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ABSTRACT

The ability of the High-Resolution Rapid Refresh (HRRR) model to forecast the location of convective

storms is of interest for a variety of applications. Since lightning is often present with intense convection,

lightning observations from theGeostationary LightningMapper (GLM) onGOES-East are used to evaluate

the performance of theHRRR lightning forecasts fromMay through September during 2018 and 2019.Model

skill is presented in terms of the fractions skill score (FSS) evaluatedwithin circular neighborhoods with radial

distances from 30 to 240 km. Case studies of individual events illustrate that the HRRR lightning forecasts

FSS varies from storm to storm. Mean FSS is summarized for the months with peak lightning activity (June–

August) for the west, central, and east United States. Our results suggest that forecasters should use HRRR

lightning forecasts to indicate general tendencies for the occurrence, region, and timing of thunderstorms in a

broad region rather than expect high forecast accuracy for lightning locally. For example, when FSS is

evaluated within small neighborhoods (30-km radius), mean FSS drops sharply after the first two hours of

model integration in all regions and during all hours of the day. However, when evaluated within larger

neighborhoods (60-km radius and larger), FSS in the western United States and northern Mexico remains

high for all lead times in the late afternoon and early evening. This result is likely due to the model capturing

the tendency for convection to break out over higher terrain during those hours.

1. Introduction

Convective weather—with its erratic outflows, pre-

cipitation, and lightning—constitute threats to life and

property with implications for public safety, aviation,

floods, and wildland fires. For wildland fires, convective

outflows may cause shifts in wind direction and intensity

that lead to changes in fire behavior and put firefighters

and property at risk (Yarnell Hill Fire 2013; Johnson

et al. 2014). Thus, the ability to forecast the location and

extent of convective weather is vital for many opera-

tional forecasting applications.

Guidance from convection-allowing numerical weather

models is available operationally today. Since 2014, the

operational High-Resolution Rapid Refresh (HRRR)

model has provided hourly updating, storm-scale forecasts

out to 18h (Benjamin et al. 2016). National Weather

Service Weather Forecast Office staff, including hydrolo-

gists and incident meteorologists, relies on the HRRR as

one of many tools to subjectively assess the potential for

convective activity, intense precipitation, hazardous light-

ning, and abrupt changes in near-surface winds.

Hourly HRRR analyses and forecasts are especially

useful for the wildland fire managers who work in re-

mote locations where there might be little information

from observational networks. Evaluation of HRRR

convection forecasts in these remote locations, however,

can be difficult for the same reason—lack of surface wind

observations and limited radar coverage in the remote,

mountainous areas (Radford et al. 2019). Nevertheless,

HRRR output is relied on for a variety of postprocessing

tools for situational awareness in the vicinity of wildfires.

For instance, the WindNinja software developed by

Wagenbrenner et al. (2016) and used by fire managers

can be configured to use HRRR model forecasts to

produce highly detailed wind fields in complex terrain

near a fire. Large errors in the downscaled wind field,

however, occur if the HRRR inaccurately forecasts the

timing and location of convective systems. Additional

research under rapid development involves complex,

coupled fire–atmosphere models that often rely on

the HRRR for initial and lateral boundary conditions

(Kochanski et al. 2013; Prichard et al. 2019). Those
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subsequent forecasts may also be impacted by imperfect

convective and boundary layer conditions specified by

the HRRR.

We evaluate here the ability of the HRRR model to

forecast the correct locations of convective systems as a

function of forecast lead time and time of day for two

summer seasons across the contiguous United States.

Total lightning events observed from the Geostationary

Lightning Mapper (GLM) on board Geostationary

Operational Environmental Satellites (GOES-East)

are used as proxies for identifying the locations of

thunderstorms. The extent of lightning activity mea-

sured by the GLM is used to quantify the accuracy of

HRRR thunderstorm forecasts. Knowledge of the

HRRR lightning threat product accuracy can benefit

operational forecasters who interpret HRRR forecasts,

especially in situations when the forecasted impacts are

sensitive to the location of those convective events.

Characteristics of theGLM lightning data andHRRR

forecasted lightning threat fields are reviewed in section 2,

followed by a description of the methods used to eval-

uate model skill in section 3. Section 4 discusses skill

metrics during four case events from 2018. Section 5

reviews model skill for the hour between 1700 and

1800 LT for all days during May–September 2018,

while section 6 summarizes observed lightning and

model verification statistics for the May–September

2018 and 2019 summer seasons.

2. Data

a. Geostationary lightning mapper

TheGLM instrument onboardGOES-East andGOES-

West (previously known as GOES-16 and GOES-17,

respectively) provide the first opportunity to observe

lightning from geostationary orbit (see Fig. 1; Goodman

et al. 2013; Rudlosky et al. 2019). GOES-East and

GOES-West became operational on 18 December 2018

and 12 February 2019, respectively. The GLM instrument

can provide the location and extent of thunderstorm ac-

tivity and augments the current climatology record for the

contiguous United States provided by proprietary ground-

based lightning networks (e.g., Goodman et al. 2013;

Rudlosky et al. 2019). Although the GLM cannot dis-

tinguish between cloud-to-ground and cloud-to-cloud

flashes, total lightning is a useful indicator of strong

convection (Schultz et al. 2011). The GLM lightning

observations are a useful independent dataset to eval-

uate the current HRRR lightning forecasts because

these observations were not used in the HRRR model’s

routine data assimilation during the 2018 and 2019 study

period. GLM lightning data, however, are expected to

be assimilated after future upgrades to the HRRR

model (E. James 2019, personal communication).

