Two Flavonoids From Stem Bark of Casimiroa edulis and Their Antidiabetic and Antioxidant Activities

by Alfinda Novi Kristanti

Submission date: 09-Mar-2020 05:59PM (UTC+0800)

Submission ID: 1272174802

File name: 2019-Tun IOP Conf. Ser.- Earth Environ. Sci. 217 012006.pdf (485.07K)

Word count: 2783

Character count: 14275

PAPER · OPEN ACCESS

Two Flavonoids From Stem Bark of *Casimiroa edulis* and Their Antidiabetic and Antioxidant Activities

To cite this article: K N W Tun et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 217 012006

View the <u>article online</u> for updates and enhancements.

IOP | ebooks™

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research

Start exploring the collection - download the first chapter of every title for free.

This content was downloaded from IP address 210.57.215.234 on 10/01/2019 at 06:10

IOP Conf. Series: Earth and Environmental Science 217 (2019) 012006

doi:10.1088/1755-1315/217/1/012006

Two Flavonoids From Stem Bark of Casimiroa edulis and Their Antidiabetic and Antioxidant Activities

K N W Tun^{1,2}, N S Aminah^{3,*}, A N Kristanti³, R Ramadhan³, Y Takaya⁴

- ¹ Ph.D. Student of Mathematics and Natural Sciences, Fac. Of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, Indonesia
- ² Dept. of Chemistry, Taunggyi University, Shan State (South), Myanmar
- ³ Dept. of Chemistry, Fac. Of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, Indonesia
- Fac. Of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku, Nagoya, 468-8503 Japan
- * nanik-s-a@fst.unair.ac.id

Abstract: Casimiroa edulis Llave et Lex (Rutacae), popularly known as white sapote. The main aim of this study is to isolate and investigate the bioassay of the stem bark of Casimiroa edulis. Two flavonoids were isolated from the methanolic fraction of the stem bark of Casimiroa edulis. The isolated compounds can be identified as 6,7-dimethoxyflavone (1) and 5,6,2'-trimethoxyflavone (2) by using advance spectroscopic methods, including FT-IR, UV, 1D NMR, 2D NMR. Compounds 1 and 2 were evaluated for their antidiabetic and antioxidant activities. The result revealed that the two compounds did not have antidiabetic activity and antioxidant activity. This is the first phytochemical study of 6,7-dimethoxyflavone from the genus Casimiroa.

Key words: Casimiroa edulis, white sapote, Rutaceae, flavonoids

1. Introduction

Natural products are used as medicines for treating and preventing various diseases since prehistoric times. According to the record of fossil, human use of plants as medicines for their diseases may be traced back at least 60,000 years.[11; 18]

Casimiroa is a tree belongs to the family of Rutaceae, found in the tropical and subtropical areas of Central America and Mexico, the Caribbean, the Mediterranean region, India, Southeast Asia, South Africa, Australia, and New Zealand. The best-known species is Casimiroa edulis [14; 17]. It has been widely used as sedative for the treatment of anxiety and dermatological problem. The early pharmacological studies of an aqueous extract and alcohol extracts of the seeds and leaves of C. edulis exhibited the cardiovascular, anticonvulsant, sedative, anti-inflammatory, anti-mutagenic, diuretic, hypnotic, anti-hypertension, anti-inflammatory, muscle relaxant and contractile activities [4; 15]. In Myanmar, local people used this for the treatment of stomach problem.

Many of the phytochemical analysis have been done on the leaves, fruits, seeds and bark of Casimiroa edulis. The previous studies indicated that this plant contains flavonoids, coumarin, alkaloids, and limonoids [1-3, 5-9; 12]. In this study, two flavonoids namely, 6,7-dimethoxyflavone (1) and 5,6,2'trimethoxyflavone (2) have been isolated from the stem bark of Casimiroa edulis. Their structures have been elucidated through FT-IR, UV, 1H-NMR, 13C-NMR, and 2D NMR. Furthermore, the antidiabetic and antioxidant activity of isolated compounds were investigated against α -glucosidase inhibition and DPPH

