Title: Comparison between Sentinel–2 and WorldView–3 sensors in mapping wetland vegetation communities of the Grassland Biome of South Africa, for monitoring under climate change.

Type: Original Research Paper

Author(s):

 $\begin{array}{l} \mbox{Van Deventer, $H^{1,2*}$ (ORCID 0000-0002-7854-2155)} \\ \mbox{Linström, A^3} \\ \mbox{Naidoo, L^4 (ORCID 0000-0002-7091-0566)} \\ \mbox{Job, N^5 (ORCID 0000-0002-4929-7592)} \\ \mbox{Sieben, EJJ^6 (0000-0002-7813-2586)} \\ \mbox{Cho, $MA^{1,7,8$ (ORCID 0000-0001-8278-2111)}} \end{array}$

*To whom all correspondence should be addressed.

Tel: +27 12 841 2507; e-mail: HvDeventer@csir.co.za

Affiliations:

¹ Council for Scientific and Industrial Research, Pretoria/Stellenbosch, South Africa

² Department of Geography, GeoInformatics & Meteorology Geography, University of Pretoria, Pretoria, 0083, South Africa

³ Wet Earth Eco Specs (Pty) Ltd, P.O. Box 4442, 58 Kerk St, Lydenburg, 1120, South Africa

⁴ Gauteng City-Region Observatory (GCRO), a Partnership of the University of Johannesburg, the University of the Witwatersrand, Johannesburg, the Gauteng Provincial Government and Organised Local Government in Gauteng (SALGA), 11 Jorissen St, Braamfontein, Private Bag 3, Johannesburg 2050, South Africa

⁵ Freshwater Biodiversity Unit, South African National Biodiversity Institute (SANBI), South Africa
 ⁶ School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Private Bag X54001, Westville 4001, South Africa

⁷ School of Agriculture, Earth and Environmental Sciences, University of KwaZulu-Natal (UKZN), Private Bag X01, Carbis Road, Scottsville, Pietermaritzburg, 3201, Bag X01, South Africa
 ⁸ Plant and soil Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa

Corresponding author: Heidi van Deventer

E-mail: HvDeventer@csir.co.za

Supplementary material I: Spectral bands of the Sentinel-2 and

WorldView satellites

Table I.1. Spectral bands and associated wavelength ranges of the optical Sentinel–2A and –2B images (ESA, 2019b; <u>https://eos.com/sentinel-2/</u>). Spectral bands 1, 9 and 10 at 60 m spatial resolution were not used in the analysis and are therefore shaded gray in the table. MSI - Multispectral Imagery, NIR - Near infrared, SWIR - shortwave infrared

Sensor	Band	Band	Sentine	el-2A	Sentin	el–2B	Resolution
	no.	name	Central	Bandwidt	Central	Bandwidth	(meters)
			wavelength	h (nm)	wavelength	(nm)	
			(nm)		(nm)		
MSI	1	Coastal aerosol	443.9	27	442.3	45	60
MSI	2	Blue	496.6	98	492.1	98	10
MSI	3	Green	560.0	45	559	46	10
MSI	4	Red	664.5	38	665	39	10
MSI	5	Vegetation Red Edge	703.9	19	703.8	20	20
MSI	6	Vegetation Red Edge	740.2	18	739.1	18	20
MSI	7	Vegetation Red Edge	782.5	28	779.7	28	20
MSI	8	NIR	835.1	145	833	45	10
MSI	8a	Narrow NIR	864.8	33	864	32	20
MSI	9	Water vapour	945.0	26	943.2	27	60
MSI	10	SWIR – Cirrus	1373.5	75	1376.9	76	60
MSI	11	SWIR1	1613.7	143	1610.4	141	20
MSI	12	SWIR2	2202.4	242	2185.7	238	20

Table I.2. Spectral bands and associated wavelength ranges of the optical images of WorldView–2 (WV2) and –3 (WV3)

Sensor:		WV2			WV3	
Range of the electromagnetic	Band	Spectral range, center	Ground sampling	Band	Spectral range, center	Ground sampling
spectrum		wavelength (nm)*	distance		wavelength (nm)*	distance
Visible to near infrared	Panchro-matic	450–800, 625	46 cm	Panchro-matic	450–800, 649.4	31 cm
	Coastal blue	400–450, 427		Coastal	400–450, 427.4	
	Blue	450–510, 478		Blue	450–510, 481.9	
	Green	510–580, 546		Green	510–580, 547.1	
Multispec-tral	Yellow	585–625, 608	10	Yellow	585–625, 604.3	4.04 -
bands	Red	630–690, 659	. 1.8 m	Red	630–690, 660.1	1.24 m
	Red edge	705–745, 724		Red edge	705–745, 722.7	
	Near Infrared 1 (NIR–1)	705–745, 831		NIR–1	770–895, 824.0	
	NIR2	770–895, 908		NIR–2	860–1040, 913.6	
	N.A.	N.A.	N.A.	SWIR-1	1195–1225, 1209.1	
				SWIR-2	1550–1590, 1571.6	
				SWIR-3	1640–1680, 1661.1	
Shortwave-				SWIR-4	1710–1750, 1729.5	
infrared (SWIR)				SWIR-5	2145–2185, 2163.7	3.7 m
				SWIR-6	2185–2225, 2202.2	
				SWIR-7	2235–2285, 2259.3	
				SWIR-8	2295–2365, 2329.2	

* The band ranges and centers of WV2 was obtained from <u>https://earth.esa.int/web/eoportal/satellite-missions/v-</u> <u>w-x-y-z/worldview-2</u>; band ranges for WV3 from <u>https://earth.esa.int/eogateway/missions/worldview-3</u>, and band centres for WV3 from the image.

