

CHAPTER 10

PLANT-SOIL ASSOCIATIONS

Abstract

Maize seedlings were grown in chromium-rich soils collected from an ultramafic catena. The seedlings showed typical symptoms of Ni and Cr toxicity. The response of maize plants suggested that accumulation of heavy metals, notably Cr and Ni, by indigenous plants could be possible. To investigate this hypothesis, 20 indigenous plant species were sampled along 13 points of the ultramafic catena. Plant material and soil samples were analysed with standard analytical methods to determine the concentrations of 33 elements, including several heavy metals. Twelve rock types of the Sekhukhuneland Centre of Plant Endemism were also analysed to determine whether a chemical relationship exists between the rocks of the study area and serpentinite. Nine SCPE endemics, three SCPE near-endemics, and eight wide-spread species were used for the analyses. None of the investigated taxa were clear hyperaccumulators of Cr or Ni, but plants of seven indigenous species accumulated more than 1 000 mg/kg of Fe and Al. The accumulation of high concentrations of heavy metals was mostly found in species that were common on and of the ultramafic soils, but included one SCPE near-endemic and one SCPE endemic form. Three of the hyperaccumulators belong to the Asteraceae.

10.1 Introduction

The past twenty years have witnessed an extraordinary increase in the interest of plants that hyperaccumulate heavy metals on ultramafic substrates such as serpentinite. These unusual species have found a ready application in such diverse fields as geobotany, phytochemistry, archaeology, mineral exploration, ecology, phytoremediation and phytomining (Cole & Le Roex 1978; Brooks 1998).

Serpentinite and other ultramafic rocks are rich in ferro-magnesium minerals. They outcrop as raised segments of a continent's crust and constitute a small proportion of the earth's land surface (Brooks 1987). Soils formed from ultramafic rocks have unusual characteristics, and are rich sources of heavy metals especially nickel (Ni), chromium (Cr), manganese (Mn) and iron (Fe) (Wild 1978). The remaining soil matrix is largely composed of relatively inert ferric and chromic oxides. In addition, calcium (Ca) deficiency and toxic levels of magnesium (Mg) in these soils can create an unfavourable Mg:Ca ratio which may lead to poor Ca assimilation. It should be noted that minerals such as arsenic, serpentine and gypsum have importance as constituents of ultramafic soils (Wild 1978).

On serpentinite the adverse effect of heavy metals is enhanced by the low levels of calcium in relation to magnesium, the lack of organic matter, and poor physical texture of the soil (Wild 1974a; Wild 1974b; Brooks & Yang 1984; Hughes & Noble 1991; Roberts & Proctor 1992). The poor soil structure and restricted soil depth, reduces root penetration and water content, and contributes to water stress in plants. As a result, serpentineferous areas have several endemic species adapted to high concentrations of heavy metals and generally adverse edaphic conditions (Proctor 1971; Proctor & Woodell 1975; Morrey *et al.* 1989; Roberts & Proctor 1992; Freitas & Mooney 1996).

Globally about six plant families are known to include more than ten species able to hyperaccumulate Ni (Borhidi 1998). Two of these families, Brassicaceae and Euphorbiaceae, have more than 80 plant species that can hyperaccumulate heavy metals (Borhidi 1998). The remaining four families, namely the Asteraceae, Buxaceae, Flacourtiaceae and Rubiaceae, have less than 30 hyperaccumulator species,.

In Sekhukhuneland, some species from the Araceae, Euphorbiaceae and Vitaceae exhibit a specific relationship with certain heavy metal soils (Siebert 2000). None of these species have been tested for the accumulation of heavy metals. One of the hypotheses suggested by Siebert (1998) was that indigenous plants from the Sekhukhuneland region, and notably some of the taxa endemic to the region, could possibly accumulate Cr.

There are conflicting views concerning the uptake and translocation of Cr (VI) in plants (Kimbrough *et al.* 1999). Wild (1974b) reported considerable uptake of Cr by the serpentine endemics, *Dicoma niccolifera* and *Jamesbrittenia fodina* (*Sutera fodina*), though this was subsequently ascribed to contamination (Cr on leaf surface) (Brooks & Yang 1984). Other plants that have been identified as Cr accumulators are *Sporobolus pectinatus* and a species of *Sutera* (Morrey *et al.* 1989).

Chromium is the seventh most abundant element on Earth (Katz & Salem 1994). It occurs in several oxidation states, with the trivalent and hexavalent states, namely Cr (III) and Cr (VI), being the most stable and common in terrestrial environments. Chromium can be both beneficial and toxic to animals and humans depending on its oxidation state and concentration (Kimbrough *et al.* 1999). At low concentration, Cr (III) is essential for animal and human health. Cr (VI) is a potent, extremely toxic carcinogen and may cause death to animals and humans if ingested in a large dose (Nriagu & Nieboer 1988).

There is a notable dearth of information in the literature pertaining to Cr uptake, toxicity, translocation, soil/plant relationships and effects on plant growth. Clearly these are aspects that require substantial investigation, specifically for regions such as Sekhukhuneland, where the soil concentrations of Cr and Ni are in certain areas respectively 500 and 60 times higher than the maximum permissible soil concentration of trace elements allowed in legislation and guidelines for South Africa (Steyn *et al.* 1996).

Very little is known about the uptake of Cr by plants. Nowhere in the world is it as abundant in natural soils as in the SCPE. This chapter includes discussions on the occurrence and geobotany of a selected number of plant species growing in the vicinity of chromitite outcrops in the SCPE. It also touches on a specific group of metals that are abundant in the ultramafic soils of the Rustenburg Layered Suite.

Footnote

Methods for this chapter are presented in Chapter 3, 3.2 Plant and soil analyses.

10.2 Maize seedlings grown in ultramafic soils

10.2.1 Background

This section deals with the growth limiting effect that ultramafic soil samples from chromitite outcrops in the SCPE have on maize seedlings. This effect is presumably caused by the toxicity of the soil samples. The limiting factor is measured as the average biomass production of maize seedlings grown in toxic soils (Table 29) as a percentage of the average biomass production of maize seedlings grown in the control soils.

The levels of N, P, S, Mg, Ca, Ni and Cr was determined in the roots and leaves of maize grown on metalliferous soil samples from a chromitite outcrop in the SCPE. The heavy metal concentrations in plant tissue tested for, is known to induce growth limiting effects on maize at certain critical levels (Cooper 1986). These levels were determined as the concentration of elements present in the maize when growth of roots and leaves becomes restricted in containers with Cr rich soils, compared with maize grown in containers with neutral quartzite sand as a control.

The objective of the experiment was to test applicability of results found by Cooper (1986) with regards to Cr toxicity, before more expensive methods were used to determine absorbtion and accumulation of heavy metals such as Cr and Ni in indigenous plants from Sekhukhuneland

10.2.2 Results and discussion

Root development of maize seedlings grown in the soil samples from the chromitite outcrop was stunted during the first two weeks, but the growth rate increased over time when compared with control plants (Figure 17; Table 30). As the soil became less toxic, and Cr and Ni were translocated from the roots to the leaves, the leaves showed a decrease in their average biomass production (Table 30). During the first two weeks the effect of Cr and Ni toxicity was minimal in the leaves of maize seedlings grown in the heavy metal soil. Plants grown in the heavy metal soil were dark green and indistinguishable from control plants. From 3 to 4 weeks leaf growth became stunted (Figure 17) and developed a degree of chlorosis and purpling (Figure 18).

Ultramafic soils from chromitite outcrops in Sekhukhuneland proved to be toxic to maize. Apart from severe stunting that occurred in leaf growth, the most important abnormalities were interveinal chlorosis and purpling, especially on newly extending leaves. Interveinal chlorosis (longitudinal striping of maize leaves) and leaf purpling was visible on plants grown in the ultramafic soils of the chromitite outcrop (Figure 18). Control plants in the quartzite soil had no such symptoms. This was clear evidence of the toxic effect that Ni has on maize. Interveinal chlorosis of leaves resulted from uptake of Ni in leaves (Table 31; Figure 19). The chlorosis was similar to that described specifically for Ni toxicity where Ni was translocated to leaves (Hunter & Vergano 1952). Leaf purpling is specific to and the result of Cr accumulation in leaves (Cooper 1986). Foliar analysis supported the hypothesis, as chlorotic and purple leaves showed higher levels of Ni and Cr than leaves of plants grown in the control soil (Table 31; Figure 19).

Chromium was accumulated more in the leaves than Ni (Figure 19). More Ni accumulation took place in the roots (Figure 19). Overall accumulation of both metals was more or less restricted to the roots, a phenomenon previously recorded (Cary *et al.* 1977). Overall very low concentrations were recorded in the leaves and roots. Chromium and Ni concentrations in the plant tissues decrease with time as the heavy metal concentrations in the root environment become depleted as a result of plant growth and uptake (the "plant size:heavy metal concentration" ratio increases). The same tendencies with regards to low levels of Cr and Ni accumulation were observed in indigenous grasses (Poaceae family) growing naturally at the site where the soil samples were collected (Table 32; Figure 20). However, Fe and Al were accumulated extensively.

Maize seedlings in this experiment (Table 31) showed similar Cr and Ni concentrations in their leaves to those of eleven tested vegetable crops (Zayed *et al.* 1998) and considerably lower concentrations in their roots. The wild grass species analysed (Table 32) also showed higher Cr and Ni concentrations in their leaves and lower concentrations in their roots than the vegetable crops analysed by Zayed *et al.* (1998). However, two of the grass species accumulated Al and Fe at levels above 1 000 mg/kg. This will be discussed in the next section.

During the first two weeks nutrient levels of N, P and S in roots and leaves of maize seedlings were high (Figure 21). These levels decreased substantially in the third week and kept on declining in the fourth week. Overall the nutrient levels were higher in the leaves than the roots. Mg and Ca levels of the roots and leaves of the seedlings remained more or less constant throughout the four weeks (Figure 21). No leaf edge splitting was recorded, indicating that there was no Ca deficiency in the plants (Cooper 1978; Kawaski & Moritsugu 1979). The Mg:Ca ratio in the plant material is low, namely 1:1.35 (Table 31), whereas the Mg:Ca ratio in the soil samples is high, namely 1:0.45 (Table 31). Nutrient levels in the indigenous grasses varied and no distinct patterns could be observed (Figure 22). The Mg:Ca ratio for the indigenous grasses is approximately 1:2.

A possible external factor that might have influenced the results obtained in the maize experiment is that the control soil was sterilised, hence also without any arbuscular mycorrhiza. This means the experiment could have been influenced by natural occurring mychorrhiza in the chromitite outcrop soil samples. Experiments have shown that maize can grow in heavy metal soil due to selective immobilization of heavy metals within the root tissues containing fungal cells of arbuscular mycorrhiza (Kaldorf *et al.* 1999) which serve as an exclusion mechanism.