Lightning events measured by the GLM are identified

by a charge-coupled device (CCD) sensitive to the

777.4-nm wavelength—an emission sensitive to light-

ning activity associated with the dissociation of molec-

ular oxygen (Christian et al. 1989; Nikitovic et al. 2008;

Goodman et al. 2013). The detector continuously mon-

itors the scene for changes to the background field at a

frequency of 500Hz (2ms). The CCD detection reso-

lution is 8 km at nadir and 14km near the boundaries of

the field of view. CCD pixels illuminated by lightning

within 2-ms frames are defined as lightning events. Since

intracloud and cloud-ground lightning can often illumi-

nate one or more pixels, the GLM level 2 Lightning

Cluster Filter Algorithm is used to define the location of

GLM groups and flashes (Mach et al. 2007; Goodman

et al. 2013; Zhang et al. 2019). A group is the radiance-

weighted centroid of multiple adjacent events that occur

in the same 2-ms frame. GLM flashes, as shown in Fig. 1

for a specific 5-min period, are the radiance-weighted

centroid of one or more groups that occur within 330ms

and no more than 16.5 km from each other (i.e., within

one GLM pixel).

The ongoing evaluation of the GLM instrument by

others is encouraging, although its accuracy varies spa-

tially, diurnally, and seasonally. Rudlosky et al. (2019)

showed that the first nine months of GLM data between

December 2017 and August 2018 agreed well with

lightning patterns documented in previous studies dur-

ing summer including higher frequencies of lightning

over Florida, the Great Plains, and the Sierra Madre

mountains of northern Mexico. They also point out

artifacts of false event detection along the boundaries

of the detector subarrays (Rudlosky et al. 2019). For

example, a prominent false detection artifact occurs east

of the Bahama Islands in the GOES-East GLM data.

Since this area lies for the most part outside the HRRR

domain, this artifact is not expected to impact our

results.

Furthermore, Koshak et al. (2018) showed that the

January–August 2018 GLM detection efficiency from

GOES-East is lower in the northwestern United States

than other parts of the GLM field-of-view. For much of

this area over land, GLM detection efficiency west and

north of Colorado was below 50% when compared to

the Earth Networks Total Lightning Network and below

70% when compared to Vaisala’s Global Lightning

Detection Network (Koshak et al. 2018). For the pur-

pose of evaluating HRRR forecasts, our focus is on the

area where lightning occurs during hourly periods and

not the total number of events. Since occasional un-

detected lightning events might be expected to overlap
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with other events during an hour, the detection effi-

ciency errors are likely mitigated. Future algorithm

updates and additional instrument calibrations are ex-

pected to reduce these types of errors. Other known

types of false detections (e.g., solar glint) did not impact

the cases studies shown here and likely have minimal

impact on the average verification scores.

GLM Level 2 data were obtained from Amazon Web

Services (https://registry.opendata.aws/noaa-goes/) for

the May–September study period during 2018 and 2019.

Data from the instrument are packaged in files each

representing observations for a duration of 20 s. The

locations of observed events and flashes within each

hour of the study period are retrieved from the 180 files

corresponding to each hour. These aggregated lightning

records match the same hour interval for which the

HRRR lightning forecasts are valid. Hourly GLM flash

accumulations provide how much lightning activity is

occurring over each hour. The GLM event data provide

the spatial extent of this lightning activity using the na-

tive pixel resolution of the GLM.

Estimates of the occurrence of observed lightning

based on the spatial extent of GLM events were gen-

erated for each hour interval on the HRRR model grid

(;3-km horizontal grid spacing). Although others pre-

fer to convert the GLM Level 2 data to the GOES

Advanced Baseline Imager grid to collocate imagery

features and the GLM data, we have elected to use the

Level 2 geolocated GLM data that have been corrected

for parallax. Since the parallax correction assumes

lightning height varies only with latitude, large deviations

between the assumed and actual height of the lightning

may lead to inaccurate locations. From the Level 2GLM

data, we define the footprint of each GLM event as the

21 HRRR grid points within the 5 3 5 square sur-

rounding the event location excluding the four corner

grid points—an area roughly the size of a GLM pixel. It

is reasonable to expect that the HRRR grid points

within the footprint of a GLM event would also expe-

rience convective conditions at that time. To reduce

occasional false detections, the GLM binary fields only

include those grid points where at least twoGLM events

occurred within the hour.

We will focus initially on case studies during the 2018

summer season followed by examination of variations in

HRRR forecast skill from day-to-day during that

season. Cumulative statistics will be presented using

GOES-East GLM data during both the 2018 and 2019

summer seasons, which provides a sample size of over a

hundred million GLM flashes across the contiguous

United States. We have now examined a number of

cases using both GOES-East and GOES-West GLM

data during the 2019 summer season and found the dif-

ferences in event and flash data obtained from the two

satellites do not measurably impact the types of statistics

presented here (not shown).

b. HRRR forecasted lightning threat

HRRRmodel output was retrieved from the University

of Utah’s HRRR archive (Blaylock et al. 2017; Blaylock

et al. 2018). The HRRR model is a convection-allowing,

short-range forecast system with a horizontal grid spacing

of 3km that runs operationally every hour at the National

Centers for Environmental Prediction’s Environmental

FIG. 1. GOES-East Advanced Baseline Imager natural color image andGLMflashes (yellow

dots) for the 5-min period beginning at 2057UTC5 Jul 2018. (TheLakeChristine fire, discussed

in section 4b, was burning in western Colorado on this day.)
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Modeling Center (Benjamin et al. 2016). The short-range

0–18-h forecasts benefit from an advanced data assimila-

tion system that includes the incorporation of radar re-

flectivity data and lightning data from the Vaisala Global

Lightning Detection Network during a 1-h preforecast

(James and Benjamin 2017; Hu et al. 2017). The HRRR

model has been upgraded regularly with steady improve-

ments in convective forecasts (Bytheway et al. 2017) and

underwent another operational upgrade on 12 July 2018

fromHRRR version 2 (HRRRv2) to HRRR version 3

(HRRRv3). This latest upgrade included improved

boundary layer and cloud physics, improved radar re-

flectivity data assimilation that reduces overforecasting

convection and convective outflows, and introduced the

use of additional observational data including radar ra-

dial velocities and Tropospheric Airborne Meteorological

Data Reporting observations (E. James, personal commu-

nication; https://rapidrefresh.noaa.gov/hrrr/).Although36-h

forecasts are available every 6h after the implementation of

HRRRv3, this study only focuses on the 1–18-h forecasts

(hereafter F01–F18).

