at 37-46 cm. The increase in mean length in 1983 primarily resulted from an increase in shortraker rockfish larger than 65 cm as the length distribution broadened with modes at around 35 and 51 cm . The dominant length mode ranging from 33 to 39 cm in 1983 suggests some recruitment of smaller shortraker rockfish did occur after 1980.

Rougheye rockfish.
Distribution and abundance.
Rougheye rockfish occured throughout the Aleutian Islands and were captured in all geographical subareas both survey years (Tables 4-7). Average CPUE values suggest that rougheye rockfish occur in much less dense concentrations than POP but are found in densities sinilar to shortraker, northern, and shortspine thornyhead rockfish. As with PDP and shortraker rockfish estimates, the southern Bering Sea subarea produced the most variable results between survey years.

SHORTRAKER ROCKFISH

7983

Figuth firefatimated aize rimporition of mhortaker reckfifh Etom the 1980 snd 1981 conptialiwe U.S.-vapan Rleutima Ielande gurveypr

Figuth firetes timated aize rimporitiom or

Rougheye rockfish were found to be distributed throughout all depths sampled both years with highest concentrations encountered in the 301-500 m depth interval where they are commonly caught with Pop and shortraker rockfish. The survey estimate for rougheye rockfish in the Bowers Ridge subarea in 1983 (Table 8) shows unusually high confidence intervals about the biomass estimate, indicating severe sampling problens or a low level of density for rougheye rockfistr in this subarea.

Size composition. Survey results indicate the size structure of rougheye rockfish changed in the survey area between 1980 and 1903 (Fig. 7). Mean fish lengths increased from 36.9 cm in 1980 to 40.0 cm in 1983 as the features of the length distribution changed from broadly bimodal in 1980 (32 cmi, 42 cm) to a more restricted unimodal distribution around 40.0 cm in 1983. The broad range of partially recruited rougheye rockfish less than 40.0 cm in length in 1980 appear fully recruited to the demersal trawl in 1983 contributing to the steepness of the dominant mode.

Northern rockfish.
Distribution and abundance. Northern rackfish are generally well distributed throughout the Continental Snelf and upper slope of the Aleutian Islands and are commonly encountered with POP (Tables 4-7). Preferring shallow waters of the continental Shelf, highest densities of northern rockfish were found in waters less than 300 in deep. They were encountered in much lower densities in slope waters deeper than 300 m , and were absent in catches from depths greater than 500 m . Northern rockfish were not found at Bowers Ridge in 1980 and their presence in the 1983 survey at Bowers Ridge produced the highest variance by subarea of the dominant rockfish species from hoth surveys (Table 8). Since Bowers Ridge includes only depths greater than 100 m and was not allocated a dense sampliny coverage (Table 3), the surveys did not adequately sample for northern rockfish in this subarea.

Size composition. The mean length of northern rockfish decreased from 32.2 cm in 1980 to 28.6 cm in 1983 as the size composition changed from being skewed toward larger fish in 1980 to smaller fish in 1983 (Fig. 8). Survey results indicate that some measure of recruitment to demersal trawl sampling did occur for northern rockfish after 1980 as

NORTHERN ROCKFISH

Total survey arga

1980

1983

 mleutian telandm enurvery,

Size composition. The change is size composition of shortspine thomyhead between 1980 and 1983 is characterized by slow growth with little recruitment (Fig. 9). The weighted length distribution from both survey years is unimodal with very similar symmet ry about. the mean length which increased from 32.0 cm in 1980 to 34.5 cm in 1983.

Discussion

To effectively discuss and evaluate the results of sampling marine rockfish populations with demersal trawl gear, consideration should include the restits of other investigators who have dealt with similar problems in other geographical areas.

When the jurisaiction of fisheries management was extended to 200
miles off the U.S. Coastline with the enactment of the Magnuson
fish in the length category less than 26 cm became a more important component of the size structure of the stock in 1983 compared to the size composition from the previous survey.

Shortspine thornyhead.

Distribution and abundance.
Shortspine thornyhead were found on the Continental shelf and slope in all subareas surveyed in 1980 and 1983 (Tables 4-7). Highest
densities were found to occur in the western Aleutian subareas and Bowers Ridge with decreasing densities encountered in the eastern Aleutian Islands. Survey results indicate a broad depth range throughout the Aleutian Islands with highest densities occurring at depths deeper than 300 m . Shortspine thornyhead usually are present in catches with POP, rougheye, and shortraker rockfish but rarely are taken with northern rockfish due to the thornyhead's preference for deeper water.

SHORTSPRNE THORNYHEAD
Total survey area

1983

Lernģth (cmi)
Figuct 9, - Fintlmated alze composicton of martepine thortithen rockfish firow the phat and 1983 cooptratifi [us. -J.pan Mleutian Taland? aur meys.

Fishery Conservation and Management Act (1976), several pilot rockfish surveys were thitiated to study the ability of trawl surveys to define and effectively sample shelf and slope rockfish resources (Gunderson and Nelson 1977). These surveys occurred in Monterey Bay, California and Queen Charlotte Sound, British Columbia and provided estintates of average CPUE and blomass. The resulting estimates showed very large variances for bank rockfish (Sebastes rufus) (Monterey Bay), and for canary rockfish (S. pinniger) and redstripe rockfish (S. proriger) (Queen Charlotte Sound). As in other trawl surveys (Gَosslein 1969), variances associated with biomass estimates for many flatfish and roundfish species were reasonable (less tham $+50 \%$ of the mean), but because of the prominent dense schooling behavior of most rockfish species, the precision involved in providing their abundance estimates is often poor.

This problen was taken into consideration when allocating sampling effort for the large-scale 1971 west coast whiting and rockfish trawl survey (Gunderson and Sample 1980) by scheduling more sampling in areas containing known rockfish populations as indicated from commercial rockfish landings. The survey was repeated in 1980 and 1983 with further use of commercial fishery catch data of canary rockfish and yeliowtail rockfish (S. flavidus) to modify the allocation of survey effort (Weinberg et al. 1984).

Because of the high variability of rockfish bottom trawl survey estimates, the 3 years of west coast survey data were analyzed to deternine if cemersal trawl surveys could detect real interannual changes in rockfish population abundance (Knechtel 1986). Knechtel used a statistical test based on a method developed by Rubin (Rubin 1982) to estimate the probability of trawl surveys to detect specified interannual changes of canary rockfish population abundance using Monte Carlo simulations of 400 replicate sets of surveys. His results indicate that with a survey sample size of 500 stations allocated using a Neyman allocation the probability of detecting canary rockfish population changes that differ by a factor of 2 between survey years is only $56-60 \%$ and for a total sample size of 1,000 stations with the same allocation method the probability increases moderately to $82-86 \%$. The method of survey station allocation was also found to be an important aspect of survey quality with the optimum allocation formula or Neyman allocation (using CPUE variance infomation from previous surveys) performing significantly better in simulations at detecting large population changes.

In the case of the Aleutian Islands surveys, the objective in 1980 was to perform an initial ground fish survey using a broad geographic and bathymetric sampling plan which was modified in 1983 to reduce the variances of the abundance estimates of the five most abundant species encountered in 1980. Although POP were anong the five most abundant species in 1980, the 1983 survey allocation was also influenced by various roundfish species distributions (pollock, Theragra chalcogramm; Pacific cod, Gadus macrocephalus; sablefish, Anoplopama fimbria; Atka mackerel, pleurogramnus monopterygius) and was not designed to provide the optimum sampling allocation to produce the most precise rockfish biomass and density estimates.

Similar to the results of other bottom trawl surveys for rockfish, the 1980 and 1983 Aleutian Islands survey results show high variances for rockfish biomass estimates (Table 8). This is primarily due to the contagious spatial distribution characterized by most rockfish species resulting in their nonuniform distribution over the fishing grounds and also because of the general untrawlability of their habitat. This is reflected in the distribution of catch rates for POP from the surveys (Fig. 10) where results indicate that large catches of pop are uncommon events with POP frequently absent from the catch or only encountered in small amounts. These uncommon or rare catches can increase CPUE and biomass estimates and their variability within survey subareas and should be viewed with caution in consideration of the high variability of the estimates, the small survey sample sizes, and the multispecies allocation of survey effort.

An effective evaluation of trawl survey results and limitations to the data must also include a discussion of the factors which affect the accuracy and precision of bottom trawl surveys. Since this subject has been described in detail in other papers (Wakabayashi and Bakkala 1985 West 1985), only factors of interest pertinent to the 1980 and 1983 Aleutian Islands surveys will be discussed here.

In order to obtain valid estimates of density and abundance from demersal trawl surveys, certain assumptions concerning trawling and fish behavior must be met. The species of interest must be available, wulnerable, and selected by the trawl, and the sampling gear must sample the total geographic and bathymetric range inhabited by the species. The 1980 and 1983 cooperative U.S.-Japan Aleutian Islands surveys were constrained by money available for sampling, manpower to effectively staff research cruises, the avallability of suitable fishing vessels and knowledgeable trawi masters at the time of charter, and seasonal weather conditions throughous the Aleutian Archipelago, all of which may severely limit sampling time and reduce sample sizes.

Because of the time and money constraints, survey effort may have been inadequate to effectively sample rockfish such as shortspine thornytread since their total depth range may lie outside the $1-900$ m depth range sampled. Rockfish movements in and out and within the survey area, the complete lack of winter sampltng, diurnal fish behavior, and rockfish habitat unavailable to bottom trawling also limit the effectiveness of demersal trawl survey results. Also, without the participation of the large Japanese vessels and their conmercial trawls, the Aleutian Islands rockfish resource would not have been adequately sampled.

Both Japanese vessels employed a large, wide commercial flatfish trawl with a relatively smali vertical opening compared to overall net size, whereas the U.S. vessels used the high opening, four-panel koreastern rockfish trawl. In both cases, rockfish concentrations emcountered in the survey area which school in a highly vertical fashion would not be completely sampled by a demersal trawl. Interestingly, for four of the five dominant rockfish species encountered, the Japanese flatfish trawl was more efficient. (The U_{S}. Noreastern trawl was only more efficient. for rougheye rockfish).

These differences in trawl efficiency may be a reflection of the varying sampling distributions between the U.S. vessels and the Japanese vessels. Japanese research vessels conducting cooperative research within the fishery conservation zone of the United States are prohibited from operating within 3 miles of the coast. Consequently, the JFA-chartered trawlers were allocated a larger portion of deeper sampling stations than the U.S. vessels during both survey years which provided better coverage of the depth distribution of most shelf and slope rockfish species. Other physical characteristics of the larger, heavier dapanese flatfish trawl and the amount of available horsepower may have better enabled the gear to maintain correct fishing posture in areas of strong tidal curents or steep bottom contours (characteristic of the Aleutian Islands).

Two very different estimates of POP biomass resulted from the southern Bering Sea subarea in 1980 and 1983, both with very high variances (Table 8). The sampling error of Pop was highest in this subarea during both survey years although it decreased in 1983 to nearly half of the 1980 value. The large PGP biomass estimate in 1983 and its accompanying wide confidence interval for this subarea indicate some sampling problems. The large 1983 estimate resulted from two large catches of POP from the Daito Maru No. 38, while the remainder of the sampling stations produced either an absence of or trace amounts of POP. This catch pattern is typlcal of survey results obtained from sampling rockfish concentrations with demersal trawls. Increased sampling is scheduled for the southern Bering Sea subarea in 1986.

The sampling error of the biomass estimates for the total survey area increased between 1980 and 1983 for Pacific ocean perch, shortraker rockfish, and rougheye rockfish, and decreased for northern rockfish and shortspine thornyhead. Generally, the decreases in sampling error were large while the three species which broadened their confidence intervals did so only moderately.

References

Alverson, D.L., and W.T. Pereyra. 1969. Demersal fish explorations in the northeastern Pacific Ocean-an evaluation of exploratory fishing methods and analytical approaches to stock size and yield forecasts. J. Fish. Res. Board Can. 26(8):1985-2001.

Bakkald, R., W. Wespestad. L. Lom, and J. Traynor, 1980. Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1980. Unpubl. manuscr., 98 p. Northwest and Alaska Fish. Cent., Nat1. Mar. Fish. Serv., NOAA, 2725 Montlake Blva, E., Seattle, WA 98112.

Beryer, J., R. Melson, and J. Wall. 1984. Sumary of U.S. observer sampling of foreign and joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1983. Unpubl, manuscr., 211 P. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Elvd. E*, Seattle, WA 98112.

Berger, J., J. Wall, and R. Nelson, Jr. 1985. Summary of U.S. observer sampling of foreign and joint-venture groundfish catches (metric tons) in the northeast Pacific Ocean and eastern Bering Sea, 1984. Unpubl. manuscr., 162 P. Northwest and Alaska Fish. Cent., Nati. Mar. Fish. Serv., NOAR, 7600 Sand Point Way N.E., Seattle, WA 98115.

Cochran, W.G. 1977. Sampling Techniques. John Wiley and Sons, New York, NY, 330 p.

Gunderson, D.R., and M.O. Nelson. 1977. Preliminary report on an experimental rockfish survey conducted off Monterey, California, and in Queen Charlotte Sound, British Columbia, during August-September 1976. Unpubl. manuscr., 82 p. Nort'mwest and Alaska Fish. Cent.; 2725 Montlake Blvd. E., Seattle, WA 98112.

Gunderson, D.R. and T.M. Sample. 1980. Distribution and abundance of rockfish off Washington, Oregon, and California during 1977. U.S. Nat 1. Mar. Fish. Serv. Mar. Fish. Rev. 42(3-4):2-16.

Grosslein, M.D. 1969. Groundfish survey program of BCF Woods Hole. Commer. Fish. Rev. 31(8-9):22-25.

Hughes, S.E. 1976. System for sampling large trawl catches of research vessels. J. Fish. Res. Board Can. 33(4):833-839.

Knechtel, 0. 1986. Compromise trawl haul allocations to measure population sizes of west coast canary and yellowtafl rockfish. Unpub1. manuscr., 13 p. Northwest and Alaska Fish. Cent., 7600 Sand Point Way K.E., Seattle, WA 98115.

Mel son, R., Jr., R. French, and J. Wall. 1979. Summary of U.S. observer sampling of foretgn fishing vessels in Bering Sea/Aleutian Islands region, 1978. Unpubl. manuscr*, 75 p . Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv.* NOAA, 2725 Montlake B1ud. E., Seattle, WA 98112.

Nel son, R., Jr., R. French, and J. Wall. 1980. Summary of U.S. observer sampling on foreign fishing vessels in Bering Sea/Aleutian Islands region, 1979. Unpubl. manuscr., 85 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blud. E_{*}, Seattle, WA 98112.

Nelson, R., Jr., R. French, and J. Wall. 1981. Summary of U.S. observer sampling on foreign fishing vessels in the Bering Sea/Aleutian Islands Region, 1980. Unpubl. manuscr., 69 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Nelson, R., Jr., R. French, and J. Wall. 1982. Summary of U.S. observer sampling of foreign and joint venture fisheries in the Bering Sea/Aleutian Islands region, 1981. Unpubl. manuscr., 81 p. Northwest and Alaska Fish. Cent., Nati. Nar. Fish. Serv., NOAA, $2 / 25$ Montlake Blvd. E., Seattle, VA 98112.

Nelson, R., Jr., J. Wal1, and J. Berger. 1983. Summary of U.S. observer sampling of foreign and joint-venture fisheries in the northeast Pacific Ocean and eastern Bering Sea, 1982. Unpubl. manuscr., 224 p. Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Sery., NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112.

Rubin, A.S. 1982. The use of weighted contrasts in the analysis of models with heterogeneity of variance. Ph, D. Thesis, Univ. Rochester, Rochester, NY, 226 p.

Wakabayash1, K., and R.G. Bakkala. 1985. Discussion and interpretation of findings. In R.G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979. Int. North Pac. Fish. Comm. Bull. 44:223-229.

Heinberg, K.L., M.E. Wilkins, and T.A. Dark. 1984. The 1983 Pacific west coast botton trawl survey of groundfish resources: Estimates of distribution, abundance, age and length composition. U.S. Dep. Conmer., HOAA Tech. Memo. NMFS F/NWC-70, 376 p .

West, C.H. 1985. An examination of variability in the volume swept by botton trawls used for marine fisherfes resource assessment. M.S. Thesis, Univ. Washington, Seattle, 66 p.

Wilderbuer, T.K., K. Wakabayashi, L.L. Ronholt, and H. Yamaguchi. 1985. Survey report: Cooperative U.S.-Japan Aleutian Islands groundfish trawl survey-1980. U.S. Dep, Commer., NOAA Tech. Memo. NMFS F/NHC-93, 356 g.

Comparing abundance and productivity estimates of Pacific ocean perch in waters off the United States

Daniel H. Ito
 NMFS, Northwest and Alaska Fisheries Center Seattle, Washington

Abstract

Introduction The Pacific ocean perch (Sebastes alutus) resource in waters off the United States has historically been divided Into four broad stocks/ regions for management purposes: eastern Bering \$ea, Aleutian Islands, Gulf of Alaska, and ihest Coast. Through the years, these populations have been assessed using a wide variety of stock assessment techniques. These techniques, however, have usually been applied only to one particular region at any given time. This piecemeal approach has made it difficult to obtain a clear overall picture of abundance and productivity. This paper examines, in very general terms, the major types of stock assessment methods that have been used to monitor Pacific ocean perch. More specifically, simple comparisons are made of the abundance and productivity estimates of Pacific ocean perch among the four major geographic regions in U.S. waters.

Distribution and Regions Involved

Pacific ocean perch are widely distributed throughout the North Pacific Ocean and Bering Sea. Along the North American coast, this species can be found from La Jolla, California to the western boundary of the Aleutian Archipelago and along the continental slope of the eastern Bering Sea. Along the Aslatic coast, small catches have been recorded from Cape Navarin to as far south as the Kuril lslands. Throughout its geographic range, this species is generally associated with gravel, rocky, or boulder type substrate found in and along gullies, canyons, and submarine depressions of the upper contifental slope.

For comparative purposes, the Pacific ocean perch resource in waters off the United States was divided into four broad regions: eastern Bering Sea, Aleutian Islands, Gulf of Alaska, and West Coast (Fig. 1). These regions correspond with the broad management areas employed by the regional fishery management councils. The North Pacific Fishery Management Council, charged with the management of Alaska's offshore fisheries, views the Pacific ocean perch resource in the eastern Bering Sea, Aleutian [slands, and Gulf of Alaska regions as separate stocks. The Pacific Fishery Management Council manages Pacific ocean perch as two discrete stocks within the West Coast region.

Catch History

In all regions, Pacific ocean perch were the target of an intense fishery during the 1960 s and early 1970s, primarily by Japanese and Soviet distant-water fishing vessels. Both nations employed trawlers of varying sizes and designs as their primary method of harvest. Many of the smaller vessels functioned as catcher boats for large motherships, while the larger trawlers generally operated independentiy by processing and freezing their own catch. Also, the use of support vessels (hospital ships, refrigerator and personnel transports, etc.) permitted the fishing fleets to operate at sea for extended periods of time. Although Japan and the Soviet Union were the primary exploiters of this resource throughout the 1960s and 19705, relatively minor catches were also taken by other nations such as Poland, the Republic of Korea, Taiwan, Canada, and the U.S.

Figure l.--The four regions used for comparing abundance and productivity estimates of Pacific ocean perch in U.S. waters.

As depicted in Figure 2, growth of the Pacific ocean perch fishery was rapid. By 1965, total removals (all regions combined) mushroomed to over 483,000 metric tons (t), but soon declined almost as rapidly as they had increased. In 1984 total catches were but a small fratction of the 1965 peak catch. The pie diagram in Figure 2 shows the maximum recorded catches by region, providing an indication of the relative productivity of Pacific ocean perch in U.S, waters. The Gulf of Alaska appears to be the most productive region, followed in descending order by the Aleutian Islands, eastern Bering Sea, and West Coast regions.

Stock Assessments

The condition of the Pacific ocean perch resource has been monitored periodically with a variety of stock assessment techniques. The more common approaches have included catch per unit effort analysis, trawl surveys, cohort-type analyses, and more recently, stock reduction analysis. Each method has its own inherent advantages, disadvantages, and biases associated with its use. Depending on the characteristics of the fishery and the way the fishery statistics have been measured, one method may be subject to more error than another. Therefore, it is prudent to examine stock changes by more than one method.

Figure 2.--Catch trends of Pacific ocean perch by region, 1960-84. Inset: Maximum recorded catch of Pacific acean perch by region.

The Northwest and Alaska Fisheries Center (NWAFC) and others have conducted numerous assessments of Pacific ocean perch in waters off the United States. Each assessment has varied in its methodology and complexity. Some of these assessments have been very detailed and involved, requiring a thorough understanding of population dynamics to fully comprehend the assessments. It is beyond the scope of this paper, however, to describe in detail the methodology and results of each and every stock assessment. Rather, this report will summarize, in a very general manner, the major types of stock assessment methods that have been used and then discuss significant results of selected assessments.

Catch per unit effort (CPUE) analysis
Assessments of Pacific ocean perch have frequently been based on changes in catch per undt of effort (CPUE) in the commercial trawl fisheries. Commercial catch and effort statistics supplied by Japan have been the primary data source for most CPUE-type analyses of Alaskan stocks (e.g., Balsiger et al. 1985; Chikuni 1975; Ito 1986). On the other hand, CPUE assessments of West Coast stocks (e.g., Westrheim et al. 1972; Gunderson 1977) have relied mainly on catch and effort data from Canadian and U.S. trawlers. The majority of these assessments have indicated sharp declines in abundance throughout the 19605 and 19705, during the period when Pacific ocean perch was a primary target species by distant-water fishing fleets.

In recent years, however, conmercial CPUE data have become increasingly difficult to interpret as an index of stock abundance. Errors associated with CPUE-type assessments have been related primarily to the estimation of effective fishing effort. Standardizing and partitioning total trawl effort into effort directed solely toward pacific ocean perch has been difficult, due to the multi-species and multi-gear nature of the trawl fishery. Moreover, quota restrictions, effort shifts to different target species, and rapid improvements in fishing technology and fishing skill have confounded the analysis of CPUE data. These factors must be considered if CPUE is to reflect changes in stock abundance accurately.

Trawl surveys
Commercial fishery statistics are not the only data avatilable for assessing the status of the Pacific ocean perch resource; data collected by research surveys have been used to provide fishery-independent assessments of the abundance, distribution, and biological characteristics of Pacific ocean perch. Recent trawl surveys conducted by the NHAFC provide exploitable blonass estimates of the major Pacific ocean perch stocks in U.S. waters.

Surveys conducted in Alaskan waters have mainly been based on coopera= tive efforts between the NHAFC and the Fisheries Agency of Japan. In the eastern bering Sea region, cooperative trawl surveys were conducted in 1979, 1981, 1982, and 1985. These surveys produced a mean bicmass estimate of approximately $20,000 \mathrm{t}$ (I to 1986). Similar surveys in the Aleutian Islands region in 1980 and 1983, produced a mean biontass estimate of about $113,900 \mathrm{t}$ (Ito 1986). For the Gulf of Alaska region, the 1984 U.S.-Japan cooperative traw survey estimated exploitable biomass at around $334,900 \mathrm{t}$ (Carlson et al. 1986). Trawl surveys mere
also conducted in 1979 and 1985 to estimate the biomass of Pacific ocean perch within the West coast region. The mean exploitable biomass In this region was estimated at roughly 13,400 t (Ito et al. 1986).

Trawl survey estimates of Pacific ocean perch biomass are usually characterized by large variances. In some instances the 95% confidence intervals have encompassed plus or minus 100% of the point estimate. Such large variances are probably due to the highly contagious distribution of this resource. Other factors such as inadequate sampling, inapproprlate sampling gear, and fish behavior may also contribute to the wide confidence intervals about the point estimates.

Furthermore, trawl surveys probably underestimate the true population size of Pacific ocean perch. As pointed out by Bakkala et a1. (1985), this species is known to occupy the water column above that sampled by most bottom trawls and also is known to inhabit areas of rough bottom which are usually avoided during surweys to prevent damage to the trawls. Unfortunately, that portion of the population unavailable to the trawl gear cannot be determined at this time.

Cohort-type analyses

Cohort-type analyses provide an alternative to conmercial CPUE and trawl survey stock assessments. These techniques have been developed to circument the need for reliable effort statistics and to provide abundance estimates in terms of absolute values rather than as an index. Abundance estimates are presented in terms of historical population numbers and biomass at age. Age-specific rates of instantaneous fishing mortality are estimated as well. Conducting this type of an assessment requires historical catch-at-age data, an estimate of natural mortality, and an estimate of fishing mortality for each year class.

Gunderson (1979, 1981) was the first to apply cohort analysis to Pacific ocean perch populations. His assessment covered the major stocks within the West Coast region. Ito (1982) and Balsiger et al. (1985) al so employed cohort analysis techniques to assess the status of the Pacific ocean perch resource in Alaskan waters. The results of all these assessments indicated that Pacific ocean perch stocks underwent precipitous declines in abundance during the period of heavy foreign exploitation.

