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Abstract Species in the grass family (Poaceae) have

caused some of the most damaging invasions in natural

ecosystems, but plants in this family are also among the

most widely used by humans. Therefore, it is important

to be able to predict their likelihoodof naturalisation and

impact.We explore whether plant height is of particular

importance in determining naturalisation success and

impact in Poaceae by comparing naturalisation of tall-

statured grasses (TSGs; defined as grass species that

maintain a self-supporting height of 2 m or greater) to

non-TSGs using the Global Naturalised Alien Flora

database. We review the competitive traits of TSGs and

collate risk assessments conducted on TSGs. Of the c.

11,000 grass species globally, 929 qualify (c. 8.6%) as

TSGs. 80.6% of TSGs are woody bamboos, with the

remaining species scattered among 21 tribes in seven

subfamilies. When all grass species were analysed,

TSGs and non-TSGs did not differ significantly in the

probability of naturalisation. However, when we anal-

ysed woody bamboos separately from the other grasses,
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the percentage of TSGs that have naturalised was 2–4

times greater than that of non-TSGs for both bamboos

and non-bamboo groups. Our analyses suggest that

woody bamboos should be analysed separately from

other TSGs when considering naturalisation; within

the C 2 mheight class theydonot naturalise at the same

rate as otherTSGs.Rapid growth rate and the capacity to

accumulate biomass (a function of height) give many

TSGs a competitive advantage and allow them to form

monospecific stands, accumulate dense and deep litter

mats, reduce light availability at ground level, and alter

fire and nutrient-cycling regimes, thereby driving rapid

ecosystem transformation.While the height distribution

in grasses is continuous (i.e. no obvious break is evident

in heights), the 2 m designation for TSGs defines an

important functional group in grasses that can improve

predictive modelling for management and biosecurity.

Keywords Arundo � Bamboos � Biological
invasions � Height � Invasive species � Miscanthus �
Phragmites � Plant functional groups � Poaceae � Risk
assessment

Introduction

A useful approach in studying alien plant invasions has

been to identify broad patterns and correlates of

invasiveness and impacts, such as functional groups,

and to use these to provide generalisations for manage-

ment (Vilà and Pujadas 2001; Colautti et al. 2006; Pyšek

and Richardson 2008; Novoa et al. 2015). Functional

groups are sets of organisms that share attributes that

confer similar morphological, physical, behavioural,

biochemical or environmental responses to ecosystem

processes (Lavorel et al. 1997; Pérez-Harguindeguy

et al. 2016; Garnier et al. 2017). Functional groups can

be used to identify species that respond similarly to

environmental pressures and are therefore useful for

predicting and managing impacts of alien species

(Lavorel et al. 1997; Dı́az and Cabido 1997).

Plant height is considered a key trait for ecological

strategies (Grime et al. 1988; Westoby et al. 2002;

Garnier and Navas 2012), and according to Tilman’s

(1982) resource competition theory, resource exploita-

tion is proportional to individual biomass, with larger

individuals exploiting a disproportionate amount of

resources (DeMalach et al. 2016). Many studies have

recognised the benefits of increased height for initial

colonisation by alien plants, as it is associated with

better light capture and competitive ability (Pyšek et al.

2012; Moodley et al. 2013; Gallagher et al. 2015).

Among plants, invasions by tall-statured grasses (here-

after TSGs; Fig. 1) are particularly noted for their ability

to dominate plant communities and alter ecosystem
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functioning (Meyerson et al. 1999; Lambert et al. 2010;

Saltonstall et al. 2010). Recent studies have reviewed

sub-groups of tall grasses such as invasive grasses that

dominate aquatic ecosystems, and have argued that they

are functionally similar and have generalizable impacts

related to their competitive nature [e.g. Lambert et al.

(2010) refer to ‘‘large-statured invasive grasses’’].

More broadly, tall-statured grasses are potentially

an important functional group in invasion science

because (1) established populations of TSGs can cause

significant negative ecological impacts (Pagad 2016;

Canavan et al. 2017b); (2) large height and biomass

contribute to specific environmental impacts, e.g.

reduction in light availability, changes to fire regimes,

and alteration of nutrient cycles (D’Antonio and

Vitousek 1992; Meyerson et al. 1999; Brooks et al.

2004; Smith et al. 2013; Gaertner et al. 2014; Visser

et al. 2016); (3) TSGs occur in grasslands, riparian

areas and estuaries, as well as tropical and temperate

forests, yet the abiotic and biotic impacts are often

similar across ecosystems; (4) TSGs are increasingly

cultivated for commercial purposes such as bioenergy

production and phytoremediation and therefore pre-

sent new risks (Mislevy and Fluck 1992; Czakó et al.

2005; Heaton et al. 2008; Jakob and Zhou 2009; Mirza

et al. 2010; Chen et al. 2015); and (5) TSGs are often

dominant components of the vegetation in their native

ranges, providing biotic resistance to invasion (in-

cluding against alien TSGs) (Sheley and James 2010).

However, TSGs have not been fully explored as a

distinct functional group until now.

Here, we review the usefulness of the TSG

functional group for invasion science. We produce a

preliminary list of TSGs, and test whether there is a

quantitative pattern in the naturalisation of

grasses comparing TSGs with non-TSG grasses, for

all grasses, only woody bamboo grasses, and all

grasses other than woody bamboos. We identify which

TSGs have been subject to risk assessments. We also

discuss the invasion-science literature associated with

TSGs, focussing on how competitive traits associated

with increased height can affect the colonisation,

invasion, and environmental impacts of alien grasses.

