# biological results of THE UNIVERSITY OF 

MIAMI DEEP-SEA EXPEDITIONS. 1 I8

# CEPHALOPODS COLLECTED IN THE STRAITS OF FLORIDA BY THE R/V GERDA 

Stephen D. Cairns


#### Abstract

Fifty species of cephalopods are identified from the Straits of Florida from the 698 specimens collected by the R V Glrda. This raises the total number of species known from the Straits from 49 to 64 . Four are new records for the Western Atlantic: Pterygiotenthis gemunata, Abraliopsis pfefferi, Corsnoma speculator and Helicocrauchia pfefferi. Two others, Rossia bullisi and Abraliopsis allatica, are reported for the second time in the literature. The male of Abralia redfieldi is described for the first lime. The first mature specimen of Danoctopus sclmidti is reported with drawings of its radula and tigula.

Pelagic distributions are analyzed with respect to mean depth of capture and concentration in particular geographic regions of the Straits. Benthic distributions are analyzed regarding bottom type and concentration in geographic regions of the Straits. Diel migration is discussed for several species. The zoogeography of all species reported in the Straits is discussed.


The hydrograply of the Straits of Florida is a unique system in which a major ocean current is funneled into a shoaling ehannel creating profound climatological and biological effects on the waters of the southcastern United States. The northward-flowing waters of the Straits, dominated by the fast-moving Florida Current, are part of a transient system whieh derives its properties from the eastern Gulf of Mexico, Caribbean Current and ultimately from the North Equatorial Current which feeds the Caribbean Sea. The energy of the Florida Current results from a hydrostatic head developed in the Gulf of Mexico; the difference in level between Cedar Keys, West Coast and St. Augustine, East Coast is 19 cm (Montgomery, 1938). This "oceanic jet stream" which attains surface speeds of $180 \mathrm{~cm} /$ second has a significant effect on the distribution of pelagic larvae and midwater organisms along the eastern coast of the United States.

The Straits of Florida also lies in an important zoogeographic area for the benthic shelf fauna. Miami is considered by some to be the northern limit of the tropical fauna
with a warm temperate or transitional area to the North. There is considerable disagreement from other zoogeographers regarding the placement and nature of this border (Briggs, 1974). Because of these zoogcographic and unique hydrographic features certain groups of the Straits have been investigated in detail: benthie fish (Staiger, 1970), lantern fish (Devany, 1969), brachyura (Soto, dissertation in preparation), hydroids (Bogle, 1975), crinoids (Messing, 1975) and gastropods (Quinn, thesis in preparation). All of these studies, ineluding the present one, were based on material collected by the R/V Gerda during her ten years of operation (May 1962-May 1972) in the Dcep-Sea Biology Program. The Gerda performed 1348 stations, predominantly in the Straits; 698 cephalopods were collected at 198 stations, making possible the first comprehensive aceount of the cephalopods of this unique area.

The Straits ean be divided into three geographic regions (Fig. 1) based on bathymetry: Western, Cay Sal and Northern (Wennekens, 1959). No discrete boundarics occur to separate these three regions,


Figure 1. Geographic division of the Straits by regions and water masses: (1) Continental Zone, (2) Transitional Zone, (3) Yucatan Zone.
rather the Cay Sal Region acts as a transitional area separating the Northern and Western Regions which differ with regard to axial gradient and maximum depth of the valley. These bathymetric divisions are used in this paper as eonvenient distributional indieators. Malloy and Hurley (1970) should be eonsulted for a more detailed account of the bathymetry and geomorphology of the Straits.

Hydrographieally, the Straits can also be
divided into three water masses: Continental, Transitional and Yueatan (Fig. 1). Wennekens (1959) elearly showed that the insular Yueatan water, flowing directly from the Yueatan Channel to the Straits, could be easily distinguished from Continental Edge water (Caribbean water that is modified in the northeastern Gulf of Mexico) by its T-S characteristics. Devany (1969) further refined Wennekens's boundaries and defined a third water mass, the Transitional water, to aceount for the latitudinal meandering of the boundaries of the Continental and Yucatan water masses and the eonsequent intermediate hydrographie nature resulting from their mixture. Below 300 meters the T-S eharaeteristics of all three water masses merge into a single narrow envelope.

Within the Florida Current the mass distribution must adjust itself so that the lighter ( warmer) water is on the east side and the denser (colder) water is on the west side, resulting in the sea surface rising toward the cast (Sverdrup, Johnson, \& Fleming, 1942). Because of these tilted eross-stream isopyenals it is impossible to use a standard depth to designate the $10^{\circ} \mathrm{C}$ isotherm dividing the meso- and bathypelagic zones. Instead, the depth of the tilted $10^{\circ} \mathrm{C}$ isotherm was determined for each water mass of each region from data obtained by Wüst (1924) and Clausner (1967) and summarized by Devany (1969). In the Western and Cay Sal Regions this depth is considered to lie

Table 1. Discrele depth, non-discrete depth sampling (Roper, Gibbs, and Aron, 1970) and Grirda ranges for two common mesopelagic squid (Numbers in parentheses were the numbers of specimens available for analysis and depths in meters)

|  |  | Prouelthis margaritifera |  |  | Pterygioneuthis giardi |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Depth | No. |  | Depth | No. |
| Discrete Depth Sampling | Day | 250-415-550 | (40) | Day | 300-383-500 | (13) |
|  | Nt. | 50-140-250 | (39) | Nt. | 0-102-250 | (28) |
| Non-Discrete Deplh Sampling | Day | 200-463-1000 | (29) | Day | 200-400-500 | (14) |
|  | Nt. | 0-205-600 | (33) | Nt. | 0-159-400) | (23) |
| Gerda ranges (open nets) | Day | 310-401-595 | ( 8) | Day | 256-297-375 | ( 5) |
|  | Nt . | 18-69-154 | ( 5) | Nt. | 45-156-389 | (12) |



Figure 2. Bathymetric ranges of the six most common species of pelagic squid from the Gerda collections in the Straits of Florida. Open bar-daytime range; hatched bar-iwilight range; solid barnighttime range. Cross bars indicate respective levels of weighted average depths. Numbers below bars indicate the number of Gerda specimens available for analysis.
at 400 m in Continental water, 500 m in Transitional water and 600 m in Yucatan water. For the Northern Straits the $10^{\circ} \mathrm{C}$ isotherm is 300 m in Continental water, 450 m in Transitional water, and 600 m in Yucatan water.

## Material and Methods

A detailed account of the Gerda and her cquipment can be found in Devany (1969) and Staiger (1970). Most of the Gerda cephalopods were captured with a ten-foot otter trawl or a 6 -foot Isaacs-Kidd Mid-

Table 2. Geographic summary of the fishing efforts of the IKMT tows made by the R/V Grrda by Straits regions and ecological zones of the midwaters (minutes are converted to hundredths of an hour)

| STRAITS REGION | IONE | WATER MASSES |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Continental |  | Transitional |  | Yucatan |  | Total |  |
|  |  | $\begin{aligned} & \text { No. } \\ & \text { fow: } \end{aligned}$ | $\begin{aligned} & \text { 1is. } \\ & \text { fisthed } \end{aligned}$ | $\begin{aligned} & \text { No. } \\ & \text { fows } \end{aligned}$ | $\begin{aligned} & \mathrm{Hr}_{\mathrm{r}} \\ & \text { fished } \end{aligned}$ | No. tows | $\begin{gathered} \text { HIr. } \\ \text { fished } \end{gathered}$ | No. lows | $\underset{\text { fibled }}{\mathrm{Hr}}$ |
| NORTH | Epi. | 30 | 34.20 | 15 | 27.80 | 17 | 19.00 | 62 | 81.00 |
|  | Meso. | 1 | 1.96 | 23 | 46.90 | 28 | 62.50 | 52 | 111.36 |
|  | Bathy. | 1 | . 50 | 5 | 16.30 | 0 | 1.80 | 6 | 18.60 |
|  | TOTAL | 32 | 36.66 | 43 | 91.00 | 45 | 83.30 | 120 | 210.96 |
| CAY SAL | Epi. | 2 | 1.25 | 1 | . 67 | 9 | 4.20 | 12 | 6.12 |
|  | Meso. | 0 | 0 | 0 | 0 | 4 | 6.52 | 4 | 6.52 |
|  | Bathy. | 0 | 0 | 1 | 4.02 | 0 | 0 | 1 | 4.02 |
|  | TOTAL | 2 | 1.25 | 2 | 4.69 | 13 | 10.72 | 17 | 16.66 |
| WEST |  |  |  |  | 0 | 0 | 0 | 3 | 2.81 |
|  | Meso. | 4 | $10.06$ | 1 | 2.00 | 0 | () | 5 | 12.06 |
|  | Bathy. | 2 | 6.15 | 10 | 31.90 | 3 | 9.90 | 15 | 47.95 |
|  | TOTAL | 8 | 19.02 | 12 | 33.90 | 3 | 9.90 | 23 | 62.82 |
| TOTAL | Epi. | 34 | 38.26 | 17 | 28.47 | 26 | 23.20 | 77 | 89.93 |
|  | Meso. | 5 | 12.02 | 25 | 48.90 | 32 | $69.02$ | 62 | 129.94 |
|  | Bathy. | 3 | 6.65 | 15 | 52.22 | 3 | 11.70 | 21 | 70.57 |
|  | TOTAL | 42 | 56.93 | 57 | 129.59 | 61 | 103.92 | 160 | 290.44 |

water Trawl, both of which were non-diserete samplers, open both when paid out and hauled in. Bruun (1943), Piekford (1946) and Thore (1949) have used a statistieal method to increase depth reliability of nonclosing net tows and Voss (1967) has discussed the problem of contamination in non-elosing nets. Most reeently a direet comparison of diserete depth sampling and non-elosing net sampling has been published by Roper, Gibbs, and Aron (1970). Table 1 presents diel ranges for two speeies obtained by discrete depth sampling, non-discrete depth sampling, and for eomparison, the GERDA data for non-diserete depth sampling. Although the ranges of the nondiserete captures are broader, the mean depths of eapture and magnitudes of diel migration are similar.

Two methods were used to analyze the
distribution of the eommon midwater eephalopods. First, the arithmetic mean of depth of capture was obtained for eaeh speeies for each diel period: day, night, and twilight. (A twilight tow is defined as any tow in the water at 0600 hours or at 1800 hours.) The mean depth was obtained for eaeh diel period by summing the depths of eapture of each speeimen (regardless of the number of speeimens taken in one haul) and dividing by the total number of specimens caught in the same period. Even with the use of open nets this proeedure indicates the weighted maximum eoneentration of individuals at those periods. The results of this analysis for the six most eommon mid-water eephalopods are illustrated in Figure 2.

A second method was used to eompensate for the uneven fishing efforts of the Gerda at partieular depths and Straits re-

Table 3. Geographic summary of otter trawl tows hy Straits regions and depth

| STRAITS REGION | DEPTH RANGE (meters) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 11-2010 | 201-460 | 401-6, 010 | 601-800 | 801-1000) | $>1090$ | Total |
| NORTH | 59 | 99 | 87 | 44 | 28 | 10 | 327 |
| CAY SAL | 29 | 28 | 19 | 11 | 13 | 2 | 102 |
| WEST | 48 | 21 | 21 | 11 | 14 | 27 | 142 |
| TOTAL | 136 | 148 | 127 | 66 | 55 | 39 | 571 |

gions. The actual fishing time at depth in hours and minutes was calculated for the 160 Gerda IKMT tows and then segregated as to Straits region (N, CS, W), water mass (C, T, Y) and depth (epi-, meso-, bathypelagic), resulting in 27 categories (Table 2). The total number of specimens for a species for each catcgory could then be divided by the hours fished in that category to achieve a decimal expression of catch per unit fishing effort as specimens per hour fished at a given depth range, a given water mass and a given Straits region.

Two methods of distributional analysis were also used for the common benthic cephalopods. First, the substrate at the capture site was determined by using a combination of methods including remarks from the deck log of the Gerda, observation of debris from capture sites and associations with other benthic animals of known habit preference that were captured in the same tow. $1 t$ was hoped that several independent observations at one station might correlate and strengthen the likelihood of a true detcrmination of the substrate. Also, a combination of substrate types for all stations of a particular species tended to correspond and supplement each other.

The sccond method of clistributional analysis for the benthic species resulted in frequency of capture at a certain depth range and zone of the Straits. The 571 Gerda otter trawl stations made in the Straits of Florida were divided with regard to the depth of capturc $(0-200) \mathrm{m}, 201-400 \mathrm{~m}$, 401-600 m, 601-800 m, 801-1000 m, and over 1000 m ) and the Straits region, resulting in 18 subdivisions (Table 3). The
total number of stations at which a species was captured in a particular subdivision could then be divided by the total number of otter trawls made in that subdivision to obtain a percentage indicating the frequency of capture at a certain depth and zone in the Straits.

Standard cephalopod mcasurements and abbreviations are employed in this paper as listed by Voss (1956, 1963). Other abbreviations used in this paper include:

TL-tentacle length: total length of the tentacles and elub; Fin angle-angle that the straight posterior border of one fin makes with the longitudinal axis of the body: FL/FW-fin length/fin width ratio; EI-eye diameter index: eye diameter expressed as a percentage of ML; OGI-oviducal gland index: in fernale octopods, the diameler of oviducal gland expressed as a percentage of ML; G-R V Gerda; WH—R/V Waltfr Herwig: USNM-United States Natíonal Museum: RSMAS-Rosenstiel School of Marine and Atmospheric Science: OT- 10 -foot ( 3 m ) Otter Trawl; 1KMT-6-foot ( 1.8 m ) Isaaes-Kidd Midwater Trawl; DN—Dip Net station; PN—Plankton Net: UMML 31.XXX—University of Miami Marine Lab (RSMAS) aecession number: CContinental water (zone); T-Transitional water (zone); Y -Yucatan water (zone); N -Northern Straits Region; CS—Cay Sal Region of Straits: and W-Western Straits Region.

The synonymies given in the SPECIES ACCOUNT are regional, covering only the Straits of Florida plus the original description.

## Cilecklist of Cephalopods From the Straits of Florida

The cephalopods of the Straits of Florida have never been reviewed, but a search of the seattered literature of this area reveals
that 49 species have been reported, the majority since 1949. Important systematic cephalopod papers pertinent to this area are those of Voss (1954, 1955, 1956, 1956a). As a result of the present study, 15 new records can be added to the Straits cephalopod fauna (indicated by an astcrisk). This increases the total number of cephalopod species reported in the Straits to 64 .

Class Cephalopoda Order Sepioidea Family Spirulidae
Spirula spirula (Linnaeus, 1758)
Family Sepiolidae
Semirossia tenera (Verrill, 1880)
Semirossia equalis (Voss, 1950)
*Rossia bullisi Voss, 1956
Rossia antillensis Voss, 1955
Rossia tortugaensis Voss, 1956
*Stoloteuthis leucoptera (Verrill, 1878)
Nectoteuthis pourtalesi Verrill, 1883
Order Teuthoidea
Family Pickfordiateuthidae
Pichfordiateuthis pulchella Voss, 1953
Family Loliginidae
Loligo pealei Lesueur, 1821
Loligo A LaRoe, 1967
Dorytenthis plei (Blainville, 1823)
Lolliguncula brevis (Blainville, 1823)
Sepioteuthis sepioidea (Blainville, 1823)
Family Lycoteuthidae
Lycoteuthis diaderna (Chun, 1900)
*Selenoteuthis scimillans Voss. 1958
Family Enoploteuthidae
Abralia leranyi (Rüppell, 1844)
Abralia redficldi Voss. 1955
Abralia grimpei Voss, 1958

* Abraliopsis pfefferi Joubin. 1896
* A braliopsis sp.

Pyroteuthis margaritifera (Rüppell, 1844)
P'terygiotouthis giardi Fischer, 1895

* Pterygioteuthis germmata Chun, 1908
*Enoploteuthis anapsis Roper, 1964
Enoplotowthis lepiura (Leach, 1817) Thelidiotenthis alessandrini (Verany, 1851)

Family Octopoteuthidae Octopotcuthis megapterd (Verrill, 1885)

Family Onychoteuthidae
Onychotenthis banksii (Leach, 1817)
Onokia corriboea Lesueur, 1821
Family Histioteuthidae
Histioteuthis dofleini (Pfeffer, 1912)
Histioteuthis corona corona (Voss \& Voss, 1962)
Family Ctenopterygidae
*Ctenopteryx sicula (Verany, 1851)

Family Architeuthidae
Architeulhis princeps Verrill, 1875
Fanily Ommastrephidae
Illex coindetii (Verany, 1837)
Illex oxygonius Roper, Lu \& Mangold, 1969
Ommastrephes pteropus (Stecnstrup, 1855)
Family Mastigoteuthidae
*Mastigoteuthis grimaldii (Joubin, 1895)
Family Grimalditeuthidae
*Grimalditeuthis bomplandii (Verany. 1837)
Family Cranchiidae
Cranchia scabra Leach, 1817
Liocranchia reinhardii (Steenstrup, 1856)

* Leachita sp.

Esea inermis Joubin, 1933
*Helicocranc/tia pfefferi Massy, 1907
*Galiteuthis armata Joubin, 1898
*Corynoma speculator Chun, 1906
*Bohloolhama lyromma Chun, 1906
Order Vampyromorphal
Vampyroteuthis infernalis Chun, 1903
Order Octopoda
Family Bolitaenidac
Japetella diaphana Hoyle, 1885
Family Octopoteuthidae
Octopus rulgaris Cuvier, 1797
Octopus hummelincki Adam, 1936
Octopus joubini Robson, 1929
Octopus briareus (Robson, 1929)
Octopus. hurryi Voss, 1950
Octopus mucropus Risso, 1826
Octopus defilippi Verany, 1851
Danoctopus schmuidti Joubin, 1933
Scueurgus unicirrlus (d'Orbigny, 1840)
Pteroctopus tetracirrlus (Delle Chiajc, 1830)
Batliypolypus arcticus (Prosch, 1849)
Tetracheledone spinicirrus Voss, 1955
Family Tremoctopodidae
Tremoctopus violacens Delic Chiaje, 1830
Family Argonautidae
Argonamto argo Linnacus, 1758
Argomouta hians: Solander, 1786
Species Account Class CEPHALOPODA Order SEPIOIDEA Family SPIRULIDAE Owen, 1836

Spirula spirula (Linnacus, 1758)
Nautilus spirula Linnaeus, 1758: 710.
Spirula spirula, Bruun, 1943: 39 (Western and
Cay Sal Yucatan waters).-McGinty, 1955: 35 (Boynton Beach).
Material examined.-1 juvenile, M1, 14.5 mm , G-72.-I juvenile, ML 8.5 mm , G-208.

Type-locality.-"America."
Discussion.-The family Spirulidae contains only one, casily recognized species, $S$. spirula. Bruun (1943) could find no specific or geographic variation in this specics.
Distribution.-S. spirula is cosmopolitan in tropical and subtropical seas dependent on bottom depths between $1000-2000 \mathrm{~m}$ (Bruun, 1943, 1955). Live Spirula were first reported from the Straits by Bruun (1943); shclls had been reported earlier by Calkins (1878) and Simpson (1887).

Bruun (1943) placed the lower limit of distribution at 1750 m , the pressure at which the shell would implode, and considered that eggs were deposited on the bottom, explaining the abundance of captures near continental slopes and island shelves. He gave the vertical ranges as $200-1750 \mathrm{~m}$. Clarke (1969), using closing nets, detected a diurnal migration for specimens larger than ML 6.7 mm (night range $100-300 \mathrm{~m}$; day range $500-700 \mathrm{~m}$ ). Both Gerda juveniles were captured during the day at 458 and 675-777 m.

Family SEPIOLIDAE Kcferstein, 1866 Subfamily ROSSIINAE Apcllöf, 1898

> Semirossia tenera (Verrill, 1880)

Ileteroteuthis tenera Verrill, 1880: 392.
Rossia (Scmirossia) tenera, Voss, 1950: 76 (off Looe Key, Sombrero Light); 1956: 99 (off Palm Beach, Fla.); 1956a: 276 (off Palm Beach, Miami, Dry Tortugas).
Semirossia tencra Boletzky, 1970: 386 (off Miami, Key West).
Moterial examined.-1 female, ML 28.0 mm , G-1009.-1 male, ML 23.5 mm , G-898.-1 male, ML 23.0 mm , G-589. 5 males, ML $22.0-10.0$ $\mathrm{mm}, \mathrm{G}-855 .-1$ male, ML $21.0 \mathrm{~mm}, \mathrm{G}-853 .-5$ males, ML $21.0-12.0 \mathrm{~mm}, 3$ females, ML $14.0-$ $12.0 \mathrm{~mm}, \mathrm{G}-1024 .-1$ male, ML 21.0 mm , G830. - 5 females, ML $19.5-12.0 \mathrm{~mm}, 1$ male, ML $18.0 \mathrm{~mm}, \mathrm{G}-1035 .-13$ males, ML $19.0-11.0 \mathrm{~mm}$, 2 females, $16.0-14.0 \mathrm{~mm}$, 1 juvenile, 9.0 mm , G-1028. 30 females. ML $18.0-10.0 \mathrm{~mm}, 5$ males, ML $17.0-11.0 \mathrm{~mm}$, I juvenile, ML 7.5 mm , G-1319.-2 females, ML $18.0-9.0 \mathrm{~mm}, 2$ males, ML 11.0 mm , G-760.-2 males, ML $18.0-15.5 \mathrm{~mm}$, G-1081.-2 females, ML 17.0-12.5 mm, 1 male, ML $16.0 \mathrm{~mm}, \mathrm{G}-834$. I male, ML $16.0 \mathrm{~mm},{ }_{2}$ female, ML $16.0 \mathrm{~mm}, 3$ juveniles, ML $10.0-6.2$ mm , G-456.-1 male, ML 13.0 mm , G-29.-1 male, M1, 11.0 mm . G-414.-1 female, ML 11.0 $\mathrm{mm}, \mathrm{G}-413$.

