Identification Guide to Scombrid Fishes and

Larvae of Southeast Asia

Yoshinobu Konishi

Rangsan Chayakul
Rakkiet Punsri

Suggested citation

Konishi, Y., Chayakul, R., \& Punsri, R. (2022). Identification guide to scombrid fishes and larvae of Southeast Asia. Training Department, Southeast Asian Fisheries Development Center. URL in STIR

Notice of Copyright

Reference to this publication could be made provided that the publication is properly cited. The electronic copy of this publication is also available at the SEAFDEC Training Department Institutional Repository (STIR), accessible through http://repository.seafdec.or.th/. E-copy of the publication may be shared only for noncommercial purposes. However, public access to the e-copy of the publication could be made only through the publication URL in the STIR; and not through other domains without permission in writing from SEAFDEC Training Department.

[^0]
CONTENTS

FOREWORD iv
PREFACE v
PART 1 ADULTS
Diagnostic characters of scombrid fishes 2
Species composition of scombrid fishes 3
Keys to the species of scombrid fishes 4
Pictorial keys to the species of scombrid fishes 11
Distributions of scombrid fishes in
Southeast Asian countries (Table 1) 17
Meristic data of scombrid fishes (Table 2) 18
PART 2 LARVAE
Morphological characters and measurements of scombrid fish larvae 20
Keys to the species of scombrid fish larvae 21
Pictorial keys to the species of scombrid fish larvae 24
Distinguishing pigment patterns
among resemble three Thunnus larvae (Table 3) 41
Similar larvae to scombrid fish larvae 42
REFERENCES 49

FOREWORD

Marine capture fishery is an important fisheries subsector in the regional and national economy of the Southeast Asian countries, particularly pelagic fisheries targeting the family Engraulidae and Scombridae. In the last decade, the demand for these pelagic fishes had continuously increased within and outside the region. However, the remarkable increase in number of fishing vessels and the introduction of more efficient fishing gears had led to the great decline of these pelagic fish populations in some waters in Southeast Asia. Therefore, it is necessary to have proper management and conservation of the stock to sustain its fisheries.

Generally, limiting the number of operating fishing vessels and banning fishing activities around spawning and nursery grounds seasonally are being undertaken as part of the management measures. Ichthyoplankton surveys were conducted to determine the spawning ground and season and to monitor the stock status of the targeted fishery resources.

However, the number of researchers on ichthyoplankton in the Southeast Asian region is scarce, and their skills in larval fish identification is limited. As such, the Southeast Asian Fisheries Development Center, Training Department (SEAFDEC/TD) in collaboration with the SEAFDEC-Sweden Project organized in 2015 the training workshop on the identification of larval fishes, particularly families Scombridae and Engraulidae. During the training workshop, it was realized that one of challenges of ichthyoplankton research is the lack of an identification guide to fish larvae commonly found in Southeast Asia. As alternative, we used reference books and other sources on other areas such as in the waters of Australia, Japan, Western and Central Pacific, California Current region. Therefore, it is my hope that the compilation of this book will boost the conduct of ichthyoplankton research in the Southeast Asian region.

On behalf of SEAFDEC, I wish to express my appreciation to authors and contributors who worked hard to compile and edit this book. I would like also to express my appreciation to the Japanese Trust Fund for the support to publish of this book.

Ms. Malinee Smithrithee
SEAFDEC Secretary-General

PREFACE

The high-yielding pelagic fishes such as anchovies, mackerels, and tuna-like fishes are the major target of fisheries in the world. They are an important fishery resources in terms of food production and economic benefits. However, in recent years, the fish stocks had been exposed to high fishing pressure coupled with the use of efficient fishing gear. Therefore, it is necessary to manage such resources for sustainable use and clarify the underlying ecological parameters.

Ecological research for resource management needs to be investigated throughout the life cycle of the target resources. In particular, conducting research on the spatiotemporal aspects including the spawning season and spawning ground of the target resources provides basic and essential knowledge to formulate biological management measures.

In order to advance the research on early life history of anchovies (Family Engraulidae), mackerels, tunas, and tuna-like fishes (Family Scombridae), the Training Department of the Southeast Asian Fisheries Development Center (SEAFDEC/TD) in collaboration with the SEAFDEC-Sweden Project organized a workshop on larval fish identification in 2016 in Samut Prakan, Thailand participated by young researchers from Cambodia, Malaysia, Myanmar, Thailand, and Viet Nam.

This Identification Guide to Scombrid Fishes and Larvae of Southeast Asia is published as an outcome of the Workshop. Unfortunately, due to the lack of information on in the region, the morphological development of the Engraulidae larvae was not included in this Guide.

Konishi, Y., Chayakul, R. \& Punsri, R.

ACKNOWLEDGMENTS

We acknowledge the publishers, authors, and editors of the references used in this Guide for the permission to reproduce the illustrations, namely: Food and Agriculture Organization of the United Nations (FAO), The American Society of Ichthyologists and Herpetologists (ASIH); Australia - G. P. Jenkins (University of Melbourne), J. M. Leis (Australian Museum and University of Tasmania); China - R. Z. Zhang (Yellow Sea Fisheries Research Institute); Japan Y. Nishikawa and S. Ueyanagi (former National Research Institute of Far Seas Fisheries), T. Ozawa (Kagoshima University); USA - B. B. Collette (NOAA National Systematics Laboratory), H. G. Moser (NOAA Southwest Fisheries Science Center), late H. G. Moser (NOAA Southwest Fisheries Science Center), W. J. Richards (NOAA Southeast Fisheries Science Center), W. Watson (NOAA Southwest Fisheries Science Center).

We thank the researchers from Thailand including P. M. Hussadee and W. Boonyoung (Department of Fisheries, Thailand), K. Aiemsomboon (Chulalongkorn University), S. Siriraksophon and Y. Prarinthorn (UNEP/GEF), S. Arnupapboon and S. Pangsorn (SEAFDEC/TD) for their valuable comments to improve this Guide.

