
Quantifying biodiversity trends

in time and space

Angelika C. Studeny

Thesis submitted for the degree of
Doctor of Philosophy

in the School of Mathematics and Statistics
University of St Andrews

October 2012

Copyright ©2012 Angelika C. Studeny





Declaration

I, Angelika Caroline Studeny, hereby certify that this thesis, which is approximately 50,000
words in length, has been written by me, that it is the record of work carried out by me and
that it has not been submitted in any previous application for a higher degree.

I was admitted as a research student in January 2008 and as a candidate for the degree
of Doctor of Philosophy in Statistics in January 2008; the higher study for which this is a
record was carried out in the University of St Andrews between 2008 and 2012.

date: signature of candidate:

I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regu-
lations appropriate for the degree of Doctor of Philosophy in Statistics in the University of
St Andrews and that the candidate is qualified to submit this thesis in application for that
degree.

date: signature of supervisor:

In submitting this thesis to the University of St Andrews we understand that we are giving
permission for it to be made available for use in accordance with the regulations of the
University Library for the time being in force, subject to any copyright vested in the work not
being affected thereby. We also understand that the title and the abstract will be published,
and that a copy of the work may be made and supplied to any bona fide library or research
worker, that my thesis will be electronically accessible for personal or research use unless
exempt by award of an embargo as requested below, and that the library has the right to
migrate my thesis into new electronic forms as required to ensure continued access to the
thesis. We have obtained any third-party copyright permissions that may be required in
order to allow such access and migration, or have requested the appropriate embargo below.

The following is an agreed request by candidate and supervisor regarding the electronic
publication of this thesis:

Embargo on both all or part of printed copy and electronic copy for the same fixed period of
2 years on the following ground:

publication would preclude future publication.

date: signature of candidate:

date: signature of supervisor:





Abstract

The global loss of biodiversity calls for robust large-scale diversity assessment.
Biological diversity is a multi-faceted concept; defined as the ‘variety of life’,
answering questions such as ‘How much is there?’ or more precisely ‘Have we
succeeded in reducing the rate of its decline?’ is not straightforward. While
various aspects of biodiversity give rise to numerous ways of quantification, we
focus on temporal (and spatial) trends and their changes in species diversity.

Traditional diversity indices summarise information contained in the species
abundance distribution, i.e. each species’ proportional contribution to total
abundance. Estimated from data, these indices can be biased if variation in
detection probability is ignored. We discuss differences between diversity in-
dices and demonstrate possible adjustments for detectability.

Additionally, most indices focus on the most abundant species in ecological
communities. We introduce a new set of diversity measures, based on a family
of goodness-of-fit statistics. A function of a free parameter, this family allows
us to vary the sensitivity of these measures to dominance and rarity of species.
Their performance is studied by assessing temporal trends in diversity for five
communities of British breeding birds based on 14 years of survey data, where
they are applied alongside the current headline index, a geometric mean of
relative abundances. Revealing the contributions of both rare and common
species to biodiversity trends, these ‘goodness-of-fit’ measures provide novel
insights into how ecological communities change over time.

Biodiversity is not only subject to temporal changes, but it also varies across
space. We take first steps towards estimating spatial diversity trends. Finally,
processes maintaining biodiversity act locally, at specific spatial scales. Con-
trary to abundance-based summary statistics, spatial characteristics of ecologi-
cal communities may distinguish these processes. We suggest a generalisation to
a spatial summary, the cross-pair overlap distribution, to render it more flexible
to spatial scale.
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Introduction

Biodiversity has become a prime topic of discussion in various fields, ranging

from ecology through conservation to socioeconomics: inherently an ecological

concept, its importance has been emphasised by both theoretical and applied

ecologists (Pielou, 1975; May, 1988; Gaston & Spicer, 2004; Magurran, 2004;

Magurran & McGill, 2011). In particular, it is considered essential to ecosystem

functioning (Naeem et al., 1994; Hooper et al., 2005). Beyond the walls of

academic research institutes, it has recently received growing attention in terms

of conservation concern (natural resource management, sustainability) as well

as from a socioeconomic and political perspective (biodiversity as an asset for

a general quality of life) (Brechin et al., 2002; Adams & Hutton, 2007).

The assessment of biodiversity has always been an important subject of

ecological research (Magurran, 2004). In particular, the variation in species and

their abundances has been recognised early on, as commented by Darwin (1859)

‘It is interesting to contemplate an entangled bank, clothed with

many plants of many kinds, with birds singing on the bushes, with

various insects flitting about, and with worms crawling through the

damp earth, and to reflect that these elaborately constructed forms,

so different from each other, and dependent on each other in so

complex a manner . . . ’ — The origin of species, p.489.

However, it was not until the middle of the last century that a quantitative

framework of biodiversity was developed (Fisher et al., 1943; MacArthur, 1960;

Pielou, 1969). Amongst others, Fisher (1943) laid the foundation by expressing

the distribution of individuals across species in mathematical terms. Further

models have since been suggested, trying to incorporate more realistic biolog-

ical mechanisms (Sugihara, 1980; Tokeshi, 1990, 1996). The variation within

an assemblage has been of interest, not only to biology, but to other subjects,

too. C.E. Shannon derived the expected information contained in a string of

characters or numbers, based on the frequency of their occurrence (Shannon,

1948). ‘Shannon’s index’ was soon adopted by ecologists to measure the diver-

1
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sity of a community (Pielou, 1966a) and a variety of alternative diversity indices

has been proposed since (Simpson, 1949; Pielou, 1969; McIntosh, 1967; Hurl-

bert, 1971; Heip, 1974; Hill, 1973; Patil & Taillie, 1982; Smith & Wilson, 1996).

The resulting ‘jungle’ of measures (Ricotta, 2005) has led some ecologists to

criticise diversity as a ‘non-concept’ and doubt its usefulness (Hurlbert, 1971).