Type-locality.-Off Newport, Rhode Island.
Discussion.-Boletzky (1971) raised Semirossia to generic status upon the discovery of light organs on the ink sac. S. tenera can be distinguished from its sympatric relative, S. equalis, by possession of two rows of marginal club suckers with diameters thrce to four times greater than those of the contiguous rows.
Distribution-S. tenera is a common benthic sepiolid ranging from New England to Brazil, including the Gulf of Mexico and Caribbean Sca. Gerda took specimens at 15 locations from Palm Beach to Key Wcst, and from the Yucatan Channcl and Cay Sal Bank.

It is found on a muddy or sandy bottom in fairly dcep water (Voss, 1956). Depths of capture (Voss, 1956a) were 73-230 m and 33-460 m (Verrill, 1882). Depths of GERIDA stations range from $82-230-345 \mathrm{~m}$. Available data indicated a predominantly soft, muddy bottom.

Semirossia equalis (Voss, 1950)
Rossic (Semirossio) equalis Voss, 1950: 73 (off Pelican Shoal and Sombrero Light).
Material examined.- 2 males, ML $22.0-20.0 \mathrm{~mm}$, G-1038. - 1 male, ML $20.0 \mathrm{~mm}, \mathrm{G}-894 .-1$ female, ML 19.0 mm , G-897.-1 female, ML 17.0 mm , G-877.- 3 females, ML $15.0-13.0 \mathrm{~mm}, 1$ male, ML $11.0 \mathrm{~mm}, \mathrm{G}-997$.- 1 male, ML 12.0 mm , G-794.-1 male, ML $11.0 \mathrm{~mm}, \mathrm{G}-1286 .-1$ male, ML 11.0 mm , G-855.-1 male, ML 9.5 mm , G-522.-I female, ML 9.0 mm , G-857.

Type-locality,-Off Pelican Shoal, Florida; 183 m . Distribution.-Besides the type-locality, this species has been taken from the vicinity of Sombrero Light (Voss, 1950), the Gulf of Mexico (Voss, 1956), the Caribbean (Boletzky, 1970) and off the Gcorgia coast (Kracuter and Thomas, 1975). The Gerda took five specimens from localities in the Straits from St. Lucie to Key Largo, one in the Santaren Channel, one in Northeast Providence Channcl and three in the Yucatan Channel.

Semirossia equalis, like its sympatric relative, $S$. tenera, is found in fairly decp water on muddy or sandy bottoms (Voss, 1956).

Voss reported it from 51-320 m. Bolctzky (1970) gave one Caribbean record from 460 m . The Gerda capturc depths range from 42-229-344 m, almost exaetly the same as caleulated for the Gerda tenera. The data indicate a predominantly muddy bottom habitat with some evidence of shell rubble.

Rossia (Allorossia) bullisi Voss, 1956
Rossia (Allorossia) bullisi Voss, 1956: 101.
Material examinted.-1 male, ML 14.0 mm , G76. -2 males, ML $14.0-13.0 \mathrm{~mm}, \mathrm{G}-66$.

Type-focality.- $27^{\circ} 51^{\prime} \mathrm{N}, 91^{\circ} 32^{\prime} \mathrm{W}$ (Upper Gulf of Mexico); 402 m , mud bottom.
Discussion.-Therc are four reeognized Atlantic speeies in the subgenus Allorossia, all having both dorsal arms of the male hectoeotylized and a wcll-developed ink sac with no associated light organs (Boletzky, 1971). $R$. bullisi can be distinguished from $R$. glaucopis Loven, 1845, megaptera Verrill, 1881 and tortugaensis Voss, 1956 by its mueh smaller tentacular suekers. Other differences are listed by Voss (1956: 103) and Mangold-Wirz (1963).
Distribution. $-R$. bullisi has been reported only onec (Voss, 1956) from the upper Gulf of Mexico both east and west of the Mississippi River Delta from $356-480 \mathrm{~m}$ on a mud bottom. The Gerda speeimens are the first records for the Straits and are from depths of $366-346 \mathrm{~m}$ on a sandy bottom. An additional speeimen (UMML 31.57) was taken at a depth of 503 m in the upper Gulf. It is tempting to speculate that $R$. bullisi might replace $S$. tenera and equalis at greater depths sinee the upper range for bullisi ( 346 m ) is virtually the same as the lower limit of the Gerda tenera and equalis ( 345 m and 344 m ).

Stoloteuthis leucoptera (Verrill, 1878)
Scpiola leucoptera Verrill, 1878: 378.
Material examincel.-1 male, M1, $16.0 \mathrm{~mm}, \mathrm{G}-88$.
Type-locality.-Gulf of Maine, 48 km east from Cape Ann; 201 m , muddy botiom.
Discussion.-Stoloteuthis ean be distinguished from the other four genera in the

Heteroteuthinac by thesc eharaeteristics: dorsal mantle margin united with hcad, fins large but not projecting beyond the postcrior tip of the mantle, and ventral mantle margin only slightly projeeted.
Distribution.-The only specifie distributional rceords for $S$. leucoptera are from the Gulf of Maine, off Cape Cod and off Martha's Vineyard at depths ranging from 172-710 m (Verrill, 1882). The Gerda speeimen is the first reeord for the Straits and the southernmost reeord for this speeies. It was eaptured in an IKMT tow between 338-389 m over a bottom depth of 610 m at twilight.

## Order TEUTHOIDEA

Family LOLIGINIDAE Steenstrup, 1861
Loligo pealei Lesueur, 1821
Loligo peakii Lesueur, 1821: 92.
Loligo pealei, Voss, 1956a: 277 (off Miami, Key West, Dry Tortugas).-IaRoe, 1967: 28 (off Miami, Key Largo).
Material examined.-I male, ML 234.0 mm , G-795.-1 male. ML 153.0 mm , G-467.-1 male, ML 127.0 mm , I female, ML 110.0 mm , G-110.-I male, ML 123.0 mm . G-1034.-1 female. ML $104.0 \mathrm{~mm}, \mathrm{G}-452 .-4$ females, M1, $75.0-67.0 \mathrm{~mm}$, G-570.-4 females, M1, 66.0-54.0 mm, G-657.1 female, ML $43.0 \mathrm{~mm}, \mathrm{G}-280$.
Type-locality.-Off coast of South Carolina.
Discussion.-The two most abundant neritie loliginids of the Western Atlantie, L. pealei and Doryteuthis plei, are not readily separable when young (LaRoe, 1967). In faet, there is a considerable overlap between these two speeies in most adult eharaeteristies; however, LaRoe (1967) has established adequate eriteria for separation.
Distribution.-LaRoe (1967) stated that $L$. pealei was found in coastal waters from Massaehusetts Bay ( $42^{\circ} \mathrm{N}$ ) to Colombia ( $6^{\circ} \mathrm{N}$ ) but regarded it as a temperate water speeies, most abundant between Massaelusetts and South Carolina, replaced by Doryteuthis plei to the south but again abundant off Colombia. The Gerda took specimens from eight Strait stations.

LaRoe (1967) reported an average depth
of eapture of 63 m for 35 L . pealei south of Jacksonville, Fla. Summers (1969) reeorded winter depths of eapture of $28-366 \mathrm{~m}$ off New England with a concentration at $110-$ 183 m . This speeies was taken once by night-lighting off the Gerda and seven times with an otter trawl ranging in depth Irom 66-185-360 m.

Dorytenthis plei (Blainville, 1823)
Loligo plei Blainville, 1823: 132.-LaRoe, 1967: 51 (off Miami. Alligator Reef).
Doryteullis plei. Voss, 1952: 48 (Bear Cut, off Miami, Dry Tortugas); 1956a: 277 (off Florida Keys).
Material examined.-15 females, ML 93.()-35.0 $\mathrm{mm}, 12$ males, M1, $90.0-41.5 \mathrm{~mm}, \mathrm{G}-735 .-3 \mathrm{fc}-$ males, ML 89.5-65.5 mm, 1 male, ML 89.5 mm . G-539.- 5 females, ML $84.0-47.0 \mathrm{~mm}, 1$ male, ML $63.0 \mathrm{~mm}, \mathrm{G}-1013 .-4$ females, M1. $70.0-5(0.5 \mathrm{~mm}$, 4 males, ML 56.0-52.0 mm, G-498.- 3 males, ML $61.5-51.0 \mathrm{~mm}, \mathrm{G}-529$.
Type-locality.-Martinique.
Distribution.-D. plei ranges from Cape Hatteras, North Carolina to Reeife, Brazil, ineluding the Greater and Lesser Antilles. lt is common on both sides of the Straits of Florida but rare in the northern Gulf of Mexieo (LaRoe, 1967). The five Gerda reeords came from Northwest Providence Channel, Northeast Providence Channel, and Santaren Channel.

LaRoe (1967) reported that $69 \%$ of his speeimens were eaught by night-lighting. The other $31 \%$ were most common at $36-50 \mathrm{~m}$; however, D. plei has been taken as deep as 180 m (LaRoe, 1967: 50). All the Gerda specimens were eaptured at the surface by night-lighting.

Sepiotenthis sepioidea (Blainville, 1823)

[^0]Discussion.-S. sepioidea is the most distinetive loliginid in the tropieal Western Atlantic, easily recognized by its fins which occupy almost the entire length of the mantle.

Distribution.-S. sepioidea is a shallow water, inshore speeies most common in waters of $3-7 \mathrm{~m}$ depth, although divers have reported it from 20 m (LaRoc, 1967). It is common from the Dry Tortugas 10 Miami and throughout the Bahamas. Its range extends from Cape Canaveral to Venezucla, but it has not been taken in the Gulf of Mexieo (LaRoe, 1967). LaRoc explained its absence from the Gull' as due to the laek of coral reefs with whieh it is strongly assoeiated. The Gerda records are from Cay Sal Bank and Northeast Providence Channel.

## Family LYCOTEUTHIDAE Pfeffer, 1908 <br> Subfamily LYCOTEUTHINAE Pfeffer, 1908

?Lycoteuthis diadema (Chun, 1900)
Enoploteuthis diadetaa Chun, 1900: 532.
Lycotenthis. diademer. Voss. 1958: 374 (Straits of Florida off Delray Beach, Florida): 1962: 277 (same location, monographic treatment).
Material examined_-1 juvenile, ML 6.8 mm , G-331.-I juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-71$.

Type-locality.-West Wind Drift south of Africa, $40^{\circ} 31^{\prime} \mathrm{S}, 15^{\circ} 06^{\prime} \mathrm{W}$ : vertical net to 1500 m .

Discussion.-Beeause of their small size and mangled condition these speeimens are questionably assigned to $L$. diadema.

Distribution.-L. diadema has been reported from the West Wind Drift (Chum, 1900), off South Afriea (Robson, 1924), the west eoast of South America, the Indian Oeean (Pfeffer, 1900) and the Gulf of Mexieo (Voss, 1956). 1t was first reported in the Straits (Voss, 1958) from two juveniles from 57 m . Adults have been eaptured with open nets between $366-589 \mathrm{~m}$ and juveniles have been taken between 4657 m (Voss, 1962). Voss (1962: 273) has suggested that $L$. diadema is a meso-
pelagie squid and that "their larvae are found near the surface, moving downward with age."

Selenoteuthis scintillans Voss, 1958
Selenotenhis scintillans Voss, 1958: 370.
Material examined.- 1 female, ML 24.0 mm , G-225.-1 female, ML $22.0 \mathrm{~mm}, \mathrm{G}-352$. -3 females, MI, 17.0-10.8 mm, 1 juvenile, ML 13.1 mm . G327. $1 \mathrm{fcmale}, \mathrm{ML} 13.1 \mathrm{~mm}, \mathrm{G}-200$.- 1 female, ML 10.8 mm , G-287.-1 female, ML 10.7 mm . G-195.-1 female, ML 10.0 mm . G-72.-1 juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-201$.

Type-locality.-East of Little Bahama Bank, $26^{\circ} 22^{\prime} \mathrm{N}, 76^{\circ} 10^{\prime} \mathrm{W} ; 46 \mathrm{~m}$.

Discussion.-Selenotenthis elosely resembles Lycotenthis with only two major exceptions: an additional terminal photophore on the mantle and terminal photophores on arms 11 and 111 of the male. The terminal mantle photophore ean distinguish these two species at a mantlc length as small as 5 mm .

Remarks.-Only four S. scintillans have been reported previously. Two of the Gerda speeimens were immature and the other nine were females.

Distribution.-S. scintillans has bcen reported twice: the typc-locality (Voss, 1958) and $25^{\circ} 11^{\prime} \mathrm{N}, 89^{\circ} 50^{\circ} \mathrm{W}$ (Voss, 1962: central Gulf of Mexico). It was also taken in the Caribbean by the R/V Gilliss in 1972. Most of the Gerda records are from mesopclagic Northern Transitional waters but it was also taken from the Cay Sal and Western Regions. No specimens were taken in Continental waters.

Voss's holotype was captured at night at a depth of 46 m ; the other three recorded speeimens were eaught in an open net fished to 3290 m . Nevertheless, Voss (1962) considered it to be an upper bathypelagie squid. The depth range of the Gerda specimens was day: 458-472-485 m; night: 137-148154 m and twilight: 324 m (Fig. 2). $S$. scintillans thus seems to be an upper bathypelagic to lower mesopelagic species that migrates diurnally to the epipelagie zone at night.

Family ENOPLOTEUTHIDAE<br>Pfeffcr, 1900<br>Subfamily ENOPLOTEUTHINAE<br>Pffffer, 1912

Enoploteuthis leptura (Leaeh, 1817)
Loligo leptura Leach, 1817: 141.
Enoplotenthis leptura, Roper, 1966: 2 (Gerda Sta. $120,23^{\circ} 32^{\prime} \mathrm{N}, 82^{\circ} 21^{\prime} \mathrm{W}$ ).
Material from Germi.- 1 male, ML, 79.0 mm , G120. UMML 31.483.

Type-locality-- $1^{\circ} 08^{\prime} \mathrm{N}, 7^{\circ} 26^{\prime} \mathrm{E}$, Gulf of Guinea.
Discussion.-Of the four other nominal species of Enoploteuthis only onc, E. anapsis Roper, 1964, is recorded in the Atlantic. $E$. leptura can be distinguished from $E$. anapsis by possession of seven distinct rows of light organs on the ventral mantle, not four as in E. anapsis.

Distribution.—Roper (1966: 14) described E. leptura as "a tropical Atlantic mesopclagic cephalopod." It has been reported from Madcira, the Cape Verde Islands, the Gulf of Guinea and in the Western Yucatan waters of the Straits of Florida. The Gerda speeimen is the only record from the Western Atlantic. Since few specimens have been captured, an accuratc evaluation of its bathymetric distribution is not feasible.

## Enoplotemthis anapsis Roper, 1964

Enoploteuthis anapsis Roper, 1964: 140.
Material examined.- 1 malc, ML $18.0 \mathrm{~mm}, \mathrm{G}-318$, from stomach of black-finned tuna.- 1 juvenile, ML $7.7 \mathrm{~mm}, \mathrm{G}-346$.
Type-locality.— $16^{\circ} 55^{\prime} \mathrm{N}, 81^{\circ} 10^{\prime} \mathrm{W}$.
Distribution.-E. arapsis ranges from the Gulf of Mexico and the Caribbean Sea across the North Atlantic to Madeira and as far south as St. Hclena ( $19^{\circ} 16^{\prime} \mathrm{S}, 1^{\circ} 48^{\prime} \mathrm{W}$ ). It has also been taken from the Tongue of the Ocean, Bahamas.

Roper (1966) listed time and depth of capture for 21 specimens. Sixteen were eaught at night between $0-100 \mathrm{~m}$, the rest at twilight. The juvenile Gerda specimen was eaught at night at 181 m . A diel migration eannot be implied with the available data.

Abralia (Asteroteuthis) veranyi (Rüppell, 1844)

Enoplotcuthis veranyi Rüppell, 1844: 3. Abralia veranyi. Voss, 1956a: 277 (off Kcy West).
Material examined.-1 female, ML. 39.5 mm , G546.

Type-locality.-Messina. Italy.
Discussion.-A. veranyi is placed in the subgenus Asteroteuthis on the basis of its possession of $9-10$ indistinct rows of photophores on the ventrum of the head.

Distribution.-A. veranyi has been reported from the Mediterranean and both sides of the Atlantic from the Bay of Funchal, Madeira, to off the Congo River in the Eastern Atlantic, and in the Western Atlantic in the Gulf of Mexico, off Cuba and off Key West (Voss, 1956a). Depths of capture have ranged between the surface and 550 m .

Only one specimen was captured by the Gerda, a gravid female dip-netted at the surface in Northwest Providence Channel, north of Andros Island. Two other gravid females taken at the surface were reported at Corrientes, Cuba (Voss, 1955).

> Abralia (Asteroteuthis) redfieldi Voss, 1955

Figures 3A, B
Abralia redficldi Voss, 1955: 99; 1956a: 277.
Material examined.-1 male, ML $19.0 \mathrm{~mm}, 1$ juvenile, ML $9.2 \mathrm{~mm}, \mathrm{G}$ 101.-1 male, ML 16.0 mm , G-351.-5 juveniles, ML 10.0-6.2 nim, G-286.-1 juvenile, ML $9.2 \mathrm{~mm}, \mathrm{G}-115 .-1$ juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-284$.

Typc'locality.-Off Gun Cay, Bahamas; surface.
Discussion.-Adult A. redfieldi are distinguished from the other two Atlantic species, A. veranyi and A. grimpei Voss, 1958, by their five round ocular photophores and only two rows of suckers on the tips of the sessile arms.

Remarks.-No male specimen of $A$. redfieldi has been described; therefore, a description of the hectocotylus and a figure of both the heetocotylus and spermatophore


Figure 3. Abralia redfieldi, G-101, M1, 19 mm: A, Spermatophore; B, Hectocotylus.
are provided (Figs. 3A, B). Of the four species in the subgenus Asteroteuthis, the hectocotylus is known for only two plus one of their subspecies. In all three cases the left ventral arm is hectocotylized by a semi-cireular ventral membrane, a smaller dorsal membrane, and the absence of hooks distal to the dorsal membrane. Two males were taken by the Gerda: the larger with a mantle length of 19.0 mm (G-101) with mature spermatophores, and the smaller (ML 16.0 mm , G-351) with a penis but no spermatophores. The larger specimen has the right ventral arm hectocotylized by a large bilobed ventral membrane originating at the last arm hook (ninth) and extending over halfway to the tip of the arm. A much smaller ventral flap lies distal to this bilobate membrane. No dorsal flap, suckers or hooks occur distal to the origin of the ventral flap. The smaller specimen also has the right ventral arm heetocotylized. Its ventral flap is not as distinctly bilobate; however, there is a constriction in the middle of the flap. There is no additional ventral membrane but a small dorsal flap is present. Fourleen biserially arranged suckers extend beyond the flaps to the tip of the arm.

The hectocotylization of the right ventral arm also oceurs in $A$. (Abralia) armata and A. (Astrabralia) euides, but this is the first time observed in the subgenus Asterotcuthis. Also, the peculiar bilobate ventral flap, the additional small ventral flap of the larger specimen, and suckers on the hectocotylized arm tip of the smaller specimen have not been reported before in the genus Abralia. Mates are known in only four of the 13 valid species (Voss, in manuseript).
Distribution.-Only two specimens of $A$. redfieldi from two locations have been reported: the type-locality off Gun Cay and the location of one female off Caibarien, Cuba (Voss, 1955). The Gerda took ten speeimens from five locations in the Straits, distribuled in all three water masses and regions.

The two previously recorded specimens were caught from 446 m to the surface. The Gerda specimens had an average night depth of 55 m and a day average of 611 m (Fig. 2).

Abraliopsis (Abraliopsis) pfefferi<br>Joubin, 1896<br>Figures 4A, B

Abraliopsis pfefferi Joubin, 1896: 19.
Material examined.-1 female, ML 29.0 mm , G-181.-1 male, M1, 21.5 mm . G-304.-1 male, ML $18.0 \mathrm{~mm}, \mathrm{G}-99 .-1$ female, ML 16.9 mm , G352.

Type-locality.-Villefranche-sur-Mer, Mediterranean Sea.
Discussion.- $A$. pefefferi is in the subgenus Abraliopsis, characterized by the possession of irregularly seattered photophores on the ventral surface of the head and mantle, not arranged in rows as in the subgenus Micrabralia. It is the only Atlantic representative of the subgenus.
Remarks.-Voss (1967a) reported a male of $A$. pfefferi from the Indian Ocean but did not deseribe it. Young (1972: 21) described the hectocotylus from two Indian Ocean specimens, however, he neither illustrated the hectocotylus nor mentioned the spermatophore. The Gerda material contained four specimens, two of which were males of ML 21.5 and 18.0 mm . The larger specimen possesses a hectocotylus and spermatophores, which are illustrated in Figures 4A, B.

The hectocotylus of the Gerda specimen agrees with Young's description. The ventral flap of the right ventral arm begins at the tenth hook and extends a millimeter past the last (14th) hook. It is a low ridge with several folds, perhaps due to the preserving fluid. The dorsal membrane originates at the level of the last hook and is about half as long and tall as the ventral membrane. No suckers lie distal to the dorsal flap. Hooks 7 and 8 are undeveloped, smaller and lacking a chitinous hard part. A similar condition is found in A. (Micrabralia) affinis
in which the hooks in the eenter of the heetoeotylized arm are smaller. The left arm is unmodified. Males of all three species of the subgenus Abraliopsis are now known to have heetoeotylized right ventral arms and unmodified left arms.