Methods

Defining and creating a list of tall-statured grasses

Height in grasses (defined here as average inflorescence

height, as per Kew’s GrassBase; http://www.kew.org/

data/grasses-db.html) varies across three orders of

magnitude (2 cm–20 m; see Fig. 2). Efforts to classify

vegetation into different height categories include

Küchler (1949) and Dansereau (1951) who proposed

that ‘‘tall herbaceous plants’’, including grasses, should

have an average minimum height of 2 m; Edwards

(1983) proposed four height categories for grasses, with

tall grasses being 1 m and greater than 2 m to be the

largest height category; Lambert et al. (2010) consid-

ered ‘‘large-statured invasive grasses’’ to be greater than

1.5 m in height. There are clearly important correlates

between height and ecological processes, such as

competition for light, e.g. light reduction to the soil

surface decreases dramatically from 2 m down (Mey-

erson et al. 1999). However, previously proposed height

classifications lack a clear ecological justification for

their categories, and instead have been developed for

practical purposes such as for vegetation inventories,

descriptions and surveys (Edwards 1983). We propose

2 m as an ecologically relevant height threshold

amongst grasses, and define TSGs as species that are

C 2 m. Grasses that maintain a height of C 2 m

experience a trade-off between other functional traits.

Typical features associated with taller grasses include

lignified culms, high growth rates, and abundant bio-

mass (Table 1). For these reasons, and the common

prior use of 2 m as the cut-off, we generated a pre-

liminary list of ‘‘tall-statured grasses’’.

We extracted data on inflorescence height for all

grass species from Kew’s GrassBase. Our list of

species was cleaned, updated and corrected; non-

bamboo grasses were checked for synonyms using
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Kew’s World Checklist of Selected Plant Families

(http://apps.kew.org/wcsp/qsearch.do) and bamboo

species were checked using the International Network

for Bamboo and Rattan’s (INBAR) global checklist

(Vorontsova et al. 2016). Species that do not maintain

their height independently (i.e. those listed as

‘climbing’, ‘scandent-’, ‘rambling’, ‘prostrate’, ‘liana’

and or ‘leaning’ [on other vegetation]) were removed

from the list of TSGs, and were considered non-TSGs

along with shorter species.

Incidence and extent of naturalisation

If increased height is advantageous for colonisation,

we expected that TSGs would have higher rates of

naturalisation compared to shorter grasses (i.e. non-

TSGs). To test for this, we calculated whether: (1)

TSGs are more likely to be naturalised in at least one

region of the world (what we refer to as ‘incidence of

naturalisation’); and (2) for naturalised species, TSGs

are more globally widespread outside their native

range (which we refer to as ‘extent of naturalization’;

see e.g. Razanajatovo et al. (2016)). Data from the

Global Naturalised Alien Flora (GloNAF) database

were used for both analyses. The database covers 843

non-overlapping regions (countries, federal states,

islands) covering around 83% of the Earth’s land

surface.

The effect of stature on the probability of a grass

species becoming naturalised could simply mean that

Fig. 1 Tall-statured grasses (TSGs) come in a variety of forms

and occur in a range of different ecosystems (e.g. temperate

forests, dry grasslands to tropical wetlands). They are useful to

humans for food (a and b), ornamental horticulture (c and d), for
biofuels (e and f) and other uses (g and h). Several TSGs are
associated with environmental impacts in invaded ranges due to

their ability to form monospecific communities that exclude

other vegetation types (d, f, g and h). Photographs: Wikimedia

Commons (A: Christian Fischer (CC BY-SA 3.0 & CC0); B:

Wouter Hagens (CC BY-SA 3.0); E: Bgabrielle (CC-BY-SA-

3.0); F: Daderot (CC0)) and other sources (C: Kijktuinen

Nunspeet -http://www.kijktuinen.nl); D: Susan Canavan; G:

retrieved from Rossiter-Rachor et al. 2009; H: Michigan

Technological University)
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TSGs are more likely to be traded because of their

ornamental value. To test for this, we used data on the

plant trade sourced from Dave’s Garden Plant Files

(http://davesgarden.com/guides/pf), arguably the most

comprehensive global database of garden plants.

While it would have been ideal to use quantitative sale

Count of species

incertae sedis

incertae sedis

incertae sedis

incertae sedis

*

*

incertae sedis

Ampelodesmeae

Fig. 2 Height distribution of grass species in subfamilies and

tribes as per Soreng (2015)’s classification of Poaceae. Species

within the black-outlined box have average bloom (inflores-

cence) heights of C 2 m. Note that not all of these taxa are

defined in this paper as tall-statured grasses (TSGs) as some taxa

do not maintain their height independently (e.g. climbing

species). The area of the black circles is proportional to the

number of species. Data were retrieved from Kew’s GrassBase

(http://www.kew.org/data/grasses-db.html) for 10,818 species.

Species that are unplaced in a tribe are shown as incertae sedis

for that subfamily. Woody bamboos (tribes Arundinarieae and

Bambuseae) are marked with an asterisk. Figure generated using

Tableau V 10.0
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Table 1 Typical features of tall-statured grasses (TSGs) that confer a high likelihood of causing widespread invasions and severe

environmental impact

Features typical of

TSGs

Implications for invasiveness/

impact

Examples

1. Biomass production Statured architecture High light capture, so likely to

outcompete shorter vegetation

Miscanthus sinensis (Tang et al. 1990);

Phragmites australis (Meyerson et al. 2000)

Fast growth rates Can outcompete neighbouring

species

Bamboos (Montti et al. 2014)

2. Biomass

accumulation

Leaf litter build-up Suppress growth of neighbouring

plants

Cortaderia jubata (Lambrinos 2000);

Cortaderia selloana (Domènech et al. 2006);

Miscanthus 9 giganteus (Amougou et al.

2012); Phragmites australis (Haslam 2010;

Holdredge and Bertness 2011)

Chemically distinct leaf

litter

Reduced decomposition Bambusa spp. (O’Connor et al. 2000);

Phragmites australis (Meyerson et al. 2000)

Alter nutrient cycling Cortaderia selloana (Domènech et al. 2006);

Phragmites australis (Meyerson et al. 2000);

Phyllostachys edulis (Song et al. 2017)

Production of large

quantities of highly

flammable aboveground

biomass

Alter the frequency and intensity

of fires

Arundo donax (Herrera and Dudley 2003;

McWilliams 2004; Lambert et al. 2010;

Coffman et al. 2010); Andropogon gayanus

(Rossiter et al. 2003); Andropogon virginicus,

Hyparrhenia rufa, Melinis minutiflora,

Schizachyrium condensatum (Brooks et al.

