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Highlights: 

• An approach for ecosystem-services based image analysis is developed and tested. 

• We leverage existing deep-sea video and an adapted trait-based approach. 

• Three southern California methane seeps are qualitatively described and compared. 

• Del Mar seep may have elevated contributions to local deep-sea ecosystem services. 

• Steps are made towards quantifying ecosystem services of deep-sea habitats. 

Abstract: Deep-sea images are routinely collected during at-sea expeditions and represent a 

repository of under-utilized knowledge. We leveraged dive videos collected by remotely-

operated vehicle Hercules (operated by Ocean Exploration Trust), as well as adapted biological 

trait analysis, to develop an approach that characterizes ecosystem services. Specifically, 

fisheries services and climate-regulating services related to carbon are assessed for three 
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southern California methane seeps: Point Dume (~725 m), Palos Verdes (~506 m), and Del Mar 

(~1023 m). Our results enable qualitative intra-site comparisons along a gradient of seep activity 

and site-to-site comparisons that suggest the Del Mar seep and adjacent areas provide the highest 

relative contributions to fisheries and carbon services. This study represents a first step towards 

ecosystem services characterization and quantification using deep-sea images. The results 

presented herein are foundational, and continued development should help guide research and 

management priorities by identifying potential sources of ecosystem services. 

Keywords: Deep ocean, benthic ecology, carbon cycling, fisheries, Southern California 

Borderlands, methane seeps, ecosystem services, image analysis, biological trait analysis 

1. Introduction 

The deep sea (here defined as greater than 200 m water depth) hosts diverse habitats with 

a myriad of ecological processes that enable ecosystem services (Armstrong et al., 2012; Thurber 

et al., 2014). Ecosystem services can be categorized as provisioning, regulating, cultural, and 

supporting services. Provisioning services in the deep sea include fisheries landings for food 

(Clark et al., 2016) and genetic resources for industrial and pharmaceutical uses (Blasiak et al., 

2019). Regulating services refers to processes such as carbon cycling (Cartapanis et al., 2016; 

Sweetman et al., 2019), and other elemental and biogeochemical cycles that are integral to global 

environmental health (Blöthe et al., 2015; Huang et al., 2019). Additionally, deep-sea habitats 

provide cultural services including education and outreach (Hoeberechts et al., 2015). Supporting 

services are those that enable these other categories of services, i.e. ecological functions and 

physical processes. From an ecosystem services perspective, human well-being is increased by 
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the existence and health of ecosystem structures and ecological functions (Millennium 

Ecosystem Assessment, 2005; Haines-Young & Potschin-Young, 2018), providing a tangible 

argument for more holistic environmental management and protection (Le et al., 2017). 

Ecosystem services can be difficult to quantify, especially in marine environments such 

as deep continental shelf habitats (among others) where interactions and boundaries can be 

dynamic and loosely-coupled (Barbier et al., 2011). However, technological developments have 

greatly aided deep-sea scientific research (e.g. Corinaldesi 2015; Aguzzi et al., 2019). Advances 

in deep-sea imaging (visual data in the form of pictures and videos) provide useful information 

on physical and biological characteristics of underwater habitats (Macreadie et al., 2018). 

Imagery can be collected via underwater observatories (de Leo et al., 2018), drop cameras 

(Clayton & Dennison, 2017), landers (Lavaleye et al., 2018; Gallo et al. 2020), autonomous 

underwater vehicles (AUVs; Mejia-Mercado et al., 2019), remotely-operated vehicles (ROVs; 

Myhre et al., 2018), and human-occupied vehicles (HOVs; Gallo et al., 2015). Deep-sea 

expeditions routinely collect imagery for scientific (e.g. National Deep Submergence Facility, 

NEPTUNE Ocean Observatory), outreach (e.g. NOAA Office of Ocean Exploration and 

Research, Ocean Exploration Trust, Schmidt Ocean Institute), and industry (e.g. Gates et al., 

2017; Simon-Lledó et al., 2019) purposes. As a result, there is a wealth of imagery that continues 

to grow over time as interest in deep-sea exploration and resources expands. 

Imagery has been instrumental to advancing our understanding of deep-sea habitats and 

enabling our ability to properly protect them. For example, Amon et al. (2016) used visual data 

to characterize the diversity and abundance of megafauna in a polymetallic nodule claim within 

the Clarion-Clipperton Fracture Zone, providing important baseline information for assessing 

impacts from potential seabed mining. Another scientific application of deep-sea imagery is 
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evaluating vulnerable marine ecosystems such as sponge gardens that enhance local biodiversity 

and impact biogeochemical cycling (Maldonado et al., 2016; Santín et al., 2018). Additionally, 

images and videos provide an opportunity to visualize organisms in situ, which can be important 

for behavioral observations (Katija et al., 2017), for observing taxa that avoid nets (Ayma et al., 

2016), and for minimizing disturbances associated with nets, dredges, grabs, or other means of 

sample collection. 

With the multitude of deep-sea imagery being collected, there is opportunity to leverage 

existing data to characterize, and ideally quantify, ecosystem services. Visual data are often 

unanalyzed or only partially analyzed for specific applications. However, deep-sea imagery 

represents a repository of knowledge about, not only which organisms live there, but also how 

they interact with their environment, which can help illuminate what ecosystem services exist as 

well as the processes that enable them (i.e. functions). Despite these advantages, application of 

deep-sea imagery to characterizing ecosystem services has been limited. Investigators, however, 

have used ROV imagery to characterize the Southern California Del Mar methane seep and its 

megafaunal community (Grupe et al. 2015), observing elevated densities of commercially 

valuable Sebastolobus spp. (thornyheads) at the seep relative to background areas. Other deep-

sea studies that utilize imagery often discuss implications for ecosystem services, but do not 

explicitly aim to characterize these. For example, Chauvet et al. (2019) use deep-sea imagery 

from the Ocean Networks Canada observatory to describe interannual densities and size 

distributions of commercially-fished Chionoecetes tanneri (tanner crabs). Tanner crab population 

dynamics and how they relate to environmental conditions, such as surface blooms that have the 

potential to influence tanner crab migration patterns, can inform the management of fisheries 

services. It should be noted that there are likely tens of thousands of hours of video and still-
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frame imagery available from international sea-going expeditions, spanning decades, that are 

available for further examination and study. 

In the summer of 2015, Ocean Exploration Trust (OET) completed an expedition to 

explore methane seeps and other deep-sea habitats along the southern California continental 

margin (USA) (Levin et al. 2016a). Methane seeps are found in every ocean from shallow to 

deep water depths (Judd, 2003) and are still being discovered today (Riedel et al., 2018; 

Seabrook et al., 2018). Geological processes lead to seepage of methane and sulfur-rich fluids 

from the seabed (Sibuet & Olu, 1997), which fuel chemoautotrophic microbial communities 

(Boetius et al., 2000; Orphan et al., 2002) that act as the base of a food web for distinct 

biological communities in an otherwise food-limited environment (Levin et al., 2005; Åström et 

al., 2018). Many “background” species can also be found at methane seeps (Levin et al., 2016b), 

aggregating around authigenic carbonates (Treude et al., 2011), snail egg towers (Levin & 

Dayton, 2009), or other structures that increase habitat heterogeneity. An additional layer of 

complexity exists along the northeastern Pacific continental margin in the form of an oxygen 

minimum zone (OMZ), which is a midwater feature of naturally-occurring low oxygen (< 22 

umol/kg, < 0.5 ml/l). The OMZ can intersect benthic environments to shape local biological 

communities (Sellanes et al., 2010; Gallo & Levin, 2016; Neira et al., 2019), and resulting 

ecosystem services, such as fish catch (Keller et al., 2015). OMZs can also contribute to 

regulating services through their influence on nitrogen and sulfur cycling (Gilly et al., 2013). 

The objective of this paper is to develop an approach that characterizes deep-sea 

ecosystem services at and around methane seeps within the southern California OMZ using 

deep-sea images. We adapt biological trait analysis to target ecosystem services and focus 

specifically on fisheries and climate-regulating services related to carbon (hereafter referred to as 
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“carbon services”). Trait-based approaches help capture organism contributions to ecosystem 

services by focusing on function rather than taxonomy (e.g. Rees et al., 2012). Commercially-

fished species have previously been found at southern California methane seeps (Grupe et al., 

2015) and continental margins have been estimated to sequester significant amounts of marine 

carbon (Muller-Karger et al., 2005). These services are likely mediated, in part, by megafauna 

whereas services such as element cycling are facilitated by microbes. However, we do discuss 

visual indicators of microbially-driven services where relevant. We use examples from three 

southern California upper slope methane seeps (from north to south): Point Dume (724.5 m), 

Palos Verdes (505.6), and Del Mar (1023.4 m). For two of these sites (Point Dume and Palos 

Verdes), we provide the first detailed characterization of megafauna. Key questions addressed 

are: (1) Which megafaunal taxa are present at a given site? (2) What functional traits or 

behaviors do the community exhibit? (3) How might these traits promote ecosystem services? 