Advancessory Image: Advancessory
Calendarianamana Calendariana Cal
Laboratoria
Career particular Image: particular partiti particular partiture particular particular particular particular
Light of gradies Image: Control of Gradies Image: Cont
Ladioparatina Image: Answer and the second of the seco
Marcinal
Ancholar so Ancholar so Ancholar so Ancholar so Ancholar so Grad social Implementational social (Gl2, dramational social (Gl2, dramational social social (Gl2, dramational social social (Gl2, dramational social social social (Gl2, dramational social s
Giff's finance
Dail of optimized Animalian Animali
Projection distance St
Paydar Andread
Aminina making 5 Aminina making 5 <td< td=""></td<>
Provide angularity
Phrgshim kanhla Image in the solution of the sol
Alangan zwindar
Annumentative 100 200 100 <
Powenipider Poweni
Technolog Academierosis (euxide) 10 5 5 10 5 10 28 20
Parigra Parishing
Sharagalata Saharata 5
Schargeletz/Introduct/I
Species Openant Openant <t< td=""></t<>
ShLoranna September September Sense graphet
Server And Agendration / <
2e/ar/a sphaze/ala
Sincha apper apper
Stricka ange age 50% Stricka ange age 50% Stricka ange 50% Stricka ange 50%
Stricka ange age 1
Sincha dirayar agar Sincha dirayar Si
Structure Structure <t< td=""></t<>
Sincha directory 50 1

Supplementary material II: Fieldwork surveys undertaken

Figure II.1. Example of field surveys mapping percentage cover of species for each sample point.

Supplementary material III: Vegetation communities identified of the

Hogsback and Tevredenpan study areas

The approach to identify dominant communities that could potentially be detected by satellite images was developed and executed on the following criteria:

- i. Identify large homogeneous patches of wetland vegetation that are at least 10x10 m to match the S2 sensor, or alternatively at least 3x3 m for WV3. Ideally homogeneous patches should be at least 30x30 m for the Sentinel sensor, to minimize the edge effect and obtain a central pure pixel; however, this was not always possible for all communities, so patches with minimum sizes of 10x10 m and 3x3 m were also considered.
- ii. Some vegetation communities were easy to identify, such as *Phr. australis* and *Carex* spp. in both study areas, since they extended over large areas, were primarily a single species that dominated the canopy, and had generally low spectral variability except for their density and subsequent background reflectance from varying soil saturation and inundation levels. For such homogeneous patches, fewer points were visited since we had a higher confidence in their homogeneity.
- iii. Other grass and sedge communities showed high heterogeneity, and for these areas more sample points were obtained. Structurally and visually similar patches were identified within the size criteria, a center Global Positioning System (GPS) point taken with a Garmin GPSMAP 62S, and the species for the patch identified from a remote sensing perspective. For larger patches, the center point and some of the edges were taken, while the center and multiple edge points were taken for small and irregularlyshaped patches. This approach ensured that only pixels which fall predominantly within the extent of the points were selected as representative areas of interest. Background information was also recorded as a percentage of the total cover of the area of a patch, which is often not recorded in floristic sampling approaches.
- Within each patch, the percentage cover of each species was estimated and recorded as the average cover within the patch, and estimations adjusted to add up to a 100% (Supplementary material II, Figure II.1).
- v. Following the first field campaign for each site, the repetitiveness of species patches was considered, as well as the percentages of dominant species within these patches, and species groups were developed based on thresholds of dominance for the group.
- vi. In the second field-campaign, at least a third of the points were revisited to confirm groupings and edge-points also taken particularly for smaller patches of species groups.

In collecting GPS points, edge points were also collected in addition to the center points, especially for smaller patches, to ensure that the selection of pixels from the images would be fully representative of these areas. The number of GPS points reported for this study included only center points and not edge points.

Table III.1. Categories and types of vegetation communities identified through floristic sampling (relevé) information for the Hogsback and Tevredenpan study areas in the South African National Wetland Vegetation Database (Sieben et al., 2014)

Site	Community Group (CG)	Community	Vegetation community types
		CG5.1	Merxmuellera* macowanii community
		CG5.2	Isolepis angelica community
		CG5.4	Fingerhuthia sesleriiformis community
	Montane grassy wetlands	CG5.9	Juncus inflexus community
ack		CG5.11	Haplocarpha nervosa community
Hogsback		CG5.14	Festuca caprina community
Hoć		CG5.14	Merxmuellera* drakensbergensis community
		CG5.15	Aristida junciformis – Tristachya leucothrix community
		CG6.2	Carex acutiformis community
	Temperate grassy wetlands	CG6.4	Juncus effusus community
		CG6.6	Arundinella nepalensis community
	Grass lawn wetlands	CG7.13	Bidens bipinnata - Cynodon dactylon community
		CG9.1	Schoenoplectus decipiens community
	Inland saline wetlands	CG9.2	Cynodon transvaalensis community
		CG9.5	Schoenoplectus triqueter community
			Gunnera perpensa community
	Montane grassy wetlands	CG5.3	Limosella africana community
			Limosella maior community
L L		CG8.1	Azolla - Lemna minor community
npa	Submerged wetlands	CG8.3	Stuckenia pectinata community
ede	Submerged wellands	CG8.5	Limosella maior - Lim. grandiflora community
Tevredenpan		000.5	Potamogeton nodosus community
-	Subtropical wetlands	CG3.2	Axonopus affinis - Centella community
		CG3.8	Pycreus nitidus community
		CG6.1	Eleocharis dregeana community
		000.1	Leersia hexandra community
	Temperate grassy wetlands	CG6.3	Aristida junciformis - Helichrysum community
	remperate grassy wellarius		Juncus effusus community
		CG6.4	Schoenoplectus brachyceras community
			Schoenoplectus corymbosus community

* Genus name is now 'Tenaxia'.

Figure III.1. Views of wetland vegetation classes on the north-eastern side of Tevredenpan: (A) Oblique view of the different vegetation patterns relating to wetland vegetation classes viewed in a south-easterly direction (Oblique aerial photo taken by Anton Linström); (B) Horizontal photo taken in a northerly direction, with grass-sedges in the front, *Juncus* spp. to the right and *Phragmites australis* to the left.