2. Experimental Methods

2.1 General

UV spectra were recorded on UV-Vis Shimadzu spectrometer. IR spectra were recorded on FT IR-8400 spectrophotometer. NMR spectra were recorded in CDCl₃ by using a JEOL ECA-500 (1H: 500 MHz and ¹³C: 125MHz). Positive mode HRFABMS was obtained by using a JEOL JMS HX-110 mass spectrometer. Column chromatography was carried out on silica gel (BW-820H). Analytical TLC was performed on silica

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. 1

CoSCI - PBBM I IOP Publishina

IOP Conf. Series: Earth and Environmental Science **217**(2019) 012006 doi:10.1088/1755-1315/217/1/012006

on pre-coated Kieselgel silica gel $60 \, F_{254}$ aluminium sheets. Melting points were measured by melting point apparatus and are uncorrected.

2.2 Plant material

The stem bark of *casimiroa edulis* Llave et Lex was collected in Namp-see Village, Taunggyi (Shan State), Myanmar during the month of August 2016.

2.3 Extraction and isolation

The air-dried sample of the stem bark of Casimiroa edulis (1000 g) was extracted with methanol (3000 mL). Then the methanolic extract was concentrated at room temperature to give MeOH crude extract 250 g. The dried MeOH extracts 250 g were fractionated by partitioning with n-hexane: methanol (v/v) (100 mL × 3). The MeOH extract was evaporated under reduced pressure at 40°C using a rotary evaporator to give the methanolic crude extract 50 g. A methanol extract (50 g) was subjected to VLC separation using 100 g silica gel 60H eluted with a gradient solvent system of n-hexane in Et-OAc (100:0, 95:5, 90:10, 80:20, 70:30, 60:40, 0:100) to afford 28 Fractions (1-28). Based on TLC analysis, the fractions can be grouped to be CF-1, CF-2, CF-3, CF-4, CF-5 and CF-6. Fraction CF-6 (6.19 g) was further fractionated by silica gel column chromatography with a gradient solvent system of n-hexane in Et-OAc (100:0, 95:5, 90:10, 80:20, 70:30, 0:100) to afford 270 fractions. Based on TLC analysis, the fractions can be grouped to be SF-1, SF-2, SF-3, SF-4 and SF-5. Fraction SF-2 (120 mg) was further purified by silica gel column chromatography with a gradient of n-hexane in acetone (100:0, 95:5, 90:10, 80:20, 0:100) to give 70 subfractions. Each fraction was checked by TLC and UV lamp. Then, the sub-fractions of the same R_f value were combined and 5 combined fractions (Fra-1 to Fra-4) were obtained. Among them, Fra-2, and Fra-4 gave only one spot on TLC and UV active. The pure compound white crystalline solid form of compound (1), and compound (2) were obtained.

2.4 α-Glucosidase inhibition assay and DPPH assay

The α -glucosidase inhibition of two compounds was analyzed according to the method reported by Ramadhan & Phuwapraisirisan [13]. Antioxidant activity of two compounds was measured against DPPH radical scavenging activity. The IC $_{50}$ values of the compound were measured by the linear regression.

2.5 Spectra data

6,7-dimethoxyflavone (1)

White crystalline solids (CHCl₃) (1): UV (MeOH) λ_{max} : 271 nm; IR (ν_{max} , KBr, cm⁻¹): 3070, 2999, 1647, 1571, 1496, 1367, 1288, 1178, 1078, 958, 775; ¹HNMR (CDCl₃, 500 MHz, δ , ppm, J/Hz): 7.89 (dd, J=7.7, 1.9 Hz, H-2' and H-6'), 7.51 (m, H-3', H-4' and H-5''), 7.32 (s, H-5 and H-8), 6.69 (s, H-3), 3.98 (s, OCH₃), 3.94 (s, OCH₃); ¹³C NMR (CDCl₃, 125 MHz, δ , ppm): 178.0 (C-4), 161.6 (C-2), 151.6 (C-9), 150.0 (C-7), 148.0 (C-6), 131.7 (C-1'), 131.4 C-4', 129.0 (C-3'), 126.1 C-6'), 119.3 (C-10), 119.1 (C-8, 113.4, 108.0 (C-3), 61.9 (7-OCH₃), 57.2 (6-OCH₃).