A major problem whth these cohort analysis assessments of Pacific ocean perch is that the age data used, derived from surface readings of scales and otoliths, are now thought to be incorrect. Ages derived by the relatively new "break and burn" technfque of reading otoliths indicate much higher ages than previously thought (Beamish 1979; Chilton and Beamish 1982). Ages in excess of 80 years have been recorded for some specimens. Such longevity generally corresponds with natural mortalyty estimates much lower than those used in the previous Cohort analyses (Archibald et al. 1981; Hoenig 1983; Shaw and Archibald 1981\}. A lower natural mortality would have the effect of decreasing the cohort analysis abundance estimates.

Stock reduction analysis (SRA) is a relatively new stock assessment method (Kimura and Tagart 1982; Kimura et a1. 1984; Kimura 1985). Essentially, SRA is a solution to the set of catch equations that does not require age composition data; it is also flexible and it has the ability to incorporate different sources of information and examine then for consistency. Furthermore, SRA does not require effort data, a requisite in CPUE-type analyses. This method provides much useful assessment information, including estimates of instantanepus rates of fishing mortality, historical biomass, and maximum sustainable yield (MSY).

Balsiger et al. (1985) employed SRA techniques to assess the Pacific ocean perch resource in Alaskan waters; Ito et al. (1986) conducted a similar assessment of Pacific ocean perch populations of the Hest Coast region. According to these studies, the Gulf of Alaska contained the largest biomass of any region prior to the onset of exploitation. Virgin biomass in this region was estimated at about $1,450,000 \mathrm{t}$. In the Aleutian Islands and eastern Bering Sea regions, the estimates of virgin biomass amounted to about $560,000 \mathrm{t}$ and $240,000 \mathrm{t}$, respectively. And in the West Coast region, virgin biomass totaled approximately $144,000 \mathrm{t}$,

Productivity, in terms of maximum sustainable yield, was also estimated by the SRA assessments. A range of MSY values was calculated for each region based on a variety of SRA model parameters. Employing a constant recruitraent condition in the SRA model, MSY was estimated at $30,849 \mathrm{t}$ for the Gulf of Alaska region; $11,865 \mathrm{t}$ for the Aleutian Islands region; and 4,984 t for the eastern Bering Sea region. The estimate of MSY for the West Coast region amounted to $2,805 \mathrm{t}$. These estimates are thought to be fairly optimistic.

Abundance and Productivity Comparisons
As previously mentioned, historical catches by region (Fig. 2) provide an indication of the relative size and productivity of the Pacific ocean perch resource. Based on maximum recorded catches, the Gulf of Alaska appears to be the most productive region. This is not surprising as this region is the largest in terms of total area and suitable rockfish habitat. The Aleutian Islands is apparently the next most productive Pacific ocean perch region, followed by the eastern Bering Sea region and lastly by the Vest Coast region.

Al though the catch statistics provide an indication of the relative stock size and productivity by region, they do not provide direct estimates of absolute abundance. Assessments based on cohort-type analyses, trawl surveys, and SRA express stock changes in terms of absolute values, thus pernitting direct comparisons on a regional and annual basis. In this report, however, the results of the cohort-type analyses will not de used for comparative purposes. The abundance estimates from cohort analyses may not be indicative of the true abundance of Pacific ocean perch, as most of the historical age data used in these assessments are now thought to be incorrect.

Pacific ocean perch populations in waters off the United States apparently underwent sizeable reductions in biomass after the onset of exploitation (Fig. 3). Based on SRA assessments, virgin biomass for all U.S. stocks totaled $2,394,000 \mathrm{t}$. Recent trawl surveys (refer to the stock assessments section for the specific survey years used) indicate that total biomass has now dropped to a level of about 482,200 t, a reduction of approximately 80% from virgin levels. Throughout this decline, the Gulf of Alaska has remained the dominant region in terms of Pacific ocean perch biomass, followed in descending order by the Aleutian lslands, eastern Bering Sea, and West Coast regions.

There apparently has been a shift in the percentage composition of total biomass by region (Fig. 3). The eastern Bering Sea and Hest Coast reglons comprised 10.0% and 6.0% of the total virgin biomass in U.S. waters, respectively. Results from recent trawl surveys, however, indicate that both regions now account for a much smaller portion of the total blomass -- 4.12 in the eastern Bering Sea region and 2.8% in the West Coast region. The Gulf of Alaska region, on the other hand, has increased its share of the total biomass. The Gulf region accounted for 60.6% of the total virgin biomass; now it accounts for 69.5% of the total biomass based on estimates from recent traw surveys. The Aleutian Islands region has remained fairly constant in terms of its share of the total biomass.

Chikuni (1975) provided a rigorous assessment of Pacific ocean perch stocks of the North Pacific Ocean and Bering Sea regions. Based on a yield per recruit type of analysis, he estimated MSY for each stock as follows: Gulf of Alaska, $150,000 \mathrm{t}$; Aleutian Islands, $75,000 \mathrm{t}$; eastern Bering Sea, $32,000 \mathrm{t}$; and West Coast (which includes Canadian waters), 33,000 t. Clearly, sustained exploitation at these levels was not possible (Fig, 2). The Gulf of Alaska and Aleutian Islands regions have produced catches in excess of Ch1kuni's MSY estimates only three times. Similarly, the MSY estimates for both the eastern Bering Sea and West Coast regions have been exceeded only once during the 25 year period from 1960 to 1984.

More recent estimates of productivity from stock reduction analysis techniques indicate that MSY levels are much lower than those estimated by Chikunt (1975) (Fig. 4). In fact, on a regional basis, the SRA estimates of MSY are between 79\% and 92\% lower than those of Chikuni. For all regions combined, the SRA estimates of MSY totaled $50,503 \mathrm{t}$. This estimate is about a 82% lower than Chikumi's coastwide MSY estimate of $290,000 \mathrm{t}$.

Summary and Conclusions
The principal objective of this study was to conduct simple comparisons of abundance and productivity estimates of Pacific ocean perch among four major geographic regions in U.S. waters. first, commercial landings were presented which gave an indication of the relative size and productivity of Pacific ocean perch populations by region. Next, estimates of absolute abundance and productivity were provided. Most of the estimates that were used for comparative purposes were based on assessments conducted by the WiAFC. This study concluded that the Gulf of Alaska has been and continues to be the dominant region in terms of Pacific ocean perch abundance, followed in descending order by the Aleutian Islands, eastern Bering Sea, and West Coast regions.

VIRGIN BIOMASS BY REGION	RECENT BIOMASS EStimates by region
Total Virgin Biomass ($2,394,000$ metric tons)	Total Recent Biomass $\mathbf{4 8 2 , 2 0 0 ~ m e t r i c ~ t o n s) ~}$

Figure 3.--Estimates of virgin and recent blomass by region.

Figure 4. --Maximum sustainable yield comparisons by region. Inset: Stock reduction analysis estimates of maximum sustainable yield by region.

It is also apparent that Pacific ocean perch productivity is much lower than previously thought. Recent SRA assessments indicate that MSY may be 800 to 90% lower than previously published estimates if.e., Chikuni 1975). This is not entirely surprising as new infomation on the biology and population dynamics of Pacific ocean perch have emerged since Chikuni estimated MSY. Chikuni estimated that Pacific ocean perch lived no more than 25 years and that instantaneous natural mortality ranged between 0.19 and 0.42 . More recent information, however, suggest that Pacific ocean perch may attain ages in excess of 80 years and that instantaneous natural mortality is probably 0.05 or 10 wer.

Evidently, with such long life spans and law rates of natural mortality, Pacific ocean perch are unable to cope with large removals from their populations. This species is also very $510 w$ growing and lacks the resilience of highly fecund groups such as the gadoids, Furthermore, ecological factors may have played a role in keeping the stocks at depressed levels. As the Pacific ocean perch populations declined due to excessive removals, its ecological niche may have been replaced by faster growing, highly fecund species, further reducing the reproductive potential of the Pacific ocean perch populations.

Acknowl edgments

I Wish to thank Drs, Daniel K. Kimura and Grant G. Thompson of the Northwest and Alaska Fisheries Center for kindly reviewing the manuscript and providing many helpful comments.

References

Archibald, C. P., H. Shaw, and B. M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal waters, 1977-1979. Can. Tech, Rep. Fish. Aquat. Sci. 1048, 57 p.

Bakkala, R. G., K. Wakabayashi., and T. M. Sample. 1985. Results of the demersal trawl surveys. In R. G. Bakkala and K. Wakabayashi (editors), Results of cooperative U.S.-Japan groundfish investigations in the Bering Sea during May-August 1979, p. 39-191. Int. N. Pac. Fish. Comm., Bull. 44.

Balsiger, J. W., D. H. Ito, D. K. Kimura, D. A. Somerton, and J. H. Terry. 1985. Biological and economic assessment of Pacific ocean perch (Sebastes alutus) in waters off Alaska. U.S. Dep. Commer., NOAA Tech. Memo. Whis $\mathrm{F} / \mathrm{NWC}-72,210 \mathrm{p}$.

Beamish, R. J. 1979. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Board Can. 36: 1395-1400.

Carlson, H. R., D. H. Ito, R. E. Haight, T. L. Rutecki, and J. F. Karinen. 1986. Pacific ocean perch. In R. L. Major (editor), Condition of groundfish resources of the Gulf of Alaska region as assessed in 1985. p. 155-209. U.5. Dep. Commer., NOAA Tech. Memo. NMFS F/NHC-106.

Chikuni, S. 1975. Biological study of the population of the Pacific ocean perch in the North Pacific. Bull. Far Seas Fish, Res. Lab. (Shicntzu) 12:1-119 p. In Jpn. (Trans1. 1978, Can. Fish. Mar. Serv. Trans 1. Ser, 4182.)

Chilton, D. E., and R. J. Beamish. 1982. Age determination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60, 102 p.

Gunderson, D. R. 1977. Population biology of Pacific ocean perch, Sebastes alutus, stocks in the Hashington-Queen Charlotte Sound region and their response to fishing. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 75:369-403.

Gunderson, D. R. 1979. Results of cohort analysis for Pacific ocean perch stocks off British Columbia, Washington, and Oregon and an evaluation of alternative rebuilding strategies for these stocks. In Technical papers referenced in the Fishery Management Plan for the Califorila, Oregon, and Washington Groundfish Fishery. Pacific Fishery Management Council, Portland, Oregon, USA.

Gunderson, D. R. 1981. An updated cohort analysis for Pacific ocean perch stocks off Washington and Oregon. Unpubl, manuscr., 28 p . University of Washington, Seattle, WA 98105. (Report submitted to the Pacific Fishery Management Council, Portland, DR.)

Hoenig,. . H. 1983. Empirical use of longevity data to estimate mortality rates. U.S. Natl. Mar. Fish. Serv., Fish. Bull. 82: 898-903.

Ito, D. H. 1982. A cohort analysis of Pacific ocean perch stocks from the Gulf of Alaska and Bering Sea regions. M.S. thesis, Univ. Washington, Seattle, 157 p.

Ito, D. H. 1986. Pacific ocean perch. In R. G. Bakkala and J. W. Balsiger (editors), Condition of groundfish resources of the eastern Bering Sea and Aleutian Islands region in 1986, p. 115136. Unpubl. rep. Northwest and Alaska Fish. Cent., Nat1. Mar. Fish. Serv., NOAA, 7600 Sand Point Way NE., Seattle, WA 98115. (Report submitted to the International North Pacific Fisheries Commission in October 1986.)

Ito, D. H, D. K. Kimura, and M. E. Wilkins. 1986. Current status and future prospects for the Pacific ocean perch resource in waters off Washington and Oregon. Unpubl. manuscr., 44 p . Northwest and Alaska Fish. Cent., Natl. Mar. Fish. Serv., NDAA, 7600 Sand Point Way NE., Seattle, WA 98115 . (Report submitted to the Pacific Fishery Management Council, Portland, OR.)

Kimura, D. K. 1985. Changes to Stock Reduction Analysis indicated by Schnute's general theory. Can. J. Fish. Aquat. Sci. 42: 2059-2060.

Kinura, D. K., J. H. Balsiger, and D. H. Ito. 1984. Generalized Stock Reduction Analysis. Can. J. Fisth. Aquat. Sci. 41:1325-1333.

Kinura, 0. K., and J. V. Tagart. 1982. Stock Reduction Analysis, another solution to the catch equations. Can. J, Fish. Aquat. Sci. 39:1467-1472.

Shaw, W., and C. P. Archibald. 1981. Length and age data of rockfishes collected from B.C. coastal waters during 1977, 1978, and 1979. Can. Data Rep. Fish. Aquat. Sci. 289, 119 p.

Hestrheim, S. J., D. R. Gunderson, and J. M. Meehan. 1972. On the status of Pacific ocean perch (Sebastes alutus) stocks off British Columbia, Washington, and Oregon in 1970, Fish. Res. Board Can. Tech. Rep. 326, 48 p.

The British Columbia inshore rockfish fishery: Stock assessment and fleet dynamics of an unrestricted fishery

Laura J. Richards and A.J. Cass Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

Int roduction The inshore rockfish fishery in British Columbia occurs predominantly in major area 4 B , the Strait of Georgia and adjacent inside waters of Vancouver Island (Fig. 1). Most of the vessels use handife/troll or longline gear. (Landings by handine and troll gears are not distinguished in the sales-slip records). The fishery in its present form began to expand about 1977. At that time a market developed for live rockfish to supply restaurants and retail outlets, primarily in Vancouver's Chinatown. By 1984, annual landings in area 43 had increased by 5 times in weight, and by 15 times in value, relative to 1975 (Table 1). Here we describe the commercial fishery and present an overview of landing trends and fleet dynamics.

Species, Size and Age
Methods
We began to sample landed catch from the handine fishery in 1984
(Cass et al. 1986). Most fish are sold live, and as it was necessary to kill fish for sampling, we were forced to purchase our samples from local fish buyers. Fishermen generally stock-pile their catch in a submerged pen, until enough fish are accumulated to comprise a saleable quantity. Landings are then trucked by a fish buyer to Vancouver or to other local markets. As we were unable to locate fishermen who stock-pile their catch individually, samples included the catch from two or more vessels. Hence, we could not differentiate between gear types, specific locality or depth fished in our samples.

Results

Based on eight samples of the commercial catch to date (over 2000 fish), quillback rockfish (Sebastes maliger) is the major species and accounts for about B8\% (by number) of the fish landed. Copper rockfish (S. caurinus) accounts for about 11\%. Minor amounts (<1\%) of yelloweye rockfish (S. ruberrimus), yellowtail rockfish (S. flavidus) and kelp greenling (Hexagramnos decagramius) are also landed.

Fig. 1. Location of area $4 B$, between Vancouver Island and malnland British Columbia.

Table 1. Total landings (t) landed value (000's $1981 \$$), 20x qualified handine/troll LPUE (kg/day fished) and the percentage of total landings that were included by qualifled handline/troll landings for the area $4 B$ rockfish fishery for 1967-1984.

Year	Landings (t) (\$)		Qual. LPUE (kg/d)	$\stackrel{\star}{x}$
1967	91	21	25.2	34
1966	112	25	24.2	33
1969	118	52	36.8	48
1970	142	57	33.8	34
1971	117	53	37.7	34
1972	128	56	31.6	31
1973	131	55	31.6	24
1974	82	50	34.8	33
1975	73	46	33.1	34
1976	89	63	29.3	37
1977	191	158	43.9	48
1978	232	223	42.5	44
1979	320	345	41.0	44
1980	241	264	31.0	42
1981	278	389	45.4	52
1982	335	546	48.9	72
1983	331	610	43.5	79
1984	392	705	41.1	77

Size and species composition of the landed catch depend on depth of fishing. Quillback rockfish and yelloweye rockfish are found predominantly below 40 m and copper rockfish and kelp greenling predominantly above 40 m (Richards and Cass 1985, Richards et al. 1985). The median size of quillback rockfish and yelloweye rockflsh tends to increase with depth (Richards 1986).

Fishermen reported, in a small questionnaire survey ($n=7$), that they prefer rockfish of about $0.7 \mathrm{~kg}(1.5 \mathrm{lb})$ in weight, and that they discard fish of less than about 0.2 to 0.5 kg . The average weight of quillback and copper rockfish in our conmercial samples generally reflects these preferences (Table 2). Quillback rockfish in the samples were larger on average than copper rockfish. For both spectes, females were heavier than males.

To date, two of our samples have been aged from otoliths, by the break and burn method (Chilton and Beamish 1982). Ages in the samples ranged from 4 - 55 yr for quillback rockfish and from 3-35 yr for copper rockfish (Fig. 2). Copper rockfish appear to have a faster growth rate, mature earlier, and are caught at a younger age. The mean age of copper rockfish in the samples was about 11 yr compared to about 17 yr for quillback rockfish.

Fig. 2. Age distributions and von Bertalanffy growth curves for male and female quillback rockfish and copper rockfish sampled from the area 48 handine/troll fishery between July 1984 and January 1986. See Table 2 for sample sizes.

Methods
The analyses that follow are based on the sales-slip data files maintained by the Department of Fisheries and Oceans, Statistics Division. We had access to the data files for 1967-1984, and could follow the success of individual vessels beginning in 1979 . There are several problems with the sales-slip data that could affect the outcome of the analysis. The most severe problem is an unk nown but probably high rate of noncompliance with the fishery regulation to fill out sales-slips for these species. As there is no dock-side interview coverage for this portion of the non-trawl fleet, the landing records represent minimum estimates.

One landing was occasionally reported across two or more sales-slips. In these cases we chose to use the maximum reported effort for any landing by a vessel on a given day. Sales-slips were omitted from the analysis if the effort was listed as zero. This may have occurred if a landing was combined from two or more minor statistical areas and all of the effort was assigned to one of the areas.

We initially selected all landing records for a vessel on a given day if a rockfish landing was reported. Further analyses were generally performed on handine/troll landings, if rockfish comprised more than a specified percentage by weight (qualification

Table 2. Length, weight, age, and length and age at 50% sexual maturity for male and female quillback rockfish and copper rockfish sampled from the handine/troll fishery between duly 1984 and Jantuary 1986. Sample size (N), mean, and standard error (SE) are given with each value.

	Males			Females		
	M	mean	SE	N	mean	SE
a) quillback rockfish						
length (cm)	1216	33.1	0.1	1310	34.1	0.2
wetght (kg)	1216	0.75	0.01	1309	0.87	0.01
age (yr)	221	15.5	0.6	259	18.2	0.6
50\% maturity age	221	13		259	11	
50\% maturity length	1216	29.5		1310	28.1	
b) copper rockfish						
lerigth (cm)	130	31.3	0.4	148	32.6	0.4
welght (kg)	130	0.57	0.02	148	0. 67	0.03
age (yr)	69	10.0	0.5	74	12.1	0.7
50\% maturity agel	107	6				
50\% maturity length ${ }^{1}$	107	25.0				

[^6]Tevel) of the landing. We found little difference in the time trend of LPUE (weight landed/days fished) using qualification levels of 20\%, 40\%, 60\%, and 80\%. The 20\% qualification level was selected for reporting LPUE. For yearly analyses by vessel, only vessels that made three or more 20% qualified landings in that year were included.

Landings and LPUE
Until the early 1970's, there was a small trawl fishery for rockfish off the southwest coast of Yancouver Island. Annual trawl landings of rockfish averaged 98 t during 1954-1970. Since 1970 however, trawl landings have decreased to an annual average of 41 t . Handline/troll and longline landings of rockfish, which were historically less than trawl landings, averaged 65 t annually during 1954-1976. By 1984, annual handline/troll and longline landings of rockfish had increased to 343 t .

Rockfish landings by all gear types were relatively modest during 1967-1976 (73-142 t/yr), but then rose somewhat irregularly to a peak of 392 t in 1984 (Table 1). During 1967-1976, handline/troll LPUEs ranged from $24.2 \mathrm{~kg} / \mathrm{d}$ (1968) to $37.7 \mathrm{~kg} / \mathrm{d}$ (197 I). During 1977-1984, the range was higher, from $41.0 \mathrm{~kg} / \mathrm{d}(1978)$ to $48.9 \mathrm{~kg} / \mathrm{d}$ (1982), except for $31.0 \mathrm{~kg} / \mathrm{d}$ in 1980. LPUE dropped after 1982 to $41.1 \mathrm{~kg} / \mathrm{d}$ in 1984.

The fncrease in LPUE during 1977-1984 can be accounted for by increased effort on rockfish as a target group. Previously, many of the rockfish were landed as incidentals by salmon troll and lingcod handlfne vessels. Lingeod stocks in the Strait of Georgia in particular have declined signiflcantly in recent years (Cass 1985) and several former lingcod fishermen have switched to rockfish. This is shown in Table 1 by an increase in the proportion of total landings included by the 20% qualfication level for handline/troll gear.

There are several possible explanations for the decrease in LPUE observed after 1982. The trend may simply be an artifact of poor data quality, for example. We do not know how the incidence of mis-reporting of sales-slips may have changed through time. However, we have two types of evidence to support the hypothesis that the decrease (approximately 15\%) reflects a decrease in stock size. The first is anecdotal. Sport and commercial fishermen and fishery officers all report a decline in the size of rockfish stocks, and some changes have occurred in the local areas fished as a result. The second type of evidence is from our research prografl. In our expertments, we found LPUE for quillback rockfish, as measured by research anglfing, to be proportionally related to quillback density, as measured by visua 1 observations from the PISCES IV submersible (Richards and Schmute 1986). Hence, a 15\% decrease in LPUE in our research fishing would indicate a 15% decrease in stock size. Of course, the relationship between conmercial handine/troll LPUE and stock size is less clear. We suspect that connmercial LPUE is relatively insensitive to stock abundance, except at low stock levels.

The number of vessels reporting three or more 20% handline/troll landings of rockfish has decreased from 193 vessels in 1979 to 179 vessels in 1984 (Table 3). There is a high vessel turnover. Only $30-40 \%$ of the vessels remain in the fishery the year following their entry.

Vessels tend to be consistent between years in their relative success in the rockfish fishery. During 1979-1984, LPUEs for a vessel were highly correlated ($p<0,001$) in successive years. In addition, vessels that left the fishery after 1981, 1982 and 1983 had a significantly lower annual LPUE in their last year of fishing than did other vessels in that year ($p<0,05$, wilcoxon two-sample test).

Vessels in the fishery range from small speed boats to former salmon trollers. Using 1983 as an example, median vessel length was 9.7 m (range 3.9-15.1 $\mathrm{m}, \mathrm{n}=140$), with modes in the vessel length distribution near 4 m and 10 m . LPUE was significantly correlated with vessel length ($r=0.21, p=0.01$), although the correlation was not high. As might be expected, the distribution of annual qualified landings by vessel was highly skewed (Fig. 3). The top 17 ($12 \%, n=146$) vessels accounted for 50% of the 1983 qualified landings.

The fishery occurs throughout area 4 B , although the largest concentration of vessels is around Campeell River, minor statistical area (MSA) 13 (Table 3), an area of high tidal flow. In 1984, 50\% of the rockfish handline vessels in the Strait of Georgia reported three or more qualified landings from MSA 13. MSA 13 alone accounted for 51% of the $4 B$ all-gear rockfish landings in 1984. More recently, the fishery has begun to move further north to more exposed areas (e.g. MSA 12), perhaps associated with high competition for dwindiling Strait of Georgla rockfish stocks. Based

Table 3. The number of vessels in the handine/troll fishery for rockfish between 1979 and 1984, the percentage of new vessels in the fishery in each year. the percentage of new vessels in one year that remalned in the fishery the following year, and the percentage of vessels that fished in MSA 13, Only vessels that made three or more 20\% qualified rockfish landings are included.

	Year						
	79	80	81	82	83	84	
no. vessels	193	159	156	176	146	179	
\% new	-	61	59	53	40	37	
\% remained	32	30	37	35	45	-	
8 MSA 13	41	35	40	45	63	50	

Fig. 3. Distribution of annual qualified rockfish landings (t) by vessel in the 1983 handline/troll fishery in area $4 B$. The last group includes all vessels that landed more than 5 t . Only vessels that made three or more qualified handline/troll landings of rockfish are included.
on preliminary 1985 data, over 20 vessels reported three or mare qualified landings from MSA 12, an increase from 11 vessels in 1984 and one vessel in 1983.

Future of the fishery

It appears that decreases in the size of rockfish stocks have occurred in the Strait of Georgia over the past few years. in general, such decreases could be accounted for by either lack of recruitment or by overfishing. However, as rockfish are long-lived
and recruit to the fishery over several years, recruitment failure is not a sufficient explanation for the observed decrease. The most likely explanation for this decrease is overfishing. Fisheries on 1ong-lived species are often characterized by a period of high landings followed by a rapid decline in landings, associated with a decline in stock size (Leamafl and Beamish 1984). This is the pattern that was observed, for example, in the Queen Charlotte Sound Pacific ocean perch (Sebastes alutus) fishery, and consequently, long-term (an the order of decades) rehabilitative measures became necessary (Archibald et al. 1983).