10.3 Natural vegetation on ultramafic soils

10.3.1 Background

As would be expected in a sub-continent with about 30 000 native plant species, southern Africa proved to have its own unique serpentiniferous flora. The Great Dyke of Zimbabwe and the Barberton Sequence of South Africa harbour a number of plant species that hyperaccumulate Ni. Wild (1970) and Brooks & Yang (1984) recorded several hyperaccumulators of Ni on the Great Dyke. Morrey *et al.* (1992) reported hyperaccumulation of Ni by several members of the Asteraceae from the Barberton Sequence in Mpumalanga. One of these species, *Berkheya coddii*, is renowned for its ability to hyperaccumulate Ni. Its ability to accumulate Ni in large quantities was first reported by Morrey *et al.* (1989) and its economic viability in phytoremediation was investigated by Anderson *et al.* (1995).

This section focuses on the potential heavy metal accumulators of the eastern Rustenburg Layered Suite (RLS), a part of the Bushveld Complex that is one of the world's largest ultramafic complexes. The work conducted in this section is similar to the approach followed by Brooks & Yang (1984) on the Great Dyke, Zimbabwe, and by Cole (1992) on the ultramafics of the South African Lowveld. The RLS underlies the Sekhukhuneland Centre of Plant Endemism in Mpumalanga and the Northern Province, South Africa (Siebert 1998) (Figure 1). It shows considerable diversity in habitat and soil chemistry (Land Type Survey Staff 1989; Visser *et al.* 1989), and supports a highly diverse and unusual type of Mixed Bushveld (Acocks 1953) flora of more than 2 000 angiosperm species and infraspecific taxa (Siebert 2000; Chapter 11). Siebert (1998) recognised approximately 50 taxa as being endemic to the ultramafic substrates of Sekhukhuneland. These substrates are classified as serpentine in botanical literature (Knowles & Witkowski 2000).

The ultramafic soils analysed in this study are representative of the regions where the local flora exhibit high degrees of endemism. This thesis is a preliminary investigation into the heavy metal soils of the Critical Zone of the RLS, the richest area in both plant endemics (Siebert 1998) and heavy metals (Schurmann *et al.* 1998). The purpose of this investigation was to determine whether the concentrations of heavy metals from soils in the SCPE are comparable with other serpentineferous soils in the world. This forms the basis to determine whether the plant taxa on heavy metal outcrops in the SCPE are accumulators or excluders (as defined by Baker (1981)) of heavy metals. One of the aims of this section is to stimulate further research on heavy metal soils and its associated vegetation, as more information on the concentrations of trace elements in such soils is much needed (Steyn *et al.* 1996). It is hoped that this contribution may stimulate further scientific research and commercial use of plants growing on the heavy metal outcrops of the SCPE.

10.3.2 Results and discussion

The results and discussion of this section is divided into five subheadings. The rocks of the study area are discussed followed by the soils, the catena, the plants and concludes with the plant-soil associations.

10.3.2.1 Rock analyses

Rocks were analysed and sorted according to their Mg:Ca ratio (Figure 23), and were ordered according to this relationship in the data tables (Appendix 2). Rock types presented in the graphs were also displayed in this order to standardise the x-axis of the figures (Figure 26), with Groen Valley serpentinite left (A, Mg:Ca ratio = 34.52 Mg : 1 Ca) and Leolo Mountain norite right (M, Mg:Ca ratio = 1 Mg : 5.56 Ca). Exposed rocks of serpentinized harzburgite, magnetitite and chromitite showed similar Mg:Ca ratios and high chromium/nickel concentrations, as was found in the serpentine control Groen Valley, Barberton Greenstone Belt (Balkwill & Burlin 1995). The serpentine related rock types are typical of the Critical Zone of the Rustenburg Layered Suite.

When the chemical composition of the rock data are compared, the following is evident from the gradient (Appendix 2):

- Cr, Ni and Mg are highest in the serpentinite, serpentinized harzburgite, magnetitite and chromitite—in addition the magnetitite shows high Zn concentrations;
- Ti, V and Fe are highest in magnetite, chromate and black sand in dongas;
- K is highest in Getlane shales and Burgersfort pyroxenite;
- Cl is highest in Burgersfort pyroxenite and Roossenekal norite;
- P is highest in Olifantspoortjie pyroxenite and diabase dykes in addition Cu is highest in diabase dykes;
- Ca is highest in Olifantspoortjie pyroxenite, concresions of the Steelpoort Valley, and Leolo and Roossenekal norite – in addition Leolo norite is rich in Na;
- Si is highest in quartzite sills.

These heterogeneities in element concentrations across the range of sampled rock support the diverse range of plant communities reported on in Chapter 4, 4.3 Hierarchical classification. From here onwards, focus will be on the rock associated with the transect/catena (Figure 24) that was sampled for the study of the plant species that grow abundantly on heavy metals soils of the SCPE. Note that there is a difference between the gradient obtained here and the soil catena discussed in section 10.3.2.3.

10.3.2.2 Soil analyses

A profile of the study site (catena) on the Critical Zone of the RLS is given in Figure 24. A transect of the catena can be divided into a floodplain (A & B), dongas or erosion gulleys (C, D & K), slopes (E–I), and a chromitite outcrop (J, L & M). Soils most frequently associated with the Critical Zone are melanic A-horizons over pedocutanic/carbonate B-horizons such as the Bonheim and Steendal forms, and ortic A-horizons over hard rock/lithocutanic B-horizons such as Mispah and Glenrosa forms. Soil samples from these regions were analysed and described as follows:

- Floodplain soils occur on the wide alluvial flats where they drain the areas between the norite and pyroxenite hills (A & B). In places these soils may overlie the Merensky and Bastard Reefs, including magnetitite outcrops (B). These landforms experience periodic local flooding during the rainy season. The profiles are deep (> 1.5 m), and can vary from black to dark brown, and may show characteristics of vertisols. Texture of the surface soil is a medium clay that gradually increases to a medium to heavy clay in low-lying areas, or adversely decreases to a medium to heavy loam on more raised areas. The soil layer where water collects during the wet season, is usually underlain by silica concretions.
- The soils of lower and footslopes can either be shallow or very stony and overlie partially weathered ultramafic rock, or moderately deep and depositional with stony profiles. The shallow soil type occurs directly at the foot of mountains and hills (E & F). These soils overlie exposed rock. They are black or dark brown, with a loam surface grading and clayey subsoil. The deeper depositional soils occur below raised areas in the floodplains (F). The raised areas (G) occur where the alluvium overlie rock outcrops. Gravel and stone are common throughout the profile. Soils are usually dark brown clays. Small siliceous nodules often occur in the subsoil. Below the hills natural erosion occurs (C & D). These soils lie within the floodways of drainage lines. The bottoms of these dongas are typically shallow and overlie gravel and stone. The profile of the soil on the raised sides is deep black or brown cracking clays that are poorly structured.

Upper slopes and crests (H & I) of hills and mountains, and to some extent raised areas in the floodplains (B), overlie weathered ultramatic rock. They are typically shallow and extremely rocky. The soil texture is predominantly loam on the surface and has a light clay subsoil. Soil colour varies from reddish-brown to brownish-black. On the hills and mountains, narrow alluvial drainage flats occur (K). During the rainy season these soils become eroded due their weak structures. These landforms are basically landfills and are similar to the soils of the floodplains, but not as well developed. Outcrops of chromitite can occur on the crests and upper slopes of hills and mountains (J, L-M). These soils are extremely shallow (< 30 cm) with the bulk of the profile comprised of freshly weathered Cr. Ni and Fe ore, which mask the diffuse change to the parent material.</p>

When the serpentine characteristics of the soils along the catena are compared, topographic positions J, K and M (chromitite outcrop) proved to be most closely related to serpentine, namely with low nutrient levels, high heavy metal levels and a high Mg:Ca ratio (Figure 25; see stippling for catena). Topographic positions E, F, G and H (hill slope) are least related to serpentine, and are possibly more related to the soils of the dolomites of the adjacent Transvaal Sequence. The valleys and erosion gulleys are intermediate between the outcrop and the hill slope.

Diagnostic metals for the soils of the valley and erosion gulleys are Cu, Mn and Ti and include other diagnostic elements, namely S, Cl and Si (Appendix 3; Table 33). Chromitite outcrop soils is characterised by Cr, Ni, Mo and Zn, which are relatively abundant. The valleys, erosion gulleys and chromitite outcrop soils can be distinguished from the mountain slope soils by high concentrations of metals, namely Co, Fe and V, and high levels of Mg (Appendix 3). The chemical composition of the soils on the mountain slope is different in that it has high concentrations of Ca, K, Na and P, and metals such as Al and Pb are abundant.

Scatter diagrams of selected serpentine related chemical attributes were plotted to determine the relationship between heavy metal concentrations, Mg:Ca ratios and nutrient levels for rocks and soils in the study area (Figures 26 & 27):

- Nutrient levels (%) vs metal concentrations (mg/kg). For both the rock and soil samples
 the metal concentrations decreased as nutrient levels increased. This tendency relates
 directly to rocks with high heavy metal concentrations, because these rocks have lower
 levels of other elements per square meter of solid rock.
- Metal concentrations (mg/kg) vs magnesium-calcium ratio (1Mg:xCa). The tendency in both rocks and soils is that of increasing metal concentrations with increasing Mg levels. This is best explained by the chemical composition of the ultramafic rocks. Soils in close proximity to serpentine related ultramafic rocks will exhibit the same Mg-heavy metal proportion.
- Magnesium-calcium ratio (1Mg:xCa) vs nutrient levels (%). Rock and soil analysis show results that are not similar. Rocks show a slight positive, and soils a strong positive relationship between Mg:Ca ratios and nutrient levels. Ca-rich ultramafic soils are poor in nutrients, but in comparison with Mg-rich, serpentine-related substrates they are nutrient rich, hence the strong positive relationship. However, the rock samples are not all ultramafic and some have high Mg and high nutrient levels and others have high Ca and low nutrient levels. This gives rise to a weak positive relationship.

10.3.2.3 Catena analyses

Scatter diagrams of heavy metal, nutrient and Mg/Ca concentrations were plotted on the same y-axis as the topographic positions (metres above valley bottom) of the catena (Figure 25). It is evident that nutrient concentrations are the highest on the mountain slope (E–H). The higher nutrient concentrations occur on the mountain slope, because the rock of the chromitite outcrop is not fully weathered into minerals and the nutrients in the valley has been eroded away with the topsoil. Metal concentrations are highest at positions B, J, L and M and these areas are located above chromitite and magnetitite outcrops which are only partially weathered. The Mg/Ca ratio is lowest at positions E–I along the catena. These areas are also rich in Ca which it obtained from the underlying norite mother material.

Soils from 13 sites (Figure 24) along a catena/transect have been analysed (Appendix 4) to compare specific element levels in the local soils with those of serpentineferous areas in South Africa (Table 34) and the world (Table 35). In the soils of the catena, levels of pH vary from 6.67 to 7.84, total Ni from 81 to 1 133 μ g/g, total Cr from 479 to 178 020 μ g/g, total Mg from 6.44 to 23.44 %, total Ca from 5.61 to 18.53 % and the Mg:Ca ratio from 0.23 to 2.14 (Table 36).

