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PREFACE 

Copepod development has been studied for almost 250 years, and pub- 
lished descriptions of the exoskeletal morphology have been the dominant 
theme for most of that time. Almost half a century transpired between the first 
description of a post-embryonic developmental stage and a description that 
included a complete set of all developmental stages of a copepod. Interpretive 
questions about post-embryonic development based on an incomplete set of 
stages date from the early nineteenth century, but more recently researchers 
have discovered that interpretations are more interesting and nuanced if all 
developmental stages can be incorporated into the analysis. 

In this monograph, we focus, whenever possible, on interpretations derived 
from a complete set of all developmental stages. We diagnose both the nau- 
plius and the copepodid in order to promote such interpretations. We discuss 
variation in the number of naupliar stages and of copepodid stages among 
copepods, and also outline variation in the exoskeletal morphology of both 
the naupliar and copepodid phases of development. Internal anatomy is of 
interest to us, as is behavior and ecology, although observations from a com- 
plete set of developmental stages usually are not available on these topics. 
We find it interesting that at present stage-specific studies of internal anatomy 
during the naupliar phase of development are more complete than studies of 
the copepodid phase, while distributions in space and through time are more 
apt to be completely known for the copepodid phase of development. 

We spend some time discussing variations of the order in which somites 
are added to the copepod body, and analysing the order segments are added 
to its limbs during development. One result of particular interest to us is how 
often the architecture of the body or configuration of the limbs are shaped 
by failure to form arthrodial membranes, resulting in somite or segment 
complexes. A model for patterning the body of copepodids has been known 
for almost a century, and that model is used to help us infer the somite number 
of the naupliar stages. Observations of limb patterning date from the early 
twentieth century, but models have been proposed only recently. Because the 
architecture of the naupliar body and the configuration of its limbs are quite 
different from the situation for the copepodid body, we analyse in detail the 
transition between these two phases of development. 



2 CRM 008 - Frank D. Ferrari & Hans-Uwe Dahms 

Phylogenetic analyses are the coin of the contemporary realm for mor- 
phologists, and post-embryonic development has contributed to many phylo- 
genetic hypotheses. We are pleased to discuss them. Finally, we close with 
suggestions for future studies that seem to us technically possible and intel- 
lectually valuable. 

We dedicate this work to the memories of Patricia Dudley, late of Columbia 
University, and Paul Illg, late of the University of Washington, whose think- 
ing about copepod development, and particularly how limbs are patterned, 
appeared to be so far ahead of their time. 

We are pleased to extend our thanks to the following individuals who 
helped make this work possible. Lana Ong and Molly Kelly Ryan, Smithso- 
nian Institution, prepared the illustrations. David Damkaer of Cocker Creek, 
Washington, answered questions historical. Mark Grygier, Lake Biwa Mu- 
seum, collected nauplii of Leptestheria kawachiensis; Ted Durbin, Univer- 
sity of Rhode Island, cultured developmental stages of Calanus finmarchicus; 
Wim Klein Breteler, Royal Netherlands Institute for Sea Research, cultured 
stages of Temora longicomis; Debbie Steinberg, then at the Bermuda Sta- 
tion for Biological Research, collected copepodids of Euchirella messinen- 
sis; John Fornshell, Cambridge Scientific Press, collected stages of Longi- 
pedia americana, Acrocalanus gibber, and Derocheilocaris typica from wa- 
ters off Fort Pierce, Florida. Mashiro Dojiri, City of Los Angeles, provided 
a manuscript copy of his study with Gordon Hendler and Gregory Deets 
on the development of Caribeopsyllus amphiodiae; Pedro-Miguel Martinez 
Arbizu, Deutsches Zentrum fiir Marine Biodiversitatsforschung, provided a 
manuscript copy of his work on the phylogenetic position of poecilostome 
families. 

Finally, our special thanks to J. Carel von Vaupel Klein, editor of Crus- 
taceana Monographs, for his extraordinary patience during the preparation 
of this work. 

FRANK D. FERRARI 

HANS-UWE DAHMS 



AN INTRODUCTION TO COPEPODS AND A BRIEF HISTORY 
OF STUDIES OF THEIR DEVELOPMENT 

Copepods are a speciose group of small crustaceans often placed in the 
category of class within the Linnaean system. The name Copepoda is derived 
from the Greek words for 'oar' and 'foot', and refers to the contralateral pairs 
of thoracic limbs, or swimming legs, that are united by an exoskeletal coupler 
or interpodal bar. Action of the limb pair, united by the interpodal bar, is 
linked in a way similar to the sculls of a small boat. An interpodal bar unites 
the contralateral pairs of some thoracic limbs at least some time during the 
copepodid phase of development of all copepods. These interpodal bars are 
a synapomorphy for the Copepoda. The name Copepoda does not refer to 
the fact that some thoracic limbs are flattened anterioposteriorly and are 
paddle-like, because this limb configuration is found on many crustaceans. 

Currently, more than 12,000 species of copepods are known to science, 
but that number probably represents less than a quarter of the extant species 
(Humes, 1994). Copepods vary in size significantly; early naupliar stages of 
copepods may be less than 0.1 mm in length while the largest adult parasite is 
over 30 cm. The adult copepod body is made up a series of somites forming a 
cephalon, a thorax and an abdomen. Somites of the cephalon do not articulate 
with one another, and the first thoracic somite always is fused to the cephalon 
to form a cephalothorax. The remaining six thoracic somites often articulate 
with one another on the adult body, as do the four abdominal somites. The 
cephalon bears the limbs of five somites: antenna 1, antenna 2, mandible, 
maxilla 1 and maxilla 2. Each thoracic somite bears a limb, respectively, the 
maxilliped, swimming legs 1-4 and limbs 5-6. Three abdominal somites do 
not bear a limb but the posterior abdominal somite bears an appendage, the 
caudal ramus. 

Copepods live anywhere there is any kind of water. Free-living copepods 
reside in the open fresh waters of lakes and ponds, as well as in underground 
aquifers. Water within the sediments of streams and rivers provides a different 
set of habitats for a different group of free-living copepods. Copepods also 
have been recovered from the water trapped in parts of terrestrial forest 
plants and from the surface water of terrestrial leaf-litter. Other free-living 
copepods successfully inhabit the open water of estuaries, as well as water on 
and within estuarine sediments. In marine habitats copepods are particularly 
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numerous, and free-swimming copepods are considered the most abundant 
group of metazoans in open pelagic waters. Marine copepods also are found 
on and within ocean sediments, and there even are copepods inhabiting the 
tiny openings within sea-ice. Other kinds of copepods have been successful 
in adapting to close associations with other aquatic animals and to a lesser 
extent with aquatic plants. These associations include living immediately 
around or on a wide variety of stationary or slow-moving invertebrates, as 
well as living attached to faster moving vertebrates, like fishes. Copepods 
have been particularly successful in exploiting a wide range of relationships 
as both external and internal parasites. In fact, parasitism is believed to have 
evolved from a different free-living ancestor at least twice among copepods. 

Successful adaptation to such a wide range of very different habitats has 
resulted in an unprecedented diversity in the body architecture and limb con- 
figuration of copepods. Development of the exoskeletal diversity of copepods 
is one of the major themes of this monograph, and a brief description of their 
morphological diversity would challenge any descriptive vocabulary. How- 
ever, the Linnaean system of classification of copepods, based on differences 
in body architecture and limb configuration of the exoskeleton, certainly re- 
flects this diversity in a general way. Thus, 1,985 genera and 233 families 
are a testament to the morphological diversity of the Copepoda. 

The post-embryonic development of copepods is divided into two phases, 
naupliar and copepodid. Each phase, in turn, is divided into a series of stages. 
A stage represents the period of time during which the exoskeleton of the 
body does not change architecture and the exoskeleton of the limbs does not 
change configuration. Instead, the exoskeleton usually changes significantly 
during the molt between two stages so that a stage represents the period of 
time between two consecutive molts. Changes in the remaining organs of the 
body may not be restricted to molts, and some of these organs often appear 
to develop continuously during one or both phases. 

During the naupliar phase of development, there is no direct external ex- 
pression of somites because the formation of arthrodial membranes between 
somites is suppressed. However, the naupliar body usually does increase in 
size from one stage to the next, and a limb bud often may be added during 
a molt. The addition of a limb bud usually indicates that a somite has been 
added, although the correlation is not direct. Early nauplii have three well- 
developed limbs, antenna 1, antenna 2 and the mandible, plus the setose bud 
of the caudal ramus. Setose buds of some of the limbs between the mandible 
and caudal ramus are added during the naupliar phase of development. 
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During the copepodid phase of development, thoracic and abdominal somi- 
tes, if present, often articulate, and the body usually increases in size and in 
somite number. There are up to nine well-developed, transformed appendages 
at the first copepodid stage: antenna 1, antenna 2, mandible, maxilla 1, max- 
illa 2, maxilliped, swimming legs 1-2 and the caudal ramus. The setose bud 
of swimming leg 3 also is present. Each remaining thoracic limb is added 
as a limb bud, one stage later during the copepodid phase than its somite is 
added to the body. Most limbs also add segment elements during the copepod 
phase of development. There usually is a significant change in body size and 
architecture during the molt between the naupliar and copepodid phases. 

Published studies of copepod development represent a complex literature 
and only a brief chronology of the important descriptive observations and 
conceptual discoveries is given here. Our understanding of the early history 
of descriptive works of copepods has benefited significantly from the schol- 
arship of Damkaer (2002). Lange (1756) published the earliest description of 
the developmental stage of a copepod, a freshwater cyclopid, although Van 
Leeuwenhoek had provided observations earlier in a letter of 16 October 1699 
to Antonio Megliabechi (Fryer, 1998). Lange (1756) illustrated both nauplii 
and copepodids, and his illustrations are also the earliest for a crustacean 
nauplius. De Geer (1778) confirmed Van Leeuwenhoek's observations about 
the size difference between early and later developmental stages of cope- 
pods. Ramdohr (1805) described the complete life history of a free-living 
cyclopid; more species than one were observed in his study. Jurine (1820) 
documented changes in the population structure of a freshwater cyclopid, 
"Monoculus quadricornis" (probably a species of Cyclops). Suriray (1819) 
illustrated a nauplius that hatched from the egg of a transformed parasitic 
copepod. Burmeister (1835) described a chalimus, which Kr0yer (1838) later 
understood to be an immature stage of a parasitic copepod. Wilson (1905) 
illustrated the complete development of a caligid; nauplius, copepodid, chal- 
imus and adult stages. Dietrich (1915) described and illustrated the sac-like 
exopod of antenna 2 and the sac-like mandibular palp of the first copepodid 
of Cyclops strenuus; both of these structures are significantly transformed 
from the segmented configuration on the nauplius. 

The history of concepts in copepod development begins a bit later. Von 
Nordmann (1832) compared the nauplius and the first copepodid of trans- 
formed parasites like Achtheres percarum and Tracheliastes polycolpus to 
the last naupliar stage and the first copepodid of free-living copepods, which 
then were known as wingless insects. He concluded that all of these species 
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were the same kind of crastacean. Von Nordmann's (1832) study was the 
first to apply homologous stages of copepod development to the question 
of where to place these transformed parasites among a set of systematic 
categories. Oberg (1906) determined homologies of setae on antenna 1 of 
Temora longicomis between the last nauplius and first copepodid by studying 
the internal organization of the exoskeleton of the first copepodid as it de- 
veloped within the last nauplius. Kraefft (1910) interpreted segmentation of 
the adult limb 5 of Acartia longiremis as it appeared from the internal orga- 
nization of the limb in the fifth copepodid stage, and Lucks (1926) provided 
a similar interpretation for the swimming leg rami of Cyclops viridis [now 
Megacyclops viridis]. Birge & Judey (1908) recognized that the development 
of Cyclops bicuspidatus [now Acanthocyclops thomasi] could be interrupted 
by a long period of quiescence during which the molt of the encased fourth 
copepodid stage was delayed. Giesbrecht (1913) proposed that during cope- 
podid development, one new somite is added immediately anterior to the 
anal somite during each molt. Illg (1949) noticed that setae that would be 
found on the middle segment of the rami of the swimming legs later in de- 
velopment of Paranthessius columbiae initially formed on the distal segment 
complex of the swimming leg rami. The arthrodial membrane that separates 
these setae on the middle segment from those on the distal complex are 
formed only later in development. Dudley (1966) figured swimming legs 1-4 
of Notodelphys affinis, Pygodelphys aquilonaris, Scolecodes huntsmani and 
Doropygus spp., in which each seta was identified by the copepodid stage in 
which it first appeared. These important observations were confirmed by K6 
(1969d) for the poecilostome, Ostrincola koe. Bjomberg (1972) used data 
on naupliar morphology to present the first phylogeny of copepods based on 
developmental data. Ito (1970) proposed a model for patterning antenna 1 of 
Tigriopus japonicus, and illustrated new and renewed setae on the thoracic 
limbs of Harpacticus uniremis (see Ito, 1971). Uye & Onbe (1975) deter- 
mined that the duration of the first nauplius of Pseudodiaptomus marinus 
is significantly shorter than the remaining naupliar and copepodid stages so 
that developmental stages of this species are not of equal duration. Izawa 
(1987) studied development of several parasitic poecilostomes; the naupliar 
phase of some species consists of fewer than six stages. Based on the num- 
ber of limb buds and the number of setae on the bud of the caudal ramus, 
Izawa (1987) was able to determine the naupliar stages that are progressively 
suppressed relative to a species with a naupliar phase of six stages. Dahms 
(1989a) proposed a basic model for patterning antenna 1 during development 
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of representative species from seven families of harpacticoid copepods. Fer- 
rari & Ambler (1992) showed the relationship of the developmental age of 
setae and the developmental age of arthrodial membranes on swimming leg 3 
of Dioithona oculata. Ohman et al. (2002) provided stage-specific mortality 
for all immature stages of Calanus finmarchicus. 



METHODS AND CONSTRAINTS 

This monograph is restricted to the post-embryonic development of the 
Copepoda, including the terminal adult molt. The morphology of the exo- 
skeleton and the processes that lead to the formation of the structures of 
the exoskeleton are emphasized, because so much more is known about the 
variation in the exoskeleton during development than in any other organ of 
copepods. Development of internal anatomical organs, as well as changes in 
behavior and ecology during development, are discussed but do not receive 
the same level of attention. 

Naupliar stages one through six are termed here NI through NVI; cope- 
podid stages one through six are termed here CI through CVI. The chapters 
on naupliar and copepodid development are similar in organization. Both 
begin with a description of the developmental stages of a calanoid copepod, 
Phyllodiaptomus annae or Ridgewayia klausruetzleri, respectively, because 
calanoid limbs usually are made up of more elements, e. g., segments and 
setae, than comparable limbs of copepods from other orders. However, the 
two chapters differ in the discussion of developmental variability among the 
copepods. In the chapter on naupliar development, the variability of both 
segmentation and setation of limbs is discussed. In the chapter on copepodid 
development, only variability in limb segmentation is discussed. 

We appreciate the power of a phylogenetic hypothesis to structure an argu- 
mentation like one about copepod development. However, copepodologists 
do not have such a system for all copepods or even for a significant number 
of them. Instead, we believe that there are other contexts in which com- 
plex concepts like development can be discussed, and choose here to discuss 
post-embryonic development in straightforward, comparative terms so that 
our arguments will proceed from description through comparison to analy- 
sis. We usually compare differences among species, and avoid comparions of 
differences among genera, families or orders whenever possible. We often use 
familial and ordinal names of copepods to provide a framework for our com- 
parisons, but without anticipating hypotheses about descendent relationships 
among species in these categories. We avoid comparing differences among 
higher taxonomic categories because we have serious doubts about the diag- 
noses of many orders, families, and genera of copepods. These doubts center 
on the issue of character analysis; there only a few published studies that 
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include careful analyses of the character states accompanying the diagnoses 
of orders, families, and genera (positive examples of the careful analysis of 
character states can be found in Park, 1995, 2000; Willen, 2000; Seifried, 
2003). As a result of these doubts, our choices of ordinal taxon names may 
differ from contemporary lists. We accept Calanoida, Cyclopoida, Harpacti- 
coida, Misophrioida and Siphonostomatoida without discussion. Very little is 
known of monstrilloid development and nothing of the development of mor- 
monilloids and gelyelloids, so adequacy of the diagnoses of Monstrilloida, 
Mormonilloida and Gelyelloida does not concern us here. We believe that the 
polyarthrans should be removed from the Harpacticoida (see Dahms, 2004b) 
because neither a larval synapomorphy (Dahms, 2004b) nor an adult synapo- 
morphy (Tiemann, 1984) has been identified for polyarthran plus oligoarthran 
harpacticoids. Although no formal taxon has been proposed for polyarthrans, 
we refer to them here by that name. We recognize the Thaumatopsylloida of 
Ho et al. (2003) because the bud of the fourth swimming leg and apparently 
the sixth thoracic somite are present at the first copepodid stage (M. Dojiri, 
pers. comm., e-mail 26 October 2005). This is a significant difference from 
the known body architecture of the first copepodid of all other copepods on 
which the bud of the fourth swimming leg and the sixth thoracic somite do 
not appear until the second copepodid stage. Because the architecture of the 
first copepodid varies so little among the remaining orders of copepods, and 
has been described as phylotypic (Ferrari, 2003), the thaumatopsylloids may 
have branched off early in the lineage of copepods. We do not find interesting 
the published opinion (Boxshall & Halsey, 2004) removing the families of 
Poecilostomatoida to Cyclopoida but refer to them here as poecilostomes out 
of deference to the unpublished analysis of P.-M. Martinez-Arbizu (in lift.). 
We remain uncomfortable with the Platycopioida, because no analysis exists 
of the character states used to diagnose this order. Synapomorphies for the 
Platycopiidae have been proposed, e. g., a second dorsal seta on the proximal 
exopodal segment of swimming legs 2-4, but whether these synapomorphies 
are equivalent in number or degree of transformation to those of other cope- 
pod orders remains to be determined. Here we refer to these copepods by 
their family name, Platycopiidae. 

These are interesting times for biological nomenclature. A proposed phy- 
locode (De Queiroz & Contino, 2001) is objective, but its unrestrained struc- 
ture of dichotomies lacks organizational simplicity, and it is disruptive of 
historical precedent, perhaps as it must be. The Linnaean system has the in- 
ertia of history, and a limited number of categories results in an organizational 
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simplicity. However, the Linnaean system does not require an understanding 
of relationships of taxa within ranks, and it lacks a methodology for ensur- 
ing that different taxa belonging to the same category have been derived in 
ways that are evolutionarily similar, i.e., that features which define different 
taxa belonging to the same category are derived by equivalent processes. We 
continue to rely on the Linnaean system here, despite its limitations, because 
an alternative system applicable to copepods has not been proposed. 

A glossary is provided for some of the terms used here. Literature citations 
in the text are meant to exemplify, rather than exhaust, the set of species that 
express the structures or processes under discussion. The bibliography is 
divided into three sections: literature on development that is cited in the text; 
all remaining literature we could find in which one aspect or another of the 
post-embryonic development of copepods has been considered; and citations 
of publications that do not consider copepod development but which help 
to clarify certain points in the text. Among the last section are citations of 
publications in which limb patterning of other crustaceans has been studied; 
we included these because so little is known about this important process 
among any group of crustaceans. In the bibliography and citation sections, 
the titles of cited literature are complete although transliterated words and 
the capitalization of adjectives may vary. 

We include original observations of the antenna 2 of the copepods, Calanus 
finmarchicus and Longipedia americana, the mystacocaridan, Derocheilo- 
caris typica, and the spinicaudatan branchiopod, Leptestheria kawachiensis, 
because these help advance a diagnosis of the nauplius and constrain the 
naupliar phase of development of crustaceans. Naupliar development of an- 
tenna 2 of these two copepods also provides observations about how its 
exopod is patterned. We include original observations of swimming leg 1 
of the calanoids, Temora longicomis, Acrocalanus gibber, and Euchirella 
messinensis to show how an hypothesis of limb patterning can be used to 
determine homologies of segments. In all of these cases, the limbs were 
cleared and dissected in lactic acid, stained by adding a solution of chlorazol 
black E dissolved in 70% ethanol / 30% fresh water to the limbs in lactic 
acid. Stained limbs were examined in glycerin with bright-field or differential 
interference optics. Drawings were made with a camera lucida and then dig- 
itized; resulting electronic files were edited and illustrations were produced 
from edited electronic files. 

Finally, a word about the terms "appendage", "limb" and "swimming leg" 
as used here. As indicated in the glossary, we consider an appendage to be a 
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paired, proximodistal extension of a somite, which pair is symmetrical about 
the dorsoventral axis of the somite. A limb is a paired appendage with a 
propodal/ramal configuration, which is found on the five cephalic somites 
or the seven thoracic somites. The caudal ramus is not considered a limb 
because it appears to lack a propodal/ramal configuration. Paired limbs on 
thoracic somites 2-5 are here called swimming legs 1-4 because on many 
copepods they function to propel the copepod through the water, usually in 
characteristic jumping/swimming movement. These limbs may function in 
ways other than swimming in some copepods, but will be termed swimming 
legs in all species discussed here. The paired limbs on thoracic somites 6-7 
are here called limbs 5-6. An interpodal bar often is not observed between the 
contralateral pair of limb 5 of many copepods, and an interpodal bar has only 
been suggested for limb 6 of a few copepods. In many publications, limb 5 
of gymnoplean copepods is called a swimming leg because its configuration 
on a few gymnopleans resembles swimming legs 1-4; in all species here it 
will be called limb 5. 



THE NAUPLIUS AND NAUPLIAR DEVELOPMENT 

Naupliar stages of copepods can be diagnosed by the presence of a thin, 
attenuate arthrite originating on the coxa of the protopod of antenna 2 (fig. 
lA-F for Calanus finmarchicus or fig. 2A-F for Longipedia americana). The 
naupliar arthrite is an articulating segmental structure which is moved by 
a pair of muscles (figs. IB, F, 2A, F). The muscle pair originates on the 
dorsal wall of the protopod, and appears to attach anteriorly or posteriorly 
to the base of the arthrite. Fahrenbach (1962) correctly understood that this 
structure on antenna 2 of Diarthrodes cystoecus was moved by muscles, but 
he identified it as a gnathobase. The term 'gnathobase' traditionally has been 
used to describe a non-articulating, ventral extension of the coxa, including 
the coxal endite, usually of the mandible. The gnathobase of the copepod 
mandible is present only in post-naupliar developmental stages of copepods, 
with the exception of NIV-NVI of most species of calanoids in which it is 
present, along with the naupliar arthrite of antenna 2. The coxal endite on 
the maxilla 1 of copepodids of Euryte longicauda also has been described 
as a gnathobase (Ferrari & Ivanenko, 2005). 

The mandibular gnathobase of copepodids is a well-studied structure that 
moves food through the mouth opening. The naupliar arthrite on antenna 
2 of copepods appears to have a similar function, and has been referred 
to as a masticatory process in some descriptive publications (e. g., Dudley, 
1966; Bjornberg, 1972; Dahms & Bresciani, 1993), perhaps reflecting this 
presumed function. The arthrite also has been mistakenly identified as a seta 
in many descriptive publications of copepods, although in harpacticoids its 
morphology is quite complex (see examples in Dahms, 1990c). However, 
the naupliar arthrite is not a seta, because it is moved by muscles. Nor is 
it a segment of the limb, because it does not appear to be located along 
a proximodistal axis, and because the nuclei of epidermal cells cannot be 
observed within the arthrite (unpubl. obs. of Artemia salina) as they can be 
in limb segments (unpubl. obs. of Dioithona oculata). The structure of the 
naupliar arthrite of copepods can be better understood from the corresponding 
structure on nauplii of the mystacocaridan, Derocheilocaris typica (fig. 3A) 
or the spinicaudatan branchiopod, Leptestheria kawachiensis (fig. 3F). The 
naupliar arthrite of these crustaceans is a bifurcate structure originating on a 
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Fig. 1.   Antenna 2 of Calanus finmarchicus. A, NI; B, Nil; C, NIII; D, NIV; E, NV; F, NVI; 
G, CI. Exopod detached; images not to scale; broken lines within coxa of B and F indicate 

location of muscles terminating on naupliar arthrite. 

ventral, quadrate extension of the coxa; attachment of the muscles is more 
easily observed in this configuration. 

A naupliar arthrite may be absent from antenna 2 of species of parasitic 
copepods with a naupliar phase consisting of free-swimming stages without a 
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Fig. 2. Antenna 2 of Longipedia americana. A, NI; B, Nil; C, NIII; D, NIV; E, NV; F, 
NVI; G, CI. Images not to scale; broken lines within coxa of A and F indicate location of 
muscles terminating on naupliar arthrite; dotted lines within elongate 2 exopodal segment of 
B are transposed from another specimen and show the configuration of the exoskeleton of the 
following stage as an elongate (proximal) and a short (distal) segment, each segment with a 

ventral seta. 



POST-EMBRYONIC DEVELOPMENT OF COPEPODA 15 

B 
Fig. 3.   A, Derocheilocaris typica, antenna 2 of first metanaupHus; B, Leptestheria kawachien- 

sis, antenna 2 of third metanauplius. Images not to scale; broken lines within coxa indicate 
location of muscles terminating on naupliar arthrite. 

mouth opening, e. g., Caligus elongatus (see Piasecki, 1996) or Scottomyzon 
gibberum (see Ivanenko et al., 2001). However, a naupliar arthrite is present 
on the only free-living nauplius of Monstrilla hamatapex, which has no 
mouth, gut or anus, and so presumably does not feed (Grygier & Ohtsuka, 
1995); the arthrite of this species may serve to attach the nauplius to its 
host. A naupliar arthrite also may be absent from antenna 2 of copepods 
whose early naupliar stages lack a mouth, e. g., NI of Calanus finmarchicus 
(fig. lA) or NI oi Pseudodiaptomus marinus (see Uye et al., 1983), although 
the arthrite is present in the naupliar stages in which a mouth is present, 
e. g., NII-NVI of Calanus finmarchicus (fig. IB-F). Loss of the naupliar 
arthrite, after an initial appearance on antenna 2 of early developmental 
stages, usually marks the end of the naupliar phase of development. The well- 
developed naupliar arthrite on NI-NV of the tachidiid, Tachidius discipes and 
the harpacticid, Harpacticus uniremis, described as a masticatory process in 
these harpacticoids, is reduced at NVI (Dahms, 1990c). 

For copepods, the diagnosis of a nauplius can be further refined by the 
following two attributes: somites of the body are not separated by arthrodial 
membranes during the naupliar phase; post-mandibular appendages maxilla 
1, maxilla 2, the maxilliped, swimming legs 1-2, and the caudal ramus, if 
present, are expressed as unarticulated limb buds throughout the naupliar 
phase. Thoracic somites 2-5 of the first copepodid of most copepods usually 
are separated by arthrodial membranes. The presence of at least some of the 
following transformed limbs: maxilla 1, maxilla 2, the maxilliped, swimming 
legs 1-2 or caudal ramus, also characterizes copepodid stages. For copepods. 
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then, the presence of the above reconfigured hmbs, the presence of thoracic 
somites separated by an arthrodial membrane, and the presence of an in- 
terpodal bar uniting the contralateral pair of swimming legs 1-2 correlates 
well with the loss of the naupliar arthrite and marks the termination of the 
naupliar phase of development. 

An example of naupliar development of a copepod with six naupliar stages 
is the diaptomid calanoid, Phyllodiaptomus annae; the following description 
of its development is derived from Dahms & Fernando (1993b). A calanoid 
copepod was chosen because the buds of maxilla 1 through swimming leg 2 
are added during the naupliar phase. The nauplius of Phyllodiaptomus annae 
is broadly oval and flattened dorsoventrally; its width is about twice its length 
in the early stages. A red naupliar eye is located between the bases of the 
paired first antennae although the color and shape of the eye are lost soon 
after clearing; the eye is not figured here. Changes in the form of the body 
and appendages are shown in figs. 4-8. 

Nauplius I (fig. 4A): body oval and elongate. Bud of caudal ramus with a 
spinulose seta posterioventrally. Labrum and ventral body wall well-develop- 
ed, but unomamented. Antenna 1 3-segmented (fig. 5A); proximal segment 
with 1 spinulose seta at the distoventral edge; middle segment with 2 ventral 
setae of similar size, at midlength and distally; distal segment with 3 terminal 
spinulose setae; ventral seta largest, dorsal margin with denticles; terminal 
aesthetasc absent. Coxa of antenna 2 with arthrite (fig. 6A); basis with 3 
ventral setae, proximal longest. Exopod 6-segmented; P^ segment unarmed, 
4 following segments each with 1 distoventral seta; terminal segment with 2 
setae. Endopod 1-segmented with 1 ventral seta at mid-length and 2 terminal 
setae. Coxa of mandible with 1 ventral seta at mid-length; basis with 2 ventral 
setae at mid-length (fig. 7A). Mandibular exopod 4-segmented; distal segment 
with 2 terminal setae and remaining segments each with 1 distoventral seta. 
Endopod 1-segmented with 2 terminal setae plus 2 ventral groups of setae, 
a proximal group of 2 setae and a group of 2 setae at mid-length. 

Nauplius II (fig. 4B): differing from NI as follows: labrum with tiny spin- 
ules over proximal third; ventral body wall with 3 rows of spinules. Bud of 
caudal ramus asymmetrical, left slightly larger, but with a row of denticles 
only on right ramus; seta on right caudal ramus in dorsal position, seta on 
left in posterior position. Antenna 1 with 1 small aesthetasc on knob between 
2 terminal setae (fig. 5B). Ventral terminal seta smaller than that of NI. Coxa 
of antenna 2 with a spinulose seta anterioventrally (fig. 6B); arthrite of coxa 
spinulose along inner edge, with long spinules at base. Distal segment of ex- 
opod with 3 terminal setae. Endopod with 2 ventral setae and a 3    terminal 
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Fig. 4.   Phyllodiaptomus annae, habitus, ventral (modified from Dahms & Fernando, 1993b). 
A, NI; B, Nil; C, NIII; D, NIV; E, NV; F, NVI. Arrowheads to new structures. 

seta. Mandible with posteriodistal seta on the basis (fig. 7B); 1-segmented 
endopod with proximal group of 3 setae and with 3 setae terminally. Exopod 
with 2 setae on proximal segment. 
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Fig. 5.   Phyllodiaptomus annae, antenna 1 (modified from Dahms & Fernando, 1993b). A, 
NI; B, Nil; C, NIII; D, NIV; E, NV; F, NVI. Arrowheads to new structures. 

Nauplius III (fig. 4C): differing from Nil as follows: anterior row of spin- 
ules on ventral body wall absent; 2" row absent on right side; 3 row present 
on both sides. Caudal ramus with terminal seta added on right side and on 
left side; the former terminal seta on left now on dorsal lobe. Distal segment 
of antenna 1 with 1 short seta on distoventral margin and 2 well-sclerotized 
setae dorsally, as well as a few denticles (fig. 5C). Antenna 2 with 2 coxal 
setae distoventrally; 4 ventral setae on basis (fig. 6C). Endopod with 4 termi- 
nal setae and 3 setae in mid-ventral group; incomplete arthrodial membrane 
distal to mid-ventral group of 3 setae. Exopod with 3 setae on elongate (2" 
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Fig. 6.   Phyllodiaptomus annae, antenna 2 (modified from Dahms & Fernando, 1993b). A, 
NI; B, Nil; C, NIII; D, NIV; E, NV; F, NVI. Arrowheads to new structures. 

to proximal) segment; ventrally an incomplete arthrodial membrane distal to 
middle seta of that segment. Basis of mandible with 2 setae on posteriodistal 
group (fig. 7C). Unilobe bud of maxilla 1 with 1 spinulose seta (fig. 4C). 

Nauplius IV (fig. 4D): differing from NIII as follows: antenna 1 with 3 new 
setae on distal segment, 1 on proximoventral face and 2 on proximodorsal 
face (fig. 5D). Exopod of antenna 2 with 1 seta added proximally to the 
elongate (2" to proximal) segment (fig. 6D). Coxa of mandible bearing a 
large ventral gnathobase with a proximal seta, and 2 thin and 1 thick ventral 
attenuations; 1 distoventral seta on coxa (fig. 7D). Basis with 6 ventral setae. 
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Fig. 7.   Phyllodiaptomus annae, mandible (modified from Dahms & Fernando, 1993b). A, 
NI; B, Nil; C, NIII; D, NIV; E, NV; F, NVI. Arrowheads to new structures. 

Endopod with 4 terminal setae. Maxilla 1 multi-lobe, with 1 seta each on 
3 distodorsal lobes, 3 setae and a row of denticles on the distoventral lobe, 
and 1 posterior and 1 ventral setae (figs. 4D, 8A). 
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Fig. 8.   Phyllodiaptomus annae (modified from Daiims & Fernando, 1993b) maxilla 1, A, 
NIV; B, NV; C, NVI; maxilla 2, D, NV; E, NVI; maxilliped, F, NVI. 

Nauplius V (fig. 4E): differing from NIV as follows: antenna 1 with 3 new 
setae on distal segment, 1 on proximoventral face and 2 on proximodorsal 
face (fig. 5E). Endopod of antenna 2 with 4 setae in proximal group of setae 
at midlength and 1 inner seta added to terminal group (fig. 6E). Mandibular 
endopod with a terminal group of 5 setae (fig. 7E). Maxilla 1 with 5 setae on 
dorsal lobe, 4 setae on distal lobe and 5 setae ventrally (figs. 4E, 8B). Maxilla 
2 a unilobe bud with 2 setae, dorsal larger and with a row of denticles at its 
base (figs. 4D, 8D). 

Nauplius VI (fig. 4F): differing from NV as follows. Bud of caudal ramus 
with 3 setae (fig. 4F). Antenna 1 with 3 new setae on distal segment, 1 
on proximoventral face and 2 on proximodorsal face (15 setae in total plus 
1 aesthetasc) (fig. 5F). Exopod of antenna 2 with 1 new seta proximally 
on elongate segment, 5 setae in total (fig. 6F). Mandible with one more 
attenuation on the ventral face of gnathobase (fig. 7F). Maxilla 1 with 6 
setae on the dorsal lobe, 6 setae on a terminal lobe, 3 setae on ventral lobe, 
and 1 ventral seta (fig. 8C). Maxilla 2 with 5 setae on terminal lobe and 9 
setae on an indistinct series of ventral lobes with an attenuate process near 
the base (fig. BE). Maxilliped a unilobe bud with 2 setae and 2 groups of 
3 denticles each (fig. 8F). Swimming leg 1 a bilobe bud with 3 setae on 
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the dorsal lobe and 3 setae on the ventral lobe (fig. 4F). Swimming leg 2 a 
bilobe bud with 3 setae on the dorsal lobe and 2 setae on the ventral lobe 
(fig. 4F). 

Variation in the number of naupliar stages 
Copepods develop through at most six naupliar stages; no study of copepod 

development has reported more than six naupliar stages. As a general rule, 
six naupliar stages have been reported for most free-living copepods. The 
number of naupliar stages in the Harpacticoida, a large order of mostly 
free-living species, is always six (Dahms, 1990c). Gumey (1932) reported 
six stages without exception for the Calanoida, which are exclusively free- 
living, and Elgmork & Langeland (1970) assumed six naupliar stages for all 
Cyclopoida. Izawa (1987) suggested at most six stages for poecilostomes, 
which are often associated with or parasitic on other invertebrates, and Itoh 
& Nishida (1997) reported six naupliar stages for the primitive poecilostome, 
Hemicyclops japonicus. 