2004); bamboo (Jaiswal et al. 2002);

Cortaderia selloana (Bossard et al. 2000)

3. Dual reproductive

modes

Tall plants with seeds

held high up

Long range dispersal of seeds Cortaderia selloana (Drewitz and DiTomaso

2004); Generally in plants (Thompson et al.

1995); specifically for grasses (Linder et al.

2018)

Dense root systems Crowd out other vegetation Phragmites australis (Meyerson 2000)

Clonal networks leading

to greater resource

acquisition

Ability to survive high stress

environments

Gynerium sagittatum (de Kroon and Kalliola

1995); clonal plants in general (Stueffer et al.

1996; van Kleunen and Stuefer 1999)

Clonal networks leading

to colonisation by

juvenile ramets into low

resource patches are

supported by older ones

Ability to colonise stressful

environments

Phyllostachys edulis (Wang et al. 2016)

High belowground

allocation/storage of

resources

Ability to survive disturbance

and regenerate quickly, out-

competing neighbouring

vegetation

Dendrocalamus strictus (Singh and Singh

1999); Miscanthus spp. (Amougou et al. 2011)

4. Anthropogenic

interest

Use as biofuel Increased dissemination,

propagule pressure, often in

large stands in climatically

suitable areas close to the

natural environment

Arundo donax (Cosentino et al. 2006);

Miscanthus 9 giganteus (Schnitzler and Essl

2015); Miscanthus sinensis (Flory et al. 2012)

Use in ornamental

horticulture

(particularly

landscaping)

Increased dissemination,

propagule pressure, and

multiple foci for potential

invasions

Arundo donax, Cortaderia selloana, Cenchrus

purpureus (Foxcroft et al. 2008); Cortaderia

selloana (Okada et al. 2007); bamboo

(Canavan et al. 2017b); Miscanthus sinensis

(Dougherty 2013)
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and trade data from Dave’s Garden as a proxy of

propagule pressure, such data were only available for a

small subset of species. We therefore confined the

analyses to whether or not a species was present in

Dave’s Garden Plant Files.

When exploring the raw data, it was clear that the

vast majority of TSGs were woody bamboos (tribes:

Bambuseae and Arundinarieae; Fig. 2). Also, the

percentage of TSGs that naturalised was greater than

that of non-TSGs for woody bamboos and other

grasses (i.e. non-bamboos and non-woody bamboos),

although this pattern was not found when pooling all

grasses together (a result of inequities in the propor-

tions of the taxa which were TSGs; see Online

Resource 4). For this reason, we conducted the

remaining analyses on naturalisation incidence and

extent (described below) separately for the set of

woody bamboos and for the set of other grasses.

To assess whether naturalisation incidence was

higher in TSGs than non-TSGs, we ran generalised

linear mixed-effects models with a binomial error

distribution (logistic regression), separately for woody

bamboos and for other grasses, using the ‘lme4’ R

package (Bates et al. 2015). The response variable was

status (presence or absence) in the GloNAF database

and the predictor variables were whether a species is a

TSG or non-TSG, and whether a species was traded or

not (as inferred from presence or absence in Dave’s

Garden Plant Files). To account for phylogenetic non-

independence of the species, we included genus (in the

case of woody bamboos) and genus nested within tribe

(in the case of other grasses) as random factor(s). This

alsoprovided anopportunity to testwhether the 2 mcut-

off was appropriate. We ran similar models with height

(standardised to amean of 0 and standard deviation of 1)

as a continuous explanatory variable instead of stature as

a binary variable (TSG or non-TSG).

To analyse extent of naturalisation (i.e. number of

regions in the GloNAF database) we ran generalised

linear mixed-effects models with a negative binomial

error distribution, due to high incidence of zeros,

separately for woody bamboos and for other grasses,

using the ‘glmmADMB’ R package (Fournier et al.

2012). We used the same predictor variables and

random factors as in the analysis of naturalisation

incidence. Finally, we looked at the global geographic

pattern of numbers of naturalised TSGs and of the

proportion of TSGs among all naturalised grass

species.

Reviewing future risks

To explore the threats of TSGs introduced to new

regions, we reviewed risk assessments that have been

completed in different parts of the world for our list of

TSGs (See Online Resource 2 for details). We did this

by searching (from May to July 2016) for primary

literature and fact sheets on Scopus, ISI Web of

Science and Google Scholar using the specific names

of the TSG species/‘‘tall grass’’ AND ‘‘risk assess-

ment’’/‘‘risk analysis’’ as keywords. We collated all

the risks assessments and then summarised the species

for which assessments have been reported.

Results

TSG species

From the lists extracted from Kew’s GrassBase, we

removed 18 species that did not have names matching

the World Checklist of Selected Plant Families or

INBAR’s global 2016 checklist, four unplaced species

were kept in the list, and synonyms (n = 79) were

updated accordingly to reflect current nomenclature.

Of the remaining 10,818 grass species for which

height data were available, 1136 species reach heights

of 2 m or more, although 207 of these do not maintain

their height independently and were classified as non-

TSGs. This left 929 species (8.6% of grass species) as

TSGs for subsequent analysis (See Online Resource 1

for a complete list of species).

Among TSGs, the vast majority (80.6%) are woody

bamboos (tribes Arundinarieae and Bambuseae). The

remaining 180 species of TSGs come from 21 tribes in

7 subfamilies (Fig. 2), many of which are important

reed species, such as Burma reed (Neyraudia reynau-

diana; Triraphideae), common reed (Phragmites aus-

tralis; Molinieae), and giant reed (Arundo donax;

Arundineae). Other TSGs include popular horticul-

tural and biofuel species such as pampas grass

(Cortaderia spp.; Danthonieae) and silver grass (Mis-

canthus sinensis; Andropogoneae). The TSG group

also contains important food crops, in particular maize

(Zea mays; Andropogoneae), pearl millet (Cenchrus

americanus = Pennisetum glaucum; Paniceae), sor-

ghum (Sorghum bicolor; Andropogoneae), and sugar-

cane (Saccharum spp.; Andropogoneae) (Fischer et al.

