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Abstract 

Throughout history, humans have encountered natural toxic chemicals from the ocean 

environment, often through contaminated seafood. While marine toxins can be harmful 

to human health and devastate local environments when they are produced during algal 

bloom events, they are also important biochemical research reagents and drug leads in 

medicine. In spite of their long history, the biosynthetic origin of many well-known 

marine toxins has remained elusive. New biosynthetic insights have shed light on the 

chemical transformations that create the complex structures of several iconic oceanic 

toxins. To that end, this review highlights advances made in the biosynthetic 

understanding of five important environmental toxins of marine origin: domoic acid, 

kainic acid, saxitoxin, tetrodotoxin, and polyether polyketides such as brevetoxin. 

 

Introduction  

 Natural toxins from the marine environment have long fascinated scientists for 

their extraordinary chemical structures and potent biological properties. Marine 

neurotoxins in particular have revealed the function and modulated the activity of 

numerous cellular proteins germane to life such as ion channels [1] and receptor 

proteins [2,3]. At the same time, toxin-producing oceanic harmful algal blooms (HABs) 

continue to dramatically harm the environment, our health, and livelihood [4–6], as 

witnessed most recently during the devastating Karenia brevis bloom off Southwest 

Florida in 2019. Unlike freshwater systems wherein cyanobacteria are generally 

responsible for large scale production of toxins [7], the major producers of marine 

neurotoxins are eukaryotic organisms, such as dinoflagellates and diatoms, that have 

genomes many orders of magnitude larger. This difference has slowed our general 

understanding of how marine toxins are produced at the molecular level due to the 

dearth of genomic data and tools available to the marine community. The freshwater 

cyanobacterial HAB community, on the other hand, has firmly established biosynthetic 

pathways to most major cyanotoxins [8], which was aided by the smaller genomes and 

recognizable gene clusters of cyanobacteria. As such, cyanobacterial toxin transcription 

can now be monitored in the environment because the biosynthetic genes have been 

identified [9]. 

In spite of the challenges in studying marine toxin biosynthesis, substantial 

progress has been made, especially in connecting toxins to their biosynthetic genes. 
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This review focuses on advances made in understanding the biosynthetic pathways of 

domoic acid, kainic acid, saxitoxin, tetrodotoxin, and large polyether compounds such 

as brevetoxin. Studies on the production of these toxins have revealed unusual and 

interesting enzymology. Furthermore, these new insights may facilitate biocatalytic 

production methods and improved environmental monitoring approaches in the years to 

come. 

 

Domoic acid 

Domoic acid is a potent neurotoxin produced primarily by diatoms of the Pseudo-

nitzschia genus along with a few red algae (Figure 1). It acts as an agonist of ionotropic 

glutamate receptors (iGluRs), promoting an influx of calcium into neurons that ultimately 

leads to overstimulation and excitotoxicity [10,11]. Even though domoic acid was first 

discovered in the 1950s from the red algae Chondria armata [12], it rose to prominence 

during a major Pseudo-nitzschia multiseries diatom bloom in 1987 in Prince Edward 

Island, Canada [13]. During this event, filter feeding mussels bioaccumulated domoic 

acid and human consumption of the contaminated mussels lead to Amnesic Shellfish 

Poisoning, which is characterized by memory loss, seizures, and even death in extreme 

cases [11]. Since that time, domoic acid concentrations in shellfish and the presence of 

Pseudo-nitzschia blooms are closely monitored around the globe. 

 Due to the important human health implications, the route of domoic acid 

biosynthesis has been a focus of research for decades. While early isotopic feeding 

studies demonstrated that domoic acid is likely derived from geranyl diphosphate (GPP) 

and L-glutamic acid [14,15], the enzymes responsible for the biosynthesis were 

unknown. To answer this question, Brunson and McKinnie et. al. employed a 

transcriptomic based approach to identify the genes upregulated under domoic acid 

producing culture conditions [16••]. Surprisingly, four of the ten most upregulated genes 

were clustered together in the genome. The genes were bioinformatically predicted to 

be a terpene cyclase (dabA), hypothetical protein (dabB), α-ketoglutarate (αKG) 