Distribution.-A. pfefferi is known from the Mediterrancan (Joubin, 1896), the northeastern Atlantic (Joubin, 1920, 1924) and the Indian Occan SSE of Natal (Voss, 1967a). Three adult specimens werc taken from the Straits in Northern Yucatan and Transitional waters. The other specimen was captured north of Little Bahama Bank. This is the first record of $A$. pfefferi from the Western Atlantie.

Two of the three Gerda specimens were eaptured during the day at an average depth of 640 m ; the other was eaptured at night at 52 m .

Abraliopsis (Micrabralia) sp.
Material examinted.-1 male, ML 19.5 mm , G-285.-1 juvenile, ML 8.4 mm , G-106.

Type-locality.- $5^{\circ} 09^{\prime} \mathrm{N}, 4^{\circ} 04^{\prime} \mathrm{E}$, Gulf of Guinea; $500-740 \mathrm{~m}$.

Discussion.-The subgenus Micrabratia is eharaeterized by four to five distinet rows of photophores on the ventral surface of the head. Only this specics is known from the Western Atlantic.

Distribution.-This species has been reported only from the Gulf of Guinea and the Gulf of Mexico (Voss, 1975). The Gerda produced two records in the Continental and Transitional waters of the Cay Sal and Northern Regions. One speeimen was eaptured between $400-596 \mathrm{~m}$ during the day and the other between $97-104 \mathrm{~m}$ at night. There are not enough data to prove a diurnal migration.

Figure 4. Abraliopsis pfefferi, G-304, ML 21.5 mm: A. Hectocotylus; B, Spermatophore.


# Subfamily PYROTEUTHINAE 

Pffffcr, 1912
Pyroteuthis margaritifera (Rüppcll, 1844)
Enoploteuthis margaritifera Rüppell, 1844: 2, Pyroteuthis margaritifera, Voss, 1954: 477 (Gulf Stream off Miami); 1956a: 278 (Florida Current off Miami); 1958: 381 (off Delray Beach, Fla.).
Material examined.-1 female, ML 36.0 mm , G-358.-1 female, ML $36.0 \mathrm{~mm}, \mathrm{G}-11 .-1$ male, ML 32.0 mm , G-72.- 2 females, ML 12.5-10.0 mm , 2 juveniles, ML $7.7-6.2 \mathrm{~mm}$, G-199.-1 male, ML 12.3 mm . G-159.-1 female, ML 10.9 mm , G-286.-1 female, ML 10.8 mm , G-339.-1 juvenile, ML 7.0 mm , G-201.-1 juvenile, ML 6.2 $\mathrm{mm}, \mathrm{G}-530 .-1$ juvenile, ML $6.1 \mathrm{~mm}, \mathrm{G}-356$.2 juveniles, ML 4.6-3.7 mm, G-497.
Discussion.-The Pyroteuthinae contains two genera, each with two spccics. Pyroteuthis is distinguished from Pterygioteuthis by hooks on the tentacular club, hectocotylization of the right ventral arm instead of the left ventral, 12 ocular photophores instead of 14 or 15 and broad fin insertion.
Distribution.- $P$. margaritifera has been reported from both sides of the North Atlantic, the Mediterranean, off Amboina (Hoylc, 1886) , the Contral Pacific ( $0^{\circ} 33^{\prime} \mathrm{S}$, $151^{\circ} 34^{\prime} \mathrm{E}$; Hoylc, 1886), the Indian Ocean (Voss, 1967a) and the Straits of Florida (Voss, 1954) off Miami.

Sixteen specimens were capturcd from 11 stations mainly in the Transitional and Yucatan Northern mesopelagic zone. No specimens were taken from Continental waters. Highest catch/effort was found in the mesopclagic Western Transitional waters, . 50 specimen/hour, and the mesopelagic Northern Transitional waters, .12 specimen/hour.

Roper, Gibbs and Aron (1970), based on 79 specimens collected with closing nets off Bermuda, reported a day and night range of $250-415-550 \mathrm{~m}$ and $50-140-250 \mathrm{~m}$ respectivcly. The Gerda specimens had a corresponding range of $310-401-595 \mathrm{~m}$ and 18-69-154 m (Fig. 2). There was no change in depth with increase of size.

Pterygioteuthis giardi Fischer, 1895
Pterygiotcuthis giardi Fischer, 1895: 205.Voss, 1954: 477 (Gulf Stream off Miami,

Lower Florida Keys); 1956a: 278 (Florida current off Miami); 1958: 381 (off West Palm Beach).
Material examined.- 1 female, ML 15.5 mm , G-323.-2 males, ML $15.4-13.0 \mathrm{~mm}$. G-92.-1 female, ML $15.4 \mathrm{~mm}, \mathrm{G}-88$.- 3 females. ML $14.6-$ $10.0 \mathrm{~mm}, 1 \mathrm{male}, \mathrm{ML} 9.3 \mathrm{~mm}, 2$ juveniles, ML $8.5-5.4 \mathrm{~mm}, \mathrm{G}-351$. - 1 male, ML 14.0 mm , G-37.-1 male, ML 12.3 mm , G-333.-1 male, MI. 12.3 mm , 2 females, ML $11.5-10.0 \mathrm{~mm}, \mathrm{G}-101$ 1 male, ML 11.5 mm , G-58.- 1 male, ML 10.9 mm , G-284.-1 male, ML $10.8 \mathrm{~mm}, 1$ female, ML 10.0 mm , G-90.- 1 male, ML 10.7 mm , $1 \mathrm{fe}-$ male, ML $9.2 \mathrm{~mm} . \mathrm{G}-97 .-2$ females, ML $8.5-$ $8.0 \mathrm{~mm}, \mathrm{G}-331 .-1$ juvenile, ML 7.7 mm , G-196.-1 juvenile, ML $5.3 \mathrm{~mm}, \mathrm{G}-314$.

Type-locality.—Off the coast of Moroceo (see Berry, 1912).
Discussion.-There are two Atlantic species of Pterygioteuthis in the literature: P. giardi Fischer, 1895 and $P$. gemmata Chun, 1908. $P$. giardi can be distinguished by hooks on both dorsal and ventral rows of arms 1-111, fifteen ocular photophores, and the absence of suckers and hooks on arms IV (Berry, 1912: 334). Most of the Gerda specimens were small and often the arm hooks werc missing, not yet formed, or difficult to distinguish. The number and position of the ocular photophores served to identify specimens as small as 7.7 mm ML.

Distribution.-This small squid has been reported from both sides of the Atlantic, New South Wales, South Africa, the Indian Occan, the East Indies, New Zealand, off the Galapagos Islands, the eastern Pacific Occan and southern South Amcrica. It was the second most abundant pelagic cephalopod collccted by the Gerda in the Straits, caught at fourteen stations for a total of 25 specimens. No spccimens were caught in the Western Region or Continental waters. Most of the specimens were captured in the epi- and mesopelagic zones of the Transitional and Yucatan waters of the Northern Region. Notable maxima of catch/cffort were .32 specimen/hour in the cpipclagic Northern Yucatan waters and .19 specimen/ hour in the mesopelagic Northern Transitional waters.

Roper, Gibbs and Aron (1970) rcported
a day and night range of $300-383-500 \mathrm{~m}$ and 0-102-250 m respectively for 41 specimens captured with elosing nets off Bermuda. The Gerda specimens had a day depth range of $256-297-375 \mathrm{~m}$, a twilight range of 70-159-365 m , and a night range of 45-156-389 m (Fig. 2).

Pterygioteuthis gemmata Chun, 1908
I'terygioteuthis gemmato Chun, 1908: 86.
Material examined.- 1 female, ML 23.0 mm . G-333.-1 female, ML 23.0 mm , G-559.-1 female, ML 12.3 mm , 1 juvenile, ML, 6.9 mm , G-1251.1 female?, ML 12.3 mm , G-1259.-2 females, ML, $11.5-10.8 \mathrm{~mm}, 6$ juveniles, ML $8.5-4.6 \mathrm{~mm}$, G-107.-1 female, ML 10.0 mm , G-108.-1 juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-545$.
Type-locality.-South Atlantic Ocean.
Distribution.-Until recently $P$. gemmata was considered a "southern" form, reported only from the South Atlantic and equatorial North Atlantic (Chun, 1910; Thiele, 1921). Then Voss (1967a) reported gemmata from the Indian Oeean and Young (1972) reported it from the South Paeific and the coast of California. Young concluded that this species is worldwide but oceurred primarily in warmer waters. The oceurrence of gemmata in the Western Atlantic is therefore logical.

Fifteen speeimens of $P$. gemmata were colleeted at seven stations in the Straits including Continental, Transitional and Yucatan waters. It was most abundant in the Continental Northern area with a eatch/effort value of .31 speeimen/hour. These speeimens have an average nighttime depth of 99 m and one twilight record at 121 m .

## Family OCTOPOTEUTHIDAE Berry, 1912

## Octopoteuthis sp.

Marerial examined.-I juvenile, ML 25.0 mmm . G-89.-1 juvenile, ML $12.5 \mathrm{~mm}, \mathrm{G}-106 .-1 \mathrm{ju}-$ venile, ML $12.0 \mathrm{nim}, \mathrm{G}-321$.
Discussion.-These three specimens, all juvenile and in poor condition, could be identified only to genus. The systematics of

Octopoteuthis is confused owing to the paucity of specifie systematic characters, ignorance of individual variation, and incomplete earlier deseriptions. Young (1972) listed the four nominal speeies of Octopoteuthis known from the Atlantic and provided a review of the systematics.

## Family ONYCHOTEUTHIDAE Gray, 1849

## Onychoteuthis banksii (Leaeh, 1817)

Loligo banksii Leach. 1817: 141.
Onychntenthis bartlingii, Calkins, 1878: 233 (Gulf Stream).
Onychotcnthis banksii, Voss, 1955: 278 (between Cat Cay and Miami) ; 1956a: 278 (off Miani. Key West, Dry Tortugas).
Moterial examineal.- 8 males, ML $84.0-65.0 \mathrm{~mm}$, 9 females, M1, 83.5-61.0 mm, G-215.-23 females, ML $82.0-57.0 \mathrm{~mm}, 12$ males. $80.0-63.0 \mathrm{~mm}$, G-75.- 12 females, ML $78.0-65.0 \mathrm{~mm}, 8$ males, ML $74.0-64.0 \mathrm{~mm}, 3$ sex indet., ML $56.0-47.0 \mathrm{~mm}$. G-40.-7 males, ML $78.0-69.0 \mathrm{~mm}, 10$ females, ML 77.0-68.0 nmm, G-1006.-1 female, ML 77.5 mm , G-70.-1 male, ML 72.0 mm , G-119.-3 females, ML $68.0-57.0 \mathrm{~mm}$, I male, ML 59.0 mm , G-4A.-2 juveniles, ML $18.7-10.8 \mathrm{~mm}$, G-86.5 juveniles, ML $14.6-6.2 \mathrm{~mm}$. G-105.- 3 juveniles, ML, 12.9-9.2 mm. G-10.-3 juveniles, ML 12.8-8.3 mm , G-82.-1 juvenile, ML 11.5 mm , G-46.-1 juvenile, ML 8.5 mm , G-26.-1 juvenile, ML 8.5 $\mathrm{mm}, \mathrm{G}-207 .-5$ juveniles, ML 7.9-6.1 mm , G-196.-1 juvenile, ML $7.0 \mathrm{~mm}, \mathrm{G}-80 .-2$ juveniles, ML 6.9-6.4 mm, G-326.-2 juveniles, ML 6.95.4 mm , G-195.-1 juvenile, ML $6.9 \mathrm{~mm}, \mathrm{G}-69 .-$ 1 juveniles, ML 6.9 mm , G-83. -2 juveniles, ML 6.2-6.1 mm , G-11.-1 juvenile, ML 5.5 mm , G-332.-1 juvenile, ML $5.3 \mathrm{~mm}, \mathrm{G}-331 .-2$ juveniles, ML 4.6-4.5 mm, G-353.-1 juvenile, ML 4.6 $\mathrm{mm}, \mathrm{G}-337 .-1$ juvenile, ML $4.0 \mathrm{~mm}, \mathrm{G}-100 .-1$ juvenile, ML 3.9 mm , G-343.-4 juveniles, ML 3.3-1.8 mm, G-717.-1 juvenile, ML 2.3 mm , G726.

Discussion.-There are now two recognized species of Onychoteuthis, however Young (1972) considered that the $O$. banksii "complex" from Florida waters will eventually be split into at least two groups. Juveniles of $O$. banksii are distinguished from all other eephalopod juveniles by their short, fat bodies, the line of chromatophores on the mid-dorsal surface, and the sharp, projeeting end of the gladius (Voss, 1958). These features are visible to 2.3 mm ML .

Distribution.-This species is cosmopolitan in warm and temperate seas and has been reported as far north as the Barents Sea and as far south as Cape Horn (Clarke, 1966: 141).
O. banksii was the most numerous species colleeted by the Gerda. They fall into two size groups: seven stations with 97 adults and 22 stations with 36 juveniles. The adults all have a ML $\geqslant 47.0 \mathrm{~mm}$ and the juveniles are all $\leqslant 18.7 \mathrm{~mm}$ ML, ereating a sizeable gap in ML range. This gap can be explained by the faet that all adults were eaptured at night by dip-netting and never by an 1KMT. Adult $O$. banksii are apparently too swift to be eaught by an 1KMT.
$O$. banksii has been captured at the surface in all three regions of the Straits and in all three water masses. The juveniles were mainly in epi- and mesopelagie Northern Continental and Transitional waters. Notable maxima of eateh/effort oceur in Northern mesopelagic Continental waters ( 1.53 speeimens/hour) and Northern epipelagie Transitional waters ( 36 specimen/ hour). The juveniles had a day range of $51-93-231 \mathrm{~m}$ and a night range of 0-226475 m (Fig. 2). These data imply a daytime concentration in the epipelagic zone and a nighttime random dispersal ranging from the surface to lower mesopelagic depths.

Onykia carriboea Lesueur, 1821
Onyka carrihoea Lesucur, 1821: 98.
Onykia caribaca, Voss, 1954: 477 (Gulf Stream off Miami); 1956a: 278 (off Miami).
Material examined.-I female, ML 18.0 mm , G-1295.-1 female, ML $17.0 \mathrm{~mm}, \mathrm{G}-1294$.-1 juvenile, ML 10.8 mm , G-206.-1 juvenile, ML 10.0 $\mathrm{mm}, \mathrm{G}-542$. - 1 juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-1298$.1 juvenile, ML $6.2 \mathrm{~mm}, \mathrm{G}-89$.
Type-locality.-Not traced.
Discussion.-Until the genus Onykia has been revised the number of species and their diagnostic differences will remain uncertain. Juveniles can be recognized by the presence of elub hooks, a distinetive ehromatophore
pattern and body shape. Pfeffer presented an excellent developmental series of drawings of $O$. carriboea from ML 3.5-13.5 mm and another series of drawings of the development of the club (Pfeffer, 1912: pl. 1, figs. 20-26 and figs. 12-18).

Distribution.-Six specimens from six stations were collected by the Gerda in all three regions and water masses. Clarke (1966) stated that it is the only species of pelagie squid the adults of which are normally eaught at the surface during the daylight hours. The two Gerda specimens taken in trawls at deeper fishing depths were undoubtedly caught when the net was near the surface.

## Family CTENOPTERYGIDAE Grimpe, 1922

Ctenopteryx sicula (Verany, 1851)
Sepiotenthis sicula Verany, 1851: 51.
Material examined.-1 juvenile, M1, 10.0 mm , G-92.

Type-locality.—Off Messina, Italy.
Discussion.-The single genus of the family Ctenopterygidae is polytypic; however, due to the confused state of their systematies, all forms have been lumped under the name C. sicula (Roper, Young and Voss, 1969). Raneurel (1970) added C. sepioloidea from the southwest Pacifie. Members of this genus are easily rccognized, even in juvenilc stages, by the pceuliar comb-like structure of the fins. The Gerda specimen of 10 mm ML possesses fin trabeculae for about $25 \%$ of the mantle length.

Distribution.-C. sicula is eosmopolitan, having been reported from the North and South Atlantic, Mediterranean, Paeific, and off southeast Africa (Voss, 1967a); there are no records for the Gulf-Caribbean region. The single juvenile captured in Northern Transitional waters is the first record for the Straits.

## Family HISTIOTEUTHIDAE Verrill, 1881

Histioteuthis corona corona (Voss \& Voss, 1962)
Calliteuthis reversa, G. Voss, 1956: 139 (Westcrn Continental waters, $24^{\circ} 16^{\prime} \mathrm{N}, 83^{\circ} 22^{\prime} \mathrm{W}$ ); 1956a: 278 (from stomach of Coryplatena, off Miami, bathypelagic).
Callitenthis corona, Voss \& Voss 1962: 191 (Western Continental watcrs, $24^{\circ} 11^{\prime} \mathrm{N}$, $\left.83^{\circ} 21^{\prime} \mathrm{W}\right)$.
Histioteuthis coroma coronta. N. Voss. 1969 : 773 (monographic treatment, GERDA Sta. 88, $\left.25^{\circ} 02^{\prime} \mathrm{N} .79^{\circ} 48^{\prime} \mathrm{W}\right)$.
Material examined.-I juvenile, ML 17.0 mm . G-88.
Type-loculity.-Gulf of Mcxico, $29^{\circ} 10^{\circ} \mathrm{N}, 88^{\circ} 00^{\prime} \mathrm{W}$; 521 m.
Discussion.-The genus Histioteuthis contains 13 recognized species, including seven from the North Atlantic. H, corona can be distinguished from all other histioteuthids by a combination ol characters: 17 large photophores around the right cyelid, no enlarged photophores on the mantle or arm tips, and swollen arms of the dorsal funnel organ ( N. Voss, 1969: 777).
Distribution,-H. c. corona is known from the Gulf-Caribbean area, the North Atlantic, eastern South Atlantic and the Indian Ocean off the African coast. It was first reported from the Straits (Voss, 1956) in Western Continental waters.

Only $H$. heteropsis is definitely known to migrate diurnally (Young, 1972), but N . Voss (1969) implied that diel vertical migrations are a characteristic of most, if not all, species of this family. She stated that H. c. corona is primarily a mesopelagic squid concentrating at depths between 200-1000 m . The Gerda specimen was caught at twilight at 350 m .

Histiotenthis dofleini (Pfeffer, 1912)
Stigmatoteuthis Doflcini Pfeffer, 1912: 288.
Histiotcuthis dofleini, Voss, N., 1969: 784 (monographic treatment; off Miami, from stomach of Alepisaurus sp.).
Matcrial exanined.- 1 male. ML 43.0 mm . G331.—2 fcmalcs, ML $16.0-14.5 \mathrm{~mm}$, G-686.-1 juvenile, ML 12.0 mm , G-313.

Type-locality.-Sagami Bay, Japan; surfacc.
Discussion.-H. dofleini can be distinguished from other species of Histioteuthis by a combination of characters: 17 large photophores around the right eyelid, no enlarged photophores on the mantle or arm tips and the expansion ol the distal median ridge of the arms of the dorsal pad of the funnel organ into a distinct flap ( N . Voss, 1969: 738).
Distribution.-H. dofleini is primarily a tropical-subtropical species found in both the Atlantic and Pacific Oceans. It has been reported from the Gulf of Mexico, North Atlantic, North Pacilic off Baja California, Hawaii, the east coast of Japan and in the vicinity of the Seychelles in the Indian Ocean (N. Voss, 1969). The only reeord from the Straits was from an unspecified location off Miami from the stomach of an Alepisanrus. The Gerda specimens yielded two more records off Miami in Transitional and Yucatan waters and another record in Northwest Providence Channel. N. Voss (1969) stated that $H$. dofleini appeared to concentrate in the upper $700-800 \mathrm{~m}$. The Gerda specimens were all eaptured at night between $250-450 \mathrm{~m}$.

## Family OMMASTREPHIDAE

Steenstrup, 1857
?llex coindetii (Verany, 1837)
Loligo coindetii Verany, 1837: 94.
?llex illecebrosus, Voss, 1955: 103 (off Matanzas, Cuba); 1956a: 279 (off Dry Tortugas). Illex coindetii. Roper, Lu and Mangold, 1969 (off Palm Beach. Dry Tortugas).
Matcial csomined.-2 females, M1, 239.0-226.0 mm . G-435.-1 malc, ML $191.0 \mathrm{~mm}, \mathrm{G}-43 .-1 \mathrm{fc}-$ male. ML 170.0 mm , G-646.-2 fcmales, ML 152.0 $137.0 \mathrm{~mm}, 2$ males, ML $124.0-123.0 \mathrm{~mm}, \mathrm{G}-997$.
Type-locality.-Mediterranean near Nice.
Discussion.-Before 1912 two nominal specics of Illex were recognized in the Atlantic: Illex illecebrosus (Lesucur, 1821) in the Western Atlantic from Brazil to Newfoundland and distributed across European waters to the Bristol Channel, and Illex coindetii

Table 4. Measurements of the Gerda I/lex specimens

|  | Scx | G-435 <br> female | G-435 <br> female | G-43 <br> male | G-646 <br> femate | G-997 <br> male | G-997 <br> male | G-997 <br> female |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: |
| ML | 239 | 226 | 191 | 170 | 124 | 123 | 152 | G-997 <br> female |
| MW | 61 | 59 | 42 | 41 | 28 | 25 | 27.5 | 25 |
| HW | 49 | 47 | 40 | 45.5 | 24 | 23 | 21.5 | 25 |
| FL | 109 | 104 | 81 | 76 | 49 | 49 | 62 | 54 |
| FW | 141 | 133 | 105 | 107 | 70 | 69 | 81 | 75 |
| HWI | 20.5 | 20.8 | 20.9 | 26.8 | 19.8 | 18.7 | 14.1 | 18.2 |
| MWI | 25.4 | 26.1 | 21.9 | 24.1 | 22.6 | 20.4 | 18.1 | 18.4 |
| FL/FW | $1: 1.30$ | $1: 1.32$ | $1: 1.30$ | $1: 1.4$ | $1: 1.43$ | $1: 1.41$ | $1: 1.31$ | $1: 1.39$ |
| Fin angle | $54^{\circ}$ | $51^{\circ}$ | $56^{\circ}$ | $54^{\circ}$ | $57^{\circ}$ | $58^{\circ}$ | $56.5^{\circ}$ | $54^{\circ}$ |
| HcLI | - | - | missing | - | 36.0 | 32.6 | - | - |

(Verany, 1837) from the British Isles south to the African coast at Angola. In 1912, Pfeffer designated them as subspeeies, an idea which did not gain full aceeptance. Adam (1952) employed the subspecific designation in his study of lllex from the Atlantic and deeided it was premature to eall these subspeeies or full species until more material was analyzed. Castellanos (1960) established Illex argentinus but later made it a subspecies of Illex illecebrosus (Castellanos, 1964). In 1969, Roper, Lu and Mangold established another species, lllex oxygonius, raised the remaining three subspecies to full specifie status and reviewed the genus. The Gerda specimens possess eharacteristies of both I. illecebrosus and coindetii. For this reason their measurements are provided (Table 4) and they are questionably assigned to coindetii.