2014). With the exception of woody bamboos, TSGs
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are outliers in their respective tribes in terms of height,

although the height distribution of all tribes appears to

be roughly unimodal (Fig. 2).

Incidence and extent of naturalisation

The GloNAF database lists 1226 species in the grass

family. We found overall a similar percentage of

naturalised species among TSGs and among non-

TSGs using the 2 m threshold, with 11.4 and 11.3% of

species naturalised, respectively (Fig. 3). However,

when considering woody bamboos alone, the percent-

age of naturalised TSGs is more than three times that

of non-TSG bamboos, with 7.6 and 2.0% of species,

respectively (Fisher’s exact test: odds ratio = 4.1, 95%

confidence interval of 1.9–9.9, p\ 0.001). This is also

the case among all other grasses (i.e. excluding woody

bamboos), with 27.2 and 11.7%, respectively (Fisher’s

exact test: odds ratio = 2.8, 95% confidence interval

of 2.0–4.0, p\ 0.001). The lack of contrast overall

between TSGs and non-TSGs is because most TSGs

are woody bamboos but fewer woody bamboos than

other grasses have naturalised (Online Resource 4).

Among both woody bamboos and other grasses,

species that are traded for ornamental horticulture

have naturalised more often than non-horticultural

species. Of the 1233 grass species listed in Dave’s

Garden Plant Files, 53.4% are naturalised, while only

5.9% of the other 9585 grass species have naturalised.

When the presence of a species in Dave’s Garden Plant

Files was accounted for in the analysis, tall stature had

a significant, positive effect on naturalisation inci-

dence of other grasses (Table 2a). This was not the

case for woody bamboos. However, when a similar

model was run with height as a continuous variable

height had a significant, positive effect on naturalisa-

tion incidence for both woody bamboos and other tall

grasses (Table 2a).

Of the subset of 1226 grass species (of all tribes)

that have naturalised somewhere, 384 species have

naturalised in only one region, whereas some species

(e.g. Eleusine indica, a non-TSG) have naturalised in

309 regions according to the GloNAF database. On

average, when considering grasses together, TSGs and

non-TSGs have naturalised in similar numbers of

regions (Online Resource 4; Wilcoxon test:

W = 56,274, p = 0.368). When considering woody

bamboos alone, and accounting for the strong positive

effect of presence in the horticultural trade, the extent

of naturalisation was still significantly positively

associated with tall stature (Table 2b). Indeed, woody

bamboo TSGs have naturalised in up to 101 regions

(e.g. Bambusa vulgaris being the most widespread

species) whereas the 8 non-TSG woody bamboos have

naturalised in at most five regions (Online Resource

1). However, this effect of stature on naturalisation

extent was not found for other grasses.

The regions with the highest number of recorded

naturalised alien grasses (irrespective of whether they

are a TSG or not) are the southern United States,

tropical South America, Hawaii, parts of tropical

Africa, Madagascar, Indonesia and New Zealand

(Fig. 4a, Table 3). However, the pattern is strikingly

different when using the proportion of TSGs among all

naturalised grasses (in part because species richness is

affected by differences in sizes of the regions). This

relative measure identifies a marked hot spot of TSGs

in tropical Africa (especially islands in the Western

Indian Ocean), where the proportions in most coun-

tries range between 30–70% and even more (Fig. 4b).

The Caribbean is a second hotspot (Fig. 4b).

Reviewing risks

We found 127 risk assessments that have been

completed for 64 TSG species. Of these, 55 assess-

ments (43%) on 23 species had an outcome indicating

a high risk of invasion or recommended that further

introductions should be rejected in the region evalu-

ated (Table 4; See Online Resource 3 for full list).

More than a third (38%) of the risk assessments were

conducted on 32 woody bamboo species (all of which

are TSGs). However, woody bamboos generally

received lower risk scores than other TSGs, with only

three risk assessments scoring high risk for two

species, and five assessments called for an introduc-

tion to be rejected on five species.

The most widely used risk assessment scheme was

the Hawaiian Weed Risk Assessment (H-WRA),

which has been applied in 60 assessments, followed

by the Australian Weed Risk Assessment (A-WRA)

with nine assessments. Another 16 variant risk

assessment frameworks were used. The following

species had the greatest number of completed risk

assessments: Arundo donax (12), Miscanthus sinensis

(8), Cortaderia jubata (7), Sorghum bicolor (7) and

Cortaderia selloana (7). Based on the results of the

risk assessments, the species with a high potential to
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cause negative impacts were Arundo donax, Cortade-

ria jubata, Echinochloa pyramidalis and Phragmites

australis (Table 4).

Several intended uses for TSGs were identified as

generating heightened risk due to the massive propag-

ule pressure associated with such usage: of the risk

assessments completed, 37% were for the introduction

of ornamental horticulture and food crops species and

28% for biofuels and bioenergy purposes. The purpose

of introduction was unspecified in 42% of assessments

(see Online Resource 3 for more details).