5,6,2-trimethoxyflavone(2)

White crystalline solids (CHCl₃) (2) UV (MeOH) λ_{max} : 329, 267, 235 nm; IR (ν_{max} , KBr, cm⁻¹): 3128, 3078, 2972, 2837, 1631, 1612, 1570, 1481, 1357, 1284, 1188, 1083, 964, 744; ¹HNMR (CDCl₃, 500 MHz, δ, ppm, J/Hz): 7.85 (1H, dd, J = 7.8, 1.7 Hz, H-6'), 7.46 (ddd, J = 8.4, 7.4, 1.8 Hz, H-4'), 7.30 (1H, d, J = 9.2 Hz, H-7), 7.27 (1H, d, J = 9.2 Hz, H-8), 7.09 (1H, td, J = 7.7, 1.0 Hz, H-5'), 7.03 (1H, d, J = 8.0 Hz, H-3'), 6.98 (1H, s, H-3), 3.98 (3H, s, 2'-OCH₃), 3.93 (6H, s, 5-OCH₃ and 6-OCH₃), NMR (CDCl₃, 125 MHz, δ, ppm): 178.4 (C-4), 159.1 (C-2), 158.0 (C-5), 151.9 (C-9), 149.7 (C-6), 147.9 (C-2'), 132.2 (C-4'), 129.1 (C-6'), 120.8 (C-1'), 120.7 (C-5'), 119.2 (C-8), 119.1 (C-10), 113.4 (C-7), 113.1 (C-3), 111.7 (C-3'), 61.9 (2-OCH₃), 57.3 (5-OCH₃), 55.7 (6-OCH₃).

3. Results and discussion

6,7-Dimethoxyflavone (1), and 5,6,2'-trimethoxyflavone (2) were isolated from the methanolic extract of the stem bark of *C. edulis*. 6,7-dimethoxyflavone was the first phytochemical study of this plant. The isolated compounds identified by interpretation of their ¹H NMR and ¹³C NMR spectral data by comparisons to those available in the literature.

Compound (1) was obtained as white crystalline solid with melting point at 236-248°C. IR spectrum of compound (1) displayed the absorption band for methoxy (3431 cm $^{-1}$), sp 2 hydrocarbon (3070 cm $^{-1}$) sp 3

IOP Conf. Series: Earth and Environmental Science **217**(2019) 012006 doi:10.1088/1755-1315/217/1/012006

hydrocarbon (2999-2839 cm⁻¹), carbonyl (1647 cm⁻¹) and aromatic (1639, 1571 cm⁻¹) groups. The UV spectrum showed an absorption band with λ_{max} 271 nm. According to the ¹HNMR spectrum, compound (1) showed the presence of 14 protons. One singlet sharp peak at δ_{H} 6.69 indicates the presence of H-3. Furthermore, the H-3 proton showed the correlation with the peak at δ_{C} 161.6 (C-2), 178.0 (C-4), 131.7 (C-1') and 119.3 (C-10) in HMBC spectrum. Another two sharp singlets peak at δ_{H} 3.94 and 3.98 (each, 3H, s) indicate the presence of two methoxy groups on the aromatic ring. Moreover, one singlet sharp peak at δ_{T} 7.32 (2H,s) indicates the presence of H-5 and H-6 protons. One doublet-doublet at δ_{T} 7.89 ppm (2H, J = 7.7, 1.9 Hz) indicate the presence of H-2' and H-6' protons. The other remaining one multiplet at δ_{T} 7.31 (3H, m) indicates the presence of H-3', H-4' and H-5' protons. The ¹³CNMR and DEPT spectra of compound (1) showed 17 carbon atoms for the comprising of eight sp² methine, two oxygenated sp³ and seven sp² quaternary carbons. Therefore, base above information the compound (1) was identified as 6.7-dimethoxyflavone [16].