Distribution.-I. coindetii is known from the Eastern Atlantic as far north as the North Sea, the Mediterranean (Mangold, 1963a), along the coast of Portugal and to $14^{\circ} \mathrm{S}$ off West Afriea (Adam, 1952). It was first reported from the Western Atlantic in the Caribbean, Gulf of Mexico, and the Straits off the Dry Tortugas by Roper, Lu and Mangold (1969). The northern limits of coindetii and oxygonius and the southern limits of illecebrosus are still unclear (Roper, et al., 1969). All three species may exist in the Straits of Florida. More material
needs to be examined, espeeially off the Atlantic Coast of Florida, to resolve the distributional and systematic problems of this genus (Roper, et al., 1969).

Both Adam (1952) and Mangold-Wirz (1963a) reported I. coindetii from 40-500 m . Seven of the Gerda Illex were captured between $183-531 \mathrm{~m}$ with an otter trawl during the day and one was eaptured between $89-139 \mathrm{~m}$ with an IKMT at night over a bottom depth of $367-585 \mathrm{~m}$. The species appears to be associated with the bottom during the day, dispersing into mid-depths at night.

## Ommastrephes pteropus <br> (Steenstrup, 1855)

Ommatostrephes pteropus Steenstrup, 1855: 200.

Ommastrephes pteropus, Voss, 1956a: 279 (off Palm Beach, Miami, Dry Tortugas).
Material examined.-1 female, ML 93.5 mm , G-75.-2 females, ML $90.5-57.0 \mathrm{~mm}$, G-64.-1 female, ML $61.0 \mathrm{~mm}, \mathrm{G}-40$.

Type-locality.-Atlantic Ocean.
Discussion.-All three species of Ommastreplies are found in the Atlantic, but O. pteropus can be distinguished by possession of $\leqslant 2$ suekers on the tentacular stalk proximal to the last knob of the carpal eluster.

Distribution.-The known distribution of $O$. pteropus ranges from Nova Seotia to the

Caribbean, the Cape Verde Islands, and the west coast of Afriea to $13^{\circ} 25^{\prime} \mathrm{S}$ (Adam, 1952). It was first reported in the Straits from three loeations by Voss (1956a). The three Gerda loeations are all in Northern Transitional waters. All Gerda specimens were dip-netted from the surfaee at night.

## Family CHIROTEUTHIDAE Gray, 1849

## Chiroteuthis sp. (Doratopsis stage)

Figure 5
Material cxamined.-1 juvenile, ML 21.0 mm , G-1046.
Discussion.-The Doratopsis juvenile stage of the chiroteuthids undergoes great ontogenetic change. Before this was known several of these doratopsiform juveniles were given speeifie status in the genus Doratopsis. This genus is now a useful repository for any larval forms which eannot be related to an adult Chirotetthis. No attempt is made to relate the Gerda speeimen to any juvenile or adult speeies, but measurements and a figure are provided.
Remarks.-This speeimen is transparent with the exception of the liver and the eyeballs which are orange. Both eyes have small light organs on their ventral surface (Fig. 5). Arm suekers are biserial. The tentaeular elub is unexpanded and has four rows of suekers which extend $40 \%$ of the tentacle length in four neat rows, gradually decreasing in size proximally.

Distribution.-No adult or juvenile ehiroteuthid has been reported in the Straits; the Gerda speeimen was eaptured in Northeast Providence Channel. The only adult ehiroteuthid reported from the West Indies was Chiroteuthis lacertosa Verrill, 1881 (Voss, 1956).

Figure 5. Chirotenthis sp. (Doratopsis larva), G-1046, ML 21.0 mm . Ventral view of partially reconstructed specimen. Funnel cut open.


Family MASTIGOTEUTHIDAE Vcrrill, 1881<br>?Mastigotcuthis grimaldii (Joubin, 1895)<br>Chiroteuthis grinnaldii Joubin, 1895: 38.<br>Material examined.- 1 male, ML 74.0 mm , G-212.-I juvenile, ML $35.0 \mathrm{~mm}, \mathrm{G}-143$.

Type-locality.- $39^{\circ} 43^{\prime} \mathrm{N}, 33^{\circ} 22^{\prime} \mathrm{W}$ (Azores); 1445 m.

Discussion.-The systematics of Mastigoteuthis is very confused and in great need of revision, partially as a result of the description and naming of new species from small and mutilated speeimens. These bathypelagic animals are soft and delicate and therefore often come up without tentacles and without the epidermis and associated light organs (Young, 1972: 65). Until a revision of the genus is accomplished and type specimens examined, identification of speeies will remain tentative. Young (1972) has provided a capsulized summary of the 15 species now assigned to this genus. The following table presents measurements of the two Gerda specimens.

Distribution.-M. grimaldii was reported by Joubin (1895) from the Azores and again by Joubin (1924) at 10 different locations ranging from the coast of Spain to as far west as $59^{\circ} \mathrm{W}$ in the North Atlantie. It has also been reported in the North Atlantie by Adam (1960), Fischer and Joubin (1906; near the Azores) and Chun (1913). Rancurcl (1971) reported specimens from 26 stations in the Gulf of Guinca ranging from $300-800 \mathrm{~m}$ depth.

Only two specimens of Mastigoteuthis have been reported from the Gulf-Caribbean area, both unidentifiable to species. Onc (Voss, 1956) was reported in the Gulf of Mexico south of Louisiana at 1100 m and the other (Voss, 1958) was reported north of the Virgin Islands in 565 m . The Gerda material contained two ?M. grimaldii, both from Transitional waters in the Western and Cay Sal Regions, which are new records for the Straits.

Table 5. Measurements of GERDA mastigoteuthids

|  | G-212 <br> ?grimmuldii | G-143 <br> ?grimuldii |
| :--- | :---: | :---: |
| Sex | male | juv. |
| MLL | 74 | 35 |
| FL | 41 | 17 |
| FW | 45 | 21 |
| TL | 265 | 153 |
| CL | 150 | 90 |
| ED | 9.5 | 5.5 |
| DSt | .160 | .105 |
| FLI | 55.5 | 48.5 |
| FWL | 61.0 | 60.0 |
| TLI | 358 | 437 |
| CLI | 57.5 | 58.5 |
| EDI | 12.8 | 15.7 |
| SIt | .216 | .300 |

Family GRIMALDITEUTHIDAE Pfeffer, 1900

Grimalditenthis bomplandii (Verany, 1837)

Loligopsis Bomplandii Verany, 1837a: 99.
Material cexamined.-1 male, ML 56.0 mm , G-225.-1 juvenile, ML 47.0 mm , G-82.

Type-locality. $-29^{\circ} \mathrm{N}, 39^{\circ} \mathrm{W}$, North Atlantic; surface.
Discussion.-The two nominal species in the Grimalditeuthidae, G. bomplandii (Verany, 1837) and G. richardi (Joubin, 1898) were synonymized by Pfeffer (1912). Young (1972) deseribed a specimen of 89 mm ML which lacked both photophores and suekers at the arm tips. G. bomplandii is known to have photophores at the tips of all arms. The Gerda speeimens of a smaller ML also lacked distal arm photophores but had pedicellated suckers to the tips of the arm. Young (1972:76) implied that the addition of arm photophores is an ontogenetic change which is preceded by the loss of distal arm suckers.

Distribution.- $G$. bomplandii has been reported from the Northeast Atlantic (Verany, 1837a; Joubin, 1898a; Chun, 1913), the
upper Gulf of Mexico (Voss, 1956), the South Atlantic (Pfeffer, 1912), off South Africa (Massy, 1925), and Santa Catalina Basin (Young, 1972). The Gerda specimens from Cay Sal and Northern Transitional waters are the first records lor the Straits.

Family CRANCHIIDAE Prosch, 1849 Subfamily CRANCHIINAE Pfeffcr, 1912

## Cranchia scabra Lcach, 1817

Cranchia scabra Leach, 1817: 140.—Voss, 1955: 104 (off Miami); 1956: 154 (off Miami in Florida Current); 1956a: 279 (off Miami and Key West).
Material examinted.-1 female, M1, 55 mm , G-106.- 1 juvenile, ML 17.0 mm , G-104.-1 juvenile, ML 6.0 mm , G-89.

Type-locality.-Off West Africa.
Discussion.-Cranchia is one of five recognized genera in the subfamily Cranchiinae. Members of this subfamily are scparable from those in the other subfamily, Taoniinae, by the possession of two or more eartilaginous strips extending posteriorly on the mantle from the points of the funnelmantle fusions and a funnel that in the adult stage, fuses laterally to the ventral surface of the head (Young, 1972: 78). Cranchia is easly recognized by its complex eartilaginous tubercles completely covering the mantle and fins.

Distribution.- C. scabra is known from all temperate and tropical seas between $35^{\circ} \mathrm{N}$ and $37^{\circ} \mathrm{S}$ (Clarke, 1966:218). It has been reported in the Straits three times by Voss (1955, 1956, 1956a) in the Northern and Western Regions and now from three additional locations by the Gerda in Northcrn Continental and Cay Sal Yucatan waters.
C. scabra is common in the epipelagie zone and has been captured at the surface and in open nets in the mesopelagic zone. Gerda records range from $97-259 \mathrm{~m}$ with no indication of diurnal migration.

Liocranchia reinhardti (Stcenstrup, 1856)
Leachia Reinhardti Steensırup, 1856: 200.
Liocranchia reinhardti, Voss, 1955: 104 (off Matanzas, Cuba).
Material examined - 1 juvenilc. ML, 22.0 mm , G-329.-1 juvenile. ML $20.0 \mathrm{~mm}, \mathrm{G}-206 .-1$ juvenile. ML, 17.0 mm , G-932.-2 juveniles, ML, 11.5-5.5 mm, G-545.

Type-locality.-Azores.
Discussion.-The genus Liocranchia is a member of the subfamily Cranchiinac and is distinguished from the other four genera in this subfamily by its lack of tubcreles covering the mantle and fins and its two V shaped lines of cartilage with tubercles extending postcriorly from the points of the funnel-mantle fusion (Sasaki, 1929: 332). L. reinhardti is distinguished from the other two nominal species in this genus by its dorsal median line of tubereles on the mantle and normal arm tips. The V-shaped cartilage lines, and the median dorsal line of tubereles are distinguishable to a mantle Iength of 5.5 mm .

Remarks.-Sasaki (1929) reported 15 ocular photophores from a specimen with ML 77.0 mm . Voss (1963) consistently reported 14 photophores from spceimens with a ML of 157.0 mm (largest known spceimen) and "smaller specimens from the Florida Current." Voss (1963: 149) also stated that the number of photophores varies with age. An adult L. reinhardti (ML 110 mm, USNM 574883) possessed the I4 ocular photophores as deseribed by Voss, six in a proximal scries and eight larger photophores in a distal series on the inner surface of the periphery of the cyeball. The two largest Gerda specimens (ML 22, 20 mm ) were missing both eyes, but the right cye of the 17.0 mm ML specimen possessed six ocular photophores in the distal series and four buried in transparent tissue in the proximal series. The left eye was mutilated. The 11.5 mm specimen had one to two irregular swellings on the ventral surface of cach cye.

Distribution.-L. reinhardti is cosmopolitan in tropical and temperate scas (Clarke, 1966: 220). It has been reported in the Straits off Matanzas, Cuba (Voss, 1955) from an open net fished from $256-430 \mathrm{~m}$. The Gerda material provided three more locations in the Straits and one in Northeast Providence Channcl.

Clarke (1966) reported that most specimens of $L$. reinhardti were caught from 500 m to the surface. From an examination of numerous specimens captured from 310520 m , Voss (1963) theorized that the adults belong to the bathypelagic fauna and probably leave the more passive planktonic stage at ML $50-60 \mathrm{~mm}$. The Gerda specimens captured from 0-907 m were all planktonic juveniles.

## Leachia sp. (Pyrgopsis stage)

Material examinted.- 1 male, juvenile, ML 52.0 $\mathrm{mm}, \mathrm{G}-207$ - 1 juvenile, ML 7.0 mm , G-351.1 juvenile. ML 7.0 mm , G-199.-1 juvenile, ML $6.0 \mathrm{~mm}, \mathrm{G}-8$.- 1 juvenile, ML $5.0 \mathrm{~mm}, \mathrm{G}-37$.

Discussion.-Young (1972: 82) stated in reference to Leachia that, "There is probably no genus in the Oegopsida that is more systematically confused. Of the eight species previously recognized, none can be presently identified with any certainty." Leachia and Pyrgopsis both belong to the subfamily Cranchiinac and can be distinguished from the other four gencra of this subfamily by a longitudinal row of tubercles on the mantle from the funnel-mantle fusion of each side (Young, 1972: 80). The genera Pyrgopsis and Leachia have customarily been separated on the basis of size and position of eyes and ocular photophores; Pyrgopsis were generally smaller with stalked eyes and fewer ocular photophores. However, if one assumes that all Leachia pass through a "pyrgopsis" stage of development possessing juvenile stalked eyes, confusion will result in identifying smaller specimens. Young (1972) made this assumption, based on a complete series of growth stages of $L$. dislocata, resulting in a
synonymy of these two gencra. Even with this assumption, the cight nominal species that would now compose the genus Leachia are indistinguishable because of dubious deseriptions, improper emphasis of specific characters in the past and descriptions of new species involving only one juvenile specimen in poor condition (Young, 1972: 82-83). Until a revision of the Cranchiidac is completed, these Gerda specimens must remain identified only to the generic level.

Distribution.-Of the eight nominal species of Leachia, only two have been recorded in the Western Atlantic from threc locations: two gravid females of $L$. cyclura Lesueur, 1821, 45 and 55 mm ML from 1050 m near Bermuda (Voss, 1960); the 32 mm ML holotype of Pyrgopsis lemur (Berry, 1920) from the surface at $35^{\circ} 27^{\prime} \mathrm{N}$, $73^{\circ} 14^{\prime} \mathrm{W}$ (East of Cape Hatteras); and a 21 mm ML specimen of $P$. $(=$ Leachia $)$ lemur from 46 m at $18^{\circ} 43^{\prime} \mathrm{N}, 65^{\circ} 10^{\prime} \mathrm{W}$ (North of the Virgin 1slands; Voss, 1958). Four records of Leachia sp. resulted from the Gerda material in the Straits: three from Western Transitional waters, one from Northern Yucatan waters and an additional record from Northwest Providence Channel.

Two of the Gerda specimens were captured during the day between 675-777 m, three at night between $18-259 \mathrm{~m}$ and onc at twilight at 200 m .

Egea inermis Joubin, 1933
Egea inermis Joubin, 1933: 43; N. Voss, 1974: 941.

Material examined.-1 juvenile, ML 29.0 mm , G-106.-I juvenile, ML 22.0 mm , G-328.-1 juvenile, ML 22.0 mm , G-54.-1 juvenile, ML 17.0 $\mathrm{mm}, \mathrm{G}-195 .-1$ juvenile, ML $17.0 \mathrm{~mm}, \mathrm{G}-47$.

Type-locality.- $33^{\circ} 51^{\prime} \mathrm{N}, \quad 66^{\circ} 43^{\prime} \mathrm{W}$ (northwest of Bermuda); 0-50 m.

Discussion.-The monotypic genus Egea can be distinguished from other eranchiid genera by its two non-tuberculated $V$-shaped lines extending posteriorly from the funnelmantle fusion (Joubin, 1933). Egea also
possesses two delicate, elongated flaps on both arms of the dorsal funnel organ.
Distribution.-This poorly known squid, previously known from only the type-locality, was reviewed by N. Voss (1974) based on over 60 additional speeimens from 31 localities. She eoncluded that it was a trop-ical-subtropieal speeies lound in the East and West Atlantie, Indian and West Pacific Oeeans. Also, it was found only in shallow water ( $35-125 \mathrm{~m}$ ) and showed no tendeney to migrate vertieally. The five juvenile Gerda specimens were taken off Miami in all three water masses at depths of $97-$ 230 m .

Subfamily TAONIINAE Pfeffer, 1912
Helicocranchia pfefferi Massy, 1907
Helicocrunchia pfefferi Massy, 1907: 382.
Material examined.-1 juvenile, ML 17.0 mm , G-206.-I juvenile, ML 13.0 mm , G-344.-1 juvenile, ML $10.0 \mathrm{~mm}, \mathrm{G}-333$.
Type-locality.-51 ${ }^{\circ} 54^{\prime} \mathrm{N}, 11^{\circ} 57^{\prime} \mathrm{W}$, near Ireland.
Discussion.-H. peefferi belongs to the subfamily Taoniinae charaeterized by the absenee of eartilaginous strips on the mantle and a funnel that is laterally free from the head in the adult (Young, 1972: 84). The genus Helicocranchia is charaeterized by its very large funnel and pedunculate fins attached to a gladius whieh rises free from the mantle shortly in advance of the mantle tip. Of the two Atlantic species, H. pfefferi can be distinguished from $H$. papillata (Voss, 1960) by its absence of small papillae eovering the mantle and funnel.
Distribution.—II. pfefferi has been reported from southwest of Ireland (Massy, 1907), the Bay of Biscay (Bouxin and Legendre, 1936), the Canary Islands (Clarke, 1969), the Paeific Ocean off the coast of Calilornia (Okutani and McGowan, 1969; Young, 1972), and off the southern Colombian coast (Fields and Gauley, 1972). The three Gerda locations in the Straits are the first record of this species in the Western Atlantic Ocean.
?Galiteuthis armata Joubin, 1898
Galiteulhis armata Joubin, 1898: 279.
Material examined.-1 juvenile. ML 39.0 mm , G323.

Type-locality.-Mediterranean Sea.
Discussion.-Galiteuthis can be distinguished from other genera in the subfamily Taoniinae by its possession of hooks on adult tentaeular elubs (Sasaki, 1929: 316). Of the four speeies presently recognized only one is known from the Atlantic.

Remarks.-Juvenile Galitenthis lack the diagnostic club hooks and are consequently often identified in other "larval genera." The Gerda specimen of ML 39 mm shows a precocious development of club hooks, seven on eaeh elub (four in the dorsal row and three in the ventral row). Sasaki (1929) indicated that adult G. armata possess 1214 club hooks. Examination of a specimen of ML 212 mm (USNM 332926) revealed 12 elub hooks on the right club and 13 on the left.

Distribution.-Clarke (1966: 239) summarized the distribution of G. armata as: the Mediterranean, North Atlantie, off South Africa, East Pacifie coast, off Japan and the Kurile region. The Gerda specimen is the first galiteuthid reported from the Straits and Gulf-Caribbean area. Voss (1960) suggested that G. armata is a bathypelagie species that lives between 700 1000 m .

Corynoma speculator Chun, 1906
Corynoma specularor Chun, 1906: 85.
Material examined.-2 juveniles, ML 19.0-16.0 mm , G-545.-3 juveniles, ML $15.0-9.0 \mathrm{~mm}$, G-105.-I juvenile, ML $13.0 \mathrm{~mm}, ~ G-8 .-1$ juvenile, ML $10.0 \mathrm{~mm}, \mathrm{G}-350$.-I juvenile, 6.5 mm , G-69.-I juvenile, ML $5.0 \mathrm{~mm}, \mathrm{G}-345$.

Type-locality.-North Allantic and Indian Oceans.
Discussion.-Corynoma is a "larval genus" and probably undergoes considerable ontogenetic change. Voss stated that C. speculator might be a juvenile Carynoteuthis
oceanica Voss, 1960. Both possess a light organ on the liver but differ with respeet to the funnel organ and presence of a funnel valve. Clarke (1962) synonymized Carynoteuthis within Phasntatopsis Roehebrune, 1884, based on the similarity of their ventral ocular light organs, the light organs on the ink sac, the presence of a fumnel valve, and the lappets on the funnel organ. Voss (1963a: 82) agreed but eautioned "that it is still premature to diagnose these genera [Carynoteuthis, Phasmatopsis, Taonius] as Clarke [1962] has done, and in my opinion both the gencric and speeifie affinities of these groups are still indefinite."
Remarks.-Little can be added to the qualitative deseription provided by Chun's illustrations (1910, pl. 55) but some quantitative measurements ean be provided based primarily on the 19 mm ML speeimen (G545). The body is stout with a MWI of 50 . The arms arc very short, $10 \%$ of the mantle length and sub-equal. The tentactes are exactly as long as the mantle and bear four longitudinal rows of suekers on an unexpanded club. Four rows of suekers cxtend about $31 \%$ of the TL where they grade off into a biserial arrangement for another $26 \%$ of the TL; the remaining $43 \%$ of the tentaele is bare. Daetyler suckers are strongly pedicillated. The largest suckers on the manus possess 5-6 sharp, slender tecth eovering one half of the sueker ring. The FLI is 19 and the FWI is 32.