Discussion

Tall-statured grass (TSG) groups with high impact

Woody bamboos (tribes Arundinarieae and Bam-

buseae) are among the tallest grasses and make up the

majority of TSG species (Fig. 2). They have some of

the most varied uses of any plant group and are widely

used in agroforestry, medicine, food, fodder, orna-

mentation and, more recently, phytoremediation and

bioenergy, and for these reasons they have been

distributed and cultivated around the world (Soder-

strom and Calderon 1979; Farrelly 1984; Liese and

Köhl 2015; Canavan et al. 2017b). According to

Canavan et al. (2017b), at least 232 (14%) of all 1662

bamboo species have been introduced beyond their

native range. However, only 12 species are recorded as

invasive (i.e. spreading), fewer than other grass tribes

and less than other TSGs. Although they have been

widely introduced, bamboos have lower invasion rates

but have high levels of environmental impacts in

disturbed forests, both in the native and alien range

(O’Connor et al. 2000; Teixeira and Oatham 2001;

Lima et al. 2012; Xu et al. 2014; Rother et al. 2016;

Canavan et al. 2018a). This is attributed to the high

competitive ability of certain bamboo species and their

capacity to rapidly colonise open space in disturbed

Fig. 3 The proportion of

grass species that have

naturalised globally, by

height group, for a all

grasses, b woody bamboos

only and c all grasses
excluding woody bamboos.

Data were retrieved from the

GloNAF database [see van

Kleunen et al. (2015)]. The

proportion of tall-statured

grasses (TSGs; those that are

2 m in height or greater) and

non-TSGs (less than 2 m in

height) that have naturalised

vary between woody

bamboos and other grasses.

The white bars indicate 95%

confidence intervals. There

is a very large number of

tall-statured non-naturalised

bamboos. See Online

Resource 4 for the raw data
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forest canopies and take advantage of available light

and resources. Due to their large size and robust

stature, they often alter biotic and abiotic processes

and compete with trees. The competitive interaction

between bamboos and trees is unusual compared to

species in other grass tribes. Tall bamboos are usually

not perceived as ‘invasive’ given their low spread

rates, but they should receive closer scrutiny with

regard to their potentially large impacts on community

structure and ecosystem functioning (Canavan et al.

2018a). Recognising the dominance of bamboos and

managing their biomass is an integral part of landscape

management in many forest ecosystems (Suzaki and

Nakatsubo 2001; Larpkern et al. 2011; Bai et al. 2013).

Large reeds form another important subgroup

within TSGs and are often the dominant vegetation

in riparian, lake and coastal ecosystems. Some of the

most notorious invasive plants are reed TSGs

Table 2 The influence of plant stature and garden use status on

global naturalisation of woody bamboos and other grasses.

Plant height was analysed both as a factor (i.e. tall-statured

grass (TSG) of stature C 2m vs. non-TSGs) and as a

continuous variable (results shown in italics). Garden-use

status was binary (presence/absence in Dave’s Garden Plant

Files database; http://davesgarden.com/guides/pf). Global nat-

uralisation was measured as (a) naturalisation incidence outside

the native range (expressed as being naturalised in at least one

region, yes or no), and (b) naturalisation extent (number of

regions where the species is recorded as naturalised). To assess

whether naturalisation incidence or naturalisation extent rela-

ted to stature and to the presence in Dave’s Garden database,

we ran generalised linear mixed-effects models with a binomial

error distribution or a negative binomial error distribution,

respectively. To account for phylogenetic non-independence of

the species, we included genus (for woody bamboos) or genus

nested within tribe (for other grasses) as random factor(s). For

naturalisation incidence, we ran similar models with height

(standardised to a mean of 0 and standard deviation of 1) as a

continuous explanatory variable instead of stature, the results

are shown in italics. Note that woody bamboos refers to species

within the Bambuseae and Arundinarieae tribe, and non-bam-

boo grasses include all other species in the family Poaceae

Explanatory variable Woody bamboos (n = 1162) Other grasses (n = 9674)

Estimate SE z p Estimate SE z p

(a) Global naturalisation incidence (yes/no)

Intercept - 5.365

- 5.101

0.533

0.422

- 10.06

- 12.087

\ 0.001

\ 0.001

- 3.026

- 3.023

0.181

0.187

- 16.74

- 16.15

\ 0.001

\ 0.001

Stature (TSG/non-TSG)

Height (continuous)

0.4803

0.431

0.470

0.143

1.021

3.021

0.307

0.0025

0.931

0.159

0.242

0.036

3.85

4.37

\ 0.001

\ 0.001

Recorded in Dave’s Garden (yes/no) 3.843

3.839

0.428

0.427

8.979

8.983

\ 0.001

\ 0.001

3.204

3.188

0.092

0.092

34.99

34.79

\ 0.001

\ 0.001

Random factors SD SD

Genus 0.6864

0.6854

0.9504

0.9491

Tribe not applicable 0.5826

0.6278

Explanatory variable Woody bamboos (n = 67) Other grasses (n = 1162)

Estimate SE z p Estimate SE z p

(b) Global naturalisation extent (number of regions where naturalised)

Intercept - 0.612 0.751 - 0.81 0.415 1.583 0.142 11.13 \ 0.001

Stature (TSG/non-TSG) 1.139 0.511 2.23 0.026 - 0.147 0.242 - 0.61 0.54

Recorded in Dave’s Garden (yes/no) 1.340 0.655 2.05 0.041 1.518 0.080 18.92 \ 0.001

Random factors SD SD

Genus 0.3947 0.7103

Tribe not applicable 0.4037
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Fig. 4 a Numbers of naturalised tall-statured grass species

(TSGs) and b their proportions among all naturalised grass

species (b) in 843 GloNAF regions of the world (see van

Kleunen et al. (2015) for description of regions and data

acquisition). Darker colours indicate a greater number of

naturalised TSGs or that naturalised TSGs represent a greater

proportion of all naturalised grasses, respectively. Regions in

grey are missing data
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Table 4 Risk assessments completed for tall-statured grass species