PART 1

ADULTS

DIAGNOSTIC CHARACTERS OF SCOMBRID FISHES

- Two dorsal fins (the first fin is usually short and separated from the second)
- Four to twelve dorsal and anal finlets behind dorsal and anal fins
- Caudal fin deeply forked
- Pectoral fins placed high
- At least two small keels on each side of caudal peduncle
- 31 to 64 vertebrae

SPECIES COMPOSITION OF SCOMBRID FISHES

Tribe	Genus	Species	English name
Scombrini	Rastrelliger	R. brachysoma R. faughni R. kanagurta	short mackerel island mackerel Indian mackerel
	Scomber	S. australasicus S. japonicus	spotted chub mackerel Pacific chub mackerel
Scomberomorini	Acanthocybium	A. solandri	wahoo
	Grammatorcynus	G. bilineatus	double-lined mackerel
	Scomberomorus	S. commerson S. guttatus S. koreanus S. lineolatus S. sinensis	narrow-barred Spanish mackerel Indo-Pacific king mackerel Korean seerfish streaked seerfish Chinese seerfish
Sardini	Gymnosarda	G. unicolor	dogtooth tuna
	Sarda	S. orientalis	striped bonito
Thunnini	Auxis	A. rochei A. thazard	bullet tuna frigate tuna
	Euthynnus	E. affinis	kawakawa
	Katsuwonus	K. pelamis	skipjack
	Thunnus ${ }^{1}$	T. alalunga T. albacares T. obesus T. tonggol	albacore yellowfin tuna bigeye tuna longtail tuna

[^1]
${ }^{2}$ KEYS TO THE SPECIES OF SCOMBRID FISHES

1a. Two small keels and no large median keel on each side of caudal peduncle (Fig. 1a); usually five dorsal and five anal finlets (Fig. 1a); adipose eyelids cover front and rear of eye (Fig. 2) ------------- 2
1b. Two small keels and a large median keel between them on each side of caudal peduncle (Fig. 1b); 6 to 11 dorsal and 5 to 12 anal finlets; adipose eyelids absent

adipose eyelid

Fig. 2 Scomber

2a. Vertically zigzag or wavy lines on back; first anal-fin spine fairly stiff and strong (Fig. 3); teeth present on roof of mouth (Scomber) ----------- 3

2b. One or two horizontal rows of spots on each side of back; first anal fin spine thin, rudimentary (Fig. 4); no teeth on roof of mouth -- - - (Rastrelliger)4

Fig. 3 Scomber

Fig. 4 Rastrelliger kanagurta

[^2]3a. First dorsal-fin spines 9 or 10; distance from tenth (or ninth if it is last spine) dorsal-fin spine to origin of second dorsal fin less than distance between first and tenth (or ninth if it is last spine); 12-15 interneural bones ${ }^{3}$ under first dorsal fin ----- Scomber japonicus

3b. First dorsal-fin spines 10 to 13; distance from tenth dorsal-fin spine to origin of second dorsal fin greater than distance between first and tenth spine; 15-20 interneural bones under first dorsal fin

Scomber australasicus
4a. Gill rakers not visible from side of head when mouth is open, 34 to 40 on first gill arch; body moderately slender, its depth at posterior margin of opercle from 4.9 to 6 times in fork length; length of intestine equal to or less than fork length ---- Rastrelliger faughni
$\mathbf{4 b}$. Gill rakers visible from side of head when mouth is open (Fig. 5), 47 to 73 on first gill arch; body moderately deep, its depth at posterior margin of opercle from 3.7 to 5.2 times in fork length; length of intestine from 1.4 to 3.6 times the fork length

5a. Body depth at posterior margin of opercle from 3.7 to 4.3 times in fork length; length of intestine from 3.2 to 3.6 times the fork length ----Rastrelliger brachysoma
 (after Collette and Nauen 1983)

[^3]
5b. Body depth at posterior margin of opercle from 4.3 to 5.2 times in fork length; length of intestine from 1.4 to 1.8 times the fork length
 Rastrelliger kanagurta

6a. Two lateral lines, the lower joining the upper behind pectoral-fin
base and at caudal-fin base; interpelvic process single and small (Fig.
6); vertebrae $31--------------$ Grammatorcynus bilineatus
6b. One lateral line; interpelvic process single (Figs. 6 and 12) or double (Fig. 13); vertebrae 38 to $64---------------------------7$
7a. Teeth in jaws strong; compressed, almost triangular or knife-like; corselet of scales obscure; vertebrae 41 to 64
7b. Teeth in jaws slender, conical, hardly compressed; corselet of scales well developed; vertebrae 38 to 45 138a. Snout as long as rest of head (Fig. 7); gill rakers absent; first dorsal fin with 23 to 28 spines; vertebrae 62 to $64----$ - Acanthocybium solandri
8b. Snout much shorter than rest of head (Fig. 8); at least one gill raker present; first dorsal fin with 14 to 18 spines; vertebrae 41 to 52
(Scomberomorus) ----- - 9
9a. Lateral line with a deep dip below first or second dorsal fin; vertebrae 41 to 46 10

9b. Lateral line straight or descending gradually backwards. Vertebrae 44 to 52 11

10a. Dip in lateral line below first dorsal fin; total gill rakers on first gill arch 11 to 15; vertebrae 41 or $42-------$ - Scomberomorus sinensis

10b. Dip in lateral line below second dorsal fin; total gill rakers on first gill arch 1 to 8; vertebrae 42 to 46 ----- Scomberomorus commerson

11a. Lateral line without auxillary branches anteriorly; vertebrae 44 to 46 Scomberomorus lineolatus

11b. Lateral line with many small auxillary branches anteriorly (Fig. 9); vertebrae 46 to 52-------------------------------------- 12

12a. Dorsal-fin spines 15 to 18 (usually 16 or more); intestine with two loops and three limbs; head longer, from 20.2 \% to 21.5% of fork length; body depth less, 22.8 \% to 25.2 \% of fork length; vertebrae from 47 to 52-------- Fig. 9 Scomberomorus koreanus ------Scomberomorus guttatus

2b. Dorsal-fin spines from 14 to 17 (usually 14 or 15); intestine with four loops and five limbs; head shorter, from 19.7 \% to 20.4% of fork length; body depth greater, from 24.4 \% to 26.7 \% of fork length; vertebrae 46 or 47 ----------------- - Scomberomorus koreanus

13a. Upper surface of tongue without cartilaginous longitudinal ridges (Fig. 10a) --14
13b. Upper surface of tongue with two longitudinal ridges (Fig. 10b) -- 15

14a. Six to eight narrow, dark longitudinal stripes on upper part of body (Fig. 11); no teeth on tongue; vertebrae 44 or $45-$ - - Sarda orientalis 14b. Body either without stripes or with dark spots above lateral line and longitudinal dark stripes below; two patches of teeth on tongue; vertebrae $38--------------------------G y m o s a r d a ~ u n i c o l o r$

Fig. 10 Sarda orientalis (left), Katsuwonus pelamis (right)

15a. First and second dorsal fins widely separated, the space between them at least equal to length of first dorsal-fin base (Fig. 12); first dorsal-fin spines from 10 to 12; interpelvic process single and large, longer than longest pelvic-fin ray (Fig. 12); vertebrae 39 -(Auxis)- - 16

15b. First and second dorsal fins barely separated, at most by a space equal to eye diameter (Figs. 13 to 15); first dorsal-fin spines from 12 to 18; interpelvic process bifid and short, shorter than shortest pelvic-fin rays (Fig. 13); vertebrae 39 or $41-----------------------17$
16a. Posterior extension of corselet ${ }^{4}$ narrow, only from one to five scales wide under second dorsal-fin origin; dorsal naked area extends anterior to tips of pectoral fins; gill rakers from 38 to 42 on first gill arch ------------------------------------ Auxis thazard