dependent dioxygenase (dabC), and cytochrome P450 oxidase (dabD). Each of the four 

putative biosynthetic enzymes could be heterologously expressed and in vitro activity 

assays were used to assemble the pathway (Figure 1). The first committed step of the 

biosynthesis is catalyzed by DabA which performs N-geranylation of L-glutamic acid to 

produce N-geranyl-L-glutamic acid (NGG) using GPP as the prenyl donor [16••]. Recent 

work has confirmed the unexpected bioinformatic annotation of DabA by demonstrating 

that it is structurally similar to members of the terpene cyclase family [17•], making it the 

first known N-prenyltransferase in this ubiquitous family of enzymes. After formation of 

NGG, the cytochrome P450 enzyme DabD then catalyzes three successive oxidations 

of the 7’ carbon of the prenyl chain to generate 7’-carboxy-L-NGG. Finally, DabC, an 

αKG-dependent dioxygenase, catalyzes ring closure by stereoselectively forming a new 

carbon-carbon bond to yield the product isodomoic acid A, a previously isolated natural 
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product [18]. A final isomerization step is predicted to convert isodomoic acid A to 

domoic acid, however the responsible enzyme has yet to be identified. 

 While in vitro enzymatic activity clearly demonstrates that the dab cluster is 

responsible for domoic acid production, isolation and feeding studies also support the 

biosynthetic proposal [19•].  Large scale isolation of compounds from the red algae C. 

armata identified several putative domoic acid metabolites, most notably NGG and 

dainic acid [19•], a proposed off pathway DabC enzymatic product of NGG [16••] (Figure 

1). Moreover, feeding studies with [15N, D]-labeled NGG showed P. multiseries 

incorporated the labels into domoic acid, again supporting NGG as an authentic 

intermediate [19•]. 

 

 

 
Figure 1: Biosynthesis of domoic acid and kainic acid. Photo credit: Pseudo-nitzschia 

australis from Monica Thukral (University of California, San Diego) and Digenea simplex 

from Toshiaki Teruya (University of the Ryukyus). Throughout the review, compounds 

are shown in their physiological charge states for consistency, even though domoic acid 

and kainic acid are not often depicted in this manner 

 

 

Kainic acid 

In addition to domoic acid, kainic acid is the other prominent member of the 

kainoid class of natural products found in marine environments (Figure 1). Kainic acid 

was originally isolated from the marine red algae Digenea simplex. It shares the 

canonical pyrrolidine core with domoic acid but has a shorter moiety at the C4 position 
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[20,21]. Similar to domoic acid, kainic acid acts as an iGluR receptor agonist, but is 

comparatively less potent [22]. Instead, kainic acid has been used clinically to treat 

parasitic worm infections [23,24], reflecting the centuries-long use of D. simplex as an 

anthelmintic remedy. 

 While feeding studies suggested a route of biosynthesis for domoic acid prior to 

the discovery of the biosynthetic genes, virtually no work had been completed to 

elucidate the kainic acid biosynthetic pathway. Instead, the structural similarities 

between domoic acid and kainic acid suggested a conserved route of biosynthesis. By 

using whole genome sequencing, genes homologous to both dabA and dabC were 

discovered from two kainic acid producing red algae, D. simplex and Palmaria palmata, 

and named kabA and kabC [25••]. Unexpectedly, both D. simplex and P. palmata 

clustered their kainic acid biosynthetic genes, which suggests that biosynthetic gene 

clustering may also be a feature in red algae. Heterologous expression of kabA and 

kabC in Escherichia coli and subsequent in vitro activity assays demonstrated that 

KabA catalyzes the N-prenylation of L-Glu using dimethylallyl diphosphate (DMAPP) as 

a prenyl donor to yield the intermediate prekainic acid [25••] (Figure 1). KabC, an αKG-

dependent dioxygenase, then cyclizes prekainic acid to generate kainic acid. Notably, 

KabC also forms the natural product kainic acid lactone [25••,26] and the ratio of kainic 

acid to kainic acid lactone appears to vary depending on the specific KabC ortholog. 