On a local level (Table 34), the Mg/Ca ratio of Sekhukhuneland soils is much lower than that of serpentineferous areas elsewhere in Mpumalanga (Barberton) (Morrey *et al.* 1989). This is ascribed to the much higher Ca levels in the soils (and rocks) of Sekhukhuneland. K and N levels in the Sekhukhuneland soils are up to twice as high, Na levels are 10 to 20 times as high and C levels are more than twice as high than those measured for serpentines. Minimum levels of Cr and Ni concentrations in the Sekhukhuneland soils are two and 20 times lower respectively. Maximum levels of Ni in the Barberton serpentines are nearly four times higher than what was recorded for the Sekhukhuneland soils, but Cr levels are nearly 50 times higher in the Sekhukhuneland soils. Serpentinite soils therefore only have extreme concentrations of Mg and Ni which are higher than those of the Sekhukhuneland soils. In addition the pH of the Mpumalanga serpentinites are lower than that of the Sekhukhuneland soils.

On a world scale of selected ultramafic sites (Table 35), the Sekhukhuneland soils have low maximum Ni levels, but extremely high maximum levels of Cr. Mg levels in the Sekhukhuneland soils are average, but the Ca levels are two times higher than the average. The Mg:Ca ratio is therefore lower than that of serpentineferous soils, but higher than that of polluted Canadian soils.

10.3.2.4 Plant analyses

The Great Dyke is probably the most well-known serpentineferous area in southern Africa. Average levels of element accumulation by plants of Sekhukhuneland and the Great Dyke (Brooks & Yang 1984) differ in that eight times higher levels of Ni, as well as higher levels of Fe and Mn, were recorded in species of the Great Dyke (Table 36). Six times higher levels of Mg were also recorded for plants of the Great Dyke (Table 36). On the other hand,

two times higher Cr levels and nearly three times higher Al levels were recorded for Sekhukhuneland soils. Sekhukhuneland soils have 0.5 times higher Ca levels in plant material.

Twenty plant species were sampled from the catena and analysed, with five dicotyledon species proving to be hyperaccumulators of heavy metals (Appendix 4). Hyperaccumulation was restricted to Fe and Al. *Pterothrix spinescens*, *Jamesbrittenia atropurpurea*, *Dicoma gerrardii*, *Berkheya insignis* and *Euclea linearis* accumulated levels above 1 000 mg/kg of Al and Fe in their leaves, roots and stems. To this list can be added the monocotyledons (grasses) *Diheteropogon amplectens* and *Heteropogon contortus* (10.2.2 Results) (Table 32). The highest levels were recorded in the roots of *Berkheya insignis*. Leaves with the highest Al and Fe levels belong to *Pterothrix spinescens*. Eight species also showed levels of Fe and Al above 500 mg/kg, but below 1 000 mg/kg. These species are all potential hyperaccumulators of Fe and Al (Table 40). *Pterothrix spinescens* also had the highest concentrations of Cr of any plant parts (stem) that were sampled along the catena (420 mg/kg).

In a scatter diagram of the nutrient level versus the metal concentration of all plant material collected along the catena, it is shown that metal uptake increases as the nutrient uptake decreases (Figure 28). It is also shown that the metal concentrations in the plant material increases as the Ca in the plant tissues increases (Figure 28). Ca levels in the plant material was also related to high nutrient levels in the tissue, which probably relates to the mother material on which the species with high Ca levels grow (Figure 28).

A detailed analysis of serpentine associated chemical attributes in plant tissue indicated specific tendencies in each of the three major areas along the catena, namely eroded areas, hill slope and chromitite outcrop (Figure 29; Table 37):

 Eroded areas. Scatter diagrams of the Mg:Ca ratios, heavy metal concentrations and nutrient levels in the leaves and roots of species growing in the dongas (erosion gulleys) show tendencies similar to those of the catena as a whole. The only difference

was observed in the Mg:Ca ratio versus heavy metal concentration of the root tissues. In this case metal concentrations increased as Ca levels decreased.

- Hill slope. Scatter diagrams of the Mg:Ca ratios, heavy metal concentrations and nutrient levels in the leaves and roots of species growing on the hill slope show different tendencies than the catena as a whole. The first difference was observed in the Mg:Ca ratio versus heavy metal concentration of the root tissue. In this case metal concentrations increased as Ca levels decreased. The second difference is found in the metal concentration versus nutrient level scatter diagrams of both the leaves and roots. In these diagrams the metal concentrations increased with those of the nutrient levels.
- Chromitite outcrop. Scatter diagrams of the Mg:Ca ratios, heavy metal concentrations and nutrient levels in the roots of species growing on the outcrop show similar tendencies than the catena as a whole. However, leaf tissue shows different tendencies. The Mg:Ca ratio versus heavy metal concentration of the leaf tissue shows an increase in metal concentration with an increase in nutrient levels. In the case of metal concentrations versus the Mg:Ca ratio, Ca levels decreased with increasing metal concentrations. Leaf tissue also exhibit decreasing Ca levels where nutrient levels are high.

10.3.2.5 Plant-soil associations

Soil nutrient levels plotted against plant nutrient levels, soil metal concentrations against plant metal concentrations and soil Mg:Ca ratios against plant Mg:Ca ratios, present graphs with different relations (Figure 30). The results were not expected, as levels in the soil should be reflected in the plant tissue. However, concentrations in plant tissue were related to positions along the catena. Plants growing on the more fertile mountain slopes have higher nutrient levels in their tissue compared to the plants of the eroded areas and the chromitite outcrop. The same trend was observed for the Mg:Ca levels with higher levels of Ca in plants growing on the Ca-rich slopes and higher Mg levels in the plants growing on the Mg-rich soils of the eroded areas and dongas. The scatter diagram of the heavy metal concentrations exhibits a completely different pattern than would be expected. Lower

accumulation rates by plants at higher soil metal concentrations of the study sites indicate that these species are excluders. From this graph it is clear that the plants sampled for this study accumulate heavy metals when it occurs at approximately 20–25 mg/kg in the soil, but with increasing soil concentrations the levels in the plant tissue becomes lower and finally, the heavy metals are excluded.

At Cr concentrations of below 5 000 mg/kg in the soil, accumulation by plants in the eroded areas are the highest (Figure 31). This indicates that there are higher levels of available Cr in the dongas (erosion gulleys). Ni concentrations of 400 to 600 mg/kg in the dongas give rise to the highest levels of Ni accumulation by plants (Figure 31), probably also as a result of its availability in these areas.

	2 weeks	3 weeks	4 weeks
Mean leaf length %	97	89	77
Mean root length %	88	95	95
Mean leaf dry mass %	96	94	77
Mean root dry mass %	78	82	88

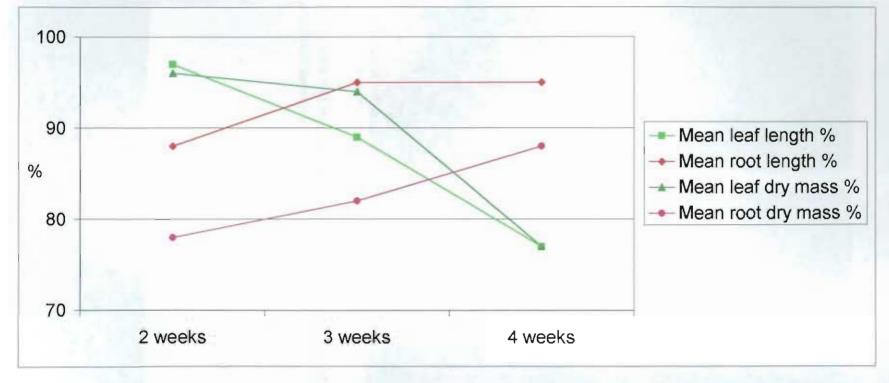


Figure 17 Average biomass production of the roots and leafs of Zea mays seedlings grown in an ultramafic soil mixture. The averages are expressed as a percentage of the control.

i). Eight seedlings per pot in quartzite soil (left) and chromium soil (right) after four weeks.

ii). Four seedlings per pot in quartzite soil (left) and chromium soil (right) after four weeks.

iii). Two seedlings per pot in quartzite soil (left) and chromium soil (right) after four weeks.

Figure 18 Interveinal chlorosis and leaf purpling in Zea mays as a result of Ni and Cr toxicity respectively (i-iii are different densities of seedlings).

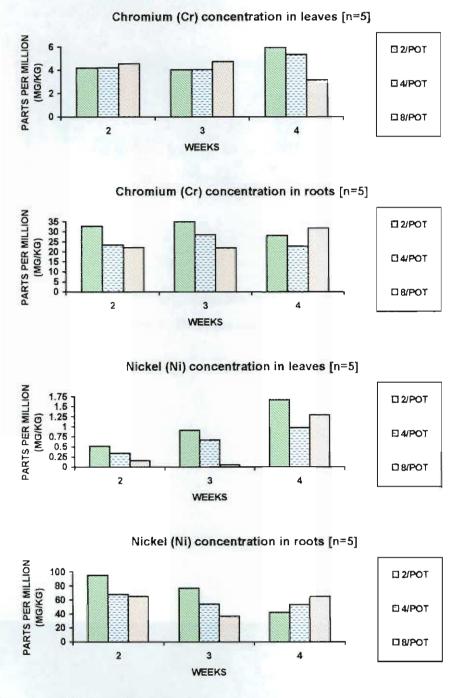


Figure 19 Heavy metal concentrations in the leaves and roots of *Zea mays* seedlings grown at different densities in a chromitite outcrop soil mixture for 2, 3 and 4 weeks respectively.

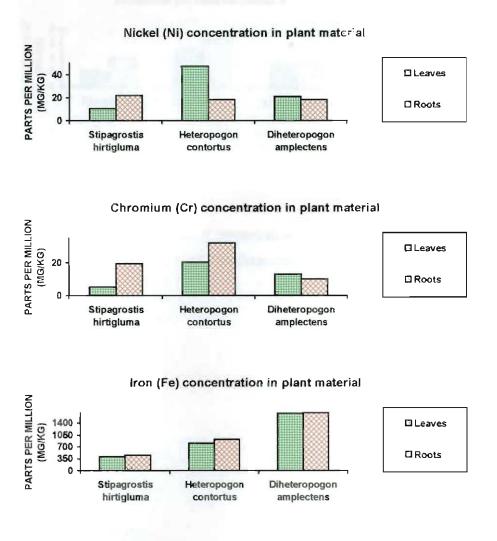


Figure 20 Heavy metal concentrations in the leaves and roots of three indigenous grass species growing naturally on chromitite outcrops.

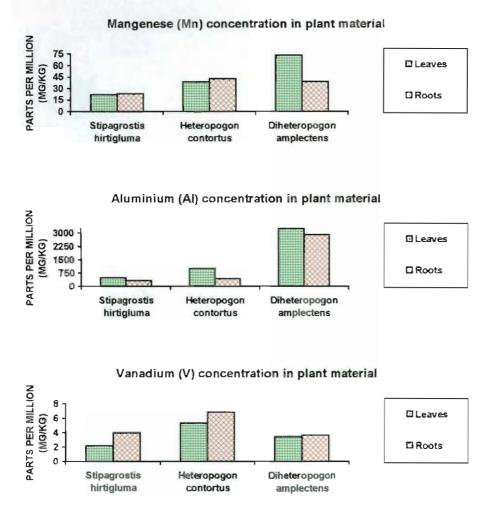


Figure 20 (continued) Heavy metal concentrations in the leaves and roots of three indigenous grasses growing naturally on chromitite outcrops.