However, biodiversity as a concept has persisted, and with it the need for its

quantification. Instead of giving up in face of the complexity of the concept,

ecologists continued to work towards a more nuanced methodological framework

by acknowledging its many facets (Magurran & McGill, 2011). The focus on

species diversity and numbers of species has widened to other aspects such as

genetic diversity (Culver et al., 2011), phylogenetic diversity (Pavoine et al.,

2005; Vellend et al., 2011), taxonomic diversity (Warwick & Clarke, 1995) and

functional diversity (Tilman, 2001; Dı̀az & Carbido, 2001). In addition, limita-

tions of the information contained in the species abundance distribution have

been discussed (McGill et al., 2007) and alternatives are now sought. Promising

advances have been made by taking into account spatial information (Condit

et al., 2000; Harte et al., 2005; Brown et al., 2011).

‘Biodiversity’ gained significance on a wider public level in 1992 at the Rio

Earth Summit, when 150 government representatives signed the Convention on

Biological Diversity (CBD) with the aim to ‘halt the loss of biodiversity’ by

2010 (CBD, 1992; Dobson, 2005). With the initial deadline for the target come

and gone, it is difficult to assess whether and in what ways progress towards

the 2010 target has been made, not least because of the difficulty of quantifying

it. The general consensus is that, apart from a few exceptions, we can consider

the target as failed (Butchart et al., 2010). The original objective has now been

extended in the more extensive catalogue of the 20 ‘Aichi’ biodiversity targets,

to be achieved by 2020 (Scholes et al., 2012).

However, the international agreement on a biodiversity target sparked a

discussion about the way diversity is assessed — monitored as well as quantified

(Dobson, 2005; Walpole et al., 2009). While policy makers have focussed on

suitable headline indices (Walpole et al., 2009; van Strien et al., 2012), scientists

have searched for a comprehensive methodological framework to assess diversity

and changes in diversity on large temporal, spatial and spatio-temporal scales

(Magurran, 2011; Magurran & Dornelas, 2010). Compared to previous studies,

the perspective to diversity assessment changed from a focus on site-specific

diversity to an interest in following changes across larger temporal and spatial

scales. In particular, the following key points have been discussed
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� Instead of an absolute (one point in time or space) evaluation of diversity

of a community, relative assessment has become more important. This

has led to an increase in popularity of the geometric mean, especially

with policy makers (Loh et al., 2005). The aim is to monitor long-term

trends in biodiversity and to identify changes in the rate of change in

trends. A slowing or reversing of the rate at which biodiversity currently

declines, would indicate that conservation efforts are effective (Magurran

et al., 2010; Magurran, 2011).

� Probability of detection varies between individuals from different species;

however, most existing methods do not account for this variation (Yoccoz

et al., 2001; Buckland et al., 2011a) which may lead to biased results.

While this has been acknowledged as a short-coming, only a few large-scale

monitoring programmes and studies have tried to actually incorporate

detectability.

� Traditional diversity measures are ‘non-spatial’ in that they are calcu-

lated based on the species abundance distribution which does not con-

tain information on spatial diversity (McGill et al., 2007). While these

non-spatial summary statistics can be compared across space, additional

information could be gained by including spatial characteristics explicitly

in diversity assessment (spatial diversity measures).

The research for this thesis has been conducted with these points in mind.

In particular, it seeks to contribute to setting appropriate methods in place

which can be used to assess progress towards international biodiversity tar-

gets without compromising the complexity of the concept itself. It introduces

novel methodology for diversity quantification, and evaluates these methods in

practical applications. In particular, it looks at assessing temporal trends in

diversity and identifying turning points in these trends, i.e. points that indicate

an increase or a decrease in the ‘rate of loss of biodiversity’.

In detail, this thesis is structured as follows: chapter 1 sets the stage by

reviewing ways to define biodiversity and its various measurable aspects. It

clarifies which of these aspects are considered in this thesis, and thus provides

the context for the work presented here. Problems arising with the assessment

of biodiversity are discussed, in particular those that concern monitoring diver-

sity and those that stem from describing it in quantitative terms. With regard

to the latter, an overview of existing methods of quantification is given. Chapter

2 explores the idea of using goodness-of-fit statistics as measures of diversity,
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more precisely of evenness. This is extended to a one-parameter index family

based on goodness-of-fit statistics, which has been introduced and studied in

statistics by Cressie & Read (1984). We discuss its properties in theory and

practice, where the latter is achieved through applications to simulated data as

well as a first small example using real data from Scottish farmland birds. Issues

in the context of imperfect detection of species as well as that of variation in

detectability between individuals from different species are looked at in chapter

3, with particular attention to the effects on the methods introduced in chapter

2. A comprehensive analysis of temporal trends amongst British breeding birds

in chapter 4 puts the ‘goodness-of-fit approach’ into practice. Employing these

novel evenness measures alongside a traditional geometric mean index provides

new insights into how ecological communities change through time. Finally,

chapters 5 and 6 look at assessment of diversity in space, although from two

different perspectives. Chapter 5 makes a first step towards mapping local di-

versity throughout a region and discusses possibilities to assess compositional

turnover across large spatial scales. The aim of this chapter is to set an exam-

ple that sparks future work; we use a new algorithmic method to fit a Poisson

model to the observed counts which takes account of the spatial autocorrelation

structure. Chapter 6 on the other hand uses the information contained in the

spatial locations of observations to draw inference on underlying processes pro-

moting the coexistence of species. Its methodological background lies in spatial

point process theory which provides a range of summary statistics for multi-

type patterns in space. We propose a generalisation of one of these summary

statistics that renders evaluation more flexible to spatial scale. Again, the use

of this extension is illustrated in simulations as well as with data, collected at

a plant diversity ‘hotspot’ in South-Western Australia. In contrast to the rest

of this thesis which focusses on large-scale assessment of diversity, this chapter

gives an example of identifying processes that operate on very local scales. We

conclude with a final discussion of the results obtained, their limitations and an

outlook to future work.

Because of its complexity, biodiversity will never be easy to quantify, but the

development of new approaches as well as methods that allow us to integrate

information across space and time in more flexible ways will hopefully provide

a more realistic insight and foster deeper understanding, and in the long run

increase awareness and care for our most vital resource — the ‘variety of life’

(Gaston, 2000) as it (still) surrounds us.