Distribution.-Until the systematics of this genus is resolved, the gcographic distribution of the speeies is uneertain. In addition to Chun's type-loealities, Massy (1925) also reportcd it from off South Africa. Corynoma has not previously been reported from the Western Atlantie.

Juvenile C. speculator have been taken from the surface and in open nets fished to 2000 m . The Gerda speeimens were all eaptured from the epipelagie zone, between 36-146 m, with no evidenee of diel migration.

Bathothauma lyromma Chun, 1906
Bathothauma lyromma Chun, 1906: 86.
Material examined.-1 sex indeterminate, ML $55.0 \mathrm{~mm}, \mathrm{G}-68$.
Type-locality,-West of Cape Verde, West Africa.
Discussion.-Bathothanma is noted for its retention of many larval features even at a large size. It is characterized by strongly stalked eyes with onc large ventral oeular photophore, a "rostrum" or elongation of the head region between the eycs and the tentacular erown, small, broadly-spaeed fins, and a gladius which extends laterally at the posterior end to serve as a support for the fin-attaehment (Voss, 1963).
Distribution.-B. lyromma has been eaptured in the North Atlantic, East Pacific, off Tasmania (Allan, 1940) and the Philippincs (Voss, 1963). It was also reported in the Western Atlantic near Bermuda (Voss, 1960). It is now first recorded for the Straits and Gulf-Caribbean arca, eaptured in Northern Transitional waters off Miami.

Allan (1940) reported a juvenilc B. lyromma taken at the surface and Voss (1960) reeorded a juvenile taken at 200 m . All other records are from open nets fished in excess of 520 m .

## Order VAMPYROMORPHA Family VAMPYROTEUTHIDAE Thiele, 1915

Vampyroteuthis infernalis Chun, 1903
Vampyroteuthis infermalis Chun, 1903: 88.Pickford, 1946: $8 \quad\left(24^{\circ} 17^{\prime} \mathrm{N}, 83^{\circ} 17^{\circ} \mathrm{W}\right.$, Western Conlinental waters).
Material examined.-1 sex indeterminate, ML 60 mim, G-222.

Type-locality.-Off the Cameroons-Congo River; 1200 m.
Discussion.—Vampyrotenthis infernalis, the sole member of the order Vampyromorpha, is distinguished from other recent eephalopods by its possession of eight arms and two long filaments unlike tentaeles. It also bears a gladius distinet from any other recent
cephalopod. Pickford (1946) noticed no geographie variation in this species, explaining this conformity as due to its free communication in all occans and its essentially uniform environment.

Distribution.--Pickford (1946) stated that $V$. infernalis inhabits all tropical and subtropical occans between the 40th parallels of latitude. She (Pickford, 1952) also reported it to be stenothermal $\left(2-10^{\circ} \mathrm{C}\right)$, stenohaline (34.4-35.4 \% r) , oligoacrobic (1$4 \mathrm{mI} / \mathrm{I} \mathrm{O}_{2}$ ) and that it preferred waters with al $\sigma_{\mathrm{t}}$ range of 27,0-27.9.

Pickford (1946) reported the only $V$. infernalis taken in the Straits at a calculated depth of 1000 m . The Gerda took only one specimen in Transitional Cay Sal waters with a temperature of $6-8^{\circ} \mathrm{C}, 34.9^{\prime} / \mathrm{h}$ salinity and $3.5 \mathrm{ml} / \mathrm{O}_{2}$.

## Order OCTOPODA Family BOLITAENIDAE Chun, 1911

Japetella diaphana Hoyle, 1885
Japetella diaphana Hoyle, 1885: 232.-Joubin, 1937: 27 (Western Straits).-Thore. 1949: 1 (monographic treatment, Western Straits).
Marerial examined.-1 male, MI. 44.0 mm , G-205.-1 juvenile, ML 23.0 mm , G-213.

Typerlocality.- $0^{\circ} 42^{\prime} \mathrm{S}, \quad 147^{\circ} \mathrm{E}$ (North of New Guinca) ; surface.
Discussion.-Since Thore's (1949) monograph of the pelagic octopods of the DANA, the genera Japetella and Eledonella are now easily distinguished. Japetella has larger cyes (consequently a larger HWI) and crowded arm suckers, not well-spaced as in Eledonella.

Distribution.-1n 1949, Thore examined the morphology and distribution of $\mathrm{J} . \mathrm{di}$ aphana and concluded that it was a worldwide species bounded by the 200 m $10^{\circ} \mathrm{C}$ isotherm. He also reported ontogenetic descent in this species; the juvenilcs ( 25 mm ) were found between 100-300 m while the adults were concentrated between 1750-2500 m. The two Gerda specimens
were captured betwcen $777-1022 \mathrm{~m}$, corresponding to a water temperature of $5-9^{\circ} \mathrm{C}$.

Family OCTOPODIDAE Orbigny, 1845<br>Subfamily OCTOPODINAE<br>Grimpe, 1921

Octopus vulgaris Cuvier, 1797
Oclopus vulgaris Cuvier, 1797: 380.-Simpson, 1887: 49 (off Long Key).-Robson, 1929: 58 (off Dry Tortugas, monographic treat-ment).-Adam. 1937: 71 (off east coast of Florida).-Pickford, 1945: 708 (off Lake Worth, Sand Key, Dry Tortugas).-Voss, 1956a: 280 (off Miami Beach, Teatable Key, and others).
Octopus rugosus, Simpson. 1887: 49 (off Florida Keys).-Robson, 1931: 368, specimen \# 1 (off Dry Tortugas).
Material examined.-1 female, ML, $64.0 \mathrm{~mm}, \mathrm{G}$ $602 .-1$ female, M1. 50.0 mm . G-566.-1 female, ML 40 mm , G-834.- female, ML 38.0 mm , G-765.-1 female, ML 32.0 mm, G-769.-1 male, ML 29.0 mm , G-833.-1 juvenile female, ML 11.5 $\mathrm{mm}, \mathrm{G}-584 .-3$ juveniles, ML 9.3-8.0 mın, G1033.

Type-locality.-Mediterranean Sea?
Discussion.- $O$. vulgaris is a moderate to large species with small eggs $(<3.0 \mathrm{~mm})$, a LLI $\leqslant 2.5$, and symmetrical arms without a marked enlargement of arms 11 and 111 (Voss, 1956). It is similar to O. briareus; however, malcs ean be distinguished by a smaller LL1, penial divertiele, and arms III and IV; a larger calamus; and the absence of transverse grooves on the ligula. Femalc $O$. vulgaris have: 1) a smaller AWI (I3-22-28) compared to 2I-3I-37 of $O$. briareus; 2) a smaller SIn (9-11-18) compared to 14-I7-20; 3) a smaller OG1 (5-9) compared to 12-14; and 4) smaller eggs ( $\leqslant 3 \mathrm{~mm}$ ) compared to $12-14 \mathrm{~mm}$. Descriptions of this species can bc found in Pickford (1945) and Voss (1956).

Distribution.- $O$. vulgaris ranges from the coastal waters of the English Channel to the Cape of Good Hope in the Eastern Atlantic (Rees, 1950) and from New York to Brazil in the Western Atlantic (Voss, 1956). It is common in the Mcditerranear and Red Scas and has been reported in t'

Indian Ocean and off Japan (Sasaki, 1929). The Gerda matcrial provided eight records in Continental waters from the Dry Tortugas to off Miami. It was captured in five out of $59(8.5 \%)$ otter trawls made in the Northern Straits in $0-200 \mathrm{~m}$.

According to Robson (1929: 60), O. vulgaris is "strictly a littoral form" with very few records decper than 180 m . Voss (1968) indicated that it is found on sand and mud bottoms as were the present specimens which were from depths of 33-99149 m .

Octopus hurumelincki Adam, 1936
Octopus hummelincki Adam, 1936: 1.-Voss, 1949: 3 (off French Reef, Key Largo): 1953: 73 (off Long Reef); 1956a: 279 (off Molasses Reef).-Burgess, 1966: 762 (off Florida Keys and various localities in Bahamas adjacent to the Straits).
Material examined.-1 female, ML 38.0 mm , G1052.

Type-locality.-Bonaire; 1-1.5 m.
Discussion.-Burgess (1966) reviewed the literature and undertook a morphometric analysis of hummelincki, discussing its affinity with other ocellated species in the Atlantic and Pacific.

Distribution.-This species is widely distributed in the warm waters of the Western Atlantic and Caribbean occurring from Bahia, Brazil to the south, the Bahamas to the north and Grand Cayman Island to the west (Burgess, 1966: 807, distributional map). It is known from the Greater Antilles and Voss (1949, 1953, 1956a) has reported it from the Straits of Florida. The single Gerda specimen came from the Grcat Bahama Bank near Northeast Providence Channel.

Burgess stated that this species is rarely caught by conventional methods but is usually obtained by using full-strength fish poison. Its habitat is usually a coral reef overgrown with Sargassum and Dictyota in shallow waters $(1-17 \mathrm{~m})$. The Gerda
spccimen was captured floating on the surface after poisoning in three meters of watcr.

Octopus joubini Robson, 1929
Octopus joubini Robson, 1929: 50, 161.—Voss, 1956: 160 (off Florida Keys); 1956a: 279 (Biscayne Bay, off Soldier Key).
Octopus mercatoris Adam, 1937: 76 (off Dry Tortugas).
P'uroctopus joubini, Pickford, 1945: 757 (off Palmetto Key).
Material examinet.-1 male, ML 13.0 mm , G1033.

Type-locality.-St. Thomas, British West Indies; 15 m .

Discussion.-This specics can be distinguished from the other shallow-water Octopus in the Western Atlantic by the following characters. It is small with large eggs, 5-7 gill filaments/demibraneh, a LLl of 47 , prominent eyes, enlarged suckers on the arms of the male and short, sub-equal, symmetrical arms (Voss, 1968).
Remarks.-O joubini becomes sexually mature at a small size. Robson's (1929) holotype was a 16 mm ML gravid femalc. Adam's (1937) mercatoris was a malc of 17 mm ML with spermatophores. The Gerda spccimen, with a ML of 13 mm , possesses spermatophores and hectocotylus.

Enlarged suekers were not reported on a male of ML 13 mm (Pickford, 1945) but were found consistently in larger specimens in an irregular arrangement. The Gerda speeimen had sucker indices of: $\operatorname{SIn}=11.5$ and Sle $=19.2$. The eighth sucker was enlarged on both first arms and the second right arm. The eighth and ninth suckers were enlarged on the remaining five arms.
Distribution,-O. joubini inhabits shallow, inshore waters on sand and mud bottoms. It has been reported from St. Thomas, the eastern Gulf of Mexico, off the 1slas de San Bernardo, Colombia, and the Florida Keys. Only one specimen was captured off Sombrero Key by the Gerda on a sand-shell substrate at 42 m .

Danoctopus schmidti Joubin, 1933
Figures 6A, B
Damoctopus schmidit Joubin, 1933: 4.
Maserial examinect.-1 male, ML 38.0 mm , G388.

Type-localisy. $-25^{\circ} 50^{\prime} \mathrm{N}, 76^{\circ} 55^{\prime} \mathrm{W} ; 1200 \mathrm{~m}$.
Discussion.-This rare octopus has been reported only twice before; once by Joubin (1933) and again by Voss (1956). Both of these specimens had mantle lengths of 20 mm and were considered to be immature. The Gerda specimen is twice as large and has a well-formed hectocotylus. It agrees well with both previous cleseriptions with the exception of the form of the funnel and the funnel organ. The funnels of the two smaller specimens had their edges rolled inward with a round, button-like orifice and their funnel organs were deseribed as two widely spaced V's. The Gerda specimen did not have a "button-like orifice" and its funnel organ was composed of two V's, but elosely adjacent. These differences may be due to the greater size and maturity of the Gerda specimen.

The radula of this species was not examined by cither Joubin (1933) or Voss (1956). The Gerda specimen has a radula with a B 5-6 seriation (Fig. 6A). The ligula is blunt and spade-shaped, occupying $7.8 \%$ of the hectocotylized third right arm with a CLl of 27 (Fig. 6B).

Distribution.-The two specimens reported in the literature were captured off Abaco, Bahamas ( $25^{\circ} 50^{\prime} \mathrm{N}, 76^{\circ} 55^{\prime} \mathrm{W}$ ) at 1200 m , and off the Dry Tortugas in 517 m . The Gerda specimen was eaptured in the Northern Straits near the Little Bahama Bank at 320 m .

Scaeurgus unicirrlus (d'Orbigny, 1840)

[^1]

Figure 6. Danocropus schmidti, G-388, M1, 38 mm: A, Radula; B, Ligula.
zas. Cuba); 1956a: 280 (off Palm Beach to Key Wesi).
Material examined.-1 gravid female, ML 56.0 mm, G-432.-I gravid female, ML 50.0 mm , G-456.-1 male, ML, $45.0 \mathrm{~mm}, \mathrm{G}-462 .-1$ male. ML $42.0 \mathrm{~mm}, \mathrm{G}-1319 .-1$ male, ML 26.0 mm , G-624.-1 female, ML 22.0 mm , G-280.
Type-locality.-Not traced.
Discussion.-Scaeurgus can be distinguished from all other genera in the subfamily Oc-
topodinae by a combination of the following characters: third left arm hectocotylized, large ligula and ealamus and long penial diverticulum (Robson, 1931). It can be differentiated from the closely related Pteroctopus, another sinistrally hectocotylized genus, on the basis of a comparison of their funnel organ, heetocotylus and penial diverticulum (Robson, 1931: 197; Jatta, 1896: pl. 25).

Remarks.-The ovary and egg mass of the 50.0 mm gravid female comprised at least half of the visceral mass. The eggs were small ( $1.0-1.5 \mathrm{~mm}$ ), oblong, randomly oriented, and densely packed, having the appcarance of rice grains.

Distribution.-S. unicirrhus is a littoral octopod with a worldwide distribution in the Mediterranean Sea, North Atlantic, Paeific and Indian Oceans. It was first reported in the Western Atlantic in the lower Florida Keys (Voss, 1951). It is now known from off Brazil (Voss, 1964a), Matanzas, Cuba, Palm Beach and as far north as Georgia (Kracuter and Thomas, 1975). The Gerda distributional records inelude the Continental waters in all three regions of the Straits and one record in Northern Yucatan waters (off Bimini).

Voss (1955) deseribed S. unicirrhus as a benthic speeies from moderate depths and (1956a) listed depths of capture ranging from $73-366 \mathrm{~m}$. The GERIJA speeimens ranged from 119-168-255 m. It has bcen recorded from sand and mud bottoms (Jatta, 1896; Voss, 1951); this is confirmed by the previous data.

## Macrotritopus stage

Material examined.-1 juvenile, ML 10.0 mm , G-92.-I juvenile, ML 3.8 mm , G-741.

Discussion.-In 1954, Rees reanalyzed most of the type-material of the nominal Macrotitopus species and subsequently synonymized them all. The two Gerda specimens clearly fall into this category.

Rees considered four possible adults for

Macrotritopus: O. vulgaris, O. macropus, Scaeurgus unicirrhus and Pteroctopus tetracirrhus, all of which have planktonic larvac. He eliminated $O$. vulgaris and macropus as their larval stages were already known. Scacurgus and Pteroctopus were considered because Rees (1954: 78) observed an "cggshaped structure with a finely pointed tip" on the third left arm of Degner's (1925) largest specimen ( $\mathrm{VML}=6.0 \mathrm{~mm}$ ). Both genera have a symmetrical seriation of the rachidian, as does Macrotritopus (A3-4), but the radula of Pteroctopus differs from that of Macrotritopus with regard to the first and second laterals. Also, at that time Pteroctopus was not known from the Western Atlantic. Rees therefore logically chose Scaeurgus unicirrhus as the adult of all Atlantic Macrotritopus.

Later in the same year Voss (1954) reported the first Pteroctopus Irom the Western Atlantie and in 1964 reported the first record of $O$. defilippi from the Western Atlantic. O. defilippi has a pelagic larva, an unknown ontogeny and an A3-4 seriation. The second and third laterals fit the deseription of Macrotritopus, the first lateral to a lesser extent. O. defilippi has $9-11$ gill filaments and an adult arm order of 3.4.2.I. Macrotritopus has 9-12 gill filaments and common arm orders of 3.2.4.1, 3.4.2.1 and 3.2.1.4. Except for a dubious report of the left ventral hectocotylization, $O$. defilippi would have equal elaim to the Macrotritopus. larva. Juvenile records of Scaeurgus and O. defilippi should clarify the "Macrotritopus problem."
Distribution.-Macrotritopus stages have been recorded from the Mediterranean, off West Africa, the Canary Islands, off Guiana, western Cuba, Biscayne Bay and Nova Scotia; the last location is probably the result of expatriation. Rees (1954) stated that the larvae are usually found in the upper 200 m . The Gerda material adds two more records to the Straits, both in Northern Transitional waters captured at depths of 157 and 23 m .

Pteroctopus tetracirthus (Delle Chiaje, 1830)

Octopus tetracirrhus Delle Chiaje, 1830: pl. 72. l'teroctopus teticreirrhus. Voss, 1955: 111 (Bahia de Cardenas); 1956: 166 (Western Yucatan waters of Straits); 1956a: 280 (off Palm Beach).
Material examined.-1 male, ML $36.5 \mathrm{~mm}, \mathrm{G}-464$.
Type-locality.-Mediterranean Sea (Naples?).
Discussion.-The single Gerida specimen can be placed in Pteroctopus and eliminated from the elosely related Scacurgus by the following characteristics: 1) the hectocotylus is short and lacks inrolled sides, 2) it lacks the mantle ridge characteristic of Scaeurgus, 3) it has an open, short (CLI $28 \%$ ) calamus, 4) it has eight lamellac on each demibranch, not 13-14 as in Scaeurgus, 5) the first lateral tooth of the radula has a wider base (Jatta, 1896: pl. 25; Adam, 1952: fig. 55), and 6) it lacks the long penial diverticulum of Scaeurgus. This specimen differs from typical Pteroctopus in three notable characters. First, the LLl is 7.2 which is above the range given by Robson (1929) of 3-4. However, Voss (1956) and Adam (1952) record LLl's of 6.2 and 6.7 which are very elose to that of the Gerda specimen. Second, the SIn of the Gerda specimen is about 12, whereas Robson described the arm suckers as very small ( $\mathrm{Sln}=$ 5-5.8) and decply embedded in swollen skin. Again, Voss (1956: 167) noted that the suckers were "not as deeply set into the arms as suggested by Robson." Third, P. tetracirrhus, as its name implies, possesses two distinct pairs of ocular cirri. The Gerda specimen has only one indistinet cirrhus over each cye.

The Gerda specimen differs from Robson's Mediterranean material and even Voss's dcseription from the Gulf of Mexico material. Voss (1956: 167) implied that eloser examination of specimens from both sides of the Atlantic may reveal subspecific differences, which might be the case for the Gerda specimen.

Remarks.-The strong connection between the fauna of the Mediterrancan Sea and the Gulf-Caribbean region is well-exemplified by the three species: Scacurgus unicirrlus, Pteroctopus tetracirrhus, and Octopus defilippi. For a long time these three species were known only from the Mediterranean, but are now known to be common in the Western Atlantic. Their long-lived pelagic larvae are probably carried by the North Equatorial Current into the Caribbean, and thence into the Gulf of Mexico and Straits of Florida.

Distribution.—P. tetracirrhus is known from the Cape Verde Islands, West Africa (Adam, 1952), the Gulf of Mexico (Voss, 1954) and the Straits of Florida from the Dry Tortugas to Palm Beach. The single Gerda record is from Western Continental waters.
$P$. tetracirrhus has been captured from 26 m (Voss, 1956) to 677-1097 m (Voss, 1955) on mud and shell bottoms. The Gerda specimen was captured between $357-$ 370 m on a fine mud bottom.

## Subfamily BATHYPOLYPODINAE Robson, 1929

Bathypolypus arcticus (Prosch, 1849)
Octopus arcticus Prosch, 1849: 59.
Bahypolypus arcticus, Boone, 1939: 360 (off Fowcy Rock).-Voss, 1956a: 280 (off Delray Beach).
Material examined.-7 females, ML $40.0-25.0 \mathrm{~mm}$, 5 males, ML, 39.0-29.0 mm, G-655.-2 males, ML 39.0-28.0 mm, G-175.-2 females, ML 38.5-24.5 $\mathrm{mm}, 2$ males, ML $30.0-27.0 \mathrm{~mm}$, G-654.-7 females, ML $37.0-21.0 \mathrm{~mm}, 2$ males, ML $33.0-31.0$ mmi. G-29.- 3 males, ML $36.5-32.0 \mathrm{~mm}$, G-857. 12 femalcs, ML $36.0-21.5 \mathrm{~mm}, 16$ males, ML 35.(0)-22.5 mm. G-997.-4 females, ML 36.0-26.0 $\mathrm{mm}, 8$ males, ML $35.0-23.0 \mathrm{~mm}$, G-855.- 10 males, ML 35.0-20.0 mm, 7 females, ML 30.016.0 mm , G-998.-5 females, ML $35.0-12.0 \mathrm{~mm}$, 2 males, ML $28.0-27.5 \mathrm{~mm}$, G-66.-1 malc, ML 35.0 mm , G-77.-1 male, ML 34.0 mm, G- $15 .-1$ male, ML 34.0 mm , G-197. - 4 males, ML 33.0-23.0 mm , 1 female, ML 27.0 mm , 1 juvenile, ML 20.5 mm , G-658.-1 male, ML 32.0 mm , G-61.-1 male. ML $32.0 \mathrm{~mm}, 2$ females, ML $21.0-20.0 \mathrm{~mm}$, G-266.-1 female, M1. $31.0 \mathrm{~mm}, \mathrm{G}-256,-3$ males, ML 3i.0-14.5 mm, 1 female, ML 22.0 mm , 1 juvenilc, ML 9.0 mm , G-845.-4 males, ML 30.5-
22.0 mm , G-76.-I female, ML 26.0 mm , G146. -1 fcmale, ML $25.0 \mathrm{~mm}, \mathrm{G}-179$. -1 male, ML 25.0 mm , G-853.-1 female, ML 25.0 mm , G-4.-1 male, M1, 24.0 mm , 1 female, ML 20.0 mm , G-659.-1 male, ML $20.5 \mathrm{~mm}, \mathrm{G}-652 .-1$ male, ML $20.0 \mathrm{~mm}, 1$ juvenile, M1, 13.0 mm , G-650.-2 females, ML $19.0 \mathrm{~mm}, \mathrm{G}-161$. - 1 juvenile, ML $8.5 \mathrm{~mm}, \mathrm{G}-228$.

