ACADEMIA

Accelerating the world's research.

Diversity of Fern Species (Pteridophyta) in the Karst Sangkulirang -Mangkalihat

rita diana, rita diana

Atlantis Press

Cite this paper

Downloaded from Academia edu [7]

Get the citation in MLA, APA, or Chicago styles

Related papers

Download a PDF Pack of the best related papers 🗗

A linear sequence of extant families and genera of lycophytes and ferns Harald Schneider

The urban pteridophyte flora of Singapore

Ben Takakia, Shih-Tung Ngiam

Pteridophyte Flora of Huai Yang Waterfall National Park, Prachuap Khiri Khan Province, Thailand

Thaweesakdi Boonkerd

Diversity of Fern Species (Pteridophyta) in the Karst Sangkulirang – Mangkalihat

Febrian Jeka Risky¹, Matius Paulus¹, Sutedjo¹ Rita Diana^{1,*}

¹Faculty of Forestry, Mulawarman University, Kampus Gn. Kelua, Jl. Ki Hajar Dewantara, Samarinda, Indonesia *Corresponding author. Email: ritadiana@fahutan.unmul.ac.id

ABSTRACT

This study aims to determine the diversity of fern vegetation in the Sangkulirang- Mangkalihat karst area of Berau and East Kutai Regency. The research was carried out for two months in six locations. The plotting method used the purposive sampling method, with a plot size of 10 m x 10 m as many as 15 at each location. The research location of the karst area of Sangkulirang – Mangkalihat was found 4,871 individuals from 55 species, 39 genera, and 23 families. The most abundant species is *Selaginella willdenowii* (Desv. ex Poir.) Baker. Diversity Index (H') was ranging from 1.37 to 2.36. Dominance Index (C) in all research locations closed to 0, so it can be said that there were no dominant species in each location. Evenness Index (e) in Biatan Ulu was more than 0.96, while other locations were more than 0.51. Similarity Index (ISs) in all study locations was less than 50%, so it means that all species in each location are different.

Keywords: Karst, Fern, Selaginella willdenowii

1. INTRODUCTION

Karst forests that grow on rocks are limestone containing calcium carbonate or calcite which is easily dissolved by rainwater, which led to the formation of cracks and tunnels that resembled relief forming morphology. Typical causes of karst forests are that the appearance became more specific than other forests and the exchange of cations that are higher than the soil in the lowland forests [1]. One species of biodiversity of flora in Indonesia is ferns [2], a homospore plant that can live easily on a wide variety of habitats and anywhere either an epiphyte terrestrial epiphyte, terrestrial as well as in water [3].

2. METHODS

The research was carried out for two months in 6 locations. The plotting method is done using the purposive sampling method, with a plot size of 10×10 as many as 15 at each location.

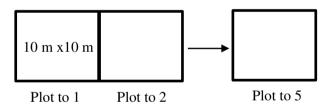


Figure 1. The Scheme of Making Plots.

3. RESULTS AND DISCUSSION

3.1. Species Diversity and Density

The individual number of ferns found in the whole plot location in the Sangkulirang karst area — Mangkalihat was 4,871 individuals from 55 species, 39 genera, and 23 families. The most abundant species was *Selaginella willdenowii* (Desv. ex Poir.) Baker. Furthermore, the number of individual fern species found is indicated in Table 1.

3.2. Diversity (H'), Dominance (C), and Equity (e) Index

The result of the calculation of the diversity index (H'), dominance index (C), and equity index (e)

Location	Individual	Species	Family
Suaran	200	15	8
Tondoyan	2405	32	18
Gunung Gergaji	1355	20	14
Biatan Ulu	358	12	7
Lobang Kelatak	448	19	11
Biduk-Biduk – Teluk Sulaiman	113	9	6

Table 1. Ferns in Sangkulirang Mangkalihat - Karst Area

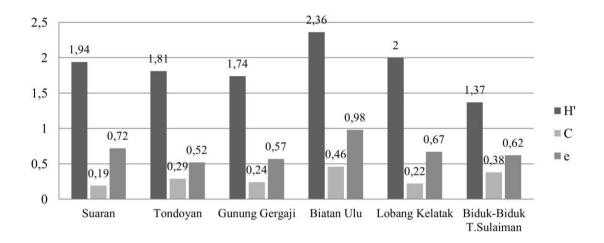


Figure 2 The diversity index (H'), dominance index (C) and equity index (e)

Limestone Mountain Forest area in the Sangkulirang - Mangkalihat can be seen in Figure 2.

From Figure 2, the value diversity (H´) in Suaran was 1.94, Tondoyan was 1.81, Gunung Gergaji was 1.74, Biatan Ulu was 2.36, Lobang Kelatak was 2.00, and Biduk-Biduk – Teluk Sulaiman was 1.37. Index Dominance (C) in Suaran was 0.19, Tondoyan was 0.29, Gunung Gergaji was 0.24, Biatan Ulu was 0.46, Lobang Kelatak was 0.22, and Biduk-Biduk – Teluk Sulaiman was 0.38. Value Equity (e) of Suaran was 0.72, Tondoyan was 0.52, Gunung Gergaji was 0.57, Biatan Ulu was 0.98, Lobang Kelatak was 0.67, and Biduk-Biduk – Teluk-Sulaiman was 0.63.

3.3 Similarity index (ISs)

The Similarity Index (ISs) of Limestone Mountain Forest Sangkulirang - Mangkalihat can be seen in Table 2. From Table 3, Index Similarity (ISs) between Suaran and Tondoyan was 32.33%, Lobang Kelatak and Biduk-Biduk – Teluk Sulaiman was 9.6%. The similarities on all location research were not equal, between 9.6-32.33%.