[^4]16b. Posterior extension of corselet wide, usually from 10 to 15 scales wide under origin of second dorsal fin; dorsal naked area does not extend anterior to tips of pectoral fins; gill rakers from 37 to 47 on first gill arch

Auxis rochei
17a. Four to 6 prominent dark longitudinal stripes on belly (Fig. 13); total gill rakers on first gill arch from 50 to 65; vertebrae 41

Katsuwonus pelamis
17b. No dark longitudinal stripes on belly; total gill rakers on first gill arch from 19 to 34; vertebrae 39

Fig. 12 Auxis thazard

Fig. 13 Katsuwonus pelamis

18a. Body naked behind corselet; several black spots usually present between pectoral- and pelvic-fin bases (Fig. 14); pectoral-fin rays from 25 to $27--------------------------E u t h y n n u s$ affinis

18b. Body covered with very small scales behind corselet; no black spots on body (Fig. 15); pectoral-fin rays from 30 to 36 -- (Thunnus) --- 19

corselet
Fig. 14 Euthynnus affinis

Fig. 15 Thunnus

19a. Ventral surface of liver with prominent striations; center lobe of liver equal to or longer than left and right lobes (Fig. 16a) --------- 20^{5}

Fig. 16 T. alalunga, T. obesus (a) and T. albacares, T. tonggol (b)

19b. Ventral surface of liver without prominent striations; right lobe of liver much longer than left or central lobes (Fig. 16b) ----------21
20a. Caudal fin with a narrow white posterior border; pectoral fins very long, reaching well past end of second dorsal-fin base; greatest body depth at or slightly before level of second dorsal fin

Thunnus alalunga
20b. Caudal fin without white posterior border; pectoral fins short or moderate in length, not reaching end of second dorsal-fin base (except in small individuals); greatest body depth about middle of body, near middle of first dorsal fin----------- Thunnus obesus
21a. Total gill rakers on first gill arch from 26 to 34 (usually 27 or more); second dorsal and anal fins of larger individuals (120 cm fork length or larger) elongate, more than 20% of fork length; maximum size is over 200 cm fork length ------------------ Thunnus albacares
21b. Total gill rakers on first gill arch from 19 to 27 (usually 26 or fewer); second dorsal and anal fins never greatly elongate, less than 20% of fork length at all sizes; maximum size 130 cm fork length

Thunnus tonggol

[^5]
PICTORIAL KEYS TO THE SPECIES OF SCOMBRID FISHES

Selected distinguishing characters are shown (the same hereafter).
REFERENCES: Collette and Nauen (1983), Collette (2001), Nakabo and Doiuchi (2013), Collette and

Scomberomorus (cont'd)

Katsuwonus

Thunnus (cont'd)

[^6]| Species | Brunei Darussalam | Cambodia | Indonesia | | | | Malaysia | | | Myanmar | Philippines | | Thailand | | Viet Nam | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | SCS | GOT | EID | CID | WID | $\mathrm{IND}^{\text {a }}$ | SCS (E) | SCS (W) | SOM | ADM | SCs ${ }^{\text {b }}$ | PCF | GOT | $\mathrm{ADM}^{\text {c }}$ | SCS (S) | SCS (N) |
| Rastrelliger brachysoma | \bigcirc | X |
| R. faughni | 0 | \bigcirc | \triangle | \triangle | \bigcirc | \triangle | \bigcirc |
| R. kanagurta | 0 | \bigcirc | \bigcirc | \bigcirc | 0 | \bigcirc |
| Scomber australasicus | X | X | \triangle | X | X | X | X | X | X | X | \bigcirc | \bigcirc | X | X | X | X |
| S. japonicus | X | X | X | X | X | X | X | X | X | X | \triangle | \bigcirc | X | X | X | X |
| Acanthocybium solandri | X | X | \bigcirc | \triangle | X | \bigcirc | \triangle | X | X | X | \bigcirc | \bigcirc | X | X | X | X |
| Grammatorcynus bilineatus | \bigcirc | ? | \bigcirc | \triangle | \bigcirc | \bigcirc | \bigcirc | ? | \bigcirc | \bigcirc | \bigcirc | \bigcirc | ? | \bigcirc | ? | ? |
| Scomberomorus commerson | \bigcirc |
| S. guttatus | \bigcirc | \bigcirc | \triangle | \triangle | \bigcirc | X | 0 | \bigcirc | \bigcirc | \bigcirc | X | X | \bigcirc | \bigcirc | \bigcirc | \bigcirc |
| S. koreanus | X | X | X | X | \bigcirc | X | X | \bigcirc | \bigcirc | \bigcirc | X | X | X | \bigcirc | \bigcirc | \bigcirc |
| S. lineolatus | X | X | X | \triangle | \bigcirc | \triangle | x | \bigcirc | \bigcirc | \bigcirc | X | X | \triangle | \bigcirc | X | X |
| S. sinensis | X | X | X | X | X | X | X | X | X | X | X | X | X | X | \bigcirc | 0 |
| Gymnosarda unicolor | X | X | X | X | X | X | X | X | X | X | \bigcirc | \bigcirc | X | X | X | X |
| Sarda orientalis | X | X | \triangle | X | X | \triangle | X | X | X | ? | \triangle | \bigcirc | X | X | X | ? |
| Auxis rochei | \bigcirc |
| A. thazard | \bigcirc |
| Euthynnus affinis | \bigcirc | X | O | \bigcirc | \triangle | \bigcirc | \bigcirc | Δ |
| Katsuwonus pelamis | \bigcirc | X | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \triangle | \bigcirc | \bigcirc | \bigcirc | \bigcirc | X | 0 | \triangle | X |
| Thunnus alalunga | X | X | X | X | X | \bigcirc | \triangle | X | X | X | \triangle | \triangle | X | X | \triangle | X |
| T. albacares | 0 | X | \bigcirc | \bigcirc | 0 | \bigcirc | \bigcirc | \triangle | \triangle | \bigcirc | \bigcirc | \bigcirc | X | \bigcirc | \triangle | X |
| T. obesus | \bigcirc | X | \bigcirc | \triangle | X | \bigcirc | \bigcirc | \triangle | X | \triangle | \bigcirc | \bigcirc | X | \triangle | \bigcirc | X |
| T. tonggol | \bigcirc | X | O | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \bigcirc | \triangle | \triangle | \bigcirc | \bigcirc | $\Delta^{\text {d }}$ | $\Delta^{\text {d }}$ | Δ | X |

ADM: Andaman Sea; GOT: Gulf of Thailand; IND: Indian Ocean; PCF: Pacific Ocean; SCS: South China Sea; SCS (E): South China Sea (East Malaysia including Sulu and Celebes Seas);
SCS (W): South China Sea (West Malaysia); SCS (N): South China Sea (Vietnam, north of Danang); SCS (S): South China Sea (Viet Nam, south of Danang including GOT); SOM: Strait of Ma EID: Eastern Indonesia (Celebes, Molucca, Halmahera, Seram, Banda and Arafura Seas, PCF); CID: Central Indonesia (SCS, Natuna, Karimata, Java, Makassar, Flores Seas); WID: Western Indonesia (SOM).
communication).
O: present; \triangle : partly present; \times : not present; ?: no available information