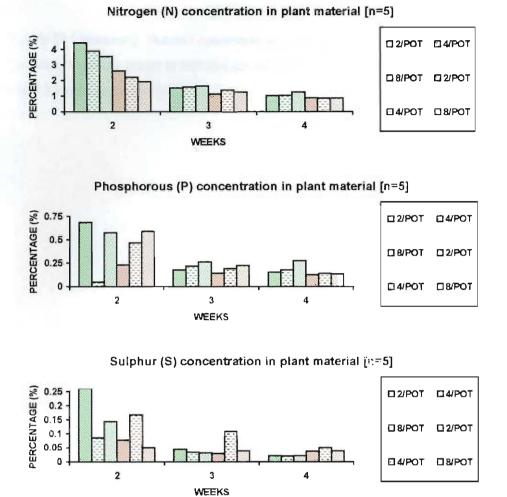


Figure 21 Nutrient concentrations in the leaves (green) and roots (brown) of *Zea mays* seedlings grown at different densities in a chromium outcrop soil mixture for 2, 3 and 4 weeks respectively.

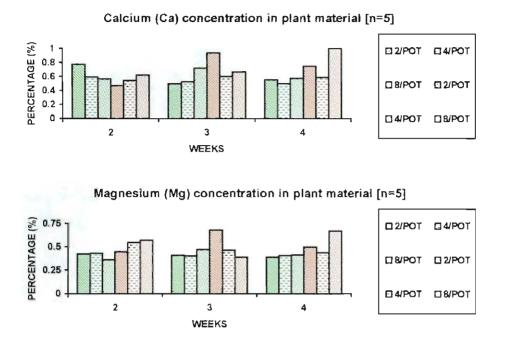


Figure 21 (continued) Nutrient concentrations in the leaves (green) and roots (brown) of *Zea mays* seedlings grown at different densities in a chromium outcrop soil mixture for 2, 3 and 4 weeks respectively.

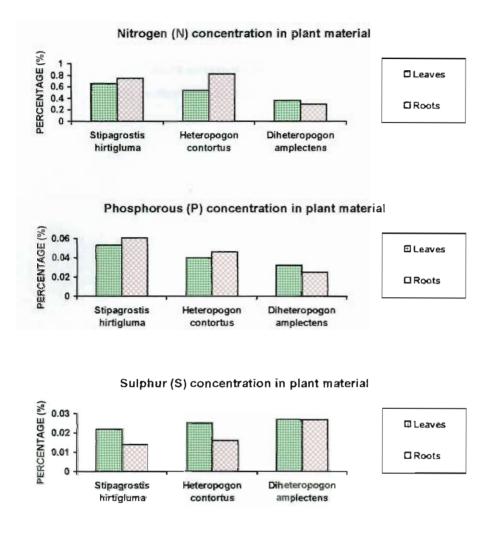


Figure 22. Nutrient concentrations in the leaves and roots of three indigenous grasses growing naturally on chromium outcrops.

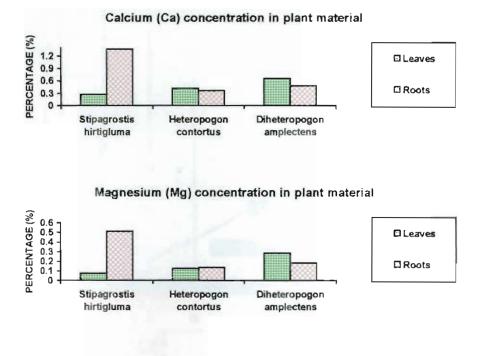


Figure 22 (continued) Nutrient concentrations in the leaves and roots of three indigenous grasses growing naturally on chromium outcrops.

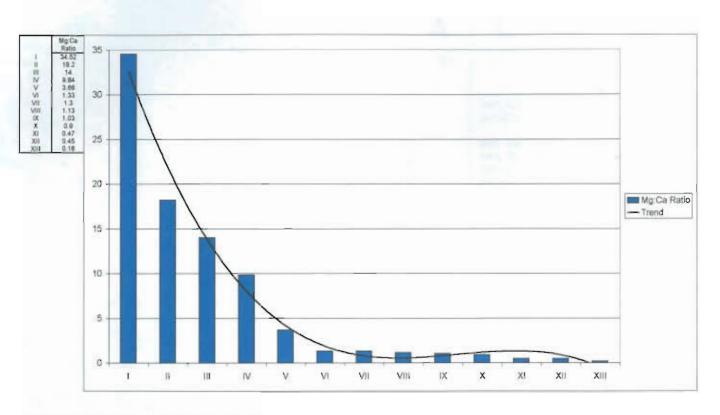


Figure 23 Analysed rocks were sorted according to their Mg:Ca ratio (as an idication of the serpentine gradient), with Groen Valley serpentine left (A, Mg:Ca ratio = 34.52) and Leolo Mountain norite right (M, Mg:Ca ratio = 0.18). This gradient was used for the bar graphs in Appendix 2.

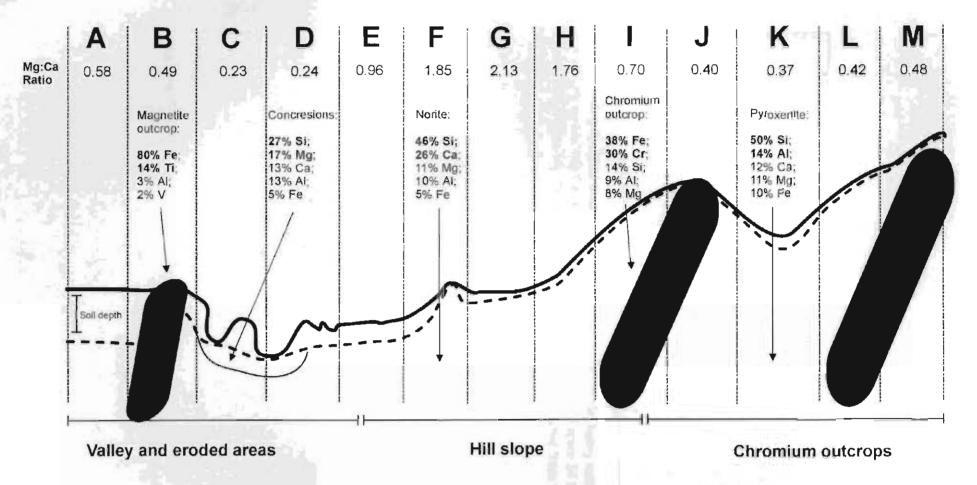


Figure 24 Transect of a catena in the Sekhukhuneland Centre of Plant Endemism with associated underlying rock.

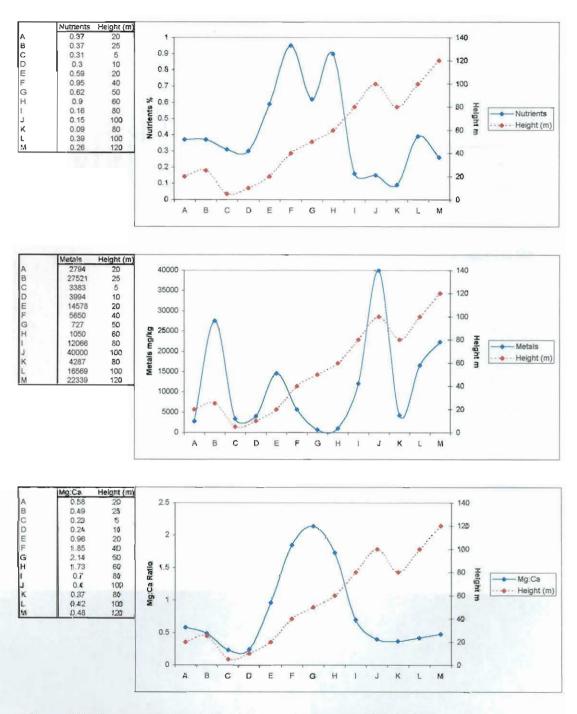


Figure 25 Topographic based distribution of the nutrient levels, heavy metal concentrations and Mg Ca ratios along the catena (stippling; see Figure 24 for an explanation of A to M). These graphs summarise the results obtained from the soil analysis.

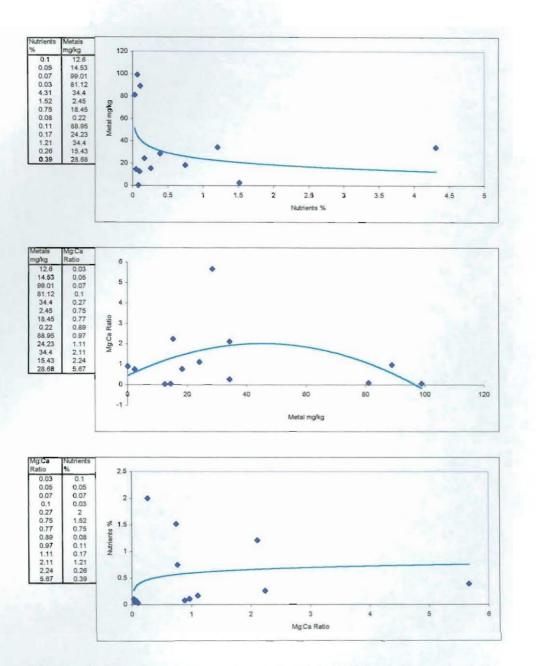
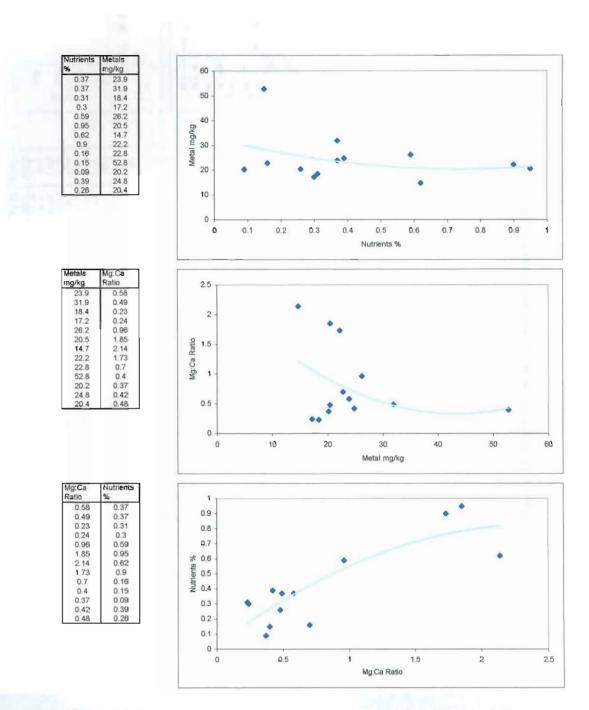
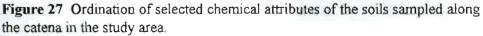




Figure 26 Ordination of selected chemical attributes of the rocks sampled in the Sekhukhuneland Centre of Plant Endemism.