Supplementary material IV: Number of pixels collected for each Region of Interest class and optical sensor for

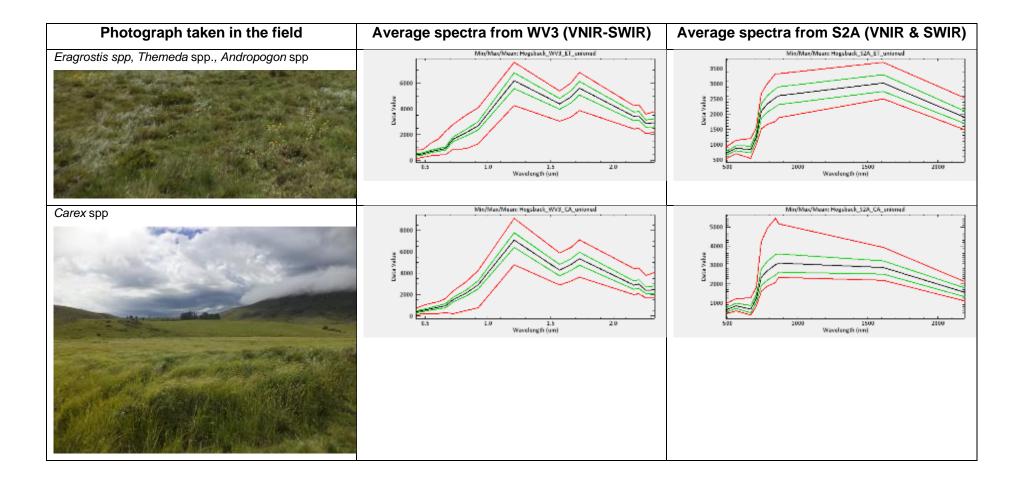
the Hogsback and Tevredenpan study areas

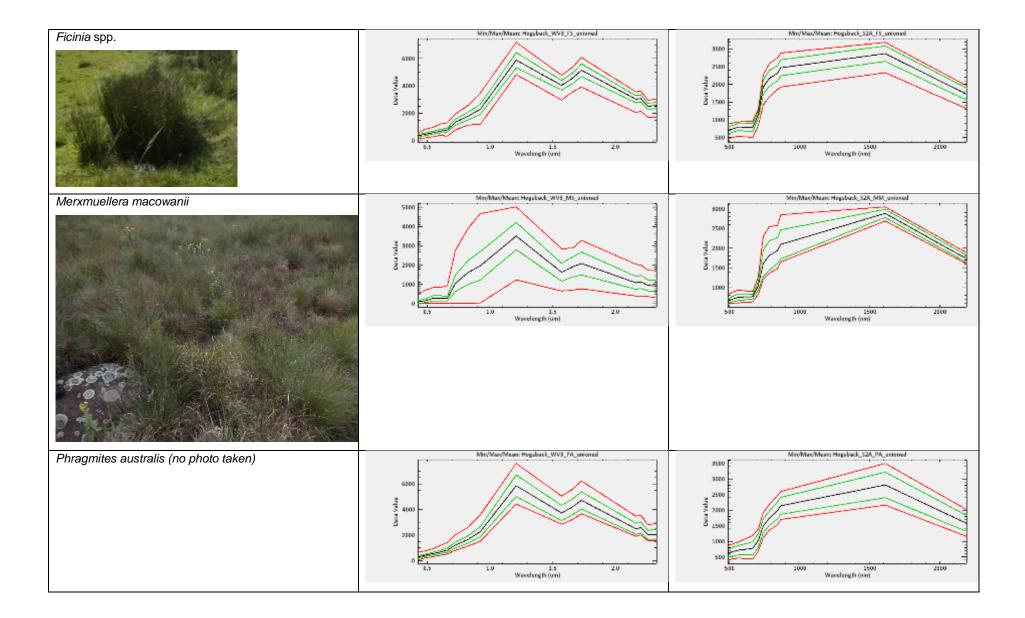
Table IV.1. Vegetation community classes used for the remote sensing classification of the Hogsback study area (first six classes listed). Seven additional classes (last seven classes) were added for image classification. S2A = Sentinel–2A; WV3 = WorldView–3