Tribe	Genus	Species	D_{1}	D_{2}	D finlets	A	A finlets	P_{1}	GR	V
Scombrini	Rastrelliger	R. brachysoma	8-10	11-13	4-6	10-13	5	18-21	47-73	31
		R. faughni	9,10	11-13	4-6	12-13	5	18-21	34-40	31
		R. kanagurta	8-11	11-13	4-6	10-13	5	18-22	48-57	31
	Scomber	S. australasicus	10-13	$12-13^{\text {c }}$	5	10-14 ${ }^{\text {c }}$	5	18-21	33-40	31
		S. japonicus	9,10	$12-13^{\text {c }}$	5	$12-14^{\text {c }}$	5	20-21	37-47	31
Scomberomorini	Acanthocybium	A. solandri	23-28	11-16	7-10	10-14	7-10	22-26	0	62-64
	Grammatorcynus	G. bilineatus	11-13	10-14	6,7	10-15	5-7	22-26	17-24	31
	Scomberomorus	S. commerson	15-18	15-20	8-11	16-21	7-12	21-24	1-8	42-46
		S. guttatus	15-18	18-24	7-10	19-23	7-10	20-23	8-14	47-52
		S. koreanus	14-17	20-24	7-9	20-24	7-9	20-24	11-15	46, 47
		S. lineolatus	15-18	15-22	7-10	17-22	7-10	20-24	7-13	44-46
		S. sinensis	15-17	15-17	6-8	16-19	5-7	21-23	11-15	41, 42
Sardini	Gymnosarda	G. unicolor	13-15	12-14	6, 7	12-13	6	25-28	11-14	38
	Sarda	S. orientalis	17-19	14-17	7-9	14-16	6,7	23-26	8-13	44, 45
Thunnini	Auxis	A. rochei	10-12	10-12	7-9	12-13	7	22, 23	37-47	39
		A. thazard	10-12	10-12	7,8	12-14	7,8	22-25	38-42	39
	Euthynnus	E. affinis	14-17	10-13	7,8	13-14	7	25-27	29-34	39
	Katsuwonus	K. pelamis	14-18	$13-16^{\text {d }}$	7-10	$13-17^{\text {d }}$	6-8	24-32	50-65	41
	Thunnus	T. alalunga	12-14	13-16	7-9	11-15	7-9	31-36	25-31	39
		T. albacares	12-14	14-15	8,9	14-15	8,9	32-35	26-34	39
		T. obesus	13-15	13-16	8-10	11-15	7-10	31-35	23-31	39
		T. tonggol	12-14	14-15	8,9	13-14	8,9	30-35	19-27	39
		T. maccoyii ${ }^{\text {a }}$	12-14	13-15	8-10	13-15	7-9	31-36	31-40	39
		T. orientalis ${ }^{\text {b }}$	13-15	13-15	8,9	13-15	7,8	31-38	32-43	39

D_{1} : first dorsal fin (spines); D_{2} : second dorsal fin (soft rays); D finlets: dorsal finlets; A: anal fin (soft rays); A finlets: anal finlets; P_{1} : pectoral fin; GR: gill rakers on first gill arch; V: vertebrae.
${ }^{\text {a }}$ Southern bluefin tuna is distributed throughout the Southern Oceans mainly between $30^{\circ} \mathrm{S}$ and $50^{\circ} \mathrm{S}$.
${ }^{\mathrm{b}}$ Pacific bluefin tuna is distributed in the west Pacific Ocean.
${ }^{\mathrm{c}}$ First ray is described as spine and ${ }^{\mathrm{d}}$ first two rays as spines (Nakabo \& Doiuchi, 2013).
Pelvic fins of all species: one spine and five soft rays.
REFERENCES: Nakabo and Doiuchi (2013), Collette and Graves (2019)

PART 2

LARVAE

MORPHOLOGICAL CHARACTERS AND MEASUMENTS OF SCOMBRID FISH LARVAE

Hypothetical larvae (upper: preflexion; lower: postflexion)

NL: notochord length (distance from tip of snout to posterior margin of notochord)
SL: standard length (distance from tip of snout to posterior vertical margin of hypural plate)

TL: total length (distance from tip of snout to posterior edge of caudal fin)
Head: portion from anterior tip of snout to posterior margin of opercle
Trunk: portion between head and anus
Tail: portion of body posterior to anus

${ }^{8}$ KEYS TO THE SPECIES OF SCOMBRID FISH LARVAE

1a. Second dorsal fin develops prior to first dorsal fin. Preopercular
spines absent. Vertebrae (myomeres) $31------------2$
1b. First dorsal fin develops prior to second dorsal fin. Preopercular spines present. Vertebrae (myomeres) from 31 to $64----------3$

2a. Pigment present heavily over brain, and on nape ${ }^{9}$. Pigment spots on ventral gut and preanus invisible or small at preflexion and flexion. Upper jaw tip projecting at postflexion --------------- (Scomber)
2b. Pigment present sparsely over brain and absent on nape. Pigment spots on ventral gut and preanus distinct at preflexion and flexion. Both jaw tips nearly meet at postflexion ------------ (Rastrelliger)
3a. Snout round and short. Preopercular spines small in same size. Vertebrae (myomeres) 31---------- - Grammatorcynus bilineatus

Abstract

3b. Snout pointed or elongate. Preopercular spines formed usually well and elongate at angle. Vertebrae (myomeres) $\geqq 39---------4$

4a. Supraoccipital spine present---------------------------5
4b. Supraoccipital spine absent-----------------------------6 6
5a. Snout elongate and its length about two times of eye diameter. Supraoccipital spine distinct. No pigment appears on pelvic fin. Vertebrae (myomeres) from 41 to $52----------$ - (Scomberomorus)
5b. Snout moderately elongate and its length 1.5 times of eye diameter. Supraoccipital spine weak. Pigment appears on pelvic fin. Vertebrae (myomeres) 44 or 45

Sarda orientalis

[^7]6a. Body elongate. Gut very long and anus position considerably beyond
half body. Snout extremely elongate and mouth quite large.
Vertebrae (myomeres) from 62 to $64--$ - Acanthocybium solandri
6b. Body moderate and tail tapering. Gut compact and anus position anterior to or near half body. Snout pointed or elongate. Mouth moderate or large. Vertebrae (myomeres) 38 to $41------------7$

7a. Snout very elongate. Upper jaw tip greatly projecting. Branchiostegal membrane and opercular area well pigmented -

