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A B S T R A C T   

Since the first report in 2008, macroalgal blooms of Ulva prolifera (often called green tides) in the Yellow Sea 
have occurred every year, with their origins, transport pathways, temporal changes, as well as causes and 
consequences studied extensively. Of these studies, satellite remote sensing has been used widely to detect the 
bloom presence and quantify the bloom size (i.e., U. prolifera coverage in km2 or biomass in kilotons). However, 
substantial variability has been found in the refereed literature in the remote sensing methodology, results, and 
interpretation of the U. prolifera coverage, especially in the attempts to study inter-annual changes or long-term 
trends. There are often inconsistent or contradicting results even from the same satellite sensor. Such in
consistencies or contradictions create difficulty not only within the remote sensing community when presenting 
new methodology or results, but also to researchers when attempting to use the remote sensing results to make 
predictions or perform impact assessments. Here, we review the literature on the remote sensing methodology to 
detect and quantify U. prolifera blooms, and make recommendations based on physical principles. Specifically, 
we propose the following conceptual guidelines: 1) a reliable index or algorithm should be relatively tolerant to 
perturbations by non-optimal observing conditions (thick aerosols, thin clouds, moderate sun glint, cloud- 
adjacent straylight, which can all be found frequently in the study region) for presence/absence detection, as 
well as to small errors in the selected thresholds to quantify U. prolifera; 2) a reliable index or algorithm should 
also make it relatively easy to account for variability in subpixel coverage of U. prolifera (i.e., through pixel 
unmixing) in order to obtain an accurate estimate of total U. prolifera coverage from an image; 3) a reliable data 
product (i.e., U. prolifera maps) should be able to account for the variable clouds when interpreting spatial 
patterns or temporal changes, with uncertainty estimates provided whenever possible; and 4) both the algorithm 
and the data product should minimize manual work in order to make them more objective and repeatable by 
other researchers. Finally, we show different types of time series of U. prolifera amounts in the Yellow Sea using 
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the approaches based on these guidelines and Moderate Resolution Imaging Spectroradiometer (MODIS) ob
servations, and discuss their implications on the interpretation of annual changes in interdisciplinary studies.   

1. Background 

Green macroalgae blooms of Ulva prolifera (often called green tides) 
in the western Yellow Sea (Fig. 1) have captured the attention of re
searchers and public media since June 2008, when the bloom became 
known internationally because of its impact on the Olympic sailing game 
(Hu and He, 2008). Since then, these annually recurrent blooms have 
been studied extensively, including the bloom origin, transport path
ways, reasons behind inter-annual variations, and implications to ocean 
ecology. A general consensus is that the blooms originate from the Subei 
Shoal (Huo et al., 2013; Lee et al., 2011; Liu et al., 2010; Liu et al., 2009), 
where aquaculture of Porphyra yezoensis (the nori seaweed used to make 
sushi) is an important source to provide the initial seed population of 
U. prolifera (Hu et al., 2010; S. Hu et al., 2014; Liu et al., 2010; Liu et al., 
2013; Liu et al., 2009; Liu et al., 2015; Wang et al., 2015; Xing et al., 
2019; Zhang et al., 2017; Y. Zhang et al., 2019). This is because 
U. prolifera could grow on the aquaculture rafts, which was usually 

discarded during seaweed harvest. Such discarded U. prolifera was 
transported to offshore waters by ocean currents, where optimal light, 
temperature, and nutrient conditions promote rapid growth, resulting in 
large-scale blooms in the western YS (Hu et al., 2010; Liu et al., 2016). 

Satellite remote sensing has been used in many studies to show 
bloom location and to estimate bloom size in terms of U. prolifera 
coverage or biomass (Table 1). Some of these studies also used several 
environmental factors (winds, currents, water temperature, light, nu
trients) to explain spatial patterns and temporal changes of the blooms. 
Various satellite sensors with different spectral bands and spatial reso
lutions have been used, including MODIS, VIIRS, OLCI, OLI, MSI, GOCI, 
GaoFen, CZI, among others. Likewise, different indexes or algorithms 
have been developed and used to detect and quantify the blooms. These 
include the Normalized Difference Vegetation Index (NDVI) (Hu and He 
2008; Cui et al., 2012), Normalized Difference Algae Index (NDAI) 
(Garcia et al., 2013; Keesing et al., 2011; Shi and Wang, 2009) Floating 
Algae Index (FAI) (He et al., 2011; Hu, 2009; Hu et al., 2010; Hu et al., 
2017; Qi et al., 2016; Xu et al., 2014), alternative FAI (AFAI) (Qi et al., 

Notations 

R Reflectance (dimensionless), wavelength (band) 
dependent and often refers to Rrc 

Rrc Rayleigh-corrected reflectance (dimensionless), 
wavelength dependent 

Rw Reflectance of water (dimensionless), wavelength 
dependent 

RT Reflectance of the target pixel, which is often a mixture of 
U. prolifera and water 

RU Endmember reflectance of U. prolifera (100% subpixel 
coverage) 

NIR Near-infrared wavelengths, 700–1100 nm 
SWIR Shortwave infrared wavelengths, 1100–3000 nm 
α sub-pixel fraction (0.0–1.0, or 0%–100%) of algae 

coverage. Some earlier studies used the symbol χ instead 
FAI Floating Algae Index, a scalar quantity derived from a 

linear combination of reflectance at three bands (Rb1, Rb2, 
Rb3) to measure the enhanced NIR reflectance due to 
floating algae 

AFAI Alternative Floating Algae Index, similar to FAI but three 
other bands are used for the linear index 

NDVI Normalized Difference Vegetation Index, defined as (RNIR – 
Rred)/(RNIR + Rred) 

EVI Enhanced Vegetation Index, an index to use one blue band, 
one red band, and one NIR band to reduce the impact of 
aerosols 

DVI Difference Vegetation Index, defined as (RNIR – Rred) 
VB-FAH Virtual Baseline Floating macroAlgae Height, an index to 

use a green band as a surrogate of SWIR band in the FAI 
calculation 

RGB Red-Green-Blue composite, often called true color 
FRGB False-color Red-Green-Blue composite, where the Green 

channel uses a NIR band instead of a green band in the RGB 
composite. 

SeaDAS SeaWiFS Data Analysis System, originally developed by 
NASA to process SeaWiFS data but further developed to 
have the capacity to process data collected by most ocean 
color sensors 

OCView Ocean Color View, an online tool developed by NOAA to 
visualize ocean color imagery in near real-time 

SNR signal-to-noise ratio (=Ltyp / σ), wavelength dependent 
CZI Coastal Zone Imager onboard the HY-1C (2018 – present) 

and HY-1D (2020 – present) satellites 
DOVE High-resolution (3–4 m) multi-band sensors available on a 

constellation of small satellites operated by Planet Labs 
since 2014 

GF Gao-Fen (high resolution in English translation), a series of 
Chinese satellite missions starting 2013 to map Earth 
surface 

GOCI Geostationary Ocean Color Imager on COMS satellite 
(2011–2021) operated by the Korea Institute of Ocean 
Science & Technology 

HJ Huan-Jing (environment in English translation), Chinese 
satellite missions starting 2008 to map Earth surface with 
high-resolution sensors (3–100 m) onboard 

Landsat A series of Earth-observing satellite missions since 1972 
operately jointly by the United States Geological Survey 
and NASA, with most missions equipped with multi-band 
sensors 

MERIS Medium Resolution Imaging Spectrometer (2002–2012), 
one of the main instruments onboard the Envisat platform 
of the European Space Agency 

MSI Multi-Spectral Instrument on Sentinel-2A and Sentinel-2B 
satellites operated by the European Space Agency 

MODIS Moderate Resolution Imaging Spectroradiometer on Terra 
(2000 – present) and Aqua satellites (2002 – present) 
operated by the U.S. NASA 

OLI Operational Land Imager on Landsat-8 satellite (2013 – 
present) 

OLCI Ocean and Land Colour Instrument on Sentinel-3A and 
Sentinel-3B satellites operated by the European Space 
Agency 

SAR Synthetic Aperture Radar 
VIIRS Visible Infrared Imaging Radiometer Suite, ocean color 

sensor on the Suomi NPP (2012 – present) and NOAA-20 
satellites (2018 – present)  
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2022a), Enhanced Vegetation Index (Xiao et al., 2019), Virtual-Baseline 
Floating macroAlgae Height (VB-FAH) (Xing and Hu, 2016), Difference 
Vegetation Index (DVI) (Xing et al., 2019), and machine learning algo
rithms (Qiu et al., 2018; Wan et al., 2021; Gao et al., 2022). A list of 
references is provided in Table 1. After the detection of the algae- 
containing pixels from individual images, some papers took further 
steps to account for variable sub-pixel fractional cover through pixel 
unmixing, while most of the papers simply counted the total number of 
algae-containing pixels without pixel unmixing (Table 1). Furthermore, 
to study inter-annual changes in bloom size, most of the studies used the 
daily maximum bloom size within a year to represent that year (e.g., 
Xing et al., 2015, 2019; Hu L et al., 2019; Xiao et al., 2019; Li et al., 
2022; Yuan et al., 2022), while Qi et al. (2016 & 2022a) used image 
composites to remove variable cloud cover when estimating the mean 
monthly biomass or bloom size. 

Such diversified approaches to detect U. prolifera and estimate bloom 
size led to different and sometimes contradicting results. For example, 
for the same MODIS image, the estimated bloom size could differ by 
more than one order of magnitude (Table 1 of Hu L et al., 2019); for 
inter-annual changes during the period of 2008–2016, some studies 
reported maximum bloom size in 2009 (e.g., Zhang et al., 2020; J. Zhang 
et al., 2019; Y. Zhang et al., 2019) while others showed 2009 as one of 
the minimum-bloom years with 2016 being the maximum year (Hu L 
et al., 2019). Likewise, for the period of 2007–2021, several studies 
reported maximum year of 2021 with U. prolifera coverage being several 
times higher than that in 2019 (Li et al., 2022; Zheng et al., 2022), while 
another study (Qi et al., 2022a) showed 2019 being the maximum year. 

These different and contradicting results make it extremely difficult 
to explain or predict bloom patterns in either space or time using either 
multi-variant statistical analysis or numeric models. After all, if a time 
series of bloom patterns is incorrect to begin with in the first place, what 
reliable findings or conclusions can be drawn through analyzing envi
ronmental factors? 