At present, there are no restrictions on the commercial fishery for rockfish in area $4 B$. We expect that rockfish stocks in the Strait of Georgia will eventually be reduced to levels at which they can no longer be economically fished, and that the fishery will then be re-directed to more remote areas. The point of economic extinction is somewhat vague as price has been increasing steadily. To prevent such a scenario, we have recommended a total allowable catch that is based on historical landings from the handline/troll and longline fishery. It is still uncertain what, if any, management action will be taken in the near future.

This analysis has been based on the commercial fishery only, as we are lacking a time series of landings and effort for the sport fishery. The sport fishery for rockfish has become an important alternative to the salmon sport fishery (McElderry et al. 1985). Approximately 85 t of rockfish were landed by the Strait of Georgia sport fishery in 1984 (T. Shardlow and T. Hoyt, unpub. data). This is over 20% of the landings by the commercial fishery. Irl 1986, an 8 fish/d bag limit on sport-caught rockfish was lruplenented coastwide. The limit is probably too high. It was originally imposed by management to control the landing and illegal sale of comercial quantities of rockfish under a sport licence.

Acknowledgments

Thanks to Jergen Westrheim for reviewing the manuscript.

References

Archibald, C. P., D. Fournier, and B, M. Leaman. 1983. Reconstruction of stock history and development of rehabilitative strategies for Pacific ocean perch in Queen Charlotte Sound, Canada. North Ann. J. Fish. Manage. 3: 283-294.

Cass, A. J. 1985. Lingcod. In Tyler, A. V. and G. A. McFarlane (eds). Groundfish stock assesments for the west coast of Canada in 1984 and recommended yield options for 1985. Can. MS Rep. Fish. Aquat. Sci. 1813: 25-56.

Cass, A. J., L. J. Richards, and J. R. Selsby. 1986. A summary of rockfish samples collected from the commercial handine fishery in statistical area 13 between July 1984 and March 1985. Can. MS Rep. Fish. Aquat. Sci 1881: 49 p.

Chilton, D. E. and R. J. Beamish. 1982. Age detemination methods for fishes studied by the Groundfish Program at the Pacific Biological Station. Can. Spec. Publ. Fish. Aquat. Sci. 60: 102 p.

Leaman. B. M. and R. J. Beamish. 1984. Ecological and management implications of longevity in some northeast Pacific groundfishes. Int. Morth Pac. Fish. Comin. Bull. 42: 85-97.

McElderry, H. I., M. Matheusik, and L. J. Richards. 1985. Bottomftsh and the British Columbia recreational fishery: An andysis of angler fishing habits and resource expectations. Can. MS Rep. Fish. Aquat. Sci. 1802: 116 p.

Richards, L, J. 1986. Depth and habitat distributions of three species of rockfish (Sebastes) in British Columbia: observations from the submersible PISCES IV. Env. Biol. Fish. 17: 13-21.

Richards, L. J. and A. J. Cass. 1985. 1985 research catch and effort data on nearshore reef-fishes in the Strait of Georgia B. C. (statistical areas 15 and 16). Can. MS Rep. Fish. Aquat. Sci. 1851: 68 p .

Richards, L. J., A. J. Cass, J. R. Selsby, R. van den Broek, and S. D. Loynachan. 1985. A summary of research catch and effort for nearshore reef-fishes collected during 1984 in HSA 15 and 16 of the Stralt of Georgia. Can. MS Rep. Fish. Aquat. Sci. 1833: 69 p.

Richards: L. J. and J. T. Schnute. 1986. An experimental and
statistical approach to the question: Is CPUE an index of abundance? Can. J. Fish. Aquat. Sci. 43: 1214-1227.

Identification of species assemblages and results of management applications for shelf and slope rockfishes off British Columbia

B.M. Leaman and D.A. Nagtegaal Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

To cope with the management problems created by different productivity levels of rockfish stocks fished in the same areas, we analyzed cominercial catch statistics to determine if there were assemblages that could funct ton as management units. In particular, we wished to determine whether background variance of landings afforded management opportunities at the vessel, seasonal or annual level of aggregation. Gluster analysis of two years of landings data, prior to any management measures, identified both seasonal and annual assemblages but no consistency at the vessel level. For example, the majority of the catch of shelf rockfishes off northern Vancouver Island was caught as a consistent ratio of Sebastes flayidus: S. brevispinis: ${ }^{\text {S }}$. pinniger, whereas two separate seasonal ratios of 5 . alutus:s. reedi: 5 - proriger were identified off the west Queen Charlotte islands. Such results suggested that yields of several species could be optimized through assemblage management, where single-species managenent had resulted in either unfilled quotas or over-exploitation of some species.

The assemblages identified were applied in the management of British Columbia's commercial fishery for three years. We present the results of this application and evaluate its success relative to the former single-species management. We also examine the persistence of the groups previously identified, during the assemblage management period, and indicate what consequences can result from management imprecision in achieving quotas for assemblages.

Int roduction
The genus Sebastes (family Scorpaenidae) is the most speciose of the demersal fish genera in the northeast Pacific Ocean, with over
seventy known species (Chen 1986). While all species are not spatially coincident, any area may have $10-30$ species present throughout much of the year. Although these coincident species are congeners, their biological characteristics may vary widely (Archibald et al. 1981; Phillips 1964) and their equilibrium population levels may differ by tenfold or more (Leaman 1985). These differences combined with exploitation histories that have varied in both intensity and duration have created situations where different management strategtes may be needed for co-occurring species.

> Most of the Sebastes spp. exploited by trawl gear are aggregating formb. The reasons for this aggregating behaviour are not completely understood and any combination of predator protection, feeding facilitation, response to oceanographic or bathymetric features, or reproductive requirements might be plausibly invoked. In addition some spectes have strongly seasonal aggregating behaviour that may result from bathymetric migration, often further complicated by different patterns between the sexes (Leanan 1985). Natural aggregations may be further amplified in fisheries statistics by the limited availability of bottom suitable for trawling; indeed, most fishermen regard the name 'rockfish' as amply justified.

Within any management area, landings from rockfish fisheries in British Columbia are typically composed of a mixture of species in variable proportions (Tables 1,2). The composition of these mixtures is influenced by differential species abundance, bias in the distribution of fishing effort among species, and marketing constraints. Fishery landings therefore do not give a picture of the "true" community or assemblage, rather they present a variable subset of that commuity reflecting the biases of market demand, availability and wulnerability.

In the waters off British Columbia there are a number of fishing grounds where these scenarios occur. Available yield from stocks is quite disparate anong and within areas (Leaman 1985; Stanley 1985) and often management of individual quotas for some species has resulted fn either overfishing or regulatory closures that truncate fisheries for other species before their quotas are fully subscribed (Table 3). Such a system is clearly inefficfent and improvenents in management must deal with basic differences in biology among species, stocks at various levels of historical exploitation, and different patterns of aggregation throughout the year among the species landed from a given area. The manager may find that the window of control for the fishery prohibits sing?e-species management due either to the impossibility of resolving single-species effort from tatch statistics, or because the specles are truly caught together.

What the manager needs is a method for optimizing yields from several stacks based on controlling the majority of their landings. Our objective was to analyze historical patterns of catch and effort to determine if management of shelf and slope rockfishes could be atcomplished through treatment as assemblages, rather than as single species. In this paper we present the results of this analysis and their application to the management of British Columbia rockfish fisheries during 1983-1985.
Table 1. Commercial rockfish landings (t) off British Columbia by major area, 1977-1978.

Species	Major агеа									
	1978					1977				
	3	3	54	${ }^{\text {B }}$	\boldsymbol{E}	x	30	58	58	5
S. alutus	48.88	7.05	164.56	1,134.32	2,426.91	15.02	1.13	69.35	1,004.91	1,550.81
5. paucispinis	-	0.02	-	-	139.49	-	-	-	0.34	76.28
5. babcocki	0.81	0.38	17.68	54.98	5.09	0.33	-	0.73	19.47	2.28
5. brevispinis	1.03	20.78	373.39	350.23	139.88	18.01	10.31	85.69	111.97	20.33
5. entanelas	-	1.53	1.49	142.02	57.21	51.06	-	10.81	75.51	12.34
5. flavidrs	45.04	36.84	406.98	1,237.29	1.57	236.61	7.52	303.96	709.38	3.72
5. paucispinis	3.81	19.15	74.88	58.43	14.31	28.97	10.14	17.41	24.50	1.37
5. pimioner	14.52	54.09	108.54	154.08	8.30	99.60	96.45	23.53	97.58	0.57
5. proriger	0.38	6.64	7.60	12.05	231.37	0.33	-	33.03	0.48	155.96
5. reedi	0.27	-	10.86	97.63	1,104,64	-	-	308.98	2.67	1,256.72
5. niberrimus	1.37	0.62	0.80	1.25	,	0.07	-	0.27	-	-
S. zacentrus	-	-	0.45	-	3.64	-	-	0.47	-	2.67

Table 2. Percentage of major rockfish speciesa landed in various combinations, by year, in Area 5 E 1977-1985.

Percentage of AL in following combinations:

Year	Alone	AL/PR/RE	AL/RE	PR/RE	AL/PR	With other rockfish
1977	55	21	13	0	2	9
1978	14	15	62	0	0	9
1979	11	24	37	0	0	28
1980	41	15	10	0	19	15
1981	46	20	30	0	0	4
1982	27	25	25	0	0	23
1983	2	27	51	0	1	19
1984	8	35	38	0	0	19
1985	28	35	21	0	10	6

Percentage of PR in following combinations:

Alone	AL/PR/RE	AL/RE	PR/RE	AL/PR	Wther other Year	Aloch

Percentage of RE in following conbinations:

Alone	AL/PR/RE	AL/RE	PR/RE	AL/PR	Wth other rockfish	
Year					0	0
1977	0	76	24	0	0	
1978	2	60	34	4	0	0
1979	0	81	19	0	0	0
1980	8	62	12	18	0	0
1981	0	56	24	18	0	2
1982	1	59	35	5	0	0
1983	4	50	26	20	0	0
1984	0	53	38	10	0	0
1985	1	69	10	19	0	1

[^7]
Methods

The concept of describing groups of organisms as assemblages or by their degree of similarity is not a new one, Our approach departs from previous ones in the important regard that we required our assemblages to be functional in management. We stress that we did not set out to determine ecological linkages, which would require a long and detailed study. Our criteria for identification of functional assemblages were that:
(i) species must be colncident in landings from a given management unit;
(1i) this coincidence must persist over time useful in management (e.g. fishing season or year), i.e. species must co-vary in abundance in landings;
(iii) landings of a species in an assemblage must constitute the majority of its annual landings; and
(iv) the assemblages must be tractable under normal fishing patteras.

The latter three criteria are the primary departures from previous studies. For example, Day and Pearcy (1968), Fager and Longhurst (1958), Gabriel and Tyler (1980), and Tyler et al. (1982) have examined species groupings of the same general type we are considering but used much more temporally-1imited data sets (often only single surveys). As such, the persistence of the relationships they described was inferred but not denanstrated, and their dynamics would be opaque to fishery managers (Wiens 1981). The same conclusion may apply to repetitive surveys made at specific t imes of year, that are not scaled to fishery results (Sissenwine et al. 1982). In part, this problem arises because some studies attempt to provide a management tool but their approaches carry the a priori assumption that species interactions are the driving force of group dynamics, while ignoring fishery effects (Mercer 1982).

Catch data from the British Columbia trawl rockfish fishery in seven areas (Fig. 1) during 1977-1978 were the subject of our analysis. The data were segregated into shelf (5 . brevispinis, \underline{S}. entomelas. S. flavidus, S. plnniger) and slope (S. alutus, S. proriger, 5. reedi) forms. While catch statistics are not true measures of What species may co-occur, they do provide information on both association in landings and management opportunities (e.g. Tyler et al. 1984). Catches are subsamples of species groupings vulnerable to trawls and while the absence of a species does not necessarily infer its absence from the area, it does rembe it from our management focus.

Nagtegaal (1983) reviewed some of the qualitative and quantitative methods that have been used to examine species associations, We chose cluster analysis (Borucki et al. 1975; Gabriel and Tyler 1980; MacDonald 1975; Sokal and Sneath 1963) as the most powerful and flexible method for our examinations.
A. Cluster analysis. The basic data element available for analysis was a vessel-ared landing, for which a relative ratio index, $R_{f j}$ was calculated for each species:

$$
R_{i j}=C_{i j} / \sum_{i=1}^{N} C_{i j},
$$

Table 3. Quatas (Q) and landings (C) of rockfish species by management area, 1979-1985. (values in tonnes).

Area/species	$\begin{gathered} 1979 \\ \mathrm{Q} / \mathrm{C} \end{gathered}$	$\begin{gathered} 1980 \\ \mathrm{Q} / \mathrm{C} \end{gathered}$	$\begin{array}{r} 1981 \\ \mathrm{Q} / \mathrm{C} \end{array}$	$\begin{gathered} 1982 \\ \mathrm{Q} / \mathrm{C} \end{gathered}$	$\begin{aligned} & 1983 \\ & \mathrm{Q} / \mathrm{C} \end{aligned}$	1984 Q/C	$\begin{gathered} 1985 \\ 0 / 6 \end{gathered}$
$5 E$							
S. alutus	600/839	600/877	600/599	600/614	600/835	600/841	600/830
S. proriger	250/73	250/111	250/133	250/34	-/143	-/149	-/919
5. reedi	750/389	800/500	800/922	600/414	600/588	600/441	600/497
S. ${ }^{\text {s.eutianus }}$	150/192	150/51	250/10	250/274	200/74	200/101	200/161
5A/B							
S. brevispinis	600/927	600/772	600/415	600/618	600/524	600/962	750/997
5. flavidus	3000/1526	3000/552	2000/281	1500/292	1500/323	1500/195	1500/341
5. pinniger	600/370	500/354	250/144	250/358	500/343	500/507	500/391
5. alutus	2000/1431	2000/1531	1500/1481	1000/856	1000/1246	800/860	850/839
5. proriger	225/8	225/-	250/-	250/3	-/37	-/40	-/117
5. reedi	450/10	450/28	50/5	-/228	250/608	250/344	350/304
30							
5. brevispinis	150/264	200/400	200/251	200/126	250/564	250/462	350/812
5. flavidus	200/116	200/63	200/27	200/13	100/36	100/19	100/288
S. pinniger	500/351	500/323	350/114	350/215	450/712	450/882	$500 / 727$
S. alutus	10/44	-----with	area 3C quo		250/463	250/337	350/340
S. proriger	$50 / 1$	50/-	50/-	50\%-	-/22	-/29	-/78
5. reedi	$50 /-$	50/-	50/-	50/1	-/20	-/114	-/412
3.							
S. brevispinis	100/1006	100/387	100/148	-/63	-/86	50/108	100/110
S. flavious	100/344	100/657	100/2021	100/155?	-/17	100/20	200/94
5. pinniger	100/86	100/290	100/201	100/234	-/156	200/307	200/177
5. alutus	50/81	600/430	500/548	500/508	500/374	500/406	300/276
S. proriger	$50 / 1$	50/-	50/13	-/3	-/12	-/14	-/26
S. reedi	50/2	50/-	$50 /-$	-/6	-/33	-/6	-/4

Figure 1. Areas for rockfish assemblage analysis (I-VII) and major statistical areas off British Columbia (e.g. KC).
where C is catch and the species and landing indices are \mathfrak{i} and \mathfrak{j}, respectively. We used a Q-mode (entity) agglomerative cluster analysis, which groups elenents according to the similarity of their species ratio (rather than R-mode (attribute) clustering which groups elements according to individual species similarity) for our preliminary examinations. This analysis produces a hierarchical classification of data in the form of a dendrogram, with one axis as a group classification and the other as an index of similarity between groups. A group-average fusion strategy was employed to link groups with a Canberra-metric similarity Index. The latter was chosen to milnimize the blas induced by differences in the gross level of catch among groups with similar proportions.

As a supplement to the cluster analysis we also calculated a relative catch index, L_{i}, to identify those clusters representing the majority of the rockfish catch.

$$
L_{i g}=c_{i g} / \sum_{g=1}^{K} c_{i g}
$$

where $C_{i g}$ is the catch of species i to cluster g. The denominator is the total rockfish catch of species ; in all k clusters in the study area.
B. Catch proportion analysis. In addition to the cluster analysis we dentified a proportion index to determine the proportions of rockfish species that were landed together.

$$
\mathrm{P}_{\mathrm{ig}}=\mathrm{C}_{\mathrm{ig}} / \sum_{\mathrm{t}=1}^{12} \sum_{\mathrm{g}}^{\mathrm{K}} \mathrm{C}_{\mathrm{itg}}
$$

Where $\mathrm{C}_{4 \mathrm{~g}}$ is the catch of species i in combination g . The denominator is the total catch of species i in all combinations within the area for a year. The proportions were calculated for all possible combinations of comnercial species within the study area. We also examined each species' catch by month relative to its annual catch for each area, to distinguish those species consistently caught together from those caught together only occasionally.
C. Covariation in species landings. Adherence to our criterion (it), that species in an assemblage must co-vary in abundance, was examined with a Wilcoxon paired-sample test of percentage change in landings, by month, by species pair.

0 . Application to management. Subsequent to these examinations, we analyzed a longer time-series of tatch data (1977-1982) for monthly and annual patterns of R_{ij} and P_{ig}. Some of the assemblages identified by these analyses were presented as options to fishery managers and implemented during the 1983-1985 rockfish fisheries off British Columbia. The results of this implementation were evaluated in terms of the achievement of individual species quotas within an assemblage management fishery, and the persistence of the assemblage composition during this experimental management period.

Results
A. Cluster analysis. The results of the cluster analysis of the $\mathbf{R}_{\mathbf{i}} \mathrm{j}$ values are presented in tabular format (Table 4) for all seven areas but we present only two of the accompanying dendrograms, representing the best and worst cases (Figs. 2 and 3). It is obvious that the species composition of rockfish landings is highly variable when viewed at the level of individual landings. From an assemblage management perspective the warst-case scenario (Fig. 2) occurs when the arms of the dendrogram are all narrow and linked at a low level of similarity ($<0,4$). This imples that landings anfong vessels are extremely dissimilar throughout the year and the potential for assemblage management is low. Only Area VI (northwest Vancouver Island, May-December) displays these traits to any marked degree, and it is based almost entirely on major landings of single species, rather than completely different proportions of the same species mfx. In the more typleal dendrogram (Fig. 3), the group bases are linked at a high level of stmilarity (>0.8), either as a
broad cluster of single speties catches or multiple groups with extremely similar ratios.

It is clear that management opportunity afforded at the level of individual landings is limited by the variation in $\mathbb{R}_{i j}$. However, major clusters based on temporal patterns were identified (Table 4), 1mplying much greater stability in R_{ij} when landings are grouped over longer periods.

Examination of the L_{ig} index for the broader temporal clusters (Table 4) showed that these clusters also accounted for the majority of annual landings, hence would be useful in management. The exception to this general case concerned S. flavidus and S. proriger. For the former species the cluster analysis indicated that in the major areas of capture (IV and V) over 657 of the S. flavidus was caught by itself or in an assemblage where its $\mathrm{R}_{\mathrm{i}} \mathrm{j}_{\mathrm{j}}$ >
0.75 . At the same time we learned through a taging study that 5 . flavidus was capable of extremely wide movements (Leaman, unpubldata) and should be managed separately on a coast-wide basis. For S. proriger, while it was seldorn caught alone, its R_{ij} averaged only 0.17 in those clusters accounting for the majority of its annual landings. Another result of the cluster analysis therefore, was the suggested elimination of S. flavidus and S. proriger from consideration for assemblage management.

Examination of the $R_{i j}$ indices for the remalning shelf and slope forms, by month and management area indicated a relatively high degree of variation throughout the year for most areas (Table 4). We then turned to the P_{ig} index to determine if the majority of the variation occurred during the majority of the landings.
B. Catch propartion analysis. The general pattern of the monthly proportion index was for strong temporal segregation of index maxima between species, within the same management area. For example, the peak in P_{fg} for S. alutus in Area 5E during 1977-1982 was in April while the peak for \underline{S}. reedi was in October (Fig. 4). Similarly, \underline{S}. pinniger was dominant during May in Area $5 B$, whlle the 5 . brevispinis maximum occurred in August. In no area was there strong coincidence in the monthly proportions.

Taken by thenselves, these results would suggest little opportunity for optimization within an assemblage management framework. However, when viewed in conjunction with the R_{ij} and L_{ig} results it is clear that achtevement of species-specific management goals is possible, due to the temporal patterns of availability for individual species within the assemblages.
C. Covariation in landings. While the absolute magnitudes of landings by species do show differences, the patterns of change by month ($\%$ increase or decrease) exhibit some consistency (Fig. 5). For the examples in Table 5 only the 1977 S, brevispinis S. pinniger Area 5A/B comparison showed a probability less than 0.5 (0.3 $>$ P. $05(2), 7>0.2$) in accepting the hypothes is of equivalent percent change in monthly landings of the two spectes.

$A=\$$ fiovidus
$\mathrm{B}=5$ brevispinis
$\mathrm{C}=5$ brevispinis / 5 flavidus
$\mathrm{E}=\mathrm{S}$ fiowidus $/ 5$ pinniger
$F=5$ brevispinis/ 5 flowidus $\$ 5$ pinniger
I $=\$$ browspins / $\$$ pinniger
$\checkmark=\$$ pinmiger

$$
\text { MONTH }=\{1-12\}
$$

Figure 2. Similarity dendrogram from cluster andysis of shelf rockfish landings for Area VI, band on species composition and month caught.

Figure 3. Similarity dendrogram from cluster analysis of slope rockfish landings for Area I, based on species

Table 4. Relative catch indices and mean catch ratios for groups in cluster analysis, by study area.

Study area	species ${ }^{\text {a }}$	Group no.	Month	Relative catch inder (L_{ig})	Mean catch ratio
I	A1/PR/RE	A^{\prime}	Jun-Noy	.17/.02/.12	.51/.05/.43
	A1/PR/RE	B^{\prime}	May-Hoy	.23/.43/.46	.08/.06/.85
	AT/PR/RE	C^{\prime}	Jul -pec	.17/.28/.16	.23/.25/.48
	A1/PR/RE	D^{\prime}	May -act	.01/.24/.09	.04/.50/.40
	Al/PR/RE	E'	Jan Jun	.42/.03/.17	.97/.01/.01
II	A1/Pr/RE	$\mathrm{A}_{1}{ }^{\prime}$	Jul-Dec	. $30 / .41 / .25$.48/.19/.33
	A1/PR/RE	A^{\prime}	Jul - Dec	.23/.12/.62	.23/.07/.70
	Al/PR/RE	$B^{\text { }}$	Jan Jul	.47/.47/.12	.96/.03/.04
III	Al/RE	A^{\prime}	Jul -bec	.45\%.70	. 797.20
	A1/RE	$\mathrm{B}_{1}{ }^{\prime}$	Jul-Dec	. $33 / .19$.90/.09
	A1	$\mathrm{B}_{2}{ }^{\prime}$	Jan-Jun	. 07	-
	A1/PR/RE	C^{1}	Jul-Now	.14/1.0/.11	.89/.01/.09
IV	BR/FI/PI	$A_{1}{ }^{\prime}$	May ${ }^{\text {Jut }}$.01/.11/.15	.02/.78/.19
	BR/F1/PI	$A_{2}{ }^{\prime}$	May Jun	.08/.15/.12	.02/.93/.05
	BR/F1/PI	$\mathrm{A}_{3}{ }^{\text {a }}$	Aug -9 ct	.14/.26/. 04	.19/.79/.02
	BR/EN/F 1	${ }^{4} 4^{\prime}$	Sep -0 ct	.07/.32/.11	.04/.20/.75
	BR/EN/F1/PI	$\mathrm{A}_{5}{ }^{\text {a }}$	Aug-0ct	.091.09/.04/.08	.05/.11/.60/. 23
	BR/F1/PI	${ }_{6}{ }^{\prime}$	May - ${ }^{\text {dul }}$.01/.04/.15	.01/.71/.27
	BR/F1/PI	B^{\prime}	May-Jun	.01/.02/.19	.25/.27/.47
	BR/F1/PI	Cl_{1}	Aug-Sep	.40/.12/.20	.51/.37/.08
	BR/FI/PI	C^{1}	Aug-Sep	.19/.04/. 04	.95/.02/.02
	EN/F1	$0^{\text {T}}$	Aug-Sep	.59/.10	.57/.40
	PI	E^{\prime}	May Jun	. 03	-
V	BR/F1	$A_{1}{ }^{\prime}$	Jul-Oct	.13/. 34	.23/.76
	BR/F1/PI	A^{1}	May-Jun	.01/.01/.08	.07/.65/.27
	BR/F1/PI	A ${ }^{\prime}$	May-Sep	.01/.38/.05	.01/.97/.01
	BR/F1/PI	B^{1}	Aug-0et	.83/.14/.71	.71/.22/.06
	BR/F1/PI	C^{\prime}	May-Noy	.01/.01/.17	+32/.04/.62
	BR/EN/F1	D^{\prime}	May -aul	.01/1.0/.12	.06/.01/.89
VI	BR/PI	A^{1}	Aug-Sep	.82/.07	. $74 / .25$
	BR/F1/PI	B^{1}	Apr-Sep	.13/.38/.92	.02/.04/.93
	BR/F1/PI	C^{\prime}	May-Aug	.05/.62/.01	.13/.84/.02
VII	BR/EN/F1/PI	$A_{1}{ }^{\prime}$	Aug-Sep	.03/.01/.01/.01	.16/.13/.46/.15
	EN/Fl	$A_{2}{ }^{*}$	May Jul	.72\%.86	.171.82
	EN/F1	$\mathrm{B}^{\text {}}$	May	. $26 / .07$. $50 / .50$
	Fl/PI	Cl_{1}	Aug-Oct	.05/.75	. $16 / .83$
	BR/F1/PI	C_{2}	Aug-Sep	.96/.01/. 24	. $31 / .08 / .46$

D. Application to alanagement. If addition to recommended species-specific quotas, managers were presented with quotas for shelf and slope assemblages by managenent area during 1983-1985. Assemblage quotas for Areas 3 D and $5 \mathrm{~A} / \mathrm{B}$ relied on the temporal changes $\mathrm{I}_{\mathrm{n}} \mathrm{R}_{\mathrm{ij}}$ and P_{ig} to achieve the appropriate mixture of Individual species quotas while the Area 5 E quota was divided into January-June and July-December allotments, to account for the seasonal bias in species availability (Fig. 4).