And (4) How can deep-sea exploration and observing be conducted in a way that facilitates 

quantification of ecosystem services? We examine the hypothesis that methane seeps, with 

elevated local (chemosynthetic) primary production, provide more fisheries and carbon services 

than adjacent non-seep areas by testing for differences among active seep sites, transition areas, 

and non-seep background areas. Additionally, we investigate how these services relate to depth, 

dissolved oxygen concentrations, and temperature. We also hypothesize that fisheries and carbon 

services increase with megafaunal diversity, which has been shown to increase ecological 

function, such as benthic fluxes of nutrients (Belley & Snelgrove, 2016), that can contribute to 

ecosystem services. 

2. Methods 
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2.1. Study sites 

The southern California continental margin is an active, narrow, steep slope, and is home 

to an expanding OMZ that sits between approximately 450-1100 m (Helly & Levin, 2004; 

Stramma et al., 2010; Bograd et al., 2015). Our three study sites (Figure 1) were chosen because 

they showed preliminary signs of both fisheries services (i.e. presence of commercial species) 

and carbon services (i.e. bacterial mats that are consistent with carbon fixation/net primary 

production). They also included both “active seep” areas (characterized by visual indicators of 

seepage such as bacterial mats, clam beds, or bubbling) as well as “background” areas (no visual 

indicators of seepage). These three sites are used to demonstrate an ecosystem services-based 

approach to analyzing deep-sea imagery collected by an ROV. The Point Dume (mean depth 725 

m) and Palos Verdes (mean depth 506 m) seeps were newly discovered during the expedition 

NA066 (Levin et al., 2016a). The Point Dume seep lies along a submarine river channel within 

the core of the OMZ, peppered with carbonate chimneys that have visually evident fluid flow 

(Levin et al., 2016a; Figure 1). Palos Verdes seep is less than 5 km from shore and characterized 

by large carbonate rocks covered by megafaunal aggregations (Levin et al., 2016a; Figure 1). Del 

Mar seep (mean depth 1023 m) was discovered by graduate students at Scripps Institution of 

Oceanography in 2015 (Maloney et al., 2015) and has since been visited several times (Figure 1). 

Figure 1. Locations of the three methane seep study sites in southern California: Point Dume 

seep, Palos Verdes seep, and Del Mar seep. [single-column fitting image] 
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2.2. ROV dives 

Exploration dives were conducted by ROV Hercules aboard the EV Nautilus in July and 

August 2015 as part of the OET southern California borderlands expedition NA066. High-

definition video was taken continuously during each dive; dives ranged between 4-18 hours 

duration. The ROV recorded location, depth, temperature, conductivity, sound velocity, and 

oxygen concentrations. Because OET is focused on ocean exploration and telecommunication, 

we were not able to extract quantitative data from the dive videos due to changes in altitude, 

zoom, and non-visible laser references. However, qualitative descriptions based on presence-



  

     

  

     

    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

      

 

 

 

 

 

      

  

  

   

169 absence and frequency of occurrence are useful, especially in deep-sea systems that are rarely 

170 visualized and expensive to study. Metadata from each dive are summarized in Table 1. 

171 

172 Table 1. Remotely-operated vehicle Hercules dive location and environmental data from Ocean 

173 Exploration Trust expedition NA066 off of the southern California borderlands. 

Dive 

Numb 

er 

Date 

(2015 

) 

Site Latitu 

de 

(oN) 

Longitu 

de (oW) 

Avera 

ge 

Water 

Depth 

(m) 

Average 

Temperatu 

re (oC) 

Average 

Oxygen 

Concentrati 

on (µm/kg) 

Hours 

of dive 

analyz 

ed 

H1456 9 

Augu 

st 

Point 

Dum 

e 

33.943 118.841 724.5 5.55 2.76 16.6 

H1452 4-5 

Augu 

st 

Palos 

Verd 

es 

33.684 118.366 505.6 7.29 20.24 20.8 

H1444 27-28 

July 

West 

Del 

Mar 

32.903 117.782 1023.4 4.12 15.54 7.1 

174 

175 

176 2.3. Video analysis 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Observation   Observation  Point Dume   Palos Verdes Del Mar 

 Type  Options  (%)  (%)  (%) 

 ROV activity  Stationary: Inactive  17.5  16.7  17.2 

Stationary: Pan/Focus   8.6  19.4  29.6 

 Stationary: Sampling  11.6  12.5  19.1 

Mobile: Search   58.8  43.0  17.9 

Mobile: Transect   3.5  8.4  16.2 

177 Videos from each dive were segmented into five-minute clips  that were  each  treated  as a 

“sample” and annotated by  hand in Microsoft  ExcelTM  (the full protocol can be found in 

Appendix A). Information regarding the ROV, surrounding e nvironment (including  seep  

activity),  and megafauna  encountered (morphotype, location, behavior) was  also  collected  (Table 

2;  Figure 2). Seep activity  is  separated into three categories: active seep sites  with  visual  

indicators of  active seepage  (e.g.  dense bacterial mats  and clam beds, bubbling), transition areas  

with  visual indicators  of sparse or prior seepage  (e.g. patchy bacterial mats, dead  clam beds,  

carbonates  without signs  of seepage), and non-seep background areas  generally  associated with  

soft sediment habitats.  For each organism, the microhabitat  they were observed either on or 

above was  also noted (e.g. soft sediment, carbonate, bacterial mat, clam bed). For the  first minute  

of each video, animals were counted and identified to the highest possible  taxonomic  resolution. 

For the remaining four minutes, a list of morphotypes was  generated.  

 

Table 2. Observation type, observation options, and percentage of time the ROV spent doing the  

activity, at seepage activities or seafloor microhabitats  throughout each dive  (accounting  for 

100% of its time). Observation options are mutually  exclusive within each  category.  

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 



     

    

    

     

     

    

    

    

    

    

  

 

 

 

 

Seep activity Active Site 37.2 24.9 59.5 

Transition 24.5 1.4 0 

Off-site 37.0 66.2 40.5 

Water column 1.3 7.5 0 

Microhabitat Soft sediment (background) 53.1 76.6 57.2 

Carbonate 0 6.5 16.4 

Bacterial mat: full 5.7 0 17.3 

Bacterial mat: patchy 41.2 4.2 0 

Clam bed: full 0 0 7.2 

Clam bed: scattered 0 12.7 1.9 

193 

194 Figure 2. Examples of  seafloor microhabitats observed during the dives: (A) soft sediment  

(background), (B) carbonate mounds  near Palos Verdes seep, (C) full bacterial mat  near Point  

Dume seep, (D) patchy bacterial mat  near Del Mar seep, (E) full clam bed  near Point Dume seep, 

and (F) scattered clam bed  near Del Mar seep.  [two-column fitting image]  
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2.4. Trait analysis 

Observable traits that support fisheries or carbon services were chosen (Table 3), and 

each morphotype was assigned a score for selected traits based on a literature review (Appendix 

B). We used fuzzy coding (Chevenet et al., 1994) to capture the extent to which each trait 

modality contributes to each service. Fisheries ‘ecosystem services’ traits are related to whether 

the species is commercially-valuable and whether a commercially-valuable species interacts with 

it as predator or prey. Carbon traits are related to carbon cycling. For example, feeding mode can 

contribute to carbon fixation, i.e. primary production by autotrophic organisms is a direct carbon 

dioxide removal pathway. Carbon transport, which can play a significant role in the food-limited 

deep ocean (Shen et al., 2020), can be attributed to biological traits such as mobility and whether 



 

 

 

 

 

 

 

 

    

  

 

 

 

 

 

 

   

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

      

211 the organism is a diel vertical migrator. Body size and calcification can  contribute to carbon  

storage, i.e. as biomass.  If an  organism was not identified to species level or if there was no  

existing information on the species  (e.g.  what it eats), then characteristics  from its higher-level  

taxonomic group or a closely related species were  used  to assign trait modalities.  

 

Table 3. Traits and their  modalities  that contribute to fisheries and climate-regulating services  

related to carbon. Higher scores indicate modalities that contribute more to the respective  

service.  

