Phylogeny and Reticulation in Poa Based on Plastid trnTLF and nrITS Sequences with Attention to Diploids

Robert J. Soreng, ${ }^{\text {I }}$ Roger D. Bull, ${ }^{2}$ and Lynn J. Gillespie ${ }^{2}$

${ }^{1}$ Smithsonian Institution, Department of Botany MRC-I66, National Museum of Natural History, P.O. Box 370I2, Washington, District of Columbia 20013-70I2 U.S.A.
${ }^{2}$ Canadian Museum of Nature, Research Division, P.O. Box 3443,
Station D. Ottawa, ON, KIP 6P4, Canada
Author for correspondence (sorengr@si.edu)

Abstract

Poa is the largest grass genus, with over 500 species, most of which are polyploid. Only 13 to 15% of species with chromosome counts have diploid populations. We conducted two phylogenetic analyses of combined chloroplast $\operatorname{trn} T-\operatorname{trn} L-\operatorname{trn} F(T L F)$ and nuclear ribosomal ITS sequence data for 42 outgroups and 47 samples of 30 species of Poa. One analysis focused on Poa taxa with diploid populations, and a second analysis included six more polyploid, and three possible hybrid taxa for which the data were not combined. The results are mostly congruent with results in published studies and provide further support for the recent classification of Poa into five serially diverging subgenera: Sylvestres, Ochlopoa, Pseudopoa, Stenopoa, and Poa. Incongruent placements of separate plastid and ITS sequences of P. abbreviata and P. annua are attributed to reticulate evolution, and of P. trivialis to long branch attraction. A genome notation system is introduced to simplify and facilitate characterization of plastid and ITS contributions in each accession and higher-level grouping resolved, and to identify the parental contributions in the possible hybrids. For example, we provide new evidence that a tetraploid, Poa annua $\left(\mathrm{M}^{\mathrm{I}} \mathrm{M}^{2}\right)$, is derived from hybridization between two diploids, P. infirma ($M^{\mathrm{I}} \mathrm{m}^{\mathrm{I}}$) and P. supina $\left(\mathrm{M}^{2} \mathrm{M}^{2}\right)$, where large capitals represent plastid and small capitals represent ITS genomes of P. subg. Ochlopoa sect. Micrantherae (Mm), and superscript numbers represent the genetically divergent genomes of the parental species within the section.

Keywords-DNA, genomes, hybridization, phylogeny, Poa, Poa annua, Poaceae, polyploidy.

Poa L. is known for its high frequency of polyploidy and large number of species (Stebbins 1950; Clayton and Renvoize 1986; Soreng 1990; Gillespie and Soreng 2005). The base chromosome number in Poa is $x=7$, as it is across tribe Poeae s.l. (sens. Soreng et al. 2007) and the related tribes Triticeae and Bromeae, with few exceptions (Stebbins 1956). Among more than 5000 reported chromosome counts in Poa (Darlington and Wylie 1955; Cave 1959, 1965; Bowden 196r; Ornduff 1967-1969; Hair 1968; Fedorov 1969; Moore 1970-1974, 1977, 1982; Löve and Löve 1975; Goldblatt 198I, 1984, 1985, and on-line; Probatova 1985; Tateoka 1985; Duckert-Henriod and Favarger 1987; Dawson 2000; Soreng 2005), chromosome numbers are known for some 226 taxa of Poa accepted by us in at least 184 species, among the approximately 500 species we accept in the genus. Of Poa species for which chromosome counts are available, 91\% include polyploids. We estimate that between 13 and 15% of the species have diploid populations, and that only nine percent are known only as diploids.

Given the high degree of polyploidy in the genus, the expectation is that much of it is due to allopolyploidy (Stebbins 1950). However, few studies have directly addressed allopolyploid origins in Poa species (Darmency and Gasquez 1997; Brysting et al. 2000, 2004; Patterson et al. 2005). Several studies have examined the phylogeny of the genus using plastid DNA data, with sampling dominated by polyploid elements (Soreng 1990; Gillespie and Boles 2001; Gillespie and Soreng 2005; Gillespie et al. 2007). Two studies, both with a preponderance of polyploid taxa, examined separate phylogenetic analyses of plastid and ITS data sets, but did not combine these data due to doubts about their compatibility (Brysting et al. 2004; Gillespie et al. 2008), and Nosov and Rodionov (2008) presented an ITS analysis of Poa. Gillespie et al. 2009, 20IO added ETS (a second nrDNA sequence) to the studies of subtribe Poinae and Poa, and combined the plastid and nrDNA data.

Might we detect different phylogenetic relationships among the diploid elements of Poa analyzed alone, as opposed to intermixed among samples dominated by polyploids? Might the ITS and plastid data for diploids in Poa, or diploids and polyploids, be combinable for some subset of taxa? And would we resolve topologies similar to those we had seen in previous studies? Gillespie et al. (2008) presented data for a subset of 42 species of Poa for which most plastid and ITS data were consistent. A few taxa were placed outside the genus by one genome, and within Poa with the other, leading the authors, for example, to accept Arctopoa as a genus of presumably ancient hybrid origin rather than as a subgenus within Poa. In exploratory analyses with many additional samples of Poa, Gillespie et al. (unpublished data) discovered multiple instances of incongruent plastid and ITS placements within Poa.

The 30 known species of Poa with diploid chromosome counts are distributed within 13 sections, in four of the five subgenera currently accepted by Gillespie et al. (2008) (number of diploid species is listed after each section name; see Table I for authorships of infrageneric taxa included in the present study):
(1) P. subg. Ochlopoa sects. Alpinae (6), Arenariae Stapf (5), Micrantherae (2);
(2) P. subg. Poa sects. Homalopoa (4), Macropoa (2), Nivicolae (1);
(3) P. subg. and sect. Pseudopoa (2);
(4) P. subg. Stenopoa sects. Abbreviatae (2), Kolymenses Prob. (1), Oreinos (1), Pandemos (I , Tichopoa Asch. \& Graebn. (I).

No diploids are known from the fifth subgenus, Sylvestres. Owing to morphological differences correlated with plastid and/or ITS placements outside of Poa, two subgenera formerly accepted within Poa (Soreng et al. 2003) have been removed: P. subg. Andinae Nicora was elevated to genus Nicoraepoa Soreng \& L.J. Gillespie, and P. subg. Arctopoa (Griseb.) Tzvelev sects. Arctopoa (Griseb.) Tzvelev and Aphydris (Griseb.) Tzvelev were accepted as sections of genus Arctopoa (Griseb.) Prob. (Soreng and Gillespie 2007; Gillespie et al. 2008). Diploids from Poa sects. Nivicolae, Kolymenses, Nanopoa, and Tichopoa have yet to be included in published DNA studies, and only a small analysis was published with a diploid, P. dolosa, of sect. Oreinos (Stoneberg-Holt et al. 2004). Sections Kolymenses and Nivicolae s.s. are placed in subgenera only by morphological characterizations, since no members, or no certain members (as in the case of Nivicolae s.l. in which P. ircutica and P. veresczaginii have been included [Tzvelev 1976], or excluded [Olonova 1990], from the section), have been included in DNA phylogenetic analyses. Placement of the monotypic P. sect. Nanopoa in our five-subgenus system has not been evaluated in previous DNA analyses.

Diploids in the 13 Poa sections with diploids are concentrated in Europe (Edmondson 1980; Moore 1982). One Poa section with diploids is centered in Beringia (Abbreviatae), one is centered in central and southwestern Asia (Pseudopoa), and two are endemic to far eastern Russia (Nivicolae s.s., and Kolymenses). Poa sect. Homalopoa s.s. includes diploids distributed across temperate forests of Eurasia and one in the southern Rocky Mountains. Only three Poa diploids are known outside of Eurasia, two that are endemic to North America (in $A b$ breviatae and Homalopoa) and one that is amphiberingian (in Abbreviatae) (P. lettermanii, P. occidentalis Vasey, and P. pseudoabbreviata, respectively). Of the 30 Poa taxa with diploid counts, ten of these also have higher ploidy levels. Three of these (P. bulbosa, P. badensis, and P. diaphora) have one or a few diploid counts and more polyploid counts, and the other seven have one or two higher polyploid counts (P. cephalonica H. Scholz, P. molinerii, P. occidentalis, P. sinaica Steud., P. sibirica, P. supina, P. trivialis). There may well be other undiscovered diploids. For example, there are several endemic species with polyploid chromosome counts from Africa (8), South America (io), SE Asia (7), Malesia (4), and Australia (3), but only io to 40% of the species in those areas have been cytologically examined. However, in floras outside of Europe and Russia that are cytologically well known, no Poa diploids have been found in Japan (Tateoka 1985), or New Zealand (Hair 1968), and only three are known in North America (Soreng 2007).