In general, the management precision of the assemblage quotas has been poor and quota overruns the rule, rather than the exception. The reasons for this are manifold and include a voluntary catch reporting system in British Columbia, rapid concentration of fishing effort, and either slow or no management action when quota limits were exceeded. Evaluation of assemblage managenent thus became somewhat confounded by inprecistion in maragement of the assemblages. In Table 6 we have attempted to estimate what species and assemblage catches would have resulted from prompt management restrictions. Those figures in parentheses are the catches we would have achieved had we acted in such fashion, assuming that detection and response would normally operate in a monthly interval.

In the case of slope rockfish in Area 5 E , assemblage management has acted to dampen major fluctuations in species composition of the total catch and prompt management action would have decreased overruns on the S, alutus yields (Fig. 6). However, it mould also have reduced the catch of $\$$. reedi. Achievement of the assemblage quota has thus been at the expense of the S. alutus stock. Since the seasonal patterns of R_{ij} for S. reedi and S. alutus have maintained themselves during assemblage management, it appears that improved distribution of species catches within the total assemblage can still be achieved through additional reduction of the spring fishery, with its higher landings of S. alutus, but maintaining the grouped-species quotas.

In some contrast with the above, assemblage management of shelf rockfish in Area 30 appears to have been less successful. While seasonal patter.s of R_{ij} and monthly proportions have maintained themselves (Fig. 4) and quota overrins might have been decreased by more rapid management action (Fig. 7C), a component of the percentage overrun arose because management enacted fishimg quotas 33* greater than allowable catches recommended by assessment biologists. However, even in consideration of this assemblage management has not introduced the stability noted for Area 5 E .

It is possible to improve the performance of assemblage management in Area 3D through temporal segregation of the grouped quota, to take advantage of the higher proportion of S. pinniger in landings during the fall. Such segregat on combined with prompt monitoring and management response would achleve more equitable balance than show in Fig. 7B.

Discussion

Managenent of multiple species or stocks exploited by the same fishery is a problem that has plagued fishery biologists for some

Figure 4. Monthly proportions and mean catch ratios of shelf rockfishes in Area 30 (left) and slope rockfishes in Area 5E (right), 1977-1982 and 1983-1985.

Table 5. Monthly landings (t) of rockfish species ${ }^{\text {a }}$ in Areas $5 E$ and 30, 1977-1978, and tests of covariation. H_{0} : \% change in monthly landings equal. $\mathrm{H}_{1}: \%$ change in landings not equal.

1977	AL	RE	BR	PI
1	115.97	54.49	-	-
2	99.31	0.03	29.15	6.01
3	-	-	-	-
4	347.47	16.88	5.17	0.32
5	155.76	151.36	10.49	44.04
6	315.97	133.18	24.47	25.67
7	182.23	295.51	14.09	14.81
8	18.69	107.71	35.75	15.36
9	18.96	85.45	41.34	3.79
10	93.80	189.29	17.93	5.51
11	53.51	184.64	18.67	5.62
12	149.12	38.19	0.61	-
Accept $\mathrm{H}_{\mathrm{o}}: \mathrm{P} \times 0.5$				
	Accept $\mathrm{H}_{0}: \mathrm{P} \times 0.2$			

1978

1	265.50	85.36	15.15	4.67
2	36.20	0.16	3.32	2.41
3	-	-	1.04	0.62
4	141.96	31.62	25.71	61.53
5	105.26	182.02	37.11	9.93
6	146.43	51.81	32.14	57.85
7	320.21	115.27	337.01	98.32
8	358.45	183.71	126.87	8.99
9	63.80	6.09	69.00	11.24
10	650.43	221.21	76.19	5.08
11	222.94	52.71	0.09	1.96
12	115.75	43.40	-	-
Accept $H_{0}: \mathrm{p}: 0.5$				Accept $H_{0}: p>0.5$

aspecies: AL-S. alutus \quad 日R-S. brevispinis RE-S. reedi PI-S. pinniger

Figure 5. Monthly landings of slope rockfish in Area 5E, 1977-1978.
Table 6. Performance of assemblage rockfish management 1983-1985: values in tonnes. See text for explanation of values within vertical bar's.

Figure 6. A. Individual (1979-1982) and assemblage (1983-1985) quota performance in Area 5E. B. Actual (ACT) and (ACH) achievable assemblage quota performance by species, C. Actual (ACT) and achlevable (ACH) assemblage quota performance by opening.
ttme (Gulland 1983) and approaches have been of two general types. One method is to collect extremely detailed information on the bfology and interactions of the spectes composing an assemblage, and build an analytic model which attempts to predict the effects of fishery and environmentally induced changes on these constituent parts (e.g. Andersen and Ursin 1977; Lett and Kohler 1976). Such a systems approach is finherently appealing to biologists because it offers the potential to actually understand the behaviour of a complex system. However, it is expensive in time and resources and extremely difficult to adequately model, at least with precision sufficient for quantitative prediction.

We make no pretense to such endeavour, rather have taken the second general approach, that of a more empirical nature wherein we attempt to deal anly with the fishery induced changes and not with a detailed analysis of the internal dynamics of the assemblage. While such an approach will not substitute for that detailed understanding, it offers the potential to avoid catastrophic declines in one or more constituents while that knowledge is gained, by controlining a major external factor in these dynamics, i.e. the fishery.

Our program has also attempted to extend the normal empirical approach through a more conprehenslye examination of assemblage composition as perceived through this major control variable. The advantages to using fishery based data are that assemblages can be examined over a longer time period than for research surveys and

Figure 7. A. Individual (1979-1982) and assemblage (1983-1985) quota performance in Area 30. B. Actual (ACT) and achievable (ACH) assemblage quota performance by species. C. Actual (ACT) and achievable (ACH) assemblage quota performance by sub-area.
that the data pertain directly to the management process. The disadvantages are that targetting and switching behaviour by fishermen may be fmbedded in the data and be highly responsive to subsequent management actions, and that little understanding of internal assemblage dynamics is gained. This potential can be increased if assemblage management is undertaken on an experimental basis (Hobson and Lenarz 1977).

For the shelf and slope rockfishes off British Columbla, our analysis and management program has shown that:

- predictable assemblages of shelf and slope forms can be identified through fishery data;
- ratios of species in the assemblages are stable under experimental management and account for the majority of species' catches;
- separate species managenent goals are achievable with assemblage management, through manipulation of openings and quotas to take advantage of this seasonal and annual stability; and
- assemblage management based on such detafled examination can avoid the sacrifice of minor species for the sake of managing only the dominant species in af assemblage.

While we are encouraged by the modicum of success experienced with this approach we stress that it is only an interlm measure and precursor to development of an understanding of the biological mechantics of these assemblages.

Acknowledgements
We are grateful for thoughtful criticisms on a draft of this paper from R. D. Stanley and A. V. Tyler.

Literature Gited
Andersen, K. P. and E. Ursin, 1977. A multi-species extension to the Beverton and Holt theory of fishing with accounts of phosphorous circulation and primary production. Medd. Dan. Fisk-Havunders. (New, Ser.)7:319-345.

Archibald, C. P., W. Shaw, and B. M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal maters, 1977-1979. Can. Tech. Rep. Fish. Aquat. Sci. 1048: 57 p.

Borucki, K. J., D. H. Card, and G. C. Lyle. 1975. A method of using cluster analysis to study statistical dependence in multivariate data. IEEE Transactions 24: 1183-1191.

Chen, L-C. 1986. Meristic variation in Sebastes (Scorpaenidae), with an analysts of character association and blateral pattern and their sigmifltance in species separation. NOAA Tech. Rep. MMFS 45: 17 p .

Day, D. S. and K. G. Pearcy. 1968. Species associations of benthic fishes on the continental shelf and slope off Oregon. J. Fish. Res. Board Can. 25: 2665-2675.

Fager, E. W. and A. R. Longhurst. 1968. Recurrent group analysis of spectes assemblages of demersal fish in the Gulf of Guinea. J. Fish. Res. Board Can. 25: 1405-1421.

Gabrie1, W. L. and A. V. Tyler. 1980. Preliminary analysis of Pacific coast demersal fish assemblages. Mar. Fish. Rev. 42(3-4): 83-88.

Gulland, J. A. 1983. Fish stock assessment: A manual of basic methods. F,A.O./Wiley Serfes on food and agriculture. Vol. I. Wiley, New York. 223 p.

Hobson, E. S. and W. H. Lenarz. 1977. Report of a colloquin on the multispecies fisheries problem, June 1978. Mar. Fish. Rev. 39(9): 8-13.

Leaman, B. M. 1985. Slope rockfishes in A. V. Tyler and G. A. McFarlane (eds.). Groundfish stock assessments for the west coast of Canada in 1984 and recommended yield options for 1985. Can. MS Rep. Fish. Aquat, Sci. 1813; 353 p.

Lett, P. F. and A. C. Kohler. 1976. Recruitment: a problem of multi-spectes interaction and environmental perturbation with special reference to the Gulf of St. Lawrence Atlantic herring (Clupea harengus harengus). J. Fish. Res. Board Can. 33: 1353-1371.

MacDonald, K. B. 1975. Quantitative community analysis: recurrent group and cluster analysis techniques applied to the fauna of the Upper Devonian Sonyea group. Hew York. New York J. Geol. 83: 473-500.

Mercer, M. C. [Ed.]. 1982. Multispecies approaches to fisheries management advice. Can. Spec. Publ. Fish. Aquat. Sci. 59: 169 p.

Nagtegaal, D. A. 1983. Identiffcation and description of assemblages of some commerctally important rockfishes (Sebastes spp.) off British Columbia. Can. Tech. Rep. Fish. Aquat. Sci. 1183: 82 p.

Phillips, J. B. 1964. Life history studies on ten species of rockfish (gemus Sebastodes). Calif. Dep. Fish and Game, Fish. Bull. 126: 70 p.

Sissenwine, M. P., B. E. Brown, J. E. Palmer, and R. J. Essig. 1982. Enptrical examination of population interactions for the fishery resources off the northeastern U.S.A. p. 82-94 in M. C. Mercer (ed.) Multispecies approaches to fisheries managenent adyfce. Can. Spec. Pubt. Fish. Aquat. Sci. 59.

Sokal, R. R. and P. H. A. Sneath. 1963. Principles of mumerical taxonomy. Freeman, San Francisco 359 p.

Stanley, R. D. 1985. Shelf rockfishes in A. V. Tyler and G. A. McFarlane (eds.). Groundfish stock assessments for the west coast of Canada in 1984 and recommended yield options for 1985. Can. MS Rep. Fish. Aquat, Sci. 1813: 353 p.

Tyler. A. V., E. L. Beals, and C. L. Smith. 1984. Analysis of logboaks for recurrent multi-species effort strategles. Int. N. Pac. Fish. Conm. Bull. 42: 39-46.

Tyler, A. V., W. L. Gabriel, and W. J. Overholtz. 1982. Adaptive managenent based on structure of fish assemblages of northern continental shelves. pp. 149-156 in M. C. Mercer (ed.). Multispecies approaches to fisheries management advice. Can. Spec. Publ. Fish. Aquat. Sci. 59: 169 p.

Wiens, J. 1981. Single-sample surveys of commuities: are the revealed patterns real? Am. Nat. 117: 90-98.

Restricted year-class structure and recruitment lag within a discrete school of yellowtail rockfish

H. Richard Carlson NMFS, Northwest and Alaska Fisheries Center Auke Bay, Alaska

Abstract

Observations of a school of adult yellowail rockfish Sethates flowidut over an II-peat period in southeasterit Alaska revealed nesligible recruitment as the schoul dwindled in numbers and remaining inditidull bsh grew in size.

Little is known about the patterns of recruiment of the yellowtail rockfish Sebastes flowidus along the Pacific coast of North America, where it ranges from San Diego, Califomia, to Kodiak, Alaska. The recruitment observations described here are of a discrete schoel of yelfowtal rockfish that occupital a sunken pastenger liner at Poin lena, Lytun Canal, in southeastern Alaska. This school was also observed during a homing study by Carlson and Haigh (1972), who showed that the species possessed the ability and inclination to retum to a homesite when displaced as far as 22.5 km , displaced into other schools of yellowail rockish, or held for months in captivity. Return from certain sites involved changing directions several times or traversing deep straits or boih. The difficuly of some returns and a lasting memory for the homesite indicate the fish possessed a sirong association with it and are evidence for litule natural emigration. Jn this paper. I describe what appears to be a long-lerm, pulse-like pattertiof of retuitment, and offer a hypothesis conceming initial establishment of adult schools.

Methods

Age-size composition and abundance were determined for a discrete school of yellowtail rockfish over 11 years by direct sampling and diver observations. Thit achool oecupied the wreek of
a sunken passenger liner, 6,000 tonnes and nearly 100 m long, al $12-28 \mathrm{~m}$ depths at Point Lena. Lynn Canal, in southeastern Alaska. Adult yellowtail rockith were captured by hook and line during 1969-1979, and the fork length of each fish was measured. Because these fish were also marked for the homing study by Carlson and Haight (1972), scales rather than otoliths were taken to determine age. Selected scales were pressed on plastic cards and viewed ($83 \times$ magnification) on an Eberbach ${ }^{\prime}$ projector.

Although otoliths are more appropriate for ageing oldet rockfish (Chiton and Beamish 1982), most of the age amalyses took place during 19691971, when nearly all of the fish were young, generally less than 10 years old (Table 1). Kimura et al. (1979) stated that scales are reliable for ageing yellowtail rockish throuph age 9 . and scales were used to estimate ages of ycllowtail rockfish to 14 (Phillips 1964) and from ages 8 to 15 (Six and Horton 1977). Furthermore, the mean lengths-atage given by Westrheim and Harling (1975) for yellowtail rockfish ages $7-11$ are generally within 3 cm of the values I found (Table II. My age readings where consistent between years in terms ol year classes represented and wert, I belitev, a valid refloction of the age structure of the school.
Annually, divers observed the school and visually estimated the size range of the fish and their overall abundance on 37 diving days during MayOctober between:969 and 1979. Diver estimates

[^8]Tanie I. - Ages and fork lenghs of 408 yellowtail mokfish captured by hook and lies at Point Lena, Lynn Canal, southeastern Alaska, from 1969 to 1979. No samples were taken in 1972. 1973, 1975, 1976, and 1978. Eatimates of school size were finde by scubs divers.

Sempling y car	Age range (4)	$\begin{gathered} \text { Prodominentit } \\ \text { zges } \\ \text { (ycarb] } \end{gathered}$	Forrk hength (mm)		Number of fish mimpled	Entimated number in schood
			Rampr	Mcan		
196.9	$7-10$	7.8	273-34	341	55	2,000-3,000
1970	7-16	\%. ${ }^{\text {\% }}$	305-414	354	285	1,500-2,500
1971	9-11	9, 10	333-427	373	58	1,000-2,000
1974	$13-14$	13. 14	$410-425$	417	2	500-600
1977	10-18	16	340-443	409	7	$100-200$
1974	18	18	442	442	1	35-100

of tine size range of fish in the sctool were subjective, but consistently showed a narrow size composition, and sizes were corroborated by attual caplure and messurement of 408 fish (Table 1). Divers used the equivalent of transecis (e.g. out each mast and from bow to stacks) over contistently used paths of known dimensions to counl the numbers of rockish in clusiers and expanded these to estimate the total. Although the earliest diver ebservations recorded sehool size as "rough estimates," they verified the presence of a large school, at least in the thousands, cenaindy several times the 541 yellowtail rockfish from this school caprored during the Garlson and Haight (1972) homing study

Resula and Discusston

Results indicate that recruitment to the school occurted over a short time span ($1-2$ years) and little or no additional recruitment occurred in the intervening 14-15 years. This school may have been newly established at the shipurieck homesite as carly as 1967, as indicated by the size and relative abundance of a large school of yellowtail rockfish of relatively sinall size (estimated at 2530 cm) that was observed by Louls M. Bart (Post Office Box 210361, Auke Bay, Alaska 99821, personal communication) while diving there in June 1967. There is evidence that yellowail rockfish in Piget Sound shifi from juvenile to adult areas with the onset of maturity around age 7 (Mathews and Barker 1983). In this study, the age structure of the rockfish in 1969 was dominated by the 1961 and 1962 year classes as 8 - and 7 -year-old fish. In 1970 and 197 L , these year classes again predominated as 9 - and 8-year-olds and 10 - and 9-yearolds, respectively. No fish sampled were younger than age 7, and few fish older than age 11 were present (Table I).

The 1960-1962 year classes were strong for other species of North Pacific marine fishes as wetl. For example, off Oregon-Washington, the 1961 year class of English sole Parophrys verulus was abnormally strong, as were the 1960,1961 , and 1962 year classes of Dever sole Microstomus pdcifiews (Hayman et al. 1980). The 1961 year class was also unusually sirong for Pacific halibut Hip-
pogiossus stemolepis in the nonth Pacific Ocean (Deriso 1985), for Pacific hake Merluccius productas off Oregon-WashingLon (Bailey 1981), Pacific ocean pereh Sebastes alutus off Britith CoIumbja (Leaman and Stanley 1985), and Pacific cod Gadiar macrocephtalus ofl British Columbia (Westrheim and Foucher 1985). The homing study by Cartson and Haigh1 (1972) showed thal yellowtail rockfish strongly identified with the site and relurned to it when displaced, indicating little nalwal emikration. Yearly monitoring of the school by divers fion 1969 to 1979 showed that progressively fewer, but larger, fish comprised the school Age-size composition of 10 yellowtail sockfish taken during 1974-1979 from the small remaining schood indicated that the 1961 year class remained predominant.
There art several possible explanations, not mutually exclusive, for the proiracted lack of recmirment in this school of yellowtail rockfish. The explanation 1 favot is that the presence of large lish in established residence at this site prevented recruitment of the much smaller fish, who located in suitable areas elsewhere, and thereafier (as the demonstration of theming inclination and abilily sursests for yellowail rockfish inhabiting the wreckl identified with the other locations and did not emigrate.

This explanation is quite possible, particularly if the time frame is shon (6 months or less) for shifting from juwenile (nursery) areas to adult habitat and if the larger adults represent potential predators or much more adept competitors for limited space, cover, and highly motile food sources. These larger fish could thus deter smaller fish from joining a school. The situation might progrest to "a point of no retum." The new recruits may be very sparse during the 2-3 years that the established adults grow to a size that excludes younger, smaller fish, even after the young fish attain maturity. Then, with a long-lived fish such as Sebastes spp., the established adult school remains intact until its members-all older, larger fish-approach the limits of longevity and are so reduced in number that they no longer deter recruitment. At this point, the next suceessful year class, upon attaining maturity, could recruit en masse, and the stage is set for a repeat performance of what we are seeing now.

Acknowledg边是租

1 wish to thank my many colleagues at the Auke Bay Laboraiory who assisted in the study，but par－ ticularly fellow biologist－divers and edior Leslie C．Williams．

References

Baiky，K．M．1981．Larval transport and recruilment of Pacioc lake Mrehuccius productust Marine Ecol－ ogy Progess Series 6：1－9．
Carlmon，H．R．，and R．E．Hapht．1972．Evidence for a home site and homing of adult yellowtail rockfish， Sehasies Mavidus．Journal of the Fisheries Research Board orcanmala 29：101－1014．
Chilten，D．E．，and R．J．Beamish．1982．Age deter－ mination methads for fithes studied by the Ground－ fish Program al lhe Pacific Biological Station．Ca－ nadian Special Publication or Fistheries and Aquatic Sciences 60.
Deriso．R．B．1985．Stock assetsment and new evidence of density－dependence．University of Washington Colleze of Ocemand Fishery Sciences Technical Report 85－1：43－60．
Heyman，R．A．，A．V．Tyler，and R，L．Demory． 1980 ． A comparisan of cohort analysis and entech per unit effort for Dover soch and Euglish sole．Transactions
of the Atrierican Fisheries \＄ociety 109：35－53．
Kimura，D．K，R．R．Mandapal 1 and S．L．Oxford． 1979. Method，validity，and variability in the age deter－ mination of yellowtal）rockfoth（Sehastes favidus）． using ololiths．Journal of the Fisheries Research Board of Caneda 36：377－383．
Leaman，B．M．，and R．D．Stanky．1985．Sheif and stope rockfishes．Canadian Manuscript Report of Fisheries and Aquatic Sciences 1813：247－342．
Mathews，S．B．，and M．W．Barker．1983．Movernents ofrockfish（Sebastes）lazged in northern Pupet Sound， Washington．U．S．National Marine Fisheries Ser－ vice Fishery Bulletin 82：916－922．
Phillips．J．B．1964．Eife bistory studies on ten species of rockfish（emnus Sebastodes）．Califormia Depar－ ment of Fish and Game，Fish Bullitin 126.
Six，L．D．，and H．F．Horton．1977．Anslysis of age determination methods for yellownill rockish．ca－ nary rockish，and black rockfish off Oregon．Uf．S． National Marine Fisheries Service Fishery Buletin 75：405－414．
Westheim，S．J．，and R．P．Foucher，1985．Pacitic cod． Canadian Manuscript Report of Fisheries and Aquatic Sciences 1813：57－115．
Westrbeim，S．J．，and W．R．Harlitg．1975．Age－lengih relationships for 26 soopacnids to the northetat Pacific Ocrean．Restarch and Developinent Direc－ torate，Pacific Biological Station，Technical Report 565，Nanaimo，Canada．

Thí article was published in Transactiona of the American Fisheries Society，vol．115，Pp．490－492，1986．and in reprinted here with permission．

Session V -- Management of Stocks

Recent exploitation patterns and future stock rebuilding strategies for acadian redfish, Sebastes fasciatus Storer, in the Gulf of MaineGeorges Bank region of the northwest Atlantic

Ralph K. Mayo
NMFS, Northeast Fisheries Center Woods Hole, Massachusetts

Abstract

The Gulf of Maine - Georges Bank stock of Acadian redfish, Sebastes fasciatus Storer, has been under moderate to intensive exploitation since the late 1930's. During the period of intial exploitation, annual commercial landings increased rapidly from less than 1,000 metric tons in 1935 to approximately 60,000 tons in 1941. Landings and effort subsequently declined through the 1940's and remained relatively stable from the mid-1950's through the late 1960's, averaging about 12,800 tons and 3,300 standard days fished, respectively. Additional effort by distant water fleets increased total landings to approximately 20,000 tons annually by the early 1970's. Except for a brief period between 1977 and 1979, landings have steadily declined since 1972, although domestic fishing effort has remained relatively high.

Estimates of exploitable bfomass and relative abundance indices have consistently declined since the late 1960's. The most recent estimates suggest that stock abundance is currently lower than at any previously recorded level in the past 40 years. Age-specific stock size estimates derived from virtual population analyses (VPA) suggest that, except for a strong 1971 and a moderate 1978 year clas5, recruitment has been extremely poor throughout most of the 1970's and early 1980's. The UPA results also indicate that the instantaneous rate of fishing mortality (F) has exceeded $F_{\text {max }}$ in most of the years since 1970 and has generally been between two and three t.1mes the $F_{0,1}$ level during this period.

Using the 1969 age-specific stock size estimates as a starting point, series of deterministic simulations were performed to evaluate the response of the stock under alternate levels of fishing mortality and different partial recruitment vectors. Recruitment effects were introduced in a form consistent with the pattern observed between 1969 and 1984. Additional sets of stochastic simulations were also performed using the most recent age-specific stock size estimates as a starting point to examine various stock rebuilding strategies with respect to fishing mortality and partial recruitment. A stochastic recruitment generator, based on a probability transition matrix approach, was incorporated to drive the model and to simulate different sets of recruitment conditions.