Recognizing such a difficulty, Hu L et al. (2019) explained in detail 
how to apply a linear index to detect and unmix algae-containing pixels 
to estimate fractional cover and biomass, and Qi et al. (2016) and Qi 
et al. (2022a) further combined multi-day detection results to generate 
monthly image composites to estimate the monthly mean biomass. 
Unfortunately, as more data have been collected and made available 
from multiple satellite missions, more recent publications still applied 

some of the unreliable methods to generate long-term time-series im
ages, and, as before, these results continued to differ and sometimes 
contradict each other. Such results create difficulty not only within the 
remote sensing community when presenting new methodology or re
sults, but also to researchers when attempting to use the remote sensing 
results to make predictions or perform impact assessments. 

The objectives of this paper are three folds: 1) to compile and 
comment on the published methodology and results on the remote 
sensing of U. prolifera blooms; 2) to propose several general guidelines 
on algorithm design and on the approach to generate time series of 
U. prolifera maps; and 3) to demonstrate time-series of U. prolifera data 
and discuss their implications on interdisciplinary research. Within this 
text, for simplicity, the words “algae”, “macroalgae”, “Ulva” and “U. 
prolifera” are used interchangeably. 

2. Data and methods 

2.1. Literature search 

The official literature database available at webofscience.com was 
searched in August 2022 with the keyword combination of “Ulva” and 
“remote sensing”, resulting in 69 references. Of these references, those 
not directly relevant (e.g., Ulva in other regions, or remote sensing data 
are only used superficially for illustrations) are excluded. The remaining 
references were further searched through Google Scholar to obtain 
additional papers that cited these references. In the end, only those 
papers that show representative methodology on optical remote sensing 
or long-term time-series were compiled. 

2.2. Satellite data 

Although all optical satellite sensors can be used for the purpose of 
detecting and quantifying U. prolifera blooms, in this study, for 
demonstration purpose, we use MODIS data only. This is because MODIS 
has appropriate spectral bands, high signal-to-noise ratios (SNRs), and 
near daily revisit frequency since 2000. 

MODIS Level-0 data were obtained from the NASA OB.DAAC 
(https://oceancolor.gsfc.nasa.gov) and processed to generate Level-1 
data, and then processed to generate Rayleigh corrected reflectance 
(Rrc(λ), dimensionless) using the SeaDAS software (version 8.0). The use 

Fig. 1. (a) Mean surface cover density (in % of each 4-km grid) of U. prolifera in the western YS, based on MODIS (2000–2021) satellite observations between May 
and August (figure redrawn from Qi et al., 2022a). The red dot denotes the location of Qingdao, China. The low-density features between 33 and 35oN and 122 – 
125oE mainly came from July 2011, June 2015, and June 2016, which were confirmed to be U. prolifera instead of Sargassum horneri based on analysis of spectral 
shapes (Qi and Hu, 2021); (b) Digital photo taken from the YS on 23 June 2021 showing U. prolifera mats on the ocean surface. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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Table 1 
Refereed papers on optical remote sensing of U. prolifera, together with their brief descriptions of attributes. The papers are arranged in chronological order.  

Author Year Sensor(s) Algorithm/ 
Index 

Pixel 
unmixing 

Daily 
maximum 

Monthly 
mean 

Multi- 
year 

Max year 
(range) 

Max area 
(km2) 

Max 
day 

Hu & He 2008 MODIS NDVI No No No No 2008 N/A N/A 
Liu et al. 2009 MODIS RGB No No No No 2008 N/A N/A 
Shi & Wang 2009 MODIS NDAI No No No No 2008 N/A N/A 
Hu et al. 2010 MODIS, Landsat FAI Yes Yes No Yes 2008 

(2000–2008) 
1940 N/A 

Keesing et al. 2011 MODIS NDVI No Yes No Yes 2009 
(2004–2009) 

4994 15-07- 
2009 

Son et al. 2012 GOCI NDVI, EVI, etc. No Yes No No 2011 N/A N/A 
Garcia et al. 2013 MODIS NDVI, SAI Yes Yes No Yes 2008 

(2008–2009) 
481 31-05- 

2008 
Liu et al. 2013 MODIS NDVI No Yes No Yes 2009 

(2007–2012) 
4994 15-07- 

2009 
Zhang et al. 2013 HJ FRGB No Yes No No 2012 220 22-05- 

2012 
Xu et al. 2014 MODIS FAI No Yes No Yes 2013 

(2008–2013) 
N/A N/A 

Son et al. 2015 GOCI IGAC No No No No 2011 N/A N/A 
Xing et al. 2015 MODIS NDVI Yes Yes No No 2008 

(2007–2013) 
1200 31-05- 

2008 
Qi et al. 2016 MODIS FAI Yes Yes Yes Yes 2015 

(2007–2015) 
1160 21-06- 

2015 
Xing & Hu 2016 HJ, Landsat VB-FAH No No No Yes 2012 

(1995–2014) 
N/A N/A 

Xu et al. 2016 MODIS, HJ, 
Landsat 

NDVI No No No No N/A N/A N/A 

Hu et al. 2017 MODIS FAI Yes Yes No Yes 2015 
(2008–2015) 

895 N/A 

Wang et al. 2017 Landsat FAI, NDVI, etc. No No No No N/A N/A N/A 
Xiao et al. 2017 MODIS, HJ NDVI Yes Yes No Yes 2015 

(2013–2015) 
1065 21-06- 

2015 
Xu et al. 2017 MODIS, others DVI No Yes No Yes 2015 

(2007–2018) 
3800 N/A 

Cui et al. 2018 MODIS, GOCI, HJ NDVI, DVI Yes Yes No Yes 2016 
(2007–2016) 

739 25-06- 
2016 

Harun-Al- 
Rashid 

2018 Landsat8 FAI No Yes No Yes N/A N/A N/A 

Jin et al. 2018 GOCI AFAI Yes Yes No Yes 2016 
(2011–2016) 

908 N/A 

Li et al. 2018 GF, HJ NDVI, DVI, etc. Yes No No No N/A N/A N/A 
Qiu et al. 2018 GOCI, Landsat8 NDVI, AFAI, 

etc. 
Yes Yes No Yes 2016 

(2016–2017) 
885 25-06- 

2016 
Sun et al. 2018 MODIS, HJ NDVI No Yes No No only 2015 1752 N/A 
Xing et al. 2018 MODIS, GF, 

CBERS 
DVI Yes Yes No No only 2016 539 25-06- 

2016 
Zheng et al. 2020 MODIS, GOCI, 

etc. 
RVI, NDVI, EVI Yes Yes No No only 2017 N/A N/A 

Cao et al. 2019 MODIS, HJ, OLI NDVI No Yes No Yes 2016 
(2016–2018) 

2906 25-06- 
2016 

Hu et al. 2019 MODIS, OLI, GF, 
WV2 

FAI, DVI Yes Yes No Yes 2016 
(2008–2016) 

1350 25-06- 
2016 

Kim et al. 2019 MODIS, GOCI, 
OLI 

NDVI No Yes No Yes 2016 
(2008–2016) 

13353 N/A 

Xiao et al. 2019 MODIS EVI Yes Yes No Yes 2016 
(2007–2016) 

1.19 M tons N/A 

Xing et al. 2019 MODIS, others DVI No Yes No Yes 2015 
(2007–2018) 

3800 N/A 

Zhang J et al. 2019 HJ-1A & HJ-1B 
CCD 

N/A N/A Yes No Yes 2009 
(2008–2017) 

2100 N/A 

Zhang Y 
et al. 

2019 MODIS, others NDVI No Yes No Yes 2009 
(2007–2018) 

2100 N/A 

Zhang H 
et al. 

2019 GF, HJ, ETM+, 
GOCI 

NDVI, FAI, etc. No No No No N/A N/A N/A 

Cui et al. 2020 GF4 NDVI No No No No N/A N/A N/A 
Zhang G 

et al. 
2020 MODIS, HJ NDVI No Yes No Yes 2015 

(2011–2018) 
1714 N/A 

Zhang H 
et al. 

2020 N/A manual draw N/A Yes No Yes 2009 
(2008–2019) 

2100 N/A 

An et al. 2021 MODIS, HJ, GF, 
MSI 

DVI Yes No No Yes N/A 
(2007–2020) 

N/A N/A 

Li et al. 2021 MODIS, MSI NDVI No Yes No Yes 2016 
(2007–2020) 

1700 N/A 

Sun et al. 2021 OLI FAI N/A N/A N/A N/A N/A N/A N/A 
Wan et al. 2021 GOCI N/A N/A N/A N/A N/A N/A N/A 

(continued on next page) 
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of Level-0 is to merge consecutive granules (MODIS data were provided 
in 5-minute granules) seamlessly before processing to Level-1, as the 
study region sometimes requires two consecutive granules to cover. In 
contrast, merging two consecutive Level-1 granules would result in a 
data gap of 20 scan lines. When SeaDAS is not available, other software 
(e.g., ENVI) or in-house codes may also be used to generate Rrc(λ). The 
use of Rrc(λ) instead of the fully-corrected remote sensing reflectance 
(Rrs(λ), sr-1, a standard product of SeaDAS) is because aerosol or other 
corrections often fail over pixels containing U. prolifera due to their 
contributions to the atmospheric correction bands (near-infrared (NIR) 
or shortwave infrared (SWIR)) (Hu, 2009). The use of Rrc(λ) also follows 
the tradition on remote detection of floating matters (e.g., Qi et al., 
2020; others). Therefore, Rrc(λ) was used for all subsequent calculations 
and analysis, including generation of false-color Red-Green-Blue (FRGB) 
composite images to visualize the U. prolifera features. In such images, 
U. prolifera features appear greenish because a NIR MODIS band at 859 
nm (250-m resolution) was used to represent the green channel in the 
FRGB composites (the 645-nm and 469-nm bands were used as the red 
and blue channels, respectively). U. prolifera has enhanced NIR reflec
tance, thus making the features appear greenish in the FRGB images (Qi 
et al., 2020). 