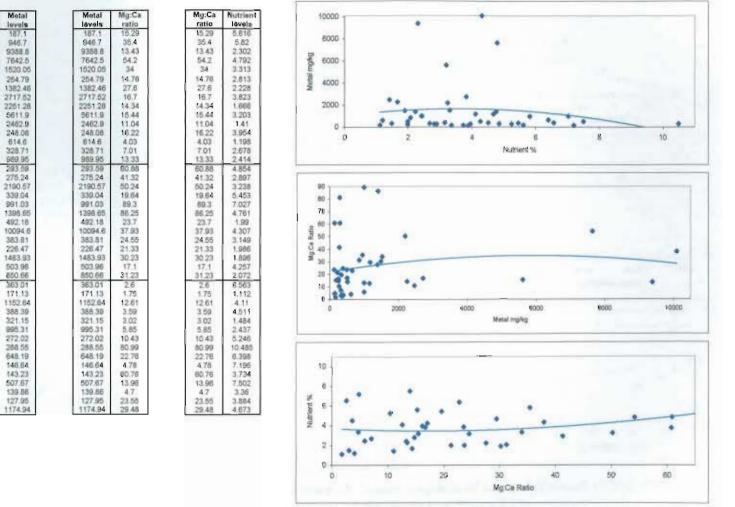


Figure 28 Scatter diagrams of selected chemical attributes of plant material collected along the catena in the study area.

Nutrient

levels

5616

5.82

2.302

4 792

3.313

2.813

3.823

1.666

3 203

1.41

3.954

1.198

2.678

2.414

4.854 2.897 3.238

5,453

7.027

4.761

1.99

4.307

3.149

1.986

1.896

4.257

6.563

1.112

4.11

1.484

2.437

5.246

6.398

7.196

3.734

7.502

3.36

3.884 4.673

Es Ps Ps Rk

Rk Ja Jo Do Do Pn Pn Bi El El b b Ba Ba Rb Rb

Rb

Tr Tr

Le Le Of Of Fp Po Po Ct Ct

8

12

SR

1

R

5

R

12

R

LSR

L

5

R

L

s

R

1

SR

SR

Eroded areas (Figure 29; part I)



Figure 29 Scatter diagrams of selected chemical attributes of leaf and root material collected along the eroded areas, hill slope and chromitite outcrops of the catena (see Figure 24 for sampling points).

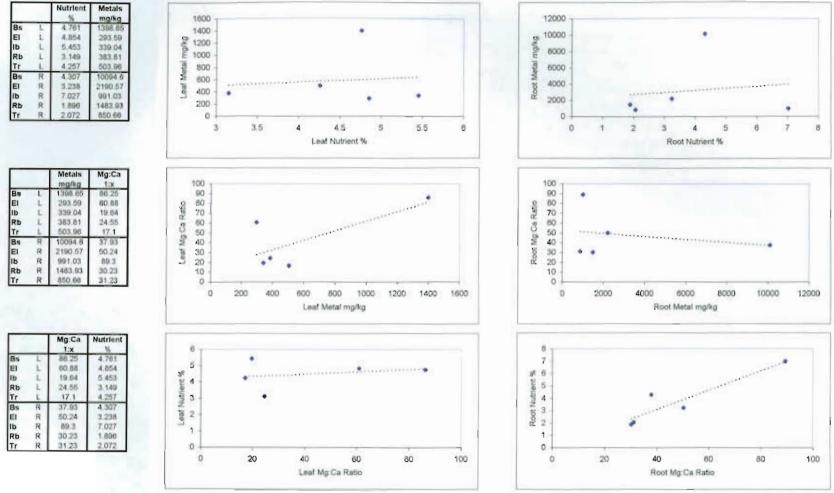


Figure 29 continued. Scatter diagrams of selected chemical attributes of leaf and root material collected along the eroded areas, hill slope and chromitite outcrops of the catena (see Figure 24 for sampling points).

Chromitite outcrops (Figure 29; part III)

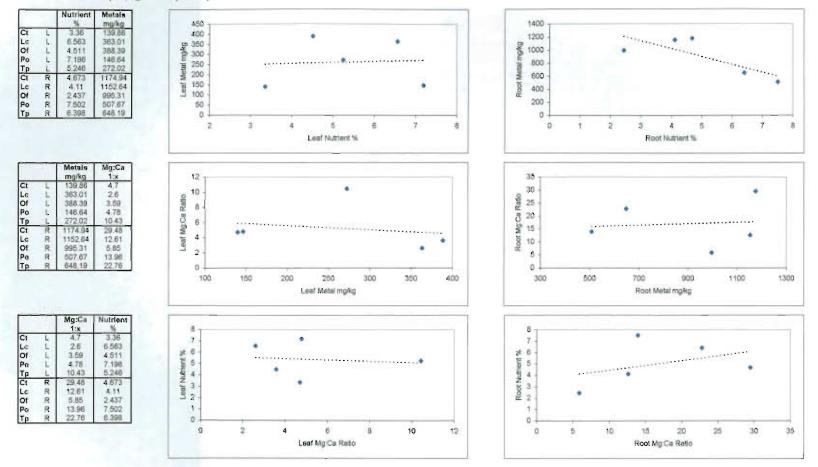


Figure 29 continued. Scatter diagrams of selected chemical attributes of leaf and root material collected along the eroded areas, hill slope and chromitite outcrops of the catena (see Figure 24 for sampling points).