212 

213 

214 

215 

216 

217 

218 

Ecosystem service Trait Modality Reference 

Fisheries – 

characteristic 

Commercially 

valuable 

Yes (1) 

No (0) 

Koslow et al., 2000 

Fisheries – trophic 

support 

Predator 

Prey 

Active (2) 

Passive (1) 

No (0) 

Yes (1) 

No (0) 

Yang & Somero, 

1993; Jacobsen & 

Vetter, 1996; Dufault 

et al., 2009; Hattori et 

al., 2009 

Carbon – fixation and 

cycling 

Feeding mode Autotrophic (5) 

Predator (4) 

Filter feeder (3) 

Deposit feeder (2) 

Scavenger (1) 

Doering et al., 1986; 

Reinthaler et al. 

2010; Wilmers et al., 

2012; Atwood et al., 

2015 

Carbon – transport Mobility High (3) 



 

 

 

     

 

 

 

 

     

 

 

 

 

 

 

 

   

 

 

 

 

 

 

      

 

 

     

 

 

 

  

  

Medium (2) 

Low (1) 

None (0) 

Carbon – transport Movement Swim (1) 

Crawl (1) 

Burrow (1) 

Sessile (0) 

Carbon – transport Bioturbation High (3) 

Medium (2) 

Low (1) 

None (0) 

Vardaro et al., 2009; 

Martinetto et al., 

2016; Hou et al., 

2017; Gogina et al., 

2020 

Carbon – transport Diel vertical 

migration 

Yes (1) 

No (0) 

Hidaka et al., 2001; 

Hudson et al., 2014; 

Klevjer et al., 2016 

Carbon – storage Calcification Yes (1) 

No (0) 

Carbon – storage Body size > 10 cm (3) 

3-10 cm (2) 

< 3 cm (1) 

219 

220 



   

  

     

   

        

     

   

  

   

    

  

   

   

     

  

    

   

  

   

   

       

      

     

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

Each video was scored (both within the one-minute subset and the whole five-minute 

clip) for the morphotypes present that demonstrate the traits chosen. We were not able to 

calculate faunal densities from the videos due to unknown and variable camera field-of-view so 

we use presence-absence data. Scores were standardized by the number of morphotypes found in 

each clip. The maximum fisheries score a morphotype could have was four and the minimum 

score was zero. For carbon services, the maximum score was seventeen and the minimum score 

was two. 

2.5. Statistical analysis 

All statistical analyses were done in R (version 3.5.2.), using the base package unless 

otherwise noted. Data were tested for normality using a Shapiro-Wilk test. Because data did not 

meet normality conditions, non-parametric tests were used. The Kruskal-Wallis test-by-ranks 

was used to test for significant differences among groups (e.g. sites, seep activity, microhabitats), 

and a post hoc Dunn test with a Bonferroni correction (package ‘dunn.test’) was used to identify 

which groups were different. Correlations were tested using Spearman’s rank coefficient. All 

ecosystem services score analyses were done for the first-minute subset, as well as for the whole 

video clip, in efforts to decrease temporal dependence among samples. 

3. Results 

We present here results from this methodology, including initial biological 

characterizations of several seep ecosystems. These are critical in the deep ocean, where there 

have been fewer opportunities for visualization in comparison to coastal and shallow-water 

systems. Approximately 20,000 individuals from 100 morphotypes were identified in the videos 



     

  

 

    

   

  

   

   

    

 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

     

 

 

 

 

     

 

 

 

 

 

 

     

 

 

 

 

     

244 and grouped into seven functional (mainly feeding) groups: scavengers, benthic filter feeders & 

245 microcarnivores, benthic deposit feeders & bacterivores, demersal predators, pelagic predators, 

246 gelatinous plankton, and symbiont-bearing taxa (Table 4; Figure 3). Demersal predators had the 

247 most morphotypes with 37, most of which were fish species (Figure 4A). Both pelagic predators 

248 and symbiont-bearing taxa had only three morphotypes observed. 

249 

250 Table 4. Functional groups used, morphotypes included in them, average fisheries or carbon 

251 score assigned to the morphotypes in the functional group, and frequency of occurrence 

252 throughout each dive as percentages. 

Functional 

Group 

Morphotypes 

included 

Average 

fisheries 

score 

Average 

carbon 

score 

Point 

Dume 

(%) 

Palos 

Verdes 

(%) 

Del 

Mar 

(%) 

Scavengers Hagfish, shrimp, 

amphipods 

2.00 10.53 9.1 4.3 16.2 

Benthic filter 

feeders & 

microcarnivores 

Sea anemones, sea 

pens, corals, sponges 

1.63 5.71 15.4 14.6 6.0 

Benthic deposit 

feeders & 

bacterivores 

Sea cucumbers, 

urchins, snails, brittle 

stars 

1.32 8.05 0.3 8.5 6.0 

Demersal 

predators 

Demersal and benthic 

fish, crabs, sea stars 

3.09 11.40 43.0 40.9 29.6 



 

 

 

  

     

 

 

 

 

     

 

 

 

 

 

     

  

      

        

     

    

    

   

Pelagic 

predators 

Midwater fish, squid, 

chaetognaths 

2.91 10.85 3.7 4.8 5.1 

Gelatinous 

plankton 

Jellies, ctenophores, 

siphonophores 

1.01 7.26 23.9 26.9 35.6 

Symbiont-

bearing taxa 

Vesicomyid clams, 

lucinid clams, 

folliculinids 

0.93 10.60 4.6 0 1.5 

253 

254 Figure 3. Example morphotypes of each functional group: (A) scavengers – hagfish, shrimp; (B) 

255 benthic filter feeders & microcarnivores – carnivorous sponge, sea anemone, sea pen; (C) 

256 benthic deposit feeders – brittle star, sea cucumber, sea urchin; (D) demersal predators – 

257 groundfish, sea stars, crabs; (E) pelagic predators – midwater fish, squid; (F) gelatinous plankton 

258 – jellies, ctenophores, siphonophores; and (G) symbiont-bearing taxa – folliculinid ciliates, 

259 vesicomyid clams. [two-column fitting image] 
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264

Figure 4. (A) The number of morphotypes included in each functional group, and (B) the relative 

abundance of each functional group at three methane seeps off southern California within the 

one-minute subset. [1.5-column fitting image] 
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267 

268 The most frequently occurring morphotypes among all sites were Poralia rufescens 

269 (jellyfish; 12.5%), Sebastolobus altivelis (shortspine thornyhead; 9.4%), Voragonema 



     

       

    

      

      

    

  

   

     

     

     

      

     

      

     

     

     

      

270 pedunculata (hydrozoan; 7.8%), Liponema anemones (6.9%), and Nezumia liolepis (smooth 

271 grenadier; 5.8%) (Table 5). There was a significant difference among the biological communities 

272 at our sites (ANOSIM, R = 0.356, p < 0.01) (package ‘vegan’). Among sites, Palos Verdes had 

273 the highest total number of morphotypes (79), followed by Del Mar (38), and lastly Point Dume 

274 (31). Palos Verdes also had the highest number of morphotypes unique to the site (47) whereas 

275 Del Mar and Point Dume had fifteen and six unique morphotypes, respectively. 

276 

277 Table 5. Frequency of occurrence of each morphotype, presented as a percentage of total 

278 morphotype occurrences, for each dive as well as among all dives. 

Morphotype Point Dume Palos Verdes Del Mar All dives 

Alepocephalus tenebrosus 0 0 2 0.3 

Anoplopoma fimbria 0 3.6 4.4 2.3 

Bathyraja spinosissmia 0 0 0.4 0 

Cataetyx rubirostris 0 0 0 0 

Cladorhizidae 0 0 0.4 0 

Coryphaenoides acrolepis 0.2 0 0 0.1 

Embassichthys bathybius 0 0.1 0 0 

Epatratus spp 2.6 0.8 4.2 1.9 



     

     

      

     

      

     

     

     

     

      

     

     

      

     

     

     

     

     

Glyptocephalus zachirus 0 0.2 0.9 0.2 

Liparidae 0 0.1 0 0 

Lyopsetta exilis 0 0.1 0 0.1 

Merluccius productus 0 0.5 0 0.3 

Microstomas pacificus 4.6 4 0.7 3.8 

Midwater fish 3.7 4.6 4.5 4.2 

Nemichthyidae 0 0.8 0 0.4 

Nettastomatidae 0 1.2 0 0.6 

Nezumia liolepis 8 5.4 0.2 5.8 

Ophiodon elongatus 0 0 0 0 

Rajidae spp 0 0 0 0 

Scyliorhinidae 5.2 1.4 0 2.7 

Sebastes spp 0 0.5 0 0.2 

Sebastolobus alascanus 0.2 0 0 0.1 

Sebastolobus altivelis 8.2 8.9 15.5 9.4 

Zoarcid 2.4 0.1 0 1 

Holothuroidea 0.1 3.6 0.9 1.9 

White Sea Cucumber 0 0.1 0 0 



     