Gymnosarda unicolor

Abstract

7b. Snout pointed. Both jaw tips nearly meet or upper jaw tip slightly projecting at postflexion stage. Branchiostegal membrane and opercular area sparsely pigmented -------------------------8

8a. Internal pigment present on anterior margin of forebrain ------- 9
8b. Internal pigment absent on anterior margin of forebrain ------ - 11
9a. Cleithral symphysis and preanus pigmented ----- Euthynnus affinis
9b. Cleithral symphysis and preanus unpigmented-------------10
10a. Pigment appears early on lower jaw tip at about 3.5 mm NL. First dorsal fin pigmented late at about 6 mm SL. Pigment appears late on upper jaw tip at about 7.5 mm SL. Vertebrae (myomeres) 41 --- Katsuwonus pelamis

10b. Pigment appears late on lower jaw tip at about $9 \mathrm{~mm} \mathrm{SL}{ }^{10}$. First dorsal fin pigmented early at about 5 mm SL. Pigment appears early on upper jaw tip at about 5 mm SL. Vertebrae (myomeres) 39

Thunnus tonggol

[^8]11a. Pigment present on cleithral symphysis and preanus. First dorsal fin pigmented late at about 11 mm SL------------ (Auxis)12
11b. No pigment present on cleithral symphysis and preanus. First dorsal fin pigmented early at $5 \mathbf{- 6 ~ m m ~ S L}$ 13
12a. 3.5-5 mm NL: melanophore on lateral midine of tail (MLM) absent,and pigment on lower jaw tip (PLJ) present; 5-6 mm BL: MLM 0 or 1,and PLJ present; 6-7 mm SL: MLM usually from 0 to 2 , if more than3, the melanophores present on caudal peduncle and/or anterior tocaudal peduncle ----------------------------- Auxis roche ${ }^{11}$
12b. $3.5-5 \mathrm{~mm}$ NL: melanophores on lateral midline of tail (MLM) present,or MLM and pigment on lower jaw tip (PLJ) absent; 5-6 mm BL:MLM usually equal to or more than 2 , if a single, the PLJ absent; 6-7mm SL: MLM usually equal to or more than 3, and the pigmentpresent mostly on caudal peduncle ---------------Auxis thazard ${ }^{11}$
13a. One or two very small melanophores present on ventral midline of tail Thunnus obesus
13b. No melanophores present on tail 14
14a. Pigment on lower jaw tip appears late at about 8 mm SL
Thunnus alalunga ${ }^{12}$
14b. Pigment on lower jaw tip appears early at about 4 mm NL
Thunnus albacares

[^9]
PICTORIAL KEYS TO THE SPECIES OF SCOMBRID FISH LARVAE

Rastrelliger ${ }^{13}$

pigment over brain sparse at

no head spines present

D : VIII~XI-11~13+4~6
A: 10~13+5
$P_{1}: 18 \sim 22$
P_{2} : I, 5
$\mathrm{V}(\mathrm{M}): 31$

a 3.7 mm NL

2 dorsal fins widely separated

Rastrelliger sp. or spp. (a~d:Konishi 2014)

[^10]
Scomber

no head spines present
pigment develops heavily over brain through larval stage

a large melanophore present usually on nape through larval stage (invisible after ca 8 mm SL by embedding in body)

D : X~XIII-12~13+5
A: 10~14+5
$P_{1}: 18 \sim 21$
P2: I, 5
$\mathrm{V}(\mathrm{M}): 31$
a 3.8 mm NL

2 dorsal fins widely separated
upper jaw tip slightly projecting
d 9.2 mm SL
all fins formed completely at ca 12 mm SL
anus beyond half body
melanophores on ventral midline of tail decrease in number

((length of dorsal-fin base from 1st to 9 th spine) $/(\mathrm{SL}) \times 100)<12$
[for juveniles in more than 13 mm SL]
Scomber australasicus (a~d:Ozawa 1984)

Scomber japonicus (a~d:Uchida et al. 1958)

 at ca 23 mm SL

Acanthocybium solandri (a~d:Matsumoto 1967)

Grammatorcynus

large, round head and eye reduce in relative size with growth

body slightly deep and reduces in relative depth with growth

b 11.5 mm SL

3 large saddle-shaped pigment blotches present

D: XI~XIII-10~14+6~7
A: 10~15+5~7
$P_{1}: 22 \sim 26$
P2: I, 5
$\mathrm{V}(\mathrm{M}): 31$
 patch present on

preopercular spines reduce in size and number

3 additional small saddle-

d 56.9 mm SL

2 lateral lines present (the lower branched from the upper under $4^{\text {th }}$ dorsal-fin spine)

> Grammatorcynus bilineatus (a~d:Nishikawa 1979)

Scomberomorus ${ }^{14}$

head large and pigmented heavily over brain

tail tapering

a 3.7 mm NL
gut compact and anus position large melanophores on ventral tail reduce in size and number with growth moves backward with growth
ted

$$
\text { b } 5.4 \mathrm{~mm} \mathrm{NL}
$$

c 7.2 mm SL

preopercular spines well developed and a spine at angle elongated

2 dorsal fins widely separated
 through larval stage

Scomberomorus commerson ($\mathrm{a} \sim \mathrm{d}$: Richards and Jenkins 2000)

[^11]

Scomberomorus guttatus (a~d:Zang 1985)

Gymnosarda unicolor (a~d:Okiyama and Ueyanagi 1977)

Sarda orientalis (a~c: Nishikawa 2014)

Auxis rochei (a, c: Matsumoto 1959 ; b: Collette et al. 1984)

[^12]

Auxis thazard (a~d: Matsumoto 1959)

[^13]

[^14]

Katsuwonus pelamis (a~d:Yabe 1955)

Total length is converted to notochord length (NL) or standard length (SL).
REFERENCES: Yabe (1955), Matsumoto (1958), Ambrose (1996), Richards (2006), Fahay (2007), Nishikawa (2014)

Thunnus alalunga (a~d:Ueyanagi 1969)

[^15]

Thunnus obesus (a~d:by Ueyanagi in Nishikawa (2014))

[^16]

Thunnus tonggol (a~d:Nishikawa and Ueyanagi 1991)
Table 3. Distinguishing pigment patterns among resemble three Thunnus larvae