Plant Mg:Ca 15.29 35.4

13.43

54.2 34

14.76

27.6

16.7

\$4.34

15.44

11.04

16.22

4.03 7.01 13.33

60.88

50.24

19.64

89.3

86.25

23.7

37.93

24.55

21.33

30.23

17.1

31.23

2.6

1.75

12.61

3.69

3.02

5.85

10.43

80.99

22.76

4.78

6.76

13.96

4.7 23.55 29.48

Soll Mg:Ca 0.56 0.56 0.24

0.24

0.24 0.23 0.23 0.49 0.49

0.24

0.24 0.49 0.58 0.58 0.96 0.96 0.96 1.85

1.85

214

1.73

1.73

1.73

0.69

0.4

0.4

0.4

0.48

0.48

0.48

0.37

0.37

0.48

0.48

D.48

0.42 0.42 0.42

Plant Metals 187.1

946.7 9388.8

7642.5

1520.05 254.79 1382.46 2717.52

2261.28

5611.9

2462.9 248.08 614.5 328.71 989.95

293.59 275.24

2190.57 339.04

991.03 1398.65

492.18

10094.8

383.81

226.47 1483.93 503.96 850.66

363.01

171.13

272.02

288.55

648.19

145.64

143.23

507.67 139.86

127.95 1174.94

Nutrients Nutrients Metula Es R 0.37 5.62 23.9 Ps L 0.3 23.92 23.9 Ps 0.3 23.02 23.9 Ps 0.3 23.02 23.9 Ps 0.3 23.02 23.9 Ps 0.3 3.313 23.9 Rk L 0.37 2.813 18.4 Ja D.37 2.823 18.4 Ja C.337 3.623 31.9 Ja R 0.31 1.666 31.9 Dg C.031 3.954 31.9 Pn L 0.37 2.676 17.2 Bi C.037 2.676 17.2 20.5 Bi L 0.37 2.676 17.2 Bi C.059 2.897 20.5 20.5 Bi R 0.956 7.027 26.2 Bi D.0956 5.453		Soil Plan	t Soll
En R 0.37 5.82 23.9 Ps L 0.3 2.302 23.9 Ps L 0.3 2.302 23.9 Ps R 0.3 3.313 23.9 Ps R 0.3 3.313 23.9 Ps R 0.37 2.813 184 Ja L 0.31 3.823 31.9 Ja R 0.31 3.823 31.9 Ja R 0.31 3.854 31.9 Dg L 0.33 1.41 23.9 Dg R 0.31 1.98 31.9 Di L 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.59 2.897 20.5 Bi R 0.69 3.238 20.5 Bi R 0.69 3.238 20.5 Bi R			
P# L 0.3 2302 23.9 P8 0.3 4.792 23.9 P8 0.3 3.313 23.9 Rk L 0.37 2.813 18.4 Rk L 0.37 2.2813 18.4 Rk L 0.37 2.2813 18.4 Ja R 0.31 3.623 31.9 Ja R 0.31 3.666 31.9 Dg L 0.31 3.954 31.9 Pn L 0.31 3.954 31.9 Pn L 0.37 2.474 17.2 Bi R 0.37 2.474 17.2 Bi R 0.659 3.238 20.5 Bi R 0.95 5.453 26.2 Bi R 0.95 7.027 262 Bi R 0.95 7.027 262 Bi R 0.95 1.4	Es L	0.37 5.61	6 23.9
Ps S 0.3 4.792 23.9 Ps R 0.3 3.313 23.9 Rk L 0.37 2.815 18.4 Ja L 0.37 2.228 18.4 Ja L 0.31 3.823 31.9 Dg L 0.31 3.666 31.9 Dg L 0.3 3.203 23.9 Dg R 0.31 1.666 31.9 Dg L 0.33 3.203 23.9 Dg R 0.31 1.966 31.9 Pn R 0.31 1.98 31.9 Bi L 0.37 2.678 17.2 Ei L 0.59 4.854 20.5 Ei S 0.59 3.287 20.5 Bi L 0.95 5.453 28.2 Bi L 0.95 5.453 28.2 Bi L	Es R	0.37 5.82	23.9
P# R 0.3 3.313 23.9 Rk L 0.37 2.813 18.4 Ja L 0.31 3.823 31.9 Ja R 0.31 3.823 31.9 Ja R 0.31 3.823 31.9 Ja R 0.31 3.823 31.9 Dg L 0.33 3.203 23.9 Dg R 0.31 3.954 31.9 Dg L 0.37 2.678 31.9 Pn L 0.37 2.678 17.2 Bi R 0.37 2.678 20.5 EI S 0.59 2.897 20.5 Bi R 0.95 7.027 26.2 Bi L 0.52 4.761 14.7 Bi 0.062 1.99 144.7 Bi 0.062 4.307 144.7 Bi 0.99 1.986	Ps L	0.3 2.30	2 23.9
Rk L 0.37 2.813 18.4 Rk R 0.37 2.2813 18.4 Ja R 0.37 2.2813 18.4 Ja R 0.37 2.280 18.4 Ja R 0.31 3.623 31.9 Ja R 0.31 1.666 31.9 Dg Q 0.3 3.203 23.9 Dg R 0.31 1.95 31.9 Pn L 0.31 3.954 31.9 Pn L 0.31 3.954 31.9 Pn R 0.31 1.96 31.9 Pn R 0.37 2.476 20.5 EI S 0.59 2.897 20.5 EI R 0.95 5.453 26.2 Bu L 0.95 7.027 26.2 Bu L 0.95 7.027 26.2 Bu D.99			2 23.9
Rk R 0.37 2.228 184 Ja L 0.31 3.823 319 Ja R 0.31 3.666 319 Dg L 0.3 3.203 239 Dg R 0.31 1.41 239 Pn L 0.31 3.964 319 Pn R 0.31 1.198 319 Pi L 0.37 2.678 172 Bi R 0.37 2.414 172 Ei L 0.59 4.854 205 Ei S 0.59 2.387 205 Bi L 0.95 5.453 28.2 fi R 0.95 5.453 28.2 fi R 0.95 5.453 28.2 fi R 0.92 1.99 14.7 Bi L 0.99 1.948 22.2 Rb 0.99	Ps R		
Ja L 0.31 3.823 31.9 Ja R 0.31 1.666 31.9 Dg L 0.31 1.666 31.9 Dg R 0.3 3.203 23.9 Dg R 0.3 1.41 23.9 Pn L 0.31 3.954 31.9 Bi L 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.37 2.678 20.5 EI S 0.59 2.837 20.5 Bi R 0.95 5.433 265.2 Bis L 0.95 5.433 265.2 Bis L 0.95 7.027 262.2 Bis L 0.95 7.027 144.7 Bis 0.02 1.99 144.7 Bis 0.99 1.986 22.2 Rb 0.99 1.986			
Ja R 0.31 1.666 31.9 Dg L 0.3 3.203 23.9 Dg R 0.3 3.213 23.9 Dg R 0.3 1.41 23.9 Pn L 0.31 3.954 31.9 Pn R 0.31 3.954 31.9 Bi L 0.37 2.678 17.2 Bi R 0.37 2.414 17.2 Bi L 0.59 4.854 20.5 EI L 0.59 4.854 20.5 Bi L 0.95 5.453 22.5 Bi R 0.95 7.027 26.2 Bi L 0.62 4.307 14.7 Bi R			
Dg L 0.3 3.203 23.9 Dg R 0.3 1.41 23.9 Pn L 0.31 3.954 31.9 Pn R 0.31 1.198 31.9 Bi L 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.59 4.854 20.5 Ei S 0.59 5.453 28.2 Bi R 0.95 5.453 28.2 Bi R 0.95 5.453 28.2 Bi L 0.95 1.417 22.2 Bi L 0.95 1.996 22.2 Rb D			
Dg R 0.3 1.41 23.9 Pn L 0.31 3.954 31.9 Bi L 0.31 1.156 31.9 Bi L 0.37 2.678 17.2 Bi L 0.37 2.614 17.2 Bi L 0.59 3.238 20.5 Bi L 0.95 5.433 26.2 Bi L 0.95 7.027 26.2 Bis D.622 1.99 14.7 Bis 0.62 4.307 14.7 Bis 0.62 4.307 14.7 Bis 0.99 1.986 22.2 Rb 0.99 1.986 22.2 Rb 0.99 1.986 22.2 Rb			
Pn L 0.31 3.954 31.9 Pn R 0.31 1.186 31.9 Bi R 0.37 2.678 17.2 Bi R 0.37 2.414 17.2 Bi R 0.37 2.414 17.2 Bi R 0.59 3.864 20.5 Ei S 0.59 2.837 20.5 Bi L 0.95 5.453 28.2 Bi L 0.95 5.453 28.2 Bi R 0.95 7.027 262 Bi R 0.62 4.761 14.7 Bi R 0.62 4.307 14.7 Bi S 0.62 4.307 14.7 Bi C 0.9 1.686 22.2 Rb D.9 1.686 22.2 22.2 Rb R D.9 1.686 22.2 Tr R <td></td> <td></td> <td></td>			
Pn R 0.31 1.198 31.9 Bi L 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.59 4.854 20.5 EI S 0.59 4.854 20.5 Bi L 0.95 5.453 28.2 Bi R 0.062 4.907 14.7 Bis S 0.62 4.907 14.7 Bis D 0.9 1.996 22.2 Rb L 0.9 1.996 22.2 Rb D 9.9 1.996 22.2 Rb R 0.15 6.563 42.6 Le			
Bi L 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi R 0.37 2.678 17.2 Bi L 0.59 2.837 20.5 EI S 0.69 2.837 20.5 Bi L 0.95 5.483 20.5 Bib L 0.95 5.433 28.2 Bit L 0.62 4.761 14.7 Bit D.622 4.307 14.7 Bit D.62 4.307 14.7 Bit D.99 1.484 22.2 Rb D.99 1.986 22.2 Rb D.99 1.686 22.2 Tr D.16 2.072 22.8 Ct D.15 6.563 42.6 42.8 Le L D.15 6.563 42.8 Le D.015 6.563 42.8 Of D			
Bi R 0.37 2.414 17.2 EI L 0.59 4.854 20.5 EI S 0.59 3.238 20.5 EI R 0.95 5.453 26.2 Bib L 0.95 5.453 26.2 Bib L 0.95 7.077 28.2 Bib L 0.62 4.761 14.7 Bis R 0.62 4.307 14.7 Bis D.9 1.986 22.2 2 Rb D.9 1.986 22.2 2 Tr L 0.16 2.072 22.8 Lic S 0.15 1.112 42.8 Lic			
Et L 0.59 4.854 20.5 Et S 0.59 2.897 20.5 Et R 0.59 3.238 20.5 Bt L 0.95 5.453 28.2 Bt R 0.95 5.453 28.2 Bt L 0.95 5.453 28.2 Bt R 0.62 4.701 14.7 Bt D 0.62 4.307 14.7 Bt D 0.93 1.49 22.2 Rb D 0.9 1.686 22.2 Rb C 0.15 6.563 42.8 Le L D.15 6.563 42.8 Le D			
EI S 0.59 2.897 20.5 B 0.959 3.238 20.5 20.5 B 0.956 5.453 26.2 26.2 B L 0.95 5.453 26.2 B L 0.62 4.761 14.7 B S 0.62 4.307 14.7 B R 0.62 4.307 14.7 B R 0.62 4.307 14.7 Rb 0.9 3.149 22.2 2 Rb 0.9 1.686 22.2 2 Rb 0.9 1.686 22.2 2 Rb R 0.9 1.686 22.2 Tr R 0.15 6.112 42.8 Le L 0.15 6.563 42.8 Le R 0.15 4.11 42.8 Of 0.09 4.511 20.2 0.2 Of 0.09<	and the second second		
EI R 0.59 3.238 20.5 Ib L 0.95 5.453 26.2 Bit R 0.95 7.027 26.2 Bit L 0.62 4.761 14.7 Bit S 0.62 4.761 14.7 Bit Bit 0.62 4.307 14.7 Bit Bit 0.99 3.149 22.2 Rb L 0.9 3.149 22.2 Rb R 0.9 1.986 22.2 Rb R 0.9 1.686 22.2 Tr L 0.16 4.267 22.8 Lic S 0.15 1.112 42.8 Lic S 0.15 4.11 42.6 Of 0.09 2.437 20.2 20.7 Tr D.039 1.404 20.2 20.2 Of 0.093 2.437 20.2 20.2 Of <td></td> <td></td> <td></td>			
Ib L 0.95 5.453 28.2 Hi R 0.95 7.077 262 Bit L 0.62 4.761 14.7 Bit S 0.62 1.99 14.7 Bit S 0.62 4.307 14.7 Bit D 0.92 1.99 14.7 Bit D 0.93 1.49 22.2 Rb L 0.9 1.686 22.2 Rb D 0.9 1.686 22.2 Rb C 0.16 4.267 22.8 Tr D 1.686 2.072 22.8 Le L 0.15 6.563 42.8 Le R 0.15 4.11 42.8 Le R 0.15 4.11 42.8 Le R 0.39 5.466 24.8 Of L 0.09 2.437 20.2 Of D <td></td> <td></td> <td></td>			
Ib R 0.95 7.027 262 Be L 0.62 4.761 14.7 Be S 0.62 4.901 14.7 Be R 0.62 4.307 14.7 Be R 0.62 4.307 14.7 Be R 0.62 4.307 14.7 Rb D.9 3.149 22.2 14.7 Rb D.9 1.996 22.2 2 Rb R D.9 1.686 22.2 Rb R D.9 1.686 22.2 Rb R D.9 1.686 22.2 Tr R 0.16 6.2672 22.8 Le L 0.15 1.112 42.8 Le R 0.15 4.11 20.2 Of L 0.09 2.437 20.2 Of R 0.39 5.246 24.8 Tp R			
Bit L 0.62 4.761 14.7 Bit S 0.62 1.99 14.7 Bit R 0.62 4.307 14.7 Bit R 0.62 4.307 14.7 Bit R 0.62 4.307 14.7 Bit D.9 3.149 22.2 Rb S 0.9 1.986 22.2 Rb R 0.9 1.686 22.2 Tr L 0.16 4.267 22.8 Le L 0.15 5.633 42.8 Le D 0.15 4.11 42.6 Of L 0.15 4.11 42.8 Le R 0.15 4.11 42.8 Le R 0.09 2.437 20.2 Of L 0.39 1.404 20.2 Of L 0.39 1.404 20.2 Of D 0.39			
B# S 0.62 1.99 14.7 B# R 0.62 4.307 14.7 B# R 0.62 4.307 14.7 Rb L 0.9 3.149 22.2 Rb S 0.9 1.996 22.2 Rb S 0.9 1.686 22.2 Rb R 0.9 1.686 22.2 Rb G 0.9 1.686 22.2 Tr L 0.16 4.267 22.8 Le L 0.15 6.563 42.8 Le R 0.15 4.11 42.8 Le R 0.15 4.11 42.8 Of L 0.09 4.511 20.2 Of L 0.09 4.511 20.2 Of L 0.038 5.466 24.8 Tp L 0.39 10.485 24.8 Pe L			
Be R 0.62 4.307 14.7 Rb L 0.9 3.149 22.2 Rb S 0.9 1.986 22.2 Rb R 0.9 1.686 22.2 Rb R 0.9 1.686 22.2 Tr L 0.18 4.267 22.8 Le L 0.15 6.563 42.8 Le S 0.15 1.112 42.8 Le R 0.15 4.11 20.2 Of L 0.099 4.511 20.2 Of L 0.099 2.437 20.2 Of R 0.039 5.246 24.8 Tp L 0.39 6.396 24.8 Pe L 0.26 7.502 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R <td></td> <td></td> <td></td>			
Rb L 0.9 3.149 22.2 Rb S 0.9 1.986 22.2 Rb R 0.9 1.686 22.2 Tr L 0.16 4.267 22.8 Tr R 0.16 2.072 22.8 Le L 0.16 5.653 42.8 Le R 0.15 4.11 42.8 Le R 0.09 4.511 20.2 Of L 0.09 4.511 20.2 Of 0.09 4.511 20.2 Of 0.09 2.437 20.2 D 0.39 10.486 24.8 Pe 0.26 7.796			
Rb S 0.9 1.986 22.2 Rb R 0.9 1.686 22.2 Tr L 0.16 4.267 22.8 Tr R 0.16 5.072 22.8 Le L 0.15 6.563 42.8 Le S 0.15 1.11 42.8 Le R 0.15 4.11 42.8 Of L 0.09 4.511 20.2 Of L 0.09 4.511 20.2 Of L 0.09 4.511 20.2 Of R 0.039 2.437 20.2 Of R 0.39 10.485 24.8 Tp S 0.39 10.485 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R <td></td> <td></td> <td></td>			
Tr L 0.18 4.267 22.8 Tr R 0.16 2.072 22.8 Le L 0.15 6.563 42.8 Le S 0.15 1.112 42.8 Le R 0.15 4.11 42.8 Le R 0.09 4.511 20.2 Of L 0.09 4.511 20.2 Of R 0.09 2.437 20.2 Of R 0.09 2.437 20.2 Of R 0.39 5.246 24.8 Tp L 0.39 5.246 24.8 Po S 0.26 3.734 20.4 Po S 0.26 3.734 20.4 Po R 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R 0.26 3.734 20.4 Po R <td>Rb S</td> <td>0.9 1.95</td> <td></td>	Rb S	0.9 1.95	
Tr R 0.16 2.072 22.8 Le L 0.15 6.663 42.8 Le S 0.15 1.11 42.8 Le R 0.15 4.11 42.8 Le R 0.15 4.11 42.8 Of L 0.09 4.511 20.2 Of R 0.09 2.437 20.2 Of R 0.09 2.437 20.2 Of R 0.39 10.485 24.8 Tp L 0.39 10.485 24.8 Pe L 0.28 7.196 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Cr L 0.15 3.36 42.8	Rb R	0.9 1.69	6 22.2
Le L 0.15 6.563 42.8 Le S 0.15 1.112 42.8 Le R 0.15 1.112 42.8 Of R 0.09 4.511 20.2 Of S 0.09 4.511 20.2 Of R 0.09 5.246 24.8 Tp S 0.39 5.246 24.8 Tp R 0.29 6.398 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Ci S 0.15 3.884 42.8			
Le S 0.15 1.112 42.8 Le R 0.15 4.11 42.8 Of L 0.09 4.511 42.8 Of L 0.09 4.511 42.8 Of S 0.09 4.511 20.2 Of R 0.09 2.437 20.2 Tp L 0.39 5.246 24.8 Tp R 0.39 6.398 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 3.734 20.4 Po R 0.28 7.502 20.4 Po R 0.26 3.734 20.4 Po R 0.28 7.502 20.4 Po R 0.28 7.502 20.4 Cr L 0.15 3.884 42.8	Tr R		
Le R 0.15 4.11 42.8 Of L 0.09 4.511 20.2 Of S 0.09 1.484 20.2 Of R 0.09 2.437 20.2 Of R 0.09 2.437 20.2 Tp L 0.39 5.246 24.8 Tp R 0.39 10.485 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Cr L 0.15 3.864 42.8			
Of L 0.09 4.511 20.2 Of S 0.09 1.484 20.2 Of R 0.09 2.437 20.2 Tp L 0.39 5.246 24.8 Tp S 0.39 10.485 24.8 Tp R 0.39 6.396 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R 0.26 7.502 20.4 Po R 0.28 7.502 20.4 Po R 0.26 7.502 20.4 Po R 0.28 7.502 20.4 Cr L 0.15 3.864 42.8			
Of S 0.09 1.484 20.2 Of R 0.09 2.437 20.2 Tp L 0.39 5.246 24.8 Tp S 0.39 10.485 24.8 Tp R 0.39 6.396 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 3.734 20.4 Po R 0.26 7.502 20.4 Cr L 0.15 3.884 42.8			
Of R 0.09 2.437 20.2 Tp L 0.39 5.246 24.8 Tp S 0.39 10.485 24.8 Tp R 0.39 6.398 24.8 Pe L 0.28 7.186 20.4 Po S 0.26 3.734 20.4 Po R 0.28 7.502 20.4 Po R 0.26 7.502 20.4 Ct 0.15 3.36 42.8 Ct S 0.15 3.884 42.8			6 M / M
Tp L 0.39 5.246 24.8 Tp S 0.39 10.485 24.8 Tp R 0.39 6.986 24.8 Pe L 0.29 6.398 24.8 Po S 0.26 7.196 20.4 Po S 0.26 3.734 20.4 Po R 0.28 7.502 20.4 Cr L 0.15 3.364 42.8			
Tp S 0.39 10.485 24.8 Tp R 0.39 6.398 24.8 Pe L 0.26 7.196 20.4 Po S 0.26 7.734 20.4 Po R 0.26 7.502 20.4 Cr L 0.15 3.864 42.8			
Tp R 0.39 6.396 24.8 Pe L 0.26 7.186 20.4 Po S 0.26 3.734 20.4 Pe R 0.26 3.734 20.4 Po R 0.26 7.502 20.4 Ct 0.15 3.36 42.8 Ct S 0.15 3.884 42.8			
Pe L 0.26 7.196 20.4 Po S 0.26 3.734 20.4 Po R 0.26 3.734 20.4 Cr L 0.19 3.36 42.8 Cr S 0.15 3.884 42.8			
Po S 0.26 3.734 20.4 Po R 0.28 7.502 20.4 Cr L 0.15 3.36 42.8 Cr S 0.15 3.884 42.8			243
Po R 0.28 7.502 20.4 Ct L 0.15 3.36 42.8 Ct S 0.15 3.884 42.8			
Cr L 0.15 3.36 42.8 Cr S 0.15 3.884 42.8			
CI S 0.15 3.884 42.8			7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
			7.1
			44.0