Type-locality.-Off Greenland.
Discussion.-Bathypolypus ean be distinguished from the other genera in the family Octopodidae by a combination of: biserial suckers, lack of an ink sac and lack of ectocones on the rachidian of the radula. Before 1958 there were eight nominal species of Bathypolypus. Kumpf (1958) synonymized most of the Atlantic species: B. bairdii, lentus, obesus and faeroensis as B. arcticus. B. salebrosus (Sasaki, 1920) is known from only two specimens from Japan and B. valdiviae (Thiele, 1915) is common only to South Africa. Both the latter species and B. sponsalis (P. \& H. Fischer, 1892), can be distinguished from arcticus by their larger eyes, fewer gill filaments and differently shaped funnel organs. Kumpf (1958) could find no geographic subspeciation of $B$. arcticus north and south of an arbitrary boundary at $39^{\circ} \mathrm{N}$. Muus (1962) named a new species, B. proschi, from speeimens off Greenland which may prove identieal to arcticus.

Distribution.- $B$. arcticus is common on eontinental shelves and upper slopes of the North Atlantic. It extends from Ireland to Iceland, both coasts of Greenland and along the east coast of America to Fowey Rock (Kumpf, 1958: 118, distributional map). It has previously been reported from the Straits off Delray and Fowey Rock, and was found to be the most common cephalopod taken by the Gerda: 133 specimens from 27 stations. The male taken at G-146 $\left(24^{\circ} 45^{\prime} \mathrm{N}, 80^{\circ} 09^{\prime} \mathrm{W}\right)$ is the southernmost record for this species. It is common in Northern Continental waters, and extends across the channel in the upper Straits to a depth of 550 m . Only two records were
noted from the Cay Sal region and none from the Western.

Kumpf (1958) reported that it ranged from $20-1540 \mathrm{~m}$ with an average depth of eapture of about 340 m . The depth range of the Gerda stations is 190-345-674 m. Of the 99 otter trawl tows made by the Gerda in the Northern Region between 200$400 \mathrm{~m}, 19$ produced B. arcticus. It is also interesting to note that the deepest Gerda record (G-146; 674 m ) was also the southernmost. Substrate data implied a predominantly muddy bottom with several indications of sand.

Tetracheledone spinicirrus Voss, 1955
Tetracheledone spinicirrus Voss, 1955: 107 (off Matanzas, Cuba); 1956a: 157 (Western Continental waters).
Material examined.-1 gravid female, ML 72.0 $\mathrm{mm}, \mathrm{G}-1016 .-1$ female, ML $61.0 \mathrm{~mm}, \mathrm{G}-15 .-1$ female, ML $49.0 \mathrm{~mm}, 3$ males, ML 42.0-33.0 mm , G-29.-1 male, ML 33.0 mm , G-716.
Type-locality.-Off Matanzas, Cuba; 261-347 m.
Discussion.--Tetracheledone is diagnosed by the following features: uniserial suckers, stellate warts on the mantle, two cirri over each eye, a well-developed ink sac and a four-parted funnel organ (Voss, 1953). It is probably the most easily recognized octopod in the Straits.

Distribution.-The distribution of T. spinicirrus, based on past records, ineludes the northern and southern coasts of Cuba, the eastern Gulf of Mexico and off Jacksonville, Florida (Voss, 1956). Specimens in the RSMAS museum (R/V Combat, Silver Bay, Oregon) represent an additional 18 locations: 11 off Jaeksonville, Florida, 4 in the western approach to the Straits, 2 off Georgia and 1 off North Carolina ( $34^{\circ} \mathrm{N}$, $75^{\circ} \mathrm{W}$ ), the northcrnmost record. Gerda specimens were from Northern Continental and Yucatan waters and Santaren Channel.

Voss (1956) reported depths of capture from 192-540 m. The 18 additional RSMAS captures ranged from $274-411 \mathrm{~m}$. The four Gerda loeations ranged from 183 to 544 m .

Family ARGONAUTIDAE Nacf, 1912

Argonauta argo Linnaeus, 1758

Argonanta arge Linnaeus, 1758: 708.-Anonymous, 1893: 47 (off Palm Beach); 1894: 83 (Palm Beach).-Smith, 1945: 149 (off Florida cast coast).-Voss, 1954: 477 (off Miami in Gulf Stream); 1956a: 281 (off Palm Beach to Bear Cut).
Material examinted.-1 gravid female, ML 109.5 mm , G-40.-1 gravid female, ML 99.0 mm , G-75.-I juvenile female, ML $6.0 \mathrm{~mm}, \mathrm{G}-203$ - 1 juvenile female, ML $4.6 \mathrm{~mm}, 2$ juvenile males, ML 4.4-3.1 mm, G-106.

Type-locality.-"Pelago, M. Indico, Meditirraneo."
Discussion.-Adult female $A$. argo can be distinguished from $A$. hians, the other argonautid found in the Straits, by the following fcatures: ventral arms shortcr than the laterals, a wider kcel of about $24 \%$ of the aperture and 10 gill filaments (Robson, 1931). The males of $A$. argo, which show extreme sexual dimorphism, attain a length of 15 mm according to Naef (1923), 35 mm according to Voss (1956).

Juvenile female argonautids can be recognized by the thickening and membranous cxpansion of the first arms which eventually secretc the shcll. Juvenile males can be diagnosed by their autonomous hectocotylus on the third left arm, which at this stage is contained in a sac between the sccond and fourth arms.
Distribution.- A. argo is cosmopolitan in warm and temperate seas (Robson, 1931); there have been numerous reports of both live specimens and shells of $A$. argo in the Straits. The first report of a live specimen was of a 15 cm specimen stranded at Palm Beach (anonymous, 1893). The Gerda took gravid females in Northern Transitional waters and juveniles from Continental Western and Northern waters. The two gravid females were dip-netted at the surface and the juveniles were captured at depths of 97104 m and 518 m , the latter record probably the result of contamination.

## Zoogeography

A discussion of the geographic distribution of the cephalopods of the Straits of

Florida is premature as any cephalopod zoogeographic analysis would be at this time. Systematic collccting is absent in too many areas to adequately definc boundaries for species. Even with the extensive collecting of the Gerda, over 1300 stations in the Straits, the mid-water zone of the Cay Sal Region was poorly sampled and much of the littoral border of the Straits has been neglected. Nevcrtheless, it is possible to show certain components of Straits fauna, keeping in mind that further collecting will require some modification.

The 64 cephalopod spccies reported from the Straits of Florida can be divided into six faunal components: Circumtropical, Tropical Western Atlantic, Temperate Wcstern Atlantic, Amphi-Atlantic, Amphi-Atlantic plus Indian Occan, and North Atlantic. The largest component is the Circumtropical, amounting to $34 \%$ of the total, or 22 specics.

## List of Circumtropical Cephalopoda

Spirula spirnla
Onychotenthis banksii
Pyrotenthis margaritifera
Pterygiotenthis genmmata
Pterygiotenthis giardi Lycotenthis diadema
Thelidiotenthis olessomdrini
Ctenopteryx sicula
Histiotenthis dofleini
Bathothatima lyromma
Cranchia scabro
Helicocranchia pfefferi
Liocranchia reinhordti
Grimalditenthis bomplandii
Octopus macropus
Octopus vilgaris
Scachrgus micirrlus
Japetella diaphana
Tremoctopus violacens
Argomanta argo
Argonanta hians
Vampyroteuthis infernalis
The second largest component is the Tropical Western Atlantic, bounded to the south by Rio dc Janeiro and including the lower Gulf of Mexico, Caribbean, Bahamas, Straits and Bermuda. The Straits lies fully within the tropical region, although it is bordered by a warm temperate area directly to the north. Therefore the Straits possesses a strong element of a tropical fauna ( $28 \%$ )
but also a considerable mixture of a temperate fauna ( $9.5 \%$ ). The Tropical Western Atlantic component represents $28 \%$ of the total, of 18 species:

List of Tropical Western<br>Atlantic Cephalopoda

* Abrelia grimpei

Pickfordialeuhthis pulchella
Nectoremhis porrtalesi
Semirossia equalis
Rossia umillensis
Rossia bullisi
Rossia tortugaensis
Loligo A
Doryleulhis plei
Sepioteuthis sepioidea
Selenoteulhis. scimillans
Abralia redfieldi
Egea incrmis
Octopus briarens
Oclopus Inmmelincki
Oclopus jonbini
Danoctopus schmidit
Terrecheledone spinicirrus.
The Amphi-Atlantic component is represented by nine speeics, or $14 \%$ of the total.

## List of Amphi-Atlantic Cephalopoda

* Abralia veranyi

Abroliopsis sp.
Enoploteunhis anapsis
Enoploreuthis lepturer
llex coindetii
Ommasireplies pleropus
Mastigotenthis grimaldii
Ocropus burryi
Pleroclopus letracirrlus
The fourth faunal component is the Tcmperate Western Atlantic containing specics more abundant in the temperate coastal waters of the eastern United States but also commonly found in the Straits and Gulf of Mexieo. This component is represented by six species, or $9.5 \%$ of the total.

List of Temperate Western
Atlantic Cephalopoda
Loligo pealei
Lollignncula brevis
Srolotenhis leucoptera
Semirossia lenera
Hex oxygonius
Oclopoteuthis megaptera

[^2]Three speeies represent an Amphi-Atlantic plus Indian Ocean component: Histiotenthis corona corona, Abraliopsis pfefferi and Octopus defilippi. If these are added to the other Amphi-Atlantie species, a considerable Amphi-Atlantic faunistic component results ( $18.5 \%$ ).

Finally, one species, Bathypolypus arcticus, is relegated to a North Allantie component since it is found on eontinental shelves and slopes from Ireland to the Cay Sal Region, including Spitzenberg, Grecnland and the northeast coast of America.

Five of the 64 species were not placed in zoogcographic eategories due to uncertain identifications of the eonfused state of their taxonomy: Architenthis princeps, Onykia carriboea, Leachia sp., Galiteuthis armata, and Corynoma specilutor.

## Acknowledgments

1 am grcatly indebted to Dr. G. L. Voss, Rosensticl School of Marine and Atmospheric Science (RSMAS), University of Miami, for suggesting the topic of research, critically reading the manuscript and making available the cephalopod collection of the R/V Gerda of the RSMAS. I wish to thank Dr. F. M. Bayer, RSMAS, University of Miami, for his advice and encouragement and Dr. C. F. E. Roper, USNM, and Mrs. G. L. Voss. RSMAS, for their help and suggestions. Charles G. Messing made the illustration for figures 3B, 4A and 5. Finally, I am grateful to Drs. J. C. Staiger, H. B. Michel, and M. R. Recve, RSMAS, University of Miami, for critical review of the manuscript and to my wife for her typing and proofreading.
The material used in this study was collco!ed by the $\mathrm{R} / \mathrm{V}$ Gerda in the Deep-Sca Biology Program sponsored by the National Geographic Society. Shiptime was supported by National Science Foundation grants G-24376, GP-1363. GB-3808, GB-5776, GB-7082, GA-4569 and GD-27252. This is a contribution from the RSMAS, University of Miami.

## Literature Cited

Adam, W. 1936. Notes sur les Céphalopodes. VI.-Une nouvelle espèce d'Octopus (Octopus hummelincki sp. nov.) des Indes Occidentales Néerlandaiscs. Bull. Mus. r. Hist. nat. Bclg. 12: 1-30.
—_ 1937. Résults scientifiques des croisic̀res du navirc-écolc Bclge "Mercator." IV. Cepha-
lopoda. Mén. Mus. r. Hist. nat. Belg. 9: 43-82.
1952. Résultats scientifiques des expéditions océanographiqucs belges dan les eaux côtières africaines de l'Atlantique Sud. (19481949). Céphalopodes. Résult. scient. Expéd. océanogr. Belg. (1948-1949) 3: 1-142.
1960. Les cćphalopodes de I'Institute Francais d'Afrique Noire. Bull. Inst. fr. Afr. noire, Sér. A. 22: 465-511.
Allan, J. 1940. A rare stalk-eyed squid (Bathothamua Iyromma Chun) new to Australian waters. Rec. Aust. Mus. 20: 320-324.
Anonymous. 1893. Argonata found alive. Nautilus 7: 47.
Anonymous. 1894. Argomanta argo on the East Florida coast. Nautilus 8: 83.
Berry, S. S. 1912. The cephalopoda of the Hawaiian Islands. Bull. Bur. Fish. Wash. 32: 255-362.
1920. Preliminary diagnoses of new cephalopods from Western Atlantic. Proc. U.S. natn. Mus. 58: 293-300.

Blainville, M. H. (lc. 1823. Memoirc sur les especes du genre calmar (Loligo Lamarck). J. Physiol. Paris 96: 116-135.

Bogle, M. A. 1975. A preliminary revision of the tropical Western Atlantic Aglaopheniinae (Coelenterate, Hydroida). M.S. Thesis, Univ. of Miami.
Boletzky, S. von. 197(). On the presence of light organs in Scuirossia Steenstrup, 1887 (Mollusca: Cephalopoda) Bull. mar. Sci. 20: 374388.
1971. Neorossia N. G. pro Rossia (Allorossia) caroli Joubin, 1902, with remarks on the generic status of Semirossia Steenstrup, 1887 (Mollusca: Cephalopoda). Bull. naar. Sci. 21: 964-969.
Boone, 1. 1939. Scientific results of the work cruises of the yachts "Eagle" and "Ara," 19281929, and "Alva" 1931-1932, "Alva" Mcditerranean cruise, 1933, and "Alven" South American cruise, 1935. V1. Mollusca. Bull. Vanderbilt mar. Mus. 7: 285-361.
Bouxin, J., and R. Legendre. 1936. La Fauna pelagique de l'Atlantique recucillic dans des estomacs de germons au large du Golfe de Gascogne. Deuxieme Partic: Cephalopodes. Annls. Inst. océanogr., Monaco 16: 1-99.
Briggs, J. C. 1974. Marine Zoogeography. Mc-Graw-Hill Book Co., New York. 475 pp.
Bruun. A. F. 1943. The biology of Spirula spirula (L.) Dana Rep. No. 24: 1-44.
1955. New light on the biology of Spirthla. a mesopelagic cephalopod. Pages 6172 in Essays in the natural sciences in loonor of Captain Allan Hancock. Univ. of Calif. Press, Los Angeles.

Burgess, L. A. 1966. A study of the morphology and biology of Octopus hummelincki Adam, 1936 (Mollusca: Cephalopoda). Bull. mar. Sci. 16: 762-813.
Calkins, W. W. 1878. Catalogue of the marine shells of Florida, with notes and descriptions of several new species. Proc. Davenport Acad. Sci. 2: 232-252.
Castellanos, Z. J. A. 1960. Uni neıva especie de calamar Argentino Oumuastrephes argentimus sp. nov. (Mollusca: Cephalopodi1). Neotropica 6: 55-58. -. 1964. Contribution al conocimiento biologico del calamar Argentino Illex illecebrosus argentiuus. Bol. Inst. Biol. Mar. Mar del Plata 8: 1-37.
Chun, C. 1900. Die Tiefe des Weltmeeres. Jena: Gustav Fischer. 549 pp. 1. 1906. Systemder Cranchien. Zool. Anz. 31: 82-86.
1908. Ucber Cephalopoden der Dentschen Tiefsec-Expedition. Zool. Anz. 33: 8689.
1910. Dic Cephalopoden. Wiss. Ergebn. dt. Tiefsee-Exped. "Valdivia" 18: 1-552.
1913. Cephalopoda from the "Michael Sars" North Atlantic Deep-Sea Expcdition. 1910. Rep. scient. Results Michael Sars N. Atlant. Deep-Sca Exped. 3: 1-21.
Clarke, M. R. 1962. A large nember of the squid family Cranchiidac Phasmatopsis cymoctypus de Rochebrune, 1884. Proc. malac. Soc. Lond. 35: 27-42.
1966. A review of the systematics and ecology of oceanic squids. Advances in Marine Biology 4: 91-300.
1969. Cephalopods of the SOND cruise. J. mar biol. Ass. U.K. 49: 961-976.

Clausner, E. 1967. Characteristics of the Florida Current. M.S. Thesis, Univ of Miami. 55 pp .
Cuvier, G. L. C. 1797. Tableau élémentaire de l'histoire naturellc des animaux. Paris, xvi and 710 pp .
Degner, E. 1925. Cephalopoda. Oceanogrl. Rep. "Dana" Exped. 2: 1-94.
Delle Chiaje, S. 1830. Memoric sulla storia e notomia degli animali senza vertebre del regno di Napoli. Vol. 4. Naples.
Devany, T. 1969. Ecological interpretation of distribution of the Lanternfishes (Myctophidae) in the Straits of Florida. Ph.D. Dissertation, Univ. of Miami. 431 pp.
Fields, W. G., and V. A. Gauley. 1972. A report on cephalopods collected by Stanford Occanographic Expedition 20 to the Eastern Tropical Pacific Ocean Sept.-Nov., 1968. Veliger 15: 113-118.
Fischer, H. 1895. Note préliminaire sur le Ptergiotenthis giardi, céphalopode nouveau
recueilli dans le cours de l'Expćdition scientifiquc du Talisman (1883). J. Conch., Paris 43: 205-211.
Fischer, H., and L. Joubin. 1906. Notes sur les céphalopodes captures au cours des cxpédition du "Travailleur" et du "Talisman." Bull. Mus. Hist. nat., Paris 12: 202-205.
Hoyle, W. E. 1885. Diagnoses of new species of cephalopoda collected during the cruise of the H.M.S. "Challenger" part 1. The Octopoda. Ann. Mag. nat. Hist., Ser. 5, $15:$ 222-236.
-1886. Report on the Cephalopoda. Rep. scient. Results H. M. S. "Challenger" (187376), Zoology 16: 1-245.
1904. Reports on the Cephalopoda. Bull. Mus. comp. Zool. Harv. 43: 1-71.
Jattia, G. 1896. I cefalopodi viventi nel Golfo di Napoli (Sistematica). Fauna Flora Golf. Neapel 23: 1-268.
Jouhin, L. 1895. Céphalopodes. Késult. Camp. scient. Prince Albert I 9: 3-63.
-. 1896. Observations sur diver's céphalopodes. 1. Abraliopsis pfefferi (nov. gen. et sp.). Bull. Soc. scient. méd. Ouest 5: 19-35.
-1898. Note sur une nouvelle famille de céphalopodes. Annls. Sci. nat., sćr. 8, Zool. 6: 279-292.
—_ 1898a. Observations sur divers céphalopodes. 4. Grimalditeuthis richardi. Bull. Soc. zool. Fr. 23: 101-113.
__ 1920. Céphalopodes provenant des campagnes de la "Princesse Alice" (1898-1916). Résult. Camp. scient. Prince Albert I 54: I-95.
1924. Contribution à l'étude des céphalopodes de l'Atlantique Nord. Résult. Camp. scient. Prince Albert I 67: 1-113.
1933. Notes préliminaircs sur les céphalopodes des croisières du Dana (1921-1922). Annls. Inst. océanogr. Monaco 13: 1-49.
1937. Les octopodes da la croisière du Dana (1921-1922). Dana Rep. 11: 1-49.
Kraeuter, J. N., and R. F. Thomas. 1975. Cephalopod mollusks from the waters off Gcorgia, U.S.A. Bull. mar. Sei. 25: 301-303.

Kumpf, H. E. 1958. A study of the Bathypolypus arcticus-bairdii-lentus-obesms complex of the North Atlantic. M.S. Thesis, Univ. of Mami. 135 pp .
1.aRoe, E. T. 1967. A contribution to the biology of the Loliginidae (Cephalopoda: Myopsida) of the tropical Western Atlantic. M.S. Thesis, Univ. of Miami. 220 pp.
Leach, W. E. 1817. Synopsis of the orders, families and genera of the class Cephalopoda. In: "Zoological Miscellany" 3: 137-141. London.
I.esueur, C. A. 1821. Descriptions of several
new species of cuttlefish. J. Acad. nat. Sci. Philad. 2: 86-101.
Linnaeus, C. 1758. Systema naturae. 10th edition, vol. I.
McGinty, T. 1. 1955. Spirula spirula Linne, a remarkable find. Nautilus 69: 35.
Malloy, R. J., and R. J. Hurley. 1970. Geomorphology and geologic structure: Straits of Florida. Bull. geol. Soc. Am. 81: 19471972.