Additional isolation studies demonstrated the presence of prekainic acid in D. simplex, 

further supporting the in vitro demonstrated kainic acid biosynthetic route [27]. 

 As kainic acid is an important neurological tool and has previously been used as 

an anthelmintic agent [23,24,28], there has been significant interest in developing cost-

effective production methods. While over 70 syntheses have been published, most 

remain low yielding or challenging to employ industrially [29]. Discovery of the 

biosynthetic gene cluster enabled an efficient two-step biotransformation of kainic acid 

that is both scalable and economical [25••]. 

 

Saxitoxin 

Paralytic shellfish toxins (PSTs) are a family of over 50 related alkaloid 

compounds that all share two guanidine moieties [30] and are produced by a diverse 

array of marine dinoflagellates, freshwater cyanobacteria, and brackish water 

cyanobacteria. PSTs exert their toxicity by binding to voltage-gated sodium channels 

and blocking them [31,32]. This is a major concern because when these PST producing 

microalgae bloom, they are consumed by filter feeders that bioaccumulate the toxins. 

Subsequent human ingestion of the contaminated seafood leads to paralytic shellfish 

poisoning, which is characterized by tingling of extremities, difficulty breathing, 

paralysis, and even death [32]. In addition to human poisoning events, blooms of PST 

producing algae also lead to death of wildlife, livestock and pets [30,33]. 
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The founding member of the PST family, saxitoxin (STX), was originally isolated 

in 1957 [34], and the putative gene cluster was discovered in 1998 by the Neilan 

laboratory [35] (Figure 2). Similar genes were also found in marine dinoflagellates [36, 

37], suggesting an interdomain horizontal gene transfer event that lead to a conserved 

route of biosynthesis across domains of life [38]. While metabolite characterization [39, 

40], cell lysate activity assays [41], and feeding studies of labeled precursors and 

intermediates [40, 42, 43] had been completed, no definitive work linked the proposed 

cluster to enzyme activity. Recently though, substantial insights into the biosynthetic 

pathway and mechanisms of catalysis have been detailed. The Narayan laboratory 

demonstrated that biosynthesis of saxitoxin is initiated by SxtA, a polyketide synthase 

(PKS)-like enzyme with four domains [44••] (Figure 2). The ACP domain of SxtA is first 

loaded with malonyl-CoA by either the GNAT domain or a trans-acting acyltransferase 

protein. After loading, the methyltransferase domain catalyzes C-methylation to form 

methylmalonyl-ACP, which is subsequently decarboxylated by the GNAT domain to 

generate propionyl-ACP. Finally, a pyridoxal 5'-phosphate (PLP)-dependent 8-amino-7-

oxononanoate synthase (AONS) domain catalyzes coincident decarboxylation of 

arginine and addition of the propionyl moiety to generate arginine ethyl ketone, the first 

committed intermediate in the biosynthesis of PSTs. Notably, this intermediate has been 

detected from both cyanobacterial and dinoflagellate producers of PSTs [39]. 

The next enzyme in the pathway, SxtG, is an amidinotransferase that catalyzes 

the transfer of the amidino group from arginine to the α-amine of arginine ethyl ketone 

[45•] (Figure 2). The unnamed product, (1), then undergoes a spontaneous 

cyclodehydration reaction to produce (2). A series of uncharacterized reactions that 

involve intramolecular cyclization, carbomylation, and hydroxylation are suggested to 

advance (2) to the natural product β-saxitoxinol. While the details of these 

transformations are still under investigation, the Rieske oxygenase SxtH is proposed to 

catalyze the β-hydroxylation of a linear arginine derivative intermediate [46]. After 

formation of β-saxitoxinol, a second Rieske oxygenase, SxtT, hydroxylates at the C12 

position to generate the final saxitoxin structure [46]. A series of hydroxylations and 

sulfurylations further elaborate the saxitoxin molecule to produce the neosaxitoxin, 

gonyautoxin, C-toxin, and M-toxin series of natural products. To generate this suite of 

PSTs, it has been demonstrated that the Rieske oxygenase GxtA catalyzes 

hydroxylation at the C11 position [47], while the sulfotransferases SxtN and SxtSUL 

target the amide nitrogen and the C11 hydroxyl group, respectively [47,48•]. As three 

different Rieske oxygenases are found in the biosynthesis of PSTs, the basis for both 

substrate and regio-selectivity remains an outstanding question. Recent structural 

studies have begun to identify the biochemical determinants that lead to selectivity in 

SxtT and GxtA [49]. 