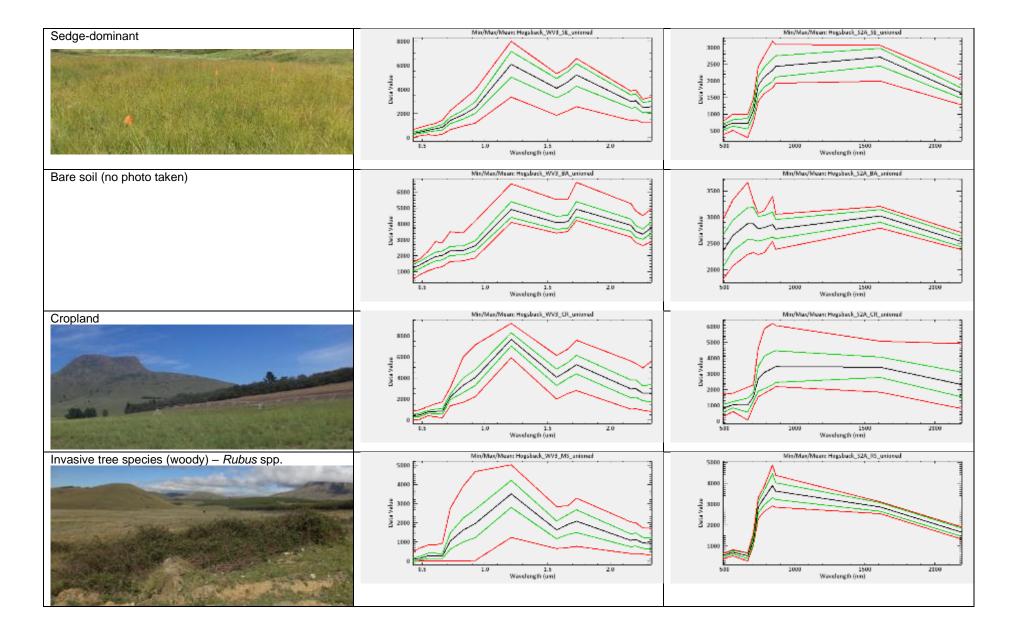
Туре	Vegetation community (first set) or sub-category of cover type (second set)	CODE	Approximate average percentage of species observed within patches	Number of pixels per sample for WV3 / S2A	Number of samples for WV3 / S2A	Total number of pixels for WV3 / S2A
Terrestrial*	<i>Eragrostis</i> spp., <i>Themeda</i> spp., <i>Andropogon</i> spp.	ET	> 60% Eragrostis plana; Themeda triandra; Andropogon appendiculatus (dominant species).	±210 / 25	30 / 30	6 253 / 750
Palustrine	Carex spp. (>70%)	CA	Carex spp. (> 70%).	±45 / ±5	30 / 30	1 278 / 144
Palustrine*	Ficinia spp.	FS	Ficinia nodosa and F. indica species.	4 / 1	30 / 30	126 / 30
Palustrine*	Merxmuellera macowanii	MM	Predominantly <i>Merxmuellera macowanii</i> species, see the mixed grass community in Table 2 for more information.	4 / 1	30 / 30	120 / 30
Palustrine*	Phragmites australis**	PA	> 90% Phragmites australis.	±81 / 9	30 / 30	2 387 / 270
Palustrine*	Sedge-dominant	SE	See the mixed sedge community in Table 2 for more information.	36 / ±4	30 / 30	1 198 / 117
Natural	Bare soil	BA	Harvested croplands and roads.	9 / 1	20 / 20	180 / 20
Modified	Cropland	CR	Owing to the wide variety of reflectance values that were present, resulting from different types of crops and their growth stages, a wider range of pixels were used to represent this class.	±210 / 25	50 / 50	10 732 / 1 250
Modified	Invasive tree species (woody)	RS	Rubus spp.	9 / 1	14 / 14	126 / 14
Natural (lacustrine)	Open water	OW	Including both natural and artificial inundated systems.	81 / 9	30 / 30	2 396 / 270
Natural (terrestrial)	Mountain slopes	MS	The southern slope of the mountain in the north mapped as a separate class to avoid prediction of palustrine wetlands in this area.	±64 / 9	30 / 30	1 952 / 270
Modified	Plantations	PL	Commercial plantations in full growth.	±169 / 55	30 / 30	5 456 / 750
Modified	Plantations felled	PLF	Commercial plantations felled.	196 / 25	30 / 30	5 950 / 750

* Dominant in the landscape.

Table IV.2. Vegetation community classes used for the remote sensing classification of the Tevredenpan study area (first nine classes listed). Four additional classes (last four classes) were added for image classification. S2A = Sentinel–2A; WV3 = WorldView–3


Туре	Vegetation community (first set) or sub-category of cover type (second set)	CODE	Approximate average percentage of species observed within patches	Number of pixels per sample for WV3 / S2A	Number of samples for WV3 / S2A	Total number of pixels for WV3 / S2A
Terrestrial*	Eragrostis plana and Themeda triandra	ET	> 60% Eragrostis plana and Themeda triandra.	±323 / 4	55 / 55	16 685 / 220
Palustrine*	Arundinella nepalensis (>50%)	AN	Arundinella nepalensis (> 50%).	64 / 1	25 / 25	1 600 / 25
Palustrine*	Aristida spp.	AR	> 40% Aristida spp.	64 / 1	30 / 30	1 920 / 30
Palustrine	Carex spp. (>70%)	CA	<i>Carex</i> spp. (> 70%).	±72 / 1	25 / 25	1809 / 25
Palustrine*	Grass-sedge communities	GS	Aristida junciformis (±10%); Arundinella nepalensis (±20%); Calamagrostis epigejos (±20%); Commelina africana (±25%); Cyperus denudatus (±10%) and Paspalum dilatatum (±5%).	±72 / 1	50 / 50	3 761 / 50
Palustrine	Juncus effusus (>50%)	JE	> 50% Juncus effuses.	±56 / 1	40 / 40	2 633 / 40
Palustrine*	Phragmites australis**	PA	> 90% Phragmites australis.	±1 221 / 16	30 / 30	37 357 / 480
Palustrine*	Sedge dominant (>20%)	SE	± 80% Eliocharis dregreana; ±16% Leersia hexandra and < 6% open water.	±72 / 1	40 / 40	2 944 / 40
Palustrine*	Wet-grass communities	WG	±70% Cymbopogon validus with < 10% of Cyperus haematocephalus; Cyperus denudatus; Kylinga erecta; Leersia hexandra and Pennisetum thunbergi.	±80 / 1	70 / 70	5 657 / 70
Natural	Bare soil	BA	Harvested croplands and roads.	±81 / 4	25 / 25	1 906 / 100
Modified	Cropland	CR	Owing to the wide variety of reflectance values that was present, resulting from different types of crops and their growth stages, a wider range of pixels were used to represent this class.	±7 876 / 20	65 / 70	511 924 / 1400
Modified	Invasive tree species (woody)	IS	Acacia dealbata, Acacia mearnsii, Eucalyptus grandis, and Salix babylonica.	±323 / 4	30 / 30	9 842 / 120
Natural (lacustrine)	Open water	OW	Including both natural and artificial inundated systems.	±1 292 / 16	30 / 30	38 027 / 480


* Dominant in the landscape.


** Emergent vegetation, which was not always accessible on foot, and therefore canopy spectra were extracted at a desktop level.