Mangold-Wirz, K. 1963. Contribution a l'etude de Ressia carolina Joubin. Vie Milieu 14: 205-224.

1963a. Dimensions et croissance relatives de quelques onmastrephides Mediterrancens. Rapp. P.-v. Reun. comm. int. Explor. scient. Mer Mediterr. 17: 387.
Massy, A. L. 1907. Preliminary notice of new and remarkable cephalopods from the southwest coast of 1reland. Ann. Mag. nat. Hist. Ser. 7, 20: 377-384.
1925. On the Cephalopoda of the Natal museum. Ann. Natal Mus. 5: 201-229.
Messing, C. G. 1975. The systematics of the Crinoidea Comatulida (exclusive of the Macrophraetina) collected by the $\mathrm{R} / \mathrm{V}$ Gerds in the Straits of Florida and adjacent waters. M.S. Thesis, Univ. of Miami. 285 pp.

Montgomery, R. B. 1938. Fluctuations in monthly sea level on Eastern U.S. coast as related to dynamics of western North Atlantic Ocean. Jour., Mar. Res. 1: 165-185.
Muus, B. J. 1962. Cephalopoda. Meddr. Gronland 81: 4-21.
Naef, A. 1923. Dic Cephalopoden. Fauna flora Golf. Naepel, Monograph 35: 1-863.
Okutani, T., and J. A. McGowan. 1969. Systematics, distribution, and abundance of the epiplanktonic squid (Ccphalopoda, Decapoda) larvae of the California Current April, 1954. March. 1957. Bull. Scripps Instn. Oceanogr. 14: 1-90.
Orbigny, A. d’. 1839. In: Mm. de Férussac and A. d'Orbigny 1835-1848. Histoire naturelle générale et particulic̀rc des céphalopodes acétabuliferes, vivants et fossiles. Paris. 361 pp.
Pfeffer, G. 1900. Synopsis der oegopsiden Cephalopoden. Mitt. naturh. Mus. Hamb. 17: 147-198.
——. 1912. Die Cephalopoden der planktonexpedition. Zugleich eine monographische ubersicht der oegopsiden Cephalopoden. Ergebn. der Plankton-Exped. Humboldt-Stiftung 2: 1-815.
Pickford, G. E. 1945. Le poulpc Américain: a study of the littoral Octopoda of the Western Atlantic. Trans. Conn. Acad. Arts Sci. 36: 701-811.
1946. Vampyroteuthis iuferualis Chun, an archaic dibranchiate cephalopod. I. Natural history and distribution. Dana Rep. 29: 1-40. - 1952. The Vampyromorpha of the Discovery expeditions. "Discovery" Rep. 26: 197-210.
Prosch, V. 1849. Nogle nye Cephalopoder. K. danske Vidensk. Selsk. Skr. Ser. 2, 1: 53-72.
Rancure1. P. 1970. Les contenus stomacaux d'Alepisamus ferox dans le Sud-Ouest Pacifique (Cephalopodes). Cah. ORSTOM, Scr. Oceanogr. 8: 3-87.
1971. Mastigoteuthis grimaldii (Joubin. 1895) Chiroteuthidac pue connu de l'Atlantique tropical (Cephalopoda: Oegopsida). Cah. ORSTOM, Ser. Océanogr. 9: 125-145.
Rees, W. J. 1950. The distribution of Octopus vigaris Lamarck in British waters. J. mar. biol. Ass. U.K. 29: 361-378.
1954. The Macrotritopus problem. Bull. Br. Mus. nat. Hist., Zool. 2: 69-99.
Robson. G. C. 1924. On the Cephalopodat obtained in South African waters by Dr. J. D. F. Gilchrist in 1920-1921. Proc. zool. Soc. Lond. 589-686.
——. 1929. A monograph of the recent Cephalopoda. Part 1. Octopodinae. British Museum. 236 pp .
1931. A monograph of the recent Cephalopoda. Part I1. The Octopoda (excluding the Octopodinae). British Museum. 359 pp.
Roper, C. F. E. 1964. Enoploteuthis anapsis, a new species of enoploteuthid squid (Cephalopoda: Oegopsida) from the Atlantic Ocean. 13ull. mar. Sci. Gulf \& Carib. 14: 140-148.
1966. A study of the genus Euoploteuthis (Cephalopoda: Oegopsida) in the Atlantic Ocean with a redescription of the type species, E. leptura (Leach, 1817). Dana Rep. 66: 1-46.
——_ R. J. Gihbs, and W. Aron. 1970. Ocean Acre: An interim report. Report to the U.S. Navy Underwater Sound Lab, Contr. \#N00140-69-C-1066. 32 pp.
, C. C. 1.ll, and K. Mangold. 1969. A new species of Mlex from the Western Atlantic and distributional aspects of other I/lex species (Cephalopoda: Oegopsida). Proc. hiol. Soc. Wash. 82: 295-322.
. R. E. Young, and G. L. Voss. 1969. An illustrated key to the families of the order Teuthoidea (Cephalopoda). Smithson. Contr. Zool. No. 13: 1-32.
Riippell, E. 1844. Intorno ad alcuni cefalopodi del mare di Messina. Giornale del Gablnetto di Messina 26: 1-7.
Sasaki, M. 1929. A monograph of the dibranchiate cephalopods of the Japanese and adjacent
waters. J. Coll. Agric. Sapporo, Suppl. No. 20: 1-357.
Simpson, C. T. 1887. Contribution to the mollusca of Florida. Proc. Davenport Acad. Sci. 5: 45-72.
Smith, M. 1945. East Coast Marine Shells. Ann Arbor.
Staiger, J. C. 1970. The distribution of the benthic fishes found below two hundred meters in the Straits of Florida. Ph.D. Dissertation, Univ. of Miami. 219 pp.
Steenstrup, J. 1855. On the jaws of a giant cuttlefish ( $O$. pteropus). Overs. danske Vidensh. Selsk. Forh., 1855. Pages 199-200 in The Cephalopod papers of Japctus Steenstrup. Danish Science Press, Copenhagen.

- 1856. Hectocotyldannedsen hos Octopodslägterne Argonama og Tremoctopus oplyst ved Jagtagelse of ligmende Dannelsen hos Blacksprutternes in Almindelighed. Dansk. Vid. Selsk. Afh. 4: 187-216.
Summers, W. E. 1969. Winter population of Loligo pealei in the mid-Atlantic Bight. Biol. Bull. mar. biol. Lab., Woods Hole 137: 202 216.

Sverdrup, H. V., M. W. Johnson, and R. H. Fleming. 1942. The oceans. Prentice-Hall Inc. Englewood Cliffs, N. J. 1087 pp.
Thiele, J. 1921. Die Cephalopoden der Deutsch Sudpolar-Expedition 1901-1903. Dt. Sudpol. Exped. 16 (Zool. Bd. 8) : 433-465.
Thore, S. 1949. Investigations on the "Dana" octopods: Part I. Bolitaenidae, Amphitretidae, Virreledoncllidae, and Alloposidae. Dana Rep. 33: 1-85.
Verany, J. B. 1837. Mémoire sur six nouvelles espèces de céphalopodes trouvées dans lat Mćditerranée à Nice. Mem. Acc. Sci. Torino, Sér. 2, 1: 91-98.

1837a. Mémoirc sur deux nouvelles espèces de céphalopodes trouvées dans l'ocean. Mem. Acc. Sci. Torino. Sér. 2, 1: 99-101. -. 1851. Mollusques Méditerranéens. I. Céphalopodes. 132 pp . Gènes.
Verrilt, A. E. 1878. Notice of recent additions to the marine fauna of the eastern coast of North America. Am. J. Sci., Ser. 3, 16 (1, 2): 207-215, 371-378.
——. 1880. Notice of the remarkable marine fauna occupying the outer banks of the southern coast of New England. Am. J. Sci., Ser. 3, 20: 390-403.
1882. Report on the cephalopods of the northeastern coast of America. Rep. U.S. Commnr. Fish. 1879 7: 211-450.
Voss. G. 1. 1949. Notes on a specimen of Octopus hummelincki Adam from the Florida Keys. Revta Soc. malac. Carlos de la Torre 7: 3-5.

## 1950. Two new species of cephalopods

 from the Florida Keys. Revta Soc. malac. Carlos de la Torre 7: 73-79.1951. The first record of Scocurgus unicirthus from the Western Atlantic. Bull. mar. Sci. Gulf \& Carib. 1: 64-71.

- 1952. A revision of the Loliginid squids of the Western Atlantic. M.S. Thesis, Univ. of Miami. 83 pp .

1953. Observations on a living species of Octopus Intmmelinchi Adam. Nautilus 66: 73-76.
1954. Cephalopoda of the Gulf of Mexico. Fishery Bull. Fish Wild. Serv. U.S. 55: 475-478.
1955. The Cephalopoda obtained by the Harvard-Havana expedition off the coast of Cuba in 1938-39. Bull. mar. Sci. Gulf \& Carib. 5: 81-115.
1956. A review of the cephalopods of the Gulf of Mexico. Bull. mar. Sci. Gulf \& Carib. 6: 85-178.
. 1956a. A checklist of the cephalopods of Florida. Q. Jl. Fla. Acad. Sci. 19: 274-282.
1957. The cephalonods collected by the R/V Atiantis during the West Indian cruise of 1954. Bull. mar. Sci. Gulf \& Carib. 8: 369-389.
1958. Bermudan cephalopods. Fieldiana, Zool. 39: 419-446.
1959. A monograph of the Cephalopoda of the North Atlantic. 1. The family I ycoteuthidac. Bull. mar. Sci. Gulf \& Carib. 12: 264-305.
1960. Cephalopods of the Philippine 1slands. Bull. U.S. natn. Mus. 234:1-180.

1963a. A new species of cranchiid squid Phasmatopsis Iucifer, from the Gulf of Mexico. 13ull. mar. Sci. Gulf \& Carib. 13: 77-83.
1964. Octopus defilippi, an addition to the cephalopod fauna of the Western Atlantic. Bull. mar. Sci. Gulf \& Carib. 14: 554-560.
-_ 1964a. A note on some cephalopods from Brazil with a description of a new species of octopod. Eledone Imassyae. Bull. mar. Sci. Gulf \& Carib. 14: 511-516.
-_ 1967. The biology and bathymetric distribution of deep sea cephalopods. Studies in in Tropical Oceanography 5: 511-538.

1967a. Some bathypelagic cephalopods from South African waters. Ann. S. Afr. Mus. 50: 61-88.

- 1968. Octopods from the R/V Pillesbury Southwestern Caribbean cruise, 1966, with a description of a new species, Octopus zonatus. Bull. mar. Sci. 18: 645-659.
Voss, N. A. 1969. A monograph of the Cephalopoda of the North Allantic. The family Histioteuthidae. Bull. mar. Sci. 19: 713-867. 1974. Studies on the cephalopod family Cranchiidae. A redescription of Egea inermis Joubin, 1933. Bull. mar. Sci. 24: 939-956.
——, and G. L. Voss. 1962. Two new species of squid of the genus Calliteuthis from the Western Atlantic with a redescription of Callitenthis reversa Verrill. Bull. mar. Sci. Gulf \& Carib. 12: 169-200.
Wennekens, M. P. 1959. Water mass properties of the Straits of Florida and related waters. Bull. mar. Sci. Gulf \& Carib. 9: 1-52.
Wüst, G. 1924. Florida- und Antillenstrom eine hydrodynamische untersuchung. Veroff. Inst. Meeresk. Univ. Berlin, N.F., Reihe A, 12: 1-48. Translation by W. von Dunser, RSMAS, 1967.

Young. R. E. 1972. The systematics and areal distribution of pelagic cephalopods from the seas off Southern California. Smithson. Contr. Zool. 97: 1-157.

Address: Rosenstiel School of Marine and Atmospheric Science, University of Miami, Division of Biology and Living Resources, 4600 Rickenbacker Cansewry, Miani, Florida 33149.

## API'ENDIX 1

R/V GERDA STATION DATA

| $\begin{aligned} & \text { Gerda } \\ & \text { Sta. } \end{aligned}$ | Date | $\begin{aligned} & \text { North } \\ & \text { latitude } \end{aligned}$ | $\begin{aligned} & \text { West } \\ & \text { Iongitude } \end{aligned}$ | $\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$ | Gear |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | May 4, 1962 | $25^{\circ} 49^{\prime}$ | $80^{\circ} 00^{\prime}$ | 256 | OT |
| 4 A | May 4 | $25^{\circ} 49^{\prime}$ | $80^{\circ} 00^{\prime}$ | sfc. | DN |
| 8 | May 25 | $25^{\circ} 43^{\prime}$ | $80^{\circ} 04^{\prime}$ | 35.5 | IKMT |
| 10 | May 25 | $25^{\circ} 43^{\prime}$ | $80^{\circ} 00^{\prime}$ | 78 | IKMT |
| 11 | May 26 | $25^{\circ} 41^{\prime}$ | $79^{\circ} 50^{\prime}$ | 155-104 | IKMT |
| 15 | May 30 | $25^{\circ} 45^{\prime}$ | $80^{\circ} 00^{\prime}$ | 270-302 | OT |
| 24 | June 20 | $25^{\circ} 33^{\prime}$ | $79^{\circ} 43^{\prime}$ | 300-260 | IKMT |
| 25 | Junc 20 | $25^{\circ} 35^{\prime}$ | $79^{\circ} 46^{\prime}$ | 104-130 | IKMT |
| 26 | June 21 | $25^{\circ} 31^{\prime}$ | $79^{\circ} 50{ }^{\prime}$ | 100-52 | IKMT |
| 29 | June 21 | $25^{\circ} 41^{\prime \prime}$ | $80^{\circ} 02^{\prime}$ | 183-247 | OT |
| 37 | June 22 | $25^{\circ} 33^{\prime}$ | $79^{\circ} 39^{\prime}$ | 250-209 | IKMT |
| 40 | June 22 | $25^{\circ} 20^{\prime}$ | $79^{\circ} 42^{\prime}$ | sfc. | DN |
| 43 | July 20 | $25^{\circ} 39^{\prime}$ | $80^{\circ} 02^{\prime}$ | 87-139 | IKMT |
| 46 | Aug. 21 | $25^{\circ} 39^{\prime}$ | $79^{\circ} 58^{\prime}$ | 87 | IKMT |
| 47 | Aug. 21 | $25^{\circ} 39^{\prime}$ | $79^{\circ} 40^{\prime}$ | 162 | IKMT |
| 54 | Aug. 28 | $25^{\circ} 31^{\prime}$ | $79^{\circ} 32^{\prime}$ | 230-200 | IKMT |
| 61 | Aug. 29 | $25^{\circ} 14^{\prime}$ | $80^{\circ} 02^{\prime}$ | 256 | OT |
| 64 | Aug. 29 | $25^{\circ} 20^{\prime}$ | $80^{\circ}(0)$ | sfc . | DN |
| 66 | Sept. 26 | $25^{\circ} 25^{\prime}$ | $79^{\circ} 59^{\prime}$ | 366 | OT |
| 68 | Sept. 26 | $25^{\circ} 37^{\prime}$ | $79^{\circ} 57^{\prime}$ | 363-287 | 1KMT |
| 69 | Sept. 26 | $25^{\circ} 28^{\prime}$ | $79^{\circ} 41^{\prime}$ | 78 | IKMT |
| 70 | Sept. 27 | $25^{\circ} 23^{\prime}$ | $79^{\circ} 41^{\prime}$ | sfc . | DN |
| 71 | Sept. 27 | $25^{\circ} 33^{\prime}$ | $79^{\circ} 38^{\prime}$ | 300 | IKMT |
| 72 | Sept. 27 | $25^{\circ} 28^{\prime}$ | $79^{\circ} 43^{\prime}$ | 458 | IKMT |
| 75 | Sept. 27 | $25^{\circ} 21^{\prime}$ | $79^{\circ} 41^{\prime}$ | sfc. | DN |
| 76 | Sept. 28 | $25^{\circ} 28^{\prime}$ | $80^{\circ} 00^{\prime}$ | 344-348 | OT |
| 77 | Sept. 28 | $25^{\circ} 29^{\prime}$ | $79^{\circ} 54^{\prime}$ | 329-339 | $\mathrm{OH}^{-1}$ |
| 80 | Dec. 20 | $25^{\circ} 39^{\prime}$ | $80^{\circ} 03^{\prime}$ | 99-90 | 1KMT |
| 82 | Dec. 20 | $25^{\circ} 32^{\prime}$ | $80^{\circ} 03^{\prime}$ | 154 | 1 KMT |
| 83 | Dec. 20 | $25^{\circ} 47^{\prime}$ | $79^{\circ} 50^{\circ}$ | 147-133 | 1KMT |
| 86 | Dec. 21 | $25^{\circ} 39^{\prime}$ | $79^{\circ} 46^{\prime}$ | 126-140) | 1 KMT |
| 88 | Mar. 8, 1963 | $25^{\circ} 02^{\prime}$ | $79^{\circ} 48^{\circ}$ | 389-338 | IKMT |
| 89 | Mar. 8 | $24^{\circ} 57^{\prime}$ | $79^{\circ} 57^{\prime}$ | 259-208 | IKMT |
| 90 | Apr. 18 | $25^{\circ} 35^{\prime}$ | $79^{\circ} 45^{\prime}$ | 389-363 | IKMT |
| 92 | Apr. 19 | $25^{\circ} 10^{\prime}$ | $79^{\circ} 41^{\prime}$ | 157 | IKMT |
| 95 | Apr. 19 | $25^{\circ} 08^{\prime}$ | $79^{\circ} 44^{\prime}$ | sfe. | DN |
| 97 | May 9 | $25^{\circ} 31^{\prime}$ | $79^{\circ} 51^{\prime}$ | 208-259 | IKMT |
| 99 | May 9 | $25^{\circ} 21^{\prime}$ | $79^{\circ} 50^{\prime}$ | 52 | IKMT |
| 100 | May 9 | $25^{\circ} 18^{\prime}$ | $79^{\circ} 50^{\prime}$ | 24-26 | IKMT |
| 101 | May 10 | $25^{\circ} 19^{\prime}$ | $79^{\circ} 46^{\prime}$ | 62-78 | IKMT |
| 104 | May 23 | $25^{\circ} 37^{\prime}$ | $80^{\circ} 03^{\prime}$ | 73-78 | IKMT |
| 105 | May 23 | $25^{\circ} 36^{\prime}$ | $80^{\circ} 00^{\prime}$ | 61-91 | IKMT |
| 106 | May 23 | $25^{\circ} 34^{\prime}$ | $80^{\circ} 01^{\prime}$ | 97-104 | IKMT |
| 107 | May 23 | $25^{\circ} 32^{\prime}$ | $80^{\circ} 03^{\prime}$ | 113-130 | IKMT |
| 108 | May 23 | $25^{\circ} 30^{\prime}$ | $79^{\circ} 56^{\prime}$ | 113-130 | IKMT |
| 110 | June 17 | $24^{\circ} 21^{\prime}$ | $82^{\circ} 55^{\prime}$ | 183 | OT |
| 115 | June 18 | $24^{\circ} 02^{\prime}$ | $82^{\circ} 55^{\prime}$ | 696 | IKMT |
| 119 | June 19 | $23^{\circ} 32^{\prime}$ | $82^{\circ} 26^{\prime}$ | 1647 | Dredge |
| 120 | June 19 | $23^{\circ} 32^{\prime}$ | $82^{\circ} 21^{\prime}$ | ()-1620 | OT |
| 143 | June 22 | $24^{\circ} 28^{\prime}$ | $80^{\circ} 12^{\prime}$ | 805 | OT |
| 146 | June 23 | $24^{\circ} 45^{\prime}$ | $80^{\circ} 09^{\prime}$ | 659-686 | OT |
| 159 | June 25 | $26^{\circ} 36^{\prime}$ | $79^{\circ} 33^{\prime}$ | 733 | OT |