Although PSTs are found in both freshwater cyanobacteria and marine 

dinoflagellates, all the described in vitro biochemical work was completed with 
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cyanobacterial enzymes. While homologous genes are found in dinoflagellates [36, 37] 

and extensive isolation and characterization of intermediates has been accomplished 

[39, 43, 50], looking ahead, work is needed to demonstrate whether the details of the 

biosynthetic pathway are shared between dinoflagellates and cyanobacteria. 

 

 
Figure 2: Biosynthesis of saxitoxin and other PSTs. Abbreviations are as follows: MT 

(methyltransferase), GNAT (GCN5-related N-acetyltransferase), ACP (acyl carrier 

protein), AONS (8-amino-7-oxononanoate synthase), PAPS (3′-phosphoadenosine-5′-

phosphosulfate), and PAP (3′-phosphoadenosine-5′-phosphate). Photo credit: 

Dolichospermum circinale (formerly Anabaena circinalis) from Takashi Minowa (Tohoku 

University) and Alexandria sp. from April Lukowski (University of Michigan). 
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Tetrodotoxin 

Tetrodotoxin (TTX) is a potent paralytic sodium channel blocker with fascinating 

dioxaadamantane and cyclic guanidine structural features (Figure 3) [51]. Poisoning 

usually happens after ingestion of tetrodotoxin-laden pufferfish, resulting in muscle 

paralysis and, in severe cases, death. Tetrodotoxin is found as a concentrated 

defensive compound in various lineages of marine and terrestrial animals, with 

pufferfish and newts being the most well studied examples, respectively [52].  

Although tetrodotoxin has been the subject of focused biosynthetic inquiry for 

decades, its assembly remains unclear, and no biosynthetic gene has yet been 

identified. This unsolved biosynthetic mystery has been exacerbated by a lack of a 

reproducible organism and condition wherein tetrodotoxin can be robustly produced in 

the laboratory. The diverse distribution amongst animals, combined with its unusual 

structure, has suggested a bacterial origin coupled with either dietary acquisition of 

tetrodotoxin by animals from exogenous sources [53–55], or endogenous acquisition via 

bacterial symbioses [56,57]. Several dozen bacteria from distantly related phyla, 

including most recently a Bacillus (Firmicute) strain from Cephalothrix ribbon worms 

[58•,59] and Pseudomonas (Proteobacteria) strains from Taricha newts [60•], have been 

isolated from tetrodotoxin-containing animals and reported to produce low levels of the 

toxin, often at sub ng/mL concentrations [61]. Unfortunately, isolated bacterial strains 

have so far proven unreliable. No definitive stable isotope feeding study, production 

curve, or genomic signature of tetrodotoxin biosynthesis has yet been established [62], 

leaving still open questions about its origin and biosynthesis. 

Given tetrodotoxin’s unprecedented chemical structure, numerous hypotheses 

concerning its assembly have invoked a wide array of pathways involving carbohydrate, 

shikimate, terpene, and polyketide precursors. An intriguing biosynthetic proposal by 

Yotsu-Yamashita and coworkers recently introduced a monoterpene origin based on the 

co-occurrence of a series of guanidino compounds from toxic newts [63–65••]. The most 

telling proposed tetrodotoxin biosynthetic intermediates include guanidino-containing 

monoterpenes and hemiketal-type tetrodotoxins that suggest extensive late-stage 

terpene oxidative transformations (Figure 3). Although these proposed tetrodotoxin 

intermediates, including 4,9-anhydro-10-hemiketal-5-deoxyTTX, can be accumulated 

through diet by tetrodotoxin-free Cynops newts raised in captivity, they are not further 

metabolized to or from tetrodotoxin [66•]. Interestingly, the newt-based guanidino 

compounds are not shared by pufferfish, which instead accumulate bicyclic guanidino 

compounds of unknown origin [67••] and imply an orthogonal pathway in marine 

organisms (Figure 3).  