Among calanoids, reports of fewer than six naupliar stages are rare and 
may result from errors in sampling field-collected populations. For example, 
only 5 naupliar stages were reported for Pseudodiaptomus euryhalinus (see 
Johnson, 1948), P. coronatus (see Jacobs, 1961; Grice, 1969), P. aurivilli 
(see Ummerkutty, 1964), P. ardjuna (see Alvarez & Kewalramani, 1970), P. 
acutus (see Bjomberg, 1972; Fanta, 1982), P. richardi (see Cicchino, 1975), 
and P. binghami (see Goswami, 1978a). In general, the NX of calanoids 
has a caudal ramus of symmetrical buds, each of which bears only 1 seta. 
For those species of Pseudodiaptomus that were reported with five naupliar 
stages, NI with the above configuration of the caudal ramus was the stage 
consistently absent and assumed not to be expressed among these species of 
Pseudodiaptomus. However, careful culturing of Pseudodiaptomus marinus 
(see Uye & Onbe, 1975) revealed a duration time of only a few minutes 
for its first naupliar stage, which had a caudal ramus of symmetrical buds 
with only 1 seta. Duration times for the remaining naupliar stages, NII- 
NVI were 1-3 days. It seems likely, then, that all of the above species of 
Pseudodiaptomus have six naupliar stages, but because the duration of NI is 
significantly less than that of the remaining stages, NI was not observed. If 
there are calanoids with fewer than six naupliar stages, they most likely may 
be found among those species living closely associated with the benthos. For 
example, Matthews (1964) cultured from eggs only four naupliar stages of 
the benthopelagic calanoid, Chiridius armatus. 
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Five naupliar stages have been reported for some free-living cyclopoids 
of the family Cyclopidae, e.g., Cyclops strenuus by Dietrich (1915), Mega- 
cyclops viridis [as Cyclops viridis], by Lucks (1926), Speocyclops racovitzai 
by Lescher-Moutoue (1966) and Eucyclops serrulatus by Auvray & Dus- 
sart (1966) and Ectocyclops rubescens by Carvalho (1971). However, six 
nauplii are known for other free-living Cylopidae, e. g., Halicyclops neglec- 
tus by Candeias (1966), Apocyclops royi by Alvarez-Valderhaug & Kewal- 
ramani (1979) or Chang & Lei (1993), Bryocyclops caroli by Bjomberg 
(1984), Macrocyclops albidus by Defaye (1984), Mesocyclops aequatori- 
alis by Dahms & Fernando (1992), Thermocyclops consimilis by Dahms 
& Fernando (1992), Paracyclops fimbriatus by Karytug & Boxshall (1996), 
as well as for other free-living cyclopoids like Cyclopina longifera [prob- 
ably Cyclopina longifurca Sewell, 1924, now Paracyclopina longifurca see 
Smimov (1935)] by Goswami (1977a), Cyclopina schneideri by Grainger 
& Mohammed (1991), Dioithona oculata by Ferrari & Ambler (1992). The 
issue of the number of naupliar stages for Cyclopidae has been discussed by 
Elgmork & Langeland (1970), who summarized the literature and identified 
the primary difficulty as distinguishing NIV and NV. Elgmork & Langeland 
(1970) used the pattern and shape of setules on setae of the caudal ramus to 
separate NIV and NV of Cyclops scutifer. However, these two stages also 
differ in the number of setae on the bud of maxilla 1, which increases during 
the molt from NIV to NV of many free-living cyclopoids, and this attribute 
also can be used to separate these two naupliar stages. 

Among commensal and parasitic poecilostomes, six nauplii are known for 
species of Lichomolgidae, e. g., Lichomolgus canui by Costanzo (1969) or 
Zygomolgus poucheti by Calafiore & Costanzo (1992), and species of Sabel- 
liphilidae, e.g., Modiolicola insignis by Costanzo (1984) or Herrmannella 
rostrata by Costanzo & Calafiore (1985). However, fewer than six naupliar 
stages have been reported by Izawa (1973, 1975a, 1986b) for cultured poe- 
cilostomes like Sarcotaces pacificus, Colobomatus pupa, Anchistrotos pleu- 
ronichthydis, Neanthessius renicolis and Pseudacanthocanthopsis apogonis. 
An important correlation between egg size and the number of naupliar stages 
was noted (Izawa, 1987) for these poecilostomes. Species whose eggs are 
usually less than 120/xm, and have little stored lipid material, pass through 
six naupliar stages. Larger-sized eggs have greater amounts of stored lipids, 
and the species with larger-sized eggs have a lower number of naupliar stages. 
More importantly for these poecilostomes, the particular naupliar stages that 
were not expressed could be formalized (Izawa, 1987) in the following way. 
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relative to development of a poecilostome with a six-stage naupliar phase (ta- 
ble I): if five stages are expressed, then Nil of a poecilostome with a six-stage 
phase is suppressed; if four stages are expressed, Nil and NIII are suppressed; 
if three stages are expressed, NII-NIV are not present; if only two stages were 
present, then NII-NV are suppressed. This last category successfully predicts 
the situation of another poecilostome with two nauplii, the gastrodelphyid, 
Sabellacheres illgi (cf. Dudley, 1964), so that this developmental formula 
(Izawa, 1987) has predictive power beyond the species studied. As a general 
analytical procedure, if fewer than six nauplii are present, identification of 
the missing naupliar stage or stages usually depends on finding differences 
in the exoskeleton corresponding to two non-consecutive stages. 

Not all parasitic copepods with fewer than six naupliar stages follow the 
above formula for missing naupliar stages. Cyclopoids and siphonostoma- 
toids provide several exceptions. As noted previously, consecutive naupliar 
stages usually differ in the morphology of the exoskeleton. However, differ- 
ences in the exoskeleton may not always be expressed between consecutive 
naupliar stages of cyclopoids and siphonostomatoids. For example, Dudley 
(1966) cultured the notodelphyid cyclopoids, Pygodelphys aquilonaris, No- 
todelphys qffinis and Doropygus seclusus through five naupliar stages. Two 
of these stages correspond to particular stages of a six-stage phase (for exam- 
ples of a six-stage phase, see Dahms & Fernando, 1992; Ferrari & Ambler, 
1992). Dudley's (1966) first nauplius, without a unisetose bud of maxilla 1 
and with one seta on the bud of the caudal ramus, appears to correspond to 
NI, and her fifth nauplius, with setose bilobe buds of swimming legs 1 and 2, 
appears to correspond to NVI. The second, third and fourth naupliar stages 
described by Dudley all appear identical, with a unisetose bud of maxilla 1 
and six setae on the bud of the caudal ramus. These nauplii do not appear 
to correspond to any stage of a cyclopoid with a six-stage naupliar phase; 
among those cyclopoids, a bud of maxilla 1 with one seta appears only in 

TABLE I 
Stages missing from a naupliar piiase of six stages when only 5, 4, 3, or 2 naupliar stages are 

present 

NI Nil NIII NIV NV NVI 

5 
4 4 
3 3 3 
2 2 2 2 
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Nil or NIII, but the caudal ramus of these stages bears one seta at Nil or at 
most three setae at NIII. 

There are no siphonostomatoid copepods from field capture or from cul- 
tures for which six naupliar stages have been reported. The largest number, 
four naupliar stages, was observed for Scottomyzon gibberum cultured out- 
side of its starfish host (Ivanenko et al., 2001). Scottomyzon gibberum is a less 
derived species having branched off early during the evolution of siphonos- 
tomatoids (V. N. Ivanenko, pers. comm.). The first and second nauplii of S. 
gibberum do not differ in segmentation or setation of their limbs (Ivanenko 
et al., 2001). However, the second nauplius does have tubercles on antenna 
2 and the mandible; these tubercles are absent from the first nauplius. 

Among caligid fish parasites, the two naupliar stages of Caligus spinosus 
were separated by setation of antenna 1 (Izawa, 1969). The second of two 
naupliar stages of C. elongatus was separated by the presence of a ventral 
process that was considered homologous to the basis of the maxilliped of the 
first copepodid (Piaseki, 1996). Both nauplii of C. spinosus and C. elongatus 
were similar to NI of copepods with six naupliar stages, i. e., without a 
unisetose bud of maxilla 1 and with one seta on the bud of the caudal ramus. 

Some species of caligids have two naupliar stages that are identical in 
the morphology of their exoskeleton. Molting between these two, identical 
naupliar stages was observed for Caligus centrodonti by Gumey (1934a) 
and for C. clemensi by Kabata (1972). Similar observations of two identical 
nauplii are reported for the related Lepeophtheirus salmonis by Johnson & 
Albright (1991) and for L. dissimulatus by Lewis (1963). The attribute of 
two identical naupliar stages for caligids with only two naupliar stages is 
also shared with the thaumatopsylloid, Caribeopsyllus amphiodiae (cf. M. 
Dojiri, pers. comm., e-mail 26 October 2005). Nauplii of C. amphiodiae 
were cultured outside of their brittle star host; the 2" and 3 of three 
nauplii differed in size but not in appendage morphology. 

It should be noted, however, that the culturing protocol for caligid-like 
parasitic copepods often includes detaching from a female her embryo sac 
with its embryos, and maintaining the embryo sac separately until nauplii 
have hatched. Chemical communication from the female to the embryos in 
the sac has not been investigated directly, or even indirectly by observing 
embryo release from sacs detached from females for differing periods of 
time. An interruption of maternal communication may affect the number of 
expressed naupliar stages. 

No free-living naupliar stage has been observed for a number of siphonos- 
tomatoids belonging to the families Pennellidae (see Bennet, 1962; Perkins, 
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1983; Izawa, 1997) and Nicothoidae (see Gurney, 1930a; Heron & Damkaer, 
1986), and CI is assumed to be the stage released from the embryo sac 
of these species. Perkins (1983) inferred that the pennellid, Cardiodectes 
medusaeus had no naupliar stage of development because only copepodids 
were observed in the embryo sac. Izawa (1997) was unable to hatch a nauplius 
from cultured eggs oi Peniculisa shiinoi. Heron & Damkaer (1986) concluded 
that the nicothoid, Hansenulus trebax hatches as a copepodid rather than as 
a nauplius, because embryos, nauplii and copepodids were observed in the 
embryo sac, but copepodids were the only free-living stage observed on the 
host. Swimming legs 1-2 of these copepodids have 1-segmented rami, and 
this configuration for these limbs is indicative of the first copepodid stage of 
copepods. 

The only investigation of a presumably free-living species of Misophrioida 
is that by Gurney (1933a) of Misophria pallida. He reported a naupliar stage 
that hatched from an embryo in an embryo sac carried by a female. The 
nauplius, presumably NI, molted directly to the first copepodid. 

Variation in the order of appearance of limb buds 
Maxilla 1 is present at Nil as a unilobe bud with one seta in all polyarthrans 

and in some harpacticoids, cyclopoids and poecilostomes (e. g., Harpacticus 
uniremis (see Ito, 1971), Paraleptastacus brevicaudatus (see Dahms, 1990a), 
Parastenhelia megarostrum (see Dahms & Hicks, 1996), Dioithona oculata 
(see Ferrari & Ambler, 1992), Hemicyclops japonicus (see Itoh & Nishida, 
1997), Taeniacanthus lagocephali (see Izawa, 1986a), Tegobomolochus nasi- 
cola (see Izawa, 1986b) and Panaietis yamagutii (see Izawa, 1986b)). The bud 
of maxilla 1 of these copepods remains unchanged with one seta at NIII; it is 
multi-lobe and bears more than one seta from NIV to NVI. However, in other 
harpacticoids, e.g., Paramphiascellafulvofasciata (see Rosenfield & Coull, 
1974), Amphiascus undosus (see McMillan, 1991) or Stenhelia palustris (see 
Dahms & Bresciani, 1993), the unilobe bud of maxilla 1 with one seta does 
not appear until NIV; this is also the case for the poecilostomes, Oncaea 
media (see Malt, 1982), Neoergasilus japonicus (see Urawa et al., 1980a) 
and Pseudomyicola ostreae (see Nakamura et al., 1979). Do et al. (1984) 
report a unilobe bud of maxilla 1 with one seta on NV of Pseudomyicola 
spinosus. For the cyclopoids, Apocyclops dengizicus (see Alvarez-Valderhaug 
& Kewalramani, 1979) and A. royi (see Chang & Lei, 1993), the seta on the 
bud of maxilla 1 initially is present at NIII. Maxilla 1 does not appear to be 
present as a simple, setose bud during the early naupliar phase of siphonos- 
tomatoid development (Ivanenko et al., 2001). Instead, this limb first appears 
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as a complex lobe along with swimming legs 1-2 during the last naupliar 
stage, and this last nauplius appears to correspond to NVI of a copepod with 
a six-stage naupliar phase. For all known calanoids, maxilla 1, as a unilobe 
bud with one seta, appears at NIII. At NIV, maxilla 1 is multi-lobe and bears 
more than one seta; a conformation similar to the same stage of cyclopoids 
and harpacticoids. 

Maxilla 2 does not appear as a setose bud during the naupliar phase of 
species of polyarthrans, harpacticoids, cyclopoids, poecilostomes, or siphonos- 
tomatoids. Its appearance at NIV is unique to calanoids. Nor does a unilobe 
setose bud of the maxilliped appear during the naupliar phase of species 
of polyarthrans, harpacticoids, cyclopoids, poecilostomes, or siphonostom- 
atoids. Its appearance with two terminal setae at NVI also is unique to 
calanoids. 

The bilobe setose buds of swimming legs 1-2 first appear at NVI of cope- 
pods with six naupliar stages. The appearance of these limb buds at this stage 
is considered to be conserved among copepods (Izawa, 1987), and the pres- 
ence of a stage with these limb buds was used by that author to identify the 
last naupliar stage of any poecilostome, and thus to align the naupliar stages 
of poecilostome copepods with five or fewer naupliar stages (Izawa, 1987), 
as explained above. The thaumatopsylloid, Caribeopsyllus amphiodiae is one 
of only a few copepods that does not express the buds of swimming legs 
1 and 2 during the naupliar phase of development (M. Dojiri, pers. comm., 
e-mail 26 October 2005). 

The data of first appearances, as summarized in table II, can be applied 
with some predictive power to nauplii of copepods, particularly calanoids, 
for which fewer than six stages were observed. For example, among the four 
naupliar stages of Chiridius armatus reported by Matthews (1964), there is a 
stage with buds of swimming legs 1 and 2; this stage probably corresponds 
to NVI. Two earlier stages lack the setose bud of maxilla 1 and most likely 
correspond to NI and Nil. Maxilla 1 of the remaining stage is a multilobe 

TABLE II 

First appearance of setose buds of copepod limbs during the naupliar phase of development 

Maxilla \: Nil [harpacticoids and cyclopoids]; NIII [calanoids]; NVI [siphonostomatoids] 
Maxilla 2: NV [calanoids] 
Maxilliped: NVI [calanoids] 
Swimming leg 1: NVI [calanoids, harpacticoids, cyclopoids, poecilostomes, siphonostomatoids] 
Swimming leg 2: NVI [calanoids, harpacticoids, cyclopoids, poecilostomes, siphonostomatoids] 
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bud with 2 setae. This kind of limb bud for maxilla 1 usually is found in 
NIV and NV of calanoids. However, the bud of maxilla 2, usually present on 
NV and NVI, is not present on the stage of Chiridius armatus in question, 
so this stage most likely corresponds to NIV. 

Differences among the six naupliar stages of copepods include changes 
in the number of limb buds, in the number of segments of limb rami, or in 
the setation of limb segments including the caudal ramus. A key cannot be 
written to identify unequivocally the naupliar stages of all copepods, due to 
the degree of this variation and to the absence of one or more stages during 
the naupliar phase of development. However, the key below is useful for 
copepods in which all six naupliar stages are present, and particularly for 
free-living animals: 

KEY TO COPEPOD NAUPLII I-VI 

Three transformed limbs, bud of caudal ramus with 1 pair of setae     NI 
Bud of maxilla 1 a simple lobe with 1 seta or posterior part of body distinctly narrower 

than anterior part     Nil 
Bud of caudal ramus with more than 1 pair of setae   NIII 
Mandibular gnathobase present and/or bud of maxilla 1 multi-lobe with no more than 6 

setae   NIV 
Bud of maxilla 2 present or bud of maxilla 1 multi-lobe with at least 7 setae     NV 
Bud of swimming legs 1 and 2 present   NVI 

Variation in transformed appendages 
During the naupliar phase of development, antenna 1 of copepods usually 

is 3-segmented at NI with the proximal segment unarmed. However, among 
the polyarthrans, antenna 1 of NI may be 6-segmented in Longipedia mi- 
nor, or 5-segmented on NII-NVI of L. minor and 5-segmented on NI-NVI of 
Canuella perplexa (see Dahms, 1990c). The unarmed, proximal segment may 
be missing in harpacticoids, e. g., Paratagestes sphaericus, Pseudotachidius 
sp. (see Dahms, 1990c) or the arthrodial membrane between the proximal and 
middle segment may be poorly formed in some poecilostomes, e. g., Pseu- 
dacanthocanthopsis apogonis (see Izawa, 1986b). The arthrodial membrane 
between the middle and distal segments of some harpacticoids may also be 
poorly formed, e.g., Parathalestris harpactoides (see Dahms, 1990c). Setae 
may be added to the distal segment of antenna 1 of many copepods from NIII 
to NVI, although the addition of setae in sets of one proximoventral and two 
proximodorsal setae is limited to calanoids and to polyarthrans like Longi- 
pedia americana (see Onbe, 1984). Examples of the addition of different 
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sets of ventral setae to the distal segment of antenna 1 have been observed 
for harpacticoids like Stenhelia palustris (see Dahms & Bresciani, 1993) and 
Drescheriella glacialis (see Dahms, 1987a), or for cyclopoids like Meso- 
cyclops edax (see Dahms & Fernando, 1995) and Dioithona oculata (see 
Ferrari & Ambler, 1992). Setal additions to the distal segment of antenna 
1 of poecilostomes have been generalized by Izawa (1987, figs. 4, 5). The 
notodelphyid cyclopoids lose the proximoventral seta and the mid-ventral 
seta of the middle segment at NIII, e. g., Scolecodes huntsmani, at NIV, e. g., 
Doropygopsis longicauda, and at NV, e.g., Pygodelphys aquilonaris (see 
Dudley, 1966). 

There are many examples of the addition of setae to the protopod of an- 
tenna 2. Of particular interest is the addition of the seta distal and adjacent 
to the naupliar arthrite. This seta has been reported at NI of Paraleptasta- 
cus brevicaudatus by Dahms (1990a) and Dioithona oculata by Ferrari & 
Ambler (1992), or first observed at Nil for Macrocyclops fuscus by Dahms 
& Fernando (1994) and Mesocyclops edax by Dahms & Fernando (1995), 
or presented at NIII of Longipedia americana by Onbe (1984), Mesocyclops 
of. thermocyclopoides by Dahms & Fernando (1993a), M. aequatorialis si- 
milis by Dahms & Fernando (1992), Thermocyclops consimilis by Dahms 
& Fernando (1992), and T. decipiens by Dahms & Fernando (1993a). The 
addition of ventral setae to the middle and distal setal groups of the endo- 
pod of antenna 2 has been reported for species of calanoids, harpacticoids, 
cyclopoids and poecilostomes, and this addition of setae to the endopod may 
alternate between the middle and distal setal groups from one stage to the 
next. Siphonostomatoids do not add setae to the endopod of antenna 2. 

The addition of complete arthrodial membranes to the exopod of antenna 
2 occurs only in calanoids, e.g., Calanusfinmarchicus (fig. 1), polyarthrans, 
e. g., Longipedia americana (fig. 2), and some cyclopoids, e. g., Mesocyc- 
lops edax (see Dahms & Fernando, 1995) or M. leuckarti (see Dahms & 
Fernando, 1993c). The addition of arthrodial membranes to this ramus is 
discussed in detail in the chapter "Patterning the appendages of copepods" 
(see below). For all other copepods, there is no change in the number of 
arthrodial membranes in the exopod of antenna 2 throughout the naupliar 
phase of development. 

Setae may be added to the exopod of antenna 2 during the naupliar phase; 
for details see p. 000 ff. One example is the addition of a third seta to 
the crown group of setae on the distal segment. The addition of this seta 
occurs at different stages: Nil of Tigriopus japonicus (see Ito, 1970); NIII of 
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Scutellidium hippolytes (see Dahms, 1993b), Stenhelia palustris (see Dahms 
& Bresciani, 1993), Longipedia americana (see fig. 2), Dioithona oculata 
(see Ferrari & Ambler, 1992), or Neanthessius renicolis (see Izawa, 1986, 
in the 2 of 5 nauplii = NIII); NIV of Paraleptastacus brevicaudatus (see 
Dahms, 1990) or Tegobomolochus nasicola (see Izawa, 1986, in the 3 of 5 
nauplii = NIV); NV of Tisbe gracilis (see Dahms & Bergmans, 1988); NVI of 
Parastenhelia megarostrum (see Dahms & Hicks, 1996). These observations 
suggest that if three crown setae are present on the terminal segment of the 
exopod of a copepod with fewer than six naupliar stages, like Notodelphys 
affinis or Pygodelphys aquilonaris (see Dudley, 1966), a missing stage may 
be NI, because that stage is expected to bear only two crown setae. 

One seta or more may also be added proximally and ventrally to the 
proximal segment of the exopod of antenna 2 of cyclopoids, e. g., Meso- 
cyclops edax (see Dahms & Fernando, 1995), M. aequatorialis similis (see 
Dahms & Fernando, 1992), Thermocyclops consimilis (see Dahms & Fer- 
nando, 1992), and Dioithona oculata (see Ferrari & Ambler, 1992), or poe- 
cilostomes like Taeniacanthus lagocephali (see Izawa, 1986a), Philoblenna 
arabica (see Izawa, 1986b), or Doridicola sepiae (see Izawa, 1986b). These 
setal additions appear to follow the pattern of setal additions expressed by 
calanoids (see further below). 

Species of calanoids are the only copepods for which a gnathobase is 
present on the mandibular coxa during the naupliar phase of development. 
The mandibular gnathobase initially is presented at NIV. In all other cope- 
pods, there is no coxal gnathobase on the mandible of any naupliar stage. 
The addition of setae to the mandible may include a second, proximoventral 
seta to the proximal exopodal segment, a situation that appears to be similar 
to the addition of a seta to the proximal exopodal segment of antenna 2. 
Stage-specific variation of the addition of this seta includes Nil of Longi- 
pedia americana (see fig. 2), Scutellidium hippolytes (see Dahms, 1993b) and 
Hemicyclops japonicus (see Itoh & Nishida, 1997); on the 2" of 5 nauplii 
= NIII of Panaietis yamagutii (see Izawa, 1986b); on the 2" of 3 nauplii = 
NIV of Philoblenna arabica (see Izawa, 1986b); and on the 2 of 2 nauplii 
= NVI of Doridicola sepiae (see Izawa, 1986b). 

Variation in setation of limb buds 
The bud of maxilla 1 is unilobe, and bears a single seta at Nil and NIII 

in many species of harpacticoids, cyclopoids, and poecilostomes, and at NIII 
in species of calanoids. Setae are added to the bud of maxilla 1 of most of 
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these copepods beginning with the molt to NIV when the bud of maxilla 
1 is multi-lobe. The bud of swimming leg 1, presented at NVI, may bear 
up to four setae on its presumptive exopod and up to three setae on its 
presumptive endopod (Ferrari, 2000). In contrast, the bud of swimming leg 
2, also presented at NVI, may only bear up to three setae on its presumptive 
exopod, and only up to two setae on its presumptive endopod. Furthermore, 
significant variation in the numbers of setae on these limb buds has been 
documented (Ferrari, 2000). Setae are added to the bud of the caudal ramus 
of most species of copepods beginning at Nil; however, some species of 
siphonostomatoids do not add setae to the bud of this appendage (Ivanenko 
et al., 2001). 

Internal anatomy 
Relative to the naupliar exoskeleton, much less is known about the internal 

anatomy of the nauplius, because there are fewer observations of internal 
development and because many of the reports do not include observations 
of all naupliar stages (e.g., Claus, 1858b, 1863; Grobben, 1881). Exceptions 
are copepods for which only one naupliar stage is known (Nordmann, 1832, 
1864; Claus, 1858a, 1861), and the works of Fanta (1973, 1976, 1982), who 
described aspects of the internal anatomy for all stages of three copepods with 
a naupliar phase of six stages, Pseudodiaptomus acutus, Euterpina acutifrons 
and Oithona ovalis, representing calanoids, harpacticoids, and cyclopoids, 
respectively. 

In general, a cuticle-lined esophagus runs anteriorly and dorsally from the 
mouth before turning posteriorly to end in a cone-like protrusion into the 
midgut. The midgut, with glandular cells, is covered by smooth, longitudinal 
muscles and is divided by a valve into a spherical anterior part and a cylin- 
drical posterior part. Cellular architecture changes between the anterior and 
posterior parts of the midgut. The cuticle-lined hindgut is well-muscled and 
ends at the posterior anus. The mouth is open at NI of Diarthrodes cystoe- 
cus (see Fahrenbach, 1962), Euterpina acutifrons (see Fanta, 1972), Oithona 
ovalis (see Fanta, 1976) and O. davisae (see Uchima & Hirano, 1986), Nil of 
Pseudodiaptomus acutus (see Fanta, 1982) and NIII of Calanus finmarchi- 
cus (see Lowe, 1935). Although the mouth oi Doropygus seclusus is open at 
NI, the stomodaeum, or esophagus, does not open into the midgut until NIII 
(Dudley, 1966); the posterior end of the proctodaeum, or hindgut, is not open 
to the anus until Nil (Dudley, 1966). A dorsal diverticulum of the midgut 
forms at NIII of Euterpina acutifrons (see Fanta, 1972). The tubular foregut 
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of Lemaea cyprinacea develops at Nil but does not become funnel-shaped 
until NIII, during which stage the midgut begins to form (Benedetti et al., 
1992). NIII is the last naupliar stage reported for L. cyprinacea after which a 
complete gut is present at the first copepodid. Wax esters are the main lipid 
component of all nauplii of Euchaeta japonica (see Lee et al., 1974) but 
were not detected in nauplii of Calanus helgolandicus (see Lee et al., 1972). 

The antennary gland, an excretory gland of the nauplius that is functionally 
comparable to the maxillary gland of copepodids, has been described by 
Fahrenbach (1962: 349) as "dorsal lateral to the basis" with the excretory 
pore opening "on the posterior side of the antenna at the level of the exopod" 
for Diarthrodes cystoecus. Excretions are stored as "urinary concretions" 
within the body of Oithona ovalis (see Fanta, 1976) and Pseudodiaptomus 
acutus (see Fanta, 1982). No labrum or labral glands form in notodelphyids 
during the naupliar phase of development (Dudley, 1966). 

The naupliar nervous system includes a large dorsal "brain" and a pair of 
thick circumesophageal connectives that unite ventrally as a subesophageal 
ganglion. From this ganglion, paired ventral nerves emerge, continuing to 
the posterior end of the body. Anteriorly, neither protocerebrum, deutero- 
cerebrum or tritocerebrum can be distinguished in Diarthrodes cystoecus 
(see Fahrenbach, 1962) but a protocerebrum that is divided into two lobes 
has been observed in Euterpina acutifrons (see Fanta, 1972) and Oithona 
ovalis (see Fanta, 1976). Other changes in the nervous system during nau- 
pliar development include: appearance of the ganglion of antenna 1 and 
antenna 2; regression of the glomeruli of antenna 2 (these glomeruli are 
not reported in the first copepodid); thickening anteriorly of paired ventral 
nerves of Diarthrodes cystoecus (see Fahrenbach, 1962), which progressively 
unite posteriorly. A study of the innervation of setae of the appendages at 
NV of Eucalanus pileatus suggests that some setae are mechanoreceptors, 
while others may play a role in both mechanoreception and chemoreception 
(Bundy & Paffenhofer, 1997). 

Nauplii do not have longitudinal, striated muscles, apparently because 
the body is not composed of movable parts. There are oblique, striated, 
extrinsic muscles originating on the dorsal body wall and inserting in the 
protopod of the limbs, and striated, intrinsic muscles within the limbs of 
Euterpina acutifrons (see Fanta, 1972) and Oithona ovalis (see Fanta, 1976). 
The number of oblique, extrinsic muscles to the appendages increases, with 
variation, as naupliar development progresses. The number for Euterpina 
acutifrons increases from two to antenna 1, two to antenna 2, and two to the 
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mandible at NI-NIII, to two muscles to antenna 1, three to antenna 2, and 
three to the mandible at NIV-NV, and finally to four muscles to antenna 1, 
seven to antenna 2, and four to the mandible at NVI. The changes in extrinsic 
muscles of Oithona ovalis differ: two to antenna 1, two to antenna 2, and two 
to the mandible at NI-NII; two to antenna 1, three to antenna 2, and three 
to the mandible at NIII; three to antenna 1, three to antenna 2, three to the 
mandible and two to maxilla 1 at NIV; and finally three to antenna 1, four 
to antenna 2, three to the mandible and two to maxilla 1 at NV-NVI. For the 
calanoid, Pseudodiaptomus acutus (see Fanta, 1982) Nil has two extrinsic 
muscles to antenna 1, three to antenna 2, and two to the mandible; NIII-NVI 
three to antenna 1, four to antenna 2, and two to the mandible. 

Ecology 
The occurrence throughout the world's oceans of nauplii that were not 

differentiated to species or stage has been discussed (Sazhina, 1985). Studies 
of the distributional ecology of nauplii usually are concerned with verti- 
cal structure of pelagic species; such studies often are not stage-specific or 
species-specific. Nauplii that were not differentiated to species or stage are 
more likely to be found within the thermocline of stratified waters (Incze et 
al., 1996). Diel changes were detected in vertical structure of nauplii iden- 
tified only to the order in Calanoida, Cyclopoida and Harpacticoida (Ferrari 
et al., 2003). 

Some studies of nauplii identified to species, but not necessarily to stage, 
are available. Nauplii of the limnetic Leptodiaptomus novamexicanus [re- 
ported as Diaptomus novamexicanus} occasionally appear to undergo reverse 
vertical migration (Redfield & Goldman, 1980); however, migration param- 
eters in general did not change with the changes in abundance of individuals 
in a cubic meter of water. Nauplii of Acartia clausi, categorized as NI-NIV 
or as NV-NVI, were found throughout a 4-m water column with the NV- 
NVI group more likely to be collected close to the substrate during the day 
(Landry, 1978a). Feeding nauplii of Calanus finmarchicus (stages NIII-NVI) 
were found closer to the surface than the non-feeding stages NI-NII (Durbin 
et al., 2000a). 

Swimming has been studied for nauplii of only a few species, primarily 
free-living planktonic calanoids and cyclopoids. There have been no stage- 
specific comparisons of swimming. Species of Eucalanus use antenna 2 and 
the mandible to swim (Paffenhofer & Lewis, 1989) while other species of 
calanoids, like Centropages typicus and Calanus finmarchicus, use all three 
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naupliar appendages (Bjornberg, 1986a; Titelman & Ki0rboe, 2003a). The 
amount of time spent moving these appendages may vary among species 
of the same genus, e. g., Eucalanus pileatus or E. crassus and E. hyalinus 
(see Paffenhofer & Lewis, 1989). Swimming behavior appears to vary sig- 
nificantly among different naupliar stages of the same species although two 
basic categories of swimming have been generalized. Long periods of sinking 
punctuated by a brief series of fast jumps have been contrasted with slower, 
almost continuous swimming (Gauld, 1959; Gerritsen, 1978; Buskey, 1994; 
Paffenhofer et al., 1996; Titelman & Ki0rboe, 2003a, b). These two categories 
are not restricted to species or to a naupliar stage, but may be dependent on 
the motility of prey. Particular swimming behaviors may predispose nauplii 
to attacks by predators (Buskey et al., 1993), and so swimming behaviors 
may represent an adaptive balance between feeding efficiency and predator 
avoidance (Titelman & Ki0rboe, 2003b). There is evidence that larger, i.e., 
older, naupliar stages respond to smaller deformations of their adjacent fluid 
field than do smaller, i. e., younger, stages (Green et al., 2003). Thus, older 
naupliar stages should be able to detect disturbances by predators more easily 
than younger nauplii. 

Antenna 2 and the mandible produce a feeding current in calanoid nau- 
plii (Storch, 1928) or more specifically the asymmetrical motion of the rami 
of antenna 2 does (Paffenhofer & Lewis, 1989). The tips of setae of some 
calanoid mouthparts may be chemoreceptors (Friedman & Strickler, 1975). 
Feeding may result from continuous swimming movements or may take place 
only during jump-skip movements. A quite different naupliar feeding mech- 
anism has been described for harpacticoid copepods living in the fronds of 
large marine algae (Harding, 1954; Green, 1958; Fahrenbach, 1962). Move- 
ment of the mandibles brings the oral area of the nauplius against the wall of 
a plant cell. Adduction of the "gnathobase" (the naupliar arthrite) of antenna 
2 at about 4 strokes per second rasps at the wall of the cell. When the cell 
wall is broken, the "gnathobase" is used to push the cell contents into the 
esophagus. 

Naupliar bioenergetics, including measurements of growth rate as deter- 
mined by uptake of carbon and nitrogen or of respiration, have been studied 
only for nauplii of a few free-living copepods, e. g., Calanus pacificus (see 
Fernandez, 1979) and Eudiaptomus graciloides (see Hamburger & Boetius, 
1987). Naupliar growth rate was affected positively by increasing tempera- 
ture and negatively by decreasing carbon content of their food, e. g., Calanus 
helgolandicus and Pseudocalanus elongatus (see Green et al., 1991), and 
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Calanus chilensis (see Torres & Escribano, 2003), as well as the stage at 
which feeding began. For example, the pattern for species of Calanus (e. g., 
Hygum et al., 2000) includes a negative growth rate for the non-feeding NI- 
NE, followed by a long duration for NIII, which is the first feeding stage, 
and short but identical stage duration for NIV-NVI. A similar pattern has 
been reported for the unrelated calanoid, Metridia pacifica (see Pinchuk & 
Paul, 1998). 

Patterns of higher instantaneous survival for NI-NII, relative to later nau- 
pliar stages, have been reported (Eiane & Ohman, 2004) for the calanoids, 
Calanus finmarchicus, Pseudocalanus elongatus and the cyclopoid, Oithona 
similis. The absolute value of the rates of survival differed among the three 
species, perhaps reflecting differences in swimming behaviors. Instantaneous 
survival rates also differed within the same stage of the same species from 
different localities (Ohman et al., 2004), as well as among species of the 
same genus (Ohman & Wood, 1996; Eiane et al., 2002; Ohman et al., 2002). 
Naupliar survival of older stages of Calanus pacificus appeared to be less 
variable than that of younger naupliar stages (Mullin, 1995). Nauplii of the 
metridinids, Pleuromamma gracilis and Metridia longa have been observed 
to bioluminesce (Evstigneev, 1982, 1984; Lapota & Losee, 1984; Lapota et 
al, 1988). 

Development times and suggested interpretations have been surveyed for 
free-living, planktonic copepods (Hart, 1990; Sabatini & Ki0rboe, 1994; Ku- 
mar & Ramamohama Rao, 1998; Peterson, 2001; Hirst et al., 2003). As 
might be expected, the rate of copepod post-embryonic development often 
is dependent on temperature and food, although Cyclops vicinus was able 
to compensate its developmental time through acclimation to temperature 
(Munro, 1974). With unlimited food and at a constant temperature, develop- 
mental time from NI to NVI of many copepods is independent of body size. 
Developmental times for species of marine calanoid nauplii are shorter than 
developmental times for species of freshwater calanoids (Peterson, 2001). 
Development of Acartia tonsa is inhibited by exposure to a series of com- 
pounds some of which may antagonize ecdysone (Anderson et al., 2001). 

Isochronal development hypothesizes that the absolute time spent at each 
stage is identical for a species developing at the same temperature. While 
attractive for its predictive power, the rule may not hold generally even for 
free-living, pelagic copepods. Data from Uye & Onbe (1975) on the short 
duration of NI of Pseudodiaptomus marinus (noted above) compromise the 
rule, and there also is evidence for the short duration of NI for other calanoids. 
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a prolonged duration of Nil, and a short duration of NVI (Peterson, 2001). 
Some indications of the lack of predictability for the isochronal rule can be 
found in studies of different species of Calanus. Development of Calanus 
pacificus was described as isochronal (Fernandez, 1979) but Calanus aust- 
ralis was isochronal only for NIV-CIII (Peterson & Painting, 1990). Based 
on these studies, the rule of isochronal development can be expected to have 
poor predictive power for many host-associated copepods, especially those 
with fewer than six naupliar stages. An intergeneric equiproportional rule 
(Hart, 1990) predicts that the duration of a life history stage takes up a 
constant proportion of postembryonic development in all species within the 
same genus, but clear support for this rule has not been established. 