The HRRR model forecasts provide a parameterized

lightning threat product that is based on two criteria: 1) the

vertical flux of graupel at the 2158C level and 2) the ver-

tically integrated hydrometeor content (McCaul et al.

2009; Kain et al. 2010; Wong et al. 2013; Goodman et al.

2013; Tippett and Koshak 2018). The resultant hourly

output expresses lightning threat as the maximum flash

density in 5min during the hour before the valid time.

Since the output is given by a 5-min maximum, it is not

possible to estimate total number of flashes in the hour. Of

course, we do not expect the forecasts to resolve lightning

events or flashes obtained from the GLM explicitly.

Rather, the HRRR lightning output field is used as a

measure of lightning threat potential in an area derived

from relevant model-based cloudmicrophysical processes.

The lightning threat forecasts at F01–F18were converted

to a binary grid of forecasted lightning occurrence for

each hour using the threshold . 0.04 flashes km22.

The resultant binary field of forecasted lightning

occurrence is an estimate of the location of fore-

casted thunderstorm activity. We tried other thresholds

(including .0.0 flashes km22) but found that frequent,

very weak model convection led to many locations with

lightning between 0 and 0.04 flashes km22 that led to a

high model detection bias. We do not expect the overall

results to differ substantively if a somewhat smaller or

higher threshold had been used.

3. Method

Although deterministic high-resolution models produce

realistic convective forecasts, they are not necessarilymore

accurate because errors at small scales proliferate and

are highly dependent on environmental conditions (Mass

et al. 2002; Lynn et al. 2012; Mittermaier and Csima 2017).

Forecasted stormsmay be displaced in time and spacewith

varying levels of intensity than what is observed. Forecasts

may also bemissed entirely. Rather than rely on individual

deterministic forecasts, it is recognized that forecasts of

convective processes may be more accurately estimated

probabilistically from a suite of ensemble members (Mass

et al. 2002; Schwartz et al. 2019; Frogner et al. 2019). For

example, convection-allowing ensemble experiments by

Frogner et al. (2019) showed that even with limited

predictability at small scales, ensemble forecasts provided

more valuable forecasts than deterministic forecasts, es-

pecially in the summer months when predictability is typ-

ically lower. However, no operational high-resolution

ensemble forecast system guidance is available across the

United States at this time, which necessitates most opera-

tional forecasters to rely in part on subjective comparisons

of the output from many different high-resolution de-

terministic forecast systems.

The objective verification of convective-scale fore-

casts of precipitation and lightning has been undertaken

in many studies (e.g., Casati and Wilson 2007; Clark

et al. 2010; Mittermaier et al. 2013; Nachamkin and

Schmidt 2015; Wilkinson 2017). Contingency table ap-

proaches are common that count the number of hits, mis-

ses, false alarms, and correct rejections at each model grid

point and computing basic statistics [e.g., probability of

detection (POD) and false alarm ratio (FAR)] (Jolliffe

and Stephenson 2011; Wilks 2011). Those approaches,

however, are less appropriate for convection-scale fea-

tures in convection-allowing models because even small

displacement errors for features of interest are subject to

‘‘double penalty’’ (i.e., both where the feature is and

where it is not). A better model approach for evaluating

convection-scale features is to evaluate conditions within a

neighborhood of points around specific grid points (Clark

et al. 2010; Lynn et al. 2012; Wilkinson 2017).

Many studies have used neighborhood and object-

based verification methods to provide meaningful mea-

sures of convective-scale forecast performance (Ebert

2009; Clark et al. 2010; Wolff et al. 2014; Nachamkin and

Schmidt 2015; Xu et al. 2019; Radford et al. 2019). Davis

et al. (2006) used object-based verification to assess the

displacement of simulated andobserved areas of rainfall—a

method now referred to as Method for Object-based

Diagnostic Evaluation (MODE; see also Bytheway and

Kummerow 2015 and Radford et al. 2019). Roberts and

Lean (2008) introduced the fractions skill score (FSS) now

frequently used by many verification studies to evaluate

skill as a function of spatial scale (Roberts 2008; Wolff

et al. 2014; Sobash et al. 2019). Clark et al. (2010) and
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Lynn et al. (2015) used the equitable threat score

within a neighborhood for the evaluation of precipitation

and lightning forecasts made by convection-allowing

models. Wilkinson (2017) introduced an alternative

technique for evaluating lightning forecasts with a new

contingency table based on lightning coverage, distance,

and intensity.

We rely on the FSS introduced by Roberts and Lean

(2008) to assess location errors of HRRR lightning

forecasts relative to the observed GLM lightning event

area. FSS is defined as one minus the fractional area

mean square error at the grid points within a neighbor-

hood divided by the maximum possible mean square

error in that neighborhood (Roberts and Lean 2008;

Wolff et al. 2014). FSS provides no information on the

spatial structure or intensity of the features within each

neighborhood, but it does compare the area of the

condition observed and forecasted within the neigh-

borhood. Evaluating the conditions within a neighbor-

hood helps mitigate potential errors in the position of

the observed lightning introduced by the assumptions

used to correct the GLM data for parallax. A FSS value

of 1 is a perfect forecast indicating that the areal cov-

erage of the condition within that specific neighborhood

is identical between observations and forecasts while a

value of zero indicates no correspondence between

the two. Nonzero FSS implies the phenomenon in the

observed and forecast grid overlap to some extent within

the neighborhood being evaluated.