     

     

     

     

     

      

      

     

     

     

     

     

     

      

     

     

     

Strongylocentrotus fragilis 0 3.9 0 1.9 

Ophidiidae spp 0 0 0 0 

Ophiurida spp 01 0.3 2.8 0 1.5 

Asteroidea sp 01 0.1 4.1 0 2 

Asteronyx spp 0 0.8 0 0.4 

Brisingidae 0 0.4 0 0.2 

Hippasteria spp. 01 0 0.2 0 0.1 

Gonatus sp 0 0.1 0 0 

Octopus 0 0.6 0 0.3 

Pteropod 0 0.1 0.5 0.1 

Eusergestes similis 6.4 2.9 6.7 4.7 

Galatheid spp 11.7 0.4 0 4.7 

Lithodidae spp 0 0.7 4.4 0.9 

Lithodidae spp 02 0 2.1 0 1 

Pandalopsis spp 0.1 0 2.4 0.3 

Peracarid spp 01 0.1 0 0 0 

Sergestidae spp 0.1 0.5 2.7 0.6 

Chaetognath 0 0 0 0 



     

     

     

     

     

     

     

     

     

      

     

      

     

     

     

     

     

      

      

Amphipod 0 0 0.2 0 

Lucinidae 4.6 0 0 1.8 

Vesicomyidae 0 0 0.2 0 

Alia permodesta 0.2 0 0 0.1 

Buccinidae sp 01 0 0 0.9 0.1 

Gastropod sp 01 0 0.1 0 0 

Gastropod sp 02 0.1 0 0 0 

Paguroidea 0 0 0.4 0 

Provanna 0 0 3.1 0.4 

Heteropolypus sp 0 0.7 0 0.3 

Zoanthid 0 0.1 0 0 

Umbellula spp 0 1.6 0 0.8 

Actinaria spp 01 0 0.3 0 0.2 

Actiniidae spp 01 0 0.2 3.8 0.6 

Actiniidae spp 02 0.8 0.5 1.1 0.7 

Actiniidae spp 03 0 0.4 0 0.2 

Bolocera spp 0 0.1 0 0.1 

Liponema spp 14.6 2.5 0.2 6.9 

Funiculina sp 0 1.7 0 0.8 



     

      

     

     

     

     

      

     

     

     

     

     

     

      

     

     

     

Pennatulacea spp 01 0 0.1 0 0 

Petalidium suspiriosum 0 0 0 0 

Sessiliflorae spp 0 1.6 0 0.8 

Scyphozoa spp 01 0 0.2 0 0.1 

Scyphozoa spp 02 0 0.1 0 0 

Aeginura 0 0.5 0 0.3 

Atolla spp 0 0.1 0 0 

Jelly03 0 0.6 0 0.3 

Poralia rufescens 18.5 10.8 0.2 12.5 

Spinophiura jolliveti 0 0 2.4 0.3 

Voragonema pedunculata 2.5 6.4 30 7.8 

Dromalia alexandri 0 4 0 2 

Siphonophore 2.4 4.1 2.4 3.2 

Bolinopsis spp 0.1 1.4 0 0.7 

Ctenophora spp 01 0.1 1.5 0 0.8 

Ctenophora spp 02 0.3 0.5 0 0.4 

Ctenophore03 0 0.1 0 0.1 



     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

Lampocteis cruentiventer 0 0.5 0.7 0.3 

Serpulid Polychaete 0 0.1 0 0.1 

Flatworm01 0 0.2 0.5 0.2 

Flatworm02 0 0.1 0 0 

Polychaete01 1.8 0.3 0.2 0.8 

Polychaete02 0 0 0.4 0 

Polychaete03 0 0 0.2 0 

Polychaete04 0 0 0.2 0 

Polynoidae 0.5 0.9 0 0.6 

Siboglinidae 0 0 0.2 0 

Encrusting Sponge 0 0 0.5 0.1 

Porifera sp 01 0.1 0 0 0 

Porifera sp 02 0 0.1 0 0 

Porifera sp 03 0 0.2 0 0.1 

Sponge 0 0 0 0 

Folliculinidae 0 0 1.1 0.1 

Foram01 0 0.5 0 0.2 

Foraminifera 0 0 0.5 0.1 

Tunicate01 0 0.1 0 0 



  

  

   

   

    

  

  

      

   

   

     

     

 

    

       

  

 

     

   

 

    

     

     

       

       

279 

280 

281 The first-minute subset was not representative of the whole clip relative to fisheries (X2 = 

282 47.16, df = 1, p < 0.01) and carbon scores (X2 = 80.40, df = 1, p < 0.01), so results discussed are 

283 for the whole five-minute clip (scores for the one-minute subset are still shown in Table 6). 

284 

285 Table 6. Summary of ecosystem services scores, standardized by the number of morphotypes, for 

286 each site. Transition areas were not delimited for Del Mar. Significant differences across sites are 

287 noted with a, b, c (horizontally); significant differences within sites are noted with x, y, z 

288 (vertically). 

Service Point Dume Palos Verdes Del Mar Overall 

Fisheries score 2.71 ± 0.86ab 2.61 ± 0.82a 3.09 ± 1.38b 2.72 ± 0.95 

Fisheries one-

minute 

2.22 ± 0.59 2.42 ± 0.77 2.30 ± 1.30 2.32 ± 0.79 

Fisheries – active 2.38 ± 0.78a,x 2.35 ± 0.76ab,x 2.98 ± 1.45b 2.58 ± 1.09x 

Fisheries – 

transition 

2.52 ± 0.45a,x 2.84 ± 0.66b,y NA 2.52 ± 0.45xy 

Fisheries – 

background 

3.18 ± 0.97a,y 2.59 ± 0.86b,x 3.29 ± 1.23a 2.82 ± 0.98y 

Carbon score 11.69 ± 3.09a 11.59 ± 3.20a 13.96 ± 5.47b 11.99 ± 3.69 

Carbon one-minute 9.47 ± 1.71 10.53 ± 2.30 10.56 ± 3.51 10.08 ± 2.33 

Carbon – active 10.61 ± 2.67a,x 11.63 ± 2.66 14.03 ± 5.93b 11.94 ± 4.34 

Carbon – transition 10.58 ± 1.54x 11.75 ± 2.55 NA 10.58 ± 1.54 
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309

Carbon – 

background 

13.57 ± 3.42a,y 11.53 ± 3.45b 13.84 ± 4.68a 12.34 ± 3.73 

3.1. Point Dume (~698–757 m) 

The Point Dume dive (H1456) spent approximately 37% of the time at the active seep 

site, 25% in transition areas, and 37% in background areas (Table 2). This site had the lowest 

overlying oxygen concentrations with a mean of 2.76 µm O2/kg (Table 1). During this dive, the 

most frequently occurring morphotypes were P. rufescens (18.5%), Liponema anemones 

(14.6%), galatheid crabs (11.7%), S. altivelis (8.2%), and N. liolepis (8.0%) (Table 5). These five 

morphotypes comprised over half of the megafauna occurrences during this dive. Other 

morphotypes were relatively rare; 22.5% of morphotypes only occurred once. Number of 

morphotypes was significantly negatively correlated with water depth (ρ = -0.27, p < 0.01), 

which ranged from 698 m to 755 m, and positively correlated with oxygen (ρ = 0.21, p < 0.01), 

ranging from 2.23 µm/kg to 4.55 µm/kg. Depth and oxygen negatively covaried with each other 

(ρ = -0.18, p = 0.01). There were no significant correlations (p > 0.05) between the number of 

functional groups in a video with depth, oxygen, or temperature. 

Background areas had significantly higher fisheries scores than both active and transition 

areas by 20% and 16.5%, respectively (X2 = 41.00, df = 2, p < 0.01; Table 6). Soft sediment 

substrates, which are associated with background areas, also had significantly higher fisheries 

scores than bacterial mats by 16.3% (X2 = 41.62, df = 1, p < 0.01). With respect to carbon, the 

same pattern was observed among seep activity: background areas had significantly higher 

scores than active and transition areas by 17.4% and 17.6%, respectively (X2 = 50.74, df = 2, p < 
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0.01; Table 6). Oxygen negatively covaried with depth (ρ = -0.18, p = 0.01). Fisheries (ρ = 0.27, 

p < 0.01) and carbon scores (ρ = 0.38, p < 0.01) were also significantly positively correlated with 

depth. Fisheries scores were significantly positively correlated with temperature at this site (ρ = 

0.17, p = 0.02). 