THE COPEPODID PHASE OF DEVELOPMENT 

The copepodid stages of copepods usually have thoracic somites sepa- 
rated by an arthrodial membrane, the post-mandibular appendages usually 
are transformed appendages, an interpodal bar unites the contralateral pairs 
of swimming legs, but a naupliar arthrite is absent from the coxa of antenna 2. 
The following description of body and appendages (figs. 9-20) for the six 
copepodid stages of the gymnoplean, Ridgewayia klausruetzleri is modified 
from Ferrari (1995) and serves as an introduction to the copepodid phase of 
development. A description of only the body of the six copepodid stages of 
the podoplean, Dioithona oculata and the thaumatopsylloid, Caribeopsyllus 
amphiodiae is presented in order to compare the development of the three 
basic adult architectures of copepods. For purposes of interpretation, thoracic 
somites usually bear a limb or a limb bud. The posterior abdominal somite 
bears an appendage, the caudal rami, but the other abdominal somites do not 
bear a limb bud or a limb. 

Please note that the abdominal somites are numbered herein according to 
their order of presentation in the developmental sequence: not according to 
their linear succesion along the anterioposterior axis of the body. 

Copepodids of Ridgewayia klausruetzleri 
CI: Body divided into broad anterior section and narrow posterior section 

(fig. 9A, I). Anterior section of long anterior part and 3 smaller articulating 
parts; posterior section of 2 articulating parts. Antenna 1 of 10 articulating 
segments (fig. lOA). Antenna 2 with coxa, basis, 2-segmented endopod and 
9-segmented exopod (as for CVI female in fig. 11 A, except setation of en- 
dopod fig. IIF). Mandible with coxa including ventral gnathobase, basis, 1- 
segmented endopod and 5-segmented exopod (as for CVI female in fig. 12A, 
except setation of endopod fig. 12D). Maxilla 1 with praecoxal endite, coxa 
with exite and endite, basis with exite and 2 endites, 1-segmented exopod, 
and 2-segmented endopod (as for CVI female in fig. 13A, except setation in 
fig. 13F). Maxilla 2 with syncoxa including 1 praecoxal endite and 1 coxal 
endite, basis with 2 endites, ramus with 2 lobes and distal section poorly 
differentiated (as for CVI female in fig. 14A, except setation of endopod in 
fig. 14B). Maxilliped with syncoxa of 3 praecoxal endites and 1 coxal endite, 
basis with 2 endites poorly differentiated proximally, and 2-segmented endo- 
pod (fig. 15A). Swimming leg 1 with coxa, basis and 1-segmented rami (fig. 
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Fig. 9. Ridgewayia klausruetzleri, iiabitus (modified from Ferrari, 1995). A, CI; B, CII; C, 
CIII; D, CIV; E, CV, female; F, CVI, female; G, CV, male urosome; H, CVI, male urosome. 
Schematic of the body and limbs: I, CI; J, CII; K, CIII; L, CIV; M, CV, female; N, CVI, male; 
O, CVI, female, asterisk on complex of posterior thoracic and anterior abdominal somites. 

Images not to scale. See fig. 21 for interpretation of schematic. 

16A). Swimming leg 2 with coxa, basis and 1-segmented rami (fig. 17A). 
Swimming leg 3 as bilobe bud (fig. 18A). 

CII: Differs from CI as follows. Anterior section with 4 smaller articulating 
parts (fig. 9B). Antenna 1 of 17 articulating segments (fig. lOB). Antenna 2, 
as for CVI female except setation of endopod (fig. HE). Maxilla 1 as for CVI 
female except setation of endopod (fig. 13E). Maxilla 2 as for CVI female 
(fig. 14A). Maxilliped with 3-segmented endopod (fig. 15B). Swimming leg 



POST-EMBRYONIC DEVELOPMENT OF COPEPODA 39 

CVI  M 

CV 

w^- 
Cll 

--i-c/'/^^M 

B 

ci A    " 

Fig. 10.  Ridgewayia klausruetzleri, antenna 1 (modified from Ferrari, 1995). A, CI; B, CII; 
C, CIII; D, CIV; E, CV, segments 4-14; F, CVI, male; G, CVI, female. Images not to scale. 

1 with 2-segmented rami (fig. 16B). Swimming leg 2 with 2-segmented rami 
(fig. 17B). Swimming leg 3 with coxa, basis and 1-segmented rami (fig. 
18B). Swimming leg 4 as bilobe bud (fig. 19A). 
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Fig. 11.  Ridgewayia klausruetzleri, antenna 2 (modified from Ferrari, 1995). A, CVI female; 
B, CV, setation of terminal endopodal segment; C, CIV, setation of terminal endopodal seg- 
ment; D, cm, setation of terminal endopodal segment; E, CII, setation of terminal endopodal 

segment; F, CI, setation of terminal endopodal segment. Images not to scale. 

CIII: Differs from CII as follows. Anterior section with 5 smaller articulat- 
ing parts (fig. 9C). Antenna 1 of 24 articulating segments (fig. IOC). Antenna 
2 as for CVI female except setation of endopod (fig. IID). Mandible as for 
CVI female except setation of endopod (fig. 12C). Maxilla 1 as for CVI fe- 
male except setation (fig. 13D). Maxilliped with 4-segmented endopod (fig. 
15C). Swimming leg 3 with 2-segmented rami (fig. 18C). Swimming leg 4 
with coxa, basis and 1-segmented rami (fig. 19B). Limb 5 as bilobe bud 
(fig. 20A). 

CIV female: Differs from CIII as follows. Posterior section of 3 articulating 
parts (fig. 9D). Antenna 1 of 25 articulating segments (fig. lOD). Antenna 2 
as for CVI female except setation of endopod (fig. 1IC). Mandible as for CVI 
female except setation of endopod (fig. 12B). Maxilla 1 as for CVI female 
except setation (fig. 13C). Maxilliped with 5-segmented endopod (fig. 15D). 
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Fig. 12.   Ridgewayia klausruetzleri, mandibular palp (modified from Ferrari, 1995). A, CVI 
female; B, CIV, setation of endopod; C, CIII, setation of terminal endopodal segment; D, CI, 

setation of terminal endopodal segment. Images not to scale. 

Swimming legs 1-3 setation as shown (figs. 16C, 17C, 18D). Swimming leg 4 
with 2-segmented rami (fig. 19C). Limb 5 with coxa, basis and 1-segmented 
rami (fig. 20B). 

CV female: Differs from CIV female as follows. Posterior section of 4 
articulating parts (fig. 9E). Antenna 1 of 26 articulating segments (fig. lOE). 
Antenna 2 as for CVI female except setation of endopod (fig. IIB). Maxilla 
1 as for CVI female except setation (fig. 13B). Maxilliped different setation 
(fig. 15E). Swimming legs 1-4 with 3-segmented rami (as for CVI female 
figs. 17E, 18E, 19C, 20D). Limb 5 both exopods 2-segmented, left endopod 
2-segmented (fig. 20C), right endopod 1-segmented. 

CVI female: Posterior section of 4 articulating parts (fig. 9G). Antenna 
1 of 26 articulating segments (fig. lOF). Antenna 2 (fig. 11 A). Mandible 
(fig. 12C). Maxilla 1 (fig. 13A). Maxilla 2 (fig. 14A). Maxilliped (fig. 15F). 
Swimming leg 1 (fig. 16D). Swimming leg 2 (fig. 17D). Swimming leg 3 
(fig. 18D). Swimming leg 4 (fig. 19D). Limb 5 with 3-segmented exopod 
and 2-segmented endopod fig. 20D). 

CIV male: body and appendage segments do not differ from CIV female. 
CV male: Differs from CIV male as follows: limb 5, right endopod 1- 

segmented. 
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Fig. 13. Ridgewayia klausruetzleri, maxilla 1 (modified from Ferrari, 1995). A, CVI female; 
B, CV, setation of exopod and endopod; C, CIV, setation of distal endite of basis, exopod and 
endopod; D, CIII, setation of praecoxal endite and exite, and proximal and middle sets of the 
endopod; E, CII, setation of posterior face of praecoxal endite and of exite, coxal endite, distal 
endite of basis, proximal and middle sets of the endopod and of exopod; F, CI, setation of 
praecoxal exite, coxal endite, proximal and middle sets of the endopod. Images not to scale. 

CVI male: Differs from CV male as follows: posterior section of 4 ar- 
ticulating parts (fig. 9F). Limb 5 right exopod 2-segmented, right endopod 
1-segmented (fig. 20 E), left exopod 3-segmented, left endopod 2-segmented 
(fig. 20F). 

Copepodids of Dioithona oculata 
The body of a podoplean copepod like Dioithona oculata differs from the 

body of a gymnoplean in the following ways: 
CI: Body divided into broad anterior section and narrow posterior section 

(fig. 21 A). Anterior section of long anterior part and 3 smaller articulating 
parts; posterior section of 2 articulating parts. 

CII: Anterior section of 4 smaller articulating parts (fig. 21B). 
CIII: Posterior section of 3 articulating parts (fig. 21C). 
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Fig. 14.   Ridgewayia klausruetzleri, maxilla 2 (modified from Ferrari, 1995). A, CVI female; 
B, CII, setation of ramus. Images not to scale. 
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Fig. 15. Ridgewayia klausruetzleri, maxilliped (modified from Ferrari, 1995). A, CI; B, CII, 
basis + ramus; C, CIII, distal endite of basis + ramus; D, CIV, distal endite of basis + ramus; 
E, CV, distal endite of basis + ramus; F, CVI female. Dotted lines within penultimate endopo- 
dal segment of A, and antepenultimate and penultimate endopodal segments of B, indicate 
configuration of the exoskeleton of the following stage; a short, proximal, new segment is 

formed within the penultimate segment. Images not to scale. 
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Fig. 16.  Ridgewayia klausruetzleri, swimming leg 1 (modified from Ferrari, 1995). A, CI; B, 
CII, basis, exopod and endopod; C, CIV female, basis, exopod and endopod; D, CVI female. 

Images not to scale. 

CIV: Posterior section of 4 articulating parts (fig. 2ID). 
CV: Posterior section of 5 articulating parts (fig. 21E). 
CVI male: Posterior section of 6 articulating parts (fig. 21F). 
CVI female: Anterior section similar to CVI male; posterior section of 5 

articulating parts (fig. 21G). 
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Fig. 17.  Ridgewayia klausruetzleri, swimming leg 2 (modified from Ferrari, 1995). A, CI; B, 
CII, basis, exopod and endopod; C, CIV female, basis, exopod and endopod; D, CVI female. 

Images not to scale. 

Copepodids of Caribeopsyllus amphiodiae 
Development of a thaumatopsylloid is exemplified by Caribeopsyllus am- 

phiodiae ( M. Dojiri, from pers. comm., e-mail 26 October 2005) and differs 
from both the gynmoplean and podoplean as follows: 

CI: Body divided into broad anterior section and narrow posterior section 
(fig. 22A). Anterior section of long anterior part and 2 smaller articulating 
parts; posterior section of 2 articulating parts. 

CII: Posterior section of 3 articulating parts (fig. 22B). 
CIII: Does not differ from CII (fig. 22C). 
CIV: Posterior section of 4 articulating parts (fig. 22D). 



46 CRM 008 - Frank D. Ferrari & Hans-Uwe Dahms 

Fig. 18.  Ridgewayia klausruetzleri, swimming leg 3 (modified from Ferrari, 1995). A, CI; 
B, CII; C, CIII, exopod and endopod; D, CIV female, exopod and endopod; E, CVI female. 

Images not to scale. 

CV: Does not differ from CIV (fig. 22E). 
CVI male: Posterior section of 5 articulating parts (fig. 22F). 
CVI female: Anterior section similar to CVI male; posterior section of 4 

articulating parts (fig. 22G). 

The anterior section of the body of the gymnoplean, Ridgewayia klausruetz- 
leri at CI is a long cephalothorax of 5 cephalic somites plus the first thoracic 
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Fig. 19.   Ridgewayia klausruetzleri, swimming leg 4 (modified from Ferrari, 1995). A, CII; 
B, CIII; C, CIV female, basis, exopod and endopod; D, CVI female. Dotted lines within A 

show the configuration of the exoskeleton of the following stage. Images not to scale. 

somite, which does not articulate anteriorly; the following three somites, ar- 
ticulating anteriorly and posteriorly, are the second, third and fourth thoracic 
somites (fig. 9A, I). The posterior section consists of the fifth thoracic somite 
and the posterior abdominal somite. At CII, the anterior section consists of 
the articulating second, third, fourth and fifth thoracic somites; the poste- 
rior section consists of the sixth thoracic somite and the posterior abdominal 
somite (fig. 9B, J). At CIII, the anterior section includes the articulating 
second, third, fourth, fifth and sixth thoracic somites; the posterior section 
consists of the seventh thoracic somite and the posterior abdominal somite 
(fig. 9C, K). At CIV, the anterior section is unchanged from CIII, and the 
posterior section consists of the seventh thoracic somite, the anterior [or sec- 
ond, i.e., in development] abdominal somite, and the posterior [or first, i.e., 
in development] abdominal somite (fig. 9D, L). At CV, the anterior section 
remains unchanged, and the posterior section consists of the seventh thoracic 
somite, the second abdominal somite, a middle [or third] abdominal somite, 
and the posterior abdominal somite (fig. 9E, M). At CVI, the anterior section 
of the male remains unchanged; the posterior section consists of the seventh 
thoracic somite, the second abdominal somite, two middle [the third and 
fourth] abdominal somites, and the posterior abdominal somite (fig. 9G, O). 
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Fig. 20.   Ridgewayia klausruetzleri, leg 5 (modified from Ferrari, 1995). A, CIII; B, CIV 
female, basis, exopod and endopod; C, CV, female; D, CVI female; E, CVI male, right limb; 

F, CVI male, left limb. Images not to scale. 

The posterior section of the CVI female has a somite complex consisting 
of the seventh thoracic somite unarticulated with the second (anterior) ab- 
dominal somite, plus the third and the fourth abdominal somites, and the 
posterior abdominal somite (fig. 9F, N). At CIII and later stages, the anterior 
section of the body of the gymnoplean corresponds to the adult prosome; the 
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Fig. 21. Dioithona oculata, schematic of the body and limbs of copepodids (modified from 
Ferrari & Ambler, 1992). A, CI; B, CII; C, GUI; D, CIV; E, CV; F, CVI male; G, CVI 
female, asterisk on complex of posterior thoracic and anterior abdominal somites. Square is 
cephalic limb; long, vertical rectangle is transformed thoracic limb; dark, first thoracic limb is 
maxilliped; short, vertical rectangle is thoracic limb bud; horizontal rectangle is caudal ramus. 

remaining somites of the posterior part of the body include some or all of 
those comprising the adult urosome. 

The body of Dioithona oculata differs from that of Ridgewayia klaus- 
ruetzleri at CIII-CVI (fig. 9C-H, K-0 vs fig. 21C-G). At CIII, the anterior 
section is unchanged from CI-CII and consists of a long cephalothorax of 
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Fig. 22. Sciiematic of the body and limbs of Caribeopsyllus amphiodiae copepodids (mod- 
ified from M. Dojiri, pers. comm., e-mail 26 October 2005). A, CI; B, CII; C, CIII; D, CIV; 
E, CV; F, CVI, female, asterisk on complex of posterior thoracic and anterior abdominal 
somites; G, CVI, male. X denotes limbs that are never present; see fig. 21 for interpretation 

of morphology; question mark indicates somite composition is unclear. 

five cephalic somites plus the first thoracic somite, which is unarticulated 
anteriorly; following four articulating somites are the second, third, fourth 
and fifth thoracic somites (fig. 21C). The posterior section consists of the 
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sixth thoracic somite, the seventh thoracic somite, and the posterior abdomi- 
nal somite. At CIV, the anterior section remains unchanged, and the posterior 
section consists of the sixth and the seventh thoracic somites, an anterior (the 
second) abdominal somite, and the posterior abdominal somite (fig. 21D). At 
CV, the anterior section remains unchanged, and the posterior section consists 
of the sixth and seventh thoracic somites, the second abdominal somite, a 
middle (or third) abdominal somite, and the posterior abdominal somite (fig. 
2IE). At CVI, the anterior section of the male remains unchanged, and the 
posterior section consists of the sixth and seventh thoracic somites, the sec- 
ond abdominal somite, two middle (the third and fourth) abdominal somites, 
and the posterior abdominal somite (fig. 21G); there are no complexes on 
the posterior section of the male. The posterior section of the CVI female is 
composed of the sixth thoracic somite followed by a somite complex of the 
seventh thoracic somite unarticulated with the second abdominal somite, the 
third and the fourth abdominal somites, and the posterior abdominal somite 
(fig. 21F). At CII and later stages, the anterior section of the podoplean body 
corresponds to the adult prosome; the remaining somites on the posterior 
part of the body include some or all of those comprising the adult urosome. 

The body of Caribeopsyllus amphiodiae (fig. 22A-G) differs from that 
of Ridgewayia klausruetzleri (fig. 9A-0) and Dioithona oculata (fig. 21A- 
G) throughout copepodid development. The anterior section of the body of 
Caribeopsyllus amphiodiae at CI is a long cephalothorax of five cephalic 
somites without limbs, except for Al, plus a limbless first thoracic somite 
and the second thoracic somite, which is unarticulated dorsally with the third 
thoracic somite. The following free somite, articulating anteriorly and pos- 
teriorly, is the fourth thoracic somite (fig. 22A). The posterior section of the 
body consists of the fifth thoracic somite and the posterior abdominal somite; 
it also may include the sixth thoracic somite (whose limb bud is presented 
at CII), which does not articulate posteriorly with the posterior abdominal 
somite. At CII, the anterior section remains unchanged; the posterior sec- 
tion consists of the fifth and sixth thoracic somites plus the seventh thoracic 
somite (whose limb bud is presented at CIII), which does not articulate pos- 
teriorly with the posterior abdominal somite (fig. 22B). The anterior section 
of CIII remains unchanged; the posterior section consists of the fifth and 
sixth thoracic somites plus the seventh thoracic somite, which does not artic- 
ulate posteriorly with the posterior abdominal somite; it also may include the 
second abdominal somite unarticulated between the seventh thoracic somite 
and the posterior abdominal somite (fig. 22C). At CIV, the anterior section 
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remains unchanged, and the posterior section consists of the fifth, sixth and 
seventh thoracic somites, and the posterior abdominal somite; the posterior 
section also may include the second and third abdominal somites, which are 
unarticulated between the seventh thoracic somite and the posterior abdom- 
inal somite (fig. 22D). The anterior section of CV remains unchanged, and 
the posterior section consists of the fifth, sixth and seventh thoracic somites, 
and the posterior abdominal somite; it may also include the second, third and 
fourth abdominal somites unarticulated between the seventh thoracic somite 
and the posterior abdominal somite (fig. 22E). At CVI, the anterior section 
of the body of the male remains unchanged; the posterior section consists 
of the fifth, sixth and seventh thoracic somites, the anterior (= second) ab- 
dominal somite, and the posterior abdominal somite; the posterior section 
also may include the third, fourth and fifth abdominal somites unarticulated 
between the second abdominal somite and the posterior abdominal somite 
(fig. 22G). The posterior section of CVI female consists of the fifth and 
sixth thoracic somites, the seventh thoracic somite, which does not articulate 
with the anterior (= second) abdominal somite, and the posterior abdomi- 
nal somite; the posterior section also may include the third, fourth and fifth 
abdominal somites, unarticulated between the second abdominal somite and 
the posterior abdominal somite (fig. 22F). 

Caribeopsyllus amphiodiae differs from gymnopleans and podopleans in 
two ways. The sixth thoracic somite is present at CI, while the sixth thoracic 
somite of gymnopleans and podopleans is presented at CII. As a result, C. 
amphiodiae, throughout its copepodid phase, bears one more somite than 
the comparable copepodid stages of gymnopleans and podopleans. Second, 
the anterior section of the body of C. amphiodiae corresponds to the adult 
prosome at CI; the remaining somites include some or all of those comprising 
the adult urosome. The anterior section of the body of gymnopleans and 
podopleans does not correspond to the adult prosome at CI. 

In summary, the anterior section of the body corresponds to the adult pro- 
some of Ridgewayia klausruetzleri at CIII, to the adult prosome of Dioithona 
oculata at CII, and to the adult prosome of Caribeopsyllus amphiodiae at 
CI. These differences result in a different number of thoracic somites incor- 
porated into the urosome of the adult body as follows: one thoracic somite 
to the urosome of the adult body of Ridgewayia klausruetzleri; two thoracic 
somites to the urosome of Dioithona oculata; three thoracic somites to the 
urosome of Caribeopsyllus amphiodiae. In addition, C. amphiodiae bears one 
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somite more than Ridgewayia klausruetzleri or Dioithona oculata throughout 
the copepodid phase of its development. 

Variation in the number of copepodid stages 
Most copepods, including all free-living species from a variety of different 

habitats, as well as many different kinds of parasitic copepods, pass through 
five immature copepodid stages before a terminal molt to the adult CVI 
takes place. Examples with six copepodid stages include free-living marine 
calanoids like Ridgewayia klausruetzleri (see Ferrari, 1995) and Platycopia 
orientalis (see Ohtsuka & Boxshall, 1994), free-living freshwater calanoids 
like Megadiaptomus hebes (see Ranga Reddy & Rama Devi, 1985), free- 
living marine harpacticoids like Thalestris longimana (see Dahms, 1990b), 
free-living freshwater harpacticoids like Canthocamptus mirabilis (see Ito & 
Takashiro, 1981), free-living marine cyclopoids like Dioithona oculata (see 
Ferrari & Ambler, 1992), free-living freshwater cyclopoids like Macrocy- 
clops albidus (see Defaye, 1984), marine cyclopoids like Euryte longicauda, 
which is associated with an invertebrate (see Ferrari & Ivanenko, 2005), free- 
living marine poecilostomes like Hemicyclops japonicus (see Itoh & Nishida, 
1995), marine poecilostomes like Doridicola longicauda (see Costanzo et 
al., 1994) and Midicola spinosus (see Do et al., 1984, as Pseudomyicola 
spinosus) living in invertebrates, marine poecilostomes like Taeniacanthus 
lagocephali (see Izawa, 1986a) parasitic on fish, marine siphonostomatoids 
like Asterocheres lilljeborgi (see Ivanenko & Ferrari, 2003) associated with 
an invertebrate, marine siphonostomatoids like Scottomyzon gibberum (see 
Ivanenko et al., 2001) symbiotic on an invertebrate, and marine siphonos- 
tomatoids like Caligus elongatus (see Piasecki, 1996) parasitic on fish. 

Fewer than six copepodid stages have been reported for a number of para- 
sitic copopods, but often it is difficult to determine whether these fewer stages 
are a natural phenomenon or whether the missing stages may simply remain 
uncollected from the field or suppressed during laboratory culture. If there 
are copepods that pass through fewer than six copepodid stages, a likely 
group would include those copepods with a naupliar-like adult body, and 
with fewer than seven thoracic appendages, e. g., nicothoids like Hansenulus 
trebax (see Heron & Damkaer, 1986), the ventriculinid, Heliogabalus phasco- 
lia (see Liitzen, 1968), or parasitic copepods of uncertain family or ordinal 
placement like Allantogynus delamarei (see Changeux, 1961) or Selioides 
bocqueti (see Carton, 1964). Copepods for which more than six copepodid 
stages have been reported belong to the Caligidae and are discussed in the 
following section. 
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An exhaustive key to separate different copepodid stages of all copepods 
cannot be constructed due to the presence of somite complexes and the 
degree of variation in appendage segmentation. However, the persistence of 
a 3-segmented exopod on swimming leg 4 of most free-living copepods, 
as well as many copepods associated with invertebrate hosts, permits the 
following diagnoses of six copepodid stages: 

KEY TO COPEPOD COPEPODIDS I-VI 

Two transformed swimming legs, rami of both 1-segmented       CI 
Three transformed swimming legs, rami of third 1-segmented     CII 
Four transformed swimming legs, rami of fourth 1-segmented       CIII 
Four transformed swimming legs, exopod of fourth 2-segmented        CIV 
Four transformed swimming legs, exopod of fourth 3-segmented       CV 
Copulatory and oviducal or genital openings present     CVI 

The above key breaks down for free-living copepods when the addition 
of the arthrodial membrane to swimming leg 4 is delayed until the molt 
to CVI as it is, for example, among the monophyletic lineage of cyclopids 
that includes Thermocyclops decipiens, Mesocyclops edax and Diacyclops 
thomasi (see Ferrari, 1998). 

Stage correspondence of copepods with chalimus stages 
Caligid-like copepods (e. g., Caligidae, Cecropidae, Euryphoridae, Ler- 

naeopodidae, Lernaeoceridae and Pennellidae) exhibit a unique variation in 
the copepodid phase of development. Developmental stages comparable to 
copepodid stages II-V are often attached to a fish host directly by antenna 2 
or by a frontal filament that is held with the maxilla 2 (Benz, 1989). These 
stages may express a modified morphology, and they are called chalimus 
stages. Swimming legs of these chalimus stages often do not add arthrodial 
membranes or setae during molts between two successive stages. In some 
species, the swimming legs may be reduced in size and morphology to the 
extent that these limbs appear bud-like on the chalimus. These secondary 
buds of swimming legs 1-2 have been reconfigured from transformed limbs 
of the first copepodid, while the transformation of swimming legs 3-4 to 
a secondary limb bud is often less dramatic. All four swimming legs are 
reconfigured to transformed limbs during the terminal adult molt to CVI. 

Caligid-like copepods molt to a first copepodid from a last nauplius that 
may be the only nauplius, or the second of two nauplii. This last nauplius 
does not appear to correspond to NVI of copepods with six naupliar stages; 
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rather it appears to be an NI. Like other parasitic copepods and free-living 
copepods, the first copepodid of caligids is a free-swimming stage, and like 
many other parasites it is also dispersive and infective. Body architecture of 
the first copepodid of caligid-like copepods is very similar to that of all other 
copepods, with the exception of the thaumatopsylloids. The body includes a 
cephalon with five appendages, five thoracic somites and a posterior abdom- 
inal somite. Swimming legs 1-2 are transformed limbs with unarticulated 
rami, and swimming leg 3 is a bud; the posterior abdominal somite bears a 
caudal ramus. This is a remarkably conserved morphology among copepods, 
and caligid-like copepods at CI reinforce the concept of the first copepodid 
as the phylotypic stage of copepods (Ferrari, 2003). The first copepodid of 
caligid-like copepods usually molts to chalimus 1, which usually attaches to 
a fish host. A second, unattached copepodid has been reported for the ler- 
naeocerids, Lemaeocera branchialis by Sproston (1942) and Lemaeenicus 
sprattae by Schram (1979). This second copepodid may attach to the host 
using A2 or Mx2, and is transformed into a chalimus 1 that is attached by 
a frontal filament to the host fish. However, molting has not been observed 
between the second copepodid stage and the first chalimus stage of these 
two species (Schram, 1979) so that development of these lernaeocerids may 
be interpreted as including only one copepodid stage and a polymorphic 
first chalimus. 

Chalimus 1 of caligid-like copepods resembles CII of other copepods in 
the number and kind of somites: a cephalon with five limbs, six thoracic 
somites and a posterior abdominal somite. Swimming legs 1-3 often may ap- 
pear similar to transformed limbs and swimming leg 4 is a bud. Three more 
molts result in chalimus stages 2-4, respectively. Chalimus 4 of caligids like 
Caligus elongatus has been reported to molt directly to an adult (see Pia- 
secki, 1996); this also is the situation for lemaeopodids like Salmincola cali- 
fomiensis (see Kabata & Cousens, 1973) and lernaeocerids like Lernaeenicus 
sprattae (see Schram, 1979). However, a pre-adult stage has been reported 
for lemaeopodids like Neobrachiella robusta (see Kabata, 1986) and caligids 
like Lepeophtheirus salmonis (see Johnson & Albright, 1991). The pre-adult 
stage usually is followed by the adult, although a second pre-adult has been 
reported to occur just before the adult stage of caligids like Caligus clemensi 
and Lepeophtheirus pectoralis (see Kabata, 1972; Boxshall, 1974a). How- 
ever, there are no direct observations of molting between the two pre-adults, 
or between a pre-adult and an adult. 

A copepodid phase with more than four chalimus stages has been re- 
ported for caligids like Caligus epidemicus (see Lin et al., 1996) and C. 
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multispinosus (see Lin et al., 1997). However, chalimus 5-6 differ from eacli 
other and from clialimus 4 only in the shape of the prosome, and there are no 
direct observations of molting between chalimus 4-5 or between chalimus 5- 
6. Furthermore, among caligid-like copepods, copulation has been observed 
only between the free-swimming female and the free-swimming male of the 
lemaeocerid, Lemaeenicus sprattae. If copulation between a free-swimming 
male and a free-swimming female is the usual situation for caligid-like cope- 
pods, then sperm in spermatophores attached to a free-swimming pre-adult 
female or sperm in the cuticular seminal receptacle of the free-swimming 
pre-adult female would be lost during any subsequent molt and so would 
be unavailable to fertilize eggs of the adult female. This loss would require 
remating by the molted female and wasted reproductive effort of the initial 
copulating male. One or more pre-adults reported for caligid-like copepods 
may simply represent different morphs of the adult stage, and chalimus 5-6 
may simply be different morphs of chalimus 4. These morphs may result from 
the continued expansion of an exoskeleton that is initially soft and poorly- 
sclerotized after molting. A continued expansion of parts of the exoskeleton 
has been reported for the caligid-like Salmincola californiensis (see Kabata 
& Cousens, 1973) and Neobrachiella robusta (see Kabata, 1986), as well as 
for other siphonostomatoids like Scottomyzon gibberum (see Rottger, 1969; 
Ivanenko et al., 2001). Because there have been no observations of molting 
between a first and second copepodid, between a first and second pre-adult, 
or between a pre-adult and an adult, a copepodid phase for caligid-like cope- 
pods of one copepodid stage, chalimus stages 1-4, and one adult stage aligns 
well with CI-VI of other copepods. This seems to be the most likely situation 
for these parasitic copepods. 

Addition of appendages 
At CI, the transformed limbs of many copepods like Ridgewayia klaus- 

ruetzleri are antenna 1, antenna 2, mandible, maxilla 1, maxilla 2, the max- 
illiped, all of which originate on the cephalothorax, and swimming leg 1, 
swimming leg 2, plus the bud of swimming leg 3 each originating from 
consecutive articulating thoracic somites. The bud of swimming leg 4, orig- 
inating on the articulating fifth thoracic somite, is added at CII, and the bud 
of limb 5, originating on the articulating sixth thoracic somite is added at 
cm. No limb buds are added during the molts to CIV-CVI, and there are no 
differences between females and males of R. klausruetzleri in the addition 
of appendages. 
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During CI-III, there is no difference between Dioithona oculata and R. 
klausruetzleri in limb number including limb buds. However, the bud of limb 
6, originating from the articulating seventh thoracic somite, is added in D. 
oculata during the molt to CIV. No limbs are added during molts to CV-CVI, 
and there are no differences between males and females in the addition of 
appendages of D. oculata. Caribeopsyllus amphiodiae differs most notably 
from R. klausruetzleri and D. oculata in the absence of antenna 2, mandible, 
maxilla 1, maxilla 2, and the maxilliped. More subtle differences include a 
setose bud of leg 4 present on CI and the initial appearance of the buds of 
limbs 5-6 at CII-CIII, respectively. In addition, limbs 5-6 are not initially 
presented on an articulating six th or seventh thoracic somite, respectively. 
Rather, limbs 5-6 first appear on the posterior somite complex that includes 
the sixth thoracic somite or the seventh thoracic somite unarticulated with 
the posterior abdominal somite. 

Literature reports of the development of copepod swimming legs 1-4 and 
limbs 5-6 have been surveyed and analysed extensively (Ferrari, 1988). Dur- 
ing the copepodid phase of development, there is little variation in the stage 
at which a limb bud initially is presented, or in the order of appearance of 
limb buds, which is exclusively anterior to posterior (Ferrari, 1988). The bud 
of limb 5 of Lamproglena chinensis has been reported to be presented ini- 
tially at CII and the bud of limb 6 initially at CIII (see Kuang, 1962), rather 
than at CIII and CIV as is the situation for other copepods. However, these 
unusual observations may be misinterpretations of limb bud morphology, be- 
cause a similar configuration was not reported for related species (Grabda, 
1963; Kuang, 1980). 

The presentation of the bud of limb 5 may be delayed until CIV, e. g., 
Balaenophilus unisetus (see Aurivillius, 1879), until CV, e.g., Mytilicola 
intestinalis (see Costanzo, 1959), or CVI, e. g., Monstrilla helgolandica (see 
Pelseneer, 1914). In a similar fashion, the initial presence of the bud of limb 6 
may be delayed until CV, e. g., Oncaea media (see Malt, 1982), or until CVI, 
e.g., Zaus robustus (see Ito, 1976). Species oiAcartia and Candacia fail to 
express the bud of limb 5 at CIII, although the transformed limb is present 
at CIV (Ferrari & Ueda, 2005), and limb 5 has been reported as suppressed 
in Sabellacheres illgi (see Dudley, 1964) and Porcellidium fimbriatum (see 
Bocquet, 1948). Ferrari (1988) proposed that the development of the genital 
plate of female gymnoplean copepods was not part of the bud of limb 6 
of calanoids, but recent scanning electron micrographs of the genital somite 
complex of several different species of Pseudodiaptomus by Walter et al. 
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(2002, figs. 9A-D, lOA-B) suggest that the genital flap plus operculum may 
indeed be homologous to the bud of limb 6. 

Variation in transformed appendages 
The morphology of antenna 1 during the copepodid phase of develop- 

ment has been reported extensively. Comparative development of representa- 
tive species from six copepod orders has been described (Boxshall & Huys, 
1998). Development of antenna 1 also has been compared among six fam- 
ilies within the Harpacticoida (cf. Dahms, 1989a) and within 29 genera of 
the cyclopoid family Cyclopidae (cf. Schutze et al., 2000), as well as within 
three genera of the cyclopoid family Notodelphyidae (cf. Dudley, 1966). The 
number of segments of antenna 1 increases with increasing copepodid devel- 
opment (Dudley, 1966; Dahms, 1989a; Boxshafl & Huys, 1998; Schutze et 
al., 2000). Female segmentation usually is complete by CV but males often 
undergo important changes during the molt to CVI (Dahms, 1989a). A stable 
terminal section of eight segments on antenna 1 is established early in devel- 
opment (Dahms, 1989a; Boxshall & Huys, 1998; Schutze et al., 2000), or if 
segmentation is not stable then setation of this section of the limb is stable 
(Dudley, 1966). Variation in segment number of antenna 1 usually results 
from a failure to express an arthrodial membrane separating two segments 
later in development (Dahms, 1989a; Boxshall & Huys, 1998; Schutze et al., 
2000). Less often, variation results from the secondary loss of an arthrodial 
membrane that was expressed earlier in development between two segments 
(Dudley, 1966). This latter case usually occurs late in the development of 
male copepodids (Dudley, 1966; Dahms, 1989a). 

The number of ramal segments of antenna 2 does not change throughout 
the copepodid phase of development of calanoids and polyarthrans (Dahms, 
1993b; Ferrari, 1995), and ramal segmentation does not change during cope- 
podid development of species of harpacticoids and siphonostomatoids, al- 
though the segment number of their exopod is reduced from that of the 
naupliar phase (Dahms, 1993b). At CI of cyclopoids and poecilostomes, the 
exopod of antenna 2 is a small, poorly-sclerotized, wrinkled structure with 
1-3 setae (Ferrari & Ambler, 1992; Huys & Bottger-Schnack, 1994; Ferrari 
& Ivanenko, 2005). The wrinkled structure is lost at CII, although one or two 
setae, presumably terminal ramal setae, may remain throughout the copepo- 
did phase of cyclopoids like Dioithona oculata and Euryte longicauda (see 
Ferrari & Ambler, 1992; Ferrari & Ivanenko, 2005). However, harpacticoids 
like MacroseteUa gracilis (see Huys & Bottger-Schnack, 1994) and poe- 
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cilostomes like Anchistrotos pleuronichthydis or Critomolgus anthopleurus 
(see Izawa, 1986; Kim, 2003) do not retain these ramal setae after CI. 