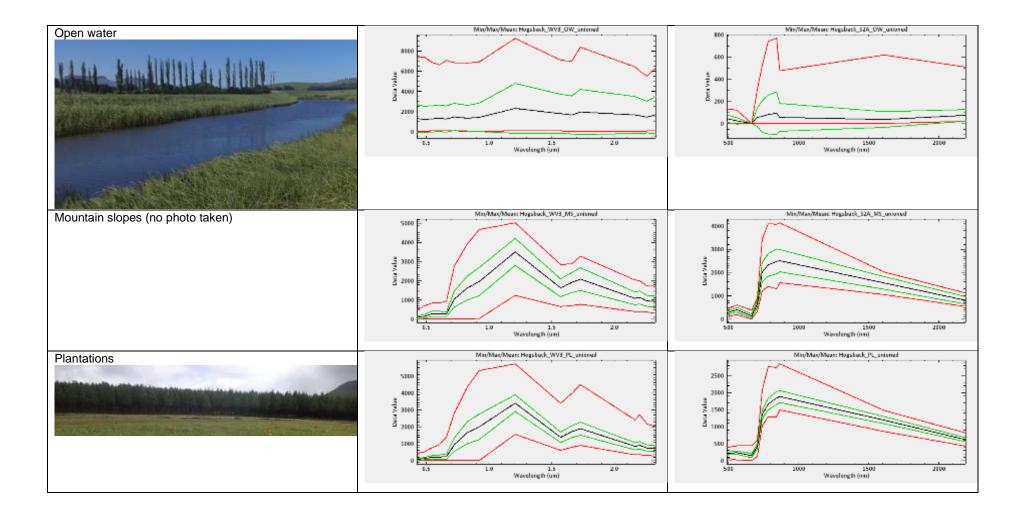
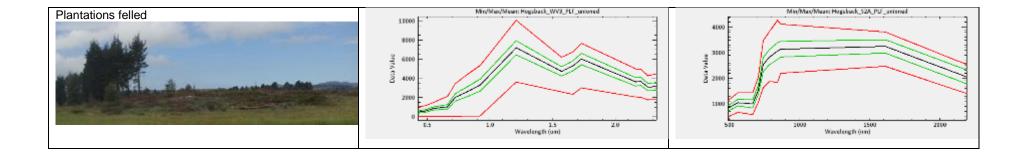
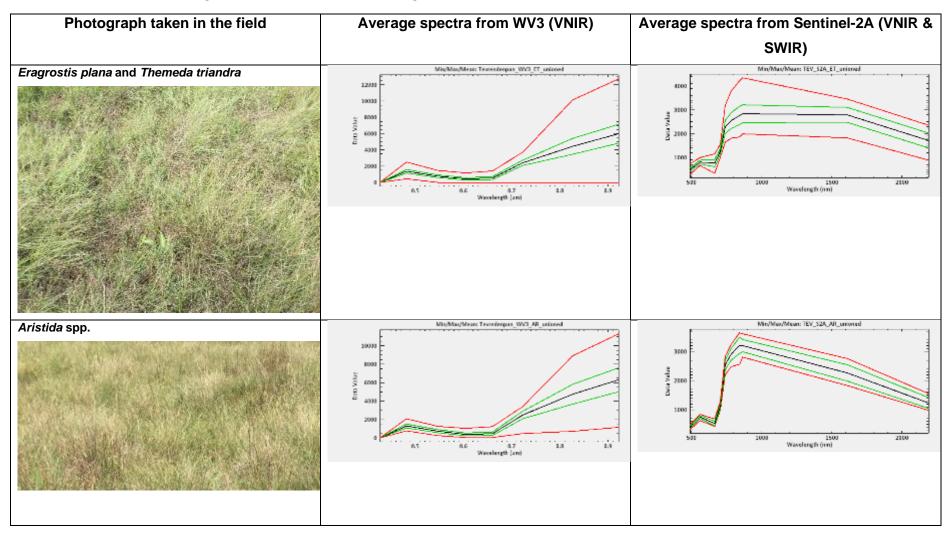
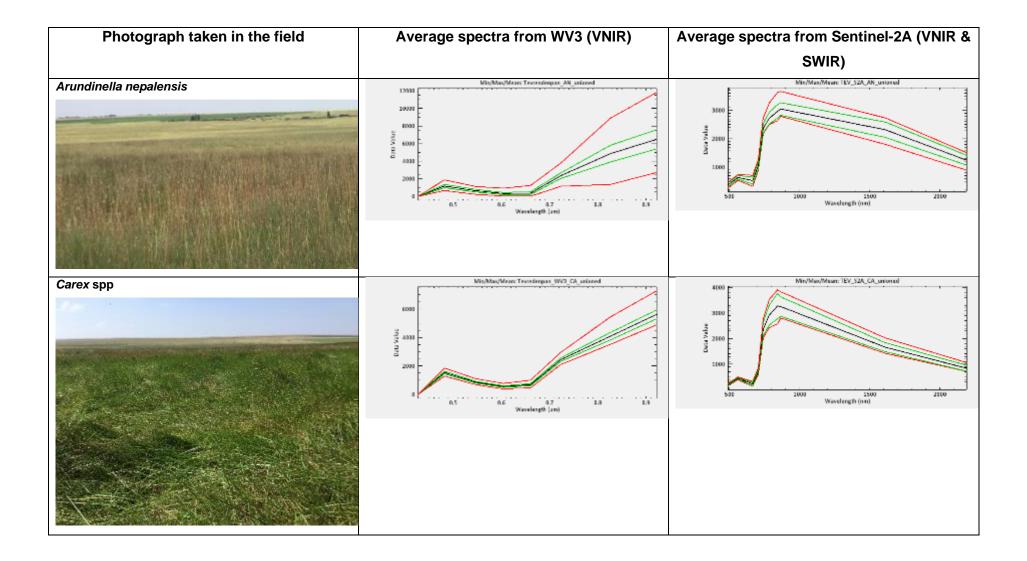