FSS depends strongly on the size of the neighborhood

evaluated and asymptotes to 1 with increasing neighbor-

hood size for an unbiased forecast. As the forecast bias

increases in either direction (over or underforecasting),

the maximum FSS possible is reduced (Mittermaier and

Roberts 2010). An indicator of a ‘‘useful’’ forecast in-

dependent of the neighborhood size was defined by

Roberts and Lean (2008) as FSS $ FSSuniform. The

threshold FSSuniform 5 (1.0 1 f0)/2 is the average of a

skillful forecast and that of a random unbiased forecast,

f0, whose probability of occurrence is the same as that of

the phenomenon’s observed probability throughout the

domain of interest at that time. For example, if the

phenomenon is observed over 10% of the entire region

in a specific hour, then a useful forecast is defined here as

one with FSS $ 0.55. FSS is commonly computed in-

dependently over a range of neighborhood sizes to help

assess the spatial scales for which forecasts are useful

(i.e., when FSS $ FSSuniform).

For each hour of the day fromMay through September

in 2018 and 2019, FSS was computed between the GLM

observed binary field based on the GOES-East observa-

tions and each F01–F18 HRRR forecast binary field. As

shown in Fig. 2, FSS was computed for the entire HRRR

domain and three subregions (west, central, and east)

that each span 168 longitude 3 25.88 latitude (each with

an areal extent of;4 millionkm2). The east and central

regions primarily cover sections of the United States,

but the west region includes the convectively active

southwest summer monsoon region of northern Mexico

(Nesbitt et al. 2008; Carlaw et al. 2017). Computing FSS

within each subregion is useful since forecast skill varies

across the entire HRRR domain, and regional successes

or limitations may be masked when evaluating FSS

over the entire domain (Mittermaier and Roberts

2010). FSS was also computed within specific state

boundaries—Utah, Colorado, and Texas—for a few

case studies presented later.

FSS was calculated for spatial scales with circular

neighborhoods with radii ranging from 30 to 240 km.

Although past studies using FSS have often relied on

square neighborhoods for computational simplicity, us-

ing square neighborhoods has been shown to influence

FSS when the displacement of a feature is oriented near

the corner of a square (Skok 2016; Skok and Roberts

2016). Figure 2 shows the relative size of circular foot-

prints used in this work with radii of 30, 60, 120, and

240 km. For reference, a circle with 30-km radius has an

area of ;2800km2, which would encompass the envi-

ronment surrounding large wildfires likely of interest

to a fire manager. The larger radii might be more useful

to evaluate model performance or be applicable in cases

when forecasters issue warnings for large areas, like

those issued by the Storm Prediction Center. However,

as the neighborhood radius increases, the number of

independent samples used to compute the statistics

within a region of interest drops. For example, although

there are ;450 000 grid points within each of the three

regional domains, there are ;1400 (;90) independent

30-km (120-km) neighborhoods within those domains.

FIG. 2. The HRRR model domain, shaded by topography, with

boundaries of west, central, and east subregions. Center circles

represent footprints used in FSS calculations with a radius of 30,

60, 120, and 240 km.
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4. Case studies

a. Mallard fire—16 May 2018

The Mallard fire burned an estimated 306 km2

(75530 acres) in northern Texas between 8May 2018 and

28 May 2018. At 0200 UTC (2000 CDT) 16 May 2018,

convection along a frontal boundary approached the fire

location (Fig. 3a). Gusts near the fire observed by West

Texas Mesonet stations peaked at 22.2m s21 at the

Claude 12SW station and 26.4ms21 at the Vigo Park

station during the previous hour (black crosses in

Figs. 3a–c). The HRRR analysis (F00) of simulated

composite radar reflectivity valid at 0200 UTC (Fig. 3a)

shows the extent of the storm near the fire at the top of the

hour. The HRRR simulated reflectivity agrees very well

with the observed radar reflectivity in this case (not

shown). We find that the HRRR reflectivity analyses

provide useful simulated radar coverage in otherwise data

void regions between radars and overmountainous terrain

affected by beam blockage.

Figure 3b shows the areal coverage where the fore-

casted lightning threat exceeded at least 0.04 flasheskm22

(5min)21 during the 0100–0200 UTC period 16 May at

F01, F06, F12, and F18 lead times. The areal extent of

GLM-observed lightning events during this period is

denoted by the dark blue areas in Fig. 3c with the

centroid locations of GLM flashes in yellow super-

imposed on top. All HRRR forecasts reproduced the

general structure of the organized convection when

compared to the instantaneous simulated radar re-

flectivity and the observed GLM events and flashes

during that hour. As might be expected based on

the northeasterly movement and redevelopment of

thunderstorms during this hour, the observed and fore-

casted lightning areas tend to extend from the southwest

(corresponding to earlier in the hour) to the northeast

(later in the hour). Subjectively, there is a more direct

correspondence between the areas ofGLMevents andF01

forecasts than at longer lead times, particularly in the

vicinity of the Mallard fire where the longer lead-time

forecasts extended the lightning farther downstream than

observed.

Score statistics for the conditions in Texas at all

forecast lead times are shown in Figs. 4a and 4b. Note

that the statistics for forecast lead times from F18 to F01

are displayed from left to right along the x axes to cor-

respond to the order the forecasts become available to

operational users (i.e., each successive value to the right

represents new forecast guidance closer to the valid

time). The POD (hit rate) at F18–F06 is far below the

FAR (or probability of false alarm) when evaluated at

individual grid points (Fig. 4a). These values become

comparable at shorter lead times (F06–F02). The very

low FAR at F01 reflects that the model under forecasted

lightning at that short lead time.