Results suggest that fishing mortality rates in effect during 1969 through 1984 were excessive given the sporadic nature of recruitment. In particular, high fishing mortality rates combined with an earlier age at full recruitment applied to the 1971 year class resulted in a rapid depletion of this cohort. Results for the 1978 year class, although incomplete as of 1984, suggest a similar pattern of exploitation. Future stock rebuilding strategies, based on 1985 stock sizes, are dependent almost entirely on recruitment success. A probable recruitment frequency of one strong year class per decade, as suggested by prior observations, combined with fishing mortality rates equal to $\mathrm{F}_{\mathrm{0}, 1}(0,07)$ and an instantaneous natural mortality (M) of 0.05 , wift stabilize the stock only at minimal maintenance levels, long-term increases in stock size may be achieved by significant alterations of the partial recruitment vector and/or an increase in recruitment frequency resulting from a positive stock-recruitment relationship.

Int roduction

Three species of the genus Sebastes inhabit the western North Atlantic from the coast of Greenland to Georges Bank (Ni 1982, 1984). Off the Nem England coast, the Acadian redfish, Sebastes fasciatus Storer, (Robins et al. 1986) is most common in the relatively deep waters of the Gulf of Maine and on the northern and southeastern slopes of Georges Bank to depths of 400 m (Bigelow and Schroeder 1953). This species is charactertized by a relatively long life span and extremely low growth and natural mortality rates. Ages up to 50 years with corresponding maximum lengths of $45-50 \mathrm{~cm}$ have been noted (Mayo 1980). Sexual maturity is attained by both sexes in $5-9$ years at average lengths of $18-25 \mathrm{~cm}$. An ovoviviparous reproductive cycle has evolved which enhances larval survival at a cost of greatly reduced individual fecundity. This strategy, in conjunction with a large number of mature age groups in the spawing stock, should provide a high degree of stability in reproductive potential and resilience to environmental or anthropic perturbations by distributing the reproductive burden over numerous year classes. Evidence of severe disruptions to the equilibrium of the stock, such as recruitment or growth overfishing, may appear only after a prolonged period of sustained intervention by either of the above influences.

Figure 1. United States landings of redfish from Gulf of Maine Georges Bank (Subarea 5), Scotian Shelf - Gulf of St. Lawrence (Subarea 4), and Grand Banks (Subarea 3).

Conmercial exploitation of redfish within the Gulf of Maine Georges Bank region has been moderate to intense throughout most of the past 50 years. Landings from this stock increased rapidly during the development of the fishery, from less than 1,000 metric tons (t) in 1934 to over $50,000 \mathrm{t}$ per year between 1941 and 1944 (Figure 1). Landings subsequently decilined sharply, despfte continued high effort levels, until the early 1950's when effort was re-directed toward more distant grounds on the Scotian Shelf, in the Gulf of St. Lawrence, and on the Grand Banks off Newfoundland (Mayo 1980). In the late 1960 's, Gulf of Maine - Georges Bank landings rose again in response to increased fishing effort from domestic and distant water fleets. During this cycle, landings peaked at approximately $20,000 \mathrm{t}$ in 1971 and 1972 before declining to the current level of $4,300 \mathrm{t}$. Further details regarding the development of the New England redfish fishery including trends in historical landings may be found in kelly et al. (1972), Mayo (1980), and Mayo et al. (1983).

Standardized commercial catch per unit effort (CPUE) has declined over the past two decades from a maximum of 6.4 t per day
fished in 1966 to 0.9 t per day fished in 1985. During this same perlod estimated fishing effort increased from less than 2,000 days fished during the late 1960 's to over 6,000 days fished in 1979 and 1980. Since 1981 annual effort has remained between 4,000 and 5,000 days fished despite continued reductions in landings. Precipitous declines in comercial catch rates, evident in the early 1970's, prompted several studies which were initially aimed at determinting maximum harvest levels based on catch and effort analyses. Preliminary results (Mayo 1975), which suggested a maximum yield of 20,000 t from the entire Gulf of Maine - Georges Bank stock under equilibrium conditions, were later modified to approximately $14,000 \mathrm{t}$ (Mayo 1980) when effort standardization tecmniques were incorporated in the analyses. In the first analytical assessment of this stock, Mayo et al. (1983) demonstrated a strong correlation between stock biomass and previously noted declines in commercial CPUE. This study further documented the presence of a strong 1971 year class and provided evidence linking a temporary reversal of the declining CPUE trend to recruitment of the 1971 year class to the fishery at ages 5 , 6, and 7 between 1976 and 1978. Overall recruitment during the 1969 1980 period appeared to be extremely poor, causing the fishery to become increasingly dependent on the dominant 1971 year class.

Recent studies designed to examine lang-term effects of various fishing mortality rates on projected stock sizes and resulting yields of redfish have been limited by the lack of information on the strength of incoming year classes. Recruitnent effects had been incorporated in a deterministic manner by applying an average level equal to one of several possible outcomes based on prior observations as described by Mayo et al. (1983). A more appropriate solution to this problem may be based on theories that recruitment may fluctuate in response to sone function of parental stock size, or in a cyclical manner consistent with known density-independent factors. Traditionally, recruitment variability in fisheries has been evaluated by fitting a family of curves which describe the dependence of recruitment on parent stock to a series of mistorical observations. Numerous applications of this method to model the responses of various animal populations have been summarized by Ricker (1954, 1975) and Cushing (1971, 1973).

An alternative technique to fitting stock-recruitment curves to such a series of paired observations involves the use of a probability transition matrix. This approach provides a means af utilizing raw stock size and recruitment data directly to calculate the probability of obtaining various levels of recrultment, 'given a range of possible parental stock sizes. Getz and Swartzman (1981) originally applied this method in a stochastic age-structured model to estimate recruitment for several spectes with up to seven recruitment levels and eight parental stock sizes. A modification of the Getz-Swartzman technique was applied by Swartzman et al. (1983) to the Northeast Pacific whiting fishery. More recently Overholtz et al. (1986) incorporated this form of recruitment estimation in a model of the Georges Bank haddock stock. The probability transition matrix consists of a series of discrete cells which contain pairs of observations for given levels of parental stock size and associated recruitment. The historical record of stock size and recruitment is
used as a basis to compute the probability that a given level of recruitment will occur within a range of parental stock sizes. The accuracy of the recruitment probability schedules depends on the amount of historical information available but, as Getz and Swartzman (1981) note, the transition matrix approach provides a more matural utilization of the raw stock and recruitment data than a weakly correlated fit to a predetermined stock-recruitment curve. For longlived species, the response time to any perturbation of the stock is greatly increased and the need for extensive historical data is even more critical.

In the present study, a limited series of parental stock and recruitment observattons are incorporated in a stochastic simulation of the Gulf of Maine redfish stock. A probability transition matrix approach is employed to determine the probability of obtaining various levels of recruitment within specified limits of spawning stock size. Simulations were performed over 16 and 100 year time horizons to evaluate the effects of various fishing mortality rates and partiat recruitment patterns on present and future stock sizes and yields. Sensitivity of the model to changes in the level of natural mortality is also examined.

Methods

Domestic and international landings data for this study were obtained from the commercial fishery data base system maintained at the Northeast Fisheries Center (NEFC), Woods Hole, Massachusetts and from fishery statistics compiled by the International Commisston for the Northwest Atlantic Fisheries (ICMAF) and its successor, the Northwest Atlantic Fisheries Organization (NAFO). Estimates of catch at age and mean weights at age for the stock were computed from domestic length frequency samples weighted by area-specific monthly landings, and age/length keys based on otolitins collected by NEFC port samplers from 1969 through 1984. Numbers landed in the domestic fishery were computed by incorporating seasonal, areal, and sexspectfic length-weight equations in the calculations. The total catch-at-age, including the international harvest, was estimated by simple expansion based on the ratio of total landings to domestic landings in each year. in most years the international fishery accounted for less than 5% of the total landings from this stock.

Estimates of instantaneous fishing mortality (F), stock size and biomass, and age 1 recruitment for the 1969-1984 period were obtained by Virtual Population Analysis (VPA) of the catch at age matrix employing an instantaneous natural mortality rate (M) of 0.05 . Terminal F in 1984 (0.172) was derived from an iterative comparison of the functional relationshlp between estimates of fully recruited f obtained from a series of trial WPA's and corresponding annual fisfing effort as described by Mayo et al. (1983). Partial recruitment was assumed to follow the pattern exhibited during the most recent years with full recruitment occurring at age 9. Spawning stock was computed by applying a maturity-at-age schedule to agespecific stock sizes for ages 5 through 9 inclusive. Total and spawning stock biomass estimates were derived from age-specific stock sizes by applying comercial mean weights at age.

To extend the series of stock and recruitment observations prior to 1969, age 2-5 stock sizes in 1969 were extrapolated back to age 1 for the years 1965 through 1968 assuming an exponential decrease in cohort size in each year equal to the instantaneous natural mortality rate. This procedure provided estimates of age l recruitment for redfish spawned during 1964 through 1967 to complement the recruitment estimates obtained from the final VPA for the 1968 through 1980 year classes. Spawning stock sizes for the years prior to 1969 were derived from a linear regression of 1969-1984 VPA spawning stock estimates on a series of corresponding stock abundance indices derived from NEFC autum bottom tram surveys for the Gulf of Maine region. The correlation between the two data sets was substantially improved by smoothing the trawl survey indices by the Integrated movtng average method as described by Pennington (1985). The resulting regression was highly significant ($r=0.95, p<0.01$).

Stock - recruitment relationships

The model described belaw is driven primarily by recruitment, which adds fish to the population at age 1 , and natural and fishing mortality which account for losses. Age 1 recruitment, as determined from the UPA resilts, ranged from 0.4 million fish to 197.2 million fish with over 75% of the observations in the range of 0.4 to 5.9 million fish (Figure 2). Recruitment levels beyond the time period covered by the VPA are speculative in pature, and must be derived based on some objective criterid. Variability in recruitment may be related to changes in physical factors such as temperature or prevailing wind and current patterns, or to density-dependent mechanisms such as intraspecific competition during the larval and juvenile stages or changes in the rate of growth or maturation of the adults. In a density-dependent model, the strength of a recruiting year class is considered to be a function of some measure of parental stock size.

Figure 2. Redfish spawning stock and recruitment (millions of fish) from the Gulf of Maine - Georges Bank region.

Figure 3. Probability transition matrix houndaries and distribution of redfish spawning stock and recruitment data.

Although mating of male and female redfish occurs during the calendar year prior to the release of larvae by the females, any relationship between spawning stock size and subsequent recruitment at age 1 must be lagged by one year. A scatterplot of 17 pairs of recruitment vs. spawfing stock, representing the 1964 through 1980 year classes (Figure 3), illustrates that the recruitment pattern for Gulf of Maine redfish, based on these limited data, consists of a rather low base level interrupted by an occasional moderate to large year class. Further, this base recrutment level appears to be continuous at all spawning stock sizes, although a higher frequency of low recruitment occurs at relatively low stock sizes.

Model Description

Recruitment generator

Since recruitment to the fistable stock is a major driving force in any fishery simulation, the choice of an appropriate recruitment generator is critical to the final outcome. The technique described below was developed by modifying the Getz-5wartzman method to include a series of stochastic events within the context of the probability transition matrix to determine the level of recrultment and to select. a single recruitment event from a distribution of possible values.

The 17 pairs of Gulf of Malne redfish data were first arrayed in a 3×3 contingency table with nine cells corresponding to low, moderate, and high spawning stock and recruitment levels. Transitions between levels were determined by the location of apparent gaps in the recruitment and spawning stock size continua. Within each spawning stock level, the cumulative probability that one of three recruitment levels would be selected was computed in accordance with the observed historical proportions. Stochastic variability was introduced by generating a random number between 0 and 1: this value determined the trial cell chosen based on which pair of cumulative probabilities bracketed the value. Thus, over a series of triais, the probability of selecting a particular recruitment level approximated the observed frequencies, although, on a single trial, any recruttment level could be selected. Within each recruitment cell, a distribution of recruitment scaling factors was constructed such that the highest recruitment frequency would occur at the midpoint of the interval: This was accomplished by first generating a series of three random numbers between 0 and 1. Over several trials, the means computed for each series form a uni-modal frequency distribution with a modal vaiue of approximately 0.5 and a standard deviation of 0.166 . A recruitment value was then obtained by multiplying the upper bound of the recruitment interval by the computed scaling factor, with an adjustment to the center of the interval. In this manner, the expected recruitment probability is initially determined by the level of spawning stock and, within a given range of spawning stock, a single recruitment event is drawn from up to three distributions in accordance with observed frequencies. Sample distributions of recruitment frequencies generated in this manner, based on 10,000 trials for each spawning stock level, are illustrated in Figure 4. Although the recruitment frequencies within each cell of the transition matrix are distributed

Frequency of Occurrence
Figure 4. Distribution of probable recruitment frequencies in each cell of the probability transition matrix computed from 10,000 trials.
mormally, recruitment over the entire range of observed values appears to be lognormal.

Stock and catch projections
Once a year class has recruited at age 1 , the initial number of fish in each of 50 age groups present in the stock is discounted on an annual basis by the combined effects of flatural and fishing mortality as follows:

$$
N_{j+1, t+1}=N_{j, t} * \exp \left(-\left(F_{j, t}+M\right)\right)
$$

where: $\quad N_{j, t}=$ the number of fish in age group j in year t,

$$
\begin{aligned}
& F_{j, t}=e^{f f e c t i v e ~ i n s t a n t a n e o u s ~ f i s h i n g ~ m o r t a l i t y ~ o n ~} \\
& \text { agge group } j \text { in year } t \text {, and } \\
& \mathrm{H}=\text { instantaneous natural mortality. }
\end{aligned}
$$

Effective fishing mortality is defined as the product of the fully recruited F and an age-specific partial recruitment multiplier. The number of fish in each age group taken by the fishery in any given year is computed from the age-specific stock size estimates using the Baranov catch equation:

$$
c_{j, t}=N_{j, t} *\left\{F_{j, t} /\left(F_{j, t}+M\right)\right) * 1-\left(\exp \left(-\left(F_{j, t}+M\right)\right)\right)
$$

Spawning stock sizes were determined by applying an overall vector of maturity-at-age factors to the age-specific stock sizes. Total and spawning stock sizes were converted to biomass by applying a vector of average weights at age based on a von Bertalanffy growth curve taken from Mayo (1980), while catch biomass estimates were calculated from numbers caught using a mean weight at age vector derived from an average of the 1969-1984 commercial fishery data as described for the VPA procedure above. Effective fishing mortality on the incompletely recruited ages was adjusted in accordance with one of two possible partial recruitment vectors corresponding to either the pattern exhibited by the heavily exploited 1971 and 1978 year classes with full recrultment occurring at age 9 (Option 1), or the pattern observed over the 1969-1980 period with fuli recruitment occurring at age 14 (0ption 2). Inftial recruitment to the fishery occurred at age 5 in each case.

The model was employed to examine the effects of alternative harvesting strategies on both yield and stack size over short- and long-term time horizons by warying the level of fishing mortality and the partial recruitment pattern. Each simulation consisted of 30 tridis over a specified time period of either 16 or 100 years duration. The 16 -year simulations were designed to provide a shortterm retrospective examination of recent changes in the pogulation using 1969 stock sizes as a starting point. Results from this initial series were compared wfth those obtained from the VPA, Longterm simulations of various fishing options were performed using the relatively low 1985 stock size as a starting point to evaluate possible stock rebuilding strategies. Fishing mortality rates were fixed at various levels ranging from 0.01 to 0.17 , including the $F_{0.1}$ and $\mathrm{F}_{\text {gax }}$ levels. The sensitivity of the model to changes in natura \dagger morta Pity was also investigated.

Results

Catch-at-age for the years between 1969 and the mid-1970's was composed of a broad spectrum of year classes with ages between 10 and 20 years well represented. With the recruitment of the 1971 year class in 1976, 1977, and 1978, combined with minimal subsequent recruitment, the catch composition became increasingly dominated by this single year class through the early 1980's. Between 1978 and 1982, the 1971 year class accounted for over 50% of the total numbers landed, attaining a maximum representation of 63% in 1980 and 1981. In 1984, however, the 1978 year class recruited to the fishery in substantial numbers, accounting for approximately 48% of the total numbers landed, while the 1971 year class percentage declined to 26%.

YPA results suggest that F declined from approximately 0.20 during 1970-1973 to about 0.15 between 1974 and 1976, but increased thereafter to a level between 0.22 and 0.28 during the 1977-1981 period (Table 1). These recent levels of F are approximately three times the $F_{0.1}$ level (0.07) and $70-80 \%$ greater than the estimate of $F_{\text {max }}(0.14)$ reported by Mayo et al. (1983). Exploitable (age $5+$) stoxk size declined steadily from 487 milli on fish in 1969 to 166 million in 1975, increased to 313 million in 1976 when the 1971 year class recrufted to the fishery, but has since declined sharply to an
 exploitoble atock (agas $5+$). and epawning mitack obtained from virtual population analyals (VPA) of 1959-1984 coteh-ot-ope dota for Gult of matine - Georgtt Bank rodfish (Stock alictiln milliona of fith and biomaes In thoutands of tonts).

Year	$\begin{aligned} & \text { Instantancout } \\ & \text { Flithing } \\ & \text { mortality (F) } \end{aligned}$	Total Nunber	Stock Bienas:	Explaito Nunber	1. Stock Btano	Spawning Stock Numer Bionae	
1969	㫛. 128	529.0	139.4	496.6	136.2	358.6	117.5
1974	4. 176	482.0	128.5	483.4	127.8	351.7	118.2
1971	0.185	393.5	134.t	3 3 7.6	135.7	328.8	121.8
1972	0. 191	526.7	122.6	325.3	120.4	295.4	114.0
1973	6. 225	459.8	98. 1	254.9	94.8	242.5	92,4
1974	0.139	490.3	87.5	202.6	05.1	197.	84.1
1975	0.159	353.4	02.3	186.3	74.3	182.8	73.5
1976	日. 168	318.5	B5. 7	312,7	0.5 .3	155.4	64.8
1977	0.223	274.0	88.7	271.7	8 8.8	151.2	59.9
1978	0.245	221.5	74. 1	219.7	70.1	150.7	55.8
1979	0.285	281.6	62.2	108.	61.2	141.8	54.4
1988	0.257	215.6	47.1	179.6	48.2	116.3	42.9
1981	0.2te	188.1	44.1	80.6	3.5	88. 1	35.4
1982	0.224	185.9	47.4	71.2	34.5	78.5	34.3
1883	0.2es	145.1	43.1	148.2	42.0	8\%.2	29.6
1984	0.172	131.3	38.7	12t.4	38.4	65.9	28.5
1985		112.7	32.6	1678	32.3	71.7	25.2

estimated 108 million fish in 1985. Estimates of exploitable stock biomass are less variable, exhibiting a steady decline from $136,000 \mathrm{t}$ in 1969 to $32,000 \mathrm{t}$ in 1985. S1milarly, estimates of spawning stock biomass declined from $118,000 \mathrm{t}$ in 1969 to $25,000 \mathrm{t}$ in 1985. Recruitment of the 1978 year class at age 5 in 1983 provided only marginal increases in exploitable stock size and biomass estimates, compared to previous increases generated by the 1971 year class during 1976-1979. Thus, the 1978 year class appears to be considerably weaker than its relatively strong predecessor.

Biomass and yield simulations
Simulated stock bfomass and yield estimates obtained from the first series of trials, based on 1969 age-specific stock sizes, are given in Figure 5. During the first 16 years, fishing mortality rates were fixed at the levels indicated by the VPA results, while annual recruitment was generated by the model as a function of spawning stock size. Corresponding annual stock biomass estimates obtained from the VPA and observed yleld levels are also provided as a reference to evaluate performance of the model. From years 17 through 100, F was held constant at various levels ranging from 0.01 to 0.17 .

Results from the 16 year retrospective simulations for the 1969. 1984 period agree closely with VPA stock size estimates and witt empirical catch data. Recruitment estimates for the first four year: were generated using probabilities associated with the mid-range spawning stock sizes which, in theory, prowide optimum conditions for obtalning maximum recruitment levels. After 1972 the spawning stocl declined below the 220 million level resulting in lower overal recruitment. When averaged over 30 trials, simulated recruitmen values are considerably less variable than the observed levels. Mean

Figure 5. Results of 100 -year stock biomass and yield 5 imulations (thousands of tons) under sixf levels with $M=0.05$ and partial recruitment option 1 .
annual recruitment levels generated from the model exhibited a slight downward bias resulting in lower anriual stock size estimates when compared to actual stock sizes obtained from the VPA, particularly since the mid-1970's. The magnitude of the underestimate in total stock bionass ranged from 10 to 20% during this period, while spawning stock biomass was underestimated by about 5-10\%. This downward bias in simulated average recruitment may have resulted from the adjustment of the modal probability within each cell of the transition matrix to the midpoint of the recruitment range when, in some cases, actual values fell closer to the upper limits.

Projections beyond 1985 indicate that stock levels will gradually increase when fishing mortality remains below 0.07. At the lowest F applied in these analyses (0.01), total stock biomass increases to approximately $95,000 \mathrm{t}$ after approximately 55 years and remains at that level for the duration of the simulation. Spawning stock biomass also increases to about $85,000 \mathrm{t}$ during the same time period. When F is neld at 0.03 , total stock biomass increases to a maximum level of $55,000 \mathrm{t}$ after about 25 years and continues to rise
thereafter to $60,000 \mathrm{t}$. Spawning stock biomass exhibits a similar trend, initially increasing to $50,000 \mathrm{t}$ and then to $55,000 \mathrm{t}$ at the end of the simulation. When F remains at 0.07 total stock and spawning stock biomass stabilize slightly above the 1985 reference levels; the three highest F 's result in further declines before stabilizing at levels below the 1985 reference points. The yields to the fishery obtained at all fishing mortallty rates are considerably less than the 1985 catch and range from less than $1,000 \mathrm{t}$ at an F of 0.01 to approximately $2,500 \mathrm{t}$ at $\mathrm{F}^{\prime} \mathrm{s}$ between 0.10 and 0.17 . Ouring each of these simulations, spawing stock size remains well below the 220 million threshold needed to shift the recruitment probabilities into the next highest range.

The failure of the spawning stock to increase to former levels suggests that the recruitment simulation requires some refinement, or that the survival rate of a cohort from the age of recruitment to the time when the fish enter the spawning stock is insufficient to allow any significant accumulation. Two aspects of the population dynamics of this stock were further investigated: partial recruitment to the fishery, and natural mortality.

Alternate strategies

To decrease effective fishing mortality, the first series of simulations was repeated with a partial recruitment vector which approximated condftions evident throughout the 1970's in place of the initial vector which was based on the recruitment pattern exhibited by the heavily exploited 1971 year class from 1975 through 1984 . The age of full recruitment was delayed from 9 to 14 years and the partial F on all ages from 5 through 13 was reduced. Natural mortality remained at 0.05. Results from the first l6 years of these analyses (Figure 6) provide better agreement with observed declines in stock size through the mid-1980's, although the delay in the age of full recruitment resulted in a slight overestimate of stock biomass during this period, Forward projections from 1985 reveal little improvement over the previous series since only extremely low fishing mortality rates allow any substantial recovery of the stock. Although total stock and spawning stock biomass increased by about 10% at the lowest F level, the spawing stock size still remained below 220 million fish throughout the entire period. Similar improvements are evident at $F=0.03$ but little or no recovery above the 1985 level occurs when F exceeds 0.07. Yields are similar to those obtained from the previous series since the slightly higher stock sizes are offset by the lower effective fishing mortality.

The maturity-at-age schedule employed in the model incorporates a delay of 6 years between the initial age at recruitment (age 1) and the age at 50% maturity (age 7). An instantaneous natural mortality rate of 0.05 compounded over this 6 -year period results in a 26% loss from each recrufting cohort before they can contribute substantially to the spawning stock, even if no fishing mortality occurs. Imposing fishing mortality rates between 0,10 and 0.17 to the partially recrulted cohorts causes an additional loss of between 9 and 14\% before the age of 50% maturity. Thus, approximately 35-40\% of the

Figure 7. Results of 100-year stock biomass and yield simulations (thousands of tons) under six F levels with $M=0.025$ and partial recruitment option 1.

Figure 8. Results of 100 -year stock biomass and yield simulations (thousands of tons) under six F levels with $M=0.025$ and partial recruitment option 2.
recruitment is discounted before fish are added to the spawning stock when fishing mortality exceeds 0.10, if M is assumed to equal 0.05 .

In the last two series of trials, each of the above analyses was repeated with natural mortality set at one-half of the original level. Simulations were performed using 1985 stock sizes as a starting pofnt with the original and the modified partial recruitment vectors. The most dramatic improvement in stock biomass occurs at the two lowest F levels, although substantial increases are also evident when F equals 0.07, particularly if full recruitment is delayed until age 14 (Figures 7 and 8). When M is fixed at 0.025 the response of the stock to changes in partial recruitment is most sensitive at F 's between 0.03 and 0.07 , while only marginal improvements in stock size occur at higher fishing mortality rates. Similar yields to the fishery are obtained from all levels of F except 0.01; only marginal increases in catch occur when full recruitment is delayed.