Given the potential for polyploid species to have more than one ITS type, and the requirement for cloning or other sensitive techniques to discover multiple copies (Bailey et al. 2003), and existing evidence (Gillespie et al. 2009, and unpublished) for distinct paralogous or hybrid copies of ITS in some polyploid accessions of Poa (i.e., copies that do not coincide with any phylogeny of plastid lineages), we have conducted an analysis primarily with diploid taxa. In a second analysis we also include a few polyploids (mainly tetraploids) from selected sections that are unrepresented by diploids, to determine their placements by plastid and ITS data. In order to investigate the possible hybrid origins of these polyploids, we include one diploid (P. trivialis) and two polyploid taxa (P. annua and P. abbreviata) that in exploratory analyses are placed in radically different positions in plastid and ITS trees. The latter three taxa have been included in most of our published plastid analyses. We present new ITS data for these and several other diploid taxa of Poa here.

Materials and Methods

Taxa and Collections-The taxon sample includes 28 species of Poa. Fortytwo outgroups from within tribe Poeae s.l. also were used, 28 of them from subtribes Puccinelliinae, Poinae, Alopecurinae, and Miliinae (PPAM clade; Gillespie et al. 2008), including 15 samples from subtribe Poinae (including subtribe Cinninae). The tree was rooted with Brachypodium distachyon of tribe Brachypodieae. Taxon names, infrageneric classification, collection citations, reported chromosome numbers for the taxa, country of origin, and GenBank accession numbers for Poa are reported in Table 2. Plastid and ITS sequences from 29 samples were included from 16 species of Poa reported to have diploid populations (Table 2). For outgroup phylogenetic results using essentially the same outgroup taxa and DNA datasets see Gillespie et al. (2008, 2010). No attempt was made to verify the diploid status of these samples except P. supina accession I (Soreng 2005; but see Patterson et al. 2005). Although several of the species are known to be diploids from multiple chromosome counts, others have only one or two reported counts, and others have a few or multiple polyploid counts (Table 2).

DNA sequences-For protocols for generating and aligning the trnT-trnL$\operatorname{trnF}(T L F)$ plastid and ITSi-5.8S-ITS2 nuclear ribosomal DNA sequences see Gillespie et al. (2008). One hundred and twenty-four sequences were generated at the Canadian Museum of Nature by LJG \& RDB, 30 of which are new for this study. Thirty-four outgroup and in Poa sequences were generated by other labs as reported in GenBank. Insertion and deletion (indel) and inversion characters were not included in the present data matrix.

Analyses-The TLF and ITS datasets were merged into a single NEXUS format data matrix. The incongruence length difference test of Farris et al. (1995) was performed using the partition-homogeneity test of PAUP* 4.obio (Swofford
2002) to check for the extent of conflict between the TLF and ITS data partitions. Each taxon responsible for incongruence between the two partitions was subsequently treated as two separate ITS and TLF operational taxonomic units (OTUs).

Parsimony and bootstrap (BS) analyses were run as in Gillespie et al. (2008). Complete heuristic searches were performed in PAUP* for both analyses, with no maximum number of trees set in Analysis I (see below), and with a maximum number of trees set at io,ooo for Analysis II. Bootstrap analysis was performed with Iooo replicates, TBR swapping, and the 'MULTREES' setting on for Analysis I, and with rooo replicates, io addition sequences per replicate, TBR swapping, and the 'MULTREES' setting turned off for Analysis II due to long search times (DeBry and Olmstead 2000). Following the suggestion of Starr et al. (2004), clade support was characterized as very poor (BS $<55 \%$), poor (BS 55-64\%), moderate (BS 65-74\%), good (BS 75-84\%), very good (BS 85-94\%), or strong ($95-100 \% \mathrm{BS}$).

After exploratory parsimony analyses were run, two final parsimony analyses were conducted. Analysis I included i5 species of Poa known to have diploid populations (two samples are represented only by plastid data, but in one case a second sample of the same species was included, with both plastid and ITS data), plus four representative tetraploid species of P. sect. Sylvestres. Although no diploids are known in Sylvestres, these species are included in Analysis I because of their consistent and significant placement in previous analyses. In plastid analyses P. sect. Sylvestres was consistently resolved, with Arctopoa (Soreng 1990; Gillespie and Soreng 2005; Gillespie et al. 2007, 2008), as the sister to the remainder of Poa. In an ITS analysis sect. Sylvestres was also sister to the remainder of Poa, but Arctopoa was placed outside the genus (Gillespie et al. 2008). Analysis II included all the taxa in Analysis I, plus three species which were placed in conflicting positions in exploratory TLF and ITS trees, and eight samples/accessions of seven additional species which had consistent placements between TLF and ITS trees in previously published analyses (Gillespie et al. 2007, 2008). The latter seven taxa were included to add some depth to the sample in Analysis II, and to narrow down the affinities of the three inconsistently placed taxa. Six of the seven are tetraploids, while P. flabellata has tetraploid and hexaploid counts, and chromosome numbers are unknown for P. porsildii. In Analysis II, to avoid problems with taxa with incongruent plastid and ITS data, the data for the three taxa with conflicting placements were treated as separate lines of plastid and ITS data. For these three species, plastid data are included for one sample of P. abbreviata, two of P. annua, and two of P. trivialis, and ITS data are included for three samples of P. abbreviata, three of P. annua, and six of P. trivialis. For all merged samples except P. ligulata, the plastid and ITS data are from the same collection.

Taxon	$2 n=$	Subgenus	Section	Genomes / Lineages in Poa	Country of Origin	'Voucher, herbarium, citation, replicate no.	TLF GenBank	ITS GenBank
Poa abbreviata R. Br.	(28?), 42	Stenopoa	Abbreviatae	Ss	Canada, Nunavut	1. Gillespie \& Chatenoud 5957 CAN	DQ353996	GQ324481
Poa abbreviata R. Br.	(28?), 42	Stenopoa	Abbreviatae	*SH	Canada, Nunavut	2. Gillespie 5818 CAN		GQ324480
Poa abbreviata R. Br.	(28?), 42	Stenopoa	Abbreviatae	${ }^{\text {S SH }}$	Canada, Nunavut	3. Gillespie 5816 CAN		AY_{237835}
Poa alsodes A. Gray	not known	Sy/vestres	Sylvestres	Yy	Canada, Quebec	Gillespie 6467 CAN	DQ353981	EU792374
Poa annua L.	28	Ochlopoa	Micrantherae	M'M ${ }^{\text {2 }}$	China, Yunnan	2. Soreng 7456 US	EU792452	GQ324485
Poa annua L.	28	Ochlopoa	Micrantherae	M'M ${ }^{\text {2 }}$	Canada, Ontario	1. Gillespie 6284 CAN	DQ353983	EU792386
Poa annua L.	28	Poa	Ochlopoa	_- M ${ }^{\text {2 }}$	[Argentina]	3. Corach et al. unpubl.	-	AF521901
Poa autumnalis Elliott	28	Sylvestres	Sylvestres	Yy	USA, Maryland	Soreng 4680 US	DQ353979	EU792379
Poa badensis Haenke ex Willd.	(14), 18-21, 28	Ochlopoa	Bolbophorum	AA	Bulgaria	Hajkova 2004-12 US, SH2004-12	GQ324402	GQ324490
Poa chaixii Vill.	14	Poa (supersect. Homalopoa)	Homalopoa s.s.	Hн	Russia	Soreng 4677 US	EU854590	EU792404
Poa diaphora Trin.	14, 28, 42	Pseudopoa	Pseudopoa	Ee	Turkey	Soreng © Güney 4165 US	$\begin{aligned} & \text { DQ353987, } \\ & \text { DQ353988 } \end{aligned}$	EU792400
Poa dolosa Boiss. \& Heldr.	14	Stenopoa	Orienos	NN	Bulgaria	I. Stoneberg SHI8 US	GQ324413	GQ324503
Poa dolosa Boiss. \& Heldr.	14	Stenopoa	Orienos	Nn	Greece	$\begin{aligned} & \text { 2. Soreng et al. } \\ & 7495-\text { US } \end{aligned}$	GQ324414	GQ324502
Poa flabellata (Lam.) Raspail	28,42	Ochlopoa	Parodiochloa	RR	South Georgia Islands	2. Wright 9NSG (seed vouchered US)	EU792453	EU792381