Compound (2) was obtained as white crystalline solid with melting point at 144-156°C. IR spectrum of compound (2) displayed the absorption band for methoxy (3128 cm⁻¹), sp² hydrocarbon (3078 and 3003 cm⁻¹), sp³ hydrocarbon (2972-2837 cm⁻¹), carbonyl (1631 cm⁻¹) and aromatic (1612, 1600 and 1570 cm⁻¹) groups. The UV spectrum showed absorption band with λ_{max} 329, 267 and 235 nm. According to the ¹HNMR spectrum, compound (2) showed the presence of 16 protons. One singlet sharp peak at δ_H 6.98 (1H, s) indicates the presence of H-3 proton. Furthermore, the H-3 proton showed the correlation with the peak at $\delta_{\rm C}$ 159. $\overline{\rm (C-2)}$, 178.4 (C-4), 119.1 (C-1') and 120.8 (C-10) in HMBC spectrum. Two doublets at $\delta_{\rm H}$ 7.27 and 7.30 ppm (each, 1H, J = 9.2 Hz) indicates the presence of H-7 and H-8. Two singlet sharp peaks at δ_H 3.93 (3H, s) and 3.98 ppm (6H,s) indicate the presence of three methoxy groups on the aromatic ring. One doublet-doublet at δ_H 7.85 (1H, J = 7.8, 1.7 Hz) indicates the presence of H-6' proton. One doublet-doublet at $\delta_{\rm H}$ 7.46 (1H, J=8.4, 7.4, 1.8 Hz) indicates the presence of H-4' proton. One triplet-doublet at δ_H 7.09 (1H, 7.7, 1.0 Hz) indicates the presence of H-5' proton. One doublet at δ_H 7.03 (1H, J = 8 Hz) indicates the presence of H-3' proton. The ¹³CNMR and DEPT spectra of compound (2) showed 18 carbon atoms for the consisting of seven sp² methine, three oxygenated sp³ and eight sp² quaternary carbons, respectively. Therefore, base above information the compound (2) was identified as 5,6,2'-trimethoxyflavone [10].

Figure 1. Chemical structure of compound (1) and (2)

3.1 Anidiabetic and Antioxidant activity

Two compounds were isolated from MeOH fraction of the stem bark of *Casimiroa edulis* were screened for antidiabetic and antioxidant activity against α -glucosidase inhibition and DPPH assay. According to the Table (1), these two compounds did not showed antidiabetic and antioxidant activity.

Table 1. Antioxidant and α-glucosidase inhibition activities of isolated compounds

	IC ₅₀ mM	
Compound	Yeast	DPPH
6,7-dimethoxyflavone (1)	NI	NI
5,6,2'-trimethoxyflavone (2)	NI	NI
Acarbose	0.1030	-

NI = No Inhibition

IOP Conf. Series: Earth and Environmental Science **217**(2019) 012006 doi:10.1088/1755-1315/217/1/012006

4. Conclusion

Two compounds were isolated from the stem bark of *Casimiroa edulis*. From their spectroscopic data, these two compounds can be identified as 6,7-dimethoxyflavone (1), and 5,6,2'-trimethoxyflavone (2). The isolated compounds were evaluated for antidiabetic and antioxidant activities. The result revealed that these two compounds did not have antidiabetic activity and antioxidant activity. Base on our knowledge, 6,7-dimethoxyflavone is isolated for the first time from the genus *Casimiroa*.