The segmental configuration of the mandible does not change through- 
out the copepodid phase of development of most copepods, although the 
exopod of cyclopoids like Dioithona oculata (see Ferrari & Ambler, 1992) 
or harpacticoids like Drescheriella glacialis (see Dahms, 1987a) may have 
fewer segments than that of calanoids like Ridgewayia klausruetzleri (see 
Ferrari, 1995). At CI, the basis plus rami (or palp) of the mandible of cy- 
clopid copepods is a poorly-sclerotized, often bifurcate, wrinkled structure 
with terminal setae, e. g., Euryte longicauda (see Ferrari & Ivanenko, 2005). 
This wrinkled structure is lost at CII while the terminal, ramal setae are re- 
tained throughout the copepodid phase. The mandible of the poecilostomes, 
Hemicyclops ctenidis (see Kim & Ho, 1992) or Ergasilus hypomesi (see 
Kim, 2004) and the siphonostomatoids, Dermatomyzon nigripes or Astero- 
cheres lilljeborgi (see Ivanenko & Ferrari, 2003) does not change during 
the copepodid phase. However, the corresponding parts of the mandible of 
poecilostomes and siphonostomatoids are not well-understood. 

The segmental configuration of maxilla 1 does not change through the 
copepodid phase of development, although there may be fewer segments 
and protopodal endites in cyclopoids like Dioithona oculata (see Ferrari 
& Ambler, 1992) or harpacticoids like Drescheriella glacialis (see Dahms, 
1987a) relative to segments or endite numbers for calanoids like Ridgewayia 
klausruetzleri (see Ferrari, 1995). The corresponding parts of poecilostomes 
and siphonostomatoids (see Kim & Ho, 1992; Ivanenko & Ferrari, 2003; 
Kim, 2004) remain to be analysed. A poorly-sclerotized, terminal structure 
without setae has been reported on maxilla 1 of CI of some poecilostomes 
like Midicola spinosus [as Pseudomyicola spinosus] (see Do et al., 1984) or 
Critomolgus anthopleurus (see Kim, 2003). This wrinkled structure is lost 
at CII, and can be interpreted as a serial homolog of the mandibular palp of 
cyclopid copepods at CI of Euryte longicauda (see Ferrari & Ivanenko, 2005). 

The segmental configuration of maxilla 2 does not change throughout the 
copepodid phase of development of copepods, although there may be fewer 
segments and protopodal endites in cyclopoids like Dioithona oculata (see 
Ferrari & Ambler, 1992) or harpacticoids like Tisbe gracilis (see Dahms 
& Bergmans, 1988) relative to segments or endite numbers for calanoids 
like Ridgewayia klausruetzleri (see Ferrari, 1995). The corresponding parts 
of poecilostomes like Hemicyclops ctenidis (see Kim & Ho, 1992) or Er- 
gasilus hypomesi (see Kim, 2004) or siphonostomatoids like Dermatomyzon 
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nigripes or Asterocheres lilljeborgi (see Ivanenko & Ferrari, 2003) are not 
well-understood. 

Changes in the configuration of the maxilliped during the copepodid phase 
of development are confined to the incremental but significant addition of 
segments and/or setae to the endopod of most calanoids like Ridgewayia 
klausruetzleri (see Ferrari, 1995), polyarthrans like Longipedia americana 
or Coullana canadensis (see Ferrari & Dahms, 1998), some cyclopoids like 
Oithona similis (see Ferrari & Ivanenko, 2001) and siphonostomatoids like 
Dermatomyzon nigripes or Asterocheres lilljeborgi (see Ivanenko & Ferrari, 
2003). In several studies, segmental homologies have been proposed (Ferrari 
& Dahms, 1998; Ferrari & Ivanenko, 2001). For other cyclopoids like Py- 
godelphys aquilonaris, there is no change in segmentation (Dudley, 1966). 
For some siphonostomatoids, like Caligus epidemicus, segmentation does not 
change although the shape of particular segments may change significantly 
(Lin et al., 1996). Among poecilostomes, changes in the maxilliped include 
its suppression at CI for Ergasilus hypomesi (see Kim, 2004) or a recon- 
figuration of the limb during the molt to CII for Conchyliurus quintus and 
Critomolgus anthopleurus (see Kim, 1994, 2003). A significant reconfigura- 
tion of the male maxilliped takes place during the molt to CVI of Midicola 
spinosus (see Do et al., 1984), Hemicyclops ctenidis (see Kim & Ho, 1992) 
and Ergasilus hypomesi (see Kim, 2004). 

The swimming legs of copepods almost always undergo important changes 
during the copepodid phase of development, and there is a significant vari- 
ation in these changes among species (Ferrari, 1988). To summarize, most 
changes involve truncation of development of a coordinated pattern of swim- 
ming leg development called the general pattern (Ferrari, 1988). The general 
pattern has been hypothesized to be ancestral for copepods because it is 
represented among so many copepods, including those species assumed to 
be basal in many of the copepod orders. Truncation may occur at several 
different steps during limb development resulting in significant developmen- 
tal variability among species. In a few species, a change in swimming leg 
configuration may result from a delay in the formation of a particular limb 
element, e. g., the arthrodial membrane that separates two segments (Ferrari, 
1998). An unusual variability is expressed in caligid-like siphonostomatoids. 
Swimming legs 1-2 of these copepods at CI are similar to those of most 
copepods at CI. However, during the four chalimus stages, corresponding to 
CII-CV, swimming legs often do not add arthrodial membranes or setae, and 
in some species the limb is transformed in such a way that it appears as a 
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secondary limb bud (Ferrari, 1988). The molt to CVI, identified as either a 
pre-adult or an adult, results in adult swimming legs 1-4 whose morphology 
is remarkably similar to the swimming legs of copepods that do not develop 
through a set of chalimus stages. 

The segmental configuration of limbs 5-6 of many copepods does not 
change from the limb bud step during the copepodid phase of development 
(Ferrari, 1988). The major exception is limb 5 of calanoids for which sig- 
nificant variability may be expressed in the segmentation of both exopod 
and endopod of both females and males. In males, this variability is thought 
to be an adaptation to some aspect of its performance during copulation 
(e. g.. Blades & Youngbluth, 1980), and this variability may be of particular 
importance for spermatophore transfer to conspecific females. 

Limb 5 of the female and male of calanids like Neocalanus tonsus devel- 
ops much like swimming legs 1-4 (see Campbell, 1934, as Calanus tonsus), 
but the male limb 5 differs slightly from that of the female by adding a 
group of denticles or sensilla to the middle and distal exopodal segments of 
the limb on the side of the genital opening, during the terminal molt to a CVI 
adult. These denticles or sensilla presumably aid in manipulating the sper- 
matophore during mating. Similar denticles or sensilla on the exopod of the 
fifth limb on the side of the genital opening can be found in most calanoids, 
and appear to be a synapomorphy for the order Calanoida. The male limb 5 
of many calanoids expresses more than the simple morphological variability 
exhibited by Neocalanus tonsus. However, some of this variability appears 
to result from a reduction in the number of some exopodal segments and 
some or all endopodal segments by truncation during development (Ferrari 
& Ueda, 2005). Limb 5 of female calanoids also exhibits significant variabil- 
ity; in most cases this variability appears to result from the suppression of 
development of the endopodal segments, and the diminution of exopodal size 
and truncation of exopodal segmentation. The resulting configuration often 
includes a terminal seta or pointed attenuation of the distal segment (Heron 
& Bowman, 1971; Ferrari & Ueda, 2005). The extent to which this structure 
may be used to remove selected spermatophores from the female's genital 
complex or aid in removal of unwanted sperm from the seminal receptacles 
of the female has not been investigated. 

Internal anatomy 
Less is known about the internal anatomy of immature copepodid stages 

than about the naupliar stages of many copepods. In the notodelphyids. 



62 CRM 008 - Frank D. Ferrari & Hans-Uwe Dahms 

Notodelphys affinis, Pygodelphys aquilonaris and Doropygus longicauda, a 
labram is present although the midgut of CI is blocked by large yolk globules 
in its anterior part, and the foregut and hindgut are not open. At CII, yolk 
has dissipated from the midgut, which now has a lumen; the foregut and the 
hindgut are open (Dudley, 1966). A functional midgut valve is found at the 
level of the posterior section of the body, as well as a functional anal valve at 
CII. No differences were found in the cells of the foregut, midgut or hindgut 
of CI-CVI of Lemaea cyprinacea, although there are differences between 
the free adult female and the embedded adult female in length and cellular 
zonation of the midgut (Sabatini et al., 1987). At CI, extrinsic muscles of the 
functioning appendages of notodelphyids are striated but those of the bud of 
swimming leg 3 and of the longitudinal muscles of the posterior section of 
the body are not striated (Dudley, 1966). A ventral nerve from a neuropile 
at the level of swimming leg 3 at CI continues to the end of the body. Setae 
of the maxilliped of copepodids of Temora stylifera possess dendrites that 
suggest both mechanosensory and chemosensory functions (Paffenhofer & 
Loyd, 1999). 

Total lipid content of Calanus finmarchicus along with dry weight increase 
exponentially from CI to CV, but then only slightly during the molt to CVI 
(Kattner & Krause, 1987). Wax esters make up a greater proportion of total 
lipids as the copepodid phase of development proceeds, although there is 
a proportional decrease in CVI females as wax esters are allocated to egg 
production. Copepodids of the sympatric Southern Ocean calanoids, Calanus 
propinquus, Calanoides acutus and Rhincalanus gigas show an increase in 
lipid storage with development, and Calanus propinquus and Calanoides 
acutus also increase the carbon-chain lengths of stored lipids during develop- 
ment (Kattner et al., 1994). Copepodids of both Calanoides acutus and Rhin- 
calanus gigas accumulate wax esters but of different carbon-chain lengths; 
copepodids of Calanus propinquus accumulate triacyloglycerols (Kattner et 
al., 1994). Wax esters are also the main lipid component of CI-CVI of Eu- 
chaeta japonica (see Lee et al., 1974) and CIII-CVI of Calanus helgolandicus 
(see Lee et al., 1972). The oil sac of CV Calanus finmarchicus takes up a pro- 
portionately larger space in specimens with larger prosome length, perhaps 
because the other internal organs do not vary with prosome length while the 
oil sac may vary (Miller et al., 2000). Gonadal tissue of Calanus finmarchi- 
cus initially has been detected at CV (Crain & Miller, 2000). The size and 
shape of the gonad of CV females goes through significant changes prior to 
and during the molt to CVI, and cell size of the presumptive testis and ovary 
is a better predictor of sex than is gonad size (Crain & Miller, 2000). 
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Functional morphology, swimming, and feeding behavior 
Copepodid stages of calanoid copepods like Temora stylifera and Centro- 

pages velificatus move continuously through the water while they generate 
a feeding current. The first copepodid of Eucalanus pileatus is active only 
about half of the time (Paffenhofer et al., 1996) and copepodids of Acar- 
tia tonsa have been characterized as intermittent swimmers (Buskey, 1994). 
Swimming speeds of the cyclopoid Cyclops scutifer increase as copepodid 
development proceeds (Gerritsen, 1978) but speeds of the calanoid Acartia 
tonsa do not appear to increase among early copepodids (Buskey, 1994). 
Copepodid stages of Eurytemora affinis appear to limit particle intake to a 
subset of the food particle sizes presented to them (Allan et al., 1977). 

Seasonal cycles, vertical distribution, vertical migration 
Copepodids of many species of planktonic calanoids from both marine 

and freshwater habitats assort vertically in the water column during the day. 
In general, this assortment has a well-characterized pattern. Adults are found 
deepest with progressively younger copepodid stages progressively closer 
to the water surface for the lagoonal Acartia clausi (see Landry, 1978a), 
for the freshwater Leptodiaptomus novamexicanus [reported as Diaptomus 
novamexicanus] (see Redfield & Goldman, 1980), for the oceanic Pleura- 
mamma xiphias (see Ferrari, 1985) or for the oceanic Calanus pacificus and 
Metridia lucens (see Osgood & Frost, 1994b). For Calanus finmarchicus, 
this assortment also has been expressed as the proportion of specimens of a 
specific stage collected from a particular depth stratum (Dale & Kaartvedt, 
2000). During the day, the degree to which vertically assorting copepodid 
stages of C. finmarchicus are separated may exhibit differences among spa- 
tially separated groups. Copepodids in the Atlantic Water and copepodids in 
the transition water between Polar Water and Atlantic Water express such 
differences (Dale & Kaartvedt, 2000). 

Some variation in this general pattern of vertical assortment has been 
reported among pelagic calanoids (e. g., Yamaguchi et al., 2004). CI of 
Paraeuchaeta norvegica may be found slightly deeper than CII although the 
remaining copepodid stages assort deeper with increasing age (Fleddum et al., 
2001). Both Calanus helgolandicus and C glacialis may express an inverse 
vertical assortment, with younger stages deeper than older ones (Williams & 
Conway, 1980; Unstad & Tande, 1991), a pattern also expressed by Gaidius 
variabilis (see Yamaguchi et al., 2004). Planktonic cyclopoid species like 
Dioithona oculata, which form swarms during the day, seem to assort hor- 
izontally rather than vertically. CII-CVI of D. oculata make up the swarm. 
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and CI, as well as the nauplii, are found outside the swarms (Ambler et al., 
1991); all copepodids disperse horizontally at night (Ferrari et al., 2003). 
Daytime assortment of D. oculata appears to be similar to assortment of 
some parasitic cyclopoids, e. g., Pachypygus gibber, where CI is the free- 
swimming dispersive and infective stage of this notodelphyid parasite, while 
CII-CVI are found in the host (Hipeau-Jacquotte, 1978). 

Copepodids of many species of copepods have been reported to undertake 
diel migrations. The most common migration studied is a diel vertical mi- 
gration in which copepodid stages found deeper in the water column during 
the day migrate toward the surface at night (e.g., Landry, 1978; Redfield & 
Goldman, 1980; Ferrari, 1985). However, copepodids of Metridia lucens may 
occasionally perform reverse vertical migrations (Osgood & Frost, 1994a). 
The horizontal migrations of the swarming copepodids of Dioithona oculata 
are not as distinctive and have been described simply as dispersive, although 
a migration signal can be characterized from strata-specific sampling (Ambler 
et al., 1991; Ferrari et al., 2003). 

For immature copepodids, migratory parameters such as percent migra- 
tory participation and migratory amplitude, often are not as pronounced as 
those for adult males; adult females often express intermediate parametric 
values, e. g., copepodids of the limnetic Leptodiaptomus novamexicanus (see 
Redfield & Goldman, 1980) or copepodids of the pelagic, marine Calanus 
finmarchicus (see Dale & Kaartvedt, 2000). Migratory participation and am- 
plitude do not change with an increase in density of copepodids of L. no- 
vamexicanus in the late summer. However, migration parameters for cope- 
podids of Paraeuchaeta norvegica may be controlled by food availability 
(Fleddum et al, 2001). 

Most seasonal studies of copepodids have been carried out on marine 
planktonic copepods, usually calanoids like Acartia clausi or Metridia paci- 
fica (see Landry, 1978; Batchelder, 1985) and less often on freshwater plank- 
tonic cyclopoids such as Cyclops strenuus strenuus or Mesocyclops leuckarti 
(see Elgmork, 1959; Alekseev, 1982) or harpacticoids like Microsetella nor- 
vegica, which is associated with unicellular, marine phytoplankton (Uye 
et al., 2002). Some of the most detailed studies are of diapausing marine 
calanoids like Calanus finmarchicus, Calanus agulhensis, Calanus chilensis 
or Eucalanus inermis (cf. e. g., Gislason & Astthorsson, 1996; Escribano et 
al, 1998; Gaard, 2000; Huggett & Richardson, 2000; Tande et al., 2000; 
Hidalgo et al., 2004). Generally, these calanoids become quiescent in waters 
well below 100 m as CIV or CV and then return to surface waters as CVI, 
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or as eggs, with the onset of seasonal primary production, which often is 
triggered by upwelling. One or more generations follow before the late sea- 
son descent to the depth of quiescence by CIV or CV; the descent usually 
is preceded by the diminution of seasonal primary production. Variations on 
this simple model include a distribution of developmental stages of Calanus 
finmarchicus after ascent, which correlates with the direction of water move- 
ment (Gislason et al., 2000), or differences in vertical assortment and diel 
vertical migration of Calanus agulhensis in food-rich areas as opposed to 
food-poor areas (Huggett & Richardson, 2000). Interannual differences in 
the abundance of copepodids of Calanus finmarchicus do not show a clear 
relationship with water temperature, because the annual effects of advection 
of cold water containing C. finmarchicus cannot be separated from effects of 
interannual changes in water temperature (Tande et al., 2000). 

Development times, mortality, etc. 
Isochronal development has been proposed for the copepodids of many 

free-living calanoid copepods, but it does not appear to be an effective predic- 
tor as a general rule for development for all copepods (Hart, 1990; Peterson, 
2001). For example, CV has been reported as the stage of longest duration 
for three species of Cyclops (cf. Zankai, 1987). Copepodids of Cyclops vici- 
nus appear to be able to acclimate to temperature changes in a way that 
calanoids like Eudiaptomus gracilis cannot (Munro, 1974), and their stage 
durations are effected. CI is regarded as the dispersive stage for many para- 
sites, and is of longer duration than those stages immediately following CI. 
The poecilostome, Hemicyclops gomsoensis is a good example of a copepod 
with a long duration of CI (Itoh, 2003). In general, the rate of increase in 
body size diminishes with older copepodid stages. 

General statements about copepodid mortality from predation are available 
but usually these are restricted to planktonic, marine species. For example, 
copepodids of Acartia clausi appeared to be less affected by predation than 
the nauplii (Landry, 1978). Studies of stage-specific mortality are much more 
restricted. Stage-specific mortality declines to a constant level after CI for 
Calanus finmarchicus, before increasing at CV-CVI (Ohman et al., 2002). In 
contrast, stage-specific mortality of co-occurring species of Pseudocalanus is 
more uniform during copepodid development. The negligible stage-specific 
mortality of Oithona similis was assumed to reflect a relatively immotile feed- 
ing strategy (Eiane & Ohman, 2004). Data from contrasting marine habitats 
over a broad geographical range indicate that stage-specific mortality for 
Calanus finmarchicus varies appreciably (Ohman et al., 2004). 



PATTERNING THE COPEPOD BODY 

The variability in body architecture described in the previous chapter for 
the gymnoplean, Ridgewayia klausruetzleri, the podoplean, Dioithona ocu- 
lata and the thaumatopsylloid, Caribeopsyllus amphiodiae represents funda- 
mental differences in the general body architecture of copepods. Most of the 
remaining variation in the association of somites along the anterioposterior 
axis of the body results from one of two processes: the formation of somite 
complexes that result from the failure of an arthrodial membrane to form 
between two somites; or the suspension of the addition of somites to the 
body. These two processes are discussed below. The transformation of the 
shape of individual somites during development is a process that will not be 
discussed here. 

A basic understanding of how the body is patterned during development is 
essential to the analyses of somite complexes or of the suspension of somite 
addition. Giesbrecht (1913) initially proposed that during each molt to a new 
copepodid stage, one new somite is added immediately anterior to, and adja- 
cent to, the posterior abdominal somite, also known as the anal somite, which 
bears the caudal rami. That is, each new somite is added from a growth zone 
that is located in the anterior part of the posterior abdominal somite. Dudley 
(1966) recognized that changes in the notodelphyid body during copepodid 
development could be explained in this way, and Hulsemann (1991b) gen- 
eralized the model for all copepods. A cellular basis for somite addition of 
copepods has yet to be proposed, although several cellular models exist for 
other crustaceans (Ooishi, 1959; Dohle & Scholtz, 1997). Alternative mod- 
els, in which new somites are added either anteriorly or posteriorly from 
the posterior thoracic somite or anterior abdominal somite, have not been 
proposed and are not explored here. 

Among gymnoplean copepods, the second thoracic somite usually artic- 
ulates anteriorly with the cephalothorax during early stages of the copepo- 
did phase of development. However, the arthrodial membrane separating the 
second thoracic somite from the cephalothorax may fail to form, so that the 
second thoracic somite becomes incorporated into the cephalothorax at CIII 
(fig. 23A, B; table III), e.g., Euchaeta japonica (see Campbell, 1934), or at 
CVI (fig. 23C, D; table IV), e. g., Scopelatum vorax (see Ferrari & Steinberg, 
1993) and Parkius karenwishnerae (see Ferrari & Markhaseva, 1996). 
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Fig. 23. Euchaeta japonica, schematic of the body and limbs (modified from Campbell, 
1934); A, CII; B, CIII; asterisks on unarticulated thoracic somites 1 and 2, and unarticulated 
thoracic somites 5 and 6. Parkius karenwishnerae, schematic of the body and limbs (modified 
from Ferrari & Steinberg, 1993); C, CV; D, CVI; asterisks on unarticulated thoracic somites 

1 and 2, and unarticulated thoracic somites 5 and 6. See fig. 21 for interpretation. 

TABLE m 
Somites of Euchaeta japonica at CI, CII and CIII. An initial capital letter indicates a somite 
or complex of the anterior part of the body; a somite of the posterior part of the body is in 
italics; an arthrodial membrane is indicated by a comma; absence of an arthrodial membrane 
is indicated by a dash; complexes of thoracic somites 1+2 and thoracic somites 5 + 6 are in 

bold; posterior is right. Cph, cephalon; th, thoracic somite; abd, abdominal somite 

CI: Cph- - Thl, Th2, Th3, Th4, th5, abdl 
CE: Cph- - Thl, Th2, Th3, Th4, Th5, th6, abdl 
cni: Cph- - Thl-Th2, Th3, Th4, Th5-Th6, th7, abdl 

Among podopleans, failure of an arthrodial membrane to separate the 
second thoracic somite from the cephalothorax occurs only during the molt 
to CI, e. g., Bryocamptus zschokkei alleganiensis (see Carter & Bradford, 



68 CRM 008 - Frank D. Ferrari & Hans-Uwe Dahms 

TABLE IV 

Somites of the Parkius karenwishnerae female at CV and CVI; complexes of thoracic somites 
1+2 and thoracic somites 5 + 6 are in bold; CI unknown. Explanations as in table III 

CII: Cph - Thl, Th2, Th3, Th4, Th5, th6, abdl 
CIII: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl 
CIV: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl, abdl 
CV: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl, abd3, abdl 
CVI: Cph - Thl-Th2, Th3, Th4, Th5-Th6, thJ-abdl, abdS, abd4, abdl 

TABLE V 
Somites of Pleuromamma xiphias at CII and CIII; complex of thoracic somites 5 + 6 is in 

bold. Explanations as in table III 

CI: Cph - Thl, Th2, Th3, Th4, th5, abdl 
CII: Cph - Thl, Th2, Th3, Th4, Th5, th6, abdl 
CIII: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7, abdl 

1972), Hemicyclops japonicus (see Itoh & Nishida, 1995), Leptinogaster 
major (see Humes, 1986), or Taeniacanthus lagocephali (see Izawa, 1986a). 

The arthrodial membrane separating the fifth and sixth thoracic somites 
on the body of gymnopleans like Euchaeta japonica (see Campbell, 1934) 
and Pleuromamma xiphias (see Ferrari, 1985) may fail to form at CIII (fig. 
23A, B; tables III, V). 

CIII also is the stage at which the sixth thoracic somite is incorporated into 
the anterior section of the body. One stage earlier, at CII, the limbless sixth 
thoracic somite is a part of the posterior section of the body and articulates 
with the fifth thoracic somite that forms a part of the anterior section. The 
fifth thoracic somite at CII bears the bud of swimming leg 4. At CIII, the 
presence of the bud of limb 5 on the anterior section of the body supports 
the hypothesis that the sixth thoracic somite has become part of the anterior 
section of the body as it has formed a somite complex with the fifth thoracic 
somite; the arthrodial membrane separating the two somites at CII has failed 
to form at CIII. This arthrodial membrane remains suppressed throughout 
the remaining stages of copepodid development. 

The arthrodial membrane between the fifth and sixth thoracic somites fails 
to form later in development, during the molt to CVI (fig. 23C, D; table IV), 
on other gymnopleans, e. g., Scopelatum vorax (see Ferrari & Steinberg, 
1993) and Parkius karenwishnerae (see Ferrari & Markhaseva, 1996). 
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Fig. 24. Ridgewayia klausruetzleri, schematic of the body and limbs (modified from Ferrari, 
1995); A, CV; B, CVI; asterisk on unarticulated posterior thoracic somite (thoracic somite 7) 
and anterior abdominal somite (abdominal somite 2). Pontella chierchiae, schematic of the 
body and limbs; C, CIV; D, CV; asterisk on unarticulated posterior thoracic somite (thoracic 
somite 7) and anterior abdominal somite (abdominal somite 2). See fig. 21 for interpretation 

of morphology. 

TABLE VI 
Somites of the Ridgewayia klausruetzleri female at CV and CVI; the genital complex of 

thoracic somite 7 and abdominal somite 2 is in bold. Explanations as in table III 

CI: Cph - Thl, Th2, Th3, Th4, th5, abdl 
CE: Cph - Thl, Th2, Th3, Th4, Th5, th6, abdl 
CIII: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl 
CIV: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl, abdl 
CV: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl, abd3, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7-abd2, abdS, abd4, abdl 
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TABLE VII 
Somites of tlie Pontella chierchiae female, a centropagoidean calanoid, at CIV-CVI; tlie genital 
complex of thoracic somite 7 and abdominal somite 2 is in bold. Explanations as in table III 

CIV: Cph- - Thl, Th2, Th3, Th4, Th5, Th6, th7, abd2, abdl 
CV: Cph- - Thl-Th2, Th3, Th4, Th5-Th6, th7-abd2, abdS, abdl 
CVI: Cph- - Thl-Th2, Th3, Th4, Th5-Th6, th7-abd2, abd3, abd4, abdl 

TABLE VIII 
Somites of the Acartia tonsa female at CIII-CVI. The genital complex of thoracic somite 7 

and abdominal somite 2 is in bold. Explanations as in table III 

CIII: Cph - Thl, Th2, Th3, Th4, Th5, Th6, th7, abdl 
CIV: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abdl 
CV: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abdS, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abd3, abd4, abdl 

uuuuu 
CIII 

uuu 
CIV 

Fig. 25.  Acartia erythraea, schematic of the body and limbs. A, CIII; B, CIV; asterisk on 
unarticulated posterior thoracic somite (thoracic somite 7) and anterior abdominal somite 

(abdominal somite 2). See fig. 21 for interpretation of morphology. 

The genital complex of adult female copepods usually results from a failure 
of the arthrodial membrane to form between the posterior, or seventh, thoracic 
somite and the anterior, or second, abdominal somite. This failure is observed 
among gymnopleans, podopleans and thaumatopsylloids. Formation of the 
female genital complex usually occurs during the molt to CVI (fig. 24A, B; 
table VI). However, failure of the arthrodial membrane to form between the 
seventh thoracic and the second abdominal somites may take place during 
the molt to CV (fig. 24C, D; table VII) in many female centropagoidean 
calanoids (Ferrari & Ueda, 2005) and a few eucalanid calanoid females, 
e. g., Eucalanus hyalinus and E. attenuatus (see Geletin, 1976), as well as in 
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TABLE LX 

Somites of the Caligus elongatus female at chalimus 3 and chalimus 4; the complex that 
includes thoracic somite 6 and thoracic somite 7 is in bold. Explanations as in table III 

Chalimus 3:      Cph - Thl-Th2-Th3, Th4-Th5, th6, th7-abd2-abdl 
Chalimus 4:      Cph - Thl-Th2-Th3, Th4-Th5, th6-th7-abd2-abd3-abdl 

the females of several poecilostomes, e.g., Oncaea media (see Malt, 1982) 
and Neoergasilus japonicus (see Urawa et al., 1980b) as pointed out by 
Izawa (1991). 

Failure of an arthrodial membrane to form between the seventh thoracic 
and second abdominal somites also may occur earlier in development, during 
the molt to CIV (fig. 25A, B; table VIII) of females of all species oiAcartia, 
e. g., A. tonsa (see Sabatini, 1990) or A. californiensis (see Trujillo-Ortiz, 
1986), as well as of Eucalanus subtenuis (see Geletin, 1976). 

A genital complex does not form in females of a few copepods, e. g., 
Benthomisophria palliata (see Boxshall & Roe, 1980), Platycopia orientalis 
(see Ohtsuka & Boxshall, 1994), Notodelphys ascidicola (see Allman, 1847), 
and Scottomyzon gibberum (see Ivanenko et al., 2001). In general, the female 
body architecture of these copepods is similar to that of the male. 

Among caligid females, a different kind of complex of the genital somite is 
formed when the sixth thoracic somite fails to articulate posteriorly with the 
seventh thoracic (or genital) somite during the molt to chalimus 4 (table IX), 
e. g., Caligus elongatus (see Piasecki, 1996) or the comparable first pre-adult, 
e. g., Caligus spinosus (see Izawa, 1969) or Lepeophtheirus dissimulatus (see 
Lewis, 1963). Among these caligid siphonostomatoids, a number of segment 
complexes may form during chalimus development (table IX); chalimus 4 
corresponds to CV of other copepods (see previous chapter). 

During the terminal molt to the adult copepodid, CVI, suppression of 
the formation of the fourth abdominal somite has been reported for females 
of eucalanid calanoids, e. g., Eucalanus attenuatus and E. subtenuis (see 
Geletin, 1976), and for males of poecilostomes (Izawa, 1991), e.g., Taenia- 
trotos pleuronichthydis (see Izawa, 1986b, as Anchistrotos pleuronichthydis). 
One difficulty with confirming any hypothesis for suppression of formation 
of an abdominal somite is that there is no unambiguous way of determining 
whether an abdominal somite is absent or whether it has formed a somite 
complex with another somite. Abdominal somites do not bear limbs and so 
lack a clear marker for their position on the body, unlike thoracic somites 
whose limb is expressed in a predictable setose, bud-like configuration one 
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TABLE X 
Somites of the Pleuromamma xiphias female at CV, and four different interpretations of 
CVI; 1: suspension of formation of the fourth abdominal somite; 2-4 masking one or more 
abdominal somites; different somite complexes on the posterior part of the body are in bold. 

Explanations as in table III 

CV: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7, abd2, abdS, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abd3, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2-abd3, abd4, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abd3-abd4, abdl 
CVI: Cph - Thl, Th2, Th3, Th4, Th5-Th6, th7-abd2, abdS, abd4-abdl 

Stage after the somite has formed. In any hypothesis for suppression of an 
abdominal somite, an alternate explanation should be considered, that one or 
more arthrodial membranes separating abdominal somites may have failed to 
form, masking more than one abdominal somite within an abdominal somite 
complex. For example, the posterior section of the body of females of Pleu- 
romamma xiphias at CV is composed of the seventh thoracic somite and 
the first three abdominal somites (table X). At CVI, the posterior section 
of the body is composed of a large genital complex anteriorly, a middle 
abdominal somite or an abdominal somite complex, and the posterior ab- 
dominal somite or a complex of the posterior abdominal somite and another 
abdominal somite. 

One interpretation of the posterior section of the body of P. xiphias is 
that the formation of the fourth abdominal somite has been suppressed. In 
this case, the genital complex is of the usual architecture, formed by the 
suppression of the arthrodial membrane between the seventh thoracic somite 
and the second abdominal somite; the middle part of the posterior section is 
the third abdominal somite, which articulates with the posterior abdominal, or 
anal, somite (table X (1)). However, if the formation of the fourth abdominal 
somite has not been suppressed, that somite may be present but undetected 
if the genital complex is composed of the seventh thoracic, and the second 
and third abdominal somites. The middle part of the urosome would then 
be the fourth abdominal somite, which articulates with the posterior (= first) 
abdominal, or anal, somite (table X (2)). Alternatively, the fourth abdominal 
somite may comprise a complex with the third abdominal somite to make up 
the middle part of the urosome (table X (3)), and finally it may comprise a 
posterior somite complex with the anal somite (table X (4)). Evidence that a 
newly formed somite may remain unarticulated with the posterior abdominal 
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somite also is observed in the copepodid stages of Caribeopsyllus amphiodiae 
(see previous chapter). 

Among copepods, most somite complexes along the copepodid body re- 
sult from failure to express one or more arthrodial membranes that separate 
somites. This failure of expression usually occurs after the arthrodial mem- 
branes initially have been expressed earlier in development. There are only 
a few examples in which failure to express an arthrodial membrane occurs 
at the same stage that the somite initially is added to the body; examples of 
these somite complexes will include the posterior abdominal, or anal, somite. 

Patterning processes, like the one above for the addition of somites to the 
body, provide a way to infer conditions in which serially homologous struc- 
tures may fail to form during development. Toward this end, the following 
Rule of Serial Homologs can be formulated: 

"If serial homologs which are formed later during the normal course of 
patterning are present, then serial homologs which are formed earlier during 
the normal course of patterning also should be present." 

An inaptly defined pseudosomite between the sixth and seventh thoracic 
somite of some harpacticoids and cyclopoids (see Klie, 1949; Huys & Box- 
shall, 1991; Martinez Arbizu, 1997, 1999) provides an example of the utility 
of the Rule of Serial Homologs. This area of sclerotization is described 
as located posterior to the developmentally older, sixth thoracic somite and 
anterior to the developmentally younger, seventh thoracic somite. Sixth and 
seventh thoracic somites without an intervening pseudosomite appear to be 
present in species that are both ancestral and descendent to those with the 
pseudosomite. If the pseudosomite were a part of the body comparable to 
but distinct from the sixth and seventh thoracic somites, then the normal 
anterioposterior patterning of the body would have to be suspended in order to 
accommodate its addition. A more likely explanation is that the pseudosomite 
results from an intermediate section of weak sclerotization of the anterior part 
of the seventh thoracic somite. 



PATTERNING THE APPENDAGES OF COPEPODS 

Much less is known about how copepod hmbs are patterned during post- 
embryonic development than about how the copepod body is patterned. Sev- 
eral types of evidence have been used to infer limb patterning. Alignment 
analysis locates segments or setae with unique morphology that are con- 
served during two or more developmental stages. Aligning images of limbs 
by juxtaposing the unique segments or setae at successive stages can be used 
to generate an hypothesis about the particular segments and setae that have 
been added to each successive stage. In the method of formation homology, 
some organization of the exoskeleton of the following stage of develop- 
ment may be identified within the exoskeleton of a specimen, because the 
exoskeleton of this present stage appears to be used as a template for the 
exoskeleton of the following developmental stage. New setae and arthrodial 
membranes that will be expressed in the following developmental stage often 
can be located from the internal organization of the present stage. Youngest 
element analysis identifies the developmental age of segmental elements, 
like its setae and arthrodial membranes, of a limb and a basic hypothesis 
of limb patterning can be deduced from these developmental ages. One or 
more segments of the limb are here designated as source segments. A source 
segment appears to be homologous to the formative zone (Fuller, 1920) or 
meriston (Henson, 1947) of the antenna of hemimetabolous insects, which is 
the homolog of antenna 1 of crustaceans. A source segment can be located on 
the limb in the following two ways: if the limb is patterned either proximally 
or distally to the source segment, the source segment is located between the 
youngest and the oldest element; if the limb is patterned both proximally and 
distally from the source segment, the source segment is located among the 
younger elements. 

Antenna 1 
Antenna 1 of copepods is a uniramous limb throughout its development; 

protopodal segmentation and the identity of the ramus are not clear, although 
evidence for considering the ramus an endopod (Ferrari & Benforado, 1998b) 
seems reasonable. Variability in the number of segments expressed both phy- 
logenetically and during its ontogeny has attracted significant interest in the 
development of antenna 1. Studies of formation homology for antenna 1 
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have focused almost exclusively on the last naupliar stage of calanoids, e. g., 
Temora longicomis (see Oberg, 1906), Eurytemora velox (see Gurney, 1931), 
Diaptomus siciloides (see Comita & Tommerdahl, 1960), Diaptomus ore- 
gonensis (see Comita & McNett, 1967), and Drepanopus forcipatus (see 
Hulsemann, 1991a). The primary purpose of these studies was to determine 
the homologous setae on antenna 1 of the last nauplius and first copepodid 
stages, because some setae on antenna 1 of the last nauplius of calanoids 
have no successor on antenna 1 of the first copepodid. 