Chapter 1

Biological diversity and its

measurement –

a multidimensional problem

We should preserve every scrap of biodiversity as priceless while we learn to use

it and come to understand what it means to humanity. – E. O. Wilson

It is that range of biodiversity that we must care for - the whole thing - rather

than just one or two stars. – David Attenborough

When we read quotes like the above, the importance of biological diversity

(or biodiversity) and the necessity to protect it, seem to be beyond question.

But what is the ‘range of biodiversity’, what is ‘the whole thing’ and how can

we be sure to capture ‘every scrap’ of it? Any answer to these questions relies

first of all on a systematic and comprehensive assessment of biodiversity. This

starts with defining exactly what it is that we want to conserve (and why)

and is quickly followed by how we want to go about monitoring biodiversity

as well as our progress in ‘caring’ for it, and last but not least how we can

describe it in quantitative terms (Yoccoz et al., 2001). Biodiversity is a central

concept in ecology — and one of the broadest. Hence, its assessment and

measurement are anything but straightforward tasks (Hurlbert, 1971; Magurran,

2004). The richness of the concept is reflected in the various approaches to

capturing it (Magurran & McGill, 2011). This chapter reviews the current

understanding of biodiversity and discusses major challenges that come with

the task of its assessment, in particular its quantification and the design of

monitoring programmes.

5
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1.1 What is biological diversity?

Before setting up a methodological framework for its assessment, we need to

clarify what the term biological diversity or biodiversity 1 refers to and which of

its aspects are considered in the present work.

The list of definitions is long and they differ greatly in the extent of their

range (DeLong, 1996; Magurran, 2004). While some authors narrow biodiversity

down to the number of species, i.e. species richness only, others include further

components. For example, Hubbell (2001) considers biodiversity as ‘synony-

mous with species richness and relative abundance in space and time’ (p.3).

At the other end of the spectrum, we find descriptions which try to capture

the full complexity of biological diversity as ‘. . . the variability among living

organisms from all sources including, inter alia, terrestrial, marine and other

aquatic ecosystems and the ecological complexes of which they are part; this in-

cludes diversity within species, between species and of ecosystems’ (CBD (1992),

Art. 2; for more details see Appendix A).

Given by the Convention on Biological Diversity (CBD) in 1992, this def-

inition can be considered equally relevant as a scientific statement as well as

the basis for political actions like the 2010 target. Widely cited (Harper &

Hawksworth, 1995; Magurran, 2004; Gaston & Spicer, 2004) and mirrored by

similar definitions from other authors (Noss, 1990), it followed Norse et al.

(1986) in its recognition of three main organisational levels of biodiversity —

genetic, species and ecosystems (see Fig. 1.1). The term ‘biological diversity’

directly translates to ‘variability ... from all sources’ or as Gaston (2000) puts

it, the ‘variety of life’ itself. This can be specified as the genetic variation within

a species and how it evolves with time or the diversity of an assemblage formed

by different species (usually on the same trophic level). Neither the evolution of

species nor that of communities is independent of the surrounding environment.

Diversity of a whole ecosystem refers to the complexity and the interdependence

of species and the environment they live in (Harper & Hawksworth, 1995; Rosen-

zweig, 1995; Magurran & Dornelas, 2010).

However, DeLong (1996) criticises definitions like the CBD’s for their general

inclusion of ecosystems, as they comprise biotic as well as abiotic components,

whereas the term bio-diversity should only be used for the biotic parts to avoid

confusion:

1We follow Magurran (2004) in using ‘biological diversity’ and ‘biodiversity’ interchange-
ably.
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Figure 1.1 – Example of the three organisational levels of biodiversity. (a) shows the phylogenetic relationships among Corydoradinae, a
group of freshwater catfishes (genetic diversity), (b) pictures species diversity in a marine evironment and (c) gives a schematic overview of a
foodweb in the marine ecosystem.

Sources: (a) reprinted by permission from Macmillan Publishers Ltd: Nature (Alexandrou et al., 2011), copyright 2011; (b)

http://www.publicdomainpictures.net and (c) courtesy U.S. National Oceanic and Atmospheric Administration (NOAA).
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‘Biodiversity is a state or attribute of a site or area and specifically refers to

the variety within and among living organisms, assemblages of living organisms,

biotic communities, and biotic processes, [...].’

He furthermore stresses the importance of a clear distinction between the

classification (i.e. semantic and structural definition) of biodiversity as a state

or attribute (which we aim to assess) and the operational aspects of its mea-

surement.

‘Biodiversity can be measured in terms of genetic diversity and the identity

and number of different types of species, assemblages of species, biotic commu-

nities, and biotic processes, and the amount (e.g., abundance, biomass, cover,

rate) and structure of each. It can be observed and measured at any spatial scale

ranging from microsites and habitat patches to the entire biosphere’ (DeLong

(1996), p.745).

Although this definition might read as merely a more elaborate rewording of

the CBD’s statement above, it carries some subtle differences which are relevant

to this thesis. While biodiversity is fully acknowledged as a complex concept in

ecology, it points to the fact that the broadness of the concept renders a uni-

tary methodological framework for its measurement and assessment difficult, if

not impossible. In fact, methods of quantification depend on the organisational

level we are looking at, as well as what aspect of diversity we are interested in.

In contrast to definitions that are very much tied to number of species and/or

species proportions, it explicitly includes more recent approaches looking at

diversity of a community in terms of genetic differences (phylogenetic diver-

sity, e.g. (Pavoine et al., 2005); taxonomic distinctness (Warwick & Clarke,

1995)) as well as the contribution of the different species towards ecosystem

maintainance (functional diversity, e.g. (Tilman, 2001)). While this definition

explicitly excludes inorganic components of an ecosystem as direct contributors

to its biodiversity, one should not forget that they can be prerequisite for a

species existence and as such for biodiversity.