FSS at each lead time is shown in Fig. 4b using radial

neighborhoods of 30 (FSS30), 60 (FSS60), 120 (FSS120),

and 240km (FSS240). As defined in section 3, useful

forecasts in this situation are those where FSS .
FSSuniform 5 0.57 (above the dashed line in the Fig. 4b).

Considering the accuracy of the lightning forecasts

with a small neighborhood (FSS30), the forecasts would

be judged to be useful only at lead times of 6 h or less. If

the forecasts are evaluated within a larger neighborhood

(FSS60), then F08–F01 forecasts might be judged useful.

Comparing the areas of lightning forecast at 6-h lead

time in Fig. 3b (blue shaded regions) to that observed

tends to confirm that result subjectively.

On even larger scales (120- and 240-km neighbor-

hoods), the forecasts are judged ‘‘useful’’ by the FSS

metric at all lead times, but they have limited practical

significance. That is, knowing the HRRR model has

similar amounts of lightning within 120- or 240-km radii

of that observed is likely of limited value for most opera-

tional forecasting applications, especially if the forecaster

is interested in specific locations like a wildland fire or

airport.

b. Lake Christine fire—5 July 2018

The Lake Christine fire burned 50km2 (12 588 acres)

between 3 July 2018 and 17 September 2018. Based on

the HRRR F00 simulated reflectivity and GLM observa-

tions in Figs. 3d and 3f, convective activity in Colorado

between 2000 and 2100 UTC (1400–1500 MDT) 5 July

2018 was tied primarily to areas of locally higher terrain.

Less of the state is forecast to have lightning for F01 than

observed while F06, F12, and F18 show a mix of scattered

and isolated thunderstorms over the high terrain com-

bined with more organized convection drifting to the

east of the Rockies during the hour. These features east

of the Rockies were not observed in the HRRR ana-

lyzed reflectivity or GLM data. Over the next several

hours, convection over the higher terrain weakened and

organized convective storms did develop in the plains to

the east of the Rockies (not shown).

Based on the subjective comparisons possible from

Figs. 3e–f, it is not surprising that POD is low and FAR is

high at all forecast lead times (Fig. 4c). It is typical for

forecasts of scattered convection to have low POD and

high FAR in point-by-point comparisons. However,

POD did increase to over 0.5 at a 6-h lead time during

the next hour as greater amounts of organized convec-

tion shifted east of the Rockies (not shown).

FSS values computed within 30-km radii for all fore-

casts valid at 2100 UTC shown in Fig. 4d are generally
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FIG. 3. (a) HRRRanalysis (F00) simulated composite reflectivity, according to scale, valid at 0200UTC 16May 2018 during theMallard

Fire in Texas. The north and south black crosses denote the locations of the Claude and Vigo Park stations, respectively. (b) Shading and

contours enclosing HRRR-forecasted lightning threat during 0100–0200 UTC 16 May 2018 greater than 0.04 flashes km22 (5min)21 for

forecast lead times of F01 (red), F06 (blue), F12 (green), and F18 (orange). (c) GLM events (dark blue) beneath GLM flashes (yellow

dots) during 0100–0200 UTC 16May 2018. Circular rings illustrate neighborhood sizes for 30, 60, 120, and 240-km radius used to calculate

the FSS. (d)–(f) As in (a)–(c), but for 2000–2100 UTC 5 Jul 2018 during the Lake Christine fire in Colorado. (g)–(i) As in (a)–(c), but for

0500–0600 UTC 17 Jul 2018 during a thunderstorm in Utah.
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below the useful forecast threshold, FSSuseful, defined by

Roberts and Lean (2008). The FSS values from F18 to

F02 for larger neighborhood sizes are above the threshold,

which in part reflects the tendency for the HRRR to place

lightning across higher terrain correctly.

The high FSS values computed within the 120- and

240-km radii neighborhoods in Fig. 4d are not neces-

sarily relevant for a detailed examination of the model

forecast skill of lightning. Nearly all of Colorado lies

within a radius of 240 km (see Fig. 3f)—the neighbor-

hood size approaches the size of the domain being

evaluated and, in this instance, little information is gained

for a specific location by suggesting the estimate of the

lightning forecast over nearly the entire state of Colorado is

similar to that observed. The large-scale metrics, however,

may still be useful in determining timing of general initia-

tion and dissipation of convection for the region.

c. Utah thunderstorm—17 July 2018

A line of thunderstorms stretched from central to

northern Utah at 0600 UTC 17 July 2018. This case

provides an example of a poor forecast made by the

HRRRmodel (Figs. 3g–i). Minimal lightning threat was

forecasted in northernUtah with no lightning forecasted

during F06 in northern Utah (lack of blue contours in

Fig. 3h) while lightning was forecasted in southern Utah

at F06 that never occurred. It is perhaps most surprising

that even at short lead times (e.g., F01) the HRRR did not

capture the extent of convection that then developed. This

might be a result of the model environment conditions not

FIG. 4. (a) FAR and POD valid at 0200 UTC 16 May 2018 for F18–F01. Statistics are calculated with grid points

within the Texas state boundary. (b) As in (a), but for FSS with 30-, 60-, 120-, and 240-km radial neighborhoods and

FSSuniform (gray dashed line). (c), (d) As in (a) and (b), but valid at 2100 UTC 5 Jul 2018 for grid points within the

Colorado state boundary. (e), (f) As in (a) and (b), but valid at 0600UTC 17 Jul 2018 for grid points within theUtah

state boundary.
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being suitable to sustain the storm shown in the model

analysis. The poor forecasts resulted in large FAR, small

POD, and small FSS values well below the useful forecast

threshold at all spatial scales and all forecast lead times.