Stock recovery

Under the fishing strategies employed during the first two sertes of trials with M equal to 0.05 , stock biomass does not recover to 1969 levels with either partial recruitment vector (Figures 5 and 6). Under the best possible conditions, with F equal to 0.01 and partial recruitment delayed to age 14, total stock and spawning stock biomass increase to approximately 80% of the 1969 levels. With F equal to 0.03 stock biomass levels increase to only about 50% of the 1969 point. These asymptotic levels are attained between 35 and 60 years after inltiation of the recovery process in 1985.

Results obtained from the last two series of trials with M equal to 0.025 (Figures 7 and 8) suggest that complete recovery of the stock to the 1969 level is achieved at fishing mortality rates between 0.01 and 0.03 under either partial recruitment option. Recovery times range from $30-40$ years with F at 0.01 to $40-50$ years with F at 0.03 . With F equal to 0.07 , stock biomass levels increase to between 40 and 602 of the 1969 point under the initial and the delayed recruitment options in about 40-45 years.

Discussion

The most significant outcome of these analyses appears to be the failure of the stock to return to recent historic levels unless natural mortality is considerably less than previously believed. Even when M is equal to 0.025 stock recovery was achieved only when fishing mortality remained below 0.07 for at least 30 years. As a consequence of these extremely low f levels, long-term yields to the fishery under the most optimal conditions of M and partial recruitment seldom exceeded the 1985 catch of $4,600 \mathrm{t}$. These results are remarkably similar to those presented by Archibald et al. (1983) for Pacific ocean perch, Sebastes alutus, if queen Charlotte sound, In practice, it is often extremely difficult to monitor fishing mortality rates at such low levels. At levels of F below 0.10 , VPA results remain sensitive to the choice of terminal F for a greater number of years, and forward projections of stock size and yield are affected to a greater extent by natural mortality.

In any simulation the cholce of model parameters and assumptions will influence results. The transition matrix approach is especially sensitive to the arbitrary placement of cell boundaries particularly when few stock and recreitment observations are used to construct the array. In the present case, boundaries were selected based on apparent gaps in the data, although several alternate schemes could have been chosen. The effects of choosing alternate cell definitions have not been investigated in this study. Within each cell, recruitment frequencies were generated with a central tendency at the cell midpoint instead of a uniform distribution. This procedure, which decreased the probability of obtaining recruitment values at the transition points in favor of those closer to the midpoint, was incorporated in the model primarily to reduce the impact of the extremely large value associated with the 1971 year class in the uppermost cell. Also, the upper bound of this cell was located close
to the actual value under the assumption that a single extreme observation should not be taken to represent average conditions. These restrictions were imposed to provide a conservative approach to recruitment estimation given the uncertainty assoclated with the low number of observations.

The precipitous decline in stock size observed during the early 1970's suggests that recruitment frequencies generated within the optimum range of spawning stock were insufficient to offset declines due to the combined effects of natural mortality and relatively high fishing mortality rates. Similar declines were also generated during the course of this study by applying fishing mortality rates in excess of 0.10 to the recovered stock. Alternating 50 year sequences of low and high F's applied for 35 and 15 years, respectively, over a 300 year time horizon generated a series of stock declines similar to that observed during the 1969-1984 period. These simulations suggest that fishing mortality rates between 0.10 and 0.20 , as observed during the 1970's, combined with a natural mortality rate of 0.05 , were extremely high given the low recruitment levels observed during that period.

Recruitment probabilities incorporated in the model were based on a relatively short data series with respect to the longevity of the species and the overall history of the fishery. Adnittedly, simulation results are affected by the scarcity of observations in the middle to high recruitment range, and it is quite probable that recruitment of moderate and strong year classes has been considerably less frequent during the past two decades compared to the 1940's and 1950's. In their analysis of recruitment in 18 worldwide stocks, Hennemuth et al. (1980) concluded that all but one of the data sets could be described by a lognormal distribution, based on the results of a series of Kolmogorov-Smirnov ($\mathrm{K}-\mathrm{S}$) one-sample goodness-of-fit tests. When applied to the 1964-1980 Gulf of Maine redfish recruitment data, this procedure provided sufficient cause to accept the null hypothesis ($p>0.05$) that the log-transformed recruitment values represent a sample drawn from a normally distributed population.

An examination of the age-specific stock size estimates obtained from the VPA for 1969 reveals a more even distribution of middle aged fish between 9 and 22 years compared to the most recent years. Stock sizes for comparable age groups were aporoximately 2 - 10 times larger in 1969 vs. 1980, suggesting that total mortality during the 1950's and 1960's was considerably lower than recent values, or that the absolute size of recruiting cohorts was greater in the earlier years. Such a shift in recruitment distributions could account for the relatively poor response of the stock at moderate F levels and the extremely long recovery time required at low fishing mortality rates. If the recruitment distribution has been altered, and if the current pattern persists, the possibility of recruitment overfishing must be considered.

During the 17-year period from 1936 through 1952, landings from this stock frequently exceeded $30,000 \mathrm{t}$ and, at times, approached 50,000 and $60,000 \mathrm{t}$ annually as the large accumulation of virgin
stock was harvested. Despite this relatively high initial exploitation rate, the fishery continued to provide consistent yields at an average level of about 15,000 t annually through the early 1960's. The production of medium to large year classes up to this time also appears to have continued at a moderate rate as indicated by the 1969 age-spacific stock size estimates. For unexplained reasons, this stable recruitment pattern was severely disrupted during the 1960's and was replaced with the highly variable distribution evident during the past two decades. The effects of this alteration in recruitment frequency are clearly fliustrated by trends in mean size of redfish taken in the commercial fishery since 1942 (Figure 9). The gradual decline in mean lengths between 1942 and 1965 follows the classic pattern exhibited during the inftal "fish1ng up" process when accumulations of older fish are cropped. Sharp increases evident between 1966 and 1975, and, more recentiy between 1979 and 1982, indicate periods of relatively poor recrultment, while the intervening periods of rapidly deciining mean sizes coincide with entry of the 1971 and 1978 year classes to the fishable stock.
lt may be argued that such abrupt changes in population dynamics may be linked to environaental events rather than densfty-dependent processes. For example, koslow (1984) has suggested that recruitment

Figure 9. Trends in mean length (cm) of redfish landed in the Gulf of Haine - Georges Bank fishery from 1942 to 1985.
trends among several Northwest Atlantic species and stocks, fincluding Scotian Shelf redfish, were correlated, and that much of the variability over time could be explained by changes in large-scale physical conditions prevalent throughout the region. Major recruitment events, such as strong late 1950's and early 1970's year classes, haye also coincided among several species and stocks of Sebastes from the Grand Banks to the Gulf of Maine. However, recent assessments of Grand Banks and Gulf of St. Lawrence Sebastes stocks (Atkinson 1983, 1985a, 1985b; Rubec et al. 1985) have fndtcated relatively good recruitment levels and increasing overall abundance during the past 5 years, while corresponding results for the Gulf of Maine stock are contradictory.

Although environmental factors may have been partially responsible for the current recruitment pattern in the Gulf of Maine redfish population, the consequences of sustained heavy exploitation during the 1940's and early 1950's cannot be ignored. It is reasonable to assume that a long-lived species with a large number of year classes comprising the spawning stock may be relatively robust to perturbations for a considerable period of time, and that changes in the dynamics of the stock may not be readily apparent. Thus, it is conceivable that the effects of removing between 40,000 and 60,000 t of biomass per year from the spawning stock over a sustained period may not have become evident until the early 1960's. Similarly, the sinulation results presented in this paper clearly suggest that attempts to restore a severely depleted stock to former levels will require extreme management measures over an extended time horizon of unprecedented dimensions.

Acknowledgements

I sincerely thank Dr. William Overholtz for offering much constructive criticism and advice during the course of this study, and Dr. Wendy Gabriel for providing an alternate viempoint. Susan Wigley contributed her superb computer graphics skills, and Gwen kelley formatted the manuscript to comply with the symposium guidelines.

Literature Cited

Archibald, C. P., D. Fournier, and B. M. Leaman. 1983. Reconstruction of stock history and development of rehabilitation strategies for Pacific ocean perch in Gueen Charlotte Sound, Canada. N. Am. J. Fish. Manage., 3:283-294.

Atkinson, D. B. 1983. Redfish in Divisions 3LN. Northw. Ati. Fish. Org. SCR Doc, 83/YI/36, Serial No. N689, 12 p.

Atkinson, D. B. 1985a. The redfish of MAFO Subarea 2 and Division 3K. CAFSAC Res. Doc. No. 85/49, 26 p.

Atkfnson, D. B. 1985b. The redfish of NAFO Dtvision 30. CAFSAC Res. Doc. No. 85/51, 12 p.

Bigelow, H. B., and W. C. Schroeder. 1953. Fishes of the Gulf of Maine. Fish. Bull., U.S., 53: 430-437.

Cushing, D. H. 1971. The dependence of recruitment on parent stock in different groups of fishes. J. Cons. fnt. Explor. Mer, 33(3):340-362.

Cushing, D. H. 1973. Dependence of recruitment on parent stock. J. Fish. Res. Bd. Canada, 30(12):1965-1976,

Getc, W. M., and G. L. Swartzman. 1981. A probability transition matrix model for yield estimation in fisheries with highly varitale recruitment. Can, J. Fish. Aquat. Sci., 38:847-855.

Hennemuth. R. C.. J. E. Palmer, and B. E. Brown. 1980. A statistical description of recruitment in eighteen selected fish stocks. J. Northw. Atl. Fish. Sci., 1:101-111.

Kelly, G. F., P. M. Earl, J. D. Kaylor, F. E. Lux, H. R. MacAvoy, and E. D. McRae. 1972. Fishery Facts - 1, Redfish. U.S. Nat. Mar. Fish. Sery. Extension Publ. No. 1, 18 p.

Koslow, J. A. 1984. Recruitment patterns in Northwest Atlantic fish stocks. Can. J. Fish. Aquat. Sci., 41:1722-1729.

Mayo, R. K. 1975, A preliminary assessment of the redfish fishery in ICNAF Subarea 5. Int. Comn. Northw. Atl. Fisheries. Res. Doc. No. 75/59, Serial Mo. 3541, 33 p.

Mayo, R. K. 1980. Exploitation of redfish, Sebastes marinus (L.), In the Gulf of Maine - Georges Bank region, with particular reference to the 1971 year class. J. Northw. Atl, Fish. Sci.. 1: 21-37.

Mayo, R. K., U, B. Dozier, and \$.H. Clark. 1983. An assessment of the redfish, Sebastes fasciatus, stock in the Gulf of Maine Georges Bank regTon. Mat. Mar. Fish. Serv., Northeast Fisheries Center, Woods Hole Laboratory Ref. Doc. No. 83-22, 55 p.
Mi. I-H. 1982. Meristic variation in beaked redfishes, Sebastes mentella and S. fasciatus, in the Northwest Atlantic. Can. J. Fish. Aquat. Sci., 39:1664-1685.
Mi. I-H. 1984. Meristic variation in golden redfish, Sebastes marinus compared to beaked redfishes of the Northwest Atlantic, J. Northw. At1. Fish. Sci., 5:65-70.

Overholtz, H. J., M. P. Sissenwine, and S. H. Clark. 1986. Recruitment variability and its implication for managing and rebullding the Georges Bank haddock (Melanogrammus aeglefinus) stock. Can. J. Fish. Aquat. Sci., 43:748-753.

Pennington, M. 1985. Estimating the relative abundance of fish from a series of trawl surveys. Biometrics, 41:197-202.

Ricker, W. E. 1954. Stock and recruitment. J. Fish. Res. Bd. Canada, 11 (5): 559-623.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Fish. Res. Bd. Canada, Bull. No. 191, 382 p.

Robins, C. R., R. M, Bailey, C. E. Bond, J. R. Brooker, E. A. Lachner, R. M. Lea, and W. B. Scott. 1986. Names of the Atlantic redfishes, genus Sebastes. Fisheries, Vol. 11 (1): 28-29, Bethesda, MD.

Rubec, f. J., K. Metuzals, and J. Wright. 1995. Stock status of Division 4RST redfish. CAFSAC Res. Doc. No. 85/98, 45 p.

Swartzmar, G. L., W. M. Getz, R. C. Francis, R. T. Harr, and K. Rose. 1983. A management analysis of the Pacific whiting (Merluccius productus) fishery using an age-structured stothastic recruitment model. Can. J. Fish. Aquat. Sci., 40: 524-539.

Incorporating reproductive value into Pacific ocean perch management

B.M. Leaman
 Department of Fisheries and Oceans Nanaimo, British Columbia

Abstract

In this paper, I argue that there has never been a successful management program for a major conmercial rockfish stock anywhere in the world, White management imprecision has obviously played a role, this failure may have been because those variables normally monitored are insensitive to changes in reproductive features that govern the conmerclal and evolutionary staying power of such stocks.

Multiple spawing species have evolved distinctive life histories which are presumably adaptive to uncertaln reproductive success, and the rockfishes (genus Sebastes) contain some of the most extreme in this group. Pacific ocean perch (S. alutus) off British Columbia mature between $7-9$ y and commonly have $30-60$ subsequent spawnings in the absence of exploftation. Throughout much of this period (ages > $25 y$), there is minimal or no individual growth and the biomass of a cohort is continually decreasing; reproduction is therefore the major expenditure for such non-growing fish.

The concept of reproductive value (RY), introduced by R. A. Fisher in 1930, affords a general structure for explicit consideration of such a life history. I examine the response of several Ry measures (total RV, eventual RV, modiffed RV, and age/time-specific RV) to fishing pressure. On a cohort level, most RV measures exhibited greater sensitivity to exploitation than parameters normally measured (size, number, fishing mortality or fecundity at age). For example, introduction of fishing mortality of only 5 percent per year resulted in decreases of $15-30$ percent in maximum cohort fecundity but 59-64 percent in RV at the age of maximum cohort fecundity. Even more dramatic were the coincident decrements (96-99 percent) in RY at the age of maximum individual fecundity. In the last portion of the paper, I suggest how reproductive value might be incorporated into the management process.

Introduction

Trawl fisheries for demersal fish have been a component of world fisherfes for over 100 y but traw catches of Sebastes spp. are a relatively recent phenomenon. Most major fisheries for these species in the northern hemisphere have had their genesis within the past 30 y , some only within the last decade. While these fisheries have been based on several different Sebastes spp., their histories have been remarkably similar.

In every 1 nstance of a major traw fishery for rockfishes, the progress of the unrestrained fishery has been several years of relatively high catches preceding a rapid decline and subsequent years of very 1 ow catches (Figs. 1 and 2). Some familiar examples in the northeast Pacific are the fisheries for Pacific ocean perch (S. alutus) in the Gulf of Alaska, off the coast of Canada, and the Washington-Oregon region. In the Gulf of Alaska (Fig. 1), the catch peaked at over 348,000 t in 1965, subsequently underwent a precipitous decline to only $45,000 \mathrm{t}$ by 1970 and is now less than $2 x$ (approx. 5000 t) of the peak level (Balsiger et al. 1985). Stmilar decllnes were recorded for stacks off British Columbia and Washington-Dregon (Fig. 2); in all instances present catches are less than 10% of maximum levels. Even the recent fistery for widow rockfish (S. entomelas) off the Washington-Californla coasts has experienced simflar, though less extreme, changes (fig. 1).

Fig. l. Catch historles of several Pacific and Atlantic rockfish fishertes.

The progress of rockfish fisheries in the northwest Atlantlc \{Fig. 1) has produced catch histories of the same type observed in the northeast Pacific. Both the Gulf of St. Lawrence and Scotian shelf redfish (Sebastes spp.) fisheries have suffered declines of over 70x from historical catch maxima. While catches in the Gulf of St. Lawrence fishery have increased recently, the fishery has not reached the quota established by managers.

Fig. 2. Catch histories of Pacyfic ocean perch stocks off British Columbia,

The unquestloned cause of all of these declines was fishing mortality (F) far in excess of levels which might have provided sustainable fisheries. On the Pacific coast, these high F levels were generated by large distant-water fleets from Japan and the Soviet Union during the mid-1960s, prior to any effective regulatory environment in North America, Although both Canada and the U.S. declared $200-\mathrm{mi}$ fishery management zones in 1977 and were able to reduce F levels experienced by these 5 . alutus stocks, that action was clearly too little and far too late. During this initial stage of the ocean perch fisheries then, the problem was not errors in management but an absence of management. Since 1977, none of the stocks of Pacific ocean perch has shown any evidence of rehabilitation.

Do we have any instances where a rockfish stock that has been the object of a major fishery has been successfully managed for sustained yield? I submit that, the absence of management aside, we have no examples of successful managenent of a major rockfish stock, and, in particular, no examples of successful recovery from overexploitation. Where we see some evidence of increased catches after major declines (e.g. Gulf of St. Lawrence redfish, Fig. 1), it is not the result of a directed management action so much as the appearance of the progeny of cohorts which were pressent in the population prior to the managenent action. In most instances these cohorts mere largely eliminated by the fishery.

The tenet that we have never successfully managed a major rockfish stock might seen extreme but the lack of strong evidence to the contrary argues effectively that we have much to improve. I believe a large measure of our apparent inability to successfully manage rockfishes can be accounted for by three factors: first, recent. results changing our perception of the biology of rockfishes (Archibald et al. 1981: Beamish 1979): second, the difficulty in adequately incorporating that knowledge into our population models; and, third, that the indices of stock status we use are insensitive to those population features governing evolutionary and commercial persistence. In the following sections I review these three points and suggest some alternative indices that can, after some initial effort, be routinely incorporated into stock assessments. I also examine the potential of incorporating some of these indices into the management of rockfishes, and their implications.

An altered perspective on rockfish biology
Our concepts of rockfish life history began to undergo dramatic changes beginning in 1979 when rockfish otoliths were examined in a different way. Otoliths had traditionally been aged by surface reading but the application of break and burn (Chilton and Beamish 1982) and thin sectioning techniques (Beamish 1979) led to new views of Patific ocean perch lifespan. Archibald et al. (1981) applied these techniques to 10 Sebastes spp. and provided estimates of their growth and mortality rates in British Columbia waters. These ageing methods have yet to be validated for almost all the Sebastes spp. examined, with the exception of oxytetracyctine valldation of break and burn ageing for 5 . flavidus (Leaman and Nagtegaal, in press), and their results should be treated with appropriate caution. However, some indirect support for their validity does come from

Table 1. Estlmates of instantaneous natural mortality ($\mathrm{M}=\mathrm{m}$ manmm Z from unexploited stocks) for some Sebastes spp. from British Columbia waters, estimated from break/burn ageing of otoliths. Also included are the best previous estimates of M obtained from surface ageting of otoliths, where available.