## APPENDIX I

R/V GERDA STATION DATA (continued)

| $\begin{gathered} \text { Gerna } \\ \text { Sta. } \end{gathered}$ | Date | North latitude | West longitude | $\begin{aligned} & \text { Depth } \\ & \text { (meters) } \end{aligned}$ | Gear |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 161 | June 26 | $26^{\circ} 37^{\prime}$ | $79^{\circ} 50^{\prime}$ | 412-42I | OT |
| 175 | June 30 | $27^{\circ} 19^{\prime}$ | $79^{\circ} 44^{\prime}$ | 430-42 I | OT |
| 179 | July 1 | $27^{\circ} 41^{\prime}$ | $79^{\circ} 11^{\prime}$ | 549-567 | OT |
| 181 | July 2 | $27^{\circ} 57^{\prime}$ | $78^{\circ} 56^{\prime}$ | 779 | OT |
| 195 | Sept. 9 | $25^{\circ} 45^{\prime}$ | $79^{\circ} 52^{\prime}$ | 137 | IKMT |
| 196 | Sept. 9 | $25^{\circ} 35^{\prime}$ | $79^{\circ} 52^{\prime}$ | 259-342 | IKMT |
| 197 | Sept. 10 | $25^{\circ} 30^{\prime}$ | $79^{\circ} 58^{\prime}$ | 329 | OT |
| 199 | Sept. 10 | $25^{\circ} 47^{\prime}$ | $79^{\circ} 47^{\prime}$ | 209-410 | IKMT |
| 200 | Sept. 10 | $25^{\circ} 43^{\prime}$ | $79^{\circ} 42^{\prime}$ | 104-205 | IKMT |
| 201 | Sept. 10 | $25^{\circ} 40^{\prime}$ | $79^{\circ} 47^{\prime}$ | 104-205 | IKMT |
| 203 | Jan. 10, 1964 | $24^{\circ} 01^{\prime}$ | $83^{\circ} 28^{\prime}$ | 518 | IKMT |
| 205 | Jan. 18 | $23^{\circ} 20^{\prime}$ | $82^{\circ} 55^{\prime}$ | 907-1022 | IKMT |
| 206 | Jan. 19 | $23^{\circ} 38^{\prime}$ | $83^{\circ} 06^{\prime}$ | 907 | IKMT |
| 207 | Jan. I9 | $23^{\circ} 49^{\prime}$ | $82^{\circ} 52^{\prime}$ | 259 | IKMT |
| 208 | Jan. I9 | $23^{\circ} 39^{\prime}$ | $82^{\circ} 38^{\prime}$ | 777-625 | IKMT |
| 211 | Jan. 20 | $23^{\circ} 30^{\prime}$ | $82^{\circ} 31^{\prime}$ | 348-684 | IKMT |
| 212 | Jan. 20 | $23^{\circ} 43^{\prime}$ | $82^{\circ} 31^{\prime}$ | 855-863 | 1KMT |
| 213 | Jan. 20 | $23^{\circ} 35^{\prime}$ | $82^{\circ} 40^{\prime}$ | 777 | IKMT |
| 215 | Jan. 20 | $23^{\circ} 36^{\prime}$ | $82^{\circ} 46^{\prime}$ | sfc. | DN |
| 222 | Jan. 22 | $24^{\circ} 23^{\prime}$ | $80^{\circ} 28^{\prime}$ | 824 | OT |
| 225 | Jan. 23 | $24^{\circ} 24^{\prime}$ | $80^{\circ} 22^{\prime}$ | 805 | OT |
| 228 | Jan. 24 | $25^{\circ} 04^{\prime}$ | $80^{\circ} 03^{\prime}$ | 320 | OT |
| 256 | Feb. 6 | $27^{\circ} 37^{\prime}$ | $78^{\circ} 56^{\prime}$ | 494-467 | OT |
| 266 | Mar. 29 | $25^{\circ} 39^{\prime}$ | $79^{\circ} 58^{\prime}$ | 338-332 | OT |
| 280 | Apr. I | $25^{\circ} 37^{\prime}$ | $80^{\circ} 04^{\prime}$ | 110-128 | OT |
| 284 | Apr. 2 | $24^{\circ} 09^{\prime}$ | $80^{\circ} 49^{\prime}$ | 65 | IKMT |
| 285 | Apr. 2 | $24^{\circ} 09^{\prime}$ | $80^{\circ} 51^{\prime}$ | 400-596 | IKMT' |
| 286 | Apr: 2 | $24^{\circ} 03^{\prime}$ | $81^{\circ} 05^{\prime}$ | 595 | IKMT |
| 287 | Apr. 2 | $23^{\circ} 57^{\prime}$ | $81^{\circ} 16^{\prime}$ | 595 | IKMT |
| 304 | May 23 | $25^{\circ} 26^{\prime}$ | $79^{\circ} 23^{\prime}$ | 796 | OT |
| 313 | May 24 | $25^{\circ} 37^{\prime}$ | $79^{\circ} 33^{\circ}$ | 450 | IKMT |
| 314 | May 25 | $25^{\circ} 44^{\prime}$ | $79^{\circ} 34^{\prime}$ | 389 | IKMT |
| 318 | May 25 | $25^{\circ} 40^{\prime}$ | $79^{\circ} 43^{\prime}$ | sfc. | Hook \& Line |
| 321 | May 25 | $25^{\circ} 47^{\circ}$ | $79^{\circ} 53^{\prime}$ | 200 | IKMT |
| 323 | June 25 | $25^{\circ} 40^{\prime}$ | $79^{\circ} 5 I^{\prime}$ | 256 | IKMT |
| 326 | June 26 | $25^{\circ} 41^{\prime \prime}$ | $79^{\circ} 44^{\prime}$ | 256 | IKMT |
| 327 | June 26 | $25^{\circ} 39^{\prime}$ | $79^{\circ} 44^{\prime}$ | 256 | IKMT |
| 328 | June 26 | $25^{\circ} 29^{\prime}$ | $79^{\circ} 49^{\prime}$ | 256 | IKMT |
| 329 | June 26 | $25^{\circ} 51^{\prime \prime}$ | $79^{\circ} 41^{\prime}$ | 256 | IKMT |
| 331 | June 26 | $25^{\circ} 26^{\prime}$ | $79^{\circ} 41^{\prime}$ | 256 | IKMT |
| 332 | June 26 | $25^{\circ} 36^{\prime}$ | $79^{\circ} 44^{\prime}$ | 256 | IKMT |
| 333 | June 27 | $25^{\circ} 3 \mathrm{I}^{\prime}$ | $79^{\circ} 55^{\prime}$ | 256 | IKMT |
| 337 | July 22 | $26^{\circ} 02^{\prime}$ | $79^{\circ} 48^{\prime}$ | 231 | IKMT |
| 339 | July 23 | $26^{\circ} 01^{\prime}$ | $79^{\circ} 31^{\prime}$ | 375 | IKMT |
| 343 | July 24 | $25^{\circ} 52^{\prime}$ | $79^{\circ} 20^{\prime}$ | 51 | IKMT |
| 344 | July 24 | $26^{\circ} 05^{\prime}$ | $79^{\circ} 20^{\prime}$ | 137 | IKMT |
| 345 | July 24 | $26^{\circ} 00^{\prime}$ | $79^{\circ} 28^{\prime}$ | 51 | IKMT |
| 346 | July 25 | $26^{\circ} 01^{\prime}$ | $79^{\circ} 24^{\prime}$ | 181 | IKMT |
| 350 | July 25 | $25^{\circ} 52^{\prime}$ | $79^{\circ} 24^{\prime}$ | 146 | IKMT |
| 351 | July 25 | $25^{\circ} 40^{\prime}$ | $79^{\circ} 32^{\prime}$ | 45 | IKMT |
| 352 | Aug. 23 | $25^{\circ} 36^{\prime}$ | $79^{\circ} 38^{\prime}$ | 450-520 | IKMT |
| 353 | Aug. 23 | $25^{\circ} 4 \mathrm{I}^{\prime}$ | $79^{\circ} 26^{\prime}$ | 450-500 | IKMT |

APPENDIX 1
R/V GERDA STATION DATA (continued)

| $\begin{gathered} \text { Gerda } \\ \text { Sla. } \end{gathered}$ | Date | North lalilude | West Iongilude | $\begin{aligned} & \text { Depih } \\ & \text { (melers) } \end{aligned}$ | Gear |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 356 | Allg. 25 | $25^{\circ} 31^{\prime}$ | $79^{\circ} 8^{\prime}$ | 520-560 | IKMT |
| 358 | Alug. 25 | $25^{\circ} 32^{\prime}$ | $79^{\circ} 31^{\prime}$ | 520 | IKMT |
| 388 | Sept. 19 | $27^{\circ} 18^{\prime}$ | $79^{\circ} 12^{\prime}$ | 320 | Dredge |
| 413 | Scpt. 22 | $26^{\circ} 20^{\prime}$ | $80^{\circ} 00^{\prime}$ | 183 | OT |
| 414 | Sept. 22 | $26^{\circ} 23^{\prime}$ | $80^{\circ} 01^{\prime}$ | 165-152 | OT |
| 432 | Nov. 28 | $24^{\circ} 19^{\prime}$ | $82^{\circ} 29^{\prime}$ | 188-199 | OT |
| 435 | Nov. 28 | $24^{\circ} 17^{\prime}$ | $82^{\circ} 26^{\prime}$ | 417-384 | OT |
| 452 | Jan. 22, 1965 | $25^{\circ} 02^{\prime}$ | $80^{\circ} 2^{\prime}$ | 185 | OT |
| 456 | Jan. 23 | $24^{\circ} 38^{\prime}$ | $80^{\circ} 48^{\prime}$ | 146-119 | OT |
| 462 | Jan. 25 | $24^{\circ} 20^{\prime}$ | $82^{\circ} 46^{\prime}$ | 174-201 | OT |
| 463 | Jan. 25 | $24^{\circ} 19^{\prime}$ | $82^{\circ} 43^{\prime}$ | 80-90 | IKMT |
| 464 | Jan. 25 | $24^{\circ} 18^{\prime}$ | $83^{\circ} 00^{\prime}$ | 370-357 | OT |
| 467 | Jan. 25 | $24^{\circ} 18^{\prime}$ | $82^{\circ} 56^{\prime}$ | 370-348 | OT |
| 497 | Feb. 3 | $26^{\circ} 41^{\prime}$ | $79^{\circ} 00^{\prime}$ | 18 | PN |
| 498 | Feb. 3 | $26^{\circ} 37^{\prime}$ | $78^{\circ} 56^{\prime}$ | sfe. | DN |
| 504 | Feb. 4 | $26^{\circ} 30^{\prime}$ | $78^{\circ} 47^{\prime}$ | 27 | OT |
| 522 | Mar. 3 | $26^{\circ} 05^{\prime}$ | $78^{\circ} 49^{\prime}$ | 322-366 | OT |
| 529 | Mar, 3 | $26^{\circ} 29^{\prime}$ | $78^{\circ} 36^{\prime}$ | sfc. | DN |
| 530 | Mar. 4 | $26^{\circ} 28^{\prime}$ | $78^{\circ} 36^{\prime}$ | 25-30 | PN |
| 539 | Apr. 2 | $25^{\circ} 28^{\prime}$ | $78^{\circ} 06^{\prime}$ | sfc. | DN |
| 545 | Apr. 2 | $25^{\circ} 24^{\prime}$ | $77^{\circ} 42^{\prime}$ | 104 | PN |
| 546 | Apr. 2 | $25^{\circ} 23^{\prime}$ | $77^{\circ} 50^{\prime}$ | sfc. | DN |
| 559 | Apr. 11 | $23^{\circ} 51^{\prime}$ | $83^{\circ} 04^{\prime}$ | ? | $3 / \mathrm{s}^{\prime \prime}$ line |
| 566 | Apr. 12 | $24^{\circ} 25^{\prime}$ | $82^{\circ} 56^{\circ}$ | 64 | OT |
| 570 | Apr. 12 | $24^{\circ} 20^{\prime}$ | $82^{\circ} 50^{\prime}$ | sfc. | DN |
| 584 | Apr. 14 | $24^{\circ} 32^{\prime}$ | $81^{\circ} 20^{\prime}$ | 37-33 | Dredge |
| 589 | Apr. 14 | $24^{\circ} 40^{\prime}$ | $80^{\circ} 48^{\prime}$ | 150 | OT |
| 602 | Apr. 15 | $25^{\circ} 05^{\prime}$ | $80^{\circ} 14^{\prime}$ | 95 | $\mathrm{OT}^{\prime}$ |
| 624 | June 29 | $25^{\circ} 49^{\prime}$ | $79^{\circ} 19^{\prime}$ | 234-216 | OT |
| 646 | July 1 | $25^{\circ} 49^{\prime}$ | $79^{\circ} 21^{\prime}$ | 439-531 | OT |
| 650 | July 16 | $26^{\circ} 37^{\prime}$ | $79^{\circ} 45^{\prime}$ | 476-452 | OT |
| 652 | July 16 | $27^{\circ}\left(07^{\prime}\right.$ | $79^{\circ} 46^{\prime \prime}$ | 403-393 | OT |
| 654 | July 16 | $27^{\circ} 16^{\prime}$ | $79^{\circ} 49^{\prime}$ | 324 | OT |
| 655 | July 16 | $27^{\circ} 00^{\prime}$ | $79^{\circ} 49^{\prime}$ | 287-262 | OT |
| 657 | July 16 | $27^{\circ} 08^{\prime}$ | $79^{\circ} 49^{\prime}$ | 216-201 | OT ${ }^{\circ}$ |
| 658 | July 16 | $27^{\circ} 15^{\prime}$ | $79^{\circ} 44^{\prime}$ | 320-310 | OT |
| 659 | July 16 | $27^{\circ} 20^{\prime}$ | $79^{\circ} 40^{\prime}$ | 366 | OT |
| 686 | July 21 | $25^{\circ} 55^{\prime}$ | $77^{\circ} 44^{\prime}$ | 388 | IKMT |
| 705 | July 22 | $26^{\circ} 29^{\prime}$ | $78^{\circ} 41^{\prime}$ | 362-393 | OT |
| 716 | Aug. 3 | $26^{\circ} 08^{\prime}$ | $79^{\circ} 24^{\prime}$ | 544 | OT |
| 717 | Aug. 3 | $26^{\circ} 11^{\prime}$ | $79^{\circ} 25^{\prime}$ | sfc. | PN |
| 726 | Aug. 3 | $26^{\circ} 03^{\prime}$ | $78^{\circ} 54^{\prime}$ | 201-194 | Dredge |
| 735 | Sept. 1 | $26^{\circ} 39^{\prime}$ | $79^{\circ} 00^{\prime}$ | sfc. | DN |
| 741 | Sept. 2 | $26^{\circ} 03^{\prime}$ | $79^{\circ} 54{ }^{\prime}$ | 23 | PN |
| 746 | Sept. 3 | $25^{\circ} 57^{\prime}$ | $80^{\circ}(1) 4^{\prime}$ | 35-29 | PN |
| 760 | Sept. 15 | $25^{\circ} 08^{\prime}$ | $80^{\circ} 11^{\prime}$ | 152-143 | OT |
| 765 | Sept. 16 | $25^{\circ} 39^{\prime}$ | $80^{\circ}(1) 4^{\prime}$ | 148-150 | OT |
| 769 | Jan. 26, 1966 | $25^{\circ} 11^{\prime}$ | $80^{\circ} 10^{\prime}$ | 110-113 | OT |
| 794 | Aug. 19 | $24^{\circ} 54^{\prime}$ | $80^{\circ} 15^{\prime}$ | 219-212 | OT |
| 795 | Aug. 19 | $24^{\circ} 52^{\prime}$ | $80^{\circ} 20^{\prime}$ | 187-161 | OT |
| 815 | June 22, 1967 | $24^{\circ} 08^{\prime}$ | $79^{\circ} 48^{\prime}$ | 618 | OT |
| 830 | July 7 | $25^{\circ} 40^{\prime}$ | $79^{\circ} 59^{\prime}$ | 342 | OT |

APPENDIX 1
R/V GERDA STATION DATA (continued)

| $\begin{aligned} & \text { Gerda } \\ & \text { Sta. } \end{aligned}$ | Date | North latitude | West longitude | Depth (meters) | Gear |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 833 | July 10 | $25^{\circ} 10^{\prime}$ | $80^{\circ} 10^{\prime}$ | 99-91 | OT |
| 834 | July 10 | $25^{\circ} 15^{\prime}$ | $80^{\circ} 10^{\prime}$ | 86-79 | OT |
| 845 | July 12 | $25^{\circ} 36^{\prime}$ | $80^{\circ} 01^{\prime}$ | 296-318 | OT |
| 853 | Aug. 25 | 25 ${ }^{\circ} 23^{\prime}$ | $80^{\circ} 02^{\prime}$ | 210-220 | OT |
| 855 | Aug. 25 | $25^{\circ} 21^{\prime \prime}$ | $80^{\circ} 01^{\prime}$ | 207-247 | OT |
| 857 | Aug. 25 | $25^{\circ} 22^{\prime \prime}$ | $80^{\circ} 03^{\prime}$ | 194-187 | $\mathrm{O}^{\prime \prime}$ |
| 877 | Aug. 31 | $24^{\circ} 00^{\prime}$ | $79^{\circ} 47^{\prime}$ | 325-274 | $\mathrm{OT}^{\prime}$ |
| 894 | Sept. 10 | $21^{\circ} 10^{\prime}$ | $86^{\circ} 19^{\prime}$ | 174-207 | OT |
| 897 | Sept. 10 | $20^{\circ} 59^{\prime}$ | $86^{\circ} 24^{\prime}$ | 293-210 | OT |
| 898 | Sept. 10 | $21^{\circ} 04^{\prime}$ | $86^{\circ} 19^{\prime}$ | 338-366 | OT |
| 924 | Sept. 29 | $25^{\circ} 52^{\prime}$ | $78^{\circ} 27^{\prime}$ | 311-256 | OT |
| 932 | Sept. 30 | $27^{\circ} 25^{\prime}$ | $79^{\circ} 10^{\prime}$ | 400-435 | OT |
| 958 | Jan. 31, 1968 | $23^{\circ} 27^{\prime}$ | $82^{\circ} 47^{\prime}$ | 1913-1902 | OT |
| 987 | Mar. 5 | $24^{\circ} 00^{\prime}$ | $80^{\circ} 10^{\prime}$ | sfc. | DN |
| 997 | May 21 | $27^{\circ} 01^{\prime}$ | $79^{\circ} 51^{\prime}$ | 285-301 | OT |
| 998 | May 21 | $27^{\circ} 10^{\prime}$ | $79^{\circ} 43^{\prime}$ | 366-375 | $\mathrm{Ol}^{\prime}$ |
| 1001 | May 21 | $27^{\circ} 07^{\prime}$ | $79^{\circ} 58^{\prime}$ | 60-62 | OT |
| 1006 | June 13 | $24^{\circ} 35^{\prime}$ | $80^{\circ} 01^{\prime}$ | sfc. | ON |
| 1009 | Junc 14 | $23^{\circ} 51^{\prime}$ | $79^{\circ} 39^{\prime}$ | 358-432 | OT |
| 1013 | June 14 | $23^{\circ} 36^{\prime}$ | $79^{\circ} 31^{\prime}$ | sfc. | DN |
| 1016 | June 15 | $23^{\circ} 34^{\prime}$ | $79^{\circ} 12^{\prime}$ | 528-543 | OT |
| 1024 | Feb. 25, 1969 | $24^{\circ} 24^{\prime}$ | $81^{\circ} 29^{\prime}$ | 73-106 | OT |
| 1028 | Feb. 25 | $24^{\circ} 28^{\prime}$ | $81^{\circ} 24^{\prime}$ | 135-146 | OT |
| 1033 | Feb. 26 | $24^{\circ} 36^{\prime}$ | $81^{\circ} 06^{\prime}$ | 42 | OT |
| 1034 | Feb. 26 | $24^{\circ} 35^{\prime}$ | $81^{\circ} 05^{\prime}$ | $66-68$ | $\mathrm{Or}^{\circ}$ |
| 1035 | Feb. 26 | $24^{\circ} 34^{\prime}$ | $80^{\circ} 58^{\prime}$ | 139-185 | $\mathrm{O}^{\prime} 1$ |
| 1038 | Feb. 26 | $24^{\circ} 51^{\prime}$ | $80^{\circ} 36^{\prime}$ | 40.44 | $\mathrm{O}^{\prime}$ |
| 1043 | Mar. 21 | $25^{\circ} 37^{\prime}$ | $77^{\circ} 36^{\prime}$ | 200 | PN |
| 1046 | Mar. 21 | $25^{\circ} 32^{\prime}$ | $77^{\circ} 31^{\prime}$ | 330 | PN |
| 1052 | Mar. 22 | $25^{\circ} 25^{\prime}$ | $77^{\circ} 37^{\prime}$ | sfc. | Fish l'oison |
| 1069 | Mar. 24 | $26^{\circ} 34^{\prime}$ | $79^{\circ} 01^{\prime}$ | 0-10 | PN |
| 1081 | Apr. 26 | $24^{\circ} 24^{\prime}$ | $81^{\circ} 58^{\prime}$ | 110 | OT |
| 1251 | Mar. 11, 1970 | $23^{\circ} 55^{\prime}$ | $80^{\circ} 33^{\prime}$ | 20 | 1KMT |
| 1259 | Mar. 12 | $25^{\circ} 27^{\prime}$ | $80^{\circ} 04^{\prime}$ | 70 | 1KMT |
| 1286 | Aug. 23 | $21^{\circ} 06^{\prime}$ | $86^{\circ} 28^{\prime}$ | 210-347 | OT |
| 1294 | Mar. 25, 1971 | $25^{\circ} 31^{\prime \prime}$ | $80^{\circ} 05^{\prime}$ | sfc. | 1 KMT |
| 1295 | Mar. 25 | $25^{\circ} 33^{\prime}$ | $80^{\circ} 03^{\prime}$ | sfc. | 1 KMT |
| 1298 | Mar. 26 | 24*51' | $80^{\circ} 33^{\prime}$ | 20 | IKMT |
| 1300 | Mar. 27 | $24^{\circ} 51^{\prime}$ | $80^{\circ} 35^{\prime}$ | 69 | OT |
| 1319 | Apr. 1 | $26^{\circ} 51^{\prime \prime}$ | $79^{\circ} 57^{\prime}$ | 161-154 | OT |
| 1329 | Dec. 11 | $25^{\circ} 50^{\prime}$ | $78^{\circ} 22^{\prime}$ | 236-293 | O' |


[^0]:    Loligo sepioidet Blainville, 1823: 133.
    Sepioteuthis sepioiden, Vertill, 1882: 374 (off Key West).-Voss, 1952: 26 (off Key Largo, Miami): 1954: 477 (off Lower Florida Keys): 1955: 97 (east Florida eoast); 1956: 115 (off Miami to Dry Tortugas): 1956a: 277 (Biseayne Bay).-LaRoe, 1967: 70 (off Lower Matecombe Key).
    Moterial examined.-3 fenmales, M1, 140.0-99.0 $\mathrm{mm}, \mathrm{G}-546 .-1$ male, ML, 117.0 mm . G-987.

    Type-locality.-Martinique.

[^1]:    Octopus unicirrhus d’Orbigny, 1840: 70.
    Polypus scorpio Berry, 1920: 295 (off Key Biscayne).
    Scueurgus unicirhus, Voss, 1951: 65 (off Sombrero Light and Palm Beach); 1954: 477 (Lower Florida Keys) ; 1955: 111 (off Matan-

[^2]:    * Known only from the Straits at this time.
    - Also known from the Medilerranean Sea.