This example illustrates that physically plausible scenarios

and run-to-run consistency of HRRR forecasts as the

forecast lead time shortensmay not necessarily correspond

to situations of high forecast skill.

d. West region—23 August 2018

To aid transitioning to the cumulative results to be pre-

sented in sections 5 and 6, Fig. 5 shows the area of GLM

lightning events (blue shading in right panel) in the west

subregion during the hour ending at 0000 UTC 23 August

2018. Nearly 29000 distinct GLM flashes were observed in

the region during this hour, which was the highest amount

during this hour of the day for the west region duringMay–

September 2018 (Fig. 6a). Extensive lightningwas observed

across the Sierra MadreMountains and Sonoran deserts of

northern Mexico as well as the Mogollon Rim and other

mountain and desert regions of Arizona and NewMexico.

Storm reports indicated some wind damage in central

Arizona near this time. In addition, thunderstorm bands

developed and then extended downstream across Utah

and Idaho into Wyoming, Colorado, and Montana.

F02 and F12 HRRR forecasts of the lightning threat

reveal the shift in the forecast track acrossUtah,Wyoming,

and Colorado from downstream of the terrain to closer to

the observed GLM lightning locations with the shorter

forecast time period (Fig. 5). The FSS60 values for the F02

and F12 forecasts are nearly the same—0.44 and 0.49, re-

spectively—but both are below FSSuniform 5 0.53. These

forecasts, however, may still be considered useful (FSS .
FSSuniform) if a larger neighborhood is relevant for the

users’ application. However, the benefit of the forecasts

for a small area, such as the immediate surroundings of a

large wildfire, is likely low.

5. 1700–1800 LT May–September 2018

The 1-h accumulations of GLM flashes between 1700

and 1800 LT during May–September 2018 are shown in

FIG. 5. Area in the west subregion with forecasted and observed lightning valid 2300–0000 UTC 23 Aug 2018.

(left) Area with HRRR-forecasted lightning threat for lead times F02 (black) and F12 (orange). (right) Area with

observed GLM lightning events (blue).
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Figs. 6a, 6c, and 6e for the west, central, and east sub-

regions, respectively. As a reminder, GLMflash data are

only used as an estimate of howmuch lightning occurred

and not used in calculating FSS (FSS is based on GLM

event data). The west, central, and east regions had 5, 3,

and 1h missing, respectively, for these summary statis-

tics. The amount of lightning during this late-afternoon

hour varies from day to day with overall fewer flashes

occurring in the west region and more in the central and

east regions. The peak lightning at this hour in the west

region discussed in section 4d is quite prominent in

Fig. 6a with some distinct peaks in lightning occurrence

in the other regions as well. For example, the central

region on 1 July 2018 had nearly 60 000 GLM flashes

accompanied by numerous wind damage reports across

the northern plains.

The difference between F02 and F12 FSS60 scores

derived for the subregions duringMay through September

2018 during this hour are shown in Figs. 6b, 6d, and 6f. A

positive (negative) difference indicates that FSS60 at F02

was higher (lower) than F12. Our choice to focus on this

neighborhood size and lead times will become apparent

when we present themean statistics for the entire season

(section 6).

Although the HRRR model was upgraded on 12 July

2018 that included changes in the microphysics and data

assimilation (https://rapidrefresh.noaa.gov/hrrr/), there

are no obvious abrupt changes in skill after the upgrade

FIG. 6. (a) Total GLM flashes for 2300–0000 UTC (1700–1800 LT) in the west subregion from May through

September 2018. The vertical black dashed line is the date of the HRRRv3 upgrade. (b) Differences in FSS60
between F02 and F12 forecasts valid 2300–0000 UTC. (c), (d) As in (a) and (b), but for the central subregion for

2200–2300 UTC. (e), (f) As in (a) and (b), but for the east subregion for 2100–2200 UTC.
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that can be easily identified in Fig. 6 particularly in the

central subregion. The decrease in skill in the west after

mid-July is most likely due to the sharp increase in light-

ning caused by intraseasonal variations in lightning oc-

currence and not related to the model changes (Fig. 6a).

For the central and east regions, the FSS60 scores at

2-h lead time are more often higher than FSS60 at F12

(Figs. 6d,f). Over the west region, there are many days

when the F12 forecasts have higher FSS60 values than

F02 forecasts (Fig. 6b), as illustrated in the case dis-

cussed in section 4d. Hence, the morning HRRR fore-

casts of lightning potential for later that afternoon on

those days have some skill at identifying the conditions

favorable for lightning outbreaks over the mountain

regions of the west.

6. Mean FSS June–August 2018 and 2019

Figure 7 shows the mean number of GLM flashes in

2018 and 2019 from GOES-East for each hour during

eachMay–September month for the full HRRR domain

and the three subregions. Over one hundred million

flashes were estimated to have taken place during

these two summer seasons across the contiguous

United States. July hadmore flashes on average than any

other month across the entire HRRR domain (Fig. 7a).

GLM flashes peak during the late afternoon during the

hours ending at 2200–0000 UTC and decrease overnight

reaching a minimum in the morning between 1400 and

1600 UTC. The times of peak solar heating shift the

maxima for the east and west regions by 1–2 h during

each month. Lightning activity in the west region is

markedly suppressed late at night and during the early

morning. Lightning storms in the central region, and to a

lesser extent eastern region, often linger throughout the

night due to mesoscale convective systems with more

flashes occurring later into the evening, particularly during

June in the central region. Overall, the three most active

months for lightning are June, July, and August.

We next present mean HRRR lightning forecast FSS

scores based on the GLM event observations from

GOES-East during June–August 2018 and 2019. FSS

computed over the entire HRRR domain for circular

neighborhoods with radius 30 (FSS30), 60 (FSS60), and

120 km (FSS120) are shown in Figs. 8a–c, respectively.