Species (English name)	Distribution ${ }^{\text {a }}$	Spawning area and (season) ${ }^{\text {a }}$	Melanophores					
			Tail		Caudal fin		Others in tail	
			Dorsal midline	Ventral midline	Dorsal	Ventral	Lateral midline	Dorsolateral ${ }^{\text {b }}$
Thunnus obesus (bigeye tuna)	central South China Sea, Sulu, Celebes, Banda and Arafura Seas, Indian and Pacific Ocean	same as on the left (peak: Apr-Sept in north hemisphere; Jan-Mar in south hemisphere)	absent	$\begin{gathered} 1 \text { or } 2 \\ \text { (very small) } \end{gathered}$	absent (rarely 1)	$\begin{gathered} 0-2 \\ \text { (usually 1) } \end{gathered}$	absent	absent
Thunnus maccoyii (southern bluefin tuna)	east Indian Ocean between $30^{\circ} \mathrm{S}$ and $10^{\circ} \mathrm{S}$	possible in the waters between Indonesia and northwest Australia (all year except July: peak in Oct-Feb)	$\begin{gathered} 0-4^{\mathrm{C}} \\ \text { (usually } 1 \text {) } \end{gathered}$	$\begin{gathered} 1-4 \\ \text { (usually } 1 \text {) } \end{gathered}$	$\begin{gathered} 0-2 \\ \text { (usually } 0 \text { or } 1 \text {) } \end{gathered}$	$\begin{gathered} 1-4 \\ \text { (usually } 2 \text {) } \end{gathered}$	sometimes present (1 or 2)	sometimes present
Thunnus orientalis (Pacific bluefin tuna)	western Pacific (southern Okhotsk to northern Philippines)	northeast of Philippines to southern Japan (Apr-Jun)	$\begin{gathered} 1-4 \\ \text { (usually } 2 \text {) } \end{gathered}$	$\begin{gathered} 1-5 \\ \text { (usually } 2 \text {) } \end{gathered}$	absent	$\begin{gathered} 0 \text { or } 1 \\ \text { (usually } 0 \text {) } \end{gathered}$	sometimes present (1-3)	rarely present

[^17]
SIMILAR LARVAE TO SCOMBRID FISH LARVAE

Similar larvae to Scombrini and Grammatorcynus

Family Nemipteridae Nemipterus bathybius (a~c:Konishi 2014)

 preopercular spines present vs absent
c 7.3 mm SL
anus before half body vs beyond it
Family Sparidae Acanthopagrus sp. (a~c:Trnski and Leis 2000)

[^18]
Similar larvae to Scombrini and Grammatorcynus (cont'd)

Family Pomacentridae Pomacentrus sp. (a~c:Kavanagh et al. 2000)

b 4.2 mm SL

 preopercular spines

Family Gerreidae Gerres sp. (a~c:Leis and Rennis 2000)

Similar larvae to Scombrini and Grammatorcynus (cont'd)

Family Mullidae Upeneus japonicus (a~c:Konishi 2014)

Similar larvae to Scombrini and Grammatorcynus (cont'd)

Family Ambassidae Ambassis sp. (a~c:Trnski and Leis 2000)

Family Myctophidae ${ }^{18}$ Lampanyctus nobilis ($\mathbf{a} \sim \mathrm{c}:$ Moser and Ahlstrom 1996)

[^19]
Similar larvae to Scombrini and Grammatorcynus (cont'd)

head and snout round
a 1.8 mm NL

lower jaw angle
melanophore series present pigmented vs on ventral midline of tail unpigmented
b 4.3 mm SL

Family Pinguipedidae Parapercis sp. (a~c:Leis and Rennis 2000)

Family Blenniidae Petroscirtes mitratus (a~c:Watson 2000)

Similar larvae to Sardini, Scomberomorini ${ }^{19}$ and Thunnini

Family Myctophidae Nannobrachium bristori²1 (a~c:Moser and Ahlstrom 1996)

Family Scombrolabracidae Scombrolabrax heterolepis (a~b:Nishikawa 2014)

[^20]
Similar larvae to Sardini, Scomberomorini and Thunnini (cont'd)

Family Gempylidae ${ }^{23}$ Neciarchus nasutus (a~c:Nishikawa 1987)

[^21]
REFERENCES

ADULTS

Collette, B. B. (2001). Scombridae Tunas (also, albacore, bonitos, mackerels, seerfishes, and wahoo). In Carpenter, K. E. and V. H. Niem (eds.), The living marine resources of the western Central Pacific. FAO species identification guide for fishery purposes. Vol. 6, FAO, Rome, pp. 3721-3756.
Collette, B. B. and J. Graves (2019). Tunas and billfishes of the world. Johns Hopkins Univ. Press, Baltimore, 351 p..
Collette, B. B. and C. E. Nauen (1983). FAO species catalogue. Vol. 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos, and related species known to date. FAO Fish. Synop., (125) Vol. 2, 137 p..
Nakabo, T. and R. Doiuchi (2013). Scombridae. In Nakabo, T. (ed.), Fishes of Japan with pictorial keys to the species, 3rd edition. Tokai Univ. Press, Hadano, pp. 1648-1654. (in Japanese)
Zahuranec, B. J. (2000). Zoogeography and systematics of the lanternfishes of the genus Nannobrachium (Myctophidae: Lampanyctini). Smithsonian Contr. Zool., (607), 1-69.

LARVAE

Ambrose, D. A. (1996). Scombridae: mackerels and tunas. In Moser, H. G. (ed.), The early stages of fishes in the California Current region. CalCOFI Atlas, No. 33, pp. 1270-1285.

Chayakul, R. (1996). The fih larvae in the Gulf of Thailand. Department of Fisheries (Thailand), $217 \mathrm{pp} .$. (in Thai with English abstract)
Collette, B. B., T. Potthoff, W. J. Richards, S. Ueyanagi, J. L. Russo and Y. Nishikawa (1984). Scombroidei: development and relationships. In Moser, H. G., W. J. Richards, D. M. Cohen, M. P. Fahay, A. W. Kendall, Jr. and S. L. Richardson (eds.), Ontogeny and systematics of fishes. Amer. Soc. Ichthyol. Herpetol., Sp. Publ., No. 1, pp. 591-620.

Fahay, M. P. (2007). Early stages of fishes in the western North Atlantic Ocean (Davis Strait, southern Greenland and Flemish Cap to Cape Hatteras). Vol. 2, Northwest Atlantic Fisheries Organization, Dartmouth, Nova Scotia, pp.932-1696.

Jenkins, G. P., N. E. Milward and R. F. Hartwick (1984). Identification and description of larval Spanish mackerels, genus Scomberomorus (Teleostei: Scombridae), in shelf waters of the Great Barrier Reef. Aust. J. Mar. Freshw. Res., (35), 341-353.

Kavanagh, K. D., J. M. Leis and D. S. Rennis (2000). Pomacentridae. In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 526-535.

Konishi, Y. (2014). Nemipteridae. In Okiyama, M. (ed.), An atlas of the early stage fishes in Japan (Second Edition). Tokai Univ. Press, Hadano, pp. 861-864; Mullidae, ibid., pp. 889-893; Rastrelliger kanagurta, ibid., pp. 1391-1392. (in Japanese)

Leis, J. M. and D. S. Rennis (2000). Gerreidae. In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 299-302; Nemipteridae, ibid., pp. 486-489; Pinguipedidae, ibid., pp. 565-568.

Leis, J. M. and D. S. Schmitt (2000). Mullidae. In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 355-358.