3.2. Palos Verdes (~278–799 m) 

During the Palos Verdes dive (H1452), the ROV spent approximately 25% of its time at 

the active seep site, 1% in transition areas, and 66% in background areas (Table 2). The most 

frequently occurring morphotypes were P. rufescens (10.8%), S. altivelis (8.9%), V. pedunculata 

(6.4%), N. liolepis (5.4%), and a diversity of midwater fish (4.6%) (Table 5). The percentage of 

singletons, i.e. morphotypes that were observed exactly once, was 13.9%, which was the lowest 

of all sites. Oxygen (ρ = -0.97, p < 0.01) and temperature (ρ = -0.96, p < 0.01) significantly 

covaried with depth. Number of morphotypes was significantly positively correlated with depth 

(ρ = 0.60, p < 0.01) between 278 m to 799 m, and negatively correlated with oxygen (ρ = -0.59, 

p < 0.01), which ranged between 2.12 µm/kg to 54.76 µm/kg, and temperature (ρ = -0.58, p < 

0.01), ranging from 5.35°C to 9.48°C. The number of functional groups exhibited the same 

patterns with depth, oxygen, and temperature. 

Palos Verdes transition areas, which included carbonate mounds, provided significantly 

higher fisheries scores than both active and background areas by 12.3% and 6.3%, respectively 

(X2 = 8.29, df = 2, p = 0.02; Table 6). There were no significant differences in fisheries or carbon 

scores among the seepage microhabitats. Neither fisheries nor carbon scores were significantly 

correlated with depth, oxygen, or temperature at this site. 
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3.3. Del Mar (~987–1030 m) 

The Del Mar dive (H1444) spent approximately 60% of the time at the active seep site 

and 40% in background areas (transition areas were not evident during this dive; Table 2). At the 

Del Mar seep, the most frequently occurring morphotypes were V. pedunculata (30.0%), S. 

altivelis (15.5%), Eusergestes similis (shrimp; 6.7%), a diversity of midwater fish (4.5%), 

Anoplopoma fimbria (sablefish; 4.4%) and lithodid crabs (4.4%) (Table 5). Neither the number 

of morphotypes nor functional groups were significantly correlated with depth, temperature, or 

oxygen. 

There were no significant differences in fisheries or carbon scores among areas with 

different seep activity or microhabitats at Del Mar seep. However, fisheries scores were 

significantly negatively correlated with oxygen (ρ = -0.40, p <0.01) between 14.85 µm/kg to 

15.56 µm/kg. 

3.4. Across all three sites 

Overall, fisheries and carbon scores were significantly positively correlated with each 

other (ρ = 0.86, p < 0.01). The number of morphotypes was also positively correlated with 

fisheries (ρ = 0.19, p < 0.01) and carbon scores (ρ = 0.18, p < 0.01). However, neither service 

score was correlated with the number of functional groups present nor the number of 

morphotypes present within any one functional group. 

With respect to fisheries scores, Del Mar had significantly higher scores than Palos 

Verdes by 12% (X2 = 8.83, df = 2, p = 0.01). Active seeps had significantly lower fisheries 

scores than background areas by 6% (X2 = 14.02, df = 3, p = 0.01). Del Mar also had 

significantly higher carbon scores than both Point Dume and Palos Verdes by 13.4% and 14%, 
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respectively (X2 = 15.03, df = 2, p < 0.01). Across all three sites, there were no significant 

differences in carbon scores among microhabitats (i.e. soft sediment, bacterial mat, clam bed, 

carbonate). 

Among active seeps, Del Mar had significantly higher fisheries (X2 = 7.13, df = 2, p = 

0.03) and carbon scores (X2 = 12.35, df = 2, p < 0.01) than Point Dume by 15% and 20%, 

respectively. Palos Verdes transitions areas had higher fisheries scores than Point Dume 

transition areas by 8% (X2 = 4.02, df = 1, p = 0.04), but significantly lower fisheries scores than 

Point Dume and Del Mar among background areas by 14.8% and 17.5%, respectively (X2 = 

27.83, df = 2, p < 0.01). This was also the case for carbon scores (X2 = 33.46, df = 2, p < 0.01). 

4. Discussion 

4.1. Describing the biological community 

Image and statistical analyses presented herein and elsewhere (Dunlop et al., 2015; Amon 

et al., 2016; Cooper et al., 2019; Smith et al., 2019) underscore the value of using video for both 

quantitative and qualitative data. Specifically, our results suggest that the number of megafaunal 

morphotypes increases with oxygenation among sites: The Palos Verdes dive had the highest 

number of morphotypes and had the highest mean overlying oxygen concentration of 20.24 

µm/kg (Table 1). This could be an artefact of the larger distance and wider depth range (~278– 

799 m) covered by the dive. However, oxygen has been shown to influence biodiversity of 

invertebrates and fish on Pacific continental margins with a strong threshold effect as diversity 

can begin decreasing at approximately 22 µm/kg (Sperling et al., 2016; Gallo et al. 2020). 

However, within the Palos Verdes dive, the number of morphotypes observed in each video was 

negatively correlated with oxygen (ρ = -0.59, p < 0.01), with the highest number of morphotypes 
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(> 20) found in videos with oxygen levels ranging from 2.18-2.26 µm/kg. Number of 

morphotypes was also positively correlated with depth (ρ = 0.60, p < 0.01). Because oxygen and 

depth covaried (ρ = -0.97, p < 0.01), it is not possible to separate their effects on number of 

morphotypes during the Palos Verdes dive. However, as described in previous studies, hypoxic 

conditions can exert selective pressure that increases specialization of taxa for increased diversity 

(Rogers, 2000). Gallo & Levin (2016), for example, found diverse assemblages of fish in the 

Pacific, Atlantic, and Indian Oceans with physiological, morphological, and behavioral 

adaptations for life in OMZs. Additionally, increased biodiversity with water depth with maxima 

from 1500-3000 m has been documented in several taxa (Rex, 1981), such as demersal fish in the 

northeast Atlantic (Mindel et al., 2016) and cnidarians, echinoderms, and gastropods in the 

Caribbean (Hernández-Ávila et al., 2018). 

In contrast to Palos Verdes, the entire Point Dume dive occured within the core of the 

California OMZ with mean oxygen levels of 2.76 µm/kg. Here, the number of morphotypes was 

significantly positively correlated with oxygen (ρ = 0.21, p < 0.01) and negatively with depth (ρ 

= -0.27, p < 0.01). Because the Point Dume seep field is in suboxic water, further decreases in 

dissolved oxygen may surpass physiological tolerances of some taxa (Seibel, 2011; Wishner et 

al., 2018). This could result in the loss of available habitat and shifting faunal distribution due to 

deoxygenation associated with climate change (see Cheung et al., 2009 and Deutsch et al., 2015). 

As oxygen deoxygenation continues to expand and intensify the OMZ (Bograd et al., 2008; 

Stramma & Schmidtko, 2019), animals that cannot tolerate low oxygen conditions will lose 

available habitat, while those that are more tolerant will distribute accordingly (Netburn & 

Koslow, 2015). The decrease in number of morphotypes with depth observed at Point Dume (ρ = 

-0.27, p < 0.01) may be driven by the significant negative correlation between oxygen and depth 

https://2.18-2.26
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(ρ = -0.18, p = 0.01). Notably, the correlation between number of morphotypes and depth here 

are opposite to that observed during the Palos Verdes dive, emphasizing the role of dissolved 

oxygen in the observed ecological patterns and the extent of ecosystem services. 

4.2. Traits that support fisheries and carbon services 

All three sites showed evidence of bacterial mats (Figure 5), likely indicating microbial 

sulfide oxidation and possibly some methane oxidation. Sulfide-oxidation by microbes can 

reduce the concentration of sulfide in the overlying water (Lavik et al., 2009), such 

detoxification could facilitate occurrence of morphotypes that contribute to ecosystem services. 

Biotic and abiotic sulfide oxidation, however, also consumes oxygen, and active seep areas 

consume two orders of magnitude more oxygen than non-seep areas (Boetius & Wenzhofer, 

2013). However, seep influence on sediment macrofauna communities, on which megafauna 

could be feeding, seems to be limited (Levin et al., 2000; Demopolous et al., 2018). Only 25% of 

morphotypes occurred on the bacterial mat, most frequently Liponema anemones (13.4%), 

P. rufescens (11.6%), and galatheid crabs (10.2%). One morphotype of polychaete was found 

exclusively on bacterial mats with two occurrences. Our results suggest that the active seep areas 

of Point Dume have lower fisheries and carbon scores than transition and background areas 

(Table 6). Intense seepage with hydrogen sulfide may act synergistically with exceptionally low 

oxygen to reduce the occurrence of functional traits that generate ecosystem services. While our 

study focused on ecosystem services mediated by megafauna, it should be noted that the 

bacterial mats at Point Dume were visually the most expansive of the three sites. The bacterial 

mats represent elevated levels of local primary chemosynthetic production, which likely 

comprises a significant process in the carbon cycle (Rothschild & Mancinelli, 1990). 