For all neighborhood sizes, FSS is lowest around

1800 UTC when convection and lightning activity is

beginning to develop and increases sharply as lightning

FIG. 7. MeanGLMflashes, as observed byGOES-East, during each hour of the day (1200UTC–1200UTC) from

May through September during 2018 and 2019 for the (a) full HRRR domain, (b) west, (c) central, and (d) east

subregions. The number of GLM flashes was summed within hourly periods (e.g., flashes at hour 0 were accu-

mulated between 2300 and 0000 UTC).
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FIG. 8. (a)Mean FSS30 of lightning occurrence by hour of day (1200 UTC–1200UTC) and forecast lead time (F01–F18)

for the entire HRRR domain for the period 1 June–31 August during 2018 and 2019. Shaded according to the scale and

contoured at an interval of 0.05. (b) As in (a), but for FSS60. (c) As in (a), but for FSS120. (d)–(f) As in (a)–(c), but for the

west subregion. (g)–(i) As in (a)–(c), but for the central subregion. (j)–(l) As in (a)–(c), but for the east subregion.
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activity peaks later in the afternoon when convection

tends to become more organized and covers larger

areas. Higher FSS values continue through the evening

(2100–0600 UTC) with a tendency for the skill to in-

crease slightly with decreasing lead time. FSS is highest

at very short forecast lead times (F01–F02) and in-

creases with neighborhood size.

The FSSuniform threshold that defines a ‘‘useful’’ forecast

(Roberts and Lean 2008) is approximately ;0.51 for the

HRRRdomain. This threshold is not exceeded on average

on the 30-km neighborhood scale and only at lead times of

1–2h for the 60-km scale between 0300 and 0600 UTC.

Useful forecasts at the 120-km scale exist for short lead

times at all hours except 1600–2000 UTC when there is

minimal lightning activity. The useful threshold is ex-

ceeded at longer lead times, up to F07, between 2200 and

0400 UTC. As explained before, FSS evaluated at the

120-km radial neighborhood scale is useful for under-

standingmodel tendencies but has little practical utility for

operational forecasting applications at specific locations.

We suggest the overall tendencies exhibited by FSS

as a function of lead time and time of day over the entire

HRRR domain result from two factors. First, the con-

tinuously updating assimilation cycle fosters the short-

range higher accuracy to predict lightning locations.

However, that accuracy of the forecasted positions of

those convective storms is lost after a couple of hours.

Second, skill during the evening hours decreases much

slower with lead time than morning and early afternoon

hours. The HRRR has better skill at handling the pro-

gression of larger-scale organized convective storm com-

plexes during the evening hours (e.g., 16May 2018 inTexas

in section 4a), and the widespread thunderstorm com-

plexes common during the southwest monsoon across

northern Mexico extending into the southwestern United

States (e.g., 23 August 2018 in section 4d).

For the west subregion (Figs. 8d–f), FSS values in-

crease very rapidly from 1800 to 2100 UTC, followed

by a slower decrease through the evening and night. The

FSS is low in the morning hours because there are much

fewer lightning events observed between 0900 and

1800 UTC. The higher FSS at all forecast lead times

during the time thunderstorms are active in the west is

particularly noteworthy. The tendency for higher FSS

values during the late afternoon at long lead times sug-

gests that the model’s propensity to generate afternoon

convection over higher terrain features in the west is

captured to some extent (see section 4d). While evalu-

ation of the forecasts locally (FSS30) indicates marginal

skill, there are general tendencies at all neighborhood

scales for similarly high skill at ;F12 and F02 between

2200 and 0000 UTC (see also Fig. 6b). The slightly lower

values at F01 (i.e., lower FSS120 at 0000 UTC from F01

to F02) suggest that the HRRR model has to spin up

convection in this region that may not be initially present

due to gaps in the radar coverage in the western United

States and limited radar data from northern Mexico.

For the central region (Figs. 8g–i), FSS is high be-

tween 0000 and 0900 UTC for all neighborhood sizes,

but the skill is lower for longer lead time as opposed to

the skill remaining relatively constant with lead time as

in the west. Forecast skill at F03–F09 lead times tends to

be higher at 0600 UTC than 0000 UTC. FSS in the

eastern region (Figs. 8j–l), however, tend to be lower

than the west and central subregions. We hypothesize

there are implications related to the lack of radar cov-

erage over the large area of ocean in the east region

relative to the others.

7. Summary and discussion

A wide variety of forecasting applications are sensi-

tive to the location of thunderstorms such as tactical

operations for fighting wildland fires, flood manage-

ment, aviation operations, severe weather forecasting,

and public safety. Forecasters rely in part on short-term

forecasts provided by theHRRRmodel to communicate

the potential of hazardous weather conditions associ-

ated with the location of these thunderstorms. This re-

search evaluated the ability of the HRRR model to

forecast thunderstorm locations relative to the location

of observed lightning from the GLM sensor on GOES-

East. Skill was evaluated with the FSS computed from

circular neighborhoods within 30–240-km radii. Model

evaluation with FSS has advantages over traditional

point-by-point metrics since FSS considers a neighbor-

hood of grid points and is less sensitive to differences in

the position or areal extent of the observed or predicted

lightning within that neighborhood. We computed these

FSS statistics for each hour of the day fromMay through

September during 2018 and 2019 for forecast lead

times from 1 to 18 h and within different regions of the

United States. Thus, the HRRR lightning threat forecasts

are compared to a very large sample of GLM-derived

lightning events and evaluated over many locations and

mesoscale/synoptic situations.