2.3. Field data 

Surface reflectance of U. prolifera has been measured in the labora
tory and in the field (Hu L et al., 2017; Xiao et al., 2019; others). These 
measurements were from mixtures of U. prolifera and water with 
different mixing ratio (i.e., subpixel fractional cover in % or biomass 
density in kg m− 2). In this study, the reflectance spectra corresponding 
to the full U. prolifera coverage (~2 kg m− 2) from Hu L et al. (2017) were 
used as the endmember spectra to determine the upper bound threshold 
used in pixel unmixing. 

3. Results 

3.1. Literature search 

Table 1 lists all papers published in English on the remote detection 
of U. prolifera blooms using optical satellite sensors. Most of these papers 
used MODIS, while some used higher-resolution sensors for 

demonstration purposes (e.g., Li et al., 2018; Xing and Hu, 2016). Most 
papers did not perform pixel unmixing, while only two papers (Qi et al., 
2016, 2022a) applied image composition to remove clouds and other 
artifacts in order to estimate monthly mean biomass and bloom size. 
Similar to what was found in Hu L et al. (2019), there is substantial 
variability in the estimated U. prolifera coverage (in km2) even from the 
same image, and there is also substantial variability in the multi-year 
annual patterns even for the same reported period. For example, for 
the period of 2008–2016, Hu L et al. (2019) reported maximum daily 
coverage of 1,350 km2 in 2016, as compared to 13,353 km2 estimated by 
Kim et al. (2019). Zhang et al. (2020) reported the maximum year of 
2009 (daily maximum of 2,100 km2) for the period of 2008–2019, while 
Wang et al. (2021) showed higher daily maximum of 3,644 km2 in 2019 
rather than in 2009. 

Clearly, these mixed results cannot be all correct, and when the 
incorrect multi-year patterns are used together with other environ
mental factors (temperature, light, nutrients, winds, etc.) to infer cau
sality, the inference is likely meaningless. Below, through clarifying 
several mapping concepts and using examples, we reveal the reasons 
behind such discrepancy and propose the appropriate methods, in both 
principle and practice, to map U. prolifera from space. 

3.2. Requirements and general guidelines on U. prolifera mapping 

In computer programming, before developing the computer code in a 
certain language, pseudo code is often used to first outline the logical 
steps, and then seek practical ways to realize these logical steps, i.e., 
implementing in a certain language. Here, we follow the same approach 
to first outline the algorithm conceptual design, and then demonstrate 
practical ways to implement such a design. 

Conceptually, similar to detecting and quantifying other floating 
matters (Hu, 2021), detecting and quantifying U. prolifera from indi
vidual images also require three steps:  

I. Is there something floating on the surface? This requires the 
detection of a spatial anomaly;  

II. Is that “something” U. prolifera or something else? This requires 
spectral discrimination and/or knowledge of other ancillary 
information;  

III. How much U. prolifera is in each image pixel and each image? 

Table 1 (continued ) 

Author Year Sensor(s) Algorithm/ 
Index 

Pixel 
unmixing 

Daily 
maximum 

Monthly 
mean 

Multi- 
year 

Max year 
(range) 

Max area 
(km2) 

Max 
day 

Unet, SegNet, 
etc. 

Wang et al. 2021 MODIS, GF, CZI, 
etc. 

DVI No Yes No Yes 2019 (2009, 18, 
19) 

3644 23-06- 
2019 

Zhang G 
et al. 

2021 MSI, OLI, MODIS NDVI, FAI No Yes No Yes 2016 
(2016–2020) 

1582 25-06- 
2016 

Zhang H 
et al. 

2021 HJ, OLI VB_FAH, FAI Yes No No No N/A N/A N/A 

Gao et al. 2022 MODIS, GF5/ 
SAR 

FAI, NDVI, etc. N/A No No No N/A N/A N/A 

Li et al. 2022 MODIS, others NDVI No Yes No Yes 2021 
(2007–2021) 

2600 N/A 

Ma et al. 2022 MODIS. Sentinel- 
1/SAR 

DVI No Yes No No only 2021 42384 18-06- 
2021 

Qi et al. 2022 MODIS, Landsat AFAI, FAI Yes No Yes Yes 2019 
(1984–2021) 

N/A N/A 

Wang et al. 2022 N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Yuan et al. 2022 MODIS DVI Yes Yes No Yes 2021 

(2015–2021) 
585 19-06- 

2021 
Zhang G 

et al. 
2022 MODIS, HJ, GF1 NDVI N/A Yes No Yes 2015 

(2012–2016) 
1752 21-06- 

2015 
Zhang B 

et al. 
2022 MODIS NDVI No Yes No Yes 2015 

(2015–2019) 
2600 18-06- 

2015 
Zheng L et al. 2022 MODIS, Landsat, 

others 
NDVI No Yes No Yes 2021 

(2013–2021) 
2000 N/A  
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With some a priori information (e.g., in the western YS the only 
floating matter in May – July is likely U. prolifera), the first two steps 
become one, making all three steps into two, as illustrated in the con
ceptual diagram of Fig. 2: 

1) Step 1: classification of image pixels into three categories: algae- 
containing, algae-free, and non-observable (i.e., invalid). This step is 
called “detection” or “classification.” This step can often be separated in 
three sub-steps: 

1a) determine which pixels are non-observable (i.e., masking cloud 
pixels and other pixels where algae classification is impossible); 

1b) from the remaining pixels, determine which are algae-containing 
pixels and which are algae-free pixels; 

1c) count the number of algae-containing pixels to determine the 
U. prolifera areal coverage in km2. In addition, the area of water 
encompassing U. prolifera can also be quantified from determining the 
outer boundaries of the U. prolifera pixels. 

Basically, Step 1 is an extended version of presence/absence 
detection. 

2) Step 2: quantify U. prolifera amount in each algae-containing pixel 
through pixel unmixing, and then sum up for the entire image. This step 
is called “objective quantification.” The U. prolifera amount in each 
algae-containing pixel can be expressed as % cover (i.e., areal density) 
within the pixel, equivalent to biomass once a relationship is established 
between areal density and biomass from laboratory or field experiment 
(e.g., Hu L et al., 2017; Xiao et al., 2019). Similar to Step 1, the area of 
water encompassing U. prolifera can also be quantified. 

In addition to the above two steps applied to individual images, a 
third step is important as well: 

3) Step 3: determine monthly, annual, and inter-annual changing 
patterns of U. prolifera distributions and amounts in order to facilitate 
studies on their causes and consequences as well as on their modeling 
and predictions. This is through image composition to remove data gaps 
due to clouds and other non-observable conditions. 

As with any other remote sensing data products (IOCCG, 2019), 
uncertainty estimates in the derived U. prolifera amount are also desired. 
For brevity, the three steps are focused here but uncertainty estimates 
are discussed below. 

The steps above are not restricted to U. prolifera but applicable to all 
floating macroalgae and microalgae scums. Different studies may have 
different purposes, and, depending on the specific purpose, not every 
step above is required and some steps may be simplified. For example, to 
determine the presence/absence and approximate location of 
U. prolifera, visual inspection of the FRGB images or some other indexes 
may be sufficient, as long as the colored features can be judged to be 
U. prolifera from either spectral analysis (Qi & Hu, 2021) or from local 
knowledge of oceanography. In contrast, it is more technically chal
lenging to objectively quantify the Ulva amount (in either km2 coverage 
or biomass) and to further quantify annual-interannual patterns together 
with uncertainty estimates. Based on the published literature on the 
various methodology, below we explain why the above three steps are 
required for objective mapping of U. prolifera, and then lay out the 
principles that need to be followed either explicitly or implicitly when 
implementing algorithms or data processing software for the above 

three steps. These principles include.  

1) Step 1, Ulva detection through image classification. 

This is the fundamental step required for presence/absence detection 
of any floating matter for obvious reasons, and there is no need to lay out 
any justifications.  

2) Step 2, Ulva quantification through pixel unmixing. 

This is the step that most published papers missed (Table 1) but is a 
critical step to objectively quantify U. prolifera amount from an indi
vidual image unless the pixel resolution is very high (e.g., centimeters). 
There are two fundamental reasons behind pixel unmixing. 

The first is apparent, as most (or all) medium-resolution pixels are 
not fully covered by U. prolifera (Fig. 3), thus requiring pixel unmixing to 
accurately estimate U. prolifera coverage at both pixel level and image 
level. This is required for nearly all sensors from MODIS (250-m or 1-km 
resolution) to Landsat (30-m resolution). From statistics of the MODIS 
250-m resolution images, 75% of the algae pixels have their U. prolifera 
subpixel coverage <10% (Fig. 7b of Hu L et al., 2017). Even the 2-m 
resolution pixels of Worldview-2 image do not always contain full 
algae coverage (Fig. 6 of Hu L et al., 2019). Without pixel unmixing, a 
pixel containing 0.5% algae is counted the same as a pixel containing 5% 
or 50% algae, leading to large uncertainties. For the same reason, 
without pixel unmixing, using images of different resolutions will result 
in different estimates of U. prolifera coverage even for the same region on 
the same day. 

The second is not as apparent but is as important as the first. In 
classifying algae pixels during Step 1, a lower-bound threshold value is 
often used, above which the image pixels are classified as algae pixels. In 
practice, regardless of what method is used (e.g., dynamic selections 
across different features or different images), there is always a slight 
error in determining this lower-bound threshold. The slight error will 
lead to many additional pixels being classified as algae pixels or water 
pixels, depending on the sign of the error. These additional pixels always 
have weak signals because they are approaching the lower-bound 
threshold. With pixel unmixing, their subpixel fractional coverage (α 
in %) are very small, and therefore will only cause a small error in the 
total coverage estimates. In contrast, without pixel unmixing, these 
additional pixels carry the same weight as other algae pixels with 
stronger signals, leading to disproportional and much higher errors in 
the total coverage estimates. This is believed to be a major reason why 
there is a large difference in the total coverage estimates from the same 
images in different studies (Table 1), as they selected the lower-bound 
thresholds differently from the same images without using pixel 
unmixing when calculating the total coverage. 

Clearly, pixel unmixing is a critical step in estimating U. prolifera 
coverage from individual images.  

3) Step 3, Spatial/temporal patterns through image composition. 