With respect to quantification of biodiversity, a complex definition such as

DeLong (1996) seems to increase the difficulty of the task (Hurlbert, 1971). But

biodiversity assessment must acknowledge that there is not a unique measure to

capture every aspect of it (Magurran & McGill, 2011). If we ground our methods

on a definition which focuses on maybe one or two of the measurable components
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only, as in Hubbell’s definition at the beginning of this section, we seemingly

decrease the complexity of our task and escape the necessity of justifying why we

are concentrating on these aspects. Reasons might be as trivial and legitimate

[!] as the lack of resources or accessibility within a monitoring scheme or just

the current boundaries of our knowledge, but ultimately we always have to aim

for the ‘whole range of biodiversity’ as David Attenborough put it. A definition

should mirror this objective by reflecting biodiversity in its entire complexity.

It then allows for the possibility of gathering information on different levels to

get a fragmented, possibly quite incoherent, but finally more complete picture

than we would achieve by only counting the number of species (for example

Magurran & McGill (2011)).

DeLong’s definition also explicitly includes a possible variety of ‘currencies’

which can be used for biodiversity measurement. The question of the ‘currency’

of diversity has gained increasing interest in ecology (Chiarucci et al., 1999;

Morlon et al., 2009) So far, the focus of biodiversity quantification has clearly

been on individual counts. Not only have doubts been raised about this always

being the best choice (?), but the combined use of different currencies can also

be applied to gain information from the extent of agreement between them

(Warwick & Clarke, 1994; Henderson & Magurran, 2010).

The currency in which biodiversity is measured is not the only attribute that

is open to choice. DeLong (1996) makes the important point that biodiversity,

and therefore its quantification, ranges across different spatial scales, from local

sites over regions to a national and even global dimension. The spatial aspect

is perhaps a minor issue when quantifying biodiversity of single sites (i.e. a

single, selected location in space), but it cannot be ignored when assessment

is for larger regions and entire countries, as intended in the CBD’s 2010 target

(Pereira & Cooper, 2006). It is mainly the latter that we consider in this thesis

and hence we are concerned with diversity ‘in space’ (Rosenzweig, 1995). Scaling

properties of unifying concepts like biodiversity are reckoned to enable inference

on global ecological patterns (Storch et al., 2007).

However, space does not enter biodiversity assessment solely in terms of

scale. Recently, space and spatial patterns have received growing attention in

ecology in their own right (McGill & Collins, 2003; McGill, 2011). It has been

emphasised that assemblages of species do not carry information only on their

abundances, but also on the spatial relations between individuals (Wiegand

et al., 2007; Brown et al., 2011; Rajala & Illian, 2012). The latter promise to

provide statistical methods for investigating ecological communities and pro-

cesses that are shaping them. They can, for example, be used to test for the
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Figure 1.2 – Overview of the three organisational levels of biodiversity and various
ways to quantify them. The complexity of biodiversity as a concept cannot be rep-
resented by a single method of quantification. Depending on which component is of
interest to a study, a range of methods have been suggested. Biodiversity is indepen-
dent neither of time nor space since populations evolve and structures of communities
and ecosystems change. On the background of this framework, we look at diversity
quantification based on species abundance distributions (SADs) and spatial diversity
characteristics of ecological communities.

absence of interactions between species or to evaluate conjectured shapes of

the species abundance distribution (SAD). This adds a new perspective and an

additional (measurable) component to the biodiversity concept, namely spatial

diversity, and might lead a way out of the traditionally SAD-focussed view of

biodiversity research (McGill et al., 2007).

Based on this discussion, this thesis views biodiversity as a multi-dimensional,

unifying concept spanning three major levels of organisation which relate to dif-

ferent subject fields in biology. These are genetic diversity, diversity of species

assemblages and of entire ecosystems. This is summarised in Fig. 1.2. Measur-

able components of biodiversity are various, can be found within any of these

levels and can be quantified in different currencies and along different spatial

scales. On the genetic level, molecular measures are used to determine the ge-

netic distance between individuals of the same species (distance to the most

recent common ancestor), but also to time speciation events (Nichols, 2001).

However, they can also be applied to identify species as dissimilar and thus

measure the diversity of a species assemblage based on their phylogeny (Pavoine

et al., 2005). Traditionally, biodiversity has been very much associated with

species diversity (see for example Hubbell’s (2001) definition of biodiversity).
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Quantification on this level typically considers species at the same trophic lev-

els; it aims at determining the number of species (species richness, May (1988);

Gotelli & Colwell (2001)) or is based on the species abundance distribution, i.e.

the proportion of abundance allocated to each species in the assemblage (McGill

et al., 2007). Both the problem of quantifying species richness reliably and sum-

marising information contained in the species abundance distribution has led

to the development of a wide range of statistical methodology. More recently,

species diversity has been extended to take into account a species’ contribu-

tion to the maintenance of ecosystem functions (Tilman, 2001; Dı̀az & Carbido,

2001). At the most complex level, quantification of biodiversity could aim at

the interactions and processes driving an ecosystem as a whole. Obviously, the

diversity of a whole ecosystem cannot be captured by a single measure. Rather,

measures of all aspects (genetic, taxonomic, SAD, functional, spatial) have to

be combined to characterise ecosystems (Magurran & McGill, 2011). In partic-

ular, spatial diversity characteristics play an important role here, as they aim to

reveal the processes which drive ecosytems, primarily species interactions. To

get a picture of an entire ecosystem and its diversity across all trophic levels,

network approaches can be applied (Dunne et al., 2002; McCann, 2007).

Species identities are by definition relevant to genetic and phylogenetic di-

versity measures; they likewise are important when we look at specific species’

functional roles within an ecosystem or interactions between individual species.

On the contrary, the classical SAD-approaches do not take into account species

identities, i.e. they always compare ordered species proportions (McGill et al.,

2007; Magurran & Henderson, 2010).

Throughout this work, our perspective is that of the CBD’s 2010 target, i.e.

biodiversity is considered as a measureable state of a large region (typically a

whole country), that can vary both in time and space. From a methodological

point of view, this thesis concentrates on the species level of diversity. While

we acknowledge the significance of estimating species richness (chapter 3.2) and

the progress that has been made towards overcoming the problem of undetected

species (Mao & Colwell, 2005; Chao et al., 2009), our focus is on measures

based on the species abundance distribution (SAD) here. In particular, we

discuss methods based on species proportions that allow us to separate trends

in rare species from those in common species. While these methods, which we

introduce in chapter 2, are based conceptually on individual counts, they can

to some extent be applied to other currencies of biodiversity. Diversity on the

species level has traditionally been defined as either information or variation

(Maurer & McGill, 2011), as we will see section 1.3.1. Later, we extend this
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view by defining and exploring spatial diversity characteristics (see chapter 6).