References

- [1] Awaad, A. S., Al-Jaber N. A., Soliman, G. A., Al-Outhman, M. R., Zain, M. E., Moses, J. E., El-Meligy, R. M. 2012 New biological activities of *Casimiroa edulis* leaf extract and isolated compounds *Phytotherapy Research* 26 452–457.
- [2] Awaad A. S., Derek, J., Maitland, D. J., & Moneir S. M. 2007 New alkaloids from Casimiroa edulis fruits and their pharmacological activity Chemistry of Natural Compounds 43 5 576–580.
- [3] Awaad, A. S., El-Sayed, N. H., Maitland, D. J., & Mabry T. J. 2006 Phenolic antioxidants from Casimiroa edulis leaves Pharmaceutical Biology 44 4 258– 262.
- [4] Bertina, R., Garcia-Argaézb, A., Martinez-Vàzquezc, M, & Froldia, G. 2011Age-Dependent Vasorelaxation of Casimiroa edulis and Casimiroa pubescens Extract in rat Caudal Artery in Vitro. *Journal of Ethnopharmacology* 137 1 934-936.
- [5] Dreyer, L. 1968 Citrus Bitter Principles. IX. Extractives of Casimiroa edulis Llave et Lex. The Structure of Zapoterin Journal of Organic Chemistry 33 9 3577–3582.
- [6] Ito, A., Shamon, L. A., Yu, B., Mata-Greenwood, E., Kook, L. S., van Breemen, R. B., Mehta, R. G., Farnsworth, N. R., Fong H. H. S., Pezzuto, J. N., & Kinghorn A. D. 1998 Antimutagenic constituents of *Casimiroa edulis* with potential cancer chemopreventive activity *Journal of Agriculture and Food Chemistry* 46 9 3509–3516.
- [7] Khaleel, A. E. M. 2002 2-Phenyl-4-quinolinone alkaloids from Casimiroa edulis Llave et Lex (Rutaceae) Monatshefte fur Chemie 133 183–187.
- [8] Kind, F. A, Romo, J., Rosenkranz., & Sondheimer, F. 1956 The Constituents of Casimiroa edulis Lluve et Lex. Part I. The Seed *Journal of the chemical society* 4163-4169.
- [9] Magos, G. A., Vidrio, H., Reynolds, W. F., & Enri, G. 1999 Pharmacology of Casimiroa edulis IV Hypotensive effects of compounds isolated from methanolic extracts in rats and guinea pigs *Journal of Ethnopharmacology* 64 35–44.
- [10] Meyer, B. N, Wall, M. E, Wani, M. C, and Taylor, H. L (1985). Plant antitumor agents, 21. Flavones, coumarins, and an alkaloid from *Sargentia greggll*. Journal of Natural Ptodurts, VOl. 48, No. 6, 952-956.
- [11] Mamun-or-rashid, A N M., Hossain, S., Hassan, N., Dash, B. K., Sapon Md, A, & Sen, M. K. 2014 A Review on Medicinal Plants with Antidiabetic Activity. *Journal of Pharmocognosy and Phytochemistry* 3 4 149–159.
- [12] Nagai, H., Tanaka, T., Goto, T., Kusudo, T., Takahashi, N., & Kawada, T. 2014 Phenolic compounds from leaves of *Casimiroa edulis* showed adipogenesis activity *Bioscience, Biotechnology and Biochemistry* 78 2 296-300.
- [13] Ramadhana, R & Phuwapraisirisanb, P. 2015 Arylalkanones from *Horsfieldia macrobotrys* are Effective Antidiabetic Agents Achieved by α-Glucosidase Inhibition and Radical Scavenging. Natural Product Communications 10 2 325-328.
- [14] Satheesh, N. 2015 Review on distribution, nutritional and medicinal values of Casimiroa edulus llave- an underutilized fruit in Ethiopia American-Eurasian Journal of Agricultural & Environmental Sciences 15 8 1574-1583.
- [15] XU Ya-Ming, XU., Maria del C. Ramirez-Ahumada1, M., del C., Valeriote, F. A, & Gunatilaka, A. A. L. 2011 Solid Tumor Inhibitory and Other Constituent of *Casimiroa Tetrameria*. Chinese Journal of Natural Medicines 9 5 334-337.
- [16] Yamamoto, M., Tomita, T., Onjo, M., & Ishihata, K. 2007 Genetic diversity of white sapote (Casimiroa edulis La Llave & Lex) demonstrated by intersimple sequence repeat analysis *Hortscience* 42 6 1329-1331.