Species Common name RAs Reg Accept LR IR HR Reject EF Other

Andropogon bicornis L. West Indian foxtail

grass

1 1 1

Andropogon gayanus Kunth Gamba grass 1 1 1

Arundo donax L. Giant reed 12 9 2 7 1

Bambusa bambos (L.) Voss Thorny bamboo 1 1 1

Bambusa chungii McClure Emperor’s blue

bamboo

1 1 1

Bambusa glaucophylla Widjaja Malay dwarf

bamboo

1 1 1

Bambusa lako Widjaja Timor black bamboo 2 1 1 1

Bambusa multiplex (Lour.) Raeusch. ex Schult. Chinese dwarf

bamboo

3 2 1 1 1

Bambusa oldhamii Munro Oldhamii bamboo 2 1 1 1

Bambusa oliveriana Gamble Bush bamboo 1 1 1

Bambusa pervariabilis McClure Puntingpole bamboo 1 1 1

Bambusa textilis McClure Weaver’s bamboo 1 1 1

Bambusa tuldoides Munro Buddha Belly

bamboo

1 1 1

Bambusa vulgaris Schrad. Common bamboo 3 3 1 2

Schizostachyum pergracile (Munro)

R.B.Majumdar

(= Cephalostachyum pergracile Munro)

Tinwa bamboo 1 1 1

Chimonobambusa quadrangularis (Fenzi)

Makino

Square bamboo 1 1 1

Chrysopogon zizanioides (L.) Roberty Vetiver grass 4 3 2 1 1

Cortaderia jubata (Lem.) Stapf Purple pampas grass 7 3 3 3 1

Cortaderia selloana (Schult.) Aschers. &

Graebn.

Silver pampas grass 6 4 1 2 2 1

Cymbopogon martini (Roxb.) W.Watson Ginger grass,

Palmarosa

1 1 1

Dendrocalamus asper (Schult.) Backer ex

K.Heyne

Giant bamboo 2 2 1 1

Dendrocalamus brandisii (Munro) Kurz Velvetleaf bamboo 1 1 1

Dendrocalamus sikkimensis Gamble ex Oliver Philippine sweet

shoot bamboo

1 1 1

Dendrocalamus strictus (Roxb.) Nees Male bamboo 1 1 1

Drepanostachyum falcatum (Nees) P.C.Keng Blue bamboo 1 1 1

Drepanostachyum khasianum (Munro)

P.C.Keng

Khasia bamboo 1 1 1

Echinochloa pyramidalis (Lam.) Hitchc. &

Chase

Antelope grass 2 1 1 1

Fargesia fungosa T.P.Yi Chocolate bamboo 1 1 1

Fargesia nitida (Mitford) Keng f. ex T.P.Yi Blue Fountain

bamboo

1 1 1

Gigantochloa apus (Schult.) Kurz Gigantochloa 2 2 1 1

Gigantochloa atroviolacea Widjaja Sweet bamboo,

pring legi

1 1 1
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including Arundo donax and Phragmites australis

(Lambert et al. 2010). Their presence and growth in

ecosystems have important consequences for the

structure and composition of their communities

(Chambers et al. 1999; Meyerson et al. 2000;

Meyerson 2000; Holmes et al. 2005; Richardson

et al. 2007a; Packer et al. 2017). In particular, invasive

reeds efficiently exploit space and nutrients, allowing

them to take advantage of natural and human-induced

Table 4 continued

Species Common name RAs Reg Accept LR IR HR Reject EF Other

Gigantochloa atter (Hassk.) Kurz Sweet bamboo 1 1 1

Gigantochloa robusta Kurz Robust bamboo 1 1 1

Guadua angustifolia Kunth Guadua, Columbian

thorny bamboo

1 1 1

Hymenachne amplexicaulis (Spreng.) Zuloaga Hymenachne 1 1 1

Miscanthus floridulus (Labill.) Warb. ex

K.Schum. & Lauterb.

Giant miscanthus 1 1 1

Miscanthus sinensis Andersson Chinese silvergrass 8 7 1 1 3 3

Miscanthus 9 giganteus J.M.Greef & Deuter

ex Hodk. & Renvoize

Giant miscanthus 3 1 3

Nastus elatus Holttum New Guinea edible

bamboo

1 1 1

Neyraudia reynaudiana (Kunth) Keng ex

Hitchcock

Burma reed 3 1 2 1

Otatea acuminata (Munro) C.E.Calderon &

T.R.Soderstrom (= Otatea aztecorum)

Mexican weeping

bamboo

1 1 1

Cenchrus americanus (L.) Morrone

(= Pennisetum glaucum (L.) R.Br.)

Pearl millet 1 1 1

Cenchrus macrourus (Trin.) Morrone

(= Pennisetum macrourum Trin.)

African feathergrass 1 1 1

Cenchrus purpureus (Schumach.) Morrone

(= Pennisetum purpureum Schumach.)

Elephant grass 5 3 5

Phragmites australis (Cav.) Trin. ex Steud. Common reed 4 3 1 3

Phyllostachys aurea Rivière & C.Rivière Golden bamboo 4 3 2 1 1

Phyllostachys aureosulcata McClure Yellow groove

bamboo

1 1 1

Phyllostachys nigra (Lodd.) Munro Black 2 2 1 1

Pseudosasa japonica (Steud.) Makino Arrow bamboo 1 1 1

Saccharum arundinaceum Retz. Plume Grass 1 1 1

Saccharum officinarum L. Sugarcane 3 2 2 2

Saccharum ravennae (L.) Murr. Ravenna Grass 1 1 1

Saccharum spontaneum L. Wild sugarcane 1 1 1

Schizostachyum brachycladum (Kurz) Kurz Sacred Bali bamboo 1 1 1

Schizostachyum glaucifolium (Rupr.) Munro Hawaiian bamboo 1 1 1

Sorghum bicolor (L.) Moench Sweet Sorghum 8 4 2 1 2 1 1

Zea mays L. Corn 3 2 1 2

Number of risk assessments completed (RAs), number of regions evaluated (Reg), and the outcome of the evaluation are shown for

each species; low risk (LR), intermediate risk (IR), high risk (HR), reject, evaluate further (EF) and other classification (e.g. prohibit

for importation). See Online Resource 3 for a detailed list of all assessments
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disturbances (Meyerson et al. 1999; Canavan et al.

2018b).