1.2 General problems in diversity assessment

1.2.1 Multidimensionality

Even if we limit our view to the species level, there is no unique way to quantify

diversity of species’ assemblages (Magurran, 2004). The most immediate (and

in most cases first to be looked at) is the number of species in the assemblage,

or species richness (May, 1988). Though often almost equated with species

diversity, species richness as a measure of diversity is not without pitfalls: It

is independent of neither scale nor sampling effort (Rosenzweig, 1995) and es-

timates of richness tend to be sensitive to sampling effects and survey design

(Gotelli & Colwell (2001, 2011), see also section 1.2.3 and chapter 3). But the

number of species is not the only possible characteristic of a community that

can be used to quantify (species) diversity. As Hubbell’s definition of biodiver-

sity in the previous section states, not only the presence of species but also their

abundances add to the variability within an assemblage.

Any sensible form of assessment and measurement of biodiversity (species

diversity) should register changes in any of the following components, (Buckland

et al., 2005)

� the number of species

� the total abundance

� the distribution of individual abundances across species.

The last is referred to as a change in evenness (Pielou, 1969). The closer this

distribution is to a uniform distribution, the more diverse we usually view the

community it represents. Because any of these aspects (richness, abundance,

evenness) characterise and contribute to overall (species) diversity of an assem-

blage, the choice of a diversity ‘measure’ is preceded by the decision to focus on

a specific characteristic. While this depends on scientific interests or aims of a

study, any measure of diversity should behave sensibly with regards to changes

in the three dimensions: a change in any of species richness, total abundance

or evenness while the remaining two components stay constant should result in

an equivalent change in overall diversity (Buckland et al., 2005).

The multidimensional nature becomes most apparent when we consider even-

ness. Typically it has been seen as independent of the number of species and
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is has been assumed that diversity can be decomposed into a richness and an

evenness factor (Heip, 1974; Gosselin, 2006; Jost, 2007). In consequence, it has

been considered crucial that any measure of evenness should be insensitive to

changes in number of species (Smith & Wilson, 1996). Only recently has it been

acknowledged that evenness and species richness cannot be regarded as indepen-

dent components of diversity (Jost, 2010). Jost (2010) supports his argument by

mathematical derivation of evenness factors which depend on species richness.

Based on the same derivation, he then suggests a (multiplicative) partitioning

of species richness into independent diversity and evenness factors. Diversity is

in this case seen as the ‘effective number of species’ (Hill, 1973; Jost, 2006), a

concept which will be discussed further in section 1.3.2 below. While mathe-

matically sound, this is hard to interpret in an intuitive and ecologically sensible

way. That evenness and richness cannot be measured independently, is evident

from the fact that a change in numbers of species leads to a change in the

dimension of the uniform distribution that corresponds to complete evenness.

Thus evenness can be regarded as complementary to species richness; it con-

tains additional information about a assemblage of species, but it is a relative

concept rather than an absolute one: changes in richness will alter the reference

point of what is regarded as complete evenness (see also chapter 2).

1.2.2 Sampling aspect, the concept of a community and

units of measurement

The different components of species diversity describe characteristics of an eco-

logical community; a diversity measure should reflect the actual properties

(‘truth’) of the community under consideration. However, this is not straight-

forward. Firstly, ecologists do not agree upon the concept of a ‘community’

and what defines it; some go as far as to doubt the usefulness of the concept

as a whole when it comes to diversity assessment (Hurlbert, 1971; Smith &

Wilson, 1996). Often, the diversity of a community is equated to that of a

sample from it (Maurer & McGill, 2011): for example, Smith & Wilson (1996)

abandon the idea of ‘a sample from a community’ as ‘unrealistic’ and ‘prefer to

see the quadrat or sample as a small, fully censused piece of biotic space’. This

might at the most hold for a narrow, site-focused approach to diversity where

sites are sufficiently small to sample everything, but is impossible to achieve

for many taxa (Lawton et al., 1998; Longino et al., 2002) and at larger spatial

scales (Buckland et al., 2011a). In general, an approach like this ignores the

problem of detectability (see following section and chapter 3). While it is al-
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ready doubtful that this is realistic for single sites, it surely cannot be upheld

if we are interested in biodiversity quantification of a large region – the spatial

scale we are interested in when assessing the international biodiversity targets.

Rather, we have to assure that sites and the community of interest are chosen

as representative of the entire biota of a region or a country (Buckland et al.

(2011a, In prep); and see also section 1.4).

Maurer & McGill (2011) provide a more precise, stochastic (metapopula-

tion) framework, where the species abundance distribution that represents the

community in question is derived as the expectation over a finite number of

realisations from a multinomial (equilibrium) distribution. This expectation it-

self is considered an ‘ecological sample’ as ecological processes act as a ‘filter’

for a species’ presence at any given time. However, this ecological sample is

usually not directly accessible and any of its characteristics, such as, for ex-

ample, diversity, have to be estimated based on ‘empirical samples’ from the

community.

Even if the delimiters of the community of interest are clear, we rarely are

in a position to account for every individual belonging to it. Thus, the ‘true’

species abundance distribution, the ‘true’ diversity and any of its aspects are not

directly accessible, but we have to rely on samples from the species assemblage.

Whether or not the concept of a community is agreed on, it has to be kept

in mind that any quantity derived from a sample is an estimate. Hence, we

will usually measure diversity via an estimator or a summary statistic. As

such we are interested in the statistical properties of the summary statistics we

use, in particular their bias and precision (e.g. Hellmann & Fowler (1999) for

species richness). While much effort has gone into developing robust statistical

methodology for richness estimators (Gotelli & Colwell, 2011), the same would

be needed for estimation of biodiversity ‘headline’ indices. Ideally, we would

want estimators of diversity to show little bias and high precision. This is

included in the criteria for a reasonable diversity measure by Buckland et al.

(2005).