CoSCI - PBBM I IOP Publishing

IOP Conf. Series: Earth and Environmental Science **217**(2019) 012006 doi:10.1088/1755-1315/217/1/012006

[17] Yoon, H., Eom, S., Hyun, J., Jo, G., Hwang, D., Lee, S., Yong, Y., Park, J. C., Lee, Y. H., & Lim, Y. 2011 ¹H and ¹³C NMR data on hydroxy/methoxy flavonoids and the effects of substituents on chemical shifts. *Bulletin of the Korean Chemical Society* 32 6 2101-2104.

[18] Yuan, H., Ma, Q., Ye, L, & Piao, G. 2016 The Traditional Medicine and Modern Medicine from Natural Products. Molecule 21 559 1-18.

Acknowledgment

KNWT acknowledges financial support from Universitas Airlangga, Surabaya, Indonesia. The authors are thanks to the Professor, Dr Yoshiaki Takaya, for providing NMR spectra data.

Two Flavonoids From Stem Bark of Casimiroa edulis and Their Antidiabetic and Antioxidant Activities

ORIGINALITY REPORT

8%
INTERNET SOURCES

19%
PUBLICATIONS

U% STUDENT PAPERS

PRIMARY SOURCES

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam et al. "First Measurement of Bose-Einstein Correlations in Proton-Proton Collisions at and 2.36 TeV at the LHC ", Physical Review Letters, 2010

1 %

Ligang Zhou, Duan Li, Jingguo Wang,
Yuanshuai Liu, Jianyong Wu. " Antibacterial
phenolic compounds from the spines of Lam.
", Natural Product Research, 2007
Publication

1 %

theses.gla.ac.uk
Internet Source

1 %

Budzianowski, J.. "Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures", Phytochemistry, 200505

1 %

Cosam C. Joseph, Joseph J. Magadula, Mayunga H. H. Nkunya. " A novel antiplasmodial 3',5'-diformylchalcone and

1 %

other constituents of ", Natural Product Research, 2007

Publication

Jaromir Budzianowski, Maria Morozowska, 1 % Maria Wesołowska. "Lipophilic flavones of Primula veris L. from field cultivation and in vitro cultures", Phytochemistry, 2005 Publication Raphaël Grougnet, Prokopios Magiatis, 1 % Nikolas Fokialakis, Sofia Mitaku et al. " Koniamborine, the First Pyrano[3,2-]indole Alkaloid and Other Secondary Metabolites from ", Journal of Natural Products, 2005 **Publication** Riccardo Bertin, Aída Garcia-Argaéz, Mariano 1 % Martinez-Vàzquez, Guglielmina Froldi. "Agedependent vasorelaxation of Casimiroa edulis and Casimiroa pubescens extracts in rat caudal artery in vitro", Journal of Ethnopharmacology, 2011 Publication Doo-Sung Lee. "Second Harmonic Resonance 1 % in an Asymmetric Electrohydrodynamic Jet", Physica Scripta, 2003 **Publication** Amani S. Awaad, Derek J. Maitland, Samar M. **1** % 10

Moneir. "New alkaloids from Casimiroa edulis

Angela Farina, Carolina Ferranti, Carolina Marra, Marcella Guiso, Giulia Norcia.
"Synthesis of hydroxystilbenes and their derivatives via Heck reaction", Natural Product Research, 2007

1%

Publication

Publication

B. D'abrosca, M. Dellagreca, A. Fiorentino, A. Golino, P. Monaco, A. Zarrelli. " Isolation and characterization of new lignans from the leaves of ", Natural Product Research, 2007

1 %

Xian-wen Wei, Si-de Yao, Gui Yin, Zhi-yong Suo, Zheng Xu, Pei Wang, Wei-jun Zhang, Ping Chen, Yun Zhang, Chong-de Li, Yin Niu.
"SYNTHESES AND PHOTOPHYSICAL PROPERTIES OF FULLEROPYRROLIDINES CONTAINING PHOTOACTIVE UNITS", Fullerenes, Nanotubes and Carbon Nanostructures, 2002

1 %

B. N. Meyer, M. E. Wall, M. C. Wani, H. L. Taylor. "Plant Antitumor Agents, 21. Flavones, Coumarins, and an Alkaloid from Sargentia greggii", Journal of Natural Products, 1985