Poa flabellata (Lam.) Raspail	28, 42	Ochlopoa	Parodiochloa	RR	Falkland Islands	I. Wright $4 N C D$ (seed vouchered US)	DQ353982	EU792380
Poa hybrida Gaudin	14	Poa (supersect. Homalopoa)	Homalopoa	H_	Greece	PI 249765, Patterson et al. 2005	AY589130	-
Poa infirma Kunth	14	Ochlopoa	Micrantherae	$M^{\prime} M^{\prime}$	Spain	I. Torrecilla and Catalán 2002	$\begin{aligned} & \text { DQ367407, } \\ & \text { AF488773 } \end{aligned}$	AF488773
Poa infirma Kunth	14	Ochlopoa	Micrantherae	$M^{\prime} M^{\prime}$	Spain	2. Catalán 3-2000-2 UZ	GQ324427	AF393012
Poa ircutica Roshev.	28	Poa (supersect. Poa)	Nivicolae?	PH	Russia, Siberia	Kasanovskiy 2002-7 CAN	DQ354007	EU792402
Poa lettermanii Vasey	14	Stenopoa	Abbreviatae	Ss	USA, Colorado	Soreng \& Soreng 7434 US	GQ324431	GQ324521
Poa ligulata Boiss.	14	Ochlopoa	Alpinae	AA	Morocco (TLF), Spain (ITS)	PI 517033, Patterson et al. 2005 (TLF), 166095 JACA (ITS)	AY589134	GQ324522
Poa macrantha Vasey	28	Poa (supersect. Homalopoa)	Madropoa	Нн	USA, Oregon	Soreng 586ı US	DQ354028	EU792407
Poa media (L.) Cav.	14	Ochlopoa	Alpinae	Nn	Bulgaria	I. Stoneberg SH_{17} US	GQ324437	GQ324527
Poa media (L.) Cav.	14	Ochlopoa	Alpinae	Nn	Bulgaria	2. Hajkova et al. 2004-II US	GQ324436	GQ324526
Poa molinerii Balb.	14, 28	Ochlopoa	Alpinae	AA	Slovak Republic	Stoneberg SHi3 CAN	$\begin{aligned} & \text { DQ354036, } \\ & \text { DQ354037, } \\ & \text { AY504639 } \end{aligned}$	EU792389
Poa nervosa (Hook.) Vasey	28	Poa (supersect. Homalopoa)	Madropoa	Нн	USA, Oregon	Soreng 5849 US	DQ354025	EU792405
Poa porsildii Gjaerev.	not known	Poa (supersect. Homalopoa)	Madropoa	Нн	USA, Alaska	Soreng \& Soreng 6147-ו US	DQ354024	GQ324538

Taxon	$2 n=$	Subgenus	Section	Genomes / Lineages in Poa	Country of Origin	'Voucher, herbarium, citation, replicate no.	TLF GenBank	ITS GenBank
Poa pseudoabbreviata Roshev.	14	Stenopoa	Abbreviatae	Ss	USA, Alaska	Soreng \& Soreng 6032-I US	DQ353997	EU792398
Poa reflexa Vasey \& Scribn.	28	Poa (supersect. Homalopoa)	Homalopoa s.l.	Нн	USA, Colorado	Soreng 7422 US	GQ324450	GQ324543
Poa remota Forselles	14	Poa (supersect. Homalopoa)	Homalopoa s.s.	Рн	Czech Republic	I. Stoneberg PB3-A US	GQ324451	GQ324544
Poa remota Forselles	14	Poa (supersect. Homalopoa)	Homalopoa s.s.	Рн	Kyrgyz Republic	2. Soreng et al. 7540 US	GQ324452	GQ324545
Poa saltuensis Fernald \& Wiegand	28	Sylvestres	Sylvestres	Yy	Canada, Ontario	Gillespie 7043 CAN	EU792451	EU792378
Poa sibirica Roshev. subsp. sibirica	14	Poa (supersect. Poa)	Macropoa	Рн	Russia, Siberia	I. Olonova 2002-I CAN	DQ354044, DQ354045	EU792401
Poa sibirica Roshev. subsp. sibirica	14	Poa (supersect. Poa)	Macropoa	Рн	Russia, Siberia	$\begin{aligned} & \text { 2. Olonova } 45 \\ & \text { CAN } \end{aligned}$	GQ324455	GQ324547
Poa stuckertii (Hack.) Parodi	28	Poa (supersect. Homalopoa)	Dioicopoa	Нн	Chile	Soreng \& Soreng 7132 US	DQ354022	EU792414
Poa supina Schrad.	14, (28?)	Ochlopoa	Micrantherae	$\mathrm{M}^{2} \mathrm{M}^{2}$	USA (cult., introduced)	1. Soreng \& Cayouette 5950-2 US	DQ353984	EU792387
Poa supina Schrad.	14, (28?)	Ochlopoa	Micrantherae	M^{2}	Morocco	2. PI 517033 UTC, Patterson et al. 2005	AY589147	-
Poa sylvestris A. Gray	28	Sy/vestres	Sylvestres	Yy	USA, Maryland	Soreng 4678-3 US	DQ353980	EU792375
Poa trichophylla Heldr. \& Sart. ex Boiss.	14	incertae sedis	Nanopoa	Nn	Greece	Soreng et al. 7508 US	GQ324461	GQ324554
Poa trivialis L.	14, (28?)	"incertae sedis	Pandemos	Vv	USA, Maryland (cult., introduced)	I. Soreng 4681-I US	GQ324462	GQ324555

Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	- ${ }^{\text {v }}$	[cult.]	2. Gaut et al. 2000		AFi71184
Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	- v	[cult.]	3. Gaut et al. 2000		AFi71185
Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	_-v	[cult.]	4. Gaut et al. 2000		AFi71186
Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	_-v	[France]	5. Charmet et al. 1997	-	AJ240161
Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	V_-	Turkey	6. PI 204484 UTC, Patterson et al. 2005	AY589148	-
Poa trivialis L.	14, (28?)	incertae sedis	Pandemos	__v	Spain	7. López- Rodríguez oıogo, Catalán et al. 2004	-	AF532932
Poa wolfi Scribn.	28	Sylvestres	Sylvestres	YY	USA, Missouri	Soreng 5800 US	$\begin{aligned} & \text { DQ354032, } \\ & \text { DQ354033 } \\ & \hline \end{aligned}$	EU792377
Table 2. Collections of Poa examined for plastid and ITS DNA, chromosome number from the literature, infrageneric classification, of origin (and in some cases, smaller political units within countries), vouchers, and GenBank accession numbers. The infrageneric (2008). Chromosome numbers given in parentheses are infrequent numbers in taxa with multiple counts, or of questionable identifica designations are described in the Results section of the paper. ${ }^{*}=$ plastid genome designations based on results from a restriction-site Species replicates are numbered as in Figs. I and 2 in the Voucher column. Outgroup data are reported in Gillespie et al. (2008).								

Results

Data Characteristics-Characteristics of the sequences were reported in Gillespie et al. (2008), where many of the same taxa were included. The whole plastid TLF and ITS dataset comprised 3214 aligned nucleotide positions after exclusion of 20 large and medium-sized gaps. The TLF data partition comprised 1995 positions, the ITS 635 positions. Percent missing data for the dataset was $<0.1 \%$ for $T L F$ and $<0.5 \%$ for ITS, with data missing primarily from outgroup taxa (trnT-trnL spacer was missing for Sclerochloa dura). For the combined data set 442 positions were parsimony informative (PI) and 37 I parsimony uninformative (PU) in Analysis I, and 465 were PI, and 369 were PU in Analysis II All OTUs included both ITS and TLF data, except for three species with incongruent plastid and ITS data, and P. hybrida and P. supina accession I for which no ITS data were available.

Exploratory analyses of separate plastid and ITS data resolved all of the Poa diploid taxa (except P. trivialis) and all of the Poa polyploid taxa included in this study (except P. abbreviata and P. annиa) in the same cladistic relationships in separate plastid and ITS trees (trees not shown). Partition Homogeneity tests showed that our plastid and ITS data partitions were incompatible for matrices that included all taxa included in both Analyses I and II datasets ($\mathrm{P}=\mathrm{o} .0 \mathrm{I}$). However, for taxa included here from the PPAM clade (Gillespie et al. 2008), which includes Poa, the data partitions were not significantly incompatible (Analysis I dataset: $\mathrm{P}=0.55$; Analysis II dataset: $\mathrm{P}=0.57$), when the plastid and ITS data for Poa abbreviata, P. annua, and P. trivialis were subdivided as separate OTUs in Analysis II. Since our primary focus was the Poa clade (within PPAM), we feel that combining the plastid and ITS data for the entire dataset for Analyses I and II is justified, except for the above three species. When TLF and ITS data for Poa abbreviata, P. annua, and P. trivialis were combined, TLF and ITS data partitions were significantly incompatible for PPAM taxa ($\mathrm{P}=\mathrm{o} .01$).

Lineage Names-To facilitate discussions of genomic constitutions of lineages, taxa, and possible hybrids we introduce a simplified notation for identifying generalized major lineages in Poa (Table I). Capital letters represent plastid genomes. Small capital letters represent ITS types/lineages. An ITS type is presumably a proxy for the nuclear genome in diploid taxa, but may or may not

Table I. Poa classification and plastid genome and ITS lineage designations for sections in the present study, and clade acronym equivalents from previous studies. In the Genomes/Lineages column: capital letters = plastid; small caps = ITS; superscripts = subsets within plastid genomes or ITS lineages. For further explanation see Results and Table 2. Formerly, acronyms derived from section name initials were used for major clade names (Gillespie and Soreng 2005; Gillespie et al. 2007, 2008); the infrageneric classification based on the major clades follows Gillespie et al. (2008). Sections with diploid taxa, and plastid and ITS types for diploid representatives, are in bold.