Leis, J. M. and T. Trnski (1989). Ambassidae. In Leis, J. M. and T. Trnski (eds.), The larvae of Indo~Pacific shorefishes, New South Wales Univ. Press, Kensington, pp. 120-123; Sparidae, ibid., pp. 221-227; Terapontidae, ibid., pp. 232-238.
Matsumoto, W. M. (1958). Description and distribution of larvae of four species of tuna in central Pacific waters. Fish. Bull., 58(128), 31-72.

Matsumoto, W. M. (1959). Descriptions of Euthynnus and Auxis larvae from the Pacific and Atlantic Oceans and adjacent seas. Dana Rep., (50), 1-34.

Matsumoto, W. M. (1967). Morphology and distribution of larval wahoo Aanthocybium solandri (Cuvier) in the central Pacific Ocean. Fish. Bull., 66(2), 299-322.

Moser, H. G. and E. H. Ahlstrom (1996). Myctophidae: lanternfishes. In Moser, H. G. (ed.), The early stages of fishes in the California Current region. CalCOFI Atlas, No. 33, pp. 387-475.

Nishikawa, Y. (1979). Early development of the double-lined mackerel, Grammatorcynus bicarinatus (Quoy and Gaimard), from the western tropical Pacific. Bull. Far Seas Fish. Res. Lab., (17), 125-140.

Nishikawa, Y. (1985). Identification for larvae of three species of genus Thunnus by melanophore patterns. Bull. Far Seas Fish. Res. Lab., (22), 119-129. (in Japanese with English abstract)

Nishikawa, Y. (1987). Studies on the early life history of gempylid fishes. Bull. Far Seas Fish. Res. Lab., (24), 1-154. (in Japanese with English abstract)
Nishikawa, Y. (2014). Scombrolabracoidei. In Okiyama, M. (ed.), An atlas of the early stage fishes in Japan (Second Edition). Tokai Univ. Press, Hadano, p. 1358; Gempylidae, ibid., pp. 1370-1379; Scombridae, ibid., pp. 1385-1386; Grammatorcynus bilineatus, ibid., pp. 1392-1393; Scomberomorus guttatus, ibid., pp. 1393-1395; Scomberomorus commerson, ibid., pp. 1395-1396; Acanthocybium solandri, ibid., pp. 1395-1397; Gymnosarda unicolor, ibid., pp. 1397-1398; Sarda orientalis, ibid., pp. 1397-1398; Auxis sp., ibid., pp. 1397, 1399-1400; Euthynnus affinis, ibid., pp. 1399-1400; Katsuwonus pelamis, ibid., pp. 1399, 1401; Thunnus albacares, ibid., pp. 1401-1402; Thunnus obesus, ibid., pp. 1402-1403; Thunnus alalunga, ibid., pp. 1402-1404; Thunnus tonggol, ibid., pp. 1404-1406. (in Japanese) Nishikawa, Y. and D. W. Rimmer (1987). Identification of larval tunas, billfishes and other scombroid fishes (suborder Scombroidei): an illustrated guide. CSIRO Mar. Lab. Rep., 186, 20 pp..

Nishikawa, Y. and S. Ueyanagi (1991). Morphological development of larvae of longtail tuna. Bull. Nat. Res. Inst. Far Seas Fish., (28), 1-13. (in Japanese with English abstract)

Nishikawa, Y. and S. Ueyanagi (1992). On the appearance of melanophores on lower jaw tip of longtail tuna larvae Thunnus tonggol. Bull. Nat. Res. Inst. Far Seas Fish., (29), 9-11. (in Japanese with English abstract)

Okiyama, M. and S. Ueyanagi (1977). Larvae and juvenile of the Indo-Pacific dogtooth tuna, Gymnosarda unicolor (Rüppell). Bull. Far Seas Fish. Res. Lab., (15), 35-49. (in Japanese with English abstract)

Ozawa, T. (1984). The postlarvae of spotted mackerel Scomber australasicus Cuvier (Pisces, Scombridae). Bull. Japan. Soc. Sci. Fish., 50(8), 1317-1321.
Richards, W. J. (2006). Scombridae: mackerels and tunas. In Richards, W. J. (ed.), Early stages of Atlantic fishes: an identification guide for the western central North Atlantic. Vol. 2, CRC Press, Boca Raton, pp. 2187-2227.
Richards, W. J. and G. P. Jenkins (2000). Scombridae (mackerels, Spanish mackerels, bonitos, tunas). In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 693-700.

Sassa, C. and Y. Konishi (2014). Scomber. In Okiyama, M. (ed.), An atlas of the early stage fishes in Japan (Second Edition). Tokai Univ. Press, Hadano, pp. 1386-1391. (in Japanese)

Sato, T., A. Tawa, K. Sakuma and M. Sakurai (2020). Larval identification based on melanophore patterns in two Auxis species, bullet tuna Auxis rochei and frigate tuna Auxis thazard, from the northwest Pacific Ocean. Fish. Sci., 86, 625-631.

Trnski, T. and J. M. Leis (2000). Ambassidae. In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 269-272; Terapontidae, ibid., pp. 474-480; Sparidae, ibid., pp. 490-498.

Uchida, K., S. Imai, S. Mito, S. Fujita, M. Ueno, Y. Shojima, T. Senta, M. Tahuku and Y. Dotu (1958). Studies on the eggs, larvae and juvenile of Japanese fishes. Series 1. Second laboratory of fisheries biology, Fisheries Department, Faculty of Agriculture, Kyushu University, Fukuoka, Japan. 89 p., 86 pls.. (in Japanese)

Ueyanagi, S. (1969). Observations on the distribution of tuna larvae in the Indo-Pacific Ocean with emphasis on the delineation of the spawning arears of albacore, Thunnus alalunga. Bull. Far Seas Fish. Res. Lab., (2), 177-219. (in Japanese with English abstract)

Yabe, H. (1955). Studies on the fish larvae in the western Pacific Ocean. 1. The postlarvae of Katsuwonus pelamis. Bull. Japan. Soc. Sci. Fish., 20(12), 1054-1059. (in Japanese with English abstract)

Wade, C. B. (1951). Larvae and tuna-like fishes from Philippine waters. U. S. Department of the Interior, Fish and Wildlife Service, Fishery Bull. 51(57), 445485.

Watson, W. (2000). Blenniidae. In Leis, J. M. and B. M. Carson-Ewart (eds.), The larvae of Indo~Pacific coastal fishes: an identification guide to marine fish larvae. Brill, Leiden, pp. 588-605.