1 %

15	digi.library.tu.ac.th Internet Source	1 %
16	Yuji Mori, Hiroki Furuta, Toyohisa Takase, Shinjiro Mitsuoka, Hiroshi Furukawa. "Synthesis of methyl-substituted trans-fused tetrahydropyrans via 6-endo cyclization", Tetrahedron Letters, 1999 Publication	1 %
17	Wafaa Mostafa Elkady, Eman Ahmed Ibrahim, Mariam Hussein Gonaid, Farouk Kamel El Baz. "Chemical Profile and Biological Activity of Casimiroa Edulis Non-Edible Fruit`s Parts", Advanced Pharmaceutical Bulletin, 2017 Publication	<1%
18	patents.google.com Internet Source	<1%
19		<1 _%
	Internet Source www.ruv.de	<1% <1% <1%

Hippolyte K. Wabo, Pierre Tane, Joseph D. <1% 22 Connolly, Christopher C. Okunji, Brian M. Schuster, Maurice M. Iwu. "Tabouensinium chloride, a novel quaternary pyranoquinoline alkaloid from ", Natural Product Research, 2005 Publication e-sciencecentral.org <1% 23 Internet Source repository.yu.edu.jo 24 Internet Source Tsukasa Mizuhara. "Chapter 3 Structure-<1% 25 Activity Relationship Study of PD 404182 Derivatives for the Highly Potent Anti-HIV Agents", Springer Science and Business Media LLC, 2013 Publication Yun-Li Zhao, Xiong-Wu Yang, Bai-Fen Wu, Jian-<1% 26 Hua Shang, Ya-Ping Liu, Zhi-Dai, Xiao-Dong Luo. "Anti-inflammatory Effect of Pomelo Peel and Its Bioactive Coumarins", Journal of Agricultural and Food Chemistry, 2019 Publication etheses.bham.ac.uk Internet Source

Nada M. Mostafa, Eman A. Abd El-Ghffar, Hoda G. Hegazy, Omayma A. Eldahshan. " New Methoxyflavone from and the Biological Activities of Its Leaves Extract against Lead Acetate Induced Hepatotoxicity in Rats ", Chemistry & Biodiversity, 2018

Publication

32

Ru-Feng Wang. "Trollioside, a new compound from the flowers of Trollius chinensis", Journal of Asian Natural Products Research, 6/1/2004

<1%

Publication

33	Seo Yeon Woo, Ji Hyun Kim, Mi Kyeong Moon, Se-Hee Han et al. "Discovery of Vinyl Sulfones as a Novel Class of Neuroprotective Agents toward Parkinson's Disease Therapy", Journal of Medicinal Chemistry, 2014 Publication	<1%
34	Seru Ganapaty, P. Steve Thomas, Gloria Karagianis, Peter G. Waterman. " Mono and dimeric naphthalene derivatives from the roots of ", Natural Product Research, 2006 Publication	<1%
35	do Nascimento, Raphaela, Igor de Sales, Rodrigo de Oliveira Formiga, José Barbosa- Filho, Marianna Sobral, Josean Tavares, Margareth Diniz, and Leônia Batista. "Activity of Alkaloids on Peptic Ulcer: What's New?", Molecules, 2015.	<1%
36	profiles.arizona.edu Internet Source	<1%
37	"Timely Research Perspectives in Carbohydrate Chemistry", Springer Science and Business Media LLC, 2002 Publication	<1 %
38	Chattopadhyay Debprasad, Mukherjee Hemanta, Bag Paromita, Ojha Durbadal et al. "Inhibition of,, TNF- and NOS Expression by L.: An Ethnomedicine Used for Anti-	<1%

Inflammatory and Analgesic Activity ", Evidence-Based Complementary and Alternative Medicine, 2012

Publication

Exclude quotes Off Exclude matches Off

Exclude bibliography On

Two Flavonoids From Stem Bark of Casimiroa edulis and Their Antidiabetic and Antioxidant Activities

GRADEMARK REPORT	
FINAL GRADE	GENERAL COMMENTS
/0	Instructor
7 0	
PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	