Subgenus, Supersection	Sections and informal groups	Genomes / Lineages	Former Acronym
${ }_{\text {I }}$) P. subg. Sy/vestres (Soreng) Soreng \& L.J. Gillespie.		YY	*Syl clade
	Sylvestres Soreng	Yy	
2) P. subg. Ochlopoa (Asch. \& Graebn.) Hyl.		Oo	BAPO clade
	Alpinae (Nyman) Stapf	AA, Nn	
	Parodiochloa (C. E. Hubb.) Soreng \& L. J. Gillespie	Rr	
	Micrantherae Stapf (syn.: P. sect. Ochlopoa Asch. \& Graebn.)	Mm	
3) P. subg. Pseudopoa (K. Koch.) Stapf		Ee	Pseudopoa lineage (syn.: Eremopoa)
	Pseudopoa (K. Koch.) Hack.	Ee	
4) P. subg. Stenopoa (Dumort.) Soreng \& L.J. Gillespie		Ss	SPOSTA clade
	Nanopoa J. R. Edm.	Nn	
	Pandemos Asch. \& Graebn.	Vv	
	Oreinos Asch. \& Graebn.	Nn, ${ }^{* *} \mathrm{Ss}$	****OSTA clade
	Abbreviatae Tzvelev	Ss, SH	OSTA clade
5) P. subg. Poa.		PH	
P. subg. Poa supersect. Poa		PH	PoM clade
	Macropoa F. Herm. ex Tzvelev	Ph	
	Nivicolae (Roshev.) Prob.	*** ${ }^{\text {PH }}$	
	Poa	Рн	
P. subg. Poa supersect. Homalopoa (Dumort.) Soreng \& L.J. Gillespie		Нн (Рн)	HAMBADD clade
	Dioicopoa E. Desv.	Нн	
	Homalopoa Dumort.	Нн (Pн)	
	Madropoa Soreng	Нн	

* The clade was called ArcSyl (Gillespie and Soreng 2005; Gillespie et al. 2007), before Arctopoa was removed from the genus (Gillespie et al. 2008).
** No polyploid taxa from P. sect. Oreinos are included in the present study, but its type species, Poa laxa s.I. or s.s., was included in Gillespie et al. (2007, 2008; see Discussion).
*** Our postulated representative of Nivicolae is a polyploid species of uncertain sectional relationship to the diploid type species (see Discussion).
**** The OSTA plastid clade includes four sections (Oreinos, Stenopoa Dumort., Tichopoa, and Abbreviatae) and is a subset of the SPOSTA clade, which also includes sects. Secundae Soreng, and Pandemos.
be derived from the same nuclear genome or genomes present in polyploids. Also, the unusual characteristics of ITS sequence evolution could scramble phylogenetic signal to an extent that ITS no longer effectively reflects the phylogeny of the nuclear genome it was derived from (Álvarez and Wendel 2003). In cases where the ITS type is suspected to be derived from wide hybridization (i.e., more than one ITS lineage is or was likely present at some point in the taxon under consideration) we append an asterisk to the ITS type. The logic and necessity of a shorthand genomic and lineage naming system will become more apparent in future papers with many additional species, sections of the genus, and hybrids, but similar systems are widely employed by geneticists for whole genomes (e.g., Dewey 1984). In selecting which plastid genomes or nrDNA lineages to name by letters we focus on the taxonomic subgenera and sections of the genus, or if the plastid genome or ITS lineage is relatively homogeneous between or among sections then one letter may be applied to several sections. If and when additional independent nuclear DNA markers are employed these may be appended to the nuclear DNA side of these notations.

At the subgenus - major clade - level, the following letters are used: $\mathrm{Yy}=$ Sylvestres; Oo = Ochlopoa; Ee = Pseudopoa (formerly the genus Eremopoa); PH or $\mathrm{HH}=$ Poa / Homolopoa; Ss = Stenopoa. Where there are diverse groups represented within the above five major clades additional letters are applied: AA = Alpinae; $\mathrm{Mm}=$ Micrantherae; $\mathrm{RR}=$ Parodiochloa; $\mathrm{HH}=$ Poa supersect. Homalopoa (with several sections, but where phylogenetically independent ITS types are not supported between supersects. Poa and Homalopoa by analysis of ITS data alone); $\mathrm{Nn}^{2}=$ sect. Nanopoa, P. dolosa and P. media (the latter two species are classified in different sections of the genus but are little differentiated from sect. Nanopoa); Ss = Stenopoa-Tichopoa-Oreinos-Abbreviatae. Superscript numbers are added as needed to represent sublineages within each of the more general genome types. As examples from the five subgenera, Poa sylvestris is $\mathrm{Yy} ; P$. ligulata is AA and P. infirma is $\mathrm{M}^{\mathrm{I}} \mathrm{M}^{\mathrm{I}}$; P. diaphora is Ee; P. chaixii is Hh; P. trichophylla is NN ; and P. pseudoabbreviata is Ss. For P. trivialis (and thus P. sect. Pandemos), under evaluation as a possible hybrid between elements from two major clades, the genome constitution is represented as Vv because it is only remotely associated with other genomes in either plastid or nrDNA analyses. See Table 2 for plastid genome and ITS lineage designations for each sample. This system allows us to readily identify the genetic constitution of any sample without referring to the section name or cumbersome acronyms previously applied to Poa clades when dealing with the plastid genome alone (Gillespie and Soreng 2005; Gillespie et al. 2007). In Figs. I and 2, for Analyses I and II, the subgenera - major clades are identified on the far right by the plastid capital letters as Y clade, O clade, E lineage, P clade, N clade and S clade.

Parsimony Analyses-For this paper we report structure and BS support only for Poa and clades within Poa (see Gillespie et al. [2010] for discussion of and support for PPAM clades outside of Poa).

Fig. I. Cladogram with summary of the strict consensus tree for Poa elements resulting from parsimony analysis of the plastid TLF and nuclear ITS data matrix in Analysis I (length 2013 steps; CI excluding uninformative characters $=0.461 ;$ RI 0.769). Outgroups are not displayed (see Gillespie et al. [2008, 2010] for discussion of those). Analysis I includes P. subg. Sy/vestres tetraploids. All other Poa samples are from species with diploid populations. The strict consensus tree is indicated by bold lines on one of 59 most parsimonious trees. Bootstrap values of 50% or higher are given on the branches. Major clades are indicated on the far right, and major subclades just to the left of those with their genomic constitutions (see Tables I and 2), where: $\mathrm{A}=$ Alpinae; $\mathrm{E}=$ Pseudopoa; $\mathrm{H}=$ Homalopoa; $\mathrm{M}=$ Micrantherae; $\mathrm{N}=$ Nanopoa; $\mathrm{O}=$ Ochlopoa; $\mathrm{P}=$ Poa; $\mathrm{S}=$ Stenopoa; $\mathrm{Y}=$ Sylvestres. For genomes, capital letters represent plastid lineages, and small capitals represent ITS lineages. Two samples have TLF data only as noted, and the P. ligulata entry is a composite of two collections.

Analysis I: Number of most parsimonious trees (MPTs) = 59; Length (L) of MPTs $=2013$ steps; Consistency Index (CI) $=0.606$, CI excluding uninformative characters $=0.46 \mathrm{I}$; Retention Index $(\mathrm{RI})=0.769$. A cladogram illustrating one of the most parsimonious trees and lineages detected in the strict consensus tree (SCT; shown as bold branches) is depicted in Fig. I.

Poa was resolved as monophyletic ($\mathrm{BS}=95$). Within Poa, BS support was between 90 and too for all but one of 22 clades, and 18 of these had BS support of

Fig. 2. Cladogram with summary of the strict consensus tree for Poa elements resulting from parsimony analysis of the plastid TLF and nuclear ITS data matrix in Analysis II (length 1752 steps; CI excluding uninformative characters $=0.485 ; \mathrm{RI} 0.760$). Outgroups are not displayed (see Gillespie et al. [2008, 2010] for discussion of those). Analysis II includes all taxa in Analysis I plus II additional taxa which are polyploid, except P. porsildii (ploidy unknown), and P. trivialis (diploid). The strict consensus tree is indicated by bold lines on one of 10,000 most parsimonious trees. Bootstrap values of 50% or higher are given on the branches. Major clades are indicated on the far right, and major subclades just to the left of those, with their genomic constitutions (see Tables ı and 2), where: $A=$ Alpinae; E = Pseudopoa; $\mathrm{H}=$ Homalopoa; $\mathrm{M}=$ Micrantherae; $\mathrm{N}=$ Nanopoa; $\mathrm{O}=$ Ochlopoa; $\mathrm{P}=$ Poa; $\mathrm{R}=$ Parodiochloa; $\mathrm{S}=$ Stenopoa; $\mathrm{V}=$ Pandemos; $\mathrm{Y}=$ Sy/vestres. For genomes/lineages, capital letters represent plastid lineages, and small capitals represent ITS lineages. Incongruent placements of P. abbreviata, P. annua and P. trivialis samples are followed by ITS or TLF to indicate the data source for each sample. Two samples from Analysis I have TLF data only as noted in Fig. I, and the P. ligulata entry is a composite of two collections.