The fact that we rely on samples to estimate diversity of an assemblage

also influences what we might consider the appropriate ‘currency’ of diversity.

Commonly, individuals are the sample units and hence count data are the basis

for the estimation. However, sometimes it might be impossible to sample single

individuals (such as in grassland plants, Tilman et al. (2006)) or individuals

might differ very much in some aspect (for example size in fish communities,

Henderson & Magurran (2010)). It is then often more appropriate to consider

other units of measurements, such as biomass, instead of individual counts (?).
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1.2.3 Detectability and rarity of species

As we rely on samples to estimate diversity, detectability becomes an issue

(Buckland et al., 2011a). ‘Detectability’ refers to the probability with which

an object of interest is recorded during the observation process. In terms of

biodiversity assessment, this is an obvious problem when considering species

richness (Gotelli & Colwell, 2001, 2011); the major concern about richness as

a measure of diversity is due to the fact that we do not expect to see all the

species that form the community (Boulinier et al., 1998). Extending the survey

area or increasing sampling effort will almost certainly reveal additional species.

However as long as we do not detect any individuals of a species, the species

remains undetected. Completely undetected species pose a problem for which

various parametric and non-parametric methods have been proposed, but that

still is not readily dealt with (see chapter 3), in particular for speciose commu-

nities where most species are rare, such as tropical arthropods (Longino et al.,

2002). It is necessary to distinguish this form of detectability (of a species) from

that of an individual.

The latter has so far not received much attention (Yoccoz et al., 2001; Buck-

land et al., 2011a). When estimated from samples, diversity measures are usu-

ally calculated based on the observed individual counts – without any attention

to the fact that the individuals in the sample from different species might differ

in their detection probability: observed counts from species A in a sample could

be lower than those from species B because there are actually fewer individuals

from species A in the community or because individuals from species A are less

likely to be observed. If diversity is estimated from the recorded individuals

without taking differences in detection probabilities into account, we treat the

sample as if we were certain that species A has indeed less individuals. How-

ever, appropriate survey design can provide additional information that allows

us to estimate detection probabilities and to derive abundance estimates for each

species (see 1.4 below). Diversity measures can then be based on the abundance

estimates instead of the counts (MacKenzie & Kendall (2002); Buckland et al.

(2011a); and see chapters 3 for further discussion and 4 for an example).

This second issue of individual detectability is bound to affect all measures

which are based on species abundances. As it depends solely on the occurrence

of a species, species richness as a measure of diversity does not need to be

adjusted for individual detection probability, but suffers from the more difficult

problem of species detectability (MacKenzie et al., 2003). In particular in highly

speciose communities, the number of species observed will not have reached an
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asymptote, even after thorough sampling (Longino et al., 2002).

Rarity of a species is problematic in terms of both species and individual de-

tectability. The encounter probability for a rare species in the sampling process

is small and it is likely to remain undetected (MacKenzie et al., 2005). Even

if detected, observations will be sparse and hence reliable estimation of abun-

dance hindered. Often detection probabilities cannot be estimated directly, but

have to be ‘borrowed’ from a similar common species. Typically, rare species

reduce precision of the diversity assessment drastically, and for some diversity

measures, like the geometric mean, they pose a problem for the calculation of

the measure. There are arguments for not including rare species in diversity as-

sessment, as they cause various problems but in general do not contribute much

in terms of biomass or with regards to functions of an ecosystem, on the other

hand they are usually the ones with the highest conservation concern (Gaston,

2008).

1.2.4 Temporal trends

While the composition of communities has never been seen as static, existing

biodiversity measures and their use have long focussed on determining site-

specific diversity at a single point in time or used space as a proxy (Magurran,

2011; Magurran & Dornelas, 2010). In the face of objectives like the inter-

national biodiversity targets, monitoring diversity trends on a long-term basis

becomes essential (Dobson (2005); Pereira & Cooper (2006); for an example see

Fig. 1.3).

Based on either count data (or other currencies) or estimates of abundance

or biomass, the time series of any diversity measure is likely to show a change

between two times, as it is driven by short-term fluctuations (see Fig.1.3 (a)). By

smoothing these out, long-term trends can be extracted (Fewster et al. (2000);

and see chapter 4). However, extensive time series of data are needed to see long

term temporal effects (for example of climate change) on diversity (Magurran

et al., 2010; Magurran & Dornelas, 2010). In the face of the current decline in

biodiversity, following the trend curve alone is not sufficient. The international

2020 biodiversity targets call for an improvement of ‘the status of biodiversity

by safeguarding ecosystems, species and genetic diversity’ preceding the former

objective to ‘halt the rate of loss of biodiversity’ (CBD, 1992). If we want

to assess progress with respect to this target, we are interested in determining

whether or not there has been a change to the current rate of biodiversity decline
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(Buckland et al., 2005). This information can be accessed through the second

derivative of the trend curve. Points where there is an indication for an actual

change in the rate of change can be identified (see chapter 4). This is usually

done numerically and does not require an extensive time series (Fewster et al.,

2000)

While diversity indices summarise information on dominance structure of

the underlying community, they are insensitive to species identities (Magurran

& Henderson, 2010). Hence, a diversity index can stay exactly the same, while

the composition of a community changes, as long as there is no change in the

distribution of species proportions (abundance or biomass). This can be mended

by following species turnover in time in addition to trends in diversity, for

example using rank abundance clocks (Collins et al., 2008). However, like trends

in diversity, species composition at single sites will vary between points in time,

especially over short periods of time, more due to random fluctuations than to a

real change in the underlying community. On the other hand, if we are interested

mainly in regional diversity, the species catalogue over a large spatial area (such

as a region) will be fairly stable over long periods, while turnover happens

across space. Existing turnover measures are very much based on a site-specific

approach, looking at either changes within a single site or differences between

pairs of sites (β-diversity) (Jost (2007); Tuomisto (2010); see also discussion in

the next section). This cannot readily be extended to cover turnover between

a large number of sites across a whole region (see chapter 5).