5. CONCLUSIONS

- a) The individual number of ferns in the karst area Sangkulirang – Mangkalihat was 4871 individuals from 55 species, 39 genera, and 23 families. The most abundant species was *Selaginella willdenowii* (Desv. ex Poir.) Baker.
- b) The value of diversity index (H') of ferns in the karst area of Sangkulirang–Mangkalihat can tell that diversity in all locations did not exist.
- c) The value of dominance index (C) ferns karst area in the Sangkulirang – Mangkalihat on all research locations did not reach one, so it can be said that there are no dominant species in each location.
- d) Index value equity (e) of ferns in the karst area of Sangkulirang – Mangkalihat was only distributed pertained evenly in Biatan Ulu, showing the species' stability at that location.
- e) The value of the index of similarity (ISs) of ferns in the karst area of Sangkulirang Mangkalihat has an index value of 50%.

Table 2. The result of calculation of Similarity Index (ISs)

Location			I	Ss		
Suaran	-					
Tondoyan	32.33	-				
Gunung Gergaji	21.67	21.77	-			
Biatan Ulu	11.93	11.58	11.48	-		
Lobang Kelatak	20.80	20.65	20.76	21.27	-	
Biduk2 - T. Sulaiaman	9,53	9.32	9.38	10.09	9.6	-
Iss	Suaran	Tondoyan	Gunung Gergaji	Biatan Ulu	Lobang Kelatak	Biduk2 – T. Sulaiman

REFERENCES

- [1] A. Achmad, Rahasia Ekosistem Hutan Bukit Kapur. Brilian Internasional. Surabaya, 2011. [Indonesian]
- [2] S. Sastrapraja, J.J. Afriastini, Kerabat Paku, 103. LBN LIPI, Bogor, 1985. [Indonesian]
- [3] Widhiastuti, T.A. Retno, W.D.P. Aththorick, Sari, Struktur dan Komposisi Tumbuhan Paku-Pakuan di Kawasan Hutan Gunung Sinabung Kabupaten Karo, Jurnal Biologi Sumatera, 2006, pp. 38-41. [Indonesian]

10	Scientif Name	Family	N
1	Adiantum sp.	Pteridaceae	13
2	Antrophyum sp.	Pteridaceae	3
3	Antrophyum callifolium Blume	Pteridaceae	92
4	Antrophyum parvulum Blume	Pteridaceae	7
5	Antrophyum semicostatum Blume	Pteridaceae	55
6	Asplenium batuense Alderw.	Aspleniaceae	5
7	Asplenium nidus L.	Aspleniaceae	20
8	Asplenium robustum Blume	Aspleniaceae	20
9	Asplenium squamulatum Blume	Aspleniaceae	40
10	Bolbitis sp.	Dryopteridaceae	239
11	Bolbitis heteroclita (C. Presl) Ching	Dryopteridaceae	9
12	Cyclopeltis sp.	Lomariopsidaceae	6
13	Cyclopeltis semicordata (Sw.) J. Sm.	Lomariopsidaceae	209
14	Doryopteris ludens (Wall. ex Hook.) J. Sm.	Pteridaceae	2
15	Drynaria sparsisora (Desv.) T. Moore	Polypodiaceae	160
16	Heterogonium pinnatum (Copel.) Holttum	Tectariaceae	671
17	Lepisorus longifolius (Blume) Holttum	Polypodiaceae	1
8	Lygodium sp.	Lygodiaceae	1
19	Lygodium circinnatum (Burm. f.) Sw.	Lygodiaceae	478
20	Lygodium longifolium (Willd.) Sw.	Lygodiaceae	4
21	Mesophlebion motleyanum (Hook.) Holttum	Thelypteridaceae	3
22	Microlepia sp.	Dennstaedtiaceae	1
23	Nephrolepis cordifolia (L.) C. Presl	Nephrolepidaceae	6
24	Nephrolepis radicans (Burm.) Kuhn	Nephrolepidaceae	182
25	Neprolephis sp.	Nephrolepidaceae	1
26	Pleocnemia conjugata (Blume) C. Presl	Tectariaceae	2
27	Pronephrium sp.	Thelypteridaceae	33
28	Pronephrium triphyllum (Sw.) Holttum	Thelypteridaceae	46
29	Pteridium sp.	Dennstaedtiaceae	51
80	Pteris sp.	Pteridaceae	11
31	Pteris ensiformis Burm. f.	Pteridaceae	1
32	Pyrrosia angustata (Sw.) Ching	Polypodiaceae	1
33	Selaginella sp.	Selaginellaceae	3
34	Selaginella intermedia Spring	Selaginellaceae	22
35	Selaginella willdenowii (Desv. ex Poir.) Baker	Selaginellaceae	1771
36	Sp 14	-	8
37	Sp1	_	1
88	Sp10	_	5
39	Sp11	-	1
10	Sp12	-	1
1	Sp13	-	1
12	Sp 2	-	2
13	Sp 3	-	1
4	Sp 4	-	292
5	Sp 5	_	292
6	Sp 6	_	26
7	Sp 7	-	1
17 18	Sp 8	-	1
ю !9		-	2
	Sp 9 Sphacestophanes beterocarnus (Rhuma) Holltum	- Thekinteridesess	
0	Sphaerostephanos heterocarpus (Blume) Holttum	Thelypteridaceae	6
51	Tectaria sp.	Tectariaceae	262
2	Tectaria crenata Cav.	Tectariaceae	2
53	The lypteris curta (Christ) C.F. Reed	Thelypteridaceae	7
54	Thelypteris simulata (Davenp.) Nieuwl.	Thelypteridaceae	78