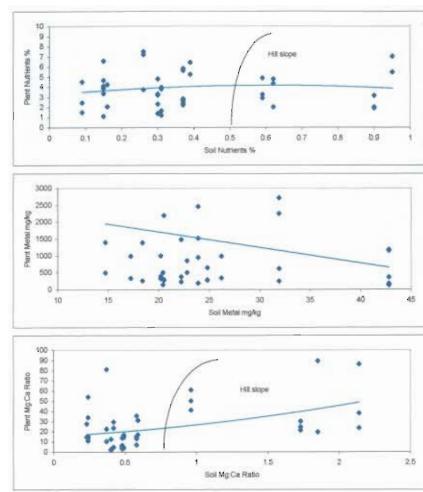


Figure 30 Scatter diagrams depicting the trends of selected chemical attributes in plant-soil associations.

Species (n=5)	Cr mg/kg Plant	Cr mg/kg Soll	Position.	Ni mg/kg Plant	Ni mg/kg Soil
En	17.6	3272	D	16.1	506
Pa	00	2641	C	30	629
Rk	7.5	2214	A	4.3	321
Ja	23.9	3272	D	21.3	506
Dg	51.2	2641	C	24.5	529
Pn	7.1	26238	8	5.4	401
81	11.6	2214	A	16.4	321
EI	6.6	14102	E.	10	201
lb	6.6	10824	1	12	1028
Bs	11.4	6283	F.	7	122
Rb	8	479	G	4.9	81
Tr	24.5	724	H	12.9	114
Lc	4.7	2937	К.	23	1133
01	5.5	15671	L	2.1	646
Tp	5.9	21206	M	3.9	812
Po	4.3	15671	L	0.9	646
Ct	3.9	30000	1	3	930

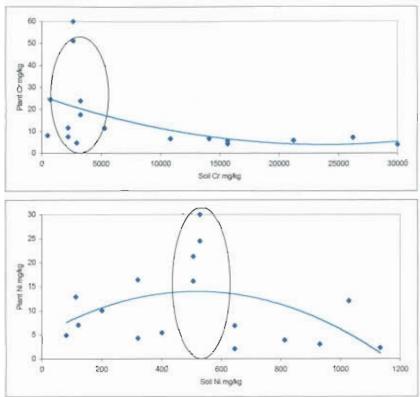


Figure 31 Scatter diagram depicting the optimum accumulation levels of nickel and chromium by plants along the catena.

Table 29	Concentrations of	selected elements	in the chromitite outcro	op soil mixture.
----------	-------------------	-------------------	--------------------------	------------------

Element	mg/kg (n=25)	Mineral	% (n=25)
Cr	45732	SiO ₂	36.48
Ni	910	MgO	17.26
S	392	Fe ₂ O ₃	13.75
v	340	Al_2O_3	8.42
Cl	143	CaO	7.76
Sr	137	Cr_2O_3	7.31
Zn	117	Na ₂ O	0.88
Со	107	TiO ₂	0.23
Zr	33	NiO	0.21
Cu	25	MnO	0.20
Ga	22	K ₂ O	0.15
W	20	V_2O_5	0.07
Sc	14	P_2O_5	0.02
Y	9		
Pb	7	Mg:Ca	a Ratio
Rb	7		
As	6	= 17.26	: 7.76
Mo	4	= 1	: 0.45
Nb	3	= 2.22	: 1
Th	2		

Table 30 Growth comparison of seedlings of *Zea mays* (cultivar SNK 2340 Vryburg) grown in neutral quartzite soil and natural chromium-rich soil [n=3].

	Q	uartzite so	il	CI	hromium-rich so	pil	%*
Plants/container	2	4	8	2	4	8	
Week 2							
Average leaf	286	304	270	283 (99%)	300 (99%)	254 (94%)	97
length (mm)							
Average root	238	271	256	220 (92%)	245 (90%)	208 (81%)	88
length (mm)							
Average leaf dry	174	189	158	160 (92%)	188 (99%)	152 (96%)	96
mass (mg)							
Average root dry	7 9	137	98	77 (97%)	91 (66%)	69 (70%)	78
mass (mg)							
Week 3							
Average leaf	457	426	388	405 (89%)	390 (92%)	339 (87%)	89
length (mm)							
Average root	314	280	261	303 (96%)	268 (96%)	243 (93%)	95
length (mm)							
Average leaf dry	629	452	362	615 (98%)	429 (95%)	319 (88%)	94
mass (mg)							
Average root dry	459	366	273	407 (89%)	257 (70%)	241 (88%)	82
mass (mg)							
Week 4							
Average leaf	608	527	47 2	466 (77%)	415 (79%)	352 (75%)	77
length (mm)							
Average root	361	294	274	319 (88%)	292 (99%)	268 (98%)	95
length (mm)							
Average leaf dry	1033	698	598	932 (90%)	560 (80%)	363 (61%)	77
mass (mg)							
Average root dry	598	4 13	342	513 (86%)	359 (87%)	313 (92%)	88
mass (mg)							

*Average biomass production of maize seedlings grown in toxic soils as a percentage of the average biomass production of maize seedlings grown in the control soils.

Table 31 Concentrations of selected minerals and metals in the roots (R) and leaves (L) of *Zea mays* (cultivar SNK 2340 Vryburg) grown in chromium-rich soil; pH (H₂O) 6.5–7 [n=5]. Shaded areas indicate the highest concentrations for each element during each week.