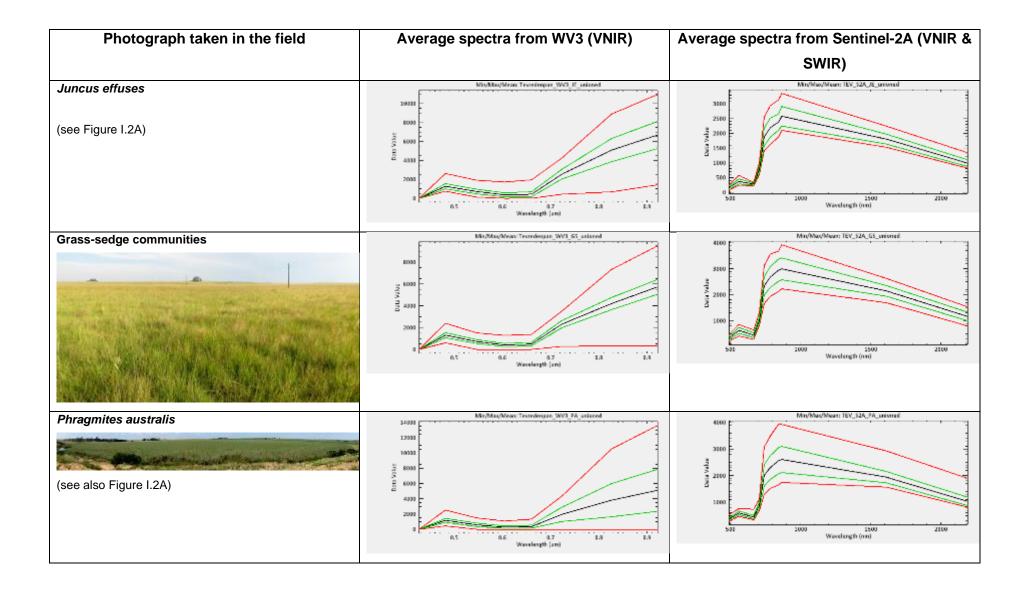
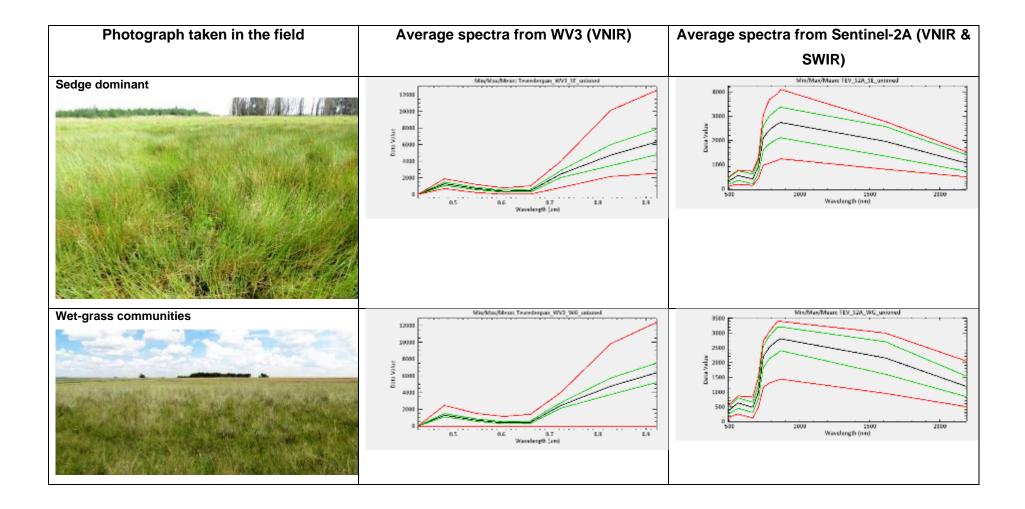
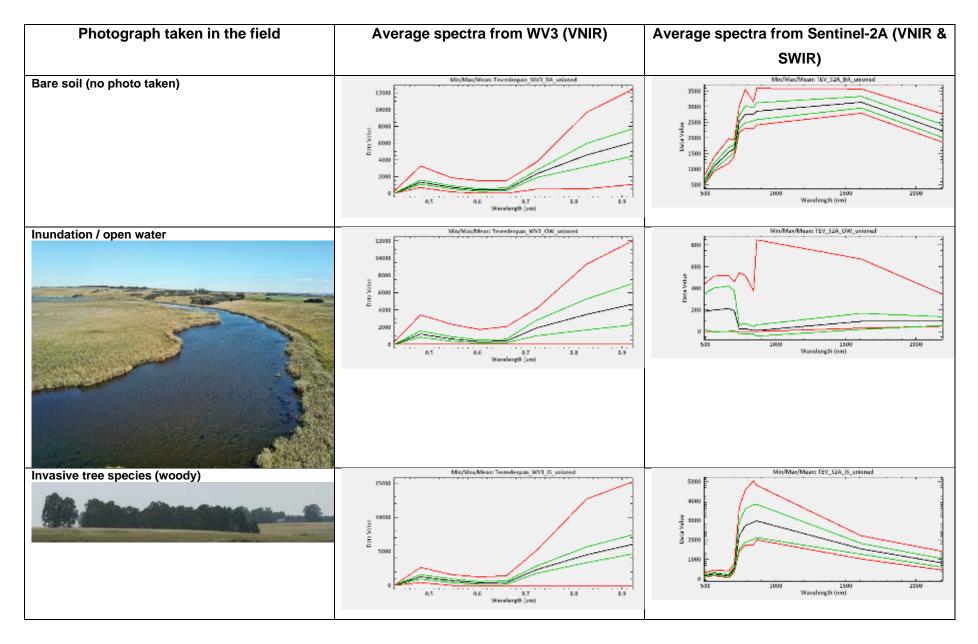
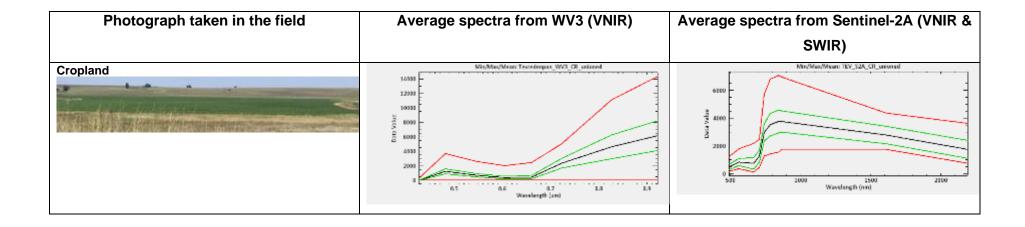