1.2.5 Spatial components of diversity

While temporal trends in biodiversity have not received much attention until

recently, there has long been an interest in its spatial patterns (Pielou, 1969;

Whittaker, 1972; Cody, 1975; Gering et al., 2003). This is reflected in classical

partitioning of diversity into the following spatial components (Whittaker, 1972;

Cody, 1975):

� α – (average) diversity within a site

� β – diversity or variation between sites

� γ – diversity pooled over all sites

The discussion about the nature of the partition is almost as old as the di-

versity concept itself (Whittaker, 1972; Lande, 1996) and still ongoing (Jost,

2007). While some favour an additive decomposition of γ-diversity into α- and
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Figure 1.3 – Examples of long-term trends in diversity. (a) The UK Wildbird Indicator (BTO, RSPB, BirdLife, DEFRA) is part of a set
of indices trying to measure sustainable policies and ecosystem health throughout the UK; (b) the Living Planet Index (WWF, ZSL, UNEP)
tries to capture trend in global biodiversity by summarising population trends of more than 2,500 species of fish, amphibians, reptiles, birds
and mammals.

Source: (a) courtesy of the British Trust for Ornithology (http://www.bto.org/science/monitoring/developing-bird-indicators); (b) reprinted with kind

permission from Loh et al. (2010)
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β-components similar to an analysis of variance (Lande, 1996; Gering et al.,

2003; Maurer & McGill, 2011), others argue for a multiplicative relationship

(Whittaker, 1972; Jost, 2007). Preference for either one or the other also de-

pends on the choice of diversity measure. However, the paradigm of diversity

partitioning and its discussion is closely linked to a site-based approach to di-

versity and hence loses its significance when diversity is considered at a regional

level; this holds in particular for β-diversity or species turnover between sites.

While the concept of α-diversity is not as relevant on a large (regional)

spatial scale and regional survey schemes often do not provide enough data to

estimate diversity reliably at each site, β-diversity as species turnover across

space (and time) would be of interest (Buckland et al., In prep), but suffers

from scale dependence and the fact that it is only meaningful for a few single

sites. This will be discussed further in chapter 5, along with first potential steps

towards alternative approaches. Only γ-diversity can be readily estimated on

a regional level (see chapter 4). In consequence, this thesis mainly considers γ-

diversity in application as it offers the only immediately available way to assess

regional diversity trends. Nonetheless, the measures developed in chapter 2

could also be calculated at the site-level given sufficient data.

Any of α-, β- and γ-diversity components are based entirely on the species

abundance distribution, i.e. only the frequency of a species, not its spatial re-

lationship to other species. Although the partitioning implicitly contains varia-

tion across space in the species abundance distribution, this is not taking spatial

information explicitly into account.

In contrast, spatial diversity looks at the spatial positions of species with

respect to each other. This can be informative in terms of processes that are rel-

evant for the maintenance of ecosystems, but that are not accessible through the

species abundance distribution (Pielou, 1969; McGill, 2011). Spatial statistics

and spatial point pattern analysis have recently been applied to access such in-

formation about the spatial composition of ecological communities (Perry et al.,

2006; Law et al., 2009) and have been shown to provide a valuable instrument

to investigate interactions. More generally, this promises valuable insights to

various niche-based processes, including competition, attraction and repulsion

between species (Brown et al., 2011). This is in particular relevant to studies of

plant diversity, as the spatial position of plants does not undergo rapid changes

and is fairly easily determined. However, spatial point process analysis has also

been successfully used to analysis seasonal animal movement patterns, such as

for example muskoxen herds in Greenland (Illian & Hendrichsen, 2010). In

chapter 6 we extend this kind of approach to ‘spatial diversity’ to cover flexible
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spatial scales and study its properties and advantages.

1.3 Existing methods to quantify species diver-

sity

This section was written by me. An edited version has been incorporated into

Buckland et al. (In prep), following a request by the editors of Environmental

and Ecological Statistics to incorporate into that paper a review of methods for

quantifying biodiversity trends.

1.3.1 Diversity indices

Whether biodiversity is considered a fundamental characteristic of our planet or

a socio-economic asset, there is by now little question that diversity assessment

is needed in order to maintain it in face of its global loss (Pereira & Cooper,

2006). Reliable quantification is essential for any form of assessment (Balmford

et al., 2003; Dobson, 2005) and the question of how to quantify biodiversity is as

old as its introduction as one of the main concepts in ecology (Fisher et al., 1943;

Pielou, 1969). Methods that are used to measure diversity are not inherent to

ecology, but span various disciplines such as information theory (Shannon, 1948;

Rényi, 1965), statistics (Fisher et al., 1943), population genetics (Simpson, 1949;

Hubbell, 2001), physics (Tsallis, 1988) and economics (Cowell, 1980; Hoffmann,

2008).

The multidimensionality of diversity as a concept prevents us from measuring

it in a single way and hence a variety of quantities have been suggested. As

mentioned above, some approaches concentrate on species richness alone and

attempt to determine the number of species in a community beyond the number

of species observed in samples (Chao, 1984; Chao & Lee, 1992; Shen et al., 2003;

Chao et al., 2009). More complex quantities combine information on several

aspects, the latter are usually referred to as diversity indices (Magurran, 2004).

Here, we use the terms ‘diversity index’ and ‘diversity measure’ interchangeably.

(However, we point out that these measures are in general not measures in the

strict mathematical sense, i.e. as defined by measure theory (see, for example,

Doob (1994), p.17/18).)

It is beyond the scope of this work to go through a complete collection

of the numerous diversity indices that have been suggested (Hurlbert, 1971;

Tóthmérész, 1995; Magurran, 2004; Maurer & McGill, 2011). Instead we review
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those indices and methods that are relevant to this thesis, either because they are

used in applications (chapter 4) or because they serve as a basis for comparison

(chapter 2). This section also introduces general notation used in the following

chapters.

Our primary interest is in quantifying diversity on a large spatial scale and

to follow changes in diversity over time, hence we consider a region of interest

with a total number S > 1 of species present (usually assumed on the same

trophic level). This list of species is assumed fixed for the time period we are

interested in. (We return to this assumption in chapter 3.) All individuals

belonging to these species form what we consider the community of interest.