A valuable descriptive study compared the development of antenna 1 
among representative species from six copepod orders (Boxshall & Huys, 
1998). Although no model was provided to pattern the addition of new seg- 
ment elements to this limb, an alignment analysis was used to determine new 
segments at each stage; the production of new segments seemed to be located 
at several different locations along the limb. An alignment analysis using an 
unusual segment in Tigriopus japonicus (see Ito, 1970: 496, fig. 12) or in 
Thermomesochra reducta (see Ito & Burton, 1980: 21, fig. 14), or unusual 
setae in Notodelphys affinis, Pygodelphys aquilonaris and Doropygus spp. 
(see Dudley, 1966: 132, table VI) was used in proposing a segment-splitting 
model for the development of antenna 1 of these two harpacticoids and three 
notodelphyid cyclopoids. An increase in the number of segments was mod- 
eled through a process of splitting segments, so that one large segment at an 
early copepodid stage split to form two segments or more at a later copepodid 
stage. The patterning of antenna 1 for 39 species in 23 genera of Cyclopidae 
apparently includes segment splitting and the production of more than one 
segment distally from different points along antenna 1 (Schutze et al., 2000). 
Most new segments on antenna 1 of these cyclopoids were added during 
the molt to the sixth copepodid, and most variation in configuration of the 
limb resulted from suspension of the addition of different segments during 
that molt. 

In the above studies, the origin of new segments was not confined to (a) 
particular location or locations along antenna 1; instead the presentation of 
new segment elements appeared to be a rather diffuse phenomenon along 
the proximodistal axis of the limb. As a result, any segment during any 
step of limb development might split to form two segments. Another general 
weakness of these segment-splitting models is that a segment that is identified 
as new at a particular stage could have been united in the previous stage with 
the segment either proximal to it or distal to it. However, no method was 
proposed to make this important determination. 
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A survey of 33 species from 27 genera of harpacticoid copepods in 17 fam- 
ilies (Dahms, 1989a) identified either segment fusion, resulting from the loss 
of a pre-existing arthrodial membrane, or the proliferation of new segments 
from a source segment as the two primary ways the harpacticoid antenna 1 
is configured during development. Most segments added to the antenna 1 of 
these animals appear to result from patterning either proximally or distally 
from the segment initially adjacent to the proximal segment of antenna 1 at 
CI. However, a few new segments of a few species appear either proximally 
or distally to the segment adjacent to the distal segment at CI. 

For a study of the calanoid copepods, Ridgewayia klausruetzleri, Pleu- 
romamma xiphias and Pseudocalanus elongatus, the number of places on 
antenna 1 that new segments were allowed to originate was minimized so 
that patterning of the limb was well-focused (Ferrari & Benforado, 1998b). 
Three source segments were identified for antenna 1 (fig. 26), and the distal 
and middle source segments were responsible for most of the patterning. 
Both of these source segments added segments or segment elements either 
proximally or distally, and both could add elements of more than one segment 
during a molt. No attempt was made by Ferrari & Benforado (1998b) to de- 
termine the correspondence between the source segments of these calanoids 
and the source segment of the harpacticoids (Dahms, 1989a). 

Among other crustaceans, only the middle two or three segments of an- 
tenna 1 of podocopid ostracodes are patterned during post-embryonic de- 
velopment (Maddocks, 2000); whether these segments are patterned from a 
source segment is not clear. A diffuse model of segment splitting also has 
been proposed for podocopan ostracodes (Smith & Tsukagoshi, 2005). The 
flagellum of the asellid isopod, Asellus aquaticus adds segment elements 
during two developmental steps (discussed but not illustrated in Maruzzo et 
al., 2007). The proximal flagellomere, which is the fifth article of antenna 1, 
is a source segment of the new segment elements. The proximal flagellomere 
produces, immediately distal to itself, one primary flagellomere during each 
of a series of molts. Primary flagellomeres, in turn, produce doublets of new 
flagellomeres during the following molt. 

The proximal flagellomere of the flagellum of the asellid isopod, Lirceus 
macrourus (see Zeleny, 1907, as Mancasellus macrourus) and of the amphi- 
pod, Gammarus chevreuxi (see Sexton, 1924) also serves as a source segment 
to produce one new flagellomere after every molt. A proximal article of the 
lateral flagellum serves as a source segment for flagellomeres for antenna 
1 of the decapod, Panulirus argus; three new flagellomeres are produced 
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Fig. 26. Schematic of patterning of calanoid antenna 1 from CI = I to CVI = VI (modified 
from Ferrari & Benforado, 1998b). Horizontal lines delimit groups of setae that are segmental 
elements; horizontal lines may not correspond to arthrodial membranes. Distal source segment 
(16) is hatched, middle source segment (7) is cross-hatched, proximal source segment (3) is 
stippled; triangles are to the left mark progeny of distal source segment, circles mark progeny 
of middle source segment, star marks progeny of proximal source segment; star-in-circle may 

be a progeny of middle or proximal source segment. 

during each molt (Steullet et al., 2001). Observations of more derived pan- 
crustaceans also are available (Fuller, 1920; Henson, 1947; Minelli, 2004). 
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Exopod of antenna 2 
Nothing has been published about the patterning of antenna 2 of cope- 

pods. However, as noted in the chapter on "The nauplius and naupliar de- 
velopment", all of the segment elements of the exopod of antenna 2 are 
added during the naupliar phase of development or during the molt to the 
first copepodid. Development of antenna 2 of the calanoid copepod, Calanus 
finmarchicus is illustrated in fig. 1. Antenna 2 appears as a transformed limb 
at NI; the exopod is 6-segmented. The proximal segment of the exopod is 
unarmed; the adjacent segment is elongate and bears a ventral seta distally. 
The middle segment is short and bears a ventral seta. The antepenultimate 
segment and the penultimate segment also are short and have the same setal 
configuration as the middle segment. The distal segment bears a crown of 
three setae. 

A short segment with a ventral seta is added at Nil and a second short 
segment with a ventral seta is added at NIII. At NIV, a second ventral seta 
is added to the elongate segment; at NV and NVI, a third and then a fourth 
seta, respectively, are added to the elongate segment. At CI, the proximal 
segment is unarmed; the adjacent segment is short and bears a ventral seta 
distally. An elongate segment bears three ventral setae. Four short segments 
follow, each with a ventral seta. The penultimate segment is elongate and the 
terminal segment bears a crown of three setae. The setation of the exopodal 
segments of these stages is presented in table XI. 

One way the data in table XI may be interpreted is by assuming that 
each exopodal segment, except the terminal segment, bears no more than 
one ventral seta; this ventral seta is a formation seta because it is present 
when the segment elements initially appear. In addition, the proximal, or 
finishing, arthrodial membrane of a segment is assumed to be more labile 
than its ventral seta; failure to form a finishing arthrodial membrane results 

TABLE XI 
Setation of the exopod of antenna 2 of Calanus finmarchicus witii segments simply indicated 

by placement of arthrodial membranes (as commas); distal is right 

NI: 0, 1, 1, 1, I, 3 
NE: 0, 1, 1, 1, U 1, 3 
NET: 0, 1, 1, 1, I, 1, 1, 3 
NIV: 0, 2, 1, 1, I, 1, 1, 3 
NV: 0, 3, 1, 1, U 1, 1, 3 
NVI: 0, 4, 1, 1, U 1, 1, 3 
CI: 0, 1, 3, 1, I, 1, 1, 1,3 
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in a segment complex. Here the elongate segment with more than one seta 
is a complex. The penultimate segment is a segment modified by slight 
elongation of its distal part so that the formation seta is found in the middle 
of the segment. The terminal segment is the only segment that may bear more 
than one seta. Segmentation and setation now are interpreted in table XII. 

A simple way to explain the patterning of the segmental elements, such 
as setae and finishing arthrodial membranes, on this exopod (table XII) is to 
use the elongate segment as a marker and to assume that there is a source 
segment for new segment elements proximal to the distal ventral seta within 
the elongate segment, as indicated in table XIII. This source segment is 
located within a segment complex, does not bear a seta, and usually is not 
identified by a finishing arthrodial membrane. 

TABLE XII 
Setation of the exopod of antenna 2 of Calanus fmmarchicus with one ventral seta per 
segment except for the distal segment (with a crown of three terminal setae); more than 
one seta on any other 'segment' indicates a segment complex; comma (,) is an arthrodial 
membrane, dash (-) indicates the location where an arthrodial membrane has failed to form, 

resulting in a segment complex; distal is right 

NL 0, 1, 1, 1, 1, 3 
NE: 0, 1, 1, 1, 1, 1, 3 
NEL 0, 1, 1, 1, 1, 1, 1, 3 
NIV: 0, 1-1, 1, 1, 1, 1, 1, 3 
NV: 0, 1-1-1, 1, 1, 1, 1, 1, 3 
NVL 0, 1-1-1-1, 1, 1, 1, 1, 1, 3 
CL 0, 1, 1-1-1, 1, 1, 1, 1, 1, 3 

TABLE XIII 
Segments of the exopod of antenna 2 of Calanus fmmarchicus. Roman numeral with one as- 
terisk (I*) is the source segment that patterns the ramus; comma (,) is an arthrodial membrane, 
dash (-) indicates the location where an arthrodial membrane has failed to form, resulting 
in a segment complex; distal is right. Lower case letters are segments distal to the source 
segment and 'b' is the oldest of these segments; Arabic numerals are segments proximal to 
the source segment and 2 is the oldest of these segments. Setae are not indicated in this table 

NL 2, I*-f , e, d, c, b 
NE: 2, I*-g, f, e, d, c, b 
NEL 2, I*-h, g, f, e, d, c, b 
NIV: 2, I* i-h, g, f, e, d, c, b 
NV: 2, I*-j-i-h, g, f, e, d, c, b 
NVL 2, 3-I*-j-i-h, g, f, e, d, c, b 
CL 2, 3, I*-j-i, h, g, f, e, d, c, b 
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At NII-NIII, the new segments 'g', and 'h', respectively, are added distally 
and adjacent to the source segment (table XIII); each of these new segments 
has a finishing arthrodial membrane. Elements of the new segments 'i' and 
'j' are added at NIV-NV; they also are distal to the source segment. These 
segments do not have a finishing arthrodial membrane, and so they make up 
part of a segment complex that includes the source segment. At NVI, the 
ventral seta of the new segment '3' is added adjacent, but proximally, to the 
source segment. Its distal finishing arthrodial membrane is added adjacent, 
but proximally, to the source segment during the molt to CI. This arthro- 
dial membrane separates segment '3' from the adjacent elongate segment 
complex, which continues to include the source segment proximally. 

Antenna 2 of polyarthran copepods also develops a multi-segmented exo- 
pod during the naupliar phase of development and retains it through the 
copepodid phase. For comparative purposes, development of antenna 2 of 
the polyarthran copepod, Longipedia americana is illustrated in fig. 2. The 
exopod is 6-segmented at NI, and differs from that of Calanus finmarchicus 
only in its distal segment, whose crown has two setae rather than three. Nil 
of L. americana also differs from Nil of C. finmarchicus only in the number 
of crown setae on the distal segment. NIII does not differ at all from that 
of C. finmarchicus, because a third seta has been added to the crown of 
L. americana. At NIV, a short segment with a ventral seta is added in L. 
americana; at the corresponding stage of C. finmarchicus, a second ventral 
seta has been added to the elongate segment. A second ventral seta is added 
to the elongate segment at NV of L. americana. There is no change in the 
exopod at NVI. At CI, the penultimate segment is short and an arthrodial 
membrane is added, which divides the elongate second segment with two 
setae into a long segment with one seta and distal to it a new short segment 
with one seta. The new short segment is the flexion point for the exopod. 
The setation of the exopod of these stages is presented in table XIV. 

Again, several assumptions can be applied to interpret the addition of seg- 
ments and setae to this exopod. Each exopodal segment except the terminal 
segment bears no more than one ventral seta, this ventral seta is a formation 
seta. The proximal, finishing arthrodial membrane of a segment is more labile 
than its ventral seta, so that the failure of an arthrodial membrane to form 
results in a segment complex. These assumptions yield the interpretation 
in table XV. 

Applying an assumption for this exopod of one source segment that does 
not bear a seta, that may not be identified by arthrodial membranes, and that 
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TABLE XIV 
Setation of the exopod of antenna 2 of Longipedia americana with segments simply indicated 

by placement of arthrodial membranes (as commas); distal is right 

NL 0, 1, 1, 1, , 2 
NE: 0, 1, 1, 1, 1 2 
NEL 0, 1, 1, 1, [, 1, 1, 3 
NIV: 0, 1, 1, 1, , 1, 1, 1,3 
NV: 0, 2, 1, 1, , 1, 1, 1,3 
NVL 0, 2, 1, 1, [, 1, 1, 1,3 
CL 0, 1, 1, 1, , 1, 1, 1, 1, 3 

TABLE XV 
Setation of the exopod of antenna 2 of Longipedia americana with one ventral seta per 
segment except for distal segment (with a crown of three terminal setae); more than one seta 
on any other 'segment' indicates a segment complex; comma (,) is an arthrodial membrane, 
dash (-) indicates the location where an arthrodial membrane has failed to form, resulting in 

a segment complex; distal is right 

NL 0, 1, 1, 1, 1, 2 
NE: 0, 1, 1, 1, 1, 1, 2 
NEL 0, 1, 1, 1, 1, 1, 1, 3 
NIV: 0, 1, 1, 1, 1, 1, 1, 1, 3 
NV: 0, 1-1, 1, 1, 1, 1, 1, 1, 3 
NVL 0, 1-1, 1, 1, 1, 1, 1, 1, 3 
CL 0, 1, 1, 1, 1, 1, 1, 1, 1, 3 

TABLE XVI 
Segments of the exopod of antenna 2 of Longipedia americana. Roman numeral with one as- 
terisk (I*) is the source segment that patterns the ramus; comma (,) is an arthrodial membrane, 
dash (-) indicates the location where an arthrodial membrane has failed to form, resulting 
in a segment complex; distal is right. Lower case letters are segments distal to the source 
segment and 'b' is the oldest of these segments; Arabic numerals are segments proximal to 

the source and '2' is the oldest of these segments. Setae are not indicated in this table 

NL 2, I*-f, e, d, c, b 
NE: 2, I*-g, f, e, d, c, b 
NEL 2, I*-h, g, f, e, d, c, b 
NIV: 2, I*-i, h, g, f, e, d, c, b 
NV: 2, I*-j-i, h, g, f, e, d, c, b 
NVL 2, I*-j-i, h, g, f, e, d, c, b 
CL 2, I*-j, i, h, g, f, e, d, c, b 

is located proximal to the distal ventral seta on the elongate segment of NI, 
results in the identity of segmental elements expressed in table XVI. 
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Comparing tables XI and XII for Calanus finmarchicus with tables XIV 
and XV, respectively, for Longipedia americana, several differences can be 
identified in the two exopods. The ventral seta of segment '3' of C. finmarchi- 
cus, which is added at NVI, plus its finishing arthrodial membrane, which 
is added at CI, both fail to form in L. americana. The finishing arthrodial 
membrane of segment 'i' of L. americana initially appears at CI; this finish- 
ing arthrodial membrane never forms in C. finmarchicus so that segment 'i' 
remains a part of its elongate complex. 

Among other crustaceans, the flagellum of antenna 2 of the asellid iso- 
pod, Asellus aquaticus results from the addition of a set of quartets of new 
flagellomeres; each set is produced by the activity of a primary flagellomere. 
One primary flagellomere separates distally from the proximal flagellom- 
ere at each molt and subsequently produces its quartet of flagellomeres by 
a stereotypic process (Maruzzo et al., 2007). The first flagellomere of the 
flagellum of valviferan isopods belonging to the genus Idotea serves as a 
source segment that patterns a new flagellomere after every molt (noted but 
not illustrated in Naylor, 1955: 482). 

Exopod of the mandible 
Little is known about how the copepod mandible is patterned. During the 

naupliar phase of development, one ventral seta is added to the proximal 
exopodal segment of copepods like Longipedia americana (see Onbe, 1984), 
Scutellidium hippolytes (see Dahms, 1993b), and Hemicyclops japonicus (see 
Itoh & Nishida, 1997). The addition of this seta to the mandibular exopod 
suggests that the seta is a ventral formation seta of a new segment, without 
its finishing arthrodial membrane, that has been added to the exopod. This 
situation is similar to the exopod of antenna 2, with its source segment near 
the proximal border of the limb. 

Maxilla 1 and maxilla 2 
Nothing has been published on the patterning of maxilla 1 and maxilla 2 

of copepods. The protopod comprises a significant part of these limbs, and 
some ideas about how these limbs are patterned will be suggested later in 
this chapter when a model of protopodal patterning is presented. 

Endopod of the maxilliped 
Unlike the exopod of antenna 2, the copepod maxilliped develops almost 

exclusively during the copepodid phase, although the limb bud, bearing a 
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crown of two setae, is present at NVI of most calanoids. Efforts to under- 
stand how the copepod maxiUiped is patterned have focused on the endopod 
(Ferrari, 1995; Ferrari & Dahms, 1998; Ferrari & Ivanenko, 2001). The ad- 
dition of setae and arthrodial membranes to the endopod of the maxilliped of 
the calanoid, Ridgewayia klausruetzleri is shown in fig. 15 and table XVII. 

The distal segment of the endopod at CI includes a crown group of two 
terminal setae plus a subterminal dorsal seta and a subterminal ventral seta. 
This segment appears to be a complex of two segments, a distal one bearing 
the terminal crown of two setae, and an adjacent segment bearing a ventral 
and a dorsal formation seta. The setation of segments of the maxilliped of 
Ridgewayia klausruetzleri then can be revised as in table XVIII. 

A source segment has been observed directly from formation homology 
for the endopod of the maxilliped of R. klausruetzleri (see Ferrari, 1995 and 
fig. 15), and for Eurytemora qffinis (see Ferrari & Ivanenko, 2001). This 
source segment of the endopod is the proximal segment at CI, and the ante- 

TABLE XVII 
Setation of the endopod of the maxiUiped of Ridgewayia klausruetzleri, except for NVI from 
Eurytemora ajfmis, with segments simply indicated by the placement of arthrodial membranes 

(as commas); distal is right 

NVI: 2 
CI: 1,4 
CE: 1, 1,4 
cni: 1, 1, 2, 4 
CIV: 2, 2, 1, 2, 4 
CV: 3, 3, 2, 3, 4 
CVI: 4, 4, 3, 4, 4 

TABLE XVIII 
Setation of the endopod of the maxilliped of Ridgewayia klausruetzleri, except for NVI from 
Eurytemora ajfinis; comma (,) is an arthrodial membrane, dash (-) indicates the location 
where an arthrodial membrane has failed to form, resulting in a segment complex; distal is 

right 

NVI: 2 
CI: 1, 2-2 
CE: 1, 1, 2-2 
cni: 1, 1, 2, 2-2 
CIV: 2, 2, 1, 2, 2-2 
CV: 3, 3, 2, 3, 2-2 
CVI: 4, 4, 3, 4, 2-2 
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penultimate segment of all copepodid stages. As noted above, the arthrodial 
membrane between the penultimate and distal segments fails to fonn in these 
copepods. Unlike the source segment for the exopod of antenna 2, the source 
segment for the endopod of the maxilliped bears a formation seta ventrally, 
and can be defined by arthrodial membranes proximally and distally. 

A dorsal seta is added to the source segment or antepenultimate segment 
during the molt to CIII. Ventral setae added to the source segment and seg- 
ments proximal to it during the molts to CIV, CV and CVI are post-formation 
setae, because they are added after the formation seta and the distal, finishing 
arthrodial membrane initially have been presented. Post-formation setae are 
added to the proximal segment and to the segment adjacent to it during the 
molt to CIV, and to all segments except the distal segment during the molts 
to CV and CVI, respectively. Post-formation setae do not represent segment 
complexes but instead are supernumerary setae. Applying these assumptions, 
the following interpretation about the identity of segments of the endopod of 
the maxilliped is presented in table XIX. 

Post-formation setae are common on the endopod of the maxilliped of 
polyarthrans as well as calanoids (see Ferrari & Dahms, 1998), but are rare 
in copepods of most other orders. Table XX shows segments and setae of 
the endopod of the maxilliped of the cyclopoid, Procyclopina feiticeira (from 
Ferrari & Ivanenko, 2001), the harpacticoid, Macrosetella gracilis (from Fer- 
rari & Dahms, 1998), and the siphonostomatoid, Scottomyzon gibberum (from 
Ivanenko et al., 2001); no new segments or setae are added to the cyclopoid 
after CIV, to the harpacticoid after CI, or to the siphonostomatoid after CIII. 

TABLE XIX 
Segments of the endopod of the maxiUiped of Ridgewayia klausruetzleri. Roman numeral 
with one asterisk (I*) is the source segment that patterns the ramus; comma (,) is an arthrodial 
membrane, dash (-) indicates the location where an arthrodial membrane has failed to form, 
resulting in a segment complex; distal is right. Lower case letters are segments distal to the 
source segment, 'b' is the oldest of these segments; Arabic numerals are segments proximal 

to the source, '2' is the oldest of these segments. Setae are not indicated in this table 

NVI: I*-b 
CL I*, c-b 
CE: 2, I*, c-b 
cm: 2, 3, I*, c-b 
CIV: 2, 3, 4, I*, c-b 
CV: 2, 3, 4, I*, c-b 
CVL 2, 3, 4, I*, c-b 
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TABLE XX 
Setation of the endopod of the maxilliped of, A, the cyclopoid, Procyclopina feiticeira (from 
Ferrari & Ivanenko, 2001); B, the harpacticoid, Macrosetella gracilis (from Ferrari & Dahms, 
1998); and, C, the siphonostomatoid, Scottomyzon gibberum (from Ivanenko et al., 2001); 
comma (,) is an arthrodial membrane, dash (-) indicates the location where an arthrodial 

membrane has failed to form, resulting in a segment complex; distal is right 

ABC 

NVI: not present not present not present 
CI: 1, 2-2 1  2 
CE: 0, 1, 2-2 1-1, 2 
cni: 0, 1, 1, 2-2 1-1-1, 2 
CIV: 1, 1, 1-1, 2-2 1-1-1, 2 
CV: 1, 1, 1-1, 2-2 1-1-1, 2 
CVI: 1, 1, 1-1, 2-2 1-1-1, 2 

TABLE XXI 
Segments of the endopod of the maxilliped of. A, the cyclopoid, Procyclopina feiticeira (from 
Ferrari & Ivanenko, 2001); B, the harpacticoid, Macrosetella gracilis (from Ferrari & Dahms, 
1998); and C, the siphonostomatoid, Scottomyzon gibberum (from Ivanenko et al., 2001). 
Roman numeral with one asterisk (I*) is the source segment that patterns the ramus; comma 
(,) is an arthrodial membrane, dash (-) indicates the location where an arthrodial membrane 
has failed to form, resulting in a segment complex. Lower case letters are segments distal 
to the source segment, 'b' is the oldest of these segments; Arabic numerals are segments 
proximal to the source, '2' is the oldest of these segments. Setae are not indicated in this 

table 

ABC 

I*, b 
2-1*, b 
2-3-1*, b 
2-3-1*, b 
2-3-1*, b 
2-3-1*, b 

Applying the calanoid patterning model to the cyclopoid, P. feiticeira 
(from Ferrari & Ivanenko, 2001), the harpacticoid, M. gracilis (from Ferrari 
& Dahms, 1998), and the siphonostomatoid, S. gibberum (from Ivanenko et 
al., 2001) results in the following interpretations of the identity of segments 
(table XXI). 

Rami of the remaining limbs 
More studies have been made of development of the four copepod swim- 

ming legs than of the remaining thoracopods, including the maxilliped. Two 

CI: I*, c-b I*, b 
CE: 2, I*, c-b I*, b 
cni: 2, 3, I*, c-b I*, b 
CIV: 2, 3, 4-1*, c-b I*, b 
CV: 2, 3, 4-1*, c-b I*, b 
CVI: 2, 3, 4-1*, c-b I*, b 
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types of data have been used to suggest how swimming legs are patterned. 
Fonnation homology includes information from the internal organization of 
the present stage about the future location of an arthrodial membrane that 
will separate segments in the following copepodid stage or the future lo- 
cation of a formation seta. The arthrodial membrane that will separate the 
proximal segment of the adult exopod of limb 5 of Acartia clausi and A. 
longiremis was illustrated within the limbs of CV (see Kraefft, 1910, pi. 1, 
figs. 48-49). The middle segment and the distal segment of the exopod of 
swimming legs 1 and 3 of Megacyclops viridis [given as Cyclops viridis] 
were observed and illustrated within those limbs at CV (see Lucks, 1927: 
15, figs. 40-41), and the arthrodial membranes that will separate the middle 
and the distal segment of the exopod of swimming legs 2 and 3 were illus- 
trated within the limbs of CIV of Macrocyclops albidus (see Defaye, 1984, 
pis. 8, 9). It should be noted that Macrocyclops albidus and Megacyclops 
viridis belong to two different monophyletic lineages of cyclopid copepods 
and the arthrodial membranes that separate the middle and distal exopodal 
segments of their swimming legs form at CV and CVI, respectively (Ferrari, 
1998). An apparent arthrodial membrane within the limb of CIV, however, 
was not reported in the following stage of Pontellina sp. (see Hulsemann & 
Fleminger, 1975, figs. 3, 4) and its absence passed without comment. 

Failure of an arthrodial membrane to form between segments results in 
a segment complex on the ramus of a swimming leg. Examples of such 
complexes have been hypothesized from adult morphology of calanoids like 
Euchirella rostrata, whose proximal and middle exopodal segment of swim- 
ming leg 1 form a complex (see Giesbrecht, 1893a, pi. 15 fig. 11) and Temora 
stylifera, whose proximal and middle endopodal segment of swimming leg 
4 form a complex (see Giesbrecht, 1893a, pi. 17 fig. 13). Homologs of the 
finishing arthrodial membrane that fails to form in the above two species 
are present in related adult calanoids, so the interpretation is a straightfor- 
ward deduction. Similar complexes also have been inferred indirectly from 
development of the exopod of swimming leg 2 of Enhydrosomella (see Fiers, 
1996: 22, fig. 12). 

However, if an homologous arthrodial membrane does not form in related 
species, as is the case for the distal complex of the exopod and endopod of 
swimming legs of copepods, inferences are not as easily deduced (see Ferrari 
& Benforado, 1998a). Examples of such complexes on calanoid swimming 
leg 1 are given below. The formation seta of the presumptive proximal seg- 
ment and the presumptive middle segment of the rami of swimming legs 
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1-4 initially appears on the distal segment complex of both rami. The finish- 
ing arthrodial membrane, which separates the formation seta from the distal 
complex and allows visualization of the distal boundary of these segments, 
forms during the molt to a later copepodid stage. This finishing arthrodial 
membrane separates the proximal part of the distal segment, including the 
proximal dorsal and/or ventral formation seta, from the rest of the distal com- 
plex. The process initially was described by Illg (1949: 411) for the second 
(middle) segment of the swimming legs 1-4 of the poecilostome, Paranthes- 
sius columbiae. Later, observations for the proximal segment of the exopod 
of swimming leg 2 at CII oi Harpacticus uniremis by Ito (1971: 252, fig. 14), 
for both proximal and middle segments of the swimming leg 2 of Alebion 
lobatus (see Benz, 1989), for both proximal and middle segments of the 
swimming legs of the calanoids, Ridgewayia klausruetzleri, Pleuromamma 
xiphias and Temora longicomis plus the cyclopoid Dioithona oculata (see 
Ferrari & Benforado, 1998a), and for limb 5 of several centropagoidean 
calanoids (Ferrari & Ueda, 2005) have confirmed the general applicability 
of this process during limb development. The process was termed "setal 
precedence" (Ferrari & Benforado, 1998a) because the dorsal and/or ventral 
formation seta(e), which will be found on the presumptive segment, pre- 
cedes the formation of the arthrodial membrane that allows visualization of 
the boundary of that segment. 

The copepodid stage at which specific setae first appear on swimming legs 
1-4 was illustrated initially by Dudley (1966: 137, fig. 51) for the notodel- 
phyid cyclopoids, Notodelphys affinis, Pygodelphys aquilonaris, Scolecodes 
huntsmani and a composite of species of Doropygus including D. seclusus, 
D. bayeri, D. mohri and D. fernaldi. Later K6 (1969d: 97, fig. 1) deduced 
similar information for the poecilostome Ostrincola koe. An example from 
Dudley (1966) is shown in fig. 27F. Terminal elements on the buds of the 
presumptive rami of swimming legs 1-2 of the fourth nauplius (correspond- 
ing to NVI of a copepod with six naupliar stages), were described by Dudley 
(1966) as pointed processes rather than as setae or spines, while terminal el- 
ements on the buds of the presumptive rami of swimming legs 3-4 on CI 
and CII, respectively were described as cuticularized sacs. As a result, the 
crown setae on the distal complex of the rami of the transformed limb are not 
differentiated by age from the remaining disto-dorsal or disto-ventral setae. 
Buds of swimming legs 1-4 were not described by K6 (1969d) for Ostrincola 
koe, so these crown setae also were not differentiated by age from the other 
setae of the distal complex. 
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Fig. 27. Paramphiascella fulvofasciata, five steps in the development of swimming leg 3 
(modified from Rosenfield & Coull, 1974, figs. 80-84); A, CI; B, CII; C, CIII; D, CIV; E, 
CV; numbers indicate the relative position of setae from dorsal to ventral of exopod [2-12], 
and dorsal to ventral of endopod [13-21]. F, Notodelphys affinis, swimming leg 3 (modified 
from Dudley, 1966, fig. 51c), numbers show specific copepodid stage at which setae first 

appear. 
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Fig. 28.  Dioithona oculata, five steps in the development of swimming leg 3 (modified from 
Ferrari & Ambler, 1992). A, CI (limb bud); B, CII (transformed limb); C, CIII; D, CIV; E, 
CV. Numbers are stage at which setae and arthrodial membranes first appear; 1, CI; 2, CII; 

etc.; darkened setae are formed during previous molt. 

A variation on this setal identification system was formulated for tlie 
liarpacticoid, Paramphiascella fulvofasciata by Rosenfield & Coull (1974, 
figs. 68-88) who assigned a unique number to each seta of the swimming 
leg in order to determine homologous setae during development. However, 
the number was not linked to the stage at which the seta initially appeared. 
An example from Rosenfield & Coull (1974) is shown in fig. 27A-E. 
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The exact relationship between the appearance of specific setae and the 
appearance of arthrodial membranes was proposed for swimming leg 3 of 
Dioithona oculata (see Ferrari & Ambler, 1992, fig. 13). In this analysis, 
the age of the crown setae of the exopod and endopod are determined (fig. 
28). However, new setae of the following stage were inferred to be those 
not enclosed within the exoskeleton of the present limb, and this assumption 
may not be correct in all cases. All setae on swimming legs 1-4 of the 
poecilostome, Conchyliurus quintus, including new setae added at each stage 
of development, were identified by Kim (1994). The location of new elements 
at each stage agrees in general with Dudley (1966), K6 (1969d) and Ferrari 
& Ambler (1992). 

However, the data from Dudley (1966), K6 (1969d), and Ferrari & Am- 
bler (1992) suggest that the proximal seta on the middle endopodal segment 
of swimming legs 1-4 is presented one stage later than the distal seta on 
that segment so that this proximal seta is younger than the distal seta. This 
configuration would imply that the endopod of the swimming leg has two 
source segments while the exopod is patterned from only one. The implica- 
tion from the study of Kim (1994) is that the proximal seta on the middle 
endopodal segment is presented one stage earlier than the distal seta of that 
segment. As a result, only one source segment is required to pattern the en- 
dopod from Kim's (1994) observations. We agree and follow this inference 
of Kim (1994) in our fig. 28. The primary result from these studies is that 
the source segment of each ramus of swimming legs 1-4 is located within 
the distal segment complex and toward its proximal boundary. 

Caudal ramus 
This appendage is unsegmented in copepods, and its conformation differs 

from the protopod/ramus [or: rami] configuration of cephalic and thoracic 
limbs. There have been a number of attempts to understand how setae are 
added to the caudal ramus of harpacticoid copepods (Dahms, 1992a, 1993a; 
Huys & Bottger-Schnack, 1994; Fiers, 1996; George, 2001). These analy- 
ses include assumptions about setal homologies based on setal size or setal 
morphology, and hypotheses about the displacement of setae along the ap- 
pendage. As yet no consensus has been reached on these issues. 

Contrasting early development of swimming leg 1 with swimming legs 2-4 
The number of setae on swimming legs during early steps of limb devel- 

opment has been documented for a number of copepods (Ferrari, 2000). An 
example of this early development can be seen in fig. 28A-C for swimming 
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leg 3 of Dioithona oculata. The buds of swimming legs 2-4 are presented 
at NVI, CI and CII, respectively. These buds bear at most three setae on the 
presumptive exopod and at most two setae on the presumptive endopod. A 
greater percentage of the surveyed species bears this setal configuration than 
any other configuration. The transformed limb of swimming legs 2-4 forms 
at CI, CII and CIII, respectively. These limbs bear at most seven setae on the 
exopod and at most six setae on the endopod, and a greater percent of the sur- 
veyed species bears this setal configuration than any other. The next step in 
limb development is an apparently 2-segmented limb for swimming legs 2-4; 
this step forms at CII, CIII and CIV, respectively. These limbs bear at most 
eight setae on the exopod, including a dorsal seta on the proximal exopodal 
segment, and at most seven setae on the endopod, including a ventral seta 
on the proximal segment; a greater percent of the surveyed species bears this 
setal configuration than any other configuration. Homologs for most of these 
setae, except the crown setae on the limb bud, as noted above, also have been 
determined for all swimming legs of several notodelphyid cyclopoids (see 
Dudley, 1966), and for the poecilostomes, Ostrincola koe and Conchyliurus 
quintus (see Kim, 1994; K6, 1969d). A crown group of three setae (dorsal, 
terminal, ventral) on the exopod of the transformed limb of swimming legs 
2-4 is a homolog of the three setae on the presumptive exopod of the limb 
bud. The crown group of two setae, both terminal, on the endopod of the 
transformed limb is a homolog of the two setae on the presumptive endopod 
of the limb bud (fig. 28A, B). All other setae on the transformed limb are 
new: two dorsal and two ventral setae on the exopod, and two dorsal and 
two ventral on the endopod. The proximal dorsal seta of the exopod will 
be allocated to the proximal segment of the early 2-segmented exopod after 
the next molt (fig. 28C). In like manner, the proximal ventral seta of the 
endopod will be allocated to the proximal segment of the early 2-segmented 
endopod after the next molt. The new seta on the early 2-segmented exopod 
is the proximal seta on the distal segment complex, and this will be allocated 
to the middle segment later in development (fig. 28D). In like manner, the 
new seta on the early 2-segmented endopod is the proximal seta on the distal 
segment complex, and this will be allocated to the middle segment complex 
later in development. 

The corresponding configurations for swimming leg 1 differ from those of 
swimming legs 2-4 (Ferrari, 2000). The bud of swimming leg 1 is presented 
at NVI and may bear up to four setae on the presumptive exopod of many 
copepods. In addition, there may be up to three setae on the presumptive 
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endopod of calanoids, e. g., Temora longicomis (fig. 29A), although no more 
than two setae are present on the presumptive endopod of podopleans. On 
the transformed limb of swimming leg 1, there are no more than eight setae 
on the exopod and no more than seven on the endopod. On the early 2- 
segmented limb there may be no more than nine setae on the exopod and 
no more than eight on the endopod. A greater percent of surveyed species 
has these configurations on the transformed limb and the early 2-segmented 
limb of swimming leg 1 (Ferrari, 2000). 