Supplementary material V: Reflectance spectra of classes used in the remote sensing classification

Figure V.1. Photographs and average spectra of the Hogsback vegetation communities for WorldView-3 (WV3) in micrometres (µm) and Sentinel-2 (S2A) in nanometers (nm). Red lines indicate the minimum and maximum range, black the mean and green the first standard deviation of the distribution of the data. VNIR = visible to near infrared region; SWIR = shortwave infrared region.


Figure IV.2. Photographs and average spectra of the Tevredenpan vegetation communities for WorldView-3 (WV3) in micrometres (µm) and Sentinel-2 (S2A) in nanometers (nm). Red lines indicate the minimum and maximum range, black the mean and green the first standard deviation of the distribution of the data. VNIR = visible to near infrared region; SWIR = shortwave infrared region.



Supplementary material VI: Confusion matrices of the optimal classification scenarios per study area and

sensor, prior to the adjustment for area bias as per the best-practise guideline of Olofsson et al. (2013;14)

Table V.1. Confusion matrix resulting from the optimal classification scenario of the Sentinel–2A image (bands and ancillary data) for the Hogsback study area. Classes indicated in red text show the class confusion of > 10% and the lowest individual producer's and user's accuracies. Values in bold indicate sub-totals. Abbreviations: BA = Bare soil; CA = *Carex* spp; CR = cropland; ET = *Eragrostis* spp. and *Themeda* spp; FS = *Ficinia* spp.; MM = *Merxmuellera macowanii*; MS = mountain slope; OA = average overall accuracy; OW = open water; PA = *Phragmites australis*; PA_ = Producer's accuracy; PL = plantations; PLF = plantations felled; RS = *Rubus* spp.; SE = Sedge dominant; UA = User's accuracy

	BA	СА	CR	ET	FS	ММ	MS	ow	ΡΑ	PL	PLF	RS	SE	Sub- totals:	Original UA	Total extent of	Fraction of cover
																predicted areal	
																extent (ha)	
BA	20	0	0	0	0	0	0	0	0	0	0	0	0	20	100.0	3.9	0.000
СА	0	16	5	2	2	0	0	0	0	0	1	1	3	30	60.0	418.4	0.059
CR	0	2	45	0	0	0	0	0	0	0	2	1	0	50	92.0	1 144.2	0.141
ET	0	0	3	23	0	1	0	0	0	0	0	0	3	30	76.7	2 627.2	0.340
FS	0	1	0	0	19	4	0	0	0	0	0	0	6	30	53.3	523.8	0.057
MM	0	0	0	1	6	22	0	0	0	0	0	0	1	30	66.7	386.2	0.045
MS	0	0	0	0	0	0	30	0	0	0	0	0	0	30	100.0	818.1	0.096
OW	0	0	0	0	0	0	0	30	0	0	0	0	0	30	100.0	26.5	0.004
РА	0	0	0	0	0	0	0	0	30	0	0	0	0	30	100.0	97.2	0.007
PL	0	0	0	0	0	0	0	0	0	30	0	0	0	30	96.7	450.0	0.051
PLF	0	2	1	2	0	0	0	0	0	0	24	0	1	30	76.7	729.1	0.079
RS	0	1	0	0	0	0	0	0	0	0	1	12	0	14	85.7	197.8	0.023
SE	0	2	0	4	3	5	0	0	0	0	0	0	16	30	53.3	919.9	0.097
Sub-totals:	20	24	54	32	30	32	30	30	30	30	28	14	30	384		8 342.2	
Original PA_	100.0	66.7	83.3	71.9	63.3	68.8	100.0	100.0	100.0	100.0	85.7	85.7	53.3			Origina = 82.	

Area-adjusted PA_	100.0	54.4	74.3	90.5	62.7	47.7	100.0	100.0	100.0	100.0	88.8	82.2	52.4		Area-adjusted OA
															=78.2%

Table V.2. Confusion matrix resulting from the optimal classification scenario of the WorldView–3 image (bands and ancillary data) for the Hogsback study area. Classes indicated in red text show class confusion of > 10% and the lowest individual producer's and user's accuracies. Values in bold indicate sub-totals. Abbreviations: BA = Bare soil; CA = *Carex* spp; CR = cropland; ET = *Eragrostis* spp. and *Themeda* spp; FS = *Ficinia* spp.; MM = *Merxmuellera macowanii*; MS = mountain slope; OA = average overall accuracy; OW = open water; PA = *Phragmites australis*; PA_ = Producer's accuracy; PL = plantations; PLF = plantations felled; RS = *Rubus* spp.; SE = Sedge dominant; UA = User's accuracy

	BA	CA	CR	ET	FS	ММ	MS	ow	ΡΑ	PL	PLF	RS	SE	Sub- totals:	UA	Total extent of predicted areal extent	Fraction of cover
																(ha)	
ВА	20	0	0	0	0	0	0	0	0	0	0	0	0	20	100.0	27.3	0.004
CA	0	24	0	0	2	0	0	0	0	0	0	0	4	30	80.0	659.7	0.107
CR	0	0	46	1	0	0	0	0	1	0	2	0	0	50	92.0	1 235.6	0.200
ET	0	0	0	28	0	0	0	0	0	0	2	0	0	30	93.3	635.3	0.103
FS	0	2	0	1	19	4	0	0	0	0	0	1	3	30	63.3	398.7	0.064
ММ	0	1	0	0	3	25	0	0	0	0	0	0	1	30	83.3	268.5	0.043
MS	0	0	0	0	0	0	28	0	0	2	0	0	0	30	93.3	814.0	0.131
ow	0	0	0	0	0	0	0	30	0	0	0	0	0	30	100.0	41.6	0.007
РА	0	0	0	0	0	0	0	0	30	0	0	0	0	30	100.0	140.9	0.023
PL	0	0	0	0	0	0	2	0	0	28	0	0	0	30	93.3	303.4	0.049
PLF	0	1	1	7	0	0	0	0	0	0	20	0	1	30	66.7	709.7	0.115
RS	0	1	1	0	4	0	1	0	0	0	0	7	0	14	50.0	227.5	0.037
SE	0	2	1	0	1	2	0	0	0	0	0	0	24	30	80.0	730.3	0.118
Sub-totals:	20	31	49	37	29	31	31	30	31	30	24	8	33	384		6 192.7	
Original PA_	100.0	77.4	93.9	75.7	65.5	80.6	90.3	100.0	96.8	93.3	83.3	87.5	72.7			Origin = 85	
Area-adjusted PA_	100.0	81.0	94.6	74.4	61.2	68.7	95.4	100.0	85.1	83.9	83.8	89.5	78.5			Area-adju =83.	isted OA