Zang, R. Z. (1985). The morphology and characteristics of the spotted seer Scomberomorus guttatus (Bloch and Schneider). Zool. Res., 6(2), 123-130. (in Chinese with English abstract)

[^0]: Southeast Asian Fisheries Development Center
 Training Department
 P. O. Box 97 Phrasamutchedi

 Samutprakan 10290
 Thailand
 E-mail: td@seafdec.org

[^1]: ${ }^{1}$ Thunnus maccoyii and T. orientalis distribute in the adjacent waters of Southeast Asia: the former is in the east Indian Ocean, and the latter in the west Pacific Ocean.
 REFERENCES: Collette (2001)

[^2]: ${ }^{2}$ modified from Collette (2001).
 REFERENCES: Collette and Nauen (1983), Collette (2001), Collette and Graves (2019)

[^3]: ${ }^{3}$ Interneural bones are the proximal element of the pterygiophores which support fin ray, and insert between the neural spines of the vertebral columns.

[^4]: ${ }^{4}$ The large thick scales that cover the anterior part of the body in advanced scombrids (see Fig. 14).

[^5]: ${ }^{5}$ This type liver is shared with the neighboring-water species of Thunnus orientalis and T. maccoyii. Thunnus orientalis are distinguished from T. maccoyii by median caudal keel and pectoral-fin size (dark vs yellow, less than 20% of fork length vs more than 20% of fork length, respectively).

[^6]: ${ }^{6}$ Pectoral fins reach usually beyond origin of $2^{\text {nd }}$ dorsal fin but not beyond the end of its base.
 ${ }^{7}$ Pectoral fins of smaller individuals ($>40 \mathrm{~cm}$) are very long (reaching to end of $2^{\text {nd }}$ dorsal fin).

[^7]: ${ }^{8}$ modified from Nishikawa (2014). This key is applied to larvae less than 10 mm BL.
 ${ }^{9}$ Development of pigment on nape is depend on body size (see page 25 and 26).
 REFERENCES: Nishikawa and Rimmer (1987), Richards and Jenkins (2000), Richards (2006), Fahay (2007), Nishikawa (2014)

[^8]: ${ }^{10}$ Nishikawa and Ueyanagi (1992)

[^9]: ${ }^{11}$ modified from Sato et al. (2020). This key is applied to larvae less than 7 mm BL (NL or SL). Completion of notochord flexion occurs around 6 mm BL .
 ${ }^{12}$ Spawning grounds are formed mainly in the tropical and subtropical waters out the Southeast Asian waters: Central Indian Ocean ($10^{\circ} \mathrm{S}-26^{\circ} \mathrm{S}, 50^{\circ} \mathrm{E}-120^{\circ} \mathrm{E}$); northern Central \& West Pacific Ocean $\left(10^{\circ} \mathrm{N}-30^{\circ} \mathrm{N}, 128^{\circ} \mathrm{E}-150^{\circ} \mathrm{W}\right.$); southern Pacific Ocean ($8^{\circ} \mathrm{S}-25^{\circ} \mathrm{S}, 150^{\circ} \mathrm{E}-105^{\circ} \mathrm{W}$) (Ueyanagi, 1969).

[^10]: Selected characters with an arrow are shown (the same hereafter).
 ${ }^{13}$ Species identification of Rastrelliger brachysoma, R. faughni and R. kanagurta larvae is impossible by morphological characters.
 REFERENCES: Chayakul (1996), Konishi (2014)

[^11]: ${ }^{14}$ Larvae of S. koreanus, S. lineolatus and S. sinensis are unreported.
 REFERENCES: Jenkins et al. (1984), Chayakul (1996), Richards and Jenkins (2000), Nishikawa (2014)

[^12]: ${ }^{15}$ Several small spines are noticeable between 1st and 2nd dorsal fins and embedded in body after ca 50 mm SL.
 REFERENCES: Matsumoto (1959), Collette et al. (1984), Ambrose (1996), Richards (2006), Fahay (2007), Nishikawa (2014), Sato et al. (2020)

[^13]: ${ }^{15}$ See Auxis rochei in page 33.
 REFERENCES: Matsumoto (1959), Ambrose (1996), Chayakul (1996), Richards (2006), Fahay (2007), Nishikawa (2014), Sato et al. (2020)

[^14]: Total length is converted to notochord length (NL) or standard length (SL). REFERENCES: Matsumoto (1959), Ambrose (1996), Richards (2006), Fahay (2007), Nishikawa (2014)

[^15]: Total length is converted to notochord length (NL) or standard length (SL).
 REFERENCES: Matsumoto (1958), Ambrose (1996), Richards (2006), Fahay (2007), Nishikawa (2014)

[^16]: Total length is converted to notochord length (NL) or standard length (SL).
 ※Larvae of T. orientalis in the west Pacific and T. maccoyii in the east Indian are similar to those of
 T. obesus. See Table 3 in page 41.

 REFERENCES: Richards (2006), Fahay (2007), Nishikawa (2014)

[^17]: ${ }^{a}$ Information on distribution, and spawning areas and season only in the Southeast Asia and its adjacent waters is shown (Collette \& Nauen, 1983; Collette, 2001;
 Collette \& Graves, 2019).
 ${ }^{\text {c }}$ The melanophore(s) is smaller than those of Thunnus orientalis.
 ${ }^{\mathrm{b}}$ Internal pigment.
 Number of specimens examined for pigmentation, collection sites, and size range of each species: Thunnus obesus, 301, from southern Japan, 2.7 mm NL-10.0 mm SL; T. maccoyii,
 516 , from northeast Australia, 2.6 mm NL-11.1 mm SL; T. orientalis, 486 , from south Japan, 3.2 mm NL- 8.2 mm SL.
 516, from northeast Australia, 2.6 mm NL-11.1 mm SL; T. orientalis, 486, from south Japan, 3.2 mm NL-8.2 mm SL.
 REFERENCES: Collette and Nauen (1983), Nishikawa (1985), Collette (2001), Collette and Graves (2019)

[^18]: ${ }^{16}$ Similar larvae vs concerning scombrid larvae (the same hereafter).
 ${ }^{17}$ Nemipterid Parascolopsis and scombrid Grammatorcynous larvae have small preopercular spines.
 REFERENCES: Leis and Trnski (1989), Leis and Rennis (2000), Richards and Jenkins (2000),
 Trnski and Leis (2000), Konishi (2014)

[^19]: ${ }^{18}$ Other genera of the similar larvae: Nannobrachium and Notoscopelus.
 REFERENCES: Leis and Trnski (1989), Moser and Ahlstrom (1996), Richards and Jenkins (2000), Trnski and Leis (2000)

[^20]: ${ }^{19}$ The Genera Acanthocybium and Grammatorcynous are excluded.
 ${ }^{20}$ Preopercular spines do not appear usually in myctophid larvae.
 ${ }^{21}$ Tropical and subtropical species in the North Pacific (Zahuranec, 2000)
 REFERENCES: Moser and Ahlstrom (1996), Richards and Jenkins (2000), Nishikawa (2014)

[^21]: ${ }^{22}$ Collette et al. (1984).
 ${ }^{23}$ Larvae of Lepidocybium flavobrunneum have two small supraoccipital spines (Nishikawa 1987).
 REFERENCES: Collette et al. (1984), Nishikawa (1987, 2014), Richards and Jenkins (2000)