Species	Estimated M		Age range break/burn mortality estimate
	Break/burn ageing	Surface ageing	
Rougheye rockfish (S. aleuttanus)	0.04	-	18-68
Pacific ocean perch (s. alutus)	0.05	0.15	15-77
\$1 1 vergray rockfish (5. brevispinis)	0.04-0.05	-	17-71
Darkblotched rockfish (S. crameri)	0.07	-	11-48
Widow rockfish (5 . entomelas)	0.05	0.25	23-59
Yellowtail rockfish (5 . flavidus)	0.07	0.25	17-53
Canary rockfish ($\underline{\text { S }}$ - plinniger)	0.03-0.04	0.20	15-76
Redstripe rockfish (S. proriger)	0.10	-	11-32
```Yellommouth rockfish (S. reedt)```	0.08	0.20	18-52
Sharpchin rockfish (S. zacentrus)	0.07 .	-	15-46

analytic models of rockfish populations (Archibald et al. 1983; Kimura, pers. comm.).

The major results of Archibald et al. (1981) were a halving of estimated rates of mortality and a doubling of estimated life spans for these 10 Sebastes spp. (Table 1). Another result was that the change in ageing technique produced almost no change in the estimated parameters of growth ( $L_{\infty}, k$ ). The latter occurred because the change in ageing technique affected primarily those individuals who had reached a large proportion of $L_{m}$, even by surface age estimation. They considered this finding an almost minor result, yet in some ways it is equally as dramatic as the mortality rate changes, for it implies that several of the species do not grow over almost half of their life span or more (Fig. 3). More fmportantly, because the fish reproduce throughout their 11 ves, it changes the dominance of the life cycle from somatic to gonadal production. This change should therefore require a change in our analytical approach to rockfish population dynamics to mirror this increased importance of reproduction.


Fig. 3. Mean Tength at age (with 954 c.1.) for (a) a lightly explolted, and (b) a heavily exploited stock of Pacific ocean perch off British Columbla.

The general and perhaps sole approach to incorporating reproduction into population models has been to formulate some relationship between adult spawners and reproduction. This may happen either directly, where adult spawners are linked to reproductive output, or indirectly, where spawners (biomass or numbers) are linked to recruits. The attraction of such stock-recruit relationships (SRR) is of course that they allow prediction of future values of recruitment, a deceptively attractive proposition. While there are a number of technical problems with SRAs (density effects,
measurement precision, determining the true shape of the relationship with limited data) they can generally be overcome (Cushing 1977; Gulland 1983). What cannot be overcome or ignored is that the conceptual basis for the SRR is neither more nor less than a correlation analysis of, certainly in the case of rockfishes, two highly variable quantities. Its validity rests on the contrast and robustness of the observations from which it is constructed. In almost every instance, these observations for rockfish stocks are from an extremely rapid, one-way trend in the stock size of spawning adults, where we have few if any replicate observations, except at low stock abundance.

Prediction made with such SRRs becomes a process much more fnductive than deductive. Nonetheless the temptation to produce multiple scenarios of future stock behaviour is one fem of us can resist (Ffg. 4). Unfortunately, such scenarios, though attractive to fishery managers, have yet to be proven and remain in the realm of informed speculation.


Fig. 4. Predicted stock rehabilitation trajectories for a heavily exploited stock of Pacific ocean perch off British Columbia (from Archtbald et al. 1983).

Incorporatting reproductive considerations into models of semelparous (single spawning) species has been relatively easy and led to the concept of 'replacement stock' for salmonids (e.g. Ricker 1975). This concept implies a management policy of ensuring sufficient spawning biomass or numbers for the cohort to reproduce itself in the next generation. For iteroparous (repeat spawning) species there is no such analogue within any given year. Instead, these species have evalved to take advantage of repeated spawnings to achieve the same objective of replacing the cohort. One component of their 'replacenent stock' is therefore their total lifetime reproductive output. The other component is the fact that muttiple cohorts spawn together, so that the total reproductive output in any year is the sum of variable reproductive effort from animals of different ages (hence sizes) and reproductive capacity. Clearly, both individual and demographic characteristics contribute to this replacement concept for iteroparous species.

It appears that the difficulty in incorporating reproductive biology into rockfish population models lifes primarily with the construction of algorithms which reflect the underlying biology of how recruiting cohorts and the varfations therein are generated. For rockfishes, we need to incorporate indices of population status or condition that are sensitive to changes in both stock biomass and its demography.

## Reproductive indices

Ideally, we would like to employ an index that reflects a combination of age-specific reproductive effort and its contribution to overall stock reproduction, i.e. its reproductive value (RV). The concept of RV was introduced by Sir R. A. Fisher (1930) as the average number of young that a female of arbtrary age in a stable age distribution could expect to produce at that age and over the remainder of her life, relative to a female at birth. (Fisher's formulation of RV was actually more involved because he was assessing the genetic contribution to future generations). The importance of this concept was twofold, in that it incorporated the idea of fitness among different individuals (or more specifically, genotypes) and the varfable distribution of reproductive effort with age. The latter presaged what would become a dominant area of research in population biology, life history theory.

The concept of reproductive value has enjoyed an active commentary in the literature (Charlesworth 1980) and several variants of Fisher's original index have been proposed. Three of these, eventual reproductive value (ERU) (Goodman 1967), age/time specific RV (Vandermeer 1968), and modified RY (Schaffer 1974) are of interest. Goodman's ERV is appropriate to populations of mixed-age reproducers because it is normalized by the reclprocal of the generation time. The latter quantity is taken to be the mean age of the parents (female) of a cohort at birth. Age/time specific RV is the total number of births by animals aged $\mathfrak{i}$ and older per animal aged i. The major difference between this index and Fisher's RY is that it fluctuates with age distribution whereas Fisher's is stable. Modified RY was an attempt to deal with potential reproductive cost in that schedules of incremental fecundity were established wherein the increments were explicitly independent of
previous reproductive effort. Most studies either ignore reproductive cost or implicitly assume it is zero. For iteroparous species this assumption is often a pragmatic necessity if reproductive effort for individuals cannot be assessed at each reproductive eplsode. Fecundity schedules calculated from simultaneous samples of different age groups will reflect prior reproductive expenditures, whose influences (if any) will be unknown. The indices 1 examined (Table 2) implicitly incorporate Schaffer's concept, i,e. reproductive cost is mot ignored, it is simply unknown.

Table 2. Basic relationships used in the population simulations and the reproductive value (RV) indices examined.

Fecundity: $\quad \log E=a+b, \log L+b_{2} \log W+b_{3} \log A$
Egg production:

$$
P_{i}=\underset{j}{ } E_{j} N_{f j}
$$

Recrultment: $\quad R_{i+6}=a P_{j} e^{-8 P_{i} e_{i}}$

Mortality:

$$
N_{i+1, j+i}=N_{i j} e^{-Z_{i j}}
$$

Catch:

where $i, j$ are year and age findices

$E=$ fecundity	$R=$ recruitment
$L=$ length	$C$
$W=$ catch	
$W=$ agight	$Z=$ total mortality
$A=$ number	

$R V_{12}=\sum_{i=12}^{80} P_{1}$
$E R V_{12}=R V_{12} / \bar{R}$
$\mathrm{IRV}_{12}=\mathrm{RV}_{12} / \mathbb{N}_{\mathrm{f}, 12}$
$\mathrm{IERV}_{12}=E R V_{12} / \mathrm{M}_{\mathrm{i}, 12}$

The estimation and utility of reproductive value in Pactfic ocean perch was examined with a single cohort and a stochastic, multiple cohort simulation model. The basic relationships of the model (Table 2) included: age-specific fecundity estimation based on multivariate regressions of length, wefght and age; population dynamics driven by a stochastic SRR with log-normal wariation in recruitment and a lag of six years; cohort mortality through age-independent natural mortality; and fishing mortality applied through the normal catch equation. The latter incorporates partial recruitment factors by age. Exploitation effects were examined in 30 replicates of 200 y duration for each level of instantaneous fishing mortality ( F ). Stochastic standard deviation in the SRR was 0.55 . All parameter values were obtained from a lightly exploited stock of $\underline{S}$. alutus in British Columbla waters (Leaman et al. 1985; Leaman unpubl. data).

## Results and Discussion

The cohort RU at each age for an arbitrary cohort is a continuously decreasing function with age (Fig. 5), regardless of fishing mortality. Maximum cohort fecundity occurs at approximately age 16 with no fishing mortality but decreases 264 and occurs four years earlier with introduction of $F=0.05$. Reproductive value at the age of maximum cohort fecundity decreases by 68x. Cohort weight maximizes at age 14 with $F=0.0$ and age 10 with $F=0.05$. the reductions in cohort weight and reproductive value at the age of maximum cohort weight with $F=0.05$ are $19 \%$ and $68 \%$, respectively.


Fig. 5. Cohort fecundity and reproductive values at age for two levels of fishing mortality, in a Pacific ocean perch stock from northern Britist Columbia waters.

The RV index presented in Figure 5 is not the traditional RV index, which is discounted by the probability of survival to each age. That index perforis in similar fashion, but due to the low natural mortallty rate 1 s a slightly convex function, with a maximum at age 34 for $F=0.0$. The value for this discounted index at the age of full recruitment ( 12 y ) is 838 of the maximum. With $F=0,05$ the maximum of the discounted index occurs at age 30 and is reduced by 60\% from the unexploited maximum, thus mirroring the magnitude of the changes in Figure 5 .

For the multiple cohort model I examined reproductive value at age 12 for the cohort ( $\mathrm{RV}_{12}$ ) and by individual ( $\mathrm{IRV}_{12}$ ), as well as eventual reproductive value at age 12 for the cohort ( $E R V_{12}$ ) and the individual (IERV 12 2 ), in addftion to blomass and yield for $F$ values between 0-0.12 (Table 3).

Table 3. Reproductive value indices, bignass, yield and mean age ( $\mathcal{A}$ ) changes with fishing mortality ( $F$ ), over 200 yr simulations.

$F$	Biomass   $(\mathrm{t})$	Yield   $(\mathrm{t})$	$\bar{A}$	RV $_{12}$	ERV $_{12}$	IRV $_{12}$	IERV 12
0.00	95520	0	24.01	1.40620	58.5713	5.8815	.2449
0.02	74110	750	19.63	0.97715	49.7763	3.8914	.1982
0.03	62600	1010	18.54	0.79714	42.9876	4.0823	.2201
0.04	58250	1290	17.23	0.70960	44.1939	3.1665	.1837
0.05	47600	1260	16.22	0.54336	33.5050	2.7606	.1701
0.06	41580	1330	15.49	0.46437	29.9870	3.1147	.2010
0.07	35760	1300	14.73	0.37836	25.6826	2.3062	.1565
0.08	29020	1150	14.17	0.29137	20.5625	2.3654	.1669
0.10	20420	930	13.16	0.18699	14.2106	1.9453	.1478
0.12	13510	680	12.56	0.11679	9.3001	2.0825	.1658

Maximum equilibrium yield occurred at $F=0,06$ and blomass was approximately 44\% of that when $F=0.0$. Mean age of the stock decreased from a long-term average of 24 y at $\mathrm{F}=0.0$ to 15.5 y at $F=0,06$. Changes in the RV Indices in response to $F$ (Fig. 6) vary
considerably in their magnitude and consistency. Cohort RV12 response to $F$ mirrors that of biomass but is considerably greater
( $\bar{X}=+10.1 \%, S, E,=0.59$ ) at each level of $F$. The buffering effect of conort variation is clearly evident when comparing response of $\mathrm{RV}_{12}$ to F for a single cohort vs. multiple cohorts. For the former, introduction of $F=0.05$ reduces $R V_{12}$ by $72 \%$ from the unexploited value, while for the latter the average decline is only 61: for the same $F$. The magnitude of the difference varies with the growth characteristics of individual stocks and ranges from 10-15\% for stocks off British Columbia.

Examination of sizes at age for Pacific ocean perch stocks from 1963-1982 (Leaman unpubl. data) suggests some compensatory growth response to exploitation. Size at age 16 has increased $1.5-2.0 \mathrm{~cm}$ in heavily exploited stocks, however the modest increase in resultant fecundity at age ( +108 ) cannot compensate for the massive reductions ( $-80 \%$ ) in Ry for the same age.

Eventual RY 12 also declfnes with exploitation although the total decline is less at $F=0.12$ than for $\mathrm{RV}_{12}$ ( $-84 \%$ vs. $-92 \%$ ), as well as less with each $F$ increment (Fig. 6). The relationships of the individual reproductive value indices (IRY and [ERY) while showing more contrast between each other than the cohort fndices, are less responsive to changes induced by fisting mortality. The erratic behaviour of some of these indices reflects the stochastic variation in recrultment. If values are averaged over several years the responses to $F$ are more consistent.


Fig. 6. Response of several reproductive value indices (at age 12) to fishing mortality, for a composite stock of Pacific ocean perch.

These reproductive value indices provide much more sensitive measures of stock status than those generated by simple biomass-based monitoring (e.g. CPUE or biomass). The highly determinant growth form of rockfishes noted earlier implies that these RV-based indices will more accurately reflect the demographic structure of stock biomass. While foltially expenstive to construct, due to the time and cost of fecundity estimation, they will be as robust as the fecundity-body relationships and should change in a uniform way with interannual fecundity variation. The routine monitoring of RY-based indices will require only a modest increase over the effort normally expended in catch sampling for age structure.

Our present management techniques for rockfish stocks rely on relatively insensitive feedback controls, that have yet to demonstrate signifitant successes. Clearly, the fncreased information content and sensitivity of RY-based indices affords us the opportunity to control fishing mortality effects which would not otherwise be evident. Reproductive value indices reflect the demographic structure of rockfish populations, that has evolved to meet the challenge of uncertain and infrequent reproductive success. That the unexploited maximum of discounted RV occurs at 34 $y$ indicates the magnitude of this challenge. If the challenges which the life history of rockfishes have evolved to meet are still operative (and there is no reason to believe otherwise), then the conservation of reproductive value should be a primary management goal. However, it is less clear exactly how this should be achieved or to what extent. Dur present perception of optimal policies is based on tenuous SRRs which may have limited applicabflity to stocks at low levels of biomass.

The incorporation of reproductive value into managenent. will have to be an active and experimental process of long duration. A first step will be to reconstruct stock histories and examine the recruitment process in relation to reproductive value, followed by sone analytic/sinulation studies to examine the resillence of stocks, as has been done for biomass-based indices. While this will obviously take some time, it should dfrect our management models more toward biological principles and away from a simple falth that past recruitment patterns will repeat thenselves, in spite of major fishery effects on stock composition.

Acknowl edgments
I am grateful to R. D. Stanley and D. M. Ware for their comments on a draft of this paper.

Literature Cited
Archibald, C. P., D. Fournier, and B. M. Leaman. 1983. Reconstruction of stock history and development of rehabllitation strategies for Pacific ocean perch in Queen Charlotte Sound, Canada. N. An. J. Fish. Mgont. 3: 283-294.

Archibald, C. P., K. Shaw, and B. M. Leaman. 1981. Growth and mortality estimates of rockfishes (Scorpaenidae) from B.C. coastal waters, 1977-1979. Can. Tech. Rep. Fish. Aquat. Sci. 1048. 57 p.

Balsiger, J. H., D. H. Ito, D. K, Kimura, D. A, Somerton, and J. M. Terry. 1985. B1ological and economic assessment of Pacific ocean perch (Sebastes alutus) in waters off Alaska. NOAA Tech. Memor. 畘FS F/NWC-72. 210 p.

Beamish, R. J. 1979. New information on the longevity of Pacific ocean perch (Sebastes alutus). J. Fish. Res. Board Can. 36: 1395-1400.

Charlesworth, B. 1980. Evolution in age-structured populations. Cambridge Univ. Press.

Chilton, D. E. and R. J. Geamish. 1982. Age determination methods for fishes studied by the groundfish program at the Pacific Biologital Station. Can. Spec. Publ. Fish. Aquat. Sci. 60. 102 p.

Gushing, D. H. 1977. The problems of stock and recruitment. In Fish Population Dynamits, J. A. Gulland (ed.). London, Wiley-Interscience: 116-133.

Fisher, R. A. 1930. The Genetical Theory of Matural Selection. Oxford: Clarendon Press.

Goodman, L. A. 1967. On the reconciliation of mathematical theories of population growth. J. Royal Stat. Soc. 130: 541-543.

Gulland, J. A. 1983. Fish Stock Assessment: A manual of basic methods. FAO/Wtley Series on Food and Agriculture. Vol. 1. New York, Hley.

Leaman, B. M. and D. A. Nagtegaal. (In press). Age valldation and revised natural mortality rate for yellowtail rockfish. Trans. Am. Fish. Soc.

Leaman, B. M., D. A. Nagtegaal, R. D. Stanley, and E. W. Carter. 1985. Rockfish fecundity cruise (GBR-R82-1), Novenber 8-28, 1982. Can. Data Rep, Fish. Aquat. Sci. 526, 64 p.

Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. F1sh. Res. Board Can. Bull. 191. 382 p.

Schaffer, W. M. 1974. Selection for optimal life histories: the effects of age structure. Ecol. 55: 291-303.

Vandermeer, J. H. 1968, Reproductive value in a population of arbitrary age distribution, Am. Nat. 102: 586-589.

# Impacts of management regulations on the catch and utilization of rockfish in Oregon 

## Ellen K. Pikitch <br> Oregon State University Newport, Oregon


#### Abstract

Introduction The U.S. West Coast groundfish trawl fishery exploits a diverse mixture of species, among which rockfish are an important component of the commercial catch. The fishery off California, Washington and Oregon is managed by the Pacific Fishery Management Council (PFMC) according to the Groundfish Management Plam (PFMC 1982) and its amendments. In recent years regulations have been in force whtch limit the amount each vessel can land of particular species and/or species groups annualiy and per fishing trip or other specified time period. Trip limit restrictions have sometimes been accompanied by limits on the frequency with which such trips can be conducted. The intent of these regulations is primarily to prevent overharvest and to attempt to maintain a yearround fishery. However, retention and landing of some species has been prohibited during portions of some years because annual landing limits were reached prior to the end of the year.

Because of the mixed-species nature of the fishery, it is possible that species groups managed by trip iimits and/or annual quotas will continue to be caught incidentally after the trip or annual limits have been reached. Under current regulations the excess catch must be discarded and it is likely that few, if amy, of these trawl-caught fish survive (Saila 1983). It is important to determine the extent of such regulation-induced discard in order to evaluate the effectiveress of the current management regime in limiting mortality of managed species groups, and to assess its bialogical and economic impacts.

In 1985 a study of the Oregon groundfish trawl fishery was initiated in which at-sea observations of the catch and its utilization are being recorded. In this paper I present preliminary results on the extent of regulation-induced discard, particularly of rockfish, observed during the first year of the study.


## Methods

The data presented herein were collected aboard Oregon compercial groundfish trawl vessels operating out of the ports of Newport, Astoria and Coos Bay during the course of normal fishing operations. Participation in this study by skippers and/or owners of the vessels was voluntary. For each tow observed, the total weight was generally estimated visually by the skipper and/or a trained observer. After the contents of the net were released, a random sample of the catch was obtained, or in those instances in which the total tow weight was small, the entire catch constituted the sample. The sample was then sorted by species, and each species subsample was further sorted into utilized and discarded portions. The crew members also provided the observer with information on the reasons for discarding various portions of the catch. Reasons for discard include: market factors (a species may be unmarketable, or may have a limited market), fish size (only fish greater than a certain slze may be marketable, or small fish may bring a lower price than large fish), and regulations (catch amount exceeds allowable trip limit or fish size less than minimum size limit). Discarded and utilized portions of each species subsample were then weighed and enumerated. Estimates of total numbers and weight utilized and discarded for a given species and tow were obtained by multiplying the number or weight, respectively, of that species in the sample by the ratio of estimated total tow weight to total (all species) sample weight.

## Fishing strategies

There is much heterogeneity within the groundfish fishery in terms of the type of gear used, the locations fished, and the species composition sought. To examine differences in the impacts of regulations on the various fishing methods that are employed, each tow conducted was designated as belonging to one of the following four fishing strategies:

1) Bottom rockfish trawling (BRF): tows generally conducted using roller gear on the ocean bottom, with the primary target of the tows being one or more species of rockfish.
2) Midwater trawing (MID): tows conducted using midwater trawl gear above bottom; primary target species are widow rockfish (Sebastes entomelas) and Pacific hake (Merluccius productus).
3) Deepwater Dover sole trawling (DWD): tows conducted onbottom in areas generally exceeding 100 fathoms depth, using mud-gear, roller gear or mud-roller combination gear. An important target species of this fishing strategy is the Dover sole (Microstomus pacificus), but sablefish (Anoplopoma fimbria) and thornyhead (Sebastolobus sp.) are also important components of the catch.
4) Nearshore mixed-species trawling (NSM): tows conducted using mud gear on-bottom in areas generally less then 100 fathoms depth; primary target species are a mixture of flatfish.

A second trawl fishery for shrimp (strategy five) also catches signficant quantities of groundfish incidentally. Although some shrimp. trips have been observed during the course of the study, this paper is

Table 1. Trip limit restrictions pertaining to west coast groundfish between July 21, 1985 and June 30, 1986.

Species Group	Effective Date	Regulation
Pacific Ocean Perch	7/21/85-12/31/85	$5,000 \mathrm{lbs}$. or $20 \%$ of the catch/trip whichever is less.
	1/1/86-6/30/86	10,000 lhs.ar 20\% of the catch/trip whichever is less.
Sebastes Complex	7/21/85-9/30/85	7,500 lbs./1/2 week   or $15,000 \mathrm{lbs} /$ week or $30,000 \mathrm{lbs} . / 2$ weeks.
	10/1/85-12/31/85	10,000 lbs./1/2 week or $20,000 \mathrm{lbs} . /$ week
	1/1/86-6/30/86	or $4 \mathrm{C}, 000 \mathrm{lbs} . / 2$ weeks.   12,500 lbs./1/2 week   or 25,000 lbs./week   or 50,000 lbs. $/ 2$ weeks.
Yellowtail Rockfish	7/21/85-12/31/85	3,000 1bs./1/2 week 5,000 lbs./week
		or $10,000 \mathrm{lbs} . / 2$ weeks.
	1/1/86-6/30/85	5,000 lbs./1/2 week
		or $10,000 \mathrm{lbs} . /$ week   $20,000 \mathrm{lbs} . / 2$ weeks.
Widow Rockfish	$\begin{aligned} & 7 / 21 / 85-12 / 31 / 85 \\ & 1 / 1 / 86-6 / 30 / 86 \end{aligned}$	3,000 1bs./trip 30,000 lbs./week
Sablefish	7/21/85-12/31/85	22" size limit with an incidental allowance of $5,000 \mathrm{lbs}$. of fish under $22^{\prime \prime}$ lengtn.
	$\begin{aligned} & 11 / 25 / 85-12 / 5 / 85 \\ & 12 / 6 / 85-12 / 31 / 85 \\ & 1 / 1 / 86-6 / 30 / 86 \end{aligned}$	13\% of catch.   Prohibited.   $22^{\prime \prime}$ size limit with an incidental allowance of 5,000 lbs. of fish under $22^{\prime \prime}$ length.

limited to discussion of results of groundfish-directed trawling observations.

An attempt was made to obtain equal coverage of the four primary fishing strategies throughout the year. However, the voluntary nature of the observer program, and the fact that some fishing strategies are uncommon during some portions of the year, led to somewhat uneven sampling coverage.

## Regulated species groups

Buring 1985-86 landings of five species and/or species groups were subject to trip limit restrictions. These were: Pacific ocean perch (Sebastes alutus), yellowtail rockfish (Sebastes flavidus), widow rockfish (Sebastes entomelas), sableffsh (Anoplopoma fimbria) and the Sebastes complex. The Sebastes complex includes all rockfish except for widow rockfish, Pacific ocean perch, Sebastolobus sp. and shortbelly rockfish (Sebastes jordani). Thus, landings of yellowtail rockfish count towards allowable landings of Sebastes complex, as well as towards its own trip limit.

Because the regulations pertaining to each of these species groups varied during the course of the study, the data were further divided into three time periods:

A: Juiy 21, 1985 through September 30, 1985;
B: October 1, 1985 through December 31, 1985;
and C: January 1, 1986 through June 30, 1986.
These time periods were chosen because they correspond roughly to periods during which the regulations for most species remained constant. A detailed description of the regulations in effect for each species and/or species group from July 21, 1985 through June 30, 1986 is proulded in Table 1. Data were analysed by fishing strategy, time period, and species group.

## Results

Between July 21, 1985 and June 30, 1986, a total of 483 groundfishdirected trawl tows were sampled. Table 2 provides a breakdown of tows sampled by fishing strategy and time period. Greater sample sizes were obtained for the OWD and BRF fishing strategies than for the NSM and MID strategies.

Table 2. Tows sampled by fishing strategy (BRF = bottom rockfish trawling; MID = midwater trawling; DWO $^{=}$deepwater Cover sole trawling; NSM = near-shore mixed species trawling) and time period ( $\mathrm{A}=7 / 21 / 85-9 / 30 / 85$; $\mathrm{B}=10 / 1 / 85-12 / 31 / 85$;
$\mathrm{C}=1 / 1 / 86-6 / 30 / 86$ ) between July 21, 1985 and June 30, 1986.

Fishing   Strategy	Time Period			
	$A$	$B$	$C$	Total
BRF	46	35	114	195
MID	0	0	24	24
DND	57	67	102	226
NSM	$\underline{28}$	-3	7	38
Total	131	105	247	483

The provalence in the catch of species regulated by trip limits (regulated species groups) varied greatly among fishing strategies (Fable 3). Regulated species groups comprised $85.3 \%$ of the BRF catch, $61.9 \%$ of the MID catch, $38.4 \%$ of the DWD catch and only $5.6 \%$ of the NSM catch. Species composition of the regulated-species component of the catch also varied by fishing strategy. Widow rockfish comprised $50.1 \%$ of the MID catch and $21.8 \%$ of the BRF catch, but did not contribute signficantly to the catches of either the DWD or NSM strategies. Yellowtail rockfish and other Sebastes complex species were most prevalent in the BRF catch, of somewhat lesser importance to the DWD catch, and of minimal importance to the MIO and NSM strategies. The only strategy for which sablefish comprised a significant fraction of the catch was the DWD strategy. Pacific ocean perch comprised $4.6 \%$ and $4.2 \%$, respectively of the BRF and DWD strategies, and less than $0.1 \%$ of the catches of the MID and NSM strategies.

Hypotheses concerning strategy-specffic discard rates
Given the observed differentes among fishing strategiss in terms of the relative amount and species composition of the regulated component of their catches, it was expected that the frequency of occurrence, magnitude, and species composition of regulation-induced discard would also vary among the strategies. For example, because sablefish are only caught in large quantities during OWD fishing, regulation-induced discard of sablefish should occur most frequently for that strategy, and may not occur for the other strategies. In general, it wouid be expected that those strategies which catch the greatest quantities of regulated species groups and whose catches are most varied in species composition should experience the greatest impacts of the current management regime in terms of regulation-induced waste. Thus, the BRF strategy, for which a mixture of regulated species groups comprise the majority of the catch, should be most affected by trip limit restrictions. The DWD strategy should rank second in terms of regulation-induced discard. The MID strategy catches significant quantities of only one regulated species (widow rockfish), and fishermen employing this strategy can target on, or avoid, this species with a high level of accuracy. Thus it would be expected that the amount of regulation-induced discard occurring for the MID strategy should be less then that which occurs for atther the BRF or DHD strategies. Because regulated species groups comprise only a minor portion of the NSH catch, regulation-induced discard should be low or non-existent for this strategy.