  

     

    

    

    

  

  

   

     

    

    

  

    

   

  

   

   

425 

426 Figure 5. Examples of microhabitats and traits that support ecosystem services: (A) 

427 commercially-valuable Sebastes and Sebastolobus spp. aggregating on carbonate rocks, (B) 

428 Galatheid crab feeding on bacterial mat or associated invertebrates, and (C) midwater fish 

429 observed at an active seep. 

430 

431 

432 Continental margins contribute disproportionately to global carbon and nutrient cycling 

433 (Elrod et al., 2004; Little et al., 2016); although they comprise approximately 20% of global 

434 ocean surface area (Jahnke et al., 2010), continental margins have been estimated to sequester 

435 more than 40% of carbon in the ocean (Muller-Karger et al., 2005). Additionally, the coupling of 

436 anaerobic oxidation of methane and sulfate reduction by seep microbes serves as a carbon sink 

437 by creating elevated concentrations of bicarbonate as a byproduct that can precipitate into 

438 carbonate rocks (Naehr et al., 2007; Marlow et al., 2014), which were observed throughout the 

439 dive sites and represent an additional carbon service although not one mediated by megafauna. 

440 We did not find significant correlations between oxygen (p > 0.05), which ranged from 2.01-4.73 

441 µm/kg, and ecosystem services scores at Point Dume. However, scores were significantly 

https://2.01-4.73
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correlated with water depth which negatively covaried with oxygen (ρ = -0.18, p = 0.01). 

Unfortunately, separating these effects with our dataset is not possible with the extant data. In the 

case of Del Mar seep, Grupe et al. (2015) found higher densities of commercially-valuable 

species at the active seep than in adjacent, background areas. Our results here contrast because 

we found no significant differences in ecosystem services scores among the active seep and 

background area during the Del Mar dive. This suggests that the Del Mar area, in general, may 

contribute more to fisheries and carbon services than our other study sites. 

Palos Verdes transition areas provided significantly higher fisheries services than active 

and background areas (Table 6). As mentioned before, this is likely driven by the large 

aggregations of fish found on carbonate rocks in transition areas (Figure 5). Southern California 

has four commercial deep-sea fisheries: shortspine thornyhead (Sebastolobus altivelis), longspine 

thornyhead (Sebastolobus alascanus), sablefish (Anoplopoma fimbria), and Dover sole 

(Microstomus pacificus) (Keller et al., 2015). Several of these species have previously been 

found on methane seeps (Grupe et al., 2015), but it is unclear how the methane seeps are utilized. 

Hypotheses include feeding in localized, high-productivity areas (Seabrook et al., 2019); 

breeding and laying eggs (Treude et al., 2011); avoiding predators (Tobler et al., 2016); or 

removing parasites (Tobler et al., 2007). These species also interact with seep environments 

through bioturbation (Yahel et al., 2008) and transporting chemosynthetic production to adjacent 

environments (Seabrook et al., 2019). While the utility of these scores could be improved with 

faunal densities, they provide preliminary insight about what types of microhabitats and which 

environmental variables may be important to specific services at specific sites. Methane seeps 

have been recognized as essential fish habitat (Pacific Fishery Management Council, 2019), 

which are all habitats necessary for fish feeding, growth, and reproduction. Application of this 
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trait-based approach could provide additional guidance for development of spatial protections. 

The focus on ecosystem services provides a targeted effort that can help establish research and 

management priorities. 

One drawback to using deep-sea imagery for trait-based ecosystem services assessment is 

the need for visual evidence. The traits in Table 3 are not exhaustive of characteristics that can 

contribute to fisheries or carbon services, but they were ascertainable from our dive videos. 

While deep-sea imagery may not be able to confirm regulating services, like metatranscriptomics 

could (e.g. Lan et al., 2019), it does provide insight on animal behavior that can support 

ecosystem services. For example, midwater fish (e.g. myctophids, bristlemouths, barbeled 

dragonfish) would often be seen near the seafloor and sometimes swimming into it (Figure 5). 

This could potentially represent an important benthic-pelagic interaction that contributes to 

carbon export. 

4.3. Recommendations for future studies of ecosystem services based on images 

Deep-sea expeditions with submersible dives should always start with good base maps of 

an area (Raineault et al., 2012). Bathymetry and information from other sonar systems (e.g., 

split-beam) not only facilitate safety for the ship and science crews, but also help identify 

specific dive targets to ensure effective use of ship time. Ideally, each science submersible would 

have its own standalone imaging system with fixed focal length cameras and orientation to better 

allow for quantitative image analysis. In order to achieve this, standards regarding how to collect 

pictures and videos from deep-sea sampling instruments could be useful (e.g. Error! Hyperlink 

reference not valid.). The resulting data from transects with consistent altitude, zoom, speed, 

and a laser for scale can then be used to calculate faunal densities and other diversity metrics 

https://drive.google.com/file/d/0B87SpgYL64I1OGsxdkhOOGlXT1E/view
https://drive.google.com/file/d/0B87SpgYL64I1OGsxdkhOOGlXT1E/view
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(e.g. Amon et al., 2016; Simon-Lledó et al., 2019). A quantitative transect would also allow for 

comparison among locations and time periods (e.g. Rosen & Lauermann, 2016). 

As imaging technology continues to advance, the resolution of pictures and videos 

becomes increasingly helpful for post-analysis (Dumke et al., 2018), such as the creation of 

three-dimensional reconstructions (e.g. Bodenmann et al., 2017). Imagery should be analyzed 

consistently, which may mean cross-referencing protocols and morphotype atlases if more than 

one person is conducting the analysis. Human bias is inherent to current image analysis but can 

be minimized with extensive training (Matabos et al., 2017). As more deep-sea imagery is 

analyzed and libraries are produced, there are possibilities to incorporate machine learning 

algorithms in collaboration with computer science and programming (Qin et al., 2015). 

Environmental parameters should be measured in association with imagery. Physical and 

chemical properties, such as temperature, oxygen, and hydrogen sulfide at seeps, are important 

factors that help shape the biological communities (Levin et al., 2005). Porewater chemistry 

influences the sediment community (Gieskes et al., 2011), which can contribute to fisheries 

services (i.e. as prey of commercial species) and carbon services (i.e. as bioturbators). Scientific 

tools exist to assess water chemistry such as in situ mass spectrometers that can be mounted on 

ROVs and Niskin bottles that can be used to sample water at discrete depths. These 

environmental properties can help explain differences in diversity and distribution, and provide 

insight on how communities may change with human impact such as climate change (Sperling et 

al., 2016). 

One inherent limitation of an image-based approach is that visual indicators are required. 

Processes that happen on microscopic scales and below the sediment surface are not captured 

with images unless there is some indicator visible on camera, e.g. bacterial mats. As more deep-
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ocean data and knowledge are collected about both physical and ecological processes, more can 

be inferred from visual indicators and this approach can be refined. For example, known prey of 

commercially-valuable species were all given the same score but, as we learn more about trophic 

support and food web dynamics, prey can be scored differentially based upon the proportion of 

diet they comprise. 

4.4. Environmental management implications 

The approach developed in this study can support environmental decision-making, such 

as in the designation of spatial protections, consideration of ecosystem service tradeoffs, and 

understanding of context-dependent roles of methane seeps. This analysis can identify areas of 

potentially high ecosystem services provision, such as the Del Mar seep that had relatively high 

fisheries and carbon scores, which may be important for designating essential fish habitat or 

marine-protected areas (Lindegren et al., 2018). Even qualitative data have significant value for 

management of data-poor, deep-sea habitats. They can help establish new species (Ford et al., 

2020), vulnerable marine ecosystems and significant adverse impacts (Baco et al., 2020), 

methane sources (e.g. seeps with active bubbling) and sinks (e.g. non-active seeps with 

authigenic carbonates), or methane hydrates that are of potential interest to the energy industry. 