The fourth seta on the presumptive exopod of the limb bud of swimming 
leg 1 is located proximally and dorsally (fig. 29A); it is homologous to the 
proximodorsal seta of the transformed limb (fig. 29B). The third seta on 
the presumptive endopod of calanoids is located ventrally and somewhat 
proximally; it is homologous to the proximoventral seta of the transformed 
limb (fig. 29B). This proximodorsal seta on the exopod of the transformed 
limb will be allocated to the proximal segment of the early 2-segmented 
exopod during the molt to CII (fig. 29C), while the proximoventral seta 
of the endopod of the transformed limb will be allocated to the proximal 
segment of the early 2-segmented endopod during the molt to CIII (fig. 
29D). The new, eighth seta on the exopod of the transformed limb is the 
middle dorsal seta and eventually it will be allocated to the middle segment 
of a 3-segmented exopod during the molt to CV (fig. 29E). The new, seventh 
seta of the endopod of the transformed limb is distal to the proximal seta. 
Its location remains on the distal segment of this 2-segmented endopod, 
because a distal finishing arthrodial membrane does not form to separate the 
presumptive middle segment from the distal segment. On swimming leg 1 of 
a species with a 3-segmented endopod, the seventh seta of the endopod of the 
transformed limb will be allocated to the middle segment of a 3-segmented 
endopod, usually during the molt to CV (fig. 30). 

This interpretation is consistent with a hypothesis that for a group of limbs 
of similar configuration, like copepod swimming legs 1-4, one anterior limb 
or more begins development in a more advanced state, with more elements 
present, than the posterior limbs. Swimming leg 1 of copepods not only bears 
more elements at the bud stage, but the extra seta of the exopod and endopod 
of calanoids indicates that the rami are more advanced in their patterning than 
the buds of swimming legs 2-4. Furthermore, swimming leg 1 maintains this 
advanced state throughout its early development. This hypothesis, explaining 
the advanced configuration of one or more anterior limbs, is supported in 
a more general way by observations of the trunk limbs of the branchiopod. 
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Fig. 29.   Temora longicornis, five steps in the development of swimming leg 1 (modified from 
Ferrari & Benforado, 1998b). A, bud; B, transformed limb; C, early apparent 2-segmented 
step; D, late apparent 2-segmented step; E, apparent 3-segmented step. Numbers show stage 

at which setae and arthrodial membranes first appear; 6, NVI; 7, CI; etc. 

Leptestheria kawachiensis. Anterior limbs of this crustacean initially appear 
in an advanced stage of development relative to posterior trunk limbs (Ferrari 
& Grygier, 2003). 
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Von Vaupel Klein's Organ 

Understanding liow swimming legs are patterned during development is 
invaluable in determining the segmental homologies of copepod limbs. Von 
Vaupel Klein's Organ (VVKO; see Von Vaupel Klein, 1972) of calanoid 
copepods provides an excellent example of this kind of analysis. VVKO 
usually is made up of the dorsal seta on the basis of swimming leg 1, which 
seta is curved and often recurved over the anterior face of the endopod of the 
limb. Many setules along the primary curve of this seta are directed toward 
a sensory area of pores and/or denticles on the anterior face of the endopod. 
Often this sensory area of the endopod is found on or near a raised bump on 
the endopod. The association of the dorsal seta of the basis with the anterior 
sensory area of the endopod is VVKO (Ferrari & Steinberg, 1993). 

Among different calanoids, the sensory area of VVKO is found on the 
proximal segment of a 3-segmented endopod, e. g., Ridgewayia klausruetzleri 
(fig. 30), but also on the proximal segment of a 2-segmented endopod, e. g.. 

Fig. 30.  Ridgewayia klausruetzleri, adult swimming leg 1 (proximal up). Numbers show stage 
at which setae and arthrodial membranes first appear; 6, NVI; 7, CI; 8, CII; etc. NVI unknown; 

setae for that stage inferred from configuration of Temora longicomis. 
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Acrocalanus gibber (fig. 31), and at mid-length on a 1-segmented endopod, 
e. g., Euchirella messinensis (fig. 32). If it can be shown that this sensory area 
is homologous among all three kinds of limbs, then VVKO may be proposed 
as a synapomorphy for calanoid copepods, including the platycopiids. 

In figs. 30-32, respectively, the naupliar or copepodid developmental stage 
at which a seta or arthrodial membrane first appears on swimming leg 1 of R. 
klausruetzleri, A. gibber and E. messinensis is indicated by Arabic numerals. 
The location of a source segment for each ramus can be identified for R. 
klausruetzleri as adjacent to the youngest elements: between the arthrodial 
membrane separating the middle segment from the distal complex and the 
proximal seta of the distal complex; or between the proximal seta of the 
distal complex and its adjacent seta on the complex. For A. gibber and E. 
messinensis the location is comparable, as will be seen in the following tables, 
even though fewer elements are present to derive the inference for these two 
calanoids. In tables XXII-XXIV, respectively, the two rami of swimming leg 

Fig. 31.  Acrocalanus gibber, adult swimming leg 1 (proximal up). Numbers show stage at 
which setae and arthrodial membranes first appear; 6, NVI; 7, CI; 8, CII; etc.; see Ferrari 

(2000) for setation at NVI. 
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Fig. 32.   Euchirella messinensis, adult swimming leg 1 (proximal up). Numbers show stage at 
which setae and arthrodial membranes first appear; 6, NVI; 7, CI; 8, CII; etc. NVI unknown; 

setae for that stage inferred from configuration of Acrocalanus gibber. 

1 of/?, klausruetzleri, A. gibber and E. messinensis at each copepodid stage 
are arrayed linearly so that non-terminal segments are represented by no 
more than one dorsal and/or ventral seta. 

Only one source segment is required to specify the pattern of each ramus. 
The location of this source segment is between two of the youngest elements 
at CVI, the proximal seta of the distal complex and its adjacent seta on the 
distal complex. For CI-CV, the location can be derived through the systematic 
deletion of elements initially formed during the next older copepodid. Like 
the source segment of the exopod of antenna 2, which also is located within 
a segment complex, the source segment for rami of the swimming leg does 
not bear a seta and is not demarcated by two arthrodial membranes. 

In tables XXV-XXVII, respectively, the segments of the rami of swimming 
leg 1 oiR. klausruetzleri, A. gibber and E. messinensis proximal to the source 
segment are identified with Arabic numerals. The oldest segment proximal 
to the source segment has the smallest number '2'; the youngest proximal 
segment has the largest number, '4' for the exopod and '5' for the endopod. 
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TABLE XXII 
Setation of the rami of swimming leg I of copepodids of tfie calanoid, Ridgewayia klausruetz- 
leri. Setation of tlie last nauplius is unknown but inferred from that of Temora longicomis. 

No more than one ventral seta (v) and one dorsal seta (d) per segment except for the distal 
segment of the exopod with one dorsal, one terminal and one ventral setae (dtv) and for distal 
segment of the endopod with two terminal setae (2t). Comma (,) is an arthrodial membrane, 
dash (-) indicates the location where an arthrodial membrane has failed to form, resulting in 

a segment complex 

d-dtv 
v-2t 
d-d-v-dv-dtv 
v-v-v-dv-2t 
d, dv-v-dv-dtv 
V, v-v-v-dv-2t 
dv, dv-v-dv-dtv 
V, v-v-v-v-dv-2t 
dv, dv-v-dv-dtv 
V, v-v-v-v-dv-2t 
dv, dv, v-v-dv-dtv 
V, v-v, v-v-dv-2t 
dv, dv, v-v-dv-dtv 
V, v-v, v-v-dv-2t 

NVI Re 
Ri: 

CI Re 
Ri: 

cn Re 
Ri: 

cm Re 
Ri: 

CIV Re 
Ri: 

cv Re 
Ri: 

CVI Re 
Ri: 

TABLE XXIII 
Setation of the rami of swimming leg 1 of the calanoid, Acrocalanus gibber. No more than 
one ventral seta (v) and one dorsal seta (d) per segment except for the distal segment of the 
exopod with one dorsal, one terminal and one ventral setae (dtv) and for the distal segment 
of the endopod with two terminal setae (2t). Comma (,) is an arthrodial membrane, dash 
(-) indicates the location where an arthrodial membrane has failed to form, resulting in a 

segment complex 

NVI Re: dtv 
Ri: v-2t 

CI Re: v-dv-dtv 
Ri: v-v-dv-2t 

cn Re: 0, v-v-dv-dtv 
Ri: V, v-dv-2t 

cm Re: V, v-v-dv-dtv 
Ri: V, v-dv-2t 

CIV Re: V, v-v-dv-dtv 
Ri: V, v-dv-2t 

cv Re: V, V, v-v-dv-dtv 
Ri: V, v-dv-2t 

CVI Re: V, V, v-v-dv-dtv 
Ri: V, v-dv-2t 



98 CRM 008 - Frank D. Ferrari & Hans-Uwe Dahms 

TABLE XXIV 
Setation of the rami of swimming leg 1 of copepodids of the calanoid, Euchirella messinensis. 
Setation of the last nauplius is unknown but inferred from that of Acrocalanus gibber. No 
more than one ventral seta (v) and one dorsal seta (d) per segment except for the distal 
segment of the exopod with one dorsal, one terminal and one ventral setae (dtv) and for 
the distal segment of the endopod with two terminal setae (2t). Comma (,) is an arthrodial 
membrane, dash (-) indicates the location where an arthrodial membrane has failed to form, 

resulting in a segment complex 

NVI Re: dtv 
Ri: v-2t 

CI Re: d-dv-v-v-dtv 
Ri: v-v-dv-2t 

Cn Re: d-dv-v-v-dtv 
Ri: v-v-dv-2t 

cm Re: d-dv-v-v-dtv 
Ri: v-v-dv-2t 

CrV Re: d-dv-v-v-dtv 
Ri: v-v-dv-2t 

CV Re: d-dv, v-v-dtv 
Ri: v-v-dv-2t 

CVI Re: d-dv, v-v-dtv 
Ri: v-v-dv-2t 

TABLE XXV 
Segments of the rami of the swimming leg 1 of the calanoid, Ridgewayia klausruetzleri. 
Segmentation of the last nauplius is unknown but inferred from that of Temora longicomis. 
Roman numeral with one asterisk (I*) is the source segment for patterning the ramus; comma 
(,) is an arthrodial membrane, dash (-) indicates the location where an arthrodial membrane 
has failed to form, resulting in a segment complex. Lower case letters are segments distal 
to the source segment, 'b' is the oldest of these segments; Arabic numerals are segments 
proximal to the source, '2' is the oldest of these segments. Setae are not indicated in this 

table 

NVI 

CI 

cn 

cm 

CIV 

CV 

CVI 

Re: 2-I*-b 
Ri: 2-I*-b 
Re: 2-3-I*-d-c-b 
Ri: 2-3- I*-d-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, 3-4-I*-d-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, 3-4-5-I*-d-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, 3-4-5-I*-d-c-b 
Re: 2, 3, 4-I*-d-c-b 
Ri: 2, 3-4, 5-I*-d-c-b 
Re: 2, 3, 4-I*-d-c-b 
Ri: 2, 3-4, 5-I*-d-c-b 
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TABLE XXVI 
Segments of the rami of the swimming leg 1 of the calanoid, Acrocalanus gibber. Roman 
numeral with one asterisk (I*) is the source segment for patterning the ramus; comma (,) is 
an arthrodial membrane, dash (-) indicates the location where an arthrodial membrane has 
failed to form, resulting in a segment complex. Lower case letters are segments distal to the 
source segment, 'b' is the oldest of these segments; Arabic numerals are segments proximal 

to the source, '2' is the oldest of these segment. Setae are not indicated in this table 

NVI 

CI 

cn 

cm 

CIV 

cv 

cvi 

TABLE XXVII 
Segments of the rami of the swimming leg 1 of the calanoid, Euchirella messinensis. Segmen- 
tation of the last nauplius is unknown but inferred from that of Acrocalanus gibber. Roman 
numeral with one asterisk (I*) is the source segment for patterning the ramus; comma (,) is 
an arthrodial membrane, dash (-) indicates the location where an arthrodial membrane has 
failed to form, resulting in a segment complex. Lower case letters are segments distal to the 
source segment, 'b' is the oldest of these segments; Arabic numerals are segments proximal 

to the source, '2' is the oldest of these segments. Setae are not indicated in this table 

NVI 

CI 

cn 

cm 

CIV 

cv 

CVI 

Re: 2-I*-b 
Ri: 2-I*-b 
Re: 2-I*-d-c-b 
Ri: 2-I*-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, I*-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, I*-d-c-b 
Re: 2, 3-I*-d-c-b 
Ri: 2, I*-d-c-b 
Re: 2, 3, 4-I*-d-c-b 
Ri: 2, I*-d-c-b 
Re: 2, 3, 4-I*-d-c-b 
Ri: 2, I*-d-c-b 

Re: 2-I*-b 
Ri: 2-I*-b 
Re: 2-3-I*-d-c-b 
Ri: 2-I*-d-c-b 
Re: 2-3-I*-d-c-b 
Ri: 2-I*-d-c-b 
Re: 2-3-I*-d-c-b 
Ri: 2-I*-d-c-b 
Re: 2-3-I*-d-c-b 
Ri: 2-I*-d-c-b 
Re: 2-3, I*-d-c-b 
Ri: 2-I*-d-c-b 
Re: 2-3, I*-d-c-b 
Ri: 2-I*-d-c-b 
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Distal to the source segment Latin letters identify each segment. The oldest 
segment distal to the source segment has the letter 'b'; the youngest segment 
has the letter 'd'. These limbs have rather different conformations, usually 
described as 3-segmented, 2-segmented, or 1-segmented, respectively, for the 
three species of calanoids. Despite these differences, specific limb patterning 
results in segment '2' of all three limbs as being the oldest segment proximal 
to the source segment of the endopod. Segment '2' always is adjacent to the 
basis and for these two reasons bears the sensory area of the endopod on 
the adult. Therefore, the sensory area on the anterior face of the endopod is 
homologous among the limbs of all three calanoids, and Von Vaupel Klein's 
Organ can be proposed as a synapomorphy for calanoid copepods, including 
the platycopiids. 

Thoracopods: maxilliped and swimming legs 
Information obtained about the patterning of the rami of swimming legs 

also may be applied to the question of whether the copepod maxilliped is 
derived from a configuration like a swimming leg, or whether the maxilliped 
is derived from an older thoracopod morphology from which swimming legs 
also have been derived. Segments of the endopod of the maxilliped distal 
to the source segment are formed during the molt from a limb bud to the 
transformed limb; further patterning of the transformed maxilliped results in 
the addition of endopodal segments proximal to the source segment. This 
also is generally true for both rami of the swimming legs, although a dorsal 
seta without its arthrodial membrane may be added to the endopod during 
the copepodid phase. An example of the addition of a dorsal seta, mentioned 
above for the maxilliped, has been observed on the endopod of limb 5 of 
Centropages abdominalis. A new dorsal seta is added to the antepenultimate 
segment during the molt to CV, one stage after the limb bud has been re- 
configured (Ferrari & Ueda, 2005). Both the maxilliped and swimming legs 
of copepods may form segment complexes as a result of the failure of one 
or more arthrodial membranes to form; the distal segment complex is a hall- 
mark of these thoracopods. The maxilliped and swimming legs are similar 
in these two ways. 

Copepod swimming legs, however, exhibit the process of setal precedence. 
The dorsal and/or ventral formation seta that will be found on segments prox- 
imal to the source segment initially are added to the distal segment complex. 
Subsequently, these formation setae will be allocated to the proximal or 
middle segment when the distal, finishing arthrodial membrane is formed 
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TABLE XXVIII 
Representation of the segmentation of tfie endopod of an anterior trunk limb of Leptestheria 
kawachiensis from Ferrari & Grygier (2003); steps 1-3 from a posterior limb; step 4 from the 
anterior trunk limb of the male. Roman numeral with one asterisk (I*) is the source segment 
that patterns the ramus; dash (-) indicates the location where an arthrodial membrane has 
failed to form, resulting in a segment complex. Lower case letters are segments distal to the 
source segment, 'b' is the oldest of these segments; arable numerals are segments proximal 

to the source, '2' is the oldest of these segments. Setae are not indicated in this table 

Step 1: I* 
Step 2: 2-1* 
Step 3: 2-I*-b 
Step 4 [male P' trunk limb]: 2-I*-c-b 

one molt or more later. Setal precedence appears to be a derived process 
of swimming leg development, relative to the process of development of 
the maxilliped, whose formation seta and arthrodial membrane initially are 
added in register, during the same molt. The copepod maxilliped does not 
appear to be derived from a swimming leg. Swimming legs are significantly 
transformed thoracopods whose derived states are setal precedence and an 
interpodal bar between contralateral coxal segments. 

A branchiopod is the only other crustacean for which the patterning of 
post-cephalic limbs has been hypothesized. Patterning the endopod of trunk 
limbs of Leptestheria kawachiensis is now understood by observations of for- 
mation homology (Ferrari & Grygier, 2003). The endopodal segment prox- 
imal to the source segment forms first, followed by the distal endopodal 
segment (table XXVIII). A fourth endopodal segment, distal and adjacent 
to the source segment, is added last to the first trunk limb of males. This 
fourth segment is elongate, bears a palp, and previously was misinterpreted 
as part of an articulating palp until the analysis of Ferrari & Grygier (2003). 
Patterning of the branchiopod trunk limb then is unlike the thoracopods of 
copepods, because proximal patterning occurs early in development and dis- 
tal patterning occurs later. 

The protopod 
In the previous sections, patterning has referred to the addition of setae 

and arthrodial membranes to the rami of the limbs. Much less is known 
about how the protopod of copepod limbs is patterned, because the arthrodial 
membranes and all endites that will bear setae on the protopod of the adult 
copepod limb appear to be present in the transformed limb (Ferrari, 1995; 
Ferrari & Dahms, 1998). It should be noted that the copepodid stage at which 
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setae are added to specific endites lias some power to predict the identity 
of some protopodal endites (Ferrari & Ivanenko, 2001). Fiers (1991a: 41) 
suggested that the dorsal seta on the basis of swimming leg 4 and limb 5 of 
the harpacticoid, Galapalaophonte biarticulata is present on the limb bud; 
this would imply that protopodal patterning is initiated during the formation 
of the limb bud. Recent observations of steps in development of the trunk 
limbs of the branchiopod, Leptestheria kawachiensis (see Ferrari & Grygier, 
2003) suggest that the protopod is patterned from a point where the limb 
articulates with the body (table XXIX). 

The basis appears to be developmentally the oldest part of the protopod 
of the branchiopod; this supports the inference of Fiers (1991a) for copepod 
thoracopods. The coxa with a single endite is the next oldest segment on 
the protopod of the branchiopod. The youngest segment is the praecoxa; 
its distal endite is younger then the coxal endite, but the distal endite is 
developmentally older than its middle endite. The proximal endite of the 
praecoxa, which is closest to the body, is developmentally the youngest part 
of the protopod. 

Indirect support for this patterning process can be deduced from the con- 
figuration of the maxilliped of several cyclopoid copepods. At most, only the 
middle and distal praecoxal endites of the calanoid maxilliped are present 
on the cyclopoid maxilliped. These two endites, bearing fewer setae than in 
calanoids, are expressed among phylogenetically older species of Cyclopi- 
dae, e. g., Euryte longicauda (see Ferrari & Ivanenko, 2001). However, only 
the distal praecoxal endite is present in derived species of Cyclopidae [e. g.. 

TABLE XXIX 
Representation of tiie segmentation of an anterior trunk limb of Leptestheria kawachiensis 
from Ferrari & Grygier (2003); steps 1-4 from a posterior limb; step 5 from the anterior trunk 
limb of the male. Roman numeral with one asterisk (I*) is the source segment that patterns 
the endopod; dash (-) indicates the location of an arthrodial membrane that has failed to form, 
resulting in a segment complex. Lower case letters are segments distal to the source segment, 
'b' is the oldest of these segments; Arabic numerals are segments proximal to the source, 
'2' is the oldest of these segments; plus (+) indicates location of protopodal patterning; 'bd' 
is body; upper case letters are B, basis; C, coxa; Pd, distal praecoxal endite; Pm, middle 

praecoxal endite; Pp, proximal praecoxal endite. Setae are not indicated in this table 

Step 1 
Step 2: 
Step 3: 
Step 4: 

bd+Pd-C-B-I* 
bd+Pm-Pd-C-B-2-I* 
bd+Pp-Pm-Pd-C-B-2-I* 
bd+Pp-Pm-Pd-C-B-2-I*-b 

Step 5 [male P^ trunk limb]:        bd+Pp-Pm-Pd-C-B-2-I*-c-b 
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Speocyclops racovitzai]. From a calanoid maxilliped with three praecoxal 
endites, it appears that there has been a step-wise truncation of development 
of the praecoxa, affecting the number of praecoxal endites as the evolution 
of cyclopoid copepods has proceeded. As a result, the number of praecoxal 
endites has been progressively reduced beginning with the proximal prae- 
coxal endite, which is closest to the body when it is present, followed by 
the middle praecoxal endite, which is closest to the body when the proximal 
praecoxal endite is absent (Ferrari & Ivanenko, 2001). Recent observations of 
'Orsten'-type fossil arthropods without a praecoxa and with a simple, lobe- 
like coxa (Walossek & Miiller, 1997) imply that patterning of the protopod 
may not have been expressed in the ground plan of the crustacean limb, and 
that the segmented nature of the ancestral crustacean limb was the sole result 
of ramal patterning. 

Hansen (1893) was the first carcinologist to recognize a 3-segmented pro- 
topod for those limbs of crustaceans posterior to antenna 1. He based his 
conclusions on a study of antenna 2 and the mandible of metanauplii and 
adults of calanoid copepods, and of antenna 2 of Microsetella (as Setella). 
Lang (1946) confirmed, but did not illustrate, a naupliar praecoxal joint on 
antenna 2 and on the mandible from Nil onwards. Dahms (1990c) showed 
that a distinctly 3-segmented protopod of antenna 2 is present at NI of some 
species of harpacticoids. 

Interpretations of the praecoxa of post-mandibular limbs have been more 
recent. The praecoxa of the maxilliped of some cyclopoid copepods is an 
articulating segment with two endites; these two endites are proximal to the 
single endite of the coxal segment. A syncoxa with four endites including 
three praecoxal endites is found on the maxilliped of most calanoid cope- 
pods (Ferrari & Ivanenko, 2001). An alternate hypothesis that the proximal 
segment of the maxilliped is a syncoxa with three coxal endites and one 
praecoxal endite (Huys & Boxshall, 1991) is not supported by the Rule of 
Serial Homologs. Patterning of the branchiopod protopod also has been used 
to infer for copepods that the proximal segment of maxilla 2 is a syncoxa 
with two endites (Ferrari & Ivanenko, 2005; Suarez-Morales et al., 2006). 
The distal endite of the syncoxa is the coxal endite; the proximal endite is a 
praecoxal endite that is homologous to the distal praecoxal endite of the max- 
illiped (Ferrari & Ivanenko, 2005; Suarez-Morales et al., 2006). An alternate 
hypothesis that the proximal segment of maxilla 2 is a coxa with two endites 
(Huys & Boxshall, 1991) is not supported by the Rule of Serial Homologs. 
On maxilla 1, an articulating praecoxal segment with one endite is proximal 
to the single endite of the coxal segment of copepods (Boxshall, 1985). 
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Generalities of limb patterning 

As described above, the structure of copepod limbs is basically a bifurcate, 
linear topology in which each bifurcation is a ramus. Segment patterning of 
the limb is complicated, because segments can be added from at least three 
points: distally from the point at which the protopod, at one end of the 
line, meets the body; and proximally and/or distally from at least one source 
segment located along the length of each bifurcation. Although some aspects 
of the addition of segments may be obscured, patterning of this kind of linear 
topology should be understandable if not necessarily intuitive. 

The earlier observations here suggest that limb patterning has been a per- 
sistent process during the evolutionary history of copepods, as well as of 
other crustaceans. For the ancestral crustacean, a set of reasonable assump- 
tions is that: the serially segmented limbs were patterned identically; there 
was no patterning of the protopod; the source segment of each ramus re- 
mained adjacent to the basis so that elements of each new ramal segment 
were added only distally to the source segment; all of the elements of only 
one new segment were added at each molt; and, with the exception of the 
distal two segments, the formation seta of most new endopodal segments was 
ventral, while the formation seta of most new exopodal segments was dorsal. 

Variations in the above initial conditions, expressed among limbs of cope- 
pods, include: both proximal and distal patterning from a source segment 
with proximal patterning preceding distal patterning or vice versa; elements 
of one segment or more than one segment added at each molt. An exopod 
for which most setae are ventral, as is the case for antenna 2 and mandible 
of copepods, is assumed to have been derived from a configuration like the 
exopod of antenna 2 of nauplii of Derocheilocaris typica, for which most 
setae are dorsal (fig. 3A); a mechanism that has been proposed for dorsal 
exopodal setae (Ferrari & Grygier, 2003). In addition to these differences, 
variations in patterning expressed in the flagellum of antenna 1 and antenna 
2 of malacostracans also should be registered. 

Because the arthropod limb has been historically persistent, the process of 
its patterning should be understandable from a few principles, irrespective 
of the fact that evolution of the patterning process has resulted in the above 
variability of that process. There should be no need to derive the patterning 
of rami empirically for each limb on every species of crustacean, nor should 
determination of segment homologies of crustaceans be peculiar. Some of 
the principles that are applicable to patterning copepod rami are as follows: 
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Limb segments are serially repeated, homologous structures composed 
of similar exoskeletal elements, e. g., setae and arthrodial membranes. 

The addition of new segmental elements to a limb takes place from 
one source segment (most rami studied) or occasionally from more 
than one source segment (calanoid antenna 1). 

New segmental elements may form either proximal or distal to a source 
segment. 

Initially, a limb segment is comprised of no more than one dorsal 
seta and one ventral seta (formation setae) associated with a finishing 
arthrodial membrane. 

The dorsal and/or ventral formation seta initially may be presented 
out of register with the formation of the finishing arthrodial mem- 
brane that defines one boundary of the segment (setal precedence of 
swimming legs). 

The presentation of the dorsal formation seta also may be out of regis- 
ter with that of the ventral formation seta. If this is the case, the dorsal 
formation seta of an exopodal segment usually precedes the presenta- 
tion of its ventral formation seta, while the ventral formation seta of 
an endopodal segment usually precedes the presentation of its dorsal 
formation seta. 



THE MOLT FROM THE LAST NAUPLIUS TO THE FIRST COPEPODID 
AND THE NUMBER OF NAUPLIAR SOMITES 

The molt from the last nauplius to the first copepodid represents a sig- 
nificant change in the architecture of the copepod body, and also includes a 
reconfiguration of most of the appendages. In contrast, changes during molts 
within the naupliar phase or within the copepodid phase of development are 
more modest. In this chapter, structural and functional changes during the 
molt from the last nauplius to the first copepodid are itemized for copepods 
in which the last nauplius is an NVI that bears the bud of swimming legs 
1-2. Changes in morphology and a simple model for patterning the body and 
limb buds during the copepodid phase of development are used to extrapolate 
back through the naupliar phase of development in order to infer the number 
of somites present at various stages of naupliar development. 

Specific changes in body architecture and limb configuration result in the 
major differences between the nauplius and the copepodid. Arthrodial mem- 
branes separate many somites of copepodids, including the first copepodid, 
but arthrodial membranes do not separate naupliar somites. There are two 
differences in limb configuration between nauplii and copepodids. During 
the molt to the first copepodid, up to five post-mandibular naupliar setose 
limb buds plus the setose bud of the caudal ramus of the last nauplius are 
reconfigured into transformed appendages. The naupliar arthrite of antenna 
2 fails to form on antenna 2 of any copepodid, and its function is assumed 
by the gnathobase of the mandibular coxa. 

During the naupliar phase of development, only antenna 1, antenna 2, and 
the mandible appear as transformed limbs. The more posterior limbs of the 
last nauplius, including maxilla 1, maxilla 2, the maxilliped and swimming 
legs 1-2, plus the caudal ramus, are expressed only as limb buds, although 
maxilla 2 and the maxilliped may not form on nauplii of some copepod orders 
(see table I). Limb buds do not appear to articulate with their somite. During 
the molt to the first copepodid, these naupliar limb buds and the caudal ramus 
are reconfigured and appear as transformed appendages along with the three 
previously transformed limbs of the last nauplius. Exceptions include the 
maxilliped of some poecilostomes like Ergasilus hypomesi (see Kim, 2004), 
which may not be expressed until a later copepodid stage. In most copepods, 
each of the transformed appendages clearly articulates with its somite. The 
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only limb bud present on the first copepodid is that of swimming leg 3; it 
does not articulate with its somite. 

The transformed limbs of the naupliar phase of development, antenna 1, 
antenna 2 and mandible, seldom lose segments or setae during the molt 
from the last nauplius to the first copepodid. Exceptions to this rule include 
the loss of setae to antenna 1 of most calanoids and some harpacticoids 
(see Oberg, 1906; Fahrenbach, 1962; Hulsemann, 1991b); reduction in the 
number of segments making up the exopod of antenna 2 of harpacticoids 
and siphonostomatoids; reduction of the exopod of antenna 2 to a poorly- 
sclerotized, sac-like structure in cyclopoids and poecilostomes; reduction of 
the mandibular palp to a poorly-sclerotized, sac-like structure in the Cyclo- 
pidae and poecilostomes; and loss of the naupliar arthrite of antenna 2 in 
almost all copepods (see Fahrenbach, 1962; and see also above). 

Significant functional changes of the limbs also occur during the molt from 
the last nauplius to the first copepodid (Storch, 1928). Nauplii swim using 
antenna 1, and the well-developed exopods of antenna 2 and of the mandible. 
Antenna 2 and mandible also are used to create feeding currents (Paffenhofer 
& Lewis, 1989), and the arthrite of antenna 2 is used to push food through 
the mouth. The first copepodid of calanoids use the exopod of antenna 2 and 
the exopod of the mandible in glide-like swimming but calanoid copepodids 
also can use swimming legs 1-2 plus movement at the articulation between 
the anterior and posterior parts of the body to produce a jump-like swimming. 
This is a mode of movement restricted to the copepodid stages. Reduced seg- 
mentation of the exopod of antenna 2 of the first copepodid of harpacticoids 
and siphonostomatoids, as well as the absence of this ramus in copepodids 
of cyclopoids and poecilostomes, precludes a glide-like swimming during 
the copepodid phase of development of these copepods. Movements of these 
copepodids are restricted to the use of swimming legs 1-2. With the loss of 
the naupliar arthrite of antenna 2, the mandibular gnathobase pushes food 
into the mouth of the copepodid. The mandibular gnathobase is present only 
during the copepodid phase of development of most copepods; NIV-NVI of 
calanoids provide the only exception. On calanoid nauplii IV-VI, the function 
of the mandibular gnathobase, relative to the function of the naupliar arthrite 
of antenna 2, has not been investigated. 

The duration of the last nauplius and the size of the first copepodid are 
dependent on the availability of food to calanoids like Calanus finmarchicus 
(see Irigoien et al., 2003). Susceptibility of some calanoids to predation may 
(Landry, 1978) or may not (Eiane & Ohman, 2004; Ohman et al., 2004) 
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decrease from the last nauplius to the first copepodid. Calanoid copepods 
may exhibit a significant change in motion and swimming speed between 
the last nauplius and the first copepodid (Paffenhofer et al., 1996). 

The number of somites that make up the body of any naupliar stage cannot 
be observed directly because there are no unambiguous signs that arthrodial 
membranes separate somites of the body during the naupliar phase of de- 
velopment. Incomplete arthrodial membranes that appear to separate some 
body segments of some calanoid nauplii have been illustrated, e. g., for Eu- 
calanus elongatus (see Johnson, 1937). In addition, the posterior border of 
the cephalic shield of calanoids has been interpreted mistakenly for an arthro- 
dial membrane. In contrast, arthrodial membranes are prominent and separate 
many somites of the first copepodid. These somites include the third thoracic 
somite of the first copepodid, which bears the transformed swimming leg 2, 
the fourth thoracic somite bearing the bud of swimming leg 3, and the limb- 
less fifth thoracic somite. All of these somites articulate both anteriorly and 
posteriorly. The second thoracic somite of the first copepodid, bearing the 
transformed swimming leg 1, also may articulate anteriorly, although in some 
species of poecilostomes, harpacticoids and calanoids, the anterior arthrodial 
membrane between the second thoracic somite and the cephalothorax fails to 
form (see Chapter V). The first thoracic somite of the first copepodid, which 
bears the transformed maxilliped in all copepods, never articulates anteriorly 
with the cephalon and so forms the cephalothorax with it. The body architec- 
ture and limb configuration of the first copepodid is remarkably conserved 
among copepods, with the exception of the thaumatopsylloids. It consists 
of a cephalon with five appendages and five thoracic somites with the first 
being united to the cephalon. The limbs of the thoracic somites include the 
maxilliped, swimming legs 1-2 as transformed limbs with unarticulated rami, 
swimming leg 3 as a limb bud, and the posterior abdominal somite with its 
caudal ramus. This combination of body architecture and limb configuration 
has been identified as the phylotypic stage of copepods (Ferrari, 2003). 

During the molt from the last nauplius to the first copepodid, the addition 
of an articulating limbless thoracic somite anterior to the anal somite and 
posterior to the articulating, bud-bearing fourth thoracic somite is the result 
of a process central to patterning of the body during copepodid development. 
With each molt to a new copepodid stage, one new, limbless somite is pre- 
sented anterior to the anal somite. This new, limbless somite is more easily 
identified during the following molt. On the second through fourth copepo- 
dids, a setose limb bud is added to the thoracic somite that formed one stage 
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earlier. This older thoracic somite with its setose limb bud is adjacent to the 
new, limbless somite. 

The bud of swimming leg 4, and buds of limb 5 and limb 6 initially are 
formed on the thoracic somites 5-7 during the molts to the second through 
fourth copepodids respectively. Thoracic somites 5-7 initially are presented at 
the first to third copepodids, respectively. During molts to the fourth through 
sixth copepodid, one abdominal somite is added at each molt. These three 
abdominal somites remain limbless throughout development. The absence 
of limbs on these abdominal somites may compromise identification of the 
pattern of somite addition (see above). 

The process of patterning the body during the copepodid phase of develop- 
ment, i. e., one new somite added per molt with its setose limb bud added one 
stage later, can be extrapolated back through the naupliar phase. This model 
results in the first appearance of setose limb buds and an inference of the 
first appearance of somites for each naupliar stage according to table XXX. 

Corollaries to this extrapolated model of naupliar development include: 
the initial appearance of a new setose limb bud on the most recently added 
pre-existing somite; pre-existing limb buds are not transformed during the 
naupliar phase; setae may be added to pre-existing limb buds as well as 
to pre-existing transformed limbs. This simple, extrapolated model does not 
accurately describe the naupliar development of copepods, as will be seen in 
the following discussion. However, it may model the naupliar development 
of a more primitive crustacean from which the exceptions of copepods are 
derived attributes. 

Evidence among copepods for the extrapolated model is equivocal. Cer- 
tainly, the fifth thoracic somite is the new and most posterior thoracic somite 
on CI. Swimming leg 3, which is the limb on the fourth thoracic somite, 
is the new and most posterior thoracic limb. Swimming leg 3 is a bud and 

TABLE XXX 
Setose limb buds and somites added during naupliar molts according to the extrapolated 
model that assumes that one new somite is added per molt and that the setose limb bud of 

the new somite is added one stage later 

CI: swimming leg 3 and the fifth thoracic somite 
NVI: swimming leg 2 and the fourth thoracic somite 
NV: swimming leg 1 and the third thoracic somite 
NIV: maxilliped and the second thoracic somite 
NIII: maxilla 2 and the first thoracic somite 
Nil: maxilla 1 and the fifth cephalic somite 
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usually has three terminal setae on the presumptive exopod and two terminal 
setae on the presumptive endopod. These setae will be allocated to the termi- 
nal crown of setae on the exopod and endopod, respectively, when the limb 
is reconfigured during the molt to CII (fig. 28). The most posterior limb on 
the last nauplius, NVI, is swimming leg 2; it is the limb of the third thoracic 
somite. Its configuration is a bilobe setose bud usually with three terminal 
setae on the presumptive exopod and two terminal setae on the presumptive 
endopod. Thus, swimming leg 2, like swimming leg 3, appears as predicted 
by the extrapolated model (table XXX). 