Plants/container	N%	P%	S%	Mg%	Ca%	Mg: Ca	Cr mg/kg	Ni mg/kg
··· · · -					_	CA		
Week 2							1121	0.50
2 L'	4.43	0.688	0.260	0.42	0.77	1.83	4.21	0.52
4 L	3.90	0.046	0.085	0.43	0.59	1.37	4.23	0.34
8 L	3.54	0.577	0.144	0.36	0.56	1.56	4.55	0.15
$2 R^2$	2.62	0.230	0.077	0.45	0.47	1.04	32.8	94.8
4 R	2.21	0.467	0.167	0.55	0.54	0.98	23.3	67.9
8 R	1.92	0.592	0.050	0.57	0.62	1.09	22.1	64.9
Average for leaves	3.96	0.436	0.163	0.40	0.64	1.59	4.33	0.34
Average for roots	2.25	0.419	0.098	0.52	0.54	1.04	26.1	75.9
Week 3								
2 L	1.51	0.179	0.044	0.41	0.50	1.22	4.05	0.91
4 L	1.58	0.218	0.033	0.40	0.52	1.30	4.07	0.68
8 L	1.63	0.263	0.031	0.47	0.72	1.53	4.75	0.05
2 R	1.12	0.144	0.029	0.68	0.94	1.38	37.9	77.0
4 R	1.37	0.192	0.108	0.46	0.60	1.30	28.4	54.3
8 R	1.23	0.225	0.039	0.39	0.66	1.69	22.0	36.6
Average for leaves	1.57	0.220	0.036	0.43	0.58	1.35	4.29	0.55
Average for roots	1.24	0.187	0.059	0.51	0.73	1.46	29.4	55.9
Week 4								
2 L	1.0:2	0.153	0.021	0.39	0.55	1.41	5.96	1.67
4 L	1.05	0.178	0.020	0.41	0.50	1.22	5.3.5	0.98
8 L	1.23	0.276	0.0/21	0.41	0.58	1.41	3.14	1.3
2 R	0.88	0.125	0.038	0.50	0.75	1.50	28.1	42.0
4 R	0.86	0.136	0.050	6.44	0.59	1.34	22.8	53.3
8 R	0.84	0.132	0.039	0.67	1.02	1.52	32.0	64.8
Average for leaves	1.10	0.202	0.021	0.40	0.54	1.82	4.82	1.31
Average for roots	0.86	0.131	0.042	0.54	0.78	1.45	27.6	53,4

 $^{1}L = leaves; ^{2}R = roots$

Table 32 Concentrations of selected minerals and metals in the roots (R) and leafs (L) of selected indigenous grass species that grow naturally in the ultramafic soil that was used for the maize experiment. Shaded areas indicate hyperaccumulation of heavy metals.

Species Name	Plant	N%	P%	S%	Ca%	Mg%	Cr	Ni	Fe	Mn	AI	V
	Part						mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Stipagrostis	L^1	0.649	0.053	0.022	0.271	0.074	5.22	10.5	411	22	490	2.2
hirtigluma	R ²	0.746	0.061	0.014	1.37	0.512	19.5	22	454	23.31	325	4
Heteropogon	L	0.536	0.04	0.025	0.418	0.126	20.3	47.5	811	38.5	1015	5.34
contortus	R	0.822	0.046	0.016	0.365	0.135	32	18.1	924	42.7	437	6.85
Diheteropogon	L	0.361	0.032	0.027	0.656	0.286	13.1	20.9	1687	73.4	3246	3.41
amplectens	R	0.299	0.025	0.027	0.48	0.182	10.1	18.3	1703	39	2926	3.68
Avera	ge for leaves	0.515	0.042	0.074	0.448	0.162	12.87	26.3	970	44.63	1583	3.65
Aver	age for roots	0.623	0.044	0.057	0.738	0.276	20.53	19.47	1027	35	1229	4.84

 $^{1}L = leaves; ^{2}R = roots$

Element	Valley	Outcrop	Slope
Cu	H ¹	М	М
Mn	Н	M	L
S	Н	М	L
CI	Н	L	Μ
Si	Н	L	М
Sc	Н	L	Μ
Ti	Н	L	Μ
Ni	M ²	H	Μ
Zn	Μ	Н	М
Cr	Μ	Н	L
As	L ³	н	Μ
Mo	L	Н	Μ
Ga	L	Н	L
Co	Н	Н	L
Fe	Н	Н	L
Mg	Н	Н	L
v	Н	Н	L
AI	M	. M	Н
Y	Μ	М	Н
Na	Μ	Μ	Н
Nb	М	L	Н
Rb	Μ	L	Н
Sr	L	Μ	Н
Th	L	Μ	Н
Ca	L	L	Н
К	L	L	Н
Р	L	L	Н
Pb	L	L	Н
W	L	L	Н
Zr	L	L	Н

Table 33 Diagnostic elements for each major position along the catena.

¹H = high; ²M = medium; ³L = low

Table 34A comparison of the average concentrations of selected elements in theBarberton serpentineferous soils (nine sites) and Sekhukhuneland ultramafic soils (13samples along one catena). Shaded areas indicate the highest values.

Element		Min	umum	Ma	ximum
		Barberton*	Sekhukhunelan	Barberton*	Sekhukhuneland
			d		
pH	111	5.84	6.67	7.14	7.84
Mg:Ca ratio		2.11	0.23	10.96	2.14
Mg%		7.06	6.44	29.71	23.44
Ca%		0.57	3.39	12.08	18.53
К%		0.10	0.12	0.47	0.87
Na‰		0.02	0.18	0.09	1.88
C%		0.58	0.85	8.78	19.86
N%		0.07	-	0.49	0.77
Cr mg/kg		938	479	3 556	178 020
Ni mg/kg		1 929	81	4 392	1 133

*From Hughes & Noble (1991)

Table 35 A comparison of the average elemental concentrations recorded for soilsamples in this study and that of other serpentinite sites in the world. Shaded areasindicate the highest values.

Serpentineferou	Soil µg/g	g (highest	Soil % (average	Soil	рН	Authority
s soil (region)	figure r	ecorded)	figure re	ecorded)	Ratio	(average)	
	Ni	Cr	Mg %	Ca %	Mg:Ca		
	mg/kg	mg/kg					
Australia	2 600	4 700	18.6	5.84	3.18	7.25	- Forster & Baker (1995)
Canada*	611	-	3.05	3.01	1.01	(4.5)	McHale & Winterhalder
							(1995)
Cuba	8 954	5 220	9.57	0.48	19.94	-	Reeves et al. (1999)
Greece	5 95 0	-	10.14	1.74	5.83	-	Reeves et al. (1995)
New Zealand	1 386	1 843	76.50	8.30	9.22	-	Lee et al. (1995)
Philippines	8 100	18 000	6.14	0.57	10.77	6.45	Proctor et al. (1995)
South Africa	2 406	5 170	(20.8)	(1)	20.80	6.58	Balkwill et al. (1995)
South Africa	4 392	3 556	18.02	7.26	2.50	6.49	Hughes & Noble (1991)
South Africa	3 178	7 329	18.96	1.18	16.07	6.09	Morrey et al. (1989)
Zimbabwe	9 3 75	15 500	10.3	2.20	4.70	6.73	Wild (1974b)
8 countries	4 695	7 665	19.21	3.15	6.1	6.6	AVERAGE
Sekhukhuneland	1 133	20 000	17.26	7.76	2.22	7.15	

*Heavy metal contaminated soil

 Table 36
 A comparison of the average elemental concentrations recorded for plant

 material in Sekhukhuneland and the Great Dyke of Zimbabwe.

Study Site	Ca%		Mg%	P%		S%
Sekhukhuneland	2.45		0.17	0.33		0.12
Great Dyke*	1.63		1.14	0.11	0.11 0.11	
Study Site	Cr mg/kg	Ni mg/kg	Fe mg/kg	Mn mg/kg	Al mg/kg	Sr mg/kg
Sekhukhuneland	25	11	735	17	583	82
Great Dyke*	11	792	1066	158	208	41

*From Brooks & Yang (1984)

 Table 37
 A summary of the nutrient levels, metal concentrations and
 magnesium:calcium ratios recorded for the sampled plant material.

Species (n=5)	Code*	Plant Part	Nutrient %	Metals mg/kg	Mg:Ca 1:x
Euclea sp. nov.	Es	L1	5.616	187.1	15.29
Euclea sp. nov.	Es	\mathbf{R}^3	5.82	946.7	35.4
Pterothrix spinescens	Ps	L	2.302	9388.8	13.43
Pterothrix spinescens	Ps	S^2	4.792	7642.5	54.2
Pterothrix spinescens	Ps	R	3.313	1520.05	34
Rhus keetii	Rk	L	2.813	254.79	14.76
Rhus keetii	Rk	R	2.813	1382.46	27.6
Jamesbrittenia atropurpurea	Ja	L	3.823	2717.52	16.7
Jamesbrittenia atropurpurea	Ja	R	1.666	2717.32 2251.28	14.34
Dicoma gerrardii	Dg	L	3.203	5611.9	14.34
Dicoma gerrardii	Dg Dg	R	1.41	2462.9	11.04
Polygala sp. nov.	Dg Pn	L	3.954	248.08	16.22
Polygala sp. nov.	Pn	R	1.198	614.6	4.03
Brachylaena ilicifolia	Bi	L	2.678	328.71	7.01
Brachylaena ilicifolia	Bi	R	2.678	989.95	13.33
Euclea linearis	El	L	4.854	293.59	60.88
Euclea linearis	El	S	4.834	293.39	41.32
Euclea linearis	El	R		275.24 2190.57	41.32 50.24
	Б	K L	3.238 5.453	339.04	50.24 19.64
Ipomoea bathycolpos Ipomoea bathycolpos	Ib	R		991.03	89.3
			7.027		
Berkheya insignis Berkheya insignis	Bs Bs	L S	4.761	1398.65 492.18	86.25
Berkheya insignis		R	1.99		23.7
Berkheya insignis	Bs	R L	4.307	10094.6	37.93
Rhus batophylla	Rb	S	3.149	383.81	24.55
Rhus batophylla	Rb		1.986	226.47	21.33
Rhus batophylla Timorada dari ma	Rb	R	1.896	1483.93	30.23
Tinnea rhodesiana	Tr	L	4.257	503.96	17.1
Tinnea rhodesiana	Tr	<u>R</u>	2.072	850.66	31.23
Leucas capensis	Lc	L	6.563	363.01	2.6
Leucas capensis	Lc	S	1.112	171.13	1.75
Leucas capensis	Lc	R	4.11	1152.64	12.61
Orthosiphon fruticosus	Of	L	4.511	388.39	3.59
Orthosiphon fruticosus	Of	S	1.484	321.15	3.02
Orthosiphon fruticosus	Of	R	2.437	995.31	5.85
Terminalia prunoides	Тр	L	5.246	272.02	10.43
Terminalia prunoides	Тр	S	10.485	288.55	80.99
Terminalia prunoides	Тр	R	6.398	648.19	22.76
Petalidium oblongifolium	Po	L	7.196	146.64	4.78
Petalidium oblongifolium	Po	S	3.734	143.23	6.76
Petalidium oblongifolium	Po	R	7.502	507.67	13.96
Catha transvaalensis	Ct	L	3.36	139.86	4.7
Catha transvaalensis	Ct	S	3.884	127.95	23.55
Catha transvaalensis	Ct	R	4.673	1174.94	29.48

*Abbreviations used for graphs in Appendix 4 ${}^{1}L = leaves; {}^{2}S = stems; {}^{3}R = roots$