Tall-statured grass species (e.g. Cortaderia jubata,

Cortaderia selloana, Miscanthus sinensis, Panicum

virgatum) are also widely used for ornamental horti-

culture and bioenergy production. Many species used

for this purpose escape from cultivation and spread

into natural areas (Lambrinos 2000; Quinn et al. 2010;

Schnitzler and Essl 2015). Interestingly, food crop

TSGs (e.g. maize, sugarcane, pearl millet, sorghum),

tend not to be invaders although they are widely

propagated making up a vast component of landscapes

altered by humans for agricultural purposes around the

world, and they are very commonly planted as hybrids.

Extent and incidence of naturalisation of TSGs

Although we did not find that all models yielded a

significant effect of stature, we did show that TSG

categorisation is relevant with respect to probability

for naturalisation. Specifically, we found that stature is

associated with naturalisation success in grasses, but

only when woody bamboos are excluded (Table 2).

While stature is unlikely the proximate factor driving

naturalisation, naturalisation patterns support the

notion that being a TSG contributes to invasion

potential. In agreement with other studies, we also

found that the presence in horticultural trade is an

important correlate of both naturalisation incidence

and extent (Dehnen-Schmutz et al. 2007; van Kleunen

et al. 2007, 2018; Pyšek et al. 2010). We also found

that TSGs seem to have naturalised more on islands,

probably due to the long history of bamboos being

widely introduced and cultivated on islands along

early trade routes (Canavan et al. 2017b).

Competitive features of TSGs

The heights obtained by TSGs (including bamboos)

result in unique traits that can confer a competitive

advantage over other co-occurring vegetation, includ-

ing lignified stalks, production of large amounts of

biomass (often at a rate faster than woody shrubs and

trees; Linder et al. (2018)), formation of dense

monospecific stands and extensive root and rhizome

systems (See Table 1). Although these traits are not

unique to TSGs and are present in other plant groups

including shorter grasses, the combination of these

traits enables some TSGs to have increased impacts.

Tall-statured grasses are also often the dominant

components of the vegetation communities in ecosys-

tems where they occur and thus have a strong effect on

ecosystem functioning. As such, they have impacts at

different trophic levels when they become invasive

(Gordon-Gray and Ward 1971; Onimaru and Yabe

1996; Larpkern et al. 2011; Pagad 2016; Maceda-

Veiga et al. 2016). For example, the accumulation of

dead biomass creates thick litter mats that can suppress

the growth of emerging plants over time (Haslam

2010; Amougou et al. 2012; Rohani et al. 2014). The

increase of litterfall, and therefore standing biomass,

can also lead to changes in fire regimes through

increased fuel loads which can inflict ecosystem-level

changes, including transformed nutrient cycling and

increased susceptibility of the ecosystem to further

invasion (Rieger and Kreager 1989; Dwire and

Kauffman 2003; Herrera and Dudley 2003; Brooks

et al. 2004).

For most TSGs, vegetative growth is both a crucial

competitive mechanism and a reproductive strategy

for dispersal with tillers, shoots, ramets, rhizomes,

stolons or fallen stems forming clonal networks (Wang

et al. 2017). The connectivity of biomass between

stands has many advantages: greater resource acqui-

sition and sharing (de Kroon and Kalliola 1995;

Stueffer et al. 1996; van Kleunen and Stuefer 1999);

allowing invasion into closed canopies or low

resource-patches (Welker and Briske 1992; Wang

et al. 2016); and allowing the storage of resources

(Grace 1993). The increased amount of below-ground

vegetative biomass of TSGs, compared to shorter

grasses and other plants like trees, likely gives

populations added resilience to disturbances and

provides a greater capacity for energy storage.

Sexual reproduction and seed dispersal is not a

prerequisite for the spread of many TSGs (Ahmad

et al. 2008; Hardion et al. 2012; Canavan et al. 2017a).

Clonal TSGs use stem-derived spacers such as under-

ground rhizomes or above-ground stolons to disperse

which can be further aided by anthropogenic activities

such as the movement of TSGs for ornamental

horticulture and other purposes (SFAPRC 2006; Isagi

et al. 2016). The ability of some TSGs to successfully

colonise a wide variety of environmental gradients and

yet have such low genetic diversity may also indicate

that other important mechanisms are implicated, such

as increased phenotypic plasticity in response to

environmental changes (Canavan et al. 2017a).
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Invasive clonal plants like Arundo donax may possess

a ‘general-purpose-genotype’, i.e. a genotype that

allows for phenotypic plasticity and thus adaptation to

a wide range of conditions (Van Doninck et al. 2002).

Further, many TSGs have an allopolyploid origin and

incorporate high genetic diversity in their genomes

(Soltis and Soltis 2000).

Although vegetative growth clearly carries several

advantages for the establishment of TSGs, this mode

of dispersal alone has limitations.When TSGs can also

reproduce sexually they have the added advantage of

being able to achieve long-range dispersal indepen-

dently (e.g. without the need for disturbance or

human-facilitation) into adventive ranges. Sexual

reproduction also produces genetic diversity and

increases the opportunities for naturalisation and

eventually adaptation to new habitats and ranges

(Colautti and Lau 2015). Increased height can also be a

competitive advantage in seed dispersal by wind, as

pollen and seeds can travel above the canopy and

cover long distances (Thomson et al. 2011). A number

of TSGs have been found to disperse widely via seed

production (Quinn et al. 2010; Ecker et al. 2015), but

can also invade new ranges through the distribution of

seeds (Chambers et al. 1999; Belzile et al. 2010;

McCormick et al. 2010; Kettenring et al. 2011;

Bonnett et al. 2014).

Risks of invasion and impacts

We found that a majority of risk assessments that have

evaluated TSGs have been for horticultural introduc-

tions and more recently for bioenergy projects (Scur-

lock et al. 2000; Blanchard et al. 2017; Lieurance et al.

2018). Since TSGs are the grasses most often selected

for bioenergy and biofuel production, this usage

category will probably continue to drive future

introductions from the group (Cousens 2008; Gordon

et al. 2011; Hartman et al. 2011; Amougou et al. 2011;

Jung et al. 2015; Smith et al. 2015; Corneli et al. 2016).