The GLM sensor system onboard GOES-East provides

valuable delineation of lightning. We have also contrasted

GLM data obtained from GOES-East and GOES-West

for a number of cases during the 2019 summer season (not

shown). There are several caveats related to using GLM

data: 1) it is not possible to discriminate between

intracloud and cloud-to-ground lightning; 2) the CCD

detection resolution of ;8–14 km and the processing

involved to define events, groups, and flashes obfus-

cates the specific locations of lightning larger than the
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HRRR grid resolution; and 3) the differing viewing

angles of the two satellites (e.g., the western border of

Utah is ;398 and ;238 off nadir for GOES-East and

GOES-West, respectively) lead to slight offsets in the

positions of lightning events and flashes. Many other

comparisons of GLM data from GOES-East and GOES-

West are becoming available with recommendations to

rely on GOES-East (GOES-West) data for regions east

(west) of 1068W (Bill Line, personal communication,

https://satelliteliaisonblog.com/2019/07/09/goes-east-west-

glm-compare-and-glm-parallax/).

We first illustrated the methods to evaluate the skill of

the HRRR forecasts for thunderstorms with differing

distributions of observed lightning. During 16May 2018,

organized convective complexes developed along a frontal

boundary in Texas where FSS30 was above the useful

FSSuniform threshold, indicating a skillful forecast, for 6 h

and shorter lead times. FSS evaluated for larger neigh-

borhoods, FSS120 and FSS240, exceeded the useful thresh-

old for all lead times. Scattered thunderstorms forecasted

over the mountains of Colorado during the afternoon of

5 July 2018 were not generally collocated with GLM

lightning events, but FSS values indicated useful forecasts

when considered over relatively broad neighborhoods

(i.e., radii greater than 60km). Thunderstorms across

Utah on 18 July 2018 highlighted a situation where little

lightning was forecasted consistently from run-to-run

although lightning did occur over a large area. Hence,

the run-to-run consistency of HRRR model forecasts in

this situation was a poor predictor of forecast accuracy.

The extensive outbreak of thunderstorms in the west

region on 23 August 2018 with nearly 30 000 GLM

lightning flashes in one hour illustrated the complex mix

of types of convective storms underway at any one time

when viewed regionally. Large thunderstorm complexes

were evident within the summer monsoon across northern

Mexico and nearby states combined with widespread

fast-moving thunderstorm complexes across states far-

ther north. This case helps explain the higher FSS at all

lead times in the west evident in the mean FSS statistics.

FSS in the west during the afternoon and early evening

(Fig. 8e) is greater than 0.45 for FSS60 and greater than

0.55 for FSS120 for all F01–F18 lead times. FSS is much

lower in the central and east subregions than in the west

at the longer lead times.

It was somewhat surprising to us that FSS values for

the west region were on average higher during the af-

ternoon than those for the other two regions and less

dependent on forecast lead time and neighborhood

scale. One possible explanation is that theHRRRmodel

is simply capturing the climatological tendency for

thunderstorms to develop over higher terrain after ex-

tensive periods of surface heating during the afternoon

during summer. Whether that sort of information is

useful depends on the application. The HRRR lightning

forecasts are not sufficiently accurate on smaller scales

(e.g., 30-km radial neighborhoods) to provide specific

guidance on lightning location. However, when consid-

ered over larger neighborhoods (60km radially and

larger), the FSS values . 0.5 reflect a loose association

betweenwhere lightning is forecast and later observed that

might be useful for situational awareness over larger re-

gions. Recognizing that HRRR forecasts are better when

evaluated over large neighborhoods might help focus at-

tention on those situationswhen the 12-h forecast guidance

in the morning highlights greater widespread risk for af-

ternoon lightning than has been evident recently.

Our findings are consistent with other studies that

evaluated HRRR forecasts of convective storms that

relying on earlier versions of theHRRRmodel (Bytheway

and Kummerow 2015; Bytheway et al. 2017). Bytheway

andKummerow (2015) found that for short lead times, the

centroid of larger storms in the central United States is

often within 50km of the observed storm centroid po-

sition. Those results are similar to the FSS60 shown here

for the central subregion (Fig. 8h) that indicate higher

FSS when the location of convective storms are evalu-

ated with respect to larger neighborhoods and not at

specific points.

Interpretation of results obtained from nearly all nu-

merical weather models and new technologies are po-

tentially impacted by ongoing work by the science teams

to improve those models and technologies. Hence, it is

important to extend these types of evaluation over time.

For example, the GLM science team is continuing to

enhance lightning detection efficiency and limit false

detections. Also, the HRRR model is slated to undergo

continual improvements in the physics and data assim-

ilation, including assimilation of GLM and other data

assets. Future evaluations of the HRRR based on GLM

observations should consider the impact the assimilation

of the GLM data has on the forecasts when it is included

in the assimilation process.

Perhaps the most anticipated feature is the ensemble

version of the HRRR model and transformation to the

Rapid Refresh Forecast System using the NOAA’s

unified model based on the Finite-Volume Cubed-

Sphere (FV3) dynamical core. The implementation of

an operational high-resolution ensemble modeling sys-

tem will provide forecasters with probabilistic estimates of

lightning occurrence. An ensemble convection-allowing

modeling system will also benefit other forecast objectives

such as forecasting precipitation and snowbands (Radford

et al. 2019). Our work serves as a baseline that will aid in

evaluating the future improvements made to the GLM

resource and HRRR modeling systems.
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Additional advances in convective forecasting are

happening. Ensemble-based methods developed for the

High-Resolution Ensemble Forecast system (HREF)

and experimental NCAR ensemble are particularly

relevant (Roberts et al. 2019; Schwartz et al. 2019). In

addition, coupled fire–atmosphere ensemble modeling

approaches are in development and those will likely

provide critical assessments on the potential for con-

vective activity near wildfires and the impacts of fire

behavior on the development of convection in the vi-

cinity of fire crews (Kochanski et al. 2013; Prichard et al.

2019). Postprocessing techniques combined with recent

observations and artificial intelligence may enhance

warning of convective activity and extend the hours that

forecasts are useful. Enhanced postprocessed products

are already being used, such as ProbSevere (Cintineo

et al. 2018) and the Localized Aviation MOS Program

(Charba et al. 2019).
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