This requirement is not as apparent as the above two steps, yet it is a 

Fig. 2. Conceptual steps to map U. prolifera spatial distribution patterns and temporal changes. Most published remote sensing studies only used Step 1, and only two 
studies used all three steps (Table 1). 
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critical step to derive reliable temporal changing patterns of U. prolifera 
distributions. In the refereed literature, many papers (Table 1) used 
daily maximum coverage during a year to represent that year. In an ideal 
situation such as the one illustrated in Fig. 4a, this is a reasonable choice. 
However, such an ideal situation would never exist, especially for the YS 
where frequent cloud cover and strong sun glint often make it difficult to 
obtain valid pixels from satellite images. An example is provided in 
Fig. S2 of Qi et al. (2017), where the probability of obtaining valid 
MODIS observations through standard data processing of SeaDAS is 
shown to be very low from daily images. Fig. 4b shows a hypothetical 
case where some of the Year 2 images are obscured completely by clouds 
(i.e., the data gaps) while other images are partially covered by clouds in 
different regions (annotated by Day X and Day Y). In such a hypothetical 

case, the observed daily maximum departs from the real daily 
maximum, thus cannot be used to represent the mean bloom condition. 
The same argument can also be applied to monthly or weekly changes 
within a year: using a single image to represent a month or week may 
also lead to similar errors as illustrated in Fig. 4b. 

The fundamental reason of why it is difficult to use a daily maximum 
to represent a year or a month comes from the fact that, in a given year, 
the day of maximum U. prolifera may be cloudy (i.e., no valid satellite 
observation as shown by the dashed arrow in Fig. 4b). The daily 
maximum obtained from a cloud-free day may be several days or weeks 
away from the real maximum day, leading to departure of both 
U. prolifera amount and timing of the maximum. Worse than this, such a 
departure may change from year to year. 

One solution to overcome this difficulty is through image composi
tion (Qi et al., 2016; Qi et al., 2022a), where the % cover (or algae 
density) in each location (pixel or pre-defined grid) is estimated from 
multiple images rather than from a single snapshot image. This way, as 
long as clouds move much faster than U. prolifera in both space and time 
and as long as each location (or grid) has enough valid pixels to calculate 
the average, such a composite would represent the mean condition for 
that period. This concept is illustrated in Fig. 5 in two possible scenarios. 
The left side of Scenario 1 represents partial cloud cover in Day X and 
Day Y of Fig. 4b, where the error is removed in the composite. Scenario 2 
shows that the moving U. prolifera would not be counted twice because 
the composite is an average over two valid observations. For compari
son, Fig. 5 also shows Scenarios 3 and 4 where the composites would 
give incorrect answers, yet these scenarios are unlikely because, in re
ality, clouds move much faster than U. prolifera (see Discussion below). 
Note that in these demonstrations, the composite images are used to 
represent the mean amount of U. prolifera between the two days. 

Another possible solution to overcome the same difficulty is through 
modeling, where the growth rate of U. prolifera estimated from daily 
observations is used to predict the daily maximum (e.g., Yuan et al., 
2022). Such predicted daily maximum, however, is subject to un
certainties in the growth rate estimates that are driven by several 
environmental factors. 

3.3. Algorithm conceptual design and recommendations 

Based on the above required steps, the following conceptual design is 
recommended. 

Fig. 3. Conceptual illustration of why pixel 
unmixing is critical in estimating U. prolifera 
coverage. The 1-m resolution image (inset) was 
collected over Dongjia Bay east of Qingdao, China, 
with one small region enlarged to show the 
U. prolifera features. The white grid lines illustrate 
the MODIS 250-m pixel size. There is not a single 
250-m pixel that is fully covered by U. prolifera, thus 
requiring pixel unmixing to correctly estimate sub
pixel coverage (α) before total coverage from the 
image can be derived. The approximate values of α 
for two grids are illustrated. Statistics of MODIS 
250-m resolution images indicates that >99.5% of 
algae-containing pixels have α < 1.0 (Hu L. et al., 
2017).   

Fig. 4. Conceptual illustration of why extra caution is required when using 
daily maximum to represent monthly or annual U. prolifera amount for (a) 
hypothetical daily changes of U. prolifera in two years, where all daily images 
are completely cloud free. In this scenario, using a daily maximum to represent 
the annual mean makes sense and (b) the same hypothetical daily changes, but 
under a scenario where some of the Year 2 images are obscured completely by 
clouds (data gaps in the curve) while other images are partially covered by 
clouds in different regions (Day X and Day Y, see Fig. 5, Scenario 1). In this 
scenario, the observed daily maximum is an underestimate of the real daily 
maximum (dashed arrow), and the corresponding timing is also incorrect. 
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1) Step 1, Image classification. 

For qualitative detection of presence/absence as required by some 
management agencies and environmental groups, the simplest way is to 
visually inspect the false-color Red-Green-Blue (FRGB) images (Qi et al., 
2020), where land, clouds, sun glint, and U. prolifera features can all be 
identified (e.g., Fig. 6a). Such FRGB images have already been made 
available in near-real-time for the study region through a Virtual Antenna 
System (Hu et al., 2014, https://optics.marine.usf.edu/cgi-bin/optics_ 
data?roi=QINGDAO&current=1) using MODIS and OLCI data, and avail
able for global waters through the OCView online portal (https://www. 
star.nesdis.noaa.gov/socd/mecb/color/ocview/ocview.html; Mikelsons 
& Wang, 2018) using VIIRS data. However, quantitative classification re
quires more than FRGB composite images. 

Indeed, classifying clouds and other invalid pixels (in simple words, 
“cloud masking”) sounds easy, but in practice can be very difficult 
because, unlike cloud masking for typical ocean color applications that 
requires only simple thresholding in a NIR or SWIR band (Wang & Shi, 
2006), cloud masking for U. prolifera mapping cannot use simple 
thresholds, otherwise some algae pixels may be classified as clouds 
because these pixels also have elevated NIR and SWIR signals. While 
machine learning approaches may be used to classify and mask these 
pixels, a practical way has been described in Qi et al. (2016) and used in 
Hu L et al. (2019) to classify these invalid pixels. Briefly, the technique 
uses a combination of thresholding and spectral shapes in several blue- 
red-NIR-SWIR bands to mask the invalid pixels while keeping other 
pixels (including algae pixels and water pixels). As a result, thick clouds, 
strong sun glint, and extremely shallow waters are all masked as invalid 
pixels. The reason of not masking thin clouds is because well-designed 
algorithms can “see through” thin clouds (e.g., up to Rrc(859) ~ 0.05, 
nearly doubling the SeaDAS default threshold of 0.027) to classify algae 
pixels from water pixels. An example of such a cloud masking result is 
presented in Fig. 6b. 

After masking clouds and other invalid pixels, the remaining pixels 
(i.e., valid pixels) need to be classified into two classes: algae pixels and 
algae-free (i.e., water) pixels. There are different ways for this classifi
cation, including machine learning (e.g., Qiu et al., 2018; Wan et al., 
2021; Gao et al., 2022) or through the use of certain indexes such as 
NDVI, NDAI, FAI, AFAI, EVI, VB-FAH, or DVI (Table 1). The latter 
require a lower-bound threshold (UL) to differentiate algae from water 
pixels, and such a threshold is not trivial to determine because it may 
depend on observing geometry, aerosol optical thickness, and water 
type (clear or turbid), and therefore may vary within an image and 
across different images collected even by the same sensor. In practice, it 
can be determined dynamically through a moving window (e.g., Garcia 
et al., 2013) or through the construction and subtraction of a “water 
background” image (e.g., Hu L et al., 2019). Some published papers 
simply used visual interpretation of companion medium-resolution and 
high-resolution images to determine the threshold manually for 
different locations within the same image and for different images, thus 
could lead to large subjectivity and uncertainties. 

Regardless of the index used, in order to minimize possible errors in 
determining the lower-bound threshold, a reliable index should be 
relatively stable under different observing conditions. Through numer
ical simulations, image data comparison, and sensitivity analysis, Hu 
(2009) showed that the linear index, FAI, is more tolerant than non- 
linear indexes (NDVI, EVI) to perturbations by thick aerosols, thin 
clouds, cloud-adjacent straylight, moderate sun glint, and variable 
observing geometry. Therefore, FAI and its alternative form, AFAI, may 
serve as candidate indexes, from which lower-bound threshold is 
determined to classify algae and water pixels (Fig. 6b). Mathematically, 
FAI or AFAI is a measure of NIR reflectance against a linear baseline 
formed by two neighboring bands: 

FAI(orAFAI) = Rλ2 −

[

Rλ1 +
λ2 − λ1

λ3 − λ1
×
(
Rλ3 − Rλ1

)
]

(1) 

Fig. 5. Illustration of image composition in two 
likely and two unlikely scenarios, where each square 
can represent either an image or an image grid. The 
annotated numbers represent relative algae amount, 
either blocked by clouds (shaded areas) or cloud 
free. In Scenario 1, the moving clouds over rela
tively static algae is removed in the composite 
image. This scenario represents the reduced algae 
amount in Day X and Day Y of Fig. 4b, but the 
composite can “recover” the cloud-obscured algae. 
In Scenario 2, the moving algae under cloud-free 
conditions is not double counted in the composite 
because each location in the composite is an average 
from two observations. In Scenarios 3 and 4, both 
algae and clouds move at similar speeds but in 
opposite directions, so the composite images are 
incorrect in estimating the algae amount. The last 
two scenarios are unlikely because, in reality, clouds 
move much faster than algae.   
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where the first term is the NIR reflectance at λ2, and the second term is 
the linear baseline formed between λ1 and λ3 (see illustration in the inset 
of Fig. 6b). For MODIS FAI, λ1, λ2, and λ3 are 645 nm, 859 nm, and 1240 
nm, respectively. For MODIS AFAI, λ1, λ2, and λ3 are 667 nm, 748 nm, 
and 869 nm, respectively. For other sensors, depending on the band 
availability, these indexes can be defined accordingly. 