Further, there are two distinct ways tn which trip limits can evoke waste. First, a regulated species may be the target of a given tow, and in an attempt to obtain the maximum allowable catch of that species, a fisherman may inadvertently catch an excess amount which must be discarded. This type of scenario would apply primarily to the MID strategy while in pursuit of widow rockfish. Alternatively, a nonreguiated species or species group may be the objective of a given tow, but one or more regulated species may be caught incidentally in quantities in excess of allowable landings limits. This latter scenario would apply primarily to the BRF and DHD strategies. Undoubtedly, both of these scenarios (i.e. directed and non-directed effort for a regulated species) occur on some fishing trips.

Finally, the quantity of regulation-induced discard will vary over time as changes in regulations occur. Obviously, one would expect to see

Table 3. Catch in pounds and percent of eatch of various species groups obtained by each fishing strategy (BRF = bottom rockfish trawling, $\mathrm{DHD}=$ deepwater Dover sole trawling, MID = midwater trawling, NSM = nearshore mixed species trawling). Data are from at-sea observations aboard Oregon conmercial groundfish trawlers from July 21, 1985 - June 30, 1986.

Species Group	Catch by Fishing Strategy			
	$\begin{gathered} \text { BRF } \\ 1 \mathrm{bs.} .\{\%\} \end{gathered}$	$\text { Ibs. }{ }^{\text {DWD }}$	$\begin{gathered} \text { MID } \\ \text { lbs. }(\%) \end{gathered}$	$\begin{gathered} \text { NSM } \\ \text { lbs. }(\%) \end{gathered}$
Widow   Rockfish	129140 ( 21.8 )	624 ( 0.1)	182879 ( 60.1 )	53 (0.1)
Pacific Ocean Perch	26980 ( 4.6)	26135 ( 4.2)	0 (0.0)	3 (<0.1)
Yellowtail Rockfish	114959 ( 19.4)	658 ( 0.1)	5267 ( 1.7)	402 ( 0.9)
Other Sebastes Complex	225071 (38.2)	77986 ( 12.5)	115 ( <0.1)	938 ( 2.2)
Sablefish	8394 ( 1.4)	134035 ( 21.5)	0 (0.0)	1031 ( 2.4 )
All regulated species:	505544 (85.3)	239438 ( 38.4)	188261 ( 62.9)	2428 ( 5.6)
Other   Rockfish	5329 ( 0.9)	52062 ( 8.3)	0 ( 0.0)	461 ( 1.1)
Other Fish	81069 ( 13.7 )	318089 ( 51.0)	115792 ( 38.1)	37119 ( 85.1)
Invertebrates	435 ( <0.1)	13995 ( 2.2)	$32(<0.1)$	3597 ( 8.2)
Total	592378 (100.0)	623585 (100.0)	304085 (100.0)	43604 (100.0)

higher discard rates of sablefish during the time that landings of that species were prohitited, compared with other time periods when only landings of small fish (under 22") were restricted. In general, the lower the trip limit in effect, the greater the likelihood that incidental catches will exceed allowable landings limits, and thus, the greater the probability that regulation-induced discard will occur.

Quantity of regulation-induced discard observed
Tables 4 a-d provide a breakdown of total catch weights sampled, average catch/tow, marketable catch, and amount of the marketable catch discarded due to regulations; by fishing strategy, species group and time period. Estimates of marketable catch were obtained by subtracting amounts discarded due to market factors or fish size from total catch
weight. This procedure may underestimate marketable catch because some of the fish for which discard was attributed to fish size may be marketable, but would yield a lower price than other fish on board. Under the present management regime there is an incentive for fishermen to discard smaller, lower valued fish in order to obtain maximum revenues within the allowable landed weight limit. Methods to detect and document such "higrading" of the catch are currently being explored. However, for most regulated species groups and fishing strategies the estimated marketable catch was very similar in magnitude to the total catch. A major exception occurred for the BRF strategy with respect to the Sebastes Complex catch during time period A. In that instance, less than half of the Sebastes complex catch was estimated to be marketable (Table 4a).

For all regulated species groups over all time periods and fishing strategies, a total of 74,039 1bs. of fish were discarded due to regulations out of a total marketable catch of $833,787 \mathrm{lbs}$. Thus, regulation-induced discard represented approximately $9.9 \%$ of the total marketable catch sampled. However, regulation-induced discard of individual species groups varied from o\% up to 100\% of the marketable catch among fishing strategies and time periods. As expected, discard rates were generally highest for the BRF and OWD strategies, which caught significant quantities of several reguiated species groups. Discard rates ranged from approximately 1 to $25 \%$ of the regulated species catch of these strategies (Tables $4 a \mathrm{~B}$ ). For the MID strategy, regulation-induced discard was estimated at $10.8 \%$ of the marketable regulated species catch during time period C (the only period during which observations of this fishing strategy were made). The vast majortty of the regulation-induced discard seen for this strategy was due to inadvertently large catches of widow rockfish (Table 4 c ). No regulation-induced discard was observed for the NSM strategy (Table 4d) which was not surprising given the low catch-rates of regulated species obtained by this strategy.

Some of the variation in discard rates could be explained by changes in regulations over tine. For example, discard of sablefish was highest during time period $B$, when trip imit restrictions for that spectes were most severe. Interestingly, catch per tow of sablefish for the DHD strategy was also highest during time period $B$, perhaps indicating that a closer association between sablefish and Oover sole occurs during that time of year. Discard of yellowtail rockfish for the BRF strategy, which caught the greatest quantity of this species, was highest during time period B (Table 4a). During this time period the trip limit for yellowtail rockfish was lowest, both in absolute terms and as a fraction of allowable landings of Sebastes complex (Table 1). Average catch/tow of this species was also highest during time period $B$. For the BRF strategy, discard of widow rockfish was much higher under the $3,0001 \mathrm{l}$. per/week trip limit ( $64.1 \%$ of the marketable catch during time periods $A$ and B combined) than under the $30,000 \mathrm{lb} . /$ week limit ( $2.5 \%$ of the catch during time period C). However, whereas the trip limit for widow rockfish remained at 3,000 lbs. $/$ trip during both time periods $A$ and $B$, both catch per tow and discard rates were much higher during the former time period. While it would be expected that given a fixed trip limit, discard rate would increase as catch rates increase, it is unclear why the catch rates differed between time periods.

Discard rates of Pacific ocean perch; and Sebastes complex did not always vary in accordance with changes in regulations. Specifically,

Table 4a. Catch and regulation-induced discard of species and species/ groups regulated by trip limits for the bottom rockfish fishing strategy by time period ( $A=$ July $21,1985-$ September 30, 1985; B = October 1, 1985 - December 31, 1985; $\mathrm{C}=\mathrm{January} 1,1986$ - June 30, 1986). Data are based on at-sea observations made aboard a sample of Oregon commercial groundfish trawl yessels.

	Total Catch Sampled (lbs)	Average Catch Per Tow (1bs)	Regulation-Induted Discard		
Species Time Group Period			Marketable Catch (1bs)	Amount Discarded (1bs)	Percent of Marketable Catch Discarded
Widow Rockfish					
A	22,447	488	22,282	17,945	80.5
B	5,703	163	5,703		0.0
G	100,990	886	100,948	2,552	2.5

Yellowtail
Rockfish

A	11,156	243	11,156	0	0.0
B	47,513	1358	47,512	6,302	13.3
C	56,291	494	56,291	40	0.1

Sebastes
Complex ${ }^{1}$

A	101,175	2,200	49,262	0	0.0
B	90,749	2,593	79,942	6,390	8.0
C	149,107	1,308	129,660	817	0.6

Pacific Ocean
Perch

A	8,890	193	8,837	2,194	24.8
B	19	1	19	0	0.0
C	18,070	158	17,765	0	0.0

Sablefish

$A$	1,422	31	1,419	0	0.0
8	130	4	33	33	100.0
$C$	6,842	60	5,738	0	0.0

All Regulated
Species Groups

$A$	133,934	2,912	81,800	20,139	24.6
8	96,601	2,761	85,697	6,423	7.5
$C$	275,009	2,412	254,111	3,409	1.3

${ }^{1}$ Sebastes Complex includes yellowtail rockfish.

Table 4b. Catch and regulation-induced discard of species and species// groups regulated by trip limits for the deep water Dover sole fishing strategy by time period ( $A=$ July $21,1985=$ September 30 , 1985; B = October 1, 1985 - December 31, 1985; C = January 1,1986 - June 30, 1986). Data are based on atsea observations made aboard a sample of Oregon commercial groundfish trawl vessels.

					Requlation	duced Discard
Species Group	Time Period	Total Catch Sampled (lbs)	Average Catch Per Tow (1bs)	$\begin{aligned} & \text { Marketable } \\ & \text { Catch } \\ & \text { (1bs) } \end{aligned}$	Amount Discarded (1bs)	Percent of Marketable Catch   Discarded

Widow
Rockfish

$A$	574	10	574	0	0.0
$B$	18	$<1$	18	0	0.0
$C$	32	$<1$	32	0	0.0

Yellowtail
Rockfish

$A$	0	0	0	0	0.0
$B$	0	0	0	0	0.0
$C$	658	6	658	359	54.6

Sebastes
Complex

A	20,599	361	19,444	0	0.0
$B$	8,989	134	8,702	0	0.0
C	49,056	481	44,623	6,026	13.5

Pacific Ocean
Perch

A	1,673	29	1,652	0	0.0
B	3,586	53	3,582	0	0.0
C	20,877	205	20,828	0	0.0

Sablefish

A	21,346	375	17,538	426	2.4
B	61,046	911	57,969	17,296	29.8
C	51,643	506	46,668	0	0.0

A1) Regulated
Species
Groups

A	44,192	775	39,208	426	1.1
B	73,639	1,099	70,271	17,296	24.6
C	122,266	1,193	112,151	6,026	5.4

[^9]Table 4c. Catch and regulation-induced discard of species and species/ groups regulated by trip limits for the midwater trawl fishing strategy during time period $\mathbf{C}$ (January 1,1986 - June 30, 1986). Data are based on at-sea observations made aboard a sample of Oregon commercial groundfish trawl vessels.

Species Group	Time Period	Total Catch Sampled (lbs)	Average Catch Per Tow (1bs)	Marketable Catch (1bs)	Regulation-Induced Discard	
					Amount Discarded (1bs)	Percent of Marketable Catch Discarded
Hidow Rockfish						
	C	182,879	7,620	182,879	20,000	10.9
Yellowtail   Fockfish						
	C	5,267	219	5,267	320	6.1
Sebastes Complex ${ }^{1}$						
	C	5,382	224	5,375	320	5.9
Pacific Ocean Perch						
	C	0	0	0	0	0.0
Sablefish						
Al1 Regulated Species Groups						
	C	188,261	7,844	188,254	20,320	10.8

15ebastes Complex includes yellowtail rockfish.
regulations regarding Pacific ocean perch changed only slightly during the year of the study, yet significant discard was only observed during one time period during which catch/tow was high (Time period A, BRF strategy, Table 4a). Discard of Seoastes complex was primarily due to discard of yellowtail rockfish for the BRF strategy, but yellowtail rockfish did not comprise a large fraction of the sebastes complex catch for the DWD strategy (Tables 4 a and b). For the latter strategy, discard of Sebastes complex was highest during time period $C$, during which the highest trip limits for this species group were in effect, and catch rates were also highest in comparison with time periods $A$ and $B$.

Table 4d. Catch and regulation-induced discard of species and species/ groups regulated by trip limits for the nearshore mixed spectes fishing strategy by time period ( $A=$ July 21 , 1985 - September 30, 1985; B = October 1, 1985 December 31, 1985; C = January 1,1986 - June 30, 1986). Data are based on at-sea observations made aboard a sample of oregon conmercial groundfish trawl vessels.

Species Group	Time Period	Regulation-Imduced Discard				
		Total	Average			Percent of
		Catch	Catch	Marketable	Amount	Marketable
		Sampled	Per Tow	Catch	Discarded (1bs)	Catch
		(1bs)	(lbs)	(1bs)	(1bs)	Discarded

Widow
Rockfish

A	53	2	53	0	0
B	0	0	0	0	0
C	0	0	0	0	0

Yellowtall and Rockfish

A	236	$B$	236	0	0
B	0	0	0	0	0
C	166	24	166	0	0

## Sebastes

Complex ${ }^{1}$

A	762	27	726	0	0
B	126	42	84	0	0
C	453	65	338	0	0

Pacific Ocean Perch

A	3	$<1$	3	0	0
$B$	0	0	0	0	0
$C$	0	0	0	0	0

Sablefish

A	958	34	779	0	0
$B$	73	24	42	0	0
C	0	0	0	0	0

Al Regulated
Species
Groups

A	1776	63	1561	0	0
B	199	66	126	0	0
C	453	65	338	0	0

[^10]It is clear that trip limits applied to individual species in a mixed species fishery lead to discard of some marketable fish. At least some discard of each of the regulated spectes groups was observed during the course of this study. Overall, regułation-induced discard accounted for 8.9\% of the marketable catch of regulated species groups sampled.

However, significant variation in discard rates was observed among species groups, fishing strategies, and time periods. On some occastons regulation-induced discard was extremeiy high, both as a percentage of the marketable catch and in absolute terms, whereas in other instances, no regulation-induced discard was observed.

Some of the variation in regulation-induced discard could be explained by differences in catch composition among fishing strategtes, variations in trip limit regulations, and differences in regulated species catch rates among time periods. In general, it was found that highest discard rates tended to occur for those fishing strategies that caught mixedspecies aggregations of fish with a large parcentage of the catch consisting of species groups subject to trip limit restrictions. Greater discard rates also tended to be promoted by high catch rates and low trip limits for regulated species groups.

However, significant variation in catch and discard rates occurred which were not associated with changes in regulations or differences in fishing strategies. Other factors not considered in this paper undoubtediy play a major role in influencing the magnitude and variation in regulation-induced discara. Possible contributing factors include seasonal changes in species distributions and associations, individual differences in attitude and fishing strategy among fishermen, and trip length (ie. high catch rates per tow would be more likely to induce discard on long, relative to short, trips).

Further work is needed before the observations made in this study can be extrapolated to estimate the level of regulation-induced discard that occurred in the entire fishery during 1985-1986. Analyses of the levels of fishing activity employed in the fishery at-large by time perfod and fishing strategy are being conducted using logbook data, to permit such extrapolations to be made. However, given the variability in discard rates observed, such extrapolations will be rather approximate.
Sampling rates are expected to be somewhat higher in future phases of this study than those reported here for the 1985-86 period, which should improve the precision of later estimates.

A question that inevitably arises but that is difficult to address is whether fishermen behave in a similar manner when an observer is aboard compared to other fishing trips. Factors that may tend to minimize changes in behavior due to the presence of an observer include:

1) There are no legal penalties associated with discard of fish-at-sea;
2) confidentiality of indiuidual vessel catch utilization and discard practices is an important component of our agreement with the participants;
3) since economic compensation of skipper and crew is generally based on a percentage of profits (as opposed to time related
compensation), it is in the economic interests of the skippers to employ those strategies that are likely to yield the greatest profits; presumably such strategies are those that are used on a regular basis and;
4) participants appear to be sincerely interested in aiding efforts to document and evaluate effects of the current management regime.

Any deviations from normal fishing patterns that may have occurred would likely result in less, rather than more, discard then usual. Thus levels of regulation-induced discard observed in this study may underestimate overall discard rates.

Future consequences and evaluation of present management polictes
Under current management policy, trip limits for regulated species can vary greatly both within and between years. This variation is due to changes in allowable annual catch levels, as well as variation in the number of vessels participating in the fishery. At present, fleet size is not regulated and varies in part due to changes in accessibility and profitability of alternative fishing opportunities (eg, shrimping, joint venture fishing). For a fixed level of annual allowable catch, an increase in the number of participants will likely lead to lower trip limits, and vice versa. Future changes in the number of species or species groups regulated by trip limits will also influence overall discard rates.

It is difficult to predict how allowable catch levels, fleet size, and regulations witl change in the future, but it is clear that such changes wifl influence the extent of regulation-induced discard that will occur from year to year. Thus, the level of regulation-induced waste observed in this study may be greater or less than that whith will occur in the future.

The waste of marketable fish due to regulations reduces the tmmediate value of the catch to findividual vessels during trips where it occurs, and may also diminish future opportunities to catch and market fish for the fishery at large, and hence, the availability of fish to consumers. It also reduces the reliabllity of landings data as indicators of total fishery-induced removals. While it would certainly be desireable to prevent waste from occurring, the "costs" of the current management regime in terms of regulation-induced waste must be weighed against its benefits and should also be compared with the pros and cons of alternative management systems.

The West Coast groundfish trawl fishery is complex in terms of the number of spectes exploited, variation in the condition of individual stocks whthin the fishery, the variety of fishing strategies employed by the fishing fleet, and the multitude of management objectives sought to be achieved. Alternative management regimes which may be more effective at minimizing waste, may have other less desireable consequences. A fuller evaluation of the current management regime, as well as an evaluation of potential alternatives is now in progress.

Observations conducted aboard conmerctal fishing vessels during 1985 and 1986 indicate that the current West Coast groundfish management polity results in some discard of marketable fish. Regulation-induced discard averaged $8.9 \%$ of the marketable catch of regulated species groups sampled, but significant variation in discard rates was observed among species groups, fishing strategies and time periods. Higher discard rates tended to be promoted by low trip limits, high catch rates, and fishing strategles which caught a mixture of fish that included a large percentage of regulated species groups. Further work is in progress to more fully evaluate the current management regime in light of alternative management tools.

## Acknowledgements

This is Technical paper No. 8061 of the Oregon Agricultural Experiment Station. This publication is the result of research sponsored by NOAA Office of Sea Grant, Department of Conmerce, under Grant No. NAB5AA-D\$G095, (Project No. R/ES-7), the National Marine Fisheries Service (Contract NA-85-ABH-00025), and the Oregon Department of Fish and Wildife. The U.S. Government is authorized to produce and distribute reprints for governmental purposes, notwithstanding any copyright notation that may appear hereon.

Thanks are due to Gan Erickson and C. Wilson who served as field coordinators and samplers, and to W. Barss, S. Bernsten, E. Defmling, R. Demory, D. Douglas, J. Golden, M. Hosie, D. Nichol and D. Wurster who also served as observers. Data entry and analysis were aided by 0. Booth, E. Detmling, D. Nichol, J. Rackowski, and especially, C. Harding. I am also grateful to the vessel owners and skippers who have participated in the study. Helpful conments on an earlier version of this paper ware provided by R. Demory, D. Erickson, J. Golden and J. Robinson. I thank J. Martin and J. Robinson for their efforts in helping to obtain financial support for this study. T. Ketchum typed the manuscript.

## References

Saila, S.B. 1983. Important and assessment of discards in commercial fisheries. FAO Fish Circ., (765) 62 p.

Pacific Fishery Management Counci1. 1982. Pacific Coast Groundfish Plan. PFMC, Portland, Oregon.

## Session VI -- Workshop on future rockfish research needs

# Workshop Summary 

## Robert C. Clasby <br> Alaska Department of Fish and Game Juneau, Alaska

The workghop on future research needs was conducted using the panel discussion format. The chaits of the individual symposium sessions, Grace Klein-MacPhee, H. Richard Carlson, Lewis Haldorson, Daniel H. Ito, and Steven K. Davis made up the workshop panel. Each gave a summary of the status of knowledge of rockfigh, as reflected in the papers presented during his or her session: provided thoughts on what direction future research should take, and led the discussion of that particular panel subject. The following is a brief summary of the workshop discussions.

Rockfish fisheries conducted on the eastern and western costg of North America have a long history, although significant effort levels and high catches did not occur until about the 1940 s . As a wole, the fisheries are experiencing declining catches and standing stocks. This has been due primarily to increasing effort and consumer demand for various rockfish. Researchers and managers must deal with a number of problem areas if they are to provide a Eishery that is economically valuable in the long-term. These problem areas include:

A lack of knowledge of the life histories of many rockfish species.

The inability to measure a forecast recruitment.
Unknown accuracies and precisions in biomass assessments.

Management of multi-species fisheries.

By-catches of birds, marine mammals, and prohibited or fully utilized fish species.

Conflicts between various user groups.
Overlapping regulatory jurisdictions.
Perhaps the most important obstacle to overcome in providing effective management of the rockfish resources is that of declining budgets.

Knowledge of the early life histories of most of the commerciaily important rockfish species is severely lacking. If we are to begin to understand the dynamics of this resource, it is imperative that progress be made in areas such as species identification of early life stages, distribution and movement of larval and juvenile stages, and the factors affecting rates of mortality of these young fish.

The new aging techniques seem to have been accepted by most of those working in the field, but there is a need to insure continued validation of those techniques. The break and burn method is laborious and expensive, therefore, there is a need to investigate more efficient methods of estimating the age of rockfish. Areas that show some promise are the use of length frequency distributions, otolith morphometry, and regression techniques.

The species being investigated should be ranked in order of importance, and the validity of applying data available for similar species to those being studied determined.

There is a desire by the industry and managers to rebuild depleted rockfish stocks. Some measures have been taken to accomplish that objective, but accurate measurements of recruitment are needed to assess the success of those rebuilding programs: In addition to understanding the basic biology of the species involved and the development of good stock assessment techniques, the natural external factors affecting survival must also be understood to evaluate whether the management technique, natural factors, or a combination of both has caused the measured level of recruitment to the fishery. Since there are many natural factors, both biological and physical, affecting birth and survival, it may not be possible to accurately predict recruitment success, but it is important that the problem be investigated. Topics such as environnental affects of fecundity, larval survival windows, and the spatiality of recruitment are of particular importance.

Reviews of recent stock assessments show that many rockfish populations are much less productive than initially thought. A full review of assessment techniques is warranted to evaluate the need to increase their accuracy and precision. Critical questions that need to be answered are:

What is the degree of intra- and intersite variability of assessments?

Will there be problems with estimating the numbers of fish at age when the populationa are low?

How accurate are current stock assessment models and trawl surveys at low stock or effort levels?

How to standardize data obtained using differing assessment techniques?

In addition to answering the above questions, there is a need to:

Incorporate new biological and physical data into assessmert models when possible.

Examine robustness of existing models.
Modify existing assessment techniques, or develop new ones to deal with variability problems.

Investigate climatic affects on stock status.
Although there may be a need to slow down rockfish research as funding deciines, there is also a need to get ahead of the boom-bust phenomenon that has been plaguing the rockfish Eisheries. There are a number of things that can be done to either reduce the cost of research, or increase what can be done with existing funds.

Data sharing can be increased.
Managers and researchers need to interact more than they do now to increase the level of feedback.

Experimental figheries should be used to test hypotheses.

There is a need to involve all users of the resource to a higher degree, so that they will assigt in promoting programs to those that hold the purse strings.

The costs and benefits of rebuilding need to be assessed.

## Participants

D. B. Atkinson

Department of Fisheries 4
Oceans
P.O. Box 5667

St. Johns, Newfoundland CANADA AZC 5X1

William R. Bechtol
Alaska Department of Fish 6 Game
3298 Douglas Street
Homer, AK 99603
George W. Boehlert
National Marine Fisheries
Service
2570 bole Street
Honolulu, HI 96822-2398
Barry Bracken
Alaska Department of Fish \& Game
P.O. Box 667

Petersburg, AK 99833
H. Richard Carlson

NMFS Auke Bay Lab
P.O. Rox 210155

Auke Bay. AK 99821
Wallis H. Clark
University of California
Bodega Bay Marine Lab
Bodega Bay. CA 94923
Robert C. Clasby
Alaska Department of Fish $\&$ Game
P.O. Box 3-2000

Juneau, AK 99801
Brian Culver
Washington Department of Fisheries
331 State Highway 12
Montesano, HA 98563
Steven K. Davis
North Pacific Fishery
Management Council
P.O. Box 103136

Anchorage, AK 99510
R. K. Dearborn

University of Alaska
Sea Grant Program
590 University Avenue, \#102
Fairbanks, AK 99709-1046

Jim Glock
Noth Pacific Fishery
Management council
P.O. gox 103136

Anchorage, AK 99510
Richard Haight
NMFS Auke Bay Lab
P. O. Box 210155

Auke Bay, AK 99821
Lewis Haldorson
University of Alaska, Junead
School of Fisheries and
Science
Ill20 Glacier Highway
Juneau, AK 99801
Daniel H, Ito
National Marine Fisheries
Service
7600 Sand Point Way, N.E.
Seattle, WA 98115-0070
Earl Kari
4ll0 Tazlina Avenue
Anchotage, AK 99517
Grace Klein-Macphee
12 Conch Road
Narragansett, RI 02882
Bruce M. Leaman
Department of Fisheries f
Oceans
Pacific Eiological station
Nanaimo, British Columbia
CANADA V9R 5K6
William H. Lenarz
National Marine Fisheries
Service
3150 Paradise Drive
Tiburon, CA 94920
Milton Love
Occidental College
Dept, of Biology
Los Angeles, CA 93111
Aichard J. Marasco
National Marine Fisheries
Service
Northwest and Alaska
Fisheries Center
7600 Sand Point Way, N, E. Seattle, WA 98115-0700

Kathleen Feeney Mathews University of Washington School of Fisheries
WH-10
Seattle, WA 98195
Ralph K. Hayo
National Marine Fisheries Service
Northeast Fisheries Center
Water Street
Woods Hole, MA 02543
Judy McDonald
University of Alaska
F.O. Box 730

Seward, AK 99664
Chuck Meacham
Alaska Department of Fish 6 Game
333 Raspberiy Road
Anchorage, AK 99508
James M. Meehan
National Marine Fisheries
Service
Office of Resources
Investigations $\mathrm{F} / \mathrm{sl}$
Washington, D.C. 20235
Brenda Melteff
University of Alaska
Sea Grant Program
590 University Avenue, $\$ 102$
Fairbanks, AK 99709-1046
Bonita Nelson
University of Alaska, Juneau
School of Fisheries and Science
11120 Glacier Highway
Juneau, AK 99801
Jerrold Norton
Pacific Fisheries
Environmental Group
NOAA, NMFS, SWFC
P.O. Box 831

Monterey, CA 93942
Victoria M. O'Connell
Alaska Department of Fish 6 Game
P.O. Box 510

Sitka, AK 99835

Ellen K. Pikitch
Oregon State University 2030 S. Marine Science Dr. Newport, OR 97365

Laura Richards
Department of Fisheries b Dceans
Pacific Biological Station
Nanaimo, Eritish Columbia
CANADA V9R 5K6
James H. Russell
Alaskan Fisheries Company
333 W. 4th Avenue, Suite 315
Anchorage, AK 99501
Artwin E. Schmidt
Alaska Department of Fish s
Game
D.O. Box 510

Sitka, AK 99835-0510
Ronald L. Smith
Institute of Marine Science
University of Alaska
Fairbanks, AK 99775-1080
Rick Stanley
Department of Fisheries $\&$ Oceans
PaciEic Biological Station
Nanaimo, British Columbia
CANADA V9R 5K6
Howard J. Teas III
Woodward Clyde Consultants
701 Sesame Street
Anchorage, AK 99503
Jack Van Hyning
New Wave Seafoods
P.O. Box 80165

Fairbanks, AK 99708
Kenneth D. Vogt
P.O. Box 230325

Anchorage, AK 99523-0325
S. J. Westrheim

Department of Fisheries Oceans
Pacific Eiological station
Nanaimo, British Columbia
CANADA V9R 5K6

Thomas Wilderbuer
National Marine Fisheries Service
Northwest and Alaska
Fisheries Center
7600 Sand Point Way w.E.
Seattle, WA 98115-0070

Mark E. Wilkins
National Marine Fisheries Service
Nortbwest and Alaska
Fisheries Center
7600 Sand Point Way N.E.
Seattle, WA 98115-0070
Mary Yoklavich
OSU-Marine Science Center Newport, OR 97365


[^0]:    ${ }^{6}$ Sources: 1956-70: Forrester, Beardsley et ol. (1978).
    
    1985 Lomaman (personal communitationd
    Ketchen ( 1980 a).
    "Intermediale" estimgtes of Ketchen \{19818; Table 8).
    Eptimated by applying the ratio of the $1887-77 \mathrm{Japanese}$ ratio of POP/BKF $\{=0.724$ \}
    Ketchen [1980b, p. 23)

[^1]:    Contribution Mo. 710. School of Fisheries. Fisheries Research Institute, University of Washington, Seattle. Wa. 98195.

[^2]:    *Kumbers key to references in Literature Cited.

[^3]:    * 件mbers key torefergncas in ititeraturefited,

[^4]:    * kendall, k.i. Jr. pers. conm. Dec. 1996.
    $*$ Loet et al. 1983 contalns more detalled analysis of data from 1975. Other references cifed therein contain addfitional

[^5]:    $1 /$
    Numbers in the left margin key to the tables.

[^6]:    $l_{\text {male }}$ and female values combined

[^7]:    aspectes:
    

[^8]:    ${ }^{1}$ Reference to trade names does nol imply endorsement by the National Mante Fishorita Setrice.

[^9]:    $1_{\text {Sebastes }}$ Complex includes yellowtail rockfish.

[^10]:    $1_{\text {Sebastes }}$ Complex includes yellowtail rockfish.