95 to Ioo. The lowest BS support was 86 , for the union of P. saltuensis and P. wolfii within P. subg. Sylvestres. In the SCT there was one polytomy within Poa, which included P. dolosa, P. media, P. trichophylla, and P. lettermanii plus P. pseudoabbrevia$t a$. There were no plastid characters to resolve this polytomy. Poa lettermanii and P. pseudoabbreviata (Ss) are united on a long branch (25 steps) from their most recent common ancestor with the previous three species: The other three species in this polytomy differ among themselves by only $\mathbf{1 0} \mathbf{- 1 2}$ steps, with only i ITS character separating them. There is limited differentiation among the latter three species, and repeated detection of a series of taxa with limited differentiation in a clade (Soreng 1990; Gillespie et al. 2007, in 2009 [plastid analysis]) or polytomous relationship (Gillespie and Soreng 2005) to the highly differentiated set of S clade taxa (OSTA acronym in our previous studies, see Table i; Gillespie and Soreng 2005; Gillespie et al. 2007). Thus, we choose to designate this set of three species as Nn taxa, and the second pair as Ss even though Nn taxa did not form a separate clade in the SCT for the present study. As further justification, when ETS data are added to ITS data an N clade is resolved that is not a sistergroup to any clade containing elements with S type nrDNA (Gillespie et al. 2009).

Analysis II: Number of MPTs = 10,000; L of MPTs $=1752 ; \mathrm{CI}=0.606, \mathrm{CI}$ excluding uninformative characters $=0.485 ; \mathrm{RI}=0.76$. A cladogram illustrating one of the most parsimonious trees and lineages detected in the SCT (shown as bold branches) is given in Fig. 2.

Lower BS numbers in Analysis II, as compared to Analysis I, may partly result from missing data for the three taxa added to Analysis II whose samples were coded as separate plastid and ITS OTUs (i.e., in P. abbreviata, P. annua, and P. trivialis).

Poa was resolved as monophyletic ($\mathrm{BS}=96$). There were six polytomies within Poa in the SCT. Three were within taxa with subdivided plastid and ITS data. The other three were among subsets of taxa with, for the most part, limited nucleotide variation. Within Poa, BS support was between 55 and ioo for all 34 dichotomies in the SCT except those for relationships between P. trivialis (ITS sequence data only), and sects. Micrantherae and Alpinae (Mm AA) (BS < 50). The major clades were resolved with very good to strong support: Y clade ($\mathrm{BS}=95$), remainder of Poa $(B S=99)$, O clade $(B S=86)$, remainder of Poa $(B S=89)$, E lineage (includes just one sample, thus no BS number), remainder of Poa (BS $=85), \mathrm{P}$ clade $(\mathrm{BS}=98)$, S clade $(\mathrm{BS}=88)$ (Fig. 2).

Of Poa abbreviata, P. annua, and P. trivialis, for which plastid and ITS data were divided as separate OTUs, their plastid OTUs were resolved in well differentiated clades from their ITS OTUs, and each OTU was placed with others of its own kind (Fig. 2). The P. annua plastid samples were separated from the ITS samples by three intervening nodes with BS support of 71, 99, and ioo. The P. abbreviata samples were separated by nine intervening nodes with BS support, and good to strong BS support for six of them. The P. trivialis samples were separated by six nodes with BS support, and good to strong support for five of them.

Discussion

Analyses of Diploids-Phylogenetic analysis of diploids in isolation from polyploids provides us with an opportunity to explore the impact of polyploids in present and previous analyses (Kellogg et al. 1996; Doust et al. 2007). Among putative diploids, samples of Poa chaixii, P. diaphora, P. molinerii, P. pseudoabbreviata, P. sibirica, and P. supina were included here and in plastid and ITS analyses by Gillespie et al. (2008), with ETS also (Gillespie et al. 2009), and in some earlier plastid analyses (Stoneberg-Holt et al. 2004; Gillespie and Soreng 2005; Gillespie et al. 2007). Poa hybrida, P. occidentalis, and P. pseudoabbreviata were included in a restriction-site plastid analysis by Soreng (1990). Poa trivialis is a diploid included here only in Analysis II, but previously only in our plastid analyses (Soreng 1990; Gillespie and Soreng 2005; Gillespie et al. 2007), until Gillespie et al. (2009) added ETS data. Here we include plastid and/or ITS data for an additional nine species not in our previous analyses of DNA sequence data that are known to have diploid populations (P. badensis, P. dolosa, P. hybrida, P. infirma, P. lettermanii, P. ligulata, P. media, P. remota, and P. trichophylla), and ITS data for P. trivialis (see also Gillespie et al. 2009). Most of the diploid taxa included in previous analyses (e.g., Gillespie et al. 2008) are placed here, in Analyses I and II (and in separate plastid and ITS trees not shown), in phylogenetically consistent plastid and ITS relationships. Poa trivialis is an exception and was excluded from Analysis I because including it resulted in incompatible plastid and ITS datasets for PPAM; its plastid and ITS data were run as separate OTUs in Analysis II (see Reticulate Evolution below). The placements of the other newly added taxa with diploids are consistent for plastid and ITS data (separate trees not shown, but see Gillespie et al. 2009).

The positions of the taxa with diploid populations are sometimes consistent and sometimes not with respect to accepted taxonomic relationships resolved for diploid and polyploid consectional elements included in the present or previous studies (Gillespie and Soreng 2005; Gillespie et al. 2007, 2008). Within P. sect. Micrantherae (Mm), P. infirma is united in the clade with P. supina. Within P. sect. Abbreviatae (Ss for diploids), P. lettermanii was placed with P. pseudoabbreviata.

Within P. sect. Alpinae, P. badensis, and P. ligulata are united with P. molinerii (all AA genotypes): However, P. media was placed in a position remote from the other elements of P. sect. Alpinae sampled here (see Tables I and 2), near P. trichophylla and P. dolosa (all Nn genotypes). This calls the monophyly of sect. Alpinae into question. The situation in sect. Alpinae is mirrored within P.bulbosa (sect. Arenariae), which has both AA and Nn genotypes (see Gillespie et al. 2008). This disparity requires further study, but so far no samples with An nor NA (i.e., intermixed genotypes) have been detected.

Within P. subg. Poa, the supersects. Poa (Рн) and Homalopoa (Hн) are well to strongly supported sublineages that divide on plastid data only. They have
not been resolved as independent with ITS data (Gillespie et al. 2008, and unpublished), thus all members are designated as having н ITS genotypes, and most H genotypes have diverged little from their most recent common ancestor (Gillespie et al. 2008, 2009, and unpublished). We chose H instead of p for the ITS name because H represents the larger group and we suspect that Homalopoa taxa may have contributed the ITS type to the supersect. Poa. Among elements taxonomically placed in P. sect. Homalopoa, P. bybrida was united with P. chaixii (Hн). In an earlier study (Soreng 1990, Fig. 2) a different accession of P. hybrida and one of P. occidentalis (also a diploid of sect. Homalopoa s.s.) aligned in a clade equivalent to supersect. Homalopoa (H). However, P. remota, traditionally placed in sect. Homalopoa, was aligned with P. sibirica of P. supersect. Poa sect. Macropoa (Рн). This result held up in extended analyses (Gillespie et al. 2009) of plastid and nrDNA data, and suggests that the relationship of P. remota needs further study.

Within subgenus Stenopoa, among elements taxonomically placed in P. sect. Oreinos, P. dolosa (Nn) was not placed in the Ss clade where polyploid consectional elements were placed in previous studies. Poa fernaldiana, P. flexuosa, and P. laxa (the former two sometimes treated as subspecies of P. laxa), appeared in previous plastid analyses with P. pseudoabbreviata and sects. Stenopoa and Tichopoa elements (all Ss genomes; ITS published for P. fernaldiana, but new for the other two; see Gillespie and Soreng 2005; Gillespie et al. 2007, 2008, 2009; Tables I and 2, Fig. 2). All Ss genome elements are resolved within a strongly supported but fairly undifferentiated plastid clade as sister to the V plastid genome of Poa trivialis. Thus, it appears that P. sect. Oreinos, as currently delimited, is nonmonophyletic. Whether or not P. dolosa was involved in the origin of the polyploid elements in the section requires further study.

This study, and Gillespie et al. $(2009,2010)$ are the first published analyses to include P. trichophylla, the sole member of P. sect. Nanopoa. Poa trichophylla aligned in a polytomy with P. dolosa, P. media and a clade of P. lettermanii plus P. pseudoabbreviata. DNA sequences of Poa trichophylla, P. dolosa, and P. media have diverged little from their most recent common ancestor (all Nn genomes), whereas the most recent common ancestor of P. lettermanii and P. pseudoabbreviata (Ss genomes) had diverged greatly from the other elements in the SCT polytomy. Edmondson (1980) placed his sect. Nanopoa between sects. Abbreviatae and Arenariae. Although the phylogenetic picture appears to be quite complex, it appears that Edmondson's general placement was a reasonable first approximation given the present trees (however, see Gillespie et al. 2009).