The fundamental reason of why FAI or AFAI is better than a non- 

linear index in terms of tolerance to variable observing conditions is 
because of its linear design. Many perturbation factors (e.g., aerosols, 
whitecaps, straylight, thin clouds, moderate sun glint) are spectrally 
linear or near linear, and therefore can be minimized through the linear 
subtraction in Eq. (1). For this reason, when the number of spectral 
bands is insufficient to calculate FAI or AFAI, a linear index of DVI may 
be used, yet its tolerance to perturbations is not as robust because it 
requires those perturbations to be spectrally flat instead of spectrally 

Fig. 6. Demonstration of the first two steps 
in mapping U. prolifera. (a) False-color Red- 
Green-Blue MODIS image on 19 June 2021 
showing greenish image features, represent
ing U. prolifera rafts. This type of image is 
sufficient for presence/absence detection as 
well as for delineating water area encom
passing U. prolifera. (b) Cloud masking 
(white color) on the corresponding floating 
algae index (FAI) image based on the pro
cedure of Qi et al. (2016). The inset figure 
illustrates the concept of FAI. (c) Classified 
algae pixels (green) and water pixels (purple) 
using the procedure described in Hu L et al. 
(2019). The results in (b) and (c) represent 
Step 1 described in this text. (d) Same as in 
(c) but after pixel unmixing using the pro
cedure and threshold values described in Hu 
L et al. (2019). This represents Step 2 
described in this text. The total U. prolifera 
coverage before and after pixel unmixing are 
annotated in (c) and (d), respectively, where 
“A” stands for the pixel size (in this case, 
0.0625 km2). (For interpretation of the ref
erences to color in this figure legend, the 
reader is referred to the web version of this 
article.)   

Fig. 7. Sensitivity of estimated U. prolifera 
coverage to errors in the selected lower- 
bound threshold before (a) and after (b) 
pixel unmixing. In both cases, the lower- 
bound threshold to differentiate algae 
pixels from water pixels was raised by 5% of 
the dynamic range of (upper-bound – lower- 
bound), with the original results in Fig. 6c & 
6d being used as the reference (i.e., “truth”). 
In (a), the increased lower-bound resulted in 
almost a 50% reduction in the estimated 
U. prolifera coverage (from the original 8771 
km2 in Fig. 6c to the current 4391 km2). In 
(b), the same increased lower-bound only 
resulted in a 10% reduction in the estimated 
coverage (from the original 1056 km2 in 
Fig. 6d to 952 km2). If the lower-bound is 
raised by 1%, the reduction before and after 
pixel unmixing is 6.1% (538 km2) and 0.4% 
(4 km2), respectively.   

C. Hu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103173

10

linear. 
After applying the lower-bound threshold to the background- 

referenced FAI image of Fig. 6b, two classes are obtained in Fig. 6c: 
algae pixels (green) and water pixels (purple). Knowing the pixel size of 
A = 250 m × 250 m (0.0625 km2), the total U. prolifera coverage is 
estimated to be the number of algae pixels multiplied by A, 8,771 km2. 
Note, however, that this areal estimate is simply a count of algae pixels 
without pixel unmixing, and therefore cannot be used objectively.  

2) Step 2, Pixel unmixing. 

Because the mixing of optical signals within a pixel is linear (Eq. (2)), 
a linear index such as FAI or AFAI can facilitate pixel unmixing using 
linear equations (Eq. (3)). Specifically, in each spectral band, we have 

RT = aRU +(1 − a)RW , (2)  

where RT is the reflectance of the target pixel (a mixed pixel, see illus
tration in Fig. 3), RU is the reflectance of U. prolifera at full (i.e., 100%) 
coverage that represents the algae endmember, RW is the reflectance of 
algae-free water that represents the water endmember, and α is the sub- 
pixel fraction of U. prolifera (in several earlier publications this is termed 
as χ). For simplicity, the wavelength dependence of each reflectance 
term is omitted here. In practice, RU can be determined from laboratory 
or field measurement (e.g., Hu L et al., 2017) while RW can be deter
mined from individual images. As argued below, small errors in select
ing RU will propagate proportionally to the final estimates of U. prolifera 
coverage or biomass, but these small errors are not important because 
they would not change either the spatial distribution patterns or the 
temporal changing patterns of U. prolifera. From Eqs. (1) and (2), it is 
straightforward to derive 

FAIT = aFAIU +(1 − a)FAIW (3) 

In contrast, the non-linear indexes such as NDVI would not lead to 
such a linear combination: 

NDVIT ∕= aNDVIU + (1 − a)NDVIW (4) 

Such a contrast between linear indexes and non-linear indexes has 
been demonstrated in Fig. 9 of Hu L et al. (2019). Therefore, in addition 
to the reasons outlined in Step 1, for the sake of pixel unmixing, it is also 
easier to use a linear index than a non-linear index, although the use of 
NDVI or other non-linear index can also achieve the same purpose with 
additional effort to follow a non-linear mixing line. Then, after applying 
the upper-bound threshold of FAI value (e.g., FAIU = 0.2) and water 
endmember value (e.g., FAIW = 0.0), α in each algae pixel can be derived 
using Eq. (3) and the pixel’s FAIT value, and this step is therefore called 
linear unmixing. From the originally classified image of Fig. 6c, after 
linear unmixing, the resulting image is shown in Fig. 6d. Integration of α 
from all algae pixels, after accounting for the pixel size of A = 0.0625 
km2, leads to a total U. prolifera coverage of 1,056 km2. This is much 
lower than the original estimate of 8,771 km2 but is an objective esti
mate that does not depend on sensor resolution (see Table 3 of Hu L 
et al., 2019). For this particular case, the average sub-pixel algae fraction 
is 1056/8771 = 0.12 (or 12% of a MODIS 250-m pixel). Furthermore, 
with a calibration constant of biomass per area of U. prolifera determined 
from laboratory experiment (2 kg m− 2, Hu L et al., 2017), the areal 
coverage of 1,056 km2 can be easily converted to total wet biomass of 
U. prolifera. 

As argued in Section 3.2 on why pixel unmixing is critical, Fig. 7 
further demonstrates the sensitivity of the estimated total U. prolifera 
coverage to errors in the selected lower-bound threshold before and 
after pixel unmixing. If the lower-bound was raised by only 5% of the 
entire range of (upper-bound – lower-bound), without unmixing, the 
estimated U. prolifera coverage would be reduced by ~ 50% (Fig. 7a). 
This means that about half of the algae pixels have subpixel algae 
coverage of < 5%. In contrast, for the same change of the lower-bound, 

after unmixing, the reduction in the estimated total coverage was only 
10%. Likewise, for a 1% increase in the lower-bound threshold, the 
reduction in the estimated total coverage before and after pixel 
unmixing was 6.1% and 0.4%, respectively. Clearly, pixel unmixing 
significantly lowered the sensitivity of U. prolifera estimates to errors in 
the selected lower-bound threshold.  

3) Step 3, Image composition. 

The argument of why image composition is required to have accurate 
representation of U. prolifera coverage in a given period is laid out in 
Section 3.2. Here, Fig. 6d also serves as an example of why image 
composition is important for mapping U. prolifera. Even if the estimated 
U. prolifera coverage in Fig. 6d were to be error free, it still could not be 
used to accurately represent that day, let alone representing the corre
sponding month or year. This is simply because a large and unknown 
portion of U. prolifera is obscured by clouds in Fig. 6d. As those clouds- 
covered pixels will likely be cloud free in another day, this problem can 
be addressed through image composition. 

In the image composition, for a certain period (e.g., month), all in
dividual images are aggregated together. Then, for each pre-defined 
grid, the mean areal density (i.e., fractional cover) is calculated as 

α =
1
Nt

∑Nt

i=1
αi (5)  

where Nt is the number of valid pixels within the grid from all images 
and i being the pixel number, with α ranging between 0.0 and 1.0 (or 0% 
–100%). This is exactly the same way as in the NASA monthly “binning” 
practice to determine monthly mean chlorophyll-a concentration in a 
given grid, except that pixel-level Chl is replaced by pixel-level α. 

As an example, Fig. 8 shows monthly α distributions in each 4-km 
grid for the months of June 2019, July 2019, June 2021, and July 
2021, respectively. Except for the extremely shallow Subei Bank, nearly 
all open-water areas have valid data (typically > 80 valid 1-km obser
vations used to calculate the mean in each 4-km grid), and these 
represent the mean distributions of U. prolifera abundance during those 
months. 

Integration of α over all grids, after accounting for the grid size, 
yielded the total areal coverage of U. prolifera (km2) in the study region. 
Likewise, α in each grid can be converted to biomass using the pre- 
determined calibration coefficient after accounting for the grid size, 
and integration of biomass over all grids would result in total biomass 
during the month. Note that such derived total U. prolifera coverage or 
biomass represents the mean conditions during the month, thus can be 
much lower than the daily maximum value. 

3.4. Time series of U. prolifera amount 

Using the above steps and MODIS data collected between 2008 and 
2021, the derived annual mean U. prolifera biomass values are presented 
in Fig. 9, together with daily maximum U. prolifera coverage (after pixel 
unmixing) for each calendar year. Here, the annual mean was calculated 
from the two months of June and July only, as other months (before 
June and after July) showed no or small amount of U. prolifera. For both 
estimates, uncertainties are presented as vertical or horizontal bars (see 
Discussion below). 

Although the general inter-annual patterns are similar between the 
two datasets (Fig. 9a), they are not exactly parallel to each other, and 
some significant data scatter is still observed when one is plotted against 
the other (Fig. 9b), suggesting inevitable uncertainties if daily maximum 
were to be used to represent the mean bloom situation in a year. For the 
same reason, it is also difficult to use daily maximum to represent the 
mean bloom situation for the month of June because of the data scatter 
found between the two datasets (Fig. 9c). 

These results have significant implications when interpreting inter- 
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annual changes or determining which years had more U. prolifera than 
other years. 