The species abundance distribution of this community is given by the vector

Nt = (N t
1, . . . , N

t
S) (1.1)

where N t
i is the number of individuals of species i in the region of interest,

i = 1, . . . , S, at time t. Here and in the following, we drop the index t if we are

looking at a single time. The majority of diversity indices are defined based on

the species proportions given by

pt = (pt1, . . . , p
t
S) =

(
N t

1

N t
, . . . ,

N t
S

N t

)
(1.2)

where N t =
∑S

i=1N
t
i is the total abundance of the community at time t. For a

more precise mathematical definition, see Maurer & McGill (2011) who consider

N as the expected abundances for a random realisation from a metapopulation

in equilibrium.

Traditionally, diversity indices are calculated from the species proportions pi of

individual counts; however, sometimes it might not be possible or biologically

appropriate to take individuals as units of measurements. More recently, di-

versity quantification has also been considered based on other currencies than

individual counts, for example biomass (Henderson & Magurran, 2010).

As discussed in section 1.2.2 above, the quantities in equations (1.1) and

(1.2) are in general not directly observable; hence diversity indices (or any

other summary characteristic of the species abundance distribution) must be

estimated based on samples of the community of interest. A sample will be

denoted by nt = (nt1, . . . , n
t
S) and n =

∑S
i=1 n

t
i will denote its sample size.

Note that due to the sampling effects discussed above, zeros are possible: ni is

zero if species i is not recorded in the sample. In this context, and to stress



22 Biodiversity and its measurement

the sampling aspect of diversity assessment, we also speak of diversity indices

as ‘summary statistics’ and their corresponding estimators. Indices and their

estimators differ in their sensitivity to zeros in a sample (see chapter 3).

Maurer & McGill (2011) distinguish two main conceptual bases for the classi-

cal diversity indices used in ecology: a variance-based view and an information-

theoretic derivation. The two most commonly used indices — Simpson’s index

(Simpson, 1949) and Shannon’s entropy (Shannon, 1948) — are also typical

representatives of each group: Simpson’s index is calculated as

Dt =
S∑
i=1

(pti)
2, (1.3)

which is the probability that two randomly drawn individuals (from the eco-

logical community) belong to the same species. This probability is lower the

more diverse the community is, and hence D measures homogeneity rather than

diversity. Thus, usually transformations 1 − D, 1/D and − logD are used as

indices. The probability 1−D that two individuals do not belong to the same

species can be interpreted as the within-species contribution to the total varia-

tion contained in p (Maurer & McGill, 2011)

V[p] = 1−
S∑
i=1

p2i − 2
∑
i<k

pipk. (1.4)

Maurer & McGill (2011) furthermore identify this within-species variance as a

probabilistic measure of species richness, while the between-species part (co-

variance between pi and pk) accounts for evenness.

On the other hand, Shannon’s entropy

Ht = −
S∑
i=1

pti log pti (1.5)

was defined in information theory to quantify the amount of uncertainty con-

tained in a message (Shannon, 1948; Rényi, 1965). The message is seen as

a random string of units of information drawn from an underlying ‘alphabet’

which is described by the frequencies for each letter. It has been adopted in

ecology as a diversity measure (Pielou, 1966b). In the context of an ecologi-

cal community, the set of species is considered the alphabet with frequencies

given by the species abundance distribution p. Under some assumptions like

additivity, it can be shown that − log pi is a sensible way of quantifying the
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uncertainty in whether or not a randomly drawn individual belongs to species

i. The uncertainty is highest if all species are equally frequent.

While interesting from a statistical point of view, Maurer & McGill (2011)’s

interpretation of 1 − D as a ‘probabilistic measure’ of species richness lacks

biological meaning. A different concept which links Simpson’s index in the

form 1
D

to Shannon’s entropy is that of ‘effective number of species’ (Hill, 1973;

Jost, 2006). However, it suffers likewise from the fact that as a theorectical

(mathematical) framework it does not readily offer a biological interpretation.

The latter aproach is discussed further in section 1.3.2.

Simpson’s as well as Shannon’s indices combine information on both the

number of species (observed in a sample) and evenness (Magurran, 2004; Maurer

& McGill, 2011). Species that are not contained in a sample (but are considered

part of the species catalogue 1, . . . , S, such that ni = 0) make no contribution

to either index. Indeed, both indices tend to neglect the contribution from rare

species, however Simpson’s index is slightly more driven by the dominant species

(this will become evident in the section 1.3.2). Because of their insensitivity

to rare species, Simpson’s and Shannon’s indices usually show good precision

(Buckland et al. (2011b) and see chapter 4). As they are solely based on species

proportions p, they do not register a decline if all species’ abundances go down

at the same rate. This is one of their major drawbacks when it comes to

determining the current loss of biodiversity (Buckland et al., 2005, 2011b).

An alternative measure is the geometric mean of relative abundances (Buck-

land et al., 2011b; van Strien et al., 2012). In contrast to the usual convention,

relative abundances here refer to a species’ abundance relative to its abundance

in a baseline year t0, i.e. quotients N t
i /N

t0
i for i ∈ {1, . . . , S} at times t. The

geometric mean is defined as

Gt = exp

(
1

S

S∑
i=1

log
N t
i

N t0
i

)
. (1.6)

It meets many requirements of a headline index for biodiversity (Buckland et al.,

2005, 2011b), in particular it picks up a decline if all species are declining

at the same rate. The geometric mean respects the multiplicative nature of

the relative abundances – if one species’ abundance doubles relative to the

baseline while another species halves its abundance, the relative abundances

are 2 and 0.5, respectively. In additive terms, the first species’ increase would

dominate over the second species’ decline. However, relative abundances are

quotients and hence work multiplicatively, i.e. the increase of species one equals
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the decrease of species two (2 is the reciprocal of 0.5). In particular, compared

to the arithmetic mean, which works on an additive scale, the geometric mean

is more appropriate when relative abundances are considered (Buckland et al.,

2005). It summarises within species trends. This enables the user to combine

data from different surveys, as for example it is currently done in the Living

Planet index (Loh et al., 2005) (see Fig. 1.3 (b)). Traditionally seen as a

pure measure of trends in species’ abundance (Gregory et al., 2005; Buckland

et al., 2