Table V.3. Confusion matrix resulting from the optimal classification scenario of the Sentinel–2A image (bands and elevation data) for the Tevredenpan study area. Classes indicated in red text show class confusion of > 10% and the lowest individual producer's and user's accuracies. Values in bold indicate sub-totals. Abbreviations: AN = Arundinella nepalensis; AR = Aristida spp; BA = bare soil; CA = Carex spp; CR = cropland; ET = Eragrostis spp and Themeda spp.; GS = grass-sedge communities; IS = invasive species; JE = Juncus effusus; OA = average overall accuracy; OW = open water; PA = Phragmites australis; $PA_{-} =$ Producer's accuracy; SE = Sedge dominant; UA = User's accuracy; WG = Wet-grass

	AN	AR	BA	CA	CR	ET	GS	IS	JE	ow	ΡΑ	SE	WG	Sub- totals:	UA	Total extent of predicted areal extent (ha)	Fraction of cover
AN	14	0	0	0	0	0	4	0	0	0	0	3	4	25	56.0	236.9	0.031
AR	0	20	0	0	0	0	3	0	0	0	0	2	5	30	66.7	367.2	0.048
ВА	0	0	22	0	2	1	0	0	0	0	0	0	0	25	88.0	36.7	0.005
СА	0	0	0	25	0	0	0	0	0	0	0	0	0	25	100.0	108.6	0.014
CR	0	0	1	0	57	6	2	1	0	0	0	0	3	70	81.4	1 901.6	0.247
ET	0	1	0	0	5	42	1	0	0	0	0	2	4	55	76.4	1 831.3	0.238
GS	4	3	0	0	2	0	36	0	1	0	0	1	3	50	72.0	764.7	0.099
IS	0	0	0	0	0	0	1	28	0	0	0	0	1	30	93.3	127.7	0.017
JE	1	0	0	0	0	0	1	0	38	0	0	0	0	40	95.0	109.8	0.014
ow	0	0	0	0	0	0	0	0	0	30	0	0	0	30	100.0	145.7	0.019
РА	1	2	0	0	1	1	0	0	0	0	24	0	1	30	80.0	411.6	0.053
SE	1	0	0	0	1	0	2	0	0	0	0	35	1	40	87.5	146.7	0.019
WG	1	2	0	0	2	5	1	0	1	0	0	2	56	70	80.0	1 511.1	0.196
Sub-totals:	22	28	23	25	70	55	51	29	40	30	24	45	78	520		7 699.5	0.031
Original PA_	63.6	71.4	95.7	100.0	81.4	76.4	70.6	96.6	95.0	100.0	100.0	77.8	71.8			Original OA =	82.1%
Area-adjusted PA_	56.3	62.0	54.3	100.0	85.6	83.0	73.5	81.4	73.9	100.0	100.0	41.9	76.0			Area-adjusted C	A =78.6%

Table V.4. Confusion matrix resulting from the optimal classification scenario of the WorldView–3 image (visible to near-infrared bands and ancillary data) for the Tevredenpan study area. Classes indicated in red text show class confusion of > 10% and the lowest individual producer's and user's accuracies. Values in bold indicate sub-totals. Abbreviations: AN = Arundinella nepalensis; AR = Aristida spp; BA = bare soil; CA = Carex spp; CR = cropland; ET = Eragrostis spp and *Themeda* spp.; GS = grass-sedge communities; IS = invasive species; JE = Juncus effusus; OA = average overall accuracy; OW = open water; PA = Phragmites australis; $PA_{-} =$ Producer's accuracy; SE = Sedge dominant; UA = User's accuracy; WG = Wet-grass

	AN	AR	BA	CA	CR	ET	GS	IS	JE	ow	ΡΑ	SE	WG	Sub- totals:	UA	Total extent of predicted areal extent (ha)	Fraction of cover
AN	12	0	0	0	1	0	5	0	1	0	0	0	6	25	48.0	274.9	0.036
AR	0	18	0	0	0	2	2	0	0	0	0	0	8	30	60.0	270.8	0.035
ВА	0	0	25	0	0	0	0	0	0	0	0	0	0	25	100.0	89.7	0.012
СА	0	0	0	25	0	0	0	0	0	0	0	0	0	25	100.0	40.1	0.005
CR	0	0	1	1	45	6	4	1	0	0	0	0	7	65	69.2	1 778.3	0.231
ET	0	0	0	0	3	45	2	0	0	0	0	1	4	55	81.8	1 901.6	0.247
GS	2	2	0	0	1	0	34	0	1	0	2	4	4	50	68.0	744.9	0.097
IS	0	0	0	0	1	0	0	28	0	0	0	1	0	30	93.3	232.7	0.030
JE	0	0	0	0	0	0	1	0	39	0	0	0	0	40	97.5	180.1	0.023
ow	0	0	0	0	0	0	0	0	0	30	0	0	0	30	100.0	181.7	0.024
РА	2	0	0	0	0	1	0	0	0	0	25	0	2	30	83.3	394.3	0.051
SE	0	1	0	0	3	0	1	0	0	0	0	29	6	40	72.5	276.2	0.036
WG	0	6	0	0	1	1	1	0	4	0	7	5	45	70	64.3	1 330.9	0.173
Sub-totals:	16	27	26	26	55	55	50	29	45	30	34	40	82	515		7 696.3	
Original PA_	75.0	66.7	96.2	96.2	81.8	81.8	68.0	96.6	86.7	100.0	73.5	72.5	54.9			Original OA =	77.7%
Area- adjusted PA_	70.2	51.9	76.6	59.5	87.4	87.9	64.2	88.8	63.3	100.0	66.9	50.4	59.0			Area-adjusted O	A = 73.8%