First, the inter-annual patterns in daily maximum U. prolifera 
coverage are dramatically different from those reported in earlier 
studies. For example, for the period of 2008 – 2018, several studies re
ported the maximum year of 2009 (Zhang Y. et al., 2019; Zhang H et al., 
2019), while this study shows that the year of 2009 had much lower 
daily maximum than those in 2008, 2015, and 2016 for the same period. 
This is believed to be due to inconsistent thresholds, inconsistent in
dexes, or inconsistent inter-sensor calibration together with the lack of 
pixel unmixing used in earlier studies. Likewise, for the entire period of 
2008–2021, several studies reported significantly higher (2–5 folds) 
daily maximum in 2021 than in 2019 (Li et al., 2022; Zheng et al., 2022), 
which appear to be due to lack of pixel unmixing, selection of an 
incorrect day to represent daily maximum, and lack of image composi
tion. In contrast to these earlier studies, this study shows that daily 
maximum in 2021 is only slightly higher (3%) than in 2019 (1589 km2 

versus 1537 km2, Fig. 9a). 
Second, because the time-series of daily maximum is not exactly 

parallel to the time-series of annual mean, different answers may be 
obtained when determining which years had more U. prolifera than other 
years. An example is given by comparing 2019 and 2021. In contrast to 
the similar daily maxima between the two years, 2021 showed much 
lower annual mean than 2019 (666 versus 934 kilo tons, Fig. 9a), well 
beyond the estimated uncertainties. This is because although June 2021 
showed similar U. prolifera amount as in June 2019 (Fig. 8a & 8c), July 

2021 showed much lower U. prolifera than July 2019 (Fig. 8b & 8d) 
because the U. prolifera season ended earlier in July 2021 . Clearly, even 
if a daily maximum were to be the true maximal daily value during a 
year (this is certainly questionable due to variable clouds), it is difficult 
to use a daily maximum to represent the mean condition during a month 
or a year. For example, while the daily maximum in the four major 
bloom years (2015, 2016, 2019, and 2021) changed substantially, the 
mean biomass in June was rather stable among the four years (Fig. 8c). 
In this regard, although daily maximum is a simple and useful index to 
determine the maximum amount observable by satellites in any single 
day during a month or a year, its interpretation requires caution. In the 
end, if the inter-annual changing patterns were incorrect to begin with, 
using environmental factors such as light availability, nutrient avail
ability, temperature, winds, and/or circulations, to explain the changing 
patterns would only lead to incorrect interpretations. 

Finally, although not in the scope of work of this review, because it is 
relevant to the interpretations of inter-annual changing patterns, it is 
worth mentioning that all these U. prolifera estimates are those observed 
from satellite observations after mitigation efforts by human beings (e. 
g., control of release of seed populations during the harvest season of the 
seaweed aquaculture, physical removal at sea). Because these mitigation 
efforts may vary in different years for various reasons and because the 
exact impacts of these mitigation efforts on the observed U. prolifera 
amount are largely unknown, caution is required when using environ
mental factors alone to interpret annual or short-term changes. 

Fig. 8. Monthly mean surface coverage density (in % of each 4-km grid) of U. prolifera derived from MODIS/Terra and MODIS/Aqua observations in (a) June 2019, 
(b) July 2019, (c) June 2021, and (d) July 2021, after image composition (Step 3 of this text) of individual images after classification and pixel unmixing (e.g., 
Fig. 6d). The mean U. prolifera biomass is annotated in each panel, representing the mean coverage during the month. Figures are adapted from Qi et al. (2022a). 
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4. Discussion 

4.1. Validation and uncertainties 

Similar to any other remote sensing data product, the U. prolifera 
maps derived from the above approach, or from any other approach, are 
not error free. The question is how to validate the maps and how to 
estimate uncertainties. 

There are standard protocols to use field measurements to evaluate 
satellite estimates of bio-optical parameters such as surface reflectance 
or chlorophyll-a concentrations (e.g., Barnes et al., 2019) and there are 
also proposed protocols to estimate uncertainties in the derived ocean 
color data products (IOCCG, 2019). However, because of the strong 
heterogeneity in U. prolifera distributions and because every pixel is only 
partially covered by U. prolifera (Fig. 2), such protocols cannot be fol
lowed directly. Likewise, it is very difficult to collect all U. prolifera 
within a large region and compare to co-located image pixels. These 
difficulties are not limited to U. prolifera but are fundamental to all 
floating matters including oil slicks. 

Currently, one way to evaluate the U. prolifera maps is through the 
use of high-resolution images, such as those from the Landsat sensors 
(30 m), Sentinel-2 sensors (10 m), Worldview sensors (2 m), or even 
airborne sensors (centimeters). The assumption is that these sensors, 
after proper pixel unmixing, can provide independent estimates of 
U. prolifera to evaluate the MODIS-based estimates. While some limited 
case studies can be found in Hu L et al. (2019) and Lu et al. (2019), Qi 
et al., (in prep) recently used all available Sentinel-2 data between 2016 
and 2021 to perform a systematic evaluation of MODIS-derived 
U. prolifera amounts. From all concurrent and co-located image pairs, 
the root-mean-square difference (RMSD in %) between the MODIS es
timates and the fitting line was used to represent uncertainties in the 
MODIS estimates. Such estimated RMSD for individual images 

decreased with increasing U. prolifera amount, with RMSD of ~9% for 
U. prolifera coverage of >200 km2. For monthly or annual composites, 
the RMSD further decreased because the number of valid daily obser
vations in each 1-km grid is typically >5 within a month (or >80 in each 
4-km grid). Such estimated uncertainties in both daily estimates and 
annual (or monthly) means are presented in Fig. 9. 

For practical reasons, because different sensors and different indexes 
or approaches may be used for different purposes, based on the labo
ratory and field-measured reflectance and biomass density (Hu L et al., 
2017), we provide the upper-bound thresholds of U. prolifera in 
Table 2a. These represent index values corresponding to the assumed 
full coverage (i.e., α = 1.0 or 100%, or 2 kg m− 2 biomass density) of 
U. prolifera within a pixel, or the FAIU endmember value in Eq. (3). The 
lower-bound thresholds that represent the α value approaching 0.0 (i.e., 
the FAIW endmember value in Eq. (3)), however, depend on water type, 
as shown in Qi and Hu (2021). Nevertheless, for relatively clear waters 
(most open waters in the YS), the lower-bound thresholds are provided 
in Table 2b. For moderately turbid waters, the lower-bound thresholds 
are lower by a certain percentage of the full range (upper-bound – lower- 
bound) (Table 2c). These relative changes also suggest that among the 
various indexes, the lower-bound thresholds of FAI and AFAI are the 
least sensitive to changes in water type. 

All the above arguments as well as the associated uncertainty esti
mates are for self-consistency evaluations, i.e., to assure that the relative 
changing patterns from one time to another or from one location to 
another are correct. The absolute values in either U. prolifera coverage or 
biomass may be off because they depend on the selections of both the 
upper-bound and lower-bound thresholds and depend on the calibration 
constant to convert coverage to biomass. For example, due to lack of in 
situ data to determine the thresholds, Hu et al. (2010) used a much lower 
upper-bound threshold than shown in Table 2a, resulting in much higher 
U. prolifera coverage than reported here. However, as long as the 

Fig. 9. (a) Time series of U. prolifera daily maximum coverage (2008 – 2016 from Hu L et al., 2019, with the 2017 – 2021 estimates derived in this study using the 
same method) and annual mean biomass (Qi et al., 2022a) between 2008 and 2021, based on MODIS estimates using the approach described here (classification, 
pixel unmixing, and image composition). The dates (month/day) corresponding to the daily maxima are annotated. The vertical bars represent root-mean-square 
uncertainties as estimated from paired Sentinel-2 and MODIS images (see text for more explanations). (b) Scatter plot between the two datasets showing high 
correlation but with some data scatter. (c) Same scatter plot but the mean biomass during June is used here. 
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potential bias in the absolute values, if any, is systematic, the spatial 
patterns and relative temporal changes are still valid. For example, using 
a different index and different thresholds, Yuan et al. (2022) showed 
much lower U. prolifera coverage in all years than that shown in Fig. 9a, 
yet their temporal changing patterns (e.g., 2019 versus 2021) are rather 
similar. Indeed, it is the relative temporal changes that have been used in 
the attempt to use environmental factors to explain such changes (e.g., 
Qi et al., 2022a). In this regard, the absolute values in the upper-bound 
thresholds are less important than using a time-independent consistent 
value as long as the upper-bound thresholds are not overly low (other
wise there may be too many “saturated” pixels). 

Finally, all the above arguments are based on the assumptions of 
linear mixing (Eqs. (2) & (3)) as a result of horizontal mixing between 

U. prolifera and water. Above a certain threshold (see Fig. 6 of Hu L et al., 
2017), the mixing can be non-linear as U. prolifera starts to aggregate in 
the vertical direction (i.e., becoming thicker), thus making the as
sumptions invalid and causing uncertainties in the estimated U. prolifera 
amount. While in theory this is certainly a problem, in practice the 
uncertainties caused by non-linear mixing are expected to be small. The 
reason is that in an open ocean without boundary, floating materials 
(including U. prolifera) tend to dissipate more horizontally than verti
cally. Only in some special cases, such as nearshore waters where land 
serves as a boundary, convergence ocean fronts, or in the middle of large 
U. prolifera mats, may U. proliferra aggregate vertically to cause un
derestimates in the U. prolifera amount. More importantly, such un
derestimates are expected to be systematic rather than random for inter- 
annual comparisons, thus are unlikely to change the long-term 
U. prolifera patterns. Likewise, strong winds may dissipate U. prolifera 
vertically, causing underestimates in the U. prolifera amount (Fig. 5 of Qi 
et al., 2016). These perturbation factors are also expected to be sys
tematic in different years, thus would not change the U. prolifera 
patterns. 

4.2. Daily maximum or image composition 

Depending on the needs, both daily maximum and image composi
tion may be used to describe the U. prolifer blooms, as they have different 
meanings. An illustration of their differences as well as their implica
tions are presented and discussed in Fig. 9 above. While daily maximum 
shows the maximal observable algae amount at a specific time during a 
year, an image composite represents the mean algae amount during a 
period, with the latter amount often being much lower than the former. 
In practice, daily maximum is a simple and straightforward way to 
indicate the severity of the U. prolifer bloom in a certain year, therefore 
has often been used by the management agencies to help implement 
mitigation strategy. However, due to frequent cloud cover, the image 
used to estimate the daily maximum may be captured at a time days or 
weeks apart from the time of the true maximum (Fig. 4b), and such a 
departure may vary from year to year. For example, the dates corre
sponding to daily maximum varied between June 4 (in 2020) to July 6 
(in 2010) (Fig. 9a). Therefore, interpretation of daily maximum requires 
extra caution, especially when multi-year sequence is used to interpret 
the environmental forcing factors or environmental impacts. 