Potential bioenergy TSG crops tend to receive higher

risk scores than TSGs selected for other uses (See

Online Resource 3). The most commonly mentioned

candidates for biofuels include Arundo donax,

Cenchrus purpureus (= Pennisetum purpureum),

Miscanthus 9 giganteus (importantly neither parental

species grows to C 2 m, indicating selection for

greater height), Saccharum spp., as well as Panicum

virgatum, (although just short of the 2 m threshold).

The high risk of biofuel-selected species is in line with

previous studies; a comprehensive analysis by Bud-

denhagen et al. (2009) found that biofuel species are

two to four times more likely to establish and become

invasive than species introduced to Hawaii for other

purposes.

An additional risk associated with biofuel and

bioenergy crops is the intention to develop more

robust and vigorous cultivars through genetic manip-

ulation to produce crops that yield more biomass

(Bouton 2007). Many of the selected traits overlap

with known weedy attributes, such as: (1) fast growth

rates; (2) high seed production; (3) wide range of

climatic tolerance; (4) adaptability to a wide range of

environmental conditions; and (5) few herbivores,

pests and diseases in receiving ecosystems (IUCN

2009; Richardson and Blanchard 2011; Flory et al.

2012). In general, the high levels of domestication and

breeding of TSGs, both historically and currently,

have likely increased invasion risks of some species,

as more robust cultivars have been and continue to be

developed. Concerns have been expressed that, in

general, current risk assessment frameworks and

policies are limited in their ability to evaluate

subspecies or lower taxa (e.g. cultivars, genotypes)

and hybrids (Meffin 2013). For example, a cultivar of a

species may perform very differently to the wild type

of the species as it occurs in nature. Greater intraspeci-

fic diversity of a species has been found to be

associated with an increased likelihood of naturalisa-

tion or establishment [e.g. South African Iridaceae

species; van Kleunen et al. (2007)] and invasion or

spread [e.g. bamboos and lineages of Phragmites;

further; Meyerson et al. (2010), Kettenring et al.

(2011), Meyerson (2013), Canavan et al. (2017a)],

highlighting the need for better understanding of

intraspecific dynamics. Even natural variations within

a species can be problematic in this regard; this has

been the case with P. australis where a certain

haplotype (Saltonstall 2002) and smaller genome

sizes (Pyšek et al. 2018) are more invasive than others

(e.g. displacement of native haplotypes in North

America). Invasive genotypes likely exist within other

TSGs and other plant taxa more generally [e.g.,

Phalaris arundinacea; Lavergne and Molofsky

(2007)], although they go unrecognised due to the

difficulty in identifying intraspecific diversity. Addi-

tional criteria are needed to evaluate the invasion risks

of subspecific or lower taxa, particularly to keep pace
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with the increasing selection and breeding of TSGs for

biofuel and other uses surrounding high biomass

yielding variations.

The TSG concept and future directions

While there is no clear break in the height distribution

of grasses, TSGs are an important functional group as

they cause distinct impacts and raise particular

concerns for management and biosecurity. We suggest

a number of directions that can be taken with the TSG

group including: (1) studying subgroups of TSGs in

particular biogeographical realms (e.g. Afrotropic

TSGs), or habitat types in which they primarily occur

(e.g. riparian, estuarine, or forest TSGs). Understand-

ing the reasons for the differences between woody

bamboos and other TSGs would be an important first

step; (2) determining why different pathways and the

traits selected in TSGs are associated with varying

levels of risks. For example, trying to better under-

stand why TSGs selected for biofuels are associated

with high-risks, whereas food crops tend to be low-

risk; (3) reviewing the importance of TSGs in their

native range for resisting invasions. For example, the

composition of dominant native grasses have been

found to bemediators of invasions as well as important

predictors of the ability of a system to resist invasion

(Tilman et al. 1997; Pokorny et al. 2005; Richardson

et al. 2007b; Young et al. 2009; Wang et al. 2013); and

(4) reviewing whether there is merit in expanding the

functional group to encompass tall Poales [order of

monocotyledons that include grasses, bromeliads and

sedges] more generally, as many sedges and rushes

employ similar mechanisms to disrupt and produce

ecosystem-level changes through biomass production

and accumulation [e.g. the removal of invasive Typha

9 glauca biomass increased native plant diversity

along Great Lake coastal wetlands; Angeloni et al.

(2006), Farrer and Goldberg (2009), Lishawa et al.

(2015)].

In summary, we believe that the group of TSGs,

including bamboos, are a useful functional group both

for invasion science and management and that further

research on the group, on both the biological reasons

and the socio-economic imperatives that drive inva-

sions, is warranted. Tall-statured grasses also provide

an important counter-point to other analyses as to

when generalisations can be made in invasion science

(Kueffer et al. 2013).
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Czakó M, Feng X, He Y, Liang D, Márton L (2005) Genetic

modification of wetland grasses for phytoremediation.

Zeitschrift für Naturforschung 60c:285

Dansereau P (1951) Description and recording of vegetation

upon a structural basis. Ecology 32:172–229

D’Antonio CM, Vitousek PM (1992) Biological invasions by

exotic grasses, the grass/fire cycle, and global change.

Annu Rev Ecol Syst 23:63–87

de Kroon H, Kalliola R (1995) Shoot dynamics of the giant grass

Gynerium sagittatum in Peruvian Amazon floodplains, a

clonal plant that does show self-thinning. Oecologia

101:124–131

Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007)

A century of the ornamental plant trade and its impact on

invasion success. Divers Distrib 13:527–534

DeMalach N, Zaady E, Weiner J, Kadmon R (2016) Size

asymmetry of resource competition and the structure of

plant communities. J Ecol 104:899–910

Dı́az S, Cabido M (1997) Plant functional types and ecosystem

function in relation to global change. J Veg Sci 8:463–474
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Pyšek P, Jarošı́k V, Hulme PE, Pergl J, Hejda M, Schaffner U,
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