As the climate system continues to be perturbed by human activity, carbon services are of utmost 

importance, especially those associated with deep-ocean habitats that act as long-term storage of 

carbon (Hilmi et al. 2021). Qualitative data can also be used to identify areas of interest for 

follow-on projects and studies; functional and ecosystem services data are needed to justify to 

grants programs why an area may be important and the support is necessary. It is a first step 

required to uncover the value of natural resources that the deep ocean has to offer. 
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An ecosystem-services approach can investigate tradeoffs that may need to be considered 

during the environmental decision-making process (Boulton et al., 2016). For example, if 

methane seeps provide differential ecosystem services, one prioritization metric for spatial 

protections could be weighted ecosystem services scores (e.g. Werner et al., 2014). An 

ecosystem-services approach can also help facilitate payment for environmental damages by 

considering the processes that lead to the service, such as nursery grounds, that are often 

overlooked and by tying them to human well-being. Lastly, results from this approach advance 

our understanding of ecosystem services associated with methane seeps. They highlight the 

context-dependent role of methane seeps in providing fisheries and carbon services along an 

oxygen gradient: while the combination of seepage and low oxygen seemed to suppress 

ecosystem services scores at Point Dume, which is situated in the core of the OMZ, at the Palos 

Verdes and Del Mar seeps, situated at the OMZ boundaries, the ecosystem services seemed to 

benefit from at least some seep activity. 

5. Conclusions 

In addition to describing biological communities, deep-sea imagery can be amenable to 

characterizing ecosystem services. Although standardized sampling would increase the capacity 

for quantification and comparison of ecosystem services across space and time, this study 

highlights how the plethora of existing dive videos and analysis tools can be leveraged to 

generate useful information on ecosystem services, such as fisheries and climate-regulating 

services related to carbon. A service-based approach links ecosystem structures and ecological 

processes to human well-being, which can provide recommendations for environmental decision-

making. This is increasingly important at methane seeps, which occur on continental margins 
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that continue to be impacted by human activities such as fishing, oil and gas extraction, waste 

disposal, and climate change (Armstrong et al., 2019). Mapping of ecosystem services is a 

popular method of identifying vulnerable areas in shallow waters (Burkhard et al., 2018), and 

could help with marine spatial planning in deep water when making decisions and creating 

priorities. 
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Appendices  

Appendix A. Protocol used to analyze  remotely-operated vehicle  (ROV)  dive videos in this  

study.  

ROV: For each observation, fill out the video file name. Fill out the observation type: activity, 

habitat, substrate, lebenspurren (if  applicable). Each file should have AT  LEAST one of each of  

these observations. Then fill out the observation (e.g. stationary: inactive, soft sediment, etc.) and 

record the start and  end times for each. Please use these characterizations unless something out  

of the ordinary  comes up; then let Jen know. Note whether the observation is within the first  

minute of the video or not (Y/N).  

1.  Tag the video with an “activity” (what the ROV is doing)  –  indicate start and end times  

a.  Stationary: Inactive  

b.  Stationary: Pan/Focus (camera movement)  

c.  Stationary: Sampling [Sampling type (push core, slurp, grab, Niskin)]  

d.  Mobile: Search (exploratory)  
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1063

1064
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1066

1067
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1069
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1071

1072

1073

e. Mobile: Transect (directed movement) 

2. Tag the video with a “habitat” as they appear in the video – indicate start and end times 

a. Active Site (seep, whale fall, canyon) 

b. Transition (some signs of activity, e.g. carbonate rocks but no bacterial mats) 

c. Off-site: Moving Towards 

d. Off-site: Moving Away 

e. Water Column (more than 3m off the bottom) 

3. Tag the video with dominant “substrate” as they appear in the video – indicate start and 

end times 

a. Soft Sediment 

b. Carbonate (only really at seeps) 

c. Bacterial Mat: Full (more than 50% cover) 

d. Bacterial Mat: Patchy 

e. Clam Bed: Full (more than 50% cover) 

f. Clam Bed: Scattered 

g. Mixed (more than one substrate visible other than sediment) – specify substrates 

in “notes” section 

h. Make note of lebenspurren: lots of pits and burrows, ampharetids, etc. 

FAUNA: 

4. Please check and update the fauna identification document regularly. Name new fauna 

with an identifier (e.g. color), number, or both. Also be careful to avoid typos, which will 

make it difficult to sort later in the process: be consistent! Count individuals as they cross 

into the lower 2/3 of the screen. 
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5. Note the position of each individual. 

a. On Bottom (on top of the sediment, rock): On Top, Buried, Inside 

b. On Benthic Organism (on top of another organism that is attached to the bottom) 

– note what the benthic organism is 

c. Demersal (within one body length of the benthos) 

d. Water Column (more than one body length from the benthos) 

6. Record what substrate each individual is on or hovering over (“location”), i.e. if a jelly is 

in the water column but hovering over bacterial mat, then tag this with bacterial mat. Use 

the same characterizations as Step 3. 

7. Determine what each individual is doing. 

a. Stationary 

b. Mobile: Swimming (active), Drifting (inactive) 

c. Ventilating, Breathing 

d. Feeding 

e. Start a new line for any individual(s) that are doing different things, e.g. 5 

anemones on the sediment, 2 anemones on stalked sponges 

8. For high “density” areas (more than 25% of the frame), estimate the percent coverage of 

the organism, start time, and end time. 

9. Also note any terrestrial plants, trash, etc. in the videos. 

10. Miscellaneous: Make any notes about interesting observations, i.e. there were lots of/no 

particulates in the water, transition zone between brittle stars and holothurians, 

continuation of sampling from the previous video, etc. 



   

 
 
  

  
 

  
 

 

 

 

 
 

 

  
           

   
           

 
 

   
           

 
 

    
           

 
 

   
           

 
 

   
           

 
 

   
           

 
 

   
           

 

 

 

  
           

 

 

1096 Appendix B. Scores assigned to individual morphotypes found within this study. 

Taxa Com 
mon 
name 

Com 
merc 
ial 

Pre 
dat 
or 
of 
tar 
get 

Pr 
ey 
of 
ta 
rg 
et 

Fe 
edi 
ng 
mo 
de 

Mo 
bili 
ty 

Biot 
urbat 
ion 

Die 
l 
vert 
ical 
mig 
rati 
on 

Calci 
ficati 
on 

B 
o 
d 
y 
si 
ze 

Su 
m_ 
Fis 
h 

Sum 
_Car 
bon 

Refer 
ences 

Amphip 
od 

Amp 
hipod 

0 0 1 1 1 2 1 1 1 1 7 

Actinari 
a sp 01 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Actiniid 
ae sp 01 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Actiniid 
ae sp 02 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Actiniid 
ae sp 03 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Bolocer 
a sp 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Liponem 
a sp 

Ane 
mone 

0 1 1 3 0 0 0 0 2 2 5 Purce 
ll, 
1977 

Asterony 
x sp 

Brittl 
estar 

0 1 1 4 1 3 0 0 3 2 11 Pears 
on & 
Gage 
, 
1984; 
Fujit 
a & 
Ohto 
1988 

Brisingi 
dae 

Brittl 
estar 

0 1 1 3 1 3 0 0 3 2 10 Pears 
on & 
Gage 
, 
1984; 
Fujit 
a & 



 

   
           

 

 

 

  
           

 

 

 

 
 

           
 

 

 

  
 

           

 

 

           
 

 
 

  
           

 
 

           

 

 
             

 

Ohto 
1988 

Ophidiid 
ae sp 

Brittl 
estar 

0 1 1 4 1 3 0 0 1 2 9 Pears 
on & 
Gage 
, 
1984; 
Fujit 
a & 
Ohto 
1988 

Ophiuri 
da sp 01 

Brittl 
estar 

0 1 1 4 1 3 0 0 1 2 9 Pears 
on & 
Gage 
, 
1984; 
Fujit 
a & 
Ohto 
1988 

Spinophi 
ura 
jolliveti 

Brittl 
estar 

0 1 1 4 1 3 0 0 1 2 9 Pears 
on & 
Gage 
, 
1984; 
Fujit 
a & 
Ohto 
1988 

Cataetyx 
rubirostr 
is 

Brotu 
la 

0 2 0 4 3 3 0 0 3 2 13 

Cladorhi 
zidae 

Carni 
vorou 
s 
spon 
ge 

0 1 1 3 0 0 0 0 2 2 5 Vace 
let & 
Dupo 
rt, 
2004 

Scyliorhi 
nidae 

Catsh 
ark 

0 2 1 4 3 1 0 0 3 3 11 

Chaetog 
nath 

Chaet 
ognat 
h 

0 0 1 4 2 0 1 0 1 1 8 Alvar 
ez-
Cade 
na, 
1993 

Lucinida 
e 

Clam 0 0 1 5 1 3 0 1 1 1 11 Peek, 
1998 



 
             

 
             

 
            

 

  
            

 

 
            

 

 
            

 

 
 

           

 

  

           

 