Comparison of Trees in Analyses I and II-Trees based on combined TLF and ITS data (Figs. I and 2) are highly congruent for each of the major clades detected, and for relationships within these clades. Support for major clades was high in both trees. The tree in Fig. I is entirely congruent with all previous separate analyses of plastid and ITS data (analyzed separately from ETS data) for taxa that overlap between studies.

There were a few differences between the tree in Fig. 2 and the plastid trees in Gillespie and Soreng (2005, Figs. I and 2) and Gillespie et al. (2007, Fig. Ib, 2008, Fig. I, and 2009 Fig. I). The only significant difference from previous plastid studies is with the order of branching of P. sect. Parodiochloa as sister to the moderately supported clade of Micrantherae plus Alpinae in Analysis II (Fig. 2). In previous plastid analyses (Gillespie and Soreng 2005, Fig. I; Gillespie et al. 2007, Fig. 2; 2008, Fig. I) Alpinae-Arenariae was sister to the clade of Parodiochloa plus Micrantherae with moderate, strong, and very good support, respectively. The difference in branch order here reflects the pull of ITS data on Parodiochloa away from Micrantherae plus Alpinae in our Analysis II (Fig. 2). This pull is illustrated in the ITS analysis of Gillespie et al. (2008, Fig. 3; BS < 50 for each node) where Parodiochloa was resolved as sister to the rest of Poa excluding sections Sylvestres, and Micrantherae plus Alpinae-Arenariae (see also Gillespie et al. 2009 Fig. 2). Despite these differences in branching order, the Partition Homogeneity tests resolved our plastid and ITS data sets as compatible for genera of the PPAM clade. Additional study of this nexus is warranted, but, for now, we continue to include Parodiochloa and Tzvelevia within P. subg. Ochlopoa (Poa sect. Tzvelevia was included only in the Gillespie et al. [2008] plastid and ITS analyses and there it was resolved in a polytomy with P. sect. Parodiochloa elements).

Evaluation of Reticulate Evolution-In Analysis II, P. abbreviata, P. annua, and P. trivialis were included to demonstrate their conflicting placements in plastid and ITS trees. We have uncovered several other similar cases of highly conflicting plastid and ITS placements for species and species groups within Poa, which we will deal with in a subsequent paper. Three additional cases of conflicting placements were discovered between Poa and lineages outside of Poa (see introductory section, and Gillespie et al. 2008, 2010). Here we discuss evidence that the above three species are or are not hybrids in origin, and evidence of their parentage.

Poa annua: Poa annua was postulated by Nannfeldt (1935, 1937), and Tutin (1957), to be a stabilized tetraploid species derived from a cross between two diploid species, P. infirma and P. supina. Poa annua is intermediate between the putative parents in anther length, panicle form, spikelet density along branches, length of the distal rachilla internode, lemma pubescence, and vegetative mode of reproduction and longevity. Although extreme forms of P. annua are difficult to separate from either parent, the parents are quite distinct within the bounds of variation seen in P. sect. Micrantherae. Koshy (1968), however, concluded that the karyotypes of the putative parents did not support this parentage, and suggested the involvement of a third, possibly extinct, species. In contrast to karyological evidence, isozyme profiles in artificially produced sterile diploid hybrids between the two putative parents (produced by open pollination in a greenhouse), which looked like P. annua, showed additive properties of bands matching those found in P. annua, along with some additional bands not found
in P. annua (Darmency and Gasquez 1997). Furthermore, P. annua did not have isozyme bands that were absent in the putative parents. In plastid DNA analyses P. annua was consistently the sister taxon to P. supina, but these two species were separated from each other by rather long branches (Gillespie and Soreng 2005; Gillespie et al. 2007; see also Patterson et al. 2005). This is the first time P. infirma has been included in a phylogenetic analysis with the previous two taxa.

In Fig. 2, Poa annua plastid samples are sisters to P. infirma, and ITS samples are sisters to P. supina, with strong support in each case. In fact, the ITS sequences of P. annua differ by only I to 3 steps from P. supina. The plastid $T L F$ sequences of P. annua are identical to one another, and align between two samples of P. infirma that differ from one another by 16 steps. Poa infirma and P. supina TLF and ITS genomes differ from their most recent common ancestor by a minimum of 3I and 22 steps, respectively, and from each other by 53-67 steps. Relative to other taxa in these data sets, this is a huge difference between presumed closely related species! It appears as though species of the section are evolving at an exceptionally high rate. Even sect. Micrantherae differs from its most recent common ancestor with sect. Alpinae by 41-42 steps. Collectively, the Mm elements are on the longest branch within Poa in the trees.

Thus, their genomes are designated as follows: $\mathrm{M}^{\mathrm{I}} \mathrm{M}^{\mathrm{I}}$ for P. infirma, $\mathrm{M}^{2} \mathrm{M}^{2}$ for P. supina, and $\mathrm{M}^{\mathrm{r}} \mathrm{M}^{2}$ for P. annua. The combination of artificially produced hybrids, isozyme data, and our DNA data, provides solid support for P. annua having a hybrid origin of the parentage proposed by Nannfeldt (1935,1937) and Tutin (1957). We classify P. annua as a segmental allopolyploid (Stebbins 1950), as the parents are easily recognized as closely related, and distinguished subtly, though completely, by morphological and life-history traits. This suggests a different explanation for Koshy's result: that the P. annua karyotype differentiated after the original hybridization event.

Poa abbreviata: The origin of Poa abbreviata, as far as we know, has not been proposed by anyone. Twelve chromosome counts of $2 n=42$ suggest that it is primarily hexaploid (one tetraploid count remains unverified, and one decaploid count represents an unrelated species). This species has not been suspected to be derived from wide parentage. It was consistently placed in a section with morphologically and ecogeographically similar diploids before molecular data became available (Tzvelev 1976; Probatova 1985; Soreng 1985), and by plastid data for nine or more collections (Soreng 1990; Gillespie et al. 1997, 2007; Gillespie and Boles 2001; Gillespie and Soreng 2005). However, it does have an ITS sequence like that of a species from a distantly related section.

Poa abbreviata aligns in the plastid S subclade with the two consectional diploids, P. lettermanii and P. pseudoabbreviata (both with Ss genomes), so it has an S plastid type (Fig. 2). It was moderately supported as more closely related to P. lettermanii than to P. pseudoabbreviata. However, whereas the placements of the diploid taxa are consistent between plastid and ITS trees (Ss genotypes),
the three P. abbreviata ITS samples that were tested aligned within P. subg. Poa supersect. Homalopoa (Hy genotypes). This placement was detected in a separate ITS study (Nosov and Rodionov 2008), and in a plastid and ITS study focused on the genus Dupontia (Brysting et al. 2004), using one of our P. abbreviata samples (Gillespie 5816). The ITS analysis places P. abbreviata as sister to P. porsildii (even in expanded analyses of taxa from supersect. Homalopoa, unpublished). ITS sequences of P. abbreviata and P. porsildii differ by I step, and P. porsildii is separated from its most recent common ancestor with any other taxon in Analysis II by 7 steps (5 TLF and 2 ITS steps, even in expanded analyses, Gillespie et al. unpublished). In Analysis II, there are nine supported clades between the plastid and ITS placements of P. abbreviata. Therefore, the genome constitution of P. abbreviata is designated as $S H$. It is improbable that P. abbreviata could have retained, from an ancient polyploidization event, an ITS sequence that is paralogous but nearly identical to that of P. porsildii. Thus, we conclude that P. abbreviata is actually a modern hybrid in origin. Poa porsildii is morphologically isolated from P. abbreviata (Soreng 2007). It is endemic to the mountains around the Mackenzie Ice Free Corridor, which is the geographical center of P. sect. Abbreviatae taxa in North America, and as such it could have served as the H parent of the circumarctic, but mainly nearctic, P. abbreviata. Further study is needed to determine the extent of the genetic contribution of the н ITS donor to hexaploid P. abbreviata.

Poa trivialis: Poa trivialis is a morphologically isolated species from Europe and western Asia and northern Africa. It has been maintained in a separate section for over a hundred years (sect. Pandemos Asch. \& Graebn. [syn. Coenopoa Hyl.]: Ascherson and Graebner 1898-1902; Hylander 1953; Tzvelev 1976; Edmondson 1980; Soreng 1998, 2007; Zhu et al. 2006). The section is currently classified within subg. Stenopoa (Zhu et al. 2006; Soreng 2007). More than 80 chromosome counts indicate that it is diploid. Although two tetraploid counts have been reported in the literature, one of these was for a separate subspecies (subsp. sylvicola [Guss.] H. Lindb.). We are not aware of any suggestion in the literature that P. trivialis had a hybrid origin. In a genome analysis by Patterson et al. (2005), P. trivialis behaved as a diploid with no inter- or intra-locus variation, in contrast to the multiple paralogues detected in several high polyploid taxa. Those authors placed P. trivialis, in separate plastid and nuclear gene (thioredoxin-like protein) analyses, in a position consistent with it having an Ss genome, but a second nuclear gene (CDX504) placed P. trivialis in a position somewhat remote from other elements that we would interpret as having Ss or Oo major genotypes.