From a bacterial biosynthesis perspective, once the strain reliability of 

tetrodotoxin production is solved, then preliminary identification of tetrodotoxin 

biosynthetic genes via genomics or genetics should not be far behind. The terrestrial 

and marine animal-accumulation studies suggest orthogonal biosynthetic pathways 
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assuming the co-occurring guanidino compounds do actually represent authentic 

biosynthetic intermediates. As such, this intriguing small molecule still remains a 

mystery after several decades since its characterization in 1964 [51]. Once solved, 

many additional chemical ecology riddles relating to toxin acquisition and function may 

next be in line to unmask. 

 

 
Figure 3: Hypothetical routes for tetrodotoxin (TTX) (top-right) biosynthesis, as 

supported by animal-accumulated candidate-biosynthetic intermediates in marine 

environments (top) [67••-69], exemplified by the pufferfish Takifugu favipterus, photo 

credit: Mari Yotsu-Yamashita (Tohoku University), and terrestrial environments (bottom) 

[63-65••], exemplified by the newt Cynops ensicauda ssp. popei, photo credit: Yuta Kuda 

(Tohoku University). The red-to-blue color gradients indicate the hypothetical atom-to-

atom correspondence between putative pathway intermediates. 

 

Brevetoxin and other polyether toxins 

Polyether toxins from marine microalgae are distinguished from all other toxins 

reported in this article by their massive chemical structures. A suite of potent 

neurotoxins such as brevetoxins (>850 Da), ciguatoxins (>1000 Da), palytoxins (>2680 

Da), and maitotoxins (>3400 Da), join medicines like the tubulin-binding mitotic inhibitor 

halichondrin B (>1100 Da;  source of the FDA-approved derivative eribulin), as some of 

the iconic marine polyether compounds that have inspired biosynthetic chemists for 

decades [70]. Dinoflagellate microalgae, such as Karenia (order Gymnodiniales), 

Gambierdiscus, and Ostreopsis (both order Gonyaulacales), are the primary producers 

of many of these large polyether toxins [71–75], but there are also reports of polyether 

biosynthesis by marine haptophyte microalgae such as in the case of the prymnesin 

family of fish toxins [76,77].  

Inspection of the large hydrocarbon structure of the ladder-frame polyether toxins 

alongside a suite of isotopic tracer experiments has strongly supported a polyketide 
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origin. Moreover, these studies support that polyethers are authentic products of the 

dinoflagellates rather than from associated symbionts [78-80]. The stereochemical 

regularity of the trans-fused ring-systems of these compounds, as is the case of the 11-

fused cyclic-ether scaffold of brevetoxin B, led to the early hypothesis that polyepoxide 

precursors are converted via electrophilic epoxide-opening cascade reactions [82] 

(Figure 4a). Biomimetic synthetic chemistry experiments have corroborated the 

plausibility of such a cascade [83], but notably this scheme, while inarguably elegant, 

remains unproven [83].  

While there are some similarities with bacterial or fungal polyketide biosynthesis, 

substantial differences exist in the dinoflagellate polyether synthesis system. Unlike 

bacterial polyketide biosynthesis, the utilized starter and extender molecules are rather 

limited, consisting of only glycine, glycolate, and acetate (or malonate). Formation of the 

carbon backbone is also mechanistically unusual, with Favorskii-like rearrangement 

mediated deletions of internal carbons, β-alkylation, pseudo-α-alkylation, the ‘odd-even’ 

rule for methylation, and the presence of initiator rings for epoxidation cascades. 

Readers are directed to the following papers for excellent summaries of this unusual 

chemistry, and of the stable isotope tracing results of dinoflagellate polyethers [80,84].  