Swimming leg 1 initially is presented at the sixth nauplius, not at the 
fifth nauplius as predicted by the model. However, this setose bud exhibits 
evidence of being one stage further along in development than that of swim- 
ming leg 2 (see previous chapter). Specifically, among many copepods, one 
dorsal and three terminal setae are found on the presumptive exopod of the 
bud of swimming leg 1, and on some calanoids there are one ventral and 
two terminal setae on the presumptive endopod of the bud (Ferrari, 2000). 
The dorsal seta on the presumptive exopod is the seta that will be found on 
the proximal segment of the exopod of the adult. The ventral seta on the 
presumptive endopod of calanoids is the seta that will be found on the prox- 
imal segment of the endopod of the adult. On other swimming legs, these 
two setae initially are present on the transformed limb, and are never found 
at the limb bud stage. Therefore, the bud of swimming leg 1 on the last 
nauplius seems to be advanced in its development and delayed in its initial 
appearance from the extrapolated model by one naupliar stage. 

The maxilliped initially appears as a simple bud armed with 2 terminal, 
crown endopodal setae on the sixth nauplius of calanoids. This configuration 
is not advanced in its development although the initial appearance of this 
limb is delayed from the prediction of the extrapolated model by two naupliar 
stages. 

Maxilla 2 initially is presented on the fifth nauplius of calanoids as a 
simple bud with 1 terminal seta. The initial appearance of this limb on the 
fifth nauplius is delayed by two naupliar stages, relative to the prediction 
of the extrapolated model. Maxilla 2 on the sixth nauplius of calanoids is a 
complex bud armed with terminal ramal setae and a series of enditic lobes 
with one or more setae; this configuration is advanced in its development at 
this stage. 

Maxilla 1 initially appears on the second nauplius of cyclopoids and 
harpacticoids as predicted by the extrapolated model (table XXX). At this 
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Stage it is a simple bud with one terminal ramal seta. At the fourth naupliar 
stage, maxilla 1 is configured as a complex bud with setae on the presump- 
tive rami and on a series of enditic lobes; more setae are added to the limb 
bud during the following two molts. However, maxilla 1 of calanoids ini- 
tially appears as a simple bud on the third nauplius. In the fourth nauplius of 
calanoids it is expressed as a complex bud similar in general configuration to 
that of cyclopoids at the fourth nauplius, and to maxilla 2 of calanoids at the 
sixth nauplius. The initial appearance of maxilla 1, delayed until the third 
nauplius of calanoids from the prediction of the extrapolated model, explains 
why the second nauplius of calanoids has been referred to as a second or- 
thonauplius, while the second nauplius of cyclopoids and harpacticoids is a 
metanauplius (Dietrich, 1915). Maxilla 1 initially appears as a simple bud on 
the sixth nauplius of siphonostomatoids, and is reconfigured to a transformed 
limb during the molt to the first copepodid. 

In summary, maxilla 1 of cyclopoids and harpacticoids, and swimming leg 
2 of most copepods initially appear at Nil and NVI, respectively, as predicted 
by the extrapolated model of somite addition during the naupliar phase of 
development. The initial appearance of the swimming leg 1 is delayed one 
stage, while the initial appearance of maxilla 2 and the maxilliped is delayed 
two stages. Maxilla 1, maxilla 2, maxilliped and swimming leg 2 each first 
appear as a simple setose limb bud; the configuration of swimming leg 1 
initially appears as a more complex setose limb bud. 

If the extrapolated model is correct, the body of the first nauplius of cope- 
pods should be composed of four cephalic somites plus the posterior abdom- 
inal somite bearing the bud of the caudal ramus. The fifth cephalic somite 
and thoracic somites one through four then should be added progressively 
during the five consecutive naupliar molts, respectively. 

Some poecilostomes, however, are missing one or more intermediate nau- 
pliar stages (Izawa, 1987), and some siphonostomatoids molt directly from 
an orthonauplius to the first copepodid (Kabata, 1972; Johnson & Albright, 
1991). Their development appears to require the addition of more than one 
somite and limb bud during at least one molt. Furthermore, the extrapolated 
model does not agree with the hypothesis of Dudley (1966), who observed a 
series of superficial subexuvial structures (i.e., structures internal to the nau- 
pliar exoskeleton) in the first nauplius of notodelphyids. These superficial 
subexuvial structures were interpreted as the armed post-mandibular limbs 
of the first copepodid, and were identified as maxilla 1, maxilla 2, maxilliped, 
swimming leg 1, swimming leg 2 and swimming leg 3. According to Dud- 
ley's hypothesis, the body of the orthonauplius of copepods consists of all of 
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the cephalic somites and at least the first four thoracic somites. During the 
copepodid phase of development, Dudley (1966) described the addition of 
somites in a manner consistent with a proliferation zone in front of the anal 
somite so that somites are added progressively during the copepodid phase, 
one somite at each molt. Dudley's hypothesis then would imply that body 
patterning during the copepodid phase of development is decoupled from that 
of the naupliar phase. An advantage of Dudley's (1966) hypothesis, however, 
is that the addition of more than one somite and limb at any molt are not 
required during the naupliar phase of development for those poecilostomes 
and siphonostomatoids that are missing naupliar stages, because all cephalic 
and at least the first four thoracic somites already are present in the body of 
the orthonauplius. 



IMPLICATIONS OF DEVELOPMENT FOR PHYLOGENY 

Information from the post-embryonic development of copepods has been 
applied to two kinds of phylogenetic studies. In the first, attributes of develop- 
ment are used to specify groups of presumably related species. Relationships 
among species within the groups and relationships among the groups are 
not specified. This kind of study is less rigorous than the second kind, in 
which attributes of development are used to specify some form of ancestor- 
descendant relationships among all taxa considered. 

Von Nordmann (1832) used the general architecture of the nauplius and 
the first copepodid stage to correctly group copepods that were quite different 
in their adult morphology. He studied parasites like Achtheres percarum and 
Tracheliastes polycolpus, whose relationships with other animals were not 
well understood. At the time, these parasites were known almost exclusively 
from their adult form and usually were placed among the molluscs. Free- 
living copepods were known as wingless insects but were not included with 
other crustaceans. Von Nordmann (1832) found that a nauplius hatched from 
the egg of the parasites, and that later in development the nauplius molted 
to a copepodid-like stage. Comparing these stages to the nauplii and the 
copepodids of free-living copepods, he concluded that the similarity among 
these two different stages of development indicated that the parasites and 
the free-living copepods are the same kind of animal, but that the parasites 
are significantly transformed later in their development from first copepodid 
to adult. However, comparisons of stages based on similarity alone also can 
be misleading. Claus (1876) incorrectly grouped copepods and decapods 
together based on the similarity of copepodid stages of copepods to the 
protozoeal stages of decapods. 

Dudley (1966) was interested in determining whether parasitic copepods 
belonging to the Notodelphyidae should be grouped with gnathostome cy- 
clopoids, like species in the Enterocolidae and Botryllophilidae (now As- 
cidicolidae), or with poecilostome cyclopoids, like species of Myicolidae and 
Mytilicolidae. She used attributes of the development of naupliar appendages 
like the lack of changes in segmentation to the exopod of antenna 2 during 
the naupliar phase, the proximal exopodal segment of the mandible fused 
or not to the basis, a 2-segmented mandibular endopod, and poor develop- 
ment of the post-mandibular appendages maxilla 1, maxilla 2 and maxilliped 
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during later naupliar stages. She concluded that species of Notodelphyidae 
belong within the group of gnathostome cyclopoids. 

Dahms (1990c) determined the following naupliar apomorphies for the 
oligoarthran harpacticoids: a mandibular exopod with long, terminal setae; 
one or two short, thick, terminal setae on the mandibular endopod; and buds 
of post-mandibular limbs located laterally on the body. Later, the following 
apomorphies for oligoarthran harpacticoids were added (Dahms, 2004a): the 
coxal gnathobase of antenna 2 is broad throughout naupliar development; 
the endopod of antenna 2 is elongate throughout naupliar development; the 
mandibular endopod is an elongate process. Polyarthran harpacticoid nauplii 
share several derived states (Dahms, 1990c) among themselves including: a 
2-segmented mandibular endopod; a long and thick seta on the bud of the 
caudal ramus of the first nauplius; segments 3-5 of antenna 1 of the first nau- 
plius are fused during the molt to the second nauplius, even for those species 
for which a new segment is added; and the terminal segment of antenna 1 is 
transformed from cylindrical to flat during the molt to the second nauplius. 
However, no naupliar apomorphies are shared between the oligoarthrans and 
polyarthrans, and Dahms (2004b) proposed removing the polyarthrans to a 
position as the sister-taxon of all remaining copepods. 

Dahms (1990b) also discussed trends of reduction and specialization in 
naupliar morphology within the Thalestridae. This harpacticoid family in- 
cludes free-living species like Thalestris longimana and Parathalestris har- 
pacticoides, species like Diarthrodes cystoecus, which is symbiontic with 
macroalgae, as well as Thalestris rhodymeniae, an obligate phytoparasite 
of macroalgae. Setae on antenna 1 of nauplii of the free-living species are 
long and have dense setulation; the parasites have fewer setae on antenna 1, 
and those setae have sparse setulation. The masticatory process of antenna 
2 of the parasites is broader relative to that of the free-living species, and 
there is a delayed presentation and reduction in size of the limb buds of 
post-mandibular appendages of the parasites. Dahms (1990b) noted that sev- 
eral of the assumed derived states of thalestrid nauplii are shared with some 
species of the family Harpacticidae. Previously, the family Harpacticidae had 
not been placed in the same group of families as the family Thalestridae. 
Given the variation expressed among nauplii within the Thalestridae, Dahms 
(1990b) recommended a reassessment of the Thalestridae. 

Ferrari (1991) abstracted segmentation pattern s from the steps of devel- 
opment of swimming legs 1-4, and limbs 5-6 for species of the calanoid 
genus Labidocera, and for genera within the calanoid family Diaptomidae 
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and within the cyclopoid family Cyclopidae. Segmentation patterns were de- 
rived simply by noting the addition of arthrodial membranes to the ramus of 
a limb, and as a result of this assumption, segments were not differentiated 
from segment complexes. The segmentation patterns then were used as char- 
acter states to group ten species belonging to the calanoid genus Labidocera, 
14 genera in the calanoid family Diaptomidae and 12 genera belonging to the 
cyclopoid family Cyclopidae. If states for different characters resulted in the 
possible placement of a taxon in more than one group, a simple method for 
determining the correct group was based on the number of times the different 
states had converged among all copepods whose development was known. 

In describing the naupliar development of the diosaccid, Stenhelia (Dela- 
valia) palustris, Dahms & Bresciani (1993) discovered several apomorphies 
such as the shape of the naupliar shield, the shape of the masticatory pro- 
cess of antenna 2, the segment number of the exopod of antenna 2, and the 
setation of the mandibular basis and endopod. Based on comparisons with 
other diosaccid species, they recommended removing this species from the 
family Diosaccidae. 

The harpacticoid family Parastenheliidae includes only two genera. Nau- 
pliar development of Parastenhelia megarostrum was described by Dahms 
& Hicks (1996). They found that these nauplii are similar to nauplii of 
species of the family Tachidiidae in general shape of the body and location 
of setae on the basis of antenna 2, but that the nauplii do not exhibit a re- 
duction in the size and setation of the limbs involved in feeding, a reduction 
notable among nauplii of the Tachidiidae. Based on naupliar morphology, 
the authors concluded that the Parastenheliidae are related to the Thalestri- 
dae. Ivanenko & Ferrari (2003) discussed the addition of the last abdominal 
somite and formation of a genital complex among three siphonostomatoid 
parasites, Dermatomyzon nigripes, Asterocheres lilljeborgi and Scottomyzon 
gibberum. Scottomyzon gibberum expresses more derived states, such as the 
absence of a genital complex and reduced setation of the maxilliped, than 
Asterocheres lilljeborgi. These two species, in turn, suppress the addition of 
a fourth abdominal somite, a derived state; this fourth abdominal somite is 
expressed in Dermatomyzon nigripes. 

Schutze et al. (2000) placed 35 species from 29 genera of the cyclopoid 
family Cyclopidae into groups based on ten developmental patterns of an- 
tenna 1. New segments added at each step of limb development were deter- 
mined by aligning six different marker setae plus another two pairs of marker 
setae. The groups were defined by differences in arthrodial membrane forma- 
tion expressed prior to the terminal, adult molt. One resulting group contained 
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most of the cyclopid species, and the terminal, adult molt of species in this 
group resulted in a limb of 11 to 17 segments, depending upon the species. 
The remaining groups contained fewer than four species, and six groups 
contained a single species. The largest group was composed of species from 
three different subfamilies; two species of Apocyclops were placed in two 
different groups. The groups that are based on the development of antenna 
1 are not comparable to the lineages derived from the development of tho- 
racopods (Ferrari, 1998; Ferrari & Ivanenko, 2005). Ferrari & Ueda (2005) 
identified a homologous ventral attenuation present on limb 5 of most females 
of calanoids of the superfamily Centropagoidea as a character state useful 
in grouping species into this superfamily. Formation of the genital complex 
during the molt to CV for most species or during the molt to CIV for Acartia 
erythraea was a second attribute used to group species into the superfamily. 
Both attributes were proposed as synapomorphies for the Centropagoidea be- 
cause all other calanoids lack this ventral attenuation, and because the genital 
complex of most other copepods forms during the molt to CVI. 

In providing a phylogenetic hypothesis relating derived oligoarthran harpac- 
ticoid copepods and calanoid copepods to thecostracan crustaceans, Dahms 
(2004a) proposed the following naupliar apomorphies for the ancestral cope- 
pod: a 3-segmented antenna 1; coxa of antenna 2 with two setae at NIII (one 
of the setae is the naupliar arthrite); antenna 2 with a 1-segmented endopod; 
thoracic limb buds medially juxtaposed; buds of second and third thoracic 
limbs present at NVI; six setae on the bud of the caudal ramus at CVI. In ad- 
dition, the transformation of the last nauplius to the first copepodid suggested 
two more apomorphies of copepods: an anameric mode of somite addition; 
and the presence of biramous swimming legs 1-2 at the first copepodid stage. 

Bjornberg (1972) specified ancestor-descendant relationships of free-living 
cyclopoid, harpacticoid and calanoid copepods based on her study of the nau- 
pliar morphology of a large number of planktonic species. She assumed, in 
general, that the ancestral naupliar body would be simple or relatively undif- 
ferentiated, and that ancestral limbs would be composed of similarly repeated 
elements. Derived groups of copepods were expected to have a more com- 
plex body architecture, and the number of repeated elements on the limbs 
was assumed to be reduced in derived groups. She believed that the nau- 
plii of many cyclopoid copepods had the simplest shape, and that the setae 
and muscles also were simple. Harpacticoids retained many of these simple 
attributes but the setation and musculature of calanoids was quite complex. 
Her analysis placed the cyclopoids at the base of a branching tree of cope- 
pods, with harpacticoids close to the base; calanoids were the most derived 
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order. This conclusion challenged conventional wisdom then and now, that 
calanoids are close to the base of the Copepoda. Some species of oithonids 
and of cyclopids were placed close to the base of the Cyclopoida, while the 
polyarthrans (canuellids and longipediids) were placed close to the base of 
the Harpacticoida. Among the Calanoida, the nauplii of some centropagids 
and acartiids have the simplest shape and unmodified setae, and so these two 
families were placed at the base of that order. 

Dahms et al. (1991) proposed phylogenetic relationships for six species of 
Tisbe, based on the morphology of the sixth naupliar stage. The types of char- 
acter states considered included the shape and number of setae on particular 
limb segments, the relative length of setae and the presence of epicuticular 
extensions on setae, on limbs or on limb buds. The analysis was rigorous, 
and the resulting cladogram was compared to one in which both naupliar and 
adult characters were used. These two cladograms did not align particularly 
well because several naupliar apomorphies were allowed to converge so that 
a monophyletic lineage could be diagnosed by several adult characters. This 
was explained by a comment that more information was known about adult 
characters than about naupliar characters. 

While describing the naupliar development of Scutellidium hippolytes, 
Dahms (1993a) presented a cladogram of three of the 25 genera in the Tis- 
bidae. He used the naupliar autapomorphies of Tisbe gracilis and Dresche- 
riella glacialis as synapomorphies of their respective genera. The types of 
character states considered included the stage at which specific setae are 
added, shape of the masticatory process (naupliar arthrite), shape and number 
of setae on particular limb segments, and presence of a presumptive endopod 
on the paired buds of swimming legs. Determining an ancestral state for these 
characters was difficult, because there was no information about the nauplii 
of other tisbid genera and no information about the nauplii of species related 
to the Tisbidae. Tisbe was found to be most closely related to Drescheriella, 
with Scutellidium sharing fewer derived states. In a second study, Dahms 
(1993c) investigated Tegastes clausi and Alteutha interrupta from the fami- 
lies Tegastidae and Peltidiidae, respectively, two families related to the Tis- 
bidae within the Tisbidimorpha. Species within Tisbidae were found to share 
a derived branched setal complex on the caudal rami at the first copepodid 
stage; this setal complex was not present on Tegastes clausi and Alteutha 
interrupta. The species Tegastes clausi and Alteutha interrupta were found, 
in turn, to share the delayed development of setae on the swimming legs. 

Ferrari (1998) abstracted information about how the maxilliped, swimming 
legs 1-4 and limbs 5-6 of species of Cyclopidae developed, and used this 
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information to derive ancestor-descendant relationships among genera within 
the family. Development of rami of swimming legs 1-4 often is linked or co- 
ordinated. Cyclopid species either retain the ancestral condition for this coor- 
dinated limb development, or express one of two derived, coordinated states: 
development of swimming legs 1-4 truncated; or development of swimming 
legs 1-4 delayed. Individual rami of species expressing either ancestral, trun- 
cated, or delayed development may be further derived from the coordinated 
hierarchy. Later, Ferrari & Ivanenko (2005) used the development of the en- 
dopod of the maxilliped to further refine the evolution of those cyclopids that 
express the ancestral condition of development of the swimming legs. The 
results of these analyses did not support the traditional subfamilial groupings 
of cyclopid genera based on the setation of limb 5. Furthermore, species of 
Diacyclops in which the development of swimming leg rami is truncated 
are not predicted to be closely related to species of Diacyclops in which 
development of swimming leg rami is delayed. 

These successes aside, the phylogenetic analyses utilizing changes dur- 
ing copepod development can be hampered in several ways: (1) there may 
be difficulties in obtaining a complete set of all developmental stages; (2) 
a greater effort in time may be needed to observe each species, relative to 
the time needed to examine the adult stage, because many developmental 
stages must be examined; (3) the small size of early developmental stages 
requires more sophisticated dissection and observation techniques than those 
needed for the adult stage; (4) fewer characters are available from earlier 
stages of development, particularly naupliar stages; (5) less comparative data 
are available from developmental stages of other species relative to the large 
database available for adults; (6) analysing characters that may be expressed 
as several different states during several different stages of development is 
difficult (Ferrari, 1998; Dahms, 2004a). In addition, when studies of devel- 
opmental stages lead to conclusions that contradict results from comparative 
adult morphology, the standard of acceptance for developmental studies is 
raised appreciably. Nevertheless, comparative analysis of the structure of de- 
velopmental stages and changes during development have provided valuable 
phylogenetic information, particularly about relationships of transformed par- 
asites to free-living species (Von Nordmann, 1832), and more recently on the 
adequacy of the subfamilies of the Cyclopidae (cf. Ferrari, 1998; Schutze et 
al., 2000; Ferrari & Ivanenko, 2005) and the relationship of the polyarthrans 
to the other copepods (Dahms, 2004b). 



SUMMARY AND RECOMMENDED STUDIES 

The post-embryonic development of copepods is divided into two phases, 
a naupliar phase and a copepodid phase. Each phase is divided into a series 
of stages during which the exoskeleton does not change. Naupliar stages 
of copepods can be diagnosed by three features: somites of the body are 
not separated by arthrodial membranes; post-mandibular appendages max- 
illa 1, maxilla 2, the maxilliped, swimming legs 1-2 and the caudal ramus, 
if present, are expressed as unarticulated, setose buds; an elongate, ventral 
arthrite originates on the coxa of antenna 2. 

The ventral arthrite of antenna 2 is an articulating element that is moved 
by a pair of muscles originating on the dorsal wall of the coxa and attaching 
anteriorly and posteriorly to the base of the arthrite. The arthrite is present 
on the nauplii of many species of copepods, as well as on the nauplii of 
other crustaceans. However, its presence is not universal among copepods. A 
naupliar arthrite is not present on nauplii of caligid species with a naupliar 
phase of one or two free-swimming stages that lack a mouth opening. For 
calanid or pseudodiaptomid calanoids, the arthrite also is absent from early 
naupliar stages that lack a mouth opening; however, the arthrite develops on 
antenna 2 of these calanoids during later naupliar stages in which a mouth 
opening is present. A relationship between the presence of a naupliar arthrite 
and the presence of a mouth is not direct; for example, a naupliar arthrite has 
been observed on a monstrillid species whose only free-living nauplius lacks 
a mouth, gut or anus. Furthermore, an early well-developed naupliar arthrite 
is reduced on the sixth nauplius of tachidiids and harpacticids in which a 
mouth is present throughout the naupliar phase. 

No more than six naupliar stages have been reported for any copepod. 
Six stages are known for most free-living copepods studied to date and for 
many copepods associated with other invertebrates. Six naupliar stages are 
hypothesized to be the ancestral condition for calanoids, harpacticoids and 
cyclopoids including poecilostomes. Species of siphonostomatoids, misophri- 
oids and thaumatopsylloids, and some species of poecilostomes have a nau- 
pliar phase of fewer than six stages. Molting between naupliar stages usually 
involves changes in the morphology of the exoskeleton, although consecutive 
but unchanged naupliar stages have been reported for some siphonostoma- 
toids. A model of development extrapolated from the copepodid phase, in 
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which one somite is added at each molt, results in a body architecture for the 
first nauplius of four cephalic somites and the posterior abdominal somite. 
Consistency in changes to the exoskeleton, and particularly to the setose limb 
buds, provides some predictive power in identifying the stages of a six-stage 
naupliar phase that are suppressed in species with fewer than six stages in 
the naupliar phase. Of special interest are poecilostomes whose consecutive 
loss of Nil, NII-NIII, NII-NIV, and NII-NV explains naupliar phases of 5, 
4, 3, and 2 stages, respectively. 

Most copepods develop through a six-stage copepodid phase. No more than 
six copepodid stages are known to be separated by molts for any copepod. 
During the copepodid phase of development a naupliar arthrite on antenna 
2 is never present, the thoracic and abdominal somites often articulate both 
anteriorly and posteriorly, and there are up to nine transformed appendages 
on the first copepodid stage: antenna 1, antenna 2, mandible, maxilla 1, 
maxilla 2, maxilliped, swimming legs 1-2 and the caudal ramus. Swimming 
leg 3 is a setose bud. The body increases in somite number and usually 
increases in size during the copepodid phase. Each remaining thoracic limb 
is added to its somite, as an unarticulated setose bud, one stage later than 
its somite is added to the body. Segment elements also are added to most 
limbs during the copepodid phase. Among caligid-like parasites, the second 
to fifth copepodid stages appear to be derived stages and are called chalimus 
stages 1-4. Reports of more than six stages for some caligid siphonostomes 
may be the result of an incorrect diagnosis of polymorphisms expressed in 
one or more stages. A copepodid phase of fewer stages has been reported 
for benthopelagic calanoids and a number of different parasitic copepods. 

With the exception of copepods of the order Thaumatopsylloida, the body 
architecture of the first copepodid stage has been called the phylotypic stage 
of copepods because it is remarkably conserved in the following ways. The 
body of CI includes a cephalon with five appendages, five thoracic somites 
and the posterior abdominal somite. The first thoracic somite always is fused 
anteriorly to the cephalon; the second to fifth thoracic somites usually articu- 
late anteriorly and posteriorly. Of the appendages, swimming legs 1-2 always 
are transformed limbs with unarticulated rami, and swimming leg 3 is a se- 
tose bud; the posterior abdominal somite bears a transformed caudal ramus. 

During development of gymnopleans, the anterior section of the copepo- 
did body attains the architecture of the adult prosome at CIII. Podoplean 
copepods attain the architecture of the adult prosome at CII, while the adult 
prosome of thaumatopsylloid copepods is present at CI. These differences 
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result in a different number of thoracic somites being incorporated into the 
posterior part of the adult body: one thoracic somite to the urosome of adult 
gymnopleans, two thoracic somites to the urosome of adult podopleans, and 
three thoracic somites to the urosome of adult thaumatopsylloids. Thaumato- 
psylloids also differ from gymnopleans and podopleans by the inclusion of 
the setose bud of swimming leg 4 at CI and the initial appearance of the 
setose buds of limbs 5-6 at CII-CIII, respectively, one stage earlier than in 
gymnopleans and podopleans. It also seems probable that the thaumatopsyl- 
loid body is comprised of one somite more than the body of gymnopleans 
and podopleans at comparable copepodid stages. 

For many years, the gymnoplean architecture has been considered a synapo- 
morphy for calanoids plus platycopiids, although there is no direct evidence 
to support this hypothesis from any analysis of the different extant cope- 
pod architectures and a possible ancestral architecture. A review of copepod 
development here, however, suggests the following gymnoplean synapomor- 
phies: presentation of the bud of maxilla 1 delayed until NIII; presumptive 
endopod of the bud of swimming leg 1 at NVI with 3 setae, proximoventral 
seta to be allocated to the proximal endopodal segment; presence of Von 
Vaupel Klein's Organ on swimming leg 1; exopod of male leg 5 on the side 
of the genital opening with denticles or sensilla that aid in the transfer of the 
spermatophore to the female. Of these, the last two can be observed on the 
adult animals and they are quite widespread among Calanoida, including the 
Platycopiidae. 

The copepodid body is patterned from a growth zone that appears to 
be located in the anterior part of the anal (posterior, or first abdominal) 
somite; new somites are added only in the anterion direction and initially are 
presented adjacent to the anal somite. One new somite is added during the 
molt to each new copepodid stage. Complexes resulting from the failure to 
express an arthrodial membrane between two or more somites explain much 
of the variation in the body architecture of copepods within Gymnoplea and 
Podoplea. A limb is added as a setose bud to a thoracic somite one stage 
after that thoracic somite has formed. A model derived from this information 
simplifies the determination of homologous somites for many nauplii. Most 
somite complexes along the copepodid body result from failure of expression 
of the arthrodial membranes, which separates two somites; this failure of 
expression usualy occurs after the arthrodial membrane initially has been 
expressed earlier in development. 

Segmental patterning of copepod limbs is more complicated than the pro- 
cess of addition of somites to the body, although in general, variation in limb 
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segmentation results from the truncation of patterning during development. 
The structure of copepod limbs is basically a bifurcate, linear topology in 
which the protopod is the base and each branch of the bifurcation is a ramus. 
Segment elements can be added from at least three points. The protopod ap- 
pears to be patterned from the point at which the limb meets the body wall 
so that developmentally older segments and endites of the protopod are al- 
ways distad, and the basis is the oldest protopodal segment. In contrast, each 
ramus is patterned from at least one source segment, and new segmental 
elements, including setae and arthrodial membranes, may be added either 
anteriorly or posteriorly to the source segment. As a result of this patterning 
process, there is no direct correlation between the developmental age of a 
ramal segment, relative to other ramal segments, and the distance of that 
ramal segment from the basis of the protopod. For this reason, determination 
of homologous segments of a ramus usually is not straightforward. 

Relatively much more is known about changes during development of the 
copepod exoskeleton than of any other organ. Enough information has been 
published about stage-specific changes of the exoskeleton so that several 
kinds of analyses could be discussed here. These analyses include the vari- 
ability in the order of presentation of limb buds during the naupliar phase of 
development, the appearance of a conserved architecture for the first cope- 
podid, and patterning of the rami of many limbs. However, many of the 
publications that provide information for these analyses describe the develop- 
ment of free-living species, particularly species of Calanoida, Harpacticoida 
and Cyclopoida. In contrast, much developmental information remains to be 
discovered about the less speciose orders Gelyelloida, Misophrioida, Monst- 
rilloida, Mormonilloida, and Thaumatopsylloida. Furthermore, information 
about the exoskeleton of parasitic poecilostomes, as well as the number of 
naupliar stages of these parasites, only recently has begun to be analysed. 
Even less is known about development of the many species of Siphonosto- 
matoida, particularly those associated with invertebrates. 

Studies of the post-embryonic development of copepods began in the mid- 
dle of the eighteenth century, and much has been learned in the intervening 
two and a half centuries. Nevertheless, more remains to be discovered, and 
these discoveries will suggest more sophisticated analyses. Furthermore, there 
are few genera for which any aspect of the development of more than two 
or three species has been published. As a result, specific predictions about 
unstudied species of even common, free-living genera, are difficult. And, of 
course, there are many genera and families for which no information about 
development is available. 
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A recent analysis of the nauplii of polyarthrans placed this group of cope- 
pods among the early branching events during the evolutionary history of 
copepods. The presence of the bud of swimming leg 4 on the first cope- 
podid of thaumatopsylloids suggests an ordinal category for this lineage is 
appropriate, as well as its placement among the early branching events of 
copepods. The order Platycopioida often is assumed to have resulted from the 
earliest branching event of the copepods. However, questions remain about 
the comparability in number or the equivalency in degree of its few synapo- 
morphies. An hypothesis in which the Platycopiidae result from a branching 
event within the Calanoida has not been explored in a systematic manner. It 
seems clear that a more nuanced analysis of the presumed basal taxa of the 
Copepoda would be a timely contribution, and that comparative development 
should provide critical information for this analysis. 

Questions about the number of abdominal somites expressed during the 
copepodid development of different siphonostomatoid copepods points to a 
weakness in analyses of copepod body patterning. In the caligid-like parasites 
of fishes, the thoracic and abdominal somites, which make up the posterior 
part of the body, often are poorly sclerotized. This poor sclerotization may 
make difficult a determination of the number of abdominal somites present 
at any stage. Suppression of abdominal somite formation has been suggested 
for the siphonostomatoid parasites of invertebrates, for some calanoids and 
for some poecilostomes. Because an abdominal somite does not bear limbs, it 
is difficult to differentiate a single abdominal somite from complexes of two 
or more abdominal somites. The expression of antibodies raised to regulatory 
genes required for somite formation of crustaceans may be usefully applied 
in detecting the abdominal somite complexes among juvenile stages of these 
copepods. 

A model of body patterning has been derived from the addition of somites 
and limb buds during the copepodid phase. This model then can be ex- 
trapolated back through the naupliar phase to predict somite number at any 
naupliar stage. The usefulness of this extrapolated model to predict somite 
number during the naupliar phase also would benefit from a cellular model 
based on the study of the expression of antibodies raised to regulatory genes 
required for somite formation. 

The naupliar arthrite appears to function as an aid in moving food through 
the mouth. The mandibular gnathobase assumes this function during the 
copepodid phase of development. However, NIV-VI of many calanoids bear 
both a naupliar arthrite on antenna 2 and a gnathobase on the mandible. 
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A Study of how the naupUar arthrite and mandibular gnathobase act together 
during feeding of NIV-VI of calanoids would be a valuable addition to the 
functional morphology of nauplii. 

Patterning the protopod of copepod limbs has not been available to direct 
observation because neither arthrodial membranes nor endites are added dur- 
ing development of the few limbs that have been studied. Inferences from a 
phylogenetic analysis of development of the maxilliped supports what gener- 
ally is understood about patterning of the protopod from direct observations 
of branchiopod trunk limb development. As the development of more cope- 
pod limbs is studied, protopodal patterning may be available from the direct 
observations of the presence of setae on the different protopodal endites; 
this should provide a useful data set in a comparative analysis, including the 
existing information on the branchiopod trunk limbs. 

More is known about how the rami of copepod limbs are patterned than on 
how the protopod is patterned, but ramal patterning is complicated because 
new segmental elements can be added either proximally or distally from 
at least one source segment. Currently, the degree to which proximal or 
distal patterning configures a particular limb cannot be anticipated. Whether 
proximal patterning or distal patterning is more likely to be expressed on 
a particular ramus, e. g., exopod vs. endopod, or on particular limbs, e. g., 
cephalic vs. thoracic limbs, or on rami of a particular configuration, e. g., 
rami with large numbers of segments vs. smaller numbers, remains to be 
determined. 

There is a great deal of information about changes in antenna 1 during the 
naupliar and the copepodid phases of development. However, several incom- 
patible models have been proposed to explain these changes. Given the num- 
ber of observations, understanding how this important limb develops should 
be within reach once the analytical method for patterning is agreed upon. 

Relative to stage-specific changes of the exoskeleton, very little is known 
about changes in the internal anatomy of copepods during development. 
Remarkably, much less seems to be known of changes in internal anatomy 
during the copepodid phase than during the naupliar phase. Development of 
some internal organ systems, like the digestive tract, are continuous and may 
not coordinate well with stage-specific changes in the exoskeleton. However, 
a stage-specific model of development should provide a useful comparative 
template for an analysis of changes in any continuously developing organ. 
Other internal systems, like muscles or nerves, should show some correlation 
with stage-specific additions of somites because parts of these systems must 
be added as each new somite is added, and then become functional. 
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A better understanding is needed of the nature of the copepod urosome, 
which at present is defined almost exclusively by the architecture of the adult 
body. Analyses of the development of innervation of somites and the stage at 
which the longitudinal muscles that move particular somites become striated, 
may provide useful information for a diagnosis of the copepod urosome. 

Little is known of the stage-specific differences in limb function during the 
naupliar or copepodid phase, and little is known about stage-specific differ- 
ences of naupliar behavior or ecology. Studies of stage-specific differences in 
behavior and ecology among copepodid stages of species other than Calanus 
finmarchicus, and especially of non-planktonic copepods, will be a welcome 
addition to copepod post-embryonic development. 

This volume celebrates some of the fascinating discoveries about post- 
embryonic development of copepod crustaceans. As can been seen from the 
above discussion, the door has opened only slightly. More and more is yet 
too little. 
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APPENDIX I 

List of species and subspecies mentioned in the text with author and date, 
grouped alphabetically for each higher taxon. 