In Analysis II, Poa trivialis plastid samples aligned in the S clade, and ITS samples aligned in the O clade (Fig. 2). There are seven intervening branches between the plastid and ITS placements of P. trivialis, all but one of them with good to strong BS support. Neither the plastid nor the ITS genome of P. trivialis matches any other generalized genome that has been identified.

The plastid genome consistently places P. trivialis as sister to elements with Ss genomes (Soreng 1990; Gillespie and Soreng 2005; and here with strong BS support), and the independence of these sister groups has very good (Gillespie and Soreng 2005) to strong BS support (here). The ITS sequences of P. trivialis place the species well within the O clade with moderate and good BS support (Fig. 2), and these differ from those that occur in any most recent common ancestor among Oo genome sections (AA, Mm, or Rr) by 2I-28 bps. Therefore, we designate P. trivialis as having its own generalized genome, Vv. Our plastid and ITS data suggest that it may have arisen as a diploid hybrid derived from elements in the S and O clades. However, the addition of ETS data and the results of a combined plastid and nrDNA analysis suggest an alternative possibility (Gillespie et al. 2009). Long branch attractions (Felsenstein 1978) in the nexus between the $\mathrm{O}, \mathrm{E}, \mathrm{P}, \mathrm{N}$ and S clades may have resulted in a spurious association of N and S clades as sister to the P clade. Gillespie et al. (2009) provide new evidence (very good to strong BS support) that Ss and Vv_{v} genomes may be sister groups, and that the N clade is more closely related to the P clade than to the S clade: $(\mathrm{Y}(\mathrm{O}((\mathrm{SV})(\mathrm{E}(\mathrm{NP})))))$. Further study is needed to confirm the real topology in this nexus. For now the section Pandemos is retained in subg. Stenopoa, as previously proposed (Table I), and P. trivialis is not accepted as a hybrid.

Conclusions-Phylogenetic analysis of combined plastid TLF and ITS DNA sequences for Poa diploids in isolation from most polyploids revealed a well supported phylogenetic structure in the genus. This structure was consistent with that resolved in previous analyses with few diploids and numerous polyploids using separate or combined plastid and ITS data. Based on strongly supported differences in their placements by plastid and ITS data, two polyploid taxa were shown to have hybrid origins. Our data point to a precise parentage for P. annua $(2 n=28)$, and a likely parentage for P. abbreviata $(2 n=42)$. The placements of a diploid taxon with statistically incongruent plastid and ITS data, P. trivialis, are more likely attributable to long branch attraction, resulting from remote origins and/or rapid rates of evolution, than to a hybrid origin. A notational system for identifying Poa plastid genomes and ITS lineages is introduced to replace the previously applied clade acronym system. This simplified and facilitated discussions of major and minor genome types in individuals, species, higher groupings, and genomic parentage within hybrids and lineages possibly derived from hybridization.
acknowledgements. We gratefully acknowledge the following people for providing leaf samples: Marina Olonova, Sierra Stoneberg-Holt, Pilar Catalán, Stoney Wright. Field work by Soreng was partially funded by the USDA and the Smithsonian. The molecular and field research by Gillespie was funded by grants from the Canadian Museum of Nature.

Literature Cited

Álvarez, I. and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417-434.
Ascherson, P. and P. Graebner. 1898-1902. Synopsis der Mitteleuropäischen Flora. 2(I). Familie 22. Grámina. Leipzig: W. Engelmann.

Bailey, C. D., T. G. Carr, S. A. Harris, and C. E. Hughes. 2003. Characterization of angiosperm nrDNA polymorphism, paralogy, and pseudogenes. Molecular Phylogenetics and Evolution 29: 435-455.
Bowden, W. M. 196I. Chromosome numbers and taxonomic notes on northern grasses. IV. Tribe Festuceae: Poa and Puccinellia. Canadian Journal of Botany 39: 123-138.

Brysting, A. K., A. Holst-Jensen, and I. Leitch. 2000. Genomic origin and organization of the hybrid Poa jemtlandica (Poaceae) verified by genomic in situ hybridization and chloroplast DNA sequences. Annals of Botany 85: 439-445.
Brysting, A. K., M. F. Fay, I. J. Leitch, and S. G. Aiken. 2004. One or more species in the arctic grass genus Dupontia? - a contribution to the Panarctic Flora project. Taxon 53: 365-382.
Catalán, P., P. Torrecilla, J. Á. López Rodríguez, and R. G. Olmstead. 2004. Phylogeny of the festucoid grasses of subtribe Loliinae and allies (Poeae, Pooideae) inferred from ITS and trnL-F sequences. Molecular Phylogenetics and Evolution 31: 517-541.
Cave, M. S. (ed.). 1959. Index to Plant Chromosome Numbers for 1956-1957. I(I-2 and Supplement Prior to 1956). Berkeley, California: California Botanical Society.
Cave, M. S. (ed.). 1965. Index to Plant Chromosome Numbers for 1958-1964. I(3-4), 2(5-9). Chapel Hill, North Carolina, U.S.A.: University of North Carolina Press.
Charmet, G., C. Ravel, and F. Balfourier. 1997. Phylogenetic analysis in the Festuca-Lolium complex using molecular markers and ITS rDNA. Theoretical and Applied Genetics 94: 1038-1046.
Clayton, W. D. and S. A. Renvoize. 1986. Genera Graminum. Grasses of the world. London: Her Majesty's Stationery Office.
Darlington, C. D. and A. P. Wylie (eds). 1955. Chromosome atlas of flowering plants. London: George Allen and Unwin.
Darmency, H. and J. Gasquez. 1997. Spontaneous hybridization of the putative ancestors of the allotetraploid Poa annua. New Phytologist 136: 497-50I
Dawson, M. I. 2000. Index of chromosome numbers of indigenous New Zealand spermatophytes. New Zealand Journal of Botany 38: 47-150.
DeBry, R. W. and R. G. Olmstead. 2000. A simulation study of reduced tree-search effort in bootstrap resampling analysis. Systematic Biology 49: 171-179.
Dewey, D. R. 1984. The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Pp. 209-279 in Gene manipulation in plant improvement, ed. J. P. Gustafson. New York: Plenum Publishing Corporation.
Doust, A. N., A. M. Penly, S. W. L. Jacobs, and E. A. Kellogg. 2007. Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic 'bristle clade' (Paniceae, Panicoideae, Poaceae). Systematic Botany 32: 531-544.
Duckert-Henriod, M. M. and C. Favarger. 1987. Contribution à la cytotaxonomie et à la cytogéographie des Poa de la Suisse, index des nombres chromosomiques des

Spermatophytes de la Suisse: II. Poaceae, genere Poa. Mémoires de al Société Helvétique des Sciences Naturelles ioo.
Edmondson, J. R. 1980. Poa L. Pp. 159-167 in Flora Europaea, vol. 5, eds. T. G. Tutin, V. H. Heywood, N. A. Burges, D. M. Moore, D. H. Valentine, S. M. Walters, and D. A. Webb. Cambridge, UK: Cambridge University Press.
Farris, J. S., M. Källersjö, A. G. Kluge, and C. Bult. 1995. Constructing a significance test for incongruence. Systematic Biology 44: 570-572.
Fedorov, A. A. (ed.). 1969. Chromosome numbers of flowering plants. Leningrad: Academy of Natural Sciences of the USSR.
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Systematic Zoology 27: 401-410.
Gaut, B. S., L. P. Tredway, C. Kubik, R. L. Gaut, and W. Meyer. 2000. Phylogenetic relationships and genetic diversity among members of the Festuca-Lolium complex (Poaceae) based on ITS sequence data. Plant Systematics and Evolution 224: 33-53.
Gillespie, L. J. and R. Boles. 2001. Phylogenetic relationships and infraspecific variation in Canadian Arctic Poa based on chloroplast DNA restriction site data. Canadian Journal of Botany 79: 679-70I.
Gillespie, L. J. and R. J. Soreng. 2005. A phylogenetic analysis of the bluegrass genus Poa L. (Poaceae) based on cpDNA restriction site data. Systematic Botany 30: 84-105.
Gillespie, L. J., L. L. Consaul, and S. G. Aiken. 1997. Hybridization and the origin of the arctic grass Poa bartzii (Poaceae): evidence from morphology and chloroplast DNA restriction site data. Canadian Journal of Botany 75: 1978-1997.
Gillespie, L. J., A. Archambault, and R. J. Soreng. 2007. Phylogeny of Poa (Poaceae) based on $\operatorname{trnT-trnF}$ sequence data: major clades and basal relationships. Aliso 23: 420-434.
Gillespie, L. J., R. J. Soreng, R. D. Bull, S. W. L. Jacobs, and N. F. Refulio-Rodriguez. 2008. Phylogenetic relationships in subtribe Poinae (Poaceae, Poeae) based on nuclear ITS and plastid trnT-trnL-trnF sequences. Botany 86: 938-967.
Gillespie, L. J., R. J. Soreng, and S. W. L. Jacobs (2009) Phylogenetic relationships of Australian Poa (Poaceae: Poinae), molecular evidence for two new genera, Saxipoa and Sylvipoa. Australian Systematic Botany 22: 413-436.
Gillespie, L. J., R. J. Soreng, M. Paradis, and R. D. Bull. 2oio. Phylogeny and Reticulation in Subtribe Poinae and Related Subtribes (Poaceae) Based on nrITS, ETS, and trnTLF data. Pp. 589-617 in Diversity, Phylogeny, and Evolution - Proceedings of the Fourth International Conference on the Comparative Biology of the Monocotyledons and the Fifth International Symposium on Grass Systematics and Evolution, eds. O. Seberg, G. Petersen, A. S. Barfod, and J. I. Davis. Aarhus, Aarhus University Press.