The use of image composition is expected to minimize the impacts of 
cloud cover, and therefore can provide more objective estimates to 
facilitate time-series studies of long-term changes and to investigate 
reasons behind such changes. Indeed, such a method to fill data gaps is 
not new but has been used for decades in generating global maps of 
chlorophyll-a concentration and sea surface temperature. In the SeaDAS 
software, this is called “binning”, where all valid pixels within a certain 
period (week, month, season) for a given grid (either 4 km or 9 km) were 
pulled from individual images and used to calculate the average. Image 
composition is different from a simple average of all daily U. prolifera 
coverage in the same period where the former requires averaging pixels 
in each grid after accounting for non-valid pixels and sub-pixel coverage. 

Of course, the use of image composites may still be problematic if 
clouds are static in time or if clouds follow the movement of U. prolifera. 
For the hypothetical case shown in Fig. 4b, if clouds were in the same 
locations during the partially cloudy days (Day X and Day Y), an image 
composite would still underestimate the total U. prolifera coverage in 
that period, thus facing the same difficulty as with daily maximum. 
Likewise, if clouds follow the movement of U. prolifera in either the same 
or the opposite directions (Scenarios 3 and 4 in Fig. 5), the image 
composites can either underestimate (Scenario 3) or overestimate 
(Scenario 4) the U. prolifera amount. In practice, Scenarios 3 and 4 are 
unlikely because most clouds move much faster than U. prolifera in both 
space and time (Fig. 5, Scenario 1) and thus can be removed in the image 
composites. Indeed, typical wind speeds (which drive the movement of 
clouds) are >2 m s− 1, much higher than typical surface current speeds 

Table 2 
a) Upper-bound threshold values of U. prolifera derived from field measured 
reflectance corresponding to 2 kg wet biomass m− 2 (α = 1.0 or 100% within a 
pixel.) For FAI, the values represent FAIU in Eq. (3).  

Upper threshold FAI AFAI NDVI EVI DVI VB_FAH 

MODIS 0.192 0.154  0.711  0.332  0.188  0.159 
MERIS/OLCI N/A 0.143  0.809  0.384  0.201  0.168 
VIIRS 0.189 0.159  0.833  0.393  0.204  0.170 
GOCI N/A 0.149  0.785  0.372  0.197  0.165 
Landsat 4 5 7 0.217 N/A  0.798  0.392  0.213  0.182 
Landsat 8 9 0.201 N/A  0.772  0.360  0.195  0.162 
MSI 0.206 0.160  0.809  0.386  0.201  0.167 
HJ N/A N/A  0.798  0.391  0.213  0.182 
GF N/A N/A  0.798  0.392  0.213  0.181 
HY/CZI N/A N/A  0.809  0.384  0.201  0.168 
DOVE N/A N/A  0.809  0.384  0.201  0.169  

b) Lower-bound threshold values of U. prolifera derived from field measured 
reflectance corresponding to 0 kg wet biomass m− 2 (α = 0.0 or 0% within a pixel). 
For FAI, the values represent FAIW in Eq. (3). These were derived from the field 
measured water reflectance of relatively clear waters in the YS (i.e., “clear” water in  
Qi and Hu, 2021) and they may change slightly for more turbid waters (see (c)). 
They are provided as reference only, as their values will depend on the water and 
imaging conditions and therefore need to be adjusted. 

Lower 
threshold 
(reference 
only) 

FAI AFAI NDVI EVI DVI VB_FAH 

MODIS − 0.002 − 0.002 − 0.688 − 0.013 − 0.004 − 0.011 
MERIS/OLCI N/A − 0.002 − 0.547 − 0.009 − 0.003 − 0.010 
VIIRS − 0.003 − 0.002 − 0.527 − 0.008 − 0.003 − 0.010 
GOCI N/A − 0.0002 − 0.574 − 0.010 − 0.003 − 0.010 
Landsat 4 5 

7 
− 0.002 N/A − 0.466 − 0.009 − 0.003 − 0.009 

Landsat 8 9 − 0.003 N/A − 0.632 − 0.011 − 0.004 − 0.011 
MSI − 0.002 − 0.002 − 0.547 − 0.009 − 0.003 − 0.010 
HJ N/A N/A − 0.466 − 0.009 − 0.003 − 0.009 
GF N/A N/A − 0.466 − 0.009 − 0.003 − 0.010 
HY/CZI N/A N/A − 0.547 − 0.009 − 0.003 − 0.010 
DOVE N/A N/A − 0.547 − 0.009 − 0.003 − 0.010  

c) Relative difference between the new lower-bound threshold values determined 
from moderately turbid waters (see Qi and Hu, 2021 for reflectance spectra) and 
those determined from clear waters in (b), referenced against the full range of 
upper-bound minus lower-bound. For FAI, these represent ΔFAIW referenced against 
(FAIU – FAIW) in (a) and (b). Clearly, the lower-bound thresholds for FAI and AFAI 
show the lowest sensitivity to water type changes (i.e., values in the FAI and AFAI 
columns are closer to 0% than in other columns). 

Relative change FAI AFAI NDVI EVI DVI VB_FAH 

MODIS − 10% − 9% − 14% − 25% − 17% − 21% 
MERIS/OLCI N/A − 9% − 24% − 21% − 14% − 19% 
VIIRS − 13% − 8% − 25% − 20% − 13% − 18% 
GOCI N/A − 9% –22% –22% − 15% − 19% 
Landsat 4 5 7 − 10% N/A − 25% − 20% − 13% − 17% 
Landsat 8 9 − 12% N/A − 18% –23% − 16% − 21% 
MSI − 10% − 9% − 24% − 21% − 14% − 19% 
HJ N/A N/A − 25% − 19% − 13% − 17% 
GF N/A N/A − 25% − 20% − 13% − 17% 
HY/CZI N/A N/A − 24% − 21% − 14% − 19% 
DOVE N/A N/A − 24% − 21% − 14% − 19%  

C. Hu et al.                                                                                                                                                                                                                                       



International Journal of Applied Earth Observation and Geoinformation 116 (2023) 103173

14

(which drive the drift speed of U. prolifera) of <20–30 cm s− 1 in the 
Yellow Sea during June and July 2008 (Qiao et al., 2011). Caution is still 
required, however, to verify whether a certain portion of the composite 
period (e.g., the first week in a month) has complete and persistent cloud 
cover. In such cases, the image composite is biased towards the 
remaining portion of the composite period. Inspection of the daily 
sequence of MODIS images suggested that such a scenario is unlikely, as 
clouds are relatively random in space and time (Qi et al., in prep). In a 
typical monthly composite, at least 80 valid 1-km MODIS pixels are used 
in calculating the average U. prolifera amount in any given 4-km grid, 
and such valid pixels are rather random in time. 

The use of image composites can also reduce relative uncertainties in 
the estimated U. prolifera amount because many observations are used to 
calculate the mean. This is why the uncertainties in the annual means or 
monthly means of U. prolifera amounts are lower than those in the daily 
maxima in Fig. 9. 

4.3. Which sensor to use 

In the published literature (Table 1), many medium-resolution and 
high-resolution sensors have been used to map U. prolifera, as no single 
sensor can fit all purposes. For long-term, synoptic patterns, medium- 
resolution sensors with frequent revisits (e.g., MODIS, VIIRS, OLCI, 
GOCI) are appropriate. Of these, MODIS sensors provide the longest 
temporal coverage (2000 – present), thus being the often-used sensors. 
For more detailed views in a local region, especially during the bloom 
initiation phase where U. prolifera mats are rather small, high-resolution 
sensors (e.g., OLI, MSI, CZI, GaoFen) are appropriate. In any case, pixel 
unmixing is required in order to obtain accurate estimates of U. prolifera 
amount. This is true even for the high-resolution sensors because many 
algae-containing pixels still have partial algae cover. 

Because many sensors are currently available, one question is 
whether they can be combined to remove cloud cover to improve image 
composition or estimates of daily maximum. In theory this is certainly 
possible, but caution is required to assure cross-sensor consistency, 
especially when combining high-resolution and medium-resolution ob
servations. A “calibration” equation obtained from just several pairs of 
images may not be applicable under all observing scenarios, especially 
when considering the variable amounts of aerosols and sun glint. On the 
other hand, SAR sensors provide all-weather observations and thus can 
complement optical sensors when most images are obscured by clouds. 
While several case studies demonstrate the feasibility of using SAR to 
detect U. prolifera patches (Cui et al., 2012; Gao et al., 2022; Geng et al., 
2020; Shen et al., 2014; Yu et al., 2021), a comprehensive evaluation of 
Sentinel-1 SAR measurements indicate that the SAR images do not 
appear to be able to capture small Ulva patches (Qi et al., 2022b). 
Merging SAR and optical observations for quantitative use still requires 
more work. 

4.4. Coverage, biomass, or water area 

In previous studies, U. prolifera blooms (green tides) have been 
characterized in three ways: coverage (in km2), biomass (in kilo tons), 
and water area (in km2) encompassing U. prolifera, each being used for 
its own purpose. 

Both coverage and biomass are used to characterize the U. prolifera 
amount, and in this regard, they may be used interchangeably although 
the use of biomass is more applicable in terms of mitigation effort (i.e., 
the physical removal of U. prolifera is measured in kilo tons rather than 
in area). Indeed, after pixel unmixing, the former can be easily converted 
to the latter using a calibration constant of biomass per area for full 
(100%) algae coverage within a pixel, often determined from laboratory 
or field measurements (e.g., Hu L et al., 2017; Xiao et al., 2019). Any 
errors in the calibration constant, presumably small, would lead to the 
same errors in the estimated biomass. However, as long as these small 
errors are systematic in both space and time, they would have no or 

negligible impacts on time-series studies. In contrast, large uncertainties 
may be encountered if the calibration constant is no longer a constant 
but changes with U. prolifera thickness, which will violate all linear- 
mixing assumptions used in Eqs. (2) & (3). 

The use of water area encompassing U. prolifera is another useful way 
to describe the size of U. prolifera blooms. This is because the water area, 
and especially through its distribution, is an effective measure of where 
U. prolifera can be found and where biological and ecological conse
quences may be quantified. In practice, the water area is often delin
eated through the outer boundary of where U. prolifera is found in 
satellite imagery, using either manual drawing or more objective ways 
to define the polygon. Depending on how U. prolifera is distributed in 
space and what is the lowest detection limit of the selected satellite 
sensors, there can be different answers, leading to large degrees of un
certainties. Nevertheless, even though this parameter is less objective 
than U. prolifera coverage or biomass, it is still a useful parameter to 
describe the spatial extent of the U. prolifera bloom. 