  

           

 

 
 

           

 

 

 
 

           

 

Vesicom 
yidae 

Clam 0 0 1 5 1 3 0 1 1 1 11 Peek, 
1998 

Zoanthid Coral 0 0 1 3 0 0 0 1 1 1 5 
Galathei 
d sp 

Crab 0 1 1 2 1 3 0 1 2 2 9 Carte 
s, 
1993 

Lithodid 
ae sp 

Crab 0 1 1 2 1 3 0 1 3 2 10 Carte 
s, 
1993 

Lithodid 
ae sp 02 

Crab 0 1 1 2 1 3 0 1 3 2 10 Carte 
s, 
1993 

Paguroi 
dea 

Crab 0 1 1 2 1 3 0 1 2 2 9 Carte 
s, 
1993 

Bolinops 
is sp 

Cten 
ophor 
e 

0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Mills 
, 
1995 

Ctenoph 
ora spp 
01 

Cten 
ophor 
e 

0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Mills 
, 
1995 

Ctenoph 
ora spp 
02 

Cten 
ophor 
e 

0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Mills 
, 
1995 

Ctenoph 
ore03 

Cten 
ophor 
e 

0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Mills 
, 
1995 

Lampoct 
eis 
cruentiv 
enter 

Cten 
ophor 
e 

0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Mills 
, 
1995 



 

 

 

 

           

 
  

 
           

 

 
           

 
 

 
           

  
           

 

 
 

 
           

  
           

 

 

 
           

  
           

   
           

 

 

            

 
            

 

 
 

 
            

 

 

Embassi 
chthys 
bathybiu 
s 

Deep 
sea 
sole 

0 2 1 4 3 3 0 0 3 3 13 

Microsto 
mas 
pacificus 

Dove 
r sole 

1 2 1 4 3 3 0 0 3 4 13 

Dromali 
a 
alexandr 
i 

Drom 
alia 

0 0 1 3 2 1 0 0 2 1 8 Hiss 
mann 
, 
2004 

Zoarcid Eelpo 
ut 

0 2 1 4 3 3 0 0 3 3 13 

Folliculi 
nidae 

Follic 
ulinid 

0 0 0 5 0 0 0 0 1 0 6 Pasul 
ka et 
al.,  
2017 

Foram01 Fora 
m 

0 0 0 2 0 2 0 1 1 0 6 

Foramin 
ifera 

Fora 
m 

0 0 0 2 0 2 0 1 1 0 6 

Corypha 
enoides 
acrolepi 
s 

Gren 
adier 

0 2 1 4 3 3 0 0 3 3 13 

Nezumia 
liolepis 

Gren 
adier 

0 2 1 4 3 3 0 0 3 3 13 

Epatratu 
s spp 

Hagfi 
sh 

0 1 1 1 3 3 0 0 3 2 10 

Merlucci 
us 
productu 
s 

Hake 1 2 1 4 3 3 0 0 3 4 13 

Aeginur 
a 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Atolla 
spp 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 



             

 

 

 

            

 

 

 

            

 

 

 

            

 

 

 

 

            

 

 

  

 
           

  
 

           

 
 

 
 

           

 
 

           

 
 

           
 

 

Jelly03 Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Poralia 
refescen 
s 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Scyphoz 
oa spp 
01 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Scyphoz 
oa spp 
02 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Voragon 
ema 
peduncu 
lata 

Jelly 0 0 1 3 2 0 0 0 2 1 7 Ange 
l, 
1982; 
Larso 
n, 
1991 

Ophiodo 
n 
elongatu 
s 

Lingc 
od 

0 2 1 4 3 3 0 0 3 3 13 

Midwate 
r fish 

Mid 
water 
fish 

0 2 1 4 3 1 1 0 2 3 11 

Heterop 
olypus 
sp 

Mush 
room 
coral 

0 0 1 3 0 0 0 1 2 1 6 

Octopus Octo 
pus 

0 2 1 4 2 3 0 0 2 3 11 

Pteropod Ptero 
pod 

0 0 1 3 2 0 1 0 1 1 7 Ange 
l & 
Pugh, 
2000 



 

            

 
 

            

 
 

 
 

           

 
  

           

 
 

           

 
 

           
 

 
 

 
 

           
 

 

   
            

 

 
 

 
            

 

  
            

 

   
           

 

  
           

 

 
 

           

 

   
           

 

  
           

 

Bathyraj 
a 
spinosiss 
mia 

Ray 0 2 1 4 3 3 0 0 3 3 13 

Rajidae 
spp 

Ray 0 2 1 4 3 3 0 0 3 3 13 

Glyptoce 
phalus 
zachirus 

Rex 
sole 

1 2 1 4 3 3 0 0 3 4 13 

Sebastes 
spp 

Rock 
fish 

1 2 1 4 3 3 0 0 3 4 13 

Anoplop 
oma 
fimbria 

Sable 
fish 

1 2 1 4 3 3 0 0 3 4 13 

Holothur 
oidea 

Sea 
cucu 
mber 

0 0 1 2 1 3 0 0 2 1 8 Mille 
r et 
al., 
2000 

White 
Sea 
Cucumb 
er 

Sea 
cucu 
mber 

0 0 1 2 1 3 0 0 2 1 8 Mille 
r et 
al., 
2000 

Funiculi 
na sp 

Sea 
pen 

0 0 1 3 0 0 0 0 3 1 6 Best, 
1988 

Pennatul 
acea sp 
01 

Sea 
pen 

0 0 1 3 0 0 0 0 3 1 6 Best, 
1988 

Sessiliflo 
rae sp 

Sea 
pen 

0 0 1 3 0 0 0 0 3 1 6 Best, 
1988 

Asteroid 
ea sp 01 

Seast 
ar 

0 1 1 4 1 3 0 0 2 2 10 Laue 
rman, 
1998 

Hippaste 
ria sp 01 

Seast 
ar 

0 1 1 4 1 3 0 0 2 2 10 Laue 
rman, 
1998 

Euserge 
stes 
similis 

Shri 
mp 

0 1 1 4 3 1 1 1 1 2 11 Carte 
s, 
1993 

Pandalo 
psis sp 

Shri 
mp 

0 1 1 4 2 1 1 1 1 2 10 Carte 
s, 
1993 

Peracari 
d sp 01 

Shri 
mp 

0 1 1 4 3 1 1 1 1 2 11 Carte 
s, 
1993 



  

 
           

 

   
           

 

 
 

           

   
 

           

 

 

 
           

 
            

 
 

            

  
            

 
            

 
            

  
           

 
 

 
           

 
 

           

 
  

           

 
  

           

 
  

           

 
 

           

 
 

            

Petalidi 
um 
suspirios 
um 

Shri 
mp 

0 1 1 4 2 1 1 1 1 2 10 Carte 
s, 
1993 

Sergesti 
dae sp 

Shri 
mp 

0 1 1 4 1 1 1 1 1 2 9 Flock 
& 
Hopk 
ins, 
1992 

Siphono 
phore 

Sipho 
noph 
ore 

0 0 1 3 2 0 1 0 3 1 9 

Lyopsett 
a exilis 

Slend 
er 
sole 

1 2 1 4 3 3 0 0 2 4 12 

Alepoce 
phalus 
tenebros 
us 

Slick 
head 

0 2 1 4 3 1 0 0 3 3 11 

Gastrop 
od sp 01 

Slug 0 0 1 2 1 3 0 0 1 1 7 

Alia 
snail 

Snail 0 0 1 2 1 2 0 1 1 1 7 

Buccinid 
ae sp 01 

Snail 0 0 1 2 1 2 0 1 1 1 7 

Gastrop 
od sp 02 

Snail 0 0 1 2 1 2 0 1 1 1 7 

Provann 
a 

Snail 0 0 1 2 1 2 0 1 1 1 7 

Liparida 
e 

Snail 
fish 

0 2 1 4 3 3 0 0 2 3 12 

Nemicht 
hyidae 

Snipe 
eel 

0 2 1 4 3 1 0 0 3 3 11 

Encrusti 
ng 
Sponge 

Spon 
ge 

0 0 1 3 0 0 0 0 3 1 6 

Porifera 
sp 01 

Spon 
ge 

0 0 1 3 0 0 0 0 3 1 6 

Porifera 
sp 02 

Spon 
ge 

0 0 1 3 0 0 0 0 3 1 6 

Porifera 
sp 03 

Spon 
ge 

0 0 1 3 0 0 0 0 3 1 6 

Sponge Spon 
ge 

0 0 1 3 0 0 0 0 3 1 6 

Gonatus 
sp 

Squid 0 0 1 4 3 1 0 0 2 1 10 
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