Goldblatt, P. (ed.). 198I. Index to plant chromosome numbers for 1975-1978. Monographs in Systematic Botany, Missouri Botanical Garden 5. St. Louis: Missouri Botanical Garden.
Goldblatt, P. (ed.). 1984. Index to plant chromosome numbers for 1979-1981. Monographs in Systematic Botany, Missouri Botanical Garden 8. St. Louis: Missouri Botanical Garden.
Goldblatt, P. (ed.). 1985. Index to plant chromosome numbers for 1982-1983. Monographs in Systematic Botany, Missouri Botanical Garden I3. St. Louis: Missouri Botanical Garden.
Goldblatt, P. (ed.). Index to plant chromosome numbers records from 1984 forward, mobot. mobot.org/W3T/Search/vast.html.
Hair, J. B. 1968. Contributions to a chromosome atlas of the New Zealand. New Zealand Journal of Botany 6: 267-276.

Holmgren, P. K, N. H. Holmgren, and L. C. Barnett. 1990. Index Herbariorum. I. the herbaria of the world, ed. 8. Bronx: New York Botanical Garden.
Hylander, N. 1953. Taxa et nomina nova in opere meo: Nordisk Kärlväxtflora I. Botaniska Notiser 1953: 352-259.
Kellogg, E. A., R. Appels, and R. J. Mason-Gamer. 1996. When genes tell different stories: the diploid genera of Triticeae. Systematic Botany 2I: 32I-347.
Koshy, T. K. 1968. Evolutionary origin of Poa annua L. in the light of karyotypic studies. Canadian Journal of Genetics and Cytology 10: 1I2-II8.
Löve, Á, and D. Löve. 1975. Cytotaxonomical atlas of the Arctic flora. Vaduz: J. Cramer.
Moore, D. M (ed.). 1982. Flora Europaea check-list and chromosome index. Cambridge, U.K.: Cambridge University Press.
Moore, R. J. (ed.). 1970. Index to plant chromosome numbers for 1968. Regnum Vegetabile 68: I-II5.
Moore, R. J. (ed.). 1971. Index to plant chromosome numbers for 1969. Regnum Vegetabile 77: I-II2.
Moore, R. J. (ed.). 1972. Index to plant chromosome numbers for 1970. Regnum Vegetabile 84: I-I34.
Moore, R. J. (ed.). 1973. Index to plant chromosome numbers for 1967-197I. Regnum Vegetabile 90: 1-539.
Moore, R. J. (ed.). 1974. Index to plant chromosome numbers for 1972. Regnum Vegetabile 91: I-Io8.
Moore, R. J. (ed.). 1977. Index to plant chromosome numbers for 1973/74. Regnum Vegetabile 96: I-257.
Nannfeldt, J. A. 1935. Poa supina Schrad. i Sverige och dess hittills förbisedda hybrid med P. annua L. Botaniska Notiser 1935: I-16.

Nannfeldt, J. A. 1937. The chromosome numbers of Poa sect. Ochlopoa A. \& Gr. and their taxonomical significance. Botaniska Notiser 1937: 238-254.
Nosov, N. N., and A. V. Rodionov. 2008. Molecular phylogenetic study of relationships between members of the genus Poa. Botanicheskii Zhurnal 93: 1919-1935.
Olonova, M. V. 1990. Poa L. Pp. 163-186 in Flora Siberia, vol. 2. Poaceae (Gramineae), eds. L. I. Malyschev and G. A. Peschkova. Novosibirsk, Russia: Nauka. [English translation: 200I. Enfield, New Hampshire, U.S.A.: Science Publishers Incorporated.]
Ornduff, R. (ed.). 1967. Index to plant chromosome numbers for 1965. Regnum Vegetabile 50: I-I29.
Ornduff, R. (ed.). 1968. Index to plant chromosome numbers for 1966. Regnum Vegetabile 55: I-I26.
Ornduff, R. (ed.). 1969. Index to plant chromosome numbers for 1967. Regnum Vegetabile 59: I-I29.
Patterson, J. T., S. R. Larson, and P. G. Johnson. 2005. Genome relationships in polyploid Poa pratensis and other Poa species inferred from phylogenetic analysis of nuclear and chloroplast DNA sequences. Genome 48: 76-87.
Probatova, N. S. 1985. Poa L. Pp. 263-303 in Sosudistyle rasteniya Sovetskogo dal'nego vostoka, vol. I., ed. S. S. Kharkevich, vol. ed. N. N. Tzvelev. Leningrad, Russia: Nauka. [English translation: 2003. Vascular plants of the Russian Far East, vol. I. Enfield, New Hampshire, U.S.A.: Enfield]

Soreng, R. J. 1985. Poa L. in New Mexico, with a key to middle and southern Rocky Mountain species (Poaceae). Great Basin Naturalist 45: 395-422.
Soreng, R. J. 1990. Chloroplast DNA phylogenetics and biogeography in a reticulating group: study in Poa (Poaceae). American Journal Botany 77: 1383-1400.
Soreng, R. J. 1998. An infrageneric classification for Poa in North America, and other notes on sections, species, and subspecies of Poa, Puccinellia, and Dissanthelium (Poaceae: Poeae). Novon 8: 187-202.
Soreng, R. J. 2005. Miscellaneous chromosome number reports for Poa L. (Poaceae) in North America. Sida 2I: 2195-2203.
Soreng, R. J. 2007. Poa L. Pp. 486-6oi in Flora of North America, vol. 24, Magnoliophyta: Commelinideae (in part); Poaceae, part I, eds. Flora of North America Editorial Committee; vol. eds. M. E. Barkworth, K. M. Capels, S. L. Long, and M. B. Piep. New York: Oxford University Press.
Soreng, R. J. and L. J. Gillespie. 2007. Nicoraepoa (Poaceae, Poeae), a new South American genus based on Poa subgenus Andinae, and emendation of Poa section Parodiochloa of the sub-Antarctic islands. Annals of the Missouri Botanical Garden 94: 821-849.
Soreng, R. J., L. M. Giussani, and M. Negritto. 2003. Poa L. Pp. 505-580 in Catalogue of New World grasses (Poaceae): IV. Subfamily Pooideae, eds. R. J. Soreng, P. M. Peterson, G. Davidse, E. J. Judziewicz, F. O. Zuloaga, T. S. Filgueiras, and O. Morrone. Contributions from the United States National Herbarium 48: I-730.
Soreng, R. J., J. I. Davis, and M. A. Voionmaa. 2007. A phylogenetic analysis of Poaceae tribe Poeae sensu lato based on morphological characters and sequence data from three plastid-encoded genes: evidence for reticulation, and a new classification for the tribe. Kew Bulletin 62: 425-454.
Starr, J. R., S. A. Harris, and D. A. Simpson. 2004. Phylogeny of the unispicate taxa in Cyperaceae tribe Cariceae I: Generic relationships and evolutionary scenarios. Systematic Botany 29: 528-544
Stebbins, G. L. 1950. Variation and evolution in plants. New York: Columbia University Press.
Stebbins, G. L. 1956. Cytogenetics and evolution of the grass family. American Journal of Botany 43: 890-905.
Stoneberg-Holt, S. D., L. Horová, and P. Bureš. 2004. Indel patterns of the plastid DNA trnL-trnF region within the genus Poa (Poaceae). Journal of Plant Research III7: 393-407.
Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4bio. Sunderland: Sinauer.
Tateoka, T. 1985. Chromosome numbers and their taxonomic implications in the genus Poa of Japan. Botanical Magazine (Tokyo) 98: 413-437.
Torrecilla, P. and P. Catalán. 2002. Phylogeny of broad-leaved and fine-leaved Festuca lineages (Poaceae) based on nuclear ITS sequences. Systematic Botany 27: 24I-25I.
Tutin, T. G. 1957. A contribution to the experimental taxonomy of Poa annua L. Watsonia 4: I-IO.
Tzvelev, N. N. 1976. Zlaki SSSR. Leningrad: Nauka Publishers. [English translation: 1983. Grasses of the Soviet Union, vol. I and 2. New Delhi: Amerind Publishing Company].
Zhu, G.-H., L. Liu, R. J. Soreng, and M. V. Olonova. 2006. Poa L. Pp. 257-309 in Flora of China. vol. 22, Poaceae, eds. Flora of China Editorial Committee. Saint Louis, Missouri, U.S.A.: Missouri Botanical Garden Press.