BRANCHIOPODA 
Artemia salina Linnaeus, 1758 
Leptestheria kawachiensis Ueno, 1927 

MYSTACOCARIDA 
Derocheilocaris typica Pennak & Zinn, 1943 

COPEPODA 
Acanthocyclops thomasi (Forbes, 1882) 
Acartia clausi Giesbrecht, 1889 
Acartia erythraea Giesbrecht, 1889 
Acartia longiremis (Lilljeborg, 1853) 
Acartia tonsa Dana, 1849 
Achtheres percarum Nordmann, 1832 
Acrocalanus gibber Giesbrecht, 1888 
Alebion lobatus Cressey, 1970 
Allantogynus delamarei Changeux, 1960 
Alteutha interrupta (Goodsir, 1845) 
Amphiascus undosus Lang, 1965 
Anchistrotos pleuronichthydis Yamaguti, 1939 
Apocyclops dengizicus (Lepeshkin, 1900) 
Apocyclops royi (Lindberg, 1940) 
Asterocheres lilljeborgi Boeck, 1859 
Balaenophilus unisetus Aurivillius, 1879 
Benthomisophria palliata G.O. Sars, 1909 
Bryocamptus zschokkei alleganiensis Coker, 1934 
Bryocyclops caroli Bjomberg, 1985 
Calanoides acutus Giesbrecht, 1902 
Calanus agulhensis De Decker, Kaczmarak & Marska, 1991 
Calanus australis Brodsky, 1959 
Calanus chilensis Brodsky, 1959 
Calanus finmarchicus (Gunnerus, 1770) 
Calanus glacialis Jaschnov, 1955 
Calanus helgolandicus (Glaus, 1863) 
Calanus pacificus Brodsky, 1948 
Calanus propinquus Brady, 1883 
Caligus centrodonti Baird, 1850 
Caligus clemensi Parker & Margolis, 1964 
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Caligus elongatus Nordmann, 1832 
Caligus epidemicus Hewitt, 1971 
Caligus multispinosus Shen, 1957 
Caligus spinosus Yamaguti, 1939 

Canuella perplexa T. Scott & A. Scott, 1893 
Canthocamptus mirabilis Sterba, 1968 
Cardiodectus medusaeus (Wilson, 1908) 
Caribeopsyllus amphiodiae Ho, Dojiri, Hendler & Deets, 2003 

Centropages abdominalis Sato, 1913 
Centropages typicus Kr0yer, 1849 
Centropages velificatus (Oliveira, 1947) 
Chiridius armatus (Boeck, 1872) 

Colobomatus pupa Izawa, 1974 
Conchyliurus quintus Tanaka, 1961 
Coullana canadensis (Willey, 1923) 
Critomolgus anthopleurus Kim, 1996 

Cyclopina longifurca Sewell, 1924 
Cyclopina schneideri T. Scott, 1904 
Cyclops bicuspidatus (Claus, 1857) 
Cyclops scutifer G.O. Sars, 1863 

Cyclops strenuus Fischer, 1851 
Cyclops strenuus strenuus Fischer, 1851 
Cyclops vicinus Ulyanin, 1875 
Cyclops viridis (Jurine, 1820) 

Dermatomyzon nigripes (Brady & Robertson, 1875) 
Diacyclops thomasi (Forbes, 1882) 
Diaptomus oregonensis Lilljeborg, 1889 

Diaptomus siciloides Lilljeborg, 1889 
Diarthrodes cystoecus Fahrenbach, 1954 
Dioithona oculata (Farran, 1913) 
Doridicola longicauda (Claus, 1860) 

Doridicola sepiae (Izawa, 1976) 
Doropygopsis longicauda (Aurivillius, 1882) 
Doropygus bayeri Illg, 1958 
Doropygus fernaldi Wig, 1958 

Doropygus mohri Illg, 1958 
Doropygus seclusus Illg, 1958 
Drepanopus forcipatus Giesbrecht, 1888 
Drescheriella glacialis Dahms & Dieckmann, 1987 

Ectocyclops rubescens Brady, 1904 
Ergasilus hypomesi Yamaguti, 1936 
Eucalanus attenuatus (Dana, 1849) 
Eucalanus crassus Giesbrecht, 1888 

Eucalanus elongatus (Dana, 1848) 
Eucalanus hyalinus (Claus, 1866) 
Eucalanus inermis Giesbrecht, 1893 
Eucalanus pileatus Giesbrecht, 1888 

Eucalanus subtenuis Giesbrecht, 1888 
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Euchaeta japonica Marukawa, 1921 
Euchirella messinensis (Claus, 1863) 
Euchirella rostrata (Claus, 1866) 
Eucyclops serrulatus (Fischer, 1851) 
Eudiaptomus gracilis (G.O. Sars, 1862) 

Eudiaptomus graciloides (Lilljeborg, 1888) 
Euryte longicauda Philippi, 1843 
Eurytemora affinis (Poppe, 1880) 
Eurytemora velox (Lilljeborg, 1853) 
Euterpina acutifrons (Dana, 1847) 

Gaidius variabilis Brodsky, 1950 
Galapalaophonte biarticulata Fiers, 1991 
Halicyclops neglectus Kiefer, 1935 
Hansenulus trebax Heron & Damkaer, 1986 
Harpacticus uniremis Kr0yer, 1842 

Heliogabalus phascolia Liitzen, 1968 
Hemicyclops ctenidis Ho & Kim, 1990 
Hemicyclops gomsoensis Ho & Kim, 1991 
Hemicyclops japonicus Itoh & Nishida, 1993 
Herrmannella rostrata Canu, 1891 

Lamproglena chinensis Yii, 1938 
Lepeophtheirus dissimulatus Wilson, 1905 
Lepeophtheirus pectoralis (Miiller, 1776) 
Lepeophtheirus salmonis (Kr0yer, 1837) 
Leptinogaster major (Williams, 1907) 

Leptodiaptomus novamexicanus (Herrick, 1895) 
Lernaea cyprinacea Linnaeus, 1746 
Lernaeenicus sprattae (Sowerby, 1806) 
Lernaeocera branchialis (Linnaeus, 1767) 

Lichomolgus canui G.O. Sars, 1917 
Longipedia americana Wells, 1980 
Longipedia minor (T. Scott & A. Scott, 1893) 
Macrocyclops albidus (Jurine, 1820) 
Macrocyclops fuscus (Jurine, 1820) 

Macrosetella gracilis (Dana, 1847) 
Megacyclops viridis (Jurine, 1820) 
Megadiaptomus hebes Kiefer, 1936 
Mesocyclops aequatorialis Kiefer, 1929 
Mesocyclops aequatorialis similis Van de Velde, 1984 

Mesocyclops edax (Forbes, 1890) 
Mesocyclops leuckarti (Claus, 1857) 
Mesocyclops thermocyclopoides Harada, 1931 
Metridia longa (Lubbock, 1854) 
Metridia lucens Boeck, 1865 

Metridia pacifica Brodsky, 1950 
Midicola spinosus (Raffaele & Monticelli, 1885) 
Misophria pallida Boeck, 1865 
Modiolicola insignis Aurivillius, 1882 
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Monstrilla hamatapex Grygier & Ohtsuka, 1995 
Monstrilla helgolandica Claus, 1863 
Mytilicola intestinalis Steuer, 1902 
Neanthessius renicollis Izawa, 1976 
Neobrachiella robusta (Wilson, 1912) 
Neocalanus tonsus (Brady, 1883) 

Neoergasilus japonicus (Harada, 1930) 
Notodelphys ajfinis Illg, 1958 
Notodelphys ascidicola AUman, 1847 
Oithona davisae Ferrari & Orsi, 1984 
Oithona ovalis Herbst, 1955 

Oithona similis Claus, 1866 
Oncaea media Giesbrecht, 1891 
Ostrincola koe Tanaka, 1961 
Pachypygus gibber (Thorell, 1859) 
Panaietis yamagutii Izawa, 1976 

Paracyclopina longifurca (Sewell, 1924) 
Paracyclops fimbriatus (Fischer, 1853) 
Paraeuchaeta norvegica (Boeck, 1872) 
Paraleptastacus brevicaudatus Wilson, 1932 
Paramphiascella fulvofasciata Rosenfield & Coull, 1974 

Paranthessius columbiae Thompson, 1897 
Parastenhelia megarostrum Wells, Hicks & Coull, 1982 
Parategastes sphaericus (Claus, 1863) 
Parathalestris harpactoides (Claus, 1863) 
Parkius karenwishnerae Ferrari & Markhaseva, 1996 

Peniculisa shiinoi Izawa, 1965 
Philoblenna arabica Izawa, 1976 
Phyllodiaptomus annae (Apstein, 1907) 
Platycopia orientalis Ohtsuka & Boxshall, 1994 
Pleuromamma gracilis (Claus, 1863) 

Pleuromamma xiphias (Giesbrecht, 1889) 
Pontella chierchiae Giesbrecht, 1889 
Porcellidium fimbriatum Claus, 1863 
Procyclopina feiticeira Lotufo, 1995 
Pseudacanthocanthopsis apogonis Yamaguti & Yamasu, 1959 

Pseudocalanus elongatus (Boeck, 1865) 
Pseudodiaptomus acutus (Dahl, 1894) 
Pseudodiaptomus ardjuna Brehm, 1953 
Pseudodiaptomus aurivilli Cleve, 1901 
Pseudodiaptomus binghami Sewell, 1912 

Pseudodiaptomus coronatus Williams, 1906 
Pseudodiaptomus euryhalinus Johnson, 1939 
Pseudodiaptomus marinus Sato, 1913 
Pseudodiaptomus richardi (Dahl, 1894) 
Pseudomyicola ostreae Yamaguti, 1936 

Pseudomyicola spinosus (Raffaele & Monticelli, 1885) 
Pygodelphys aquilonaris Illg, 1958 



POST-EMBRYONIC DEVELOPMENT OF COPEPODA 215 

Rhlncalanus gigas Brady, 1883 
Ridgewayia klausruetzleri Ferrari, 1995 
Sabellacheres illgi Dudley, 1964 
Salmincola californiensis (Dana, 1852) 
Sarcotaces pacificus Komai, 1924 
Scolecodes huntsmani (Henderson, 1931) 
Scopalatum vorax (Esterly, 1911) 
Scottomyzon gibberum (T. Scott & A. Scott, 1894) 
Scutellidium hippolytes (Kr0yer, 1863) 
Selioides bocqueti Carton, 1963 
Speocyclops racovitzai (Chappuis, 1923) 
Stenhelia palustris (Brady, 1868) 
Stenhelia (Delavalia) palustris Brady, 1868 
Tachidius discipes Giesbrecht, 1881 
Taeniacanthus lagocephali Pearse, 1952 
Taeniastrotos pleuronichthydis (Yamaguti, 1939) 
Tegastes clausi G.O. Sars, 1904 
Tegobomolochus nasicola Izawa, 1976 
Temora longicornis (Miiller, 1785) 
Temora stylifera (Dana, 1849) 
Thalestris longimana Claus, 1863 
Thalestris rhodymeniae (Brady, 1894) 
Thermocyclops consimilis Kiefer, 1934 
Thermocyclops decipiens (Kiefer, 1929) 
Thermomesochra reducta Ito & Burton, 1980 
Tigriopus japonicus Mori, 1938 
Tisbe gracilis (T. Scott, 1895) 
Tracheliastes polycolpus Nordmann, 1832 
Zaus robustus Ito, 1974 
Zygomolgus poucheti (Canu, 1891) 

ISOPODA 
Asellus aquaticus (Linnaeus, 1758) 
Lirceus macrourus Garman, 1890 

AMPHIPODA 
Gammarus chevreuxi Sexton, 1924 

DECAPODA 
Panulirus argus (Latreille, 1804) 



GLOSSARY 

Abdomen - that part of the body of a copepod posterior to the somite bearing 
the genital opening. The abdomen includes four somites, three of which 
do not bear a paired appendage; the posterior somite bears the caudal rami 
and is the first abdominal somite to appear during development. 

Aesthetasc - a transformed seta of antenna 1 or another oral appendage of 
copepodids. An aesthetasc usually has a sclerotized base but otherwise is 
poorly sclerotized; it often is considered to have a chemosensory function. 

Anal somite - the posterior somite and abdominal somite onto which the 
anus opens. The anal somite bears a paired appendage, collectively called 
the caudal rami. The anal somite is herein considered the first abdominal 
somite, despite its posterior position, because it is the first abdominal 
somite to appear during post-embryonic development. 

Anameric - the addition of only one somite to the body at each molt during 
development. 

Antenna 1 - the anterior limb of the cephalon; it is uniramous in copepods. 

Antenna 2 - the limb of the cephalon posterior to antenna 1; in most naupliar 
stages, it bears a distinct protopodal masticatory arthrite that is not present 
in copepodid stages or in non-feeding naupliar stages, especially not in 
those of species with lecithotrophic embryos. 

Anteriad - toward the anterior end of the body. 

Anterioposterior axis - an imaginary line through the rostral area of the 
head and the anal somite. 

Appendage - paired extension of a somite along a proximodistal axis and 
usually composed of serially repeated elements. Appendages of copepods 
include the limbs of the five cephalic somites, the limbs of the seven 
thoracic somites, and the caudal ramus of the anal segment (see also Limb 
and Swimming leg). 

Architecture - the morphological organization of the body. 

Arthrite - a ventrally articulating, sclerotized extension of a protopodal 
segment that is moved by muscles. 

Arthrodial membrane - an unsclerotized, flexible section of the exoskeleton 
between the sclerotized parts of two somites or two segments. 
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Basis - the distal segment of the protopod; it bears no more than two ventral, 
setose endites. The rami, exopod and endopod of a limb, originate on the 
basis (see Coxa and Praecoxa). 

Bud - the earliest step of a developing limb; a limb bud does not articulate 
with its somite and bear setae including at least the crown group of terminal 
setae. A limb bud often is considered functionless on immature stages 
although limb 6 of podopleans is a bud that covers the genital opening of 
the adult male (see Transformed limb and Secondary bud). 

Caudal ramus - the appendage of the posterior abdominal somite of a cope- 
pod. It does not have a propodal/ramal configuration and its homologies 
to serially repeated limbs of the cephalon and thorax have not been deter- 
mined. The caudal ramus bears setae in a pattern similar to an exopod. Its 
axial orientation is not known. 

Cephalon - a complex of all of the somites of the head. 
Cephalothorax - a complex of the cephalic somites plus at least one thoracic 

somite. 
Chalimus - one of up to four stages in the copepodid phase of development 

of caligid-like parasitic copepods; the chalimus usually is attached to the 
host, often by a frontal filament held by maxilla 2. The first chalimus is 
molted from the first copepodid stage; the four chalimus stages correspond 
to the second to fifth copepodid stages. 

Complex - two or more unarticulated somites or segments resulting from 
the failure of an arthrodial membrane to form between the somites or 
segments comprising the complex. 

Configuration - the morphological organziation of an appendage. 
Copepodid - [alternative spelling: copepodite] a developmental stage without 

a naupliar arthrite on antenna 2, usually with articulating thoracic somites 
and more than three transformed limbs, and often with articulating ab- 
dominal somites. Copepodid stages are designated by Roman numerals. 

Coxa - the middle segment of the protopod, proximal to the basis and distal 
to the praecoxa, with a single setose endite; the mandibular gnathobase 
of copepods includes the coxal endite with its single seta (see Basis and 
Praecoxa). 

Denticle - a solid extension of the epicuticle of a segment (see Seta and 
Setule) 

Diapause - a significant period of quiescence during development. 
Distad - toward the distal end of a limb. 
Dorsad - toward the dorsal aspect of the body. 
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Dorsoventral axis - an imaginary line from the surface of the body opposite 
the limbs to the surface bearing the limbs; the terms 'lateral' and 'me- 
dial' often are used in place of 'dorsal' and 'ventral' in descriptions of 
appendages. 

Ecdysis - the process of shedding the exoskeleton during molting. 
Element - a serially repeated component or part of a segment, e.g., the 

dorsal formation seta, the ventral formation seta, or the finishing arthrodial 
membrane. 

Endite - a non-articulating, ventral attenuation of a protopodal segment. 
Endopod - a ventral extension of the proximodistal axis of a limb originat- 

ing on the basis of the protopod and usually segmented. Dorsal setae are 
absent from endopodal segments except for the penultimate and the an- 
tepenultimate segments. An endopodal segment may bear more than one 
ventral seta. 

Exite - a non-articulating, dorsal attenuation of a protopodal segment. 
Exopod - a dorsal extension of the proximodistal axis of a limb originating 

on the basis of the protopod and usually segmented. Segments of the 
exopod bear a dorsal seta and often a ventral seta, but usually there is 
only one of each kind of seta on a segment. 

Finishing arthrodial membrane - an arthrodial membrane that completes a 
segment and whose formation defines the location of the segment along the 
proximodistal axis of a limb. The finishing arthrodial membrane usually 
is the distal arthrodial membrane of a segment that forms proximal to the 
source segment, and is the proximal arthrodial membrane of a segment 
that forms distal to the source segment. 

Flagellomere - a segment of a flagellum that is part of the ramus of antenna 1 
or antenna 2 of many crustaceans. Flagellomeres are not moved by muscles 
and are formed distad to the first flagellomere, which is the source segment 
for the flagellomeres. Copepods do not have a flagellum on either antenna 
1 or antenna 2. 

Flagellum - the distal section of either ramus of antenna 1 or antenna 2 
of crustaceans that is made up of articulating segments lacking intrinsic 
muscles; the articulating segments are known as flagellomeres. 

Formation seta - the first dorsal and/or first ventral seta that forms during 
development of a segment. The first dorsal seta of an exopodal segment 
often forms before the first ventral seta, and the first ventral seta of an 
endopodal segment often forms before the first dorsal seta. 

Gnathobase - the ventral extension of the mandibular coxa, including its 
setose endite. 
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Gymnopleans - copepods in which the major body articulation of the adult 
is between the sixth and the seventh thoracic somites; there is also a sig- 
nificant difference in size between these two somites (see also Podopleans 
and Thaumatopsylloids). 

Homolog - a corresponding part in different copepods that has been inherited 
from the common ancestor of those different copepods; "homologous" 
refers to these corresponding parts. 

Interpodal bar - a ventral exoskeletal structure uniting the contralateral pair 
of thoracic limbs; an interpodal bar may unite thoracic limb pairs 2-6 of 
most copepods. 

Labium - see Paragnaths. 
Labrum - a lobe-like flap originating near the anterior margin of the head, 

between the bases of the first antennae, and extending posteriorly across 
the ventral surface of the body to the mouth area. 

Limb - the paired appendages of the five cephalic and seven thoracic somites. 
A limb has three axes, anterioposterior, proximodistal, and dorsoventral 
(the latter often called mediolateral). A limb develops in steps and may be 
composed of up to three protopodal segments (praecoxa, coxa and basis), 
and usually an endopod and an exopod both of which may be segmented 
(see also Appendage and Swimming leg). 

Mandible - the paired limb of the somite of the cephalon posterior to antenna 
2. The mandible bears a coxal gnathobase during the copepodid phase 
of development; it may (the fourth to sixth naupliar stages of calanoid 
copepods) or may not (all other copepods) bear a coxal gnathobase during 
the naupliar phase of development. 

Maxilla 1 - the paired limb of the somite of the cephalon posterior to the 
mandible. 

Maxilla 2 - the paired limb of the somite of the cephalon posterior to the 
maxilla 1. 

Maxilliped - the paired limb of the first thoracic somite of copepods. 
Molt - the transition from one developmental stage to the next. 
Naupliar shield - the expanse of the exoskeleton of an unspecified number 

of somites, uninterrupted by arthrodial membranes, and covering the dorsal 
and lateral part of the naupliar body. 

Nauplius - a developmental stage whose somites do not articulate, with only 
three transformed limbs, and with an arthrite on the coxa of antenna 2. A 
naupliar arthrite may not be present on nauplii that do not feed. Naupliar 
stages are designated by Roman numerals. 
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Palp - the basis plus rami of a limb. The palp may be reduced to a poorly- 
sclerotized extension of the exoskeleton bearing a crown of small setae 
corresponding to the terminal setae of one or both rami. 

Paragnath(s) - a pair of articulating lobes often bearing setae and located 
posterior to the mandible and anterior to maxilla 1. Homologies of the 
paragnath have not been determined, but it may be the praecoxa of the 
mandible or it may be that section of the praecoxa of maxilla 1 bearing a 
second lobe. Also collectively known as Labium. 

Pattern - the order in which somites are added to the body relative to other 
somites, or that elements of segments are added to a limb relative to other 
elements; also the process of adding in a fixed order during development. 

Phylotypic stage - the stage of development, relative to other stages, that 
has diverged least during the evolutionary history of a monophyletic group 
of organisms. The phylotypic stage of copepods is the first copepodid. 

Polyarthrans - copepods of the families Canuellidae and Longipediidae, 
traditionally classified as Harpacticoida, now opposed to oligoarthran har- 
pacticoids and allegedly representing a separate clade in the Copepoda 
[cf., e.g., Tieman, 1984, Crustaceana, (Suppl.) 7: 47-59; 2004, Invertebrate 
Zoology, 1 (1): 29-51]. 

Podopleans - copepods on which the major body articulation of the adult is 
between the fifth and the sixth thoracic somites; often there is a significant 
difference in size between these two somites (see also Thaumatopsylloids 
and Gymnopleans). 

Posteriad - toward the posterior end of the body. 
Post-formation seta - one or more setae added to a segment after the initial 

dorsal and/or ventral formation setae have been added. Examples of post- 
formation setae can be found on the endopod of the maxilliped of calanoids 
and polyarthrans, and on the proximal exopodal segment of platycopiids. 

Post-mandibular appendages - the cephalic limbs, maxilla 1 and maxilla 
2; plus the thoracic limbs, maxilliped, swimming legs 1-4, and limbs 5-6; 
and the caudal ramus. Except for the caudal ramus, these appendages are 
added in strict anterioposterior order during post-embryonic development. 

Praecoxa - the proximal segment of the protopod; it is proximal to the coxa 
and bears up to three setose ventral endites (see Coxa and Basis). 

Presentation - the first appearance of limb; a limb may initially appear as 
either a limb bud or a transformed limb. 

Prosome - that part of the adult copepod body anterior to the major body 
articulation. 
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Proximad - toward the proximal end of a limb. 
Proximodistal axis - an imaginary line through the insertion of a limb on 

its somite, and the tip of the limb; on biramous limbs, the proximodistal 
axis is duplicated through each ramus. 

Ramus - a group of serially repeated segmental elements along a proxi- 
modistal axis and originating on the basis; the exopod and the endopod 
are rami. 

Reorganized limb - a transformed limb or secondary bud that has been 
reconfigured from the limb bud. 

Rule of Serial Homologs - if a serial homolog that is formed late during 
the normal course of development is present, then serial homologs that 
are formed earlier during the normal course of development also are ex- 
pected to be present. This rule is derived when the body or the limbs are 
patterned by truncation, so that the last formed of a set of serially homol- 
ogous elements will be the first to fail to form as a result of truncated 
development. 

Secondary bud - a small, poorly differentiated limb that has been reconfig- 
ured from a limb bud or a transformed limb of a copepodid; a secondary 
bud usually is found on a chalimus (see Bud and Transformed limb). 

Segment - a composite group of elements that are serially repeated com- 
ponents of a limb; these elements usually include formation and post- 
formation setae, muscles, and a finishing arthrodial membrane. 

Serial homologs - corresponding elements on serially repeated somites of 
the body or on serially repeated segments a limb. 

Seta - an articulating extension of a segment, usually not directly along the 
proximodistal axis (see Denticle and Setule). 

Setal precedence - a process by which the formation setae of the presump- 
tive proximal and middle segments of the rami of swimming legs ini- 
tially appear on the distal segment complex. These setae are allocated to 
the proximal or to the middle segment after a distal, finishing arthrodial 
membrane is formed, which separates segments of the complex later in 
development. 

Setule - a solid extension of the epicuticle of a seta (see Denticle and Seta). 
Somite - a composite group of elements, usually exoskeletal, musculature, 

and nerve, which makes up a serially repeated component of the body. 
Source segment - a segment from which a limb is patterned by the formation 

of new segment elements; a source segment is homologous to the formative 
zone (Fuller, 1920) or the meriston (Henson, 1947) of the antenna 1 of 
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hemimetabolous insects. A source segment is located between the oldest 
and youngest element of a limb that is patterned either proximally or 
distally, or between the youngest elements of a limb that is patterned both 
proximally and distally. 

Stage - a period of development between two molts in which the exoskeleton 
does not change; synonymous terms are instar and stadium. 

Swimming leg - element of a contralateral pair of thoracic limbs that are 
flattened anterioposteriorly and united by an interpodal bar; these attributes 
are shared only in the transformed limb and later steps of limb development 
(see also Appendage and Limb). 

Syncoxa - a segment complex of the praecoxa and the coxa of a protopod. 
Thaumatopsylloids - copepods for which there is a significant difference 

in size between the fourth and the fifth thoracic somites of the adult (see 
also Podopleans and Gymnopleans). 

Thorax - that part of the body of a copepod posterior to the cephalic somite 
bearing maxilla 2, anterior to the abdomen, and including the somite bear- 
ing the genital opening. 

Transformed Limb - a limb that is similar in configuration to the limb 
of the adult; a transformed limb is reconfigured from the limb bud. The 
protopodal segmentation of a transformed limb of copepods is complete 
but often the setation is not; the rami of a transformed limb are present 
but often not completely patterned (see Bud and Secondary bud). 

Urosome - that part of the adult copepod body posterior to the major body 
articulation. 

Ventrad - toward the ventral aspect of the body. 
Von Vaupel Klein's Organ - on swimming leg 1 of calanoid copepods: 

the dorsal seta of the basis, which is curved and often recurved, over a 
sensory area of pores and/or denticles on the proximal anterior face of the 
endopod. 
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A. californiensis    71 
A. gibber   95, 96 

A. longiremis    86 
A. royi    26 
A. tonsa    71 

Acanthocyclops thomasi    6 
Acartia    57, 71 
Acartia clausi    33, 63, 64, 65, 86 
Acartia erythraea    70, 116 

Acartia longiremis    6 
Acartia tonsa    35, 63, 70 
Achtheres percarum    5, 113 

Acrocalanus gibber    2, 10, 95, 96, 97, 98, 
99 

Alebion lobatus    87 
Allantogynus delamarei    53 
Alteutha interrupta    111 

Amphiascus undosus    26 
Anchistrotos pleuronichthydis    23, 59, 71 
Apocyclops    116 
Apocyclops dengizicus    26 

Apocyclops royi    23 
Artemia salina    12 
Ascidicolidae    113 

Asellus aquaticus    76, 82 
Asterocheres lilljeborgi    53, 59, 60, 115 

Balaenophilus unisetus    57 
Benthomisophria palliata    71 

Botryllophilidae    113 
Bryocamptus zschokkei alleganiensis    67 
Bryocyclops caroli    23 

C. amphiodiae    25, 52 

C. clemensi    25 
C. elongatus    25 
C. finmarchicus    63, 65, 80, 82 
C. glacialis    63 

C. multispinosus    56 
C. spinosus    25 
Calanoida    9, 22, 33, 61, 117, 121, 122, 123 

Calanoides acutus    62 

Calanus    35, 36 

Calanus agulhensis    64, 65 
Calanus australis    36 

Calanus chilensis    35, 64 
Calanus finmarchicus    2, 7, 10, 12, 13, 15, 

29, 31, 33, 35, 62, 63, 64, 65, 78, 79, 80, 
82, 107, 125 

Calanus helgolandicus    32, 34, 62, 63 

Calanus pacificus    34, 35, 36, 63 
Calanus propinquus    62 

Calanus tonsus    61 
Caligidae    53, 54 

Caligus centrodonti    25 

Caligus clemensi    55 
Caligus elongatus    15, 53, 55, 71 

Caligus epidemicus    55, 60 
Caligus spinosus    25, 71 

Candacia    57 
Canthocamptus mirabilis    53 

Canuella perplexa    28 
Cardiodectes medusaeus    26 

Caribeopsyllus amphiodiae    2, 25, 27, 37, 
45, 50, 51, 52, 57, 66, 73 

Cecropidae    54 

Centropages abdominalis    100 
Centropages typicus    33 

Centropages velificatus    63 
Centropagoidea    116 

Chiridius armatus    22, 27, 28 
Colobomatus pupa    23 

Conchyliurus quintus    60, 90, 91 
Copepoda    117, 123 

Coullana canadensis    60 
Critomolgus anthopleurus    59, 60 

Cyclopidae    23, 58, 75, 102, 107, 115, 117, 
118 

Cyclopina longifera    23 

Cyclopina longifurca    23 
Cyclopina schneideri    23 

Cyclopoida    9, 22, 33, 117, 122 
Cyclops    5, 65 

Cyclops bicuspidatus    6 
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Cyclops scutifer    23, 63 
Cyclops strenuus    5, 23 
Cyclops strenuus strenuus    64 
Cyclops vicinus    35, 65 
Cyclops viridis    6, 23, 86 

Cylopidae    23 

D. bayeri    87 
D. fernaldi    87 
D. mohri    87 
D. oculata    57, 63, 64 

D. seclusus    87 
Dermatomyzon nigripes    59, 60, 115 
Derocheilocaris typica    2, 10, 12, 15, 104 
Diacyclops    118 

Diacyclops thomasi    54 
Diaptomidae    115 
Diaptomus novamexicanus    33, 63 
Diaptomus oregonensis    75 
Diaptomus siciloides    75 

Diarthrodes cystoecus    12, 31, 32, 114 
Dioithona oculata    7, 12, 23, 26, 29, 30, 

37, 42, 49, 51, 52, 53, 57, 58, 59, 63, 64, 
66, 87, 89, 90, 91 

Diosaccidae    115 
Doridicola longicauda    53 
Doridicola sepiae    30 
Doropygopsis longicauda    29 

Doropygus    6, 75, 87 
Doropygus longicauda    62 
Doropygus seclusus    24, 31 
Drepanopus forcipatus    75 
Drescheriella    117 

Drescheriella glacialis    29, 59, 117 

E. attenuatus    70 
E. crassus    34 
E. hyalinus    34 
E. messinensis    95, 96 

£. subtenuis    71 
Ectocyclops rubescens    23 
Enhydrosomella    86 
Enterocolidae    113 

Ergasilus hypomesi    59, 60, 106 
Eucalanus    33 
Eucalanus attenuatus    71 
Eucalanus elongatus    108 
Eucalanus hyalinus    70 

Eucalanus inermis    64 
Eucalanus pileatus    32, 34, 63 
Eucalanus subtenuis    71 
Euchaeta japonica    32, 62, 66, 67, 68 
Euchirella messinensis    2, 10, 95, 96, 98, 

99 
Euchirella rostrata    86 
Eucyclops serrulatus    23 
Eudiaptomus gracilis    65 
Eudiaptomus graciloides    34 
Euryphoridae    54 
Euryte longicauda    12, 53, 58, 59, 102 
Eurytemora affinis    63, 83 
Eurytemora velox    75 
Euterpina acutifrons    31, 32 

Gaidius variabilis    63 
Galapalaophonte biarticulata    102 
Gammarus chevreuxi    76 
Gelyelloida    9, 122 
Gymnoplea    121 

Halicyclops neglectus    23 
Hansenulus trebax    26, 53 
Harpacticidae    114 
Harpacticoida    9, 22, 33, 117, 122 
Harpacticus uniremis    6, 15, 26, 87 
Heliogabalus phascolia    53 
Hemicyclops ctenidis    59, 60 
Hemicyclops gomsoensis    65 

Hemicyclops japonicus    22, 26, 30, 53, 68, 
82 

Herrmannella rostrata    23 

Idotea    82 

L. americana    80, 82 
L. cyprinacea    32 
L. dissimulatus    25 
L. minor    28 
L. novamexicanus    64 
Labidocera    114, 115 
Lamproglena chinensis    57 

Lepeophtheirus dissimulatus    71 
Lepeophtheirus pectoralis    55 
Lepeophtheirus salmonis    25, 55 
Leptestheria kawachiensis    2,  10,  12,  15, 

93, 101, 102 
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Leptinogaster major    68 
Leptodiaptomus novamexicanus    33, 63, 64 
Lemaea cyprinacea    32, 62 
Lernaeenicus sprattae    55, 56 
Lernaeocera branchialis    55 

Lemaeoceridae    54 
Lemaeopodidae    54 
Lichomolgidae    23 
Lichomolgus canui    23 
Lirceus macrourus    76 

Longipedia americana    2,  10,  12, 14, 28, 
29, 30, 60, 80, 81, 82 

Longipedia minor    28 

M. aequatorialis similis    29, 30 
M. gracilis    85 
M. leuckarti    29 
Macrocyclops albidus    23, 53, 86 

Macrocyclops fuscus    29 
Macrosetella gracilis    58, 84, 85 
Mancasellus macrourus    76 
Megacyclops viridis    6, 23, 86 
Megadiaptomus hebes    53 

Mesocyclops aequatorialis    23 
Mesocyclops edax    29, 30, 54 
Mesocyclops leuckarti    64 
Mesocyclops cf. thermocyclopoides    29 

Metridia longa    35 
Metridia lucens    63, 64 
Metridia pacifica    35, 64 
Microsetella    103 
Microsetella non>egica    64 

Midicola spinosus    53, 59, 60 
Misophria pallida    26 
Misophrioida    9, 26, 122 
Modiolicola insignis    23 
Monoculus quadricornis    5 

Monstrilla hamatapex    15 
Monstrilla helgolandica    57 
Monstrilloida    9, 122 
Mormonilloida    9, 122 

Myicolidae    113 
Mytilicola intestinalis    57 
Mytilicolidae    113 

Neanthessius renicolis 23, 30 
Neobrachiella rohusta 55, 56 
Neocalanus tonsus    61 

Neoergasilus japonicus    26,71 
Nicothoidae    26 
Notodelphyidae    113, 114 
Notodelphys affinis    6, 24, 30, 62, 75, 87, 

88 
Notodelphys ascidicola    71 

O. davisae    31 
Oithona ovalis 31, 32, 33 
Oithona similis 35, 60, 65 
Oncaea media 26, 57, 71 
Ostrincola koe 6, 87, 91 

F. acutus    22 
P. ardjuna    22 
P. aurivilli    22 
P. binghami    22 
P. coronatus    22 
P. feiticeira    85 
P. richardi    22 
P. xiphias    72 
Pachypygus gibber    64 
Panaietis yamagutii    26, 30 
Panulirus argus    76 
Paracyclopina longifurca    23 
Paracyclops fimbriatus    23 
Paraeuchaeta norvegica    63, 64 
Paraleptastacus brevicaudatus    26, 29, 30 
Paramphiascella fulvofasciata    26, 88, 89 
Paranthessius columbiae    6, 87 
Parastenhelia megarostrum    26, 30, 115 
Parastenheliidae    115 
Paratagestes sphaericus    28 
Parathalestris harpacticoides    114 
Parathalestris harpactoides    28 
Parkius karenwishnerae    66, 67, 68 
Peltidiidae    117 
Peniculisa shiinoi    26 
Pennellidae    25, 54 
Philoblenna arabica    30 
Phyllodiaptomus annae    8, 16, 17, 18, 19, 

20,21 
Platycopia orientalis    53, 71 
Platycopiidae    9, 121, 123 
Platycopioida    9, 123 
Pleuromamma gracilis    35 
Pleuromamma xiphias    63, 68, 72, 76, 87 
Podoplea    121 
Poecilostomatoida    9 
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Pontella chierchiae    69, 70 
Pontellina    86 
Porcellidium fimbriatum    57 
Procyclopina feiticeira    84, 85 
Pseudacanthocanthopsis apogonis    23, 28 
Pseudocalanus    65 
Pseudocalanus elongatus    34, 35, 76 
Pseudodiaptomus    22, 57 
Pseudodiaptomus acutus    31, 32, 33 
Pseudodiaptomus euryhalinus    22 
Pseudodiaptomus marinus    6, 15, 22, 35 
Pseudomyicola ostreae    26 
Pseudomyicola spinosus    26, 53, 59 
Pseudotachidius    28 
Pygodelphys aquilonaris 6, 24, 29, 30, 60, 

62, 75, 87 

R. klausruetzleri    56, 57, 83, 95, 96 
Rhincalanus gigas    62 
Ridgewayia klausruetzleri 8, 37, 38, 39, 

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 
51, 52, 53, 56, 59, 60, 66, 69, 76, 83, 84, 
87, 94, 97, 98 

S. gibberum    25, 85 
Sabellacheres illgi    24, 57 
Sabelliphilidae    23 
Salmincola californiensis    55, 56 
Sarcotaces pacificus    23 
Scolecodes huntsmani    6, 29, 87 
Scopelatum vorax    66, 68 
Scottomyzon gibberum    15, 25, 53, 56, 71, 

84, 85, 115 
Scutellidium    117 
Scutellidium hippolytes    30, 82, 117 

Selioides bocqueti    53 

Setella    103 

Siphonostomatoida    9, 122 

Speocyclops racovitzai    23, 103 

Stenhelia (Delavalia) palustris    115 

Stenhelia palustris    26, 29, 30 

T. decipiens    29 

Tachidiidae    115 

Tachidius discipes    15 

Taeniacanthus lagocephali    26, 30, 53, 68 

Taeniatrotos pleuronichthydis    71 

Tegastes clausi    111 

Tegastidae    117 

Tegobomolochus nasicola    26, 30 
Temora longicomis    2, 6,  10, 75, 87, 92, 

93, 94, 97, 98 

Temora stylifera    62, 63, 86 

Thalestridae    114, 115 

Thalestris longimana    53, 114 

Thalestris rhodymeniae    114 

Thaumatopsylloida    9, 120, 122 

Thermocyclops consimilis    23, 29, 30 

Thermocyclops decipiens    54 

Thermomesochra reducta    75 
Tigriopus japonicus    6, 29, 75 

Tisbe    117 

Tisbe gracilis    30, 59, 117 

Tisbidae    117 

Tisbidimorpha    117 

Tracheliastes polycolpus    5, 113 

Zaus robustus    57 

Zygomolgus poucheti 23 