4.5. Frequently asked questions 

Since the first report of the U. prolifera bloom in 2008, blooms 
occurred every year in almost the same period of May – July in the YS, 
raising many questions on the bloom origin, bloom size, driving factors, 
long-term patterns, impacts on the ocean and coastal environments, 
among others. While it is impossible to provide answers to all these 
questions, for the nature of this revisit on remote sensing methodology, 
we attempt to address questions that are frequently asked by both re
searchers and the general public, with specific focus on remote sensing 
methodology and results. Below we list such frequently asked questions 
and our answers. 

Q: Some small Ulva patches may be missed in remote sensing images, 
so what is the lower detection limit? 

A: This depends on the sensor’s SNRs and pixel size. Higher SNRs 
lead to lower detection limits. For MODIS 250-m resolution bands, the 
lower detection limit is about 1% of a pixel size, or 625 m2. For MODIS 
1-km resolution bands, the lower detection limit is about 0.2% of a pixel 
size, or 2000 m2. The lower detection limit of OLCI and MSI is 0.5% and 
2% of their pixel size, corresponding to 450 m2 and 2 m2, respectively. 
Note that the lower detection limit is different from the lower-bound 
threshold. 

Q: What atmospheric correction is required? Can top-of-atmosphere 
data be used? 

A: Pixel-wise atmospheric correction over U. prolifera pixels often 
fails because the enhanced NIR and SWIR reflectance of U. prolifera 
makes the atmospheric correction assumptions invalid. Non-pixel-wise 
atmospheric correction based on dark objects in an image is a good 
choice. The analysis in this work is based on a partial atmospheric 
correction (Rayleigh correction) that only requires the observing ge
ometry, surface pressure, and wind speed – none of these depends on the 
pixel’s NIR or SWIR signals. The reason to perform a Rayleigh correction 
is to remove most of the non-linear reflectance shape before a linear 
index is applied. However, even without any correction, TOA signals in 
either radiance, reflectance, or even digital numbers can still be used, 
but extra caution is required to assure cross-image consistency and 
cross-sensor consistency. 

Q: Sargassum horneri macroalgae can often be found in the East China 
Sea but occasionally it can also be found in the Yellow Sea, so how do we 
know what the satellite detected are really Ulva? 

A: Sargassum and Ulva have different spectral shapes: one is brown 
rich and the other is green rich although both have enhanced NIR and 
SWIR reflectance. The difference in their spectral shapes can be used to 
differentiate between the two as long as their subpixel proportions are 
above a threshold – typically a few percent of a pixel. Below this limit, 
other information can be used to separate the two, for example, large 
amount of Sargassum is mostly found in February – May with June being 
a tailing month, but large amount of Ulva is mostly found in May – July 
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with August being a tailing month. When large amounts of both are 
found at the same time, in satellite imagery they rarely overlap in space. 
One exception is on the Subei Bank where both Sargassum and Ulva have 
been found on the aquaculture rafts and nearby waters, but these 
amounts are rather small. Some mixture of Ulva and Sargassum in the 
open Yellow Sea has been reported from boat observations, but the 
mixture is typically dominated by one and the amounts are also rela
tively small. In the future, improved algorithms are required to deter
mine the proportions of Ulva and Sargassum if they coexist in a pixel. 

Q: Can I estimate total Ulva amount from every image in a month, 
and calculate their average to represent that month? 

A: No. This is because most images are obscured partially or entirely 
by clouds, and the Ulva amount estimated from a daily image may not be 
an accurate representation for that day. Such a calculated average is also 
sensitive to the number of images used in the calculation. Image 
composition is the recommended way. 

Q: Without pixel unmixing, the Ulva area is overestimated. But if it is 
always overestimated in the same way, perhaps the spatial and temporal 
patterns are still correct? 

A: While the spatial patterns may still be correct, the temporal pat
terns may be not. This is because the overestimates may be different 
from day to day because of the morphological changes in U. prolifera due 
to winds, circulation, ocean fronts, among other factors. For example, 
suppose U. prolifera area is 100 km2 in Day 1 and 120 km2 in Day 2 if 
unmixing is performed. Without unmixing, the estimates may be 1000 
km2 (a factor of 10) and 960 km2 (a factor of 8) for the two days. In this 
case, the increasing pattern from Day 1 to Day 2 changes to a decreasing 
pattern. Using multiple sensors without pixel unmixing can make this 
effect much worse. 

Q: Can Ulva thickness be estimated from remote sensing images? 
A: It is difficult because the reflectance signal is a non-linear function 

of thickness, and, once above a certain thickness threshold the signal is 
saturated (i.e., no longer a function of thickness). To date, there has been 
no attempt to measure thickness in the field or in the laboratory to relate 
to remote sensing signals, although some of these measurements may 
implicitly contain thickness information to a certain degree. In the 
future, perhaps high-resolution (a few meters or even sub-meter) sensors 
may be used together with field measurements to estimate thickness. 

Q: To classify Ulva pixels, which way is preferred, using an index or 
through machine learning? 

A: They each have their own pros and cons. Index based classifica
tion has a physical meaning and therefore is easy to understand, but the 
selection of the lower-bound threshold requires caution. Machine 
learning may get around this problem once properly trained using large 
quantity of data, but if the training does not include all potential sce
narios some unexpected errors may occur. After classification, pixel 
unmixing will require an index or a reference band in both ways. 

Q: To date, which year has the largest green tide? 
A: This depends on how to define the “size” of a green tide and how 

each year is described, after considering uncertainties in the size esti
mates. If a daily maximum is used to represent the annual condition, 
then 2021 may have the largest green tide because the daily maximum 
in 2021 is higher than in 2019, but the small difference is overwhelmed 
by uncertainties in each daily estimate. If annual mean biomass is used 
to represent the mean annual condition, then 2019 has the largest green 
tide, as the difference between 2019 and 2021 exceeds the uncertainties 
in the annual mean estimates. Such a mean value implicitly includes the 
information on the duration of the green tide in each year. 

Q: Some studies used the water area encompassing Ulva as an index 
for bloom severity. Does that make sense? 

A: Yes, and that is another useful way to describe the green tide 
condition, although it tends to be more subjective than using the Ulva 
coverage or biomass. Extra caution is required to minimize the subjec
tivity due to pixel resolution and due to the variable methods to draw 
boundaries around the Ulva pixels. The distribution and the water area 
encompassing Ulva provide important information for impact 

assessments. 
Q: Can remote sensing be used to determine the starting and ending 

days of Ulva blooms? 
A: It is possible but difficult. The reason is that if some initial Ulva 

mats form in Day 1, due to clouds and other factors, satellites may not be 
able to detect it until Day 7. In this case, an error of 6 days is inevitable if 
Day 7 is regarded as the bloom starting day. Same can be said for the 
bloom ending day. Using fine-resolution images may help because there 
may be small cloud-free “windows” around clouds. In any case, extra 
caution is required when using satellite data to infer starting and ending 
days of Ulva blooms. 

Q: Can remote sensing be used to estimate daily growth rate of Ulva? 
A: It is possible when cloud-free images are available in several 

consecutive days during the growing phase. Pixel unmixing is required 
to estimate Ulva coverage or biomass in each day using a consistent 
method in order to quantify the relative temporal changes. 

Q: According to the satellite observations, what is the history of 
green tides in the Yellow Sea? 

A: High-resolution satellite data going back to the 1980s showed the 
first appearance of Ulva in the Yellow Sea in 1999, but large green tides 
did not start until 2007, one year before 2008 when green tides in this 
region became well known. After 2008, the annual patterns fluctuated 
without statistically significant trends, possibly due to variable mitiga
tion efforts in different years. 

5. Concluding remarks 

Multi-sensor satellite remote sensing has been used extensively to 
map Ulva prolifera macroalgae blooms (green tides) in the Yellow Sea, 
yet dramatic differences have been found in the reported U. prolifera 
areal coverage (or biomass) from individual images and in the reported 
inter-annual patterns from multiple images even from the same data 
source, a result of different methodology and sensor selection. Based on 
physical principles, this review presented a conceptual diagram on the 
algorithm design for various purposes. Specifically:  

1) To examine spatial distribution patterns of U. prolifera presence/ 
absence and to determine the water areas encompassing U. prolifera, 
color imagery after proper color stretching is sufficient for visual 
inspection and approximate delineation of the green tide boundary.  

2) To quantify U. prolifera amount beyond simple presence/absence 
detection from individual images, pixel unmixing is a critical step 
because many or most image pixels are only partially covered by 
U. prolifera, and pixel unmixing is the most feasible way to obtain 
objective results that are independent of sensor resolution and 
U. prolifera morphology. 

3) To understand monthly or annual patterns and their potential envi
ronmental drivers, image composition is recommended, while some 
alternative approaches (e.g., applying a growth model to predict the 
maximum coverage) may also be attempted. This is because variable 
cloud cover and other factors make it difficult to use a single day to 
represent a month or a year, but the much faster changing of clouds 
(than U. prolifera) makes it possible and meaningful to compose 
multiple images into a single image to estimate the mean bloom size.  

4) The daily maximum estimates from individual years, on the other 
hand, provide useful information to help mitigation effort in a 
practical sense although their interpretation requires caution due to 
the above effect.  

5) For these requirements, linear indexes are preferred over non-linear 
indexes when determining which algorithms to use. 

6) To study short-term and long-term changes including annual fluc
tuation patterns, it is important to assure algorithm/product con
sistency, while uncertainty estimates in the data products are always 
desired. 

Finally, the purpose of this review is to demonstrate the possible 
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problems in mapping U. prolifera green tides and to propose a conceptual 
diagram towards addressing these problems. The use of MODIS and FAI 
to show the individual steps in the diagram is for demonstration only, 
and by no means should they be interpreted as the only data or method 
to address the problems. In contrast, once the conceptual diagram is 
followed, either explicitly or implicitly, different data sources, indexes, 
or mapping methods can still be used. 

In this regard, with more and more satellite sensors being available 
and new satellite missions being planned, we hope these general 
guidelines can be useful for the remote sensing community when 
developing new algorithms or approaches in order to reduce data 
product discrepancy and to generate robust time-series data to facilitate 
both interdisciplinary research and implementation of mitigation 
strategy. 
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