Although there has been substantial progress in understanding dinoflagellate 

polyether biosynthesis from the perspective of precursor incorporation [80], the genetic 

basis of dinoflagellate polyether biosynthesis has thus far been experimentally 

intractable. Dinoflagellates have very large genomes, a high prevalence of modified 

nucleotides [85], and genes in repetitive tandem gene arrays that undergo common 

trans-splicing [86]. Alongside their complex genome architecture, dinoflagellates also 

mostly lack transcriptional regulation and instead seem to rely largely on translational or 

post-translational regulation [74]. Therefore, recent studies have instead focused on de 

novo transcriptome assembly for identification and cataloging of acetyl-CoA carboxylase 

[87] and PKS genes that presumably contribute to the synthesis of these compounds. 

Although several studies [71-73] have reported both single domain (Type II) or multi 

domain (Type I) PKS or fatty acid synthase-like gene sequences from toxin-producing 

dinoflagellates species, the unexpectedly large number of identified genes and lack of 

clear correlations with toxin content has so-far prevented a subset of these genes from 

being definitively linked to toxin biosynthesis. Van Dolah and colleagues recently 

reported a promising candidate in a 7-module (10,000+ amino acid) PKS encoding 

transcript from the ciguatoxin producing Gambierdiscus polynesiensis [88•](Figure 4b). 

While this particular trans-acyltransferase PKS would not be large enough to synthesize 

the entire ciguatoxin backbone, this is the latest sequencing result to illuminate the 

potential of multimodular assembly line biosynthesis in a polyether toxin producing 

dinoflagellate. 
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Figure 4: (a) Epoxide-opening cyclization cascade for brevetoxin B, akin to that first 

proposed by Nakanishi [82]. Unlike Nakanishi, we show (S,S) instead of (R,R) epoxides, 

and also show the epoxidation cascade proceeding in the opposite direction (away from 

heptadienal group). This modified scheme is consistent with more recent hypotheses 

that the polyepoxide stereochemistry could be (S,S) [80], and that the direction of the 

epoxidation cascade could be opposite the direction of polyketide extension [81]. Inset: 

The dinoflagellate Karenia brevis, a producer of brevetoxins. Photo Credit: Florida Fish 

and Wildlife Conservation Commission (CC BY-NC-ND 2.0). (b) Domain structure of the 

10,000+ amino acid modular PKS (NCBI accession: MT165590.1) reported by Van 

Dolah and colleagues [88•]. 

 

Conclusions and Outlook 

The examples discussed in this review highlight the substantial strides recently 

accomplished toward elucidating the biosynthetic pathways for several prominent 

marine toxins. They also highlight some of the continuing challenges that have mystified 

the marine toxin field for decades. In the case of the neurotoxic kainoids (domoic acid 

and kainic acid) and saxitoxins, biosynthetic progress over the last few years has been 
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significant. Major portions of their pathways have now been rigorously established and 

have identified new biosynthetic reactions. Moreover, the surprising discovery that the 

domoic acid biosynthesis genes were clustered and transcriptionally linked in toxic 

Pseudo-nitzschia diatoms opens the possibility that other eukaryotic microalgal toxin 

biosynthesis genes may be similarly organized.  

While less is known about how tetrodotoxin is assembled, noteworthy advances 

were taken in recent years with reports on the isolation of tetrodotoxin-producing 

bacteria from both marine and terrestrial animal sources. If true, genome-based 

experiments may soon allow for the interrogation of the compelling monoterpenoid 

biosynthetic pathways proposed for the construction of tetrodotoxin. The massive 

polyether toxins of microalgae like brevetoxin and ciguatoxin, however, are still an 

enigma. Transcriptomic experiments continue to provide encouraging data on a plethora 

of PKS genes in dinoflagellates, many even encoding multimodular assembly line 

proteins akin to those well-known from classical bacterial polyketide biosynthesis. The 

very large genome sizes and complex genetics of dinoflagellates has precluded the 

“last-mile” problem of definitively identifying the responsible biosynthetic genes.  

Experiments which focus more on the biochemistry of biosynthesis, such as cell-free 

lysate biochemistry, activity-guided fractionation, and structural elucidation of trapped 

chain-elongation intermediates, may be orthogonal approaches that could produce 

alternative insights into the solution of this difficult problem.  

With rapid advances in scientific knowledge and methodology, we anticipate that 

the coming years will continue to see exciting progress in bringing to life the biosynthetic 

stories of some of nature’s most fascinating chemicals, the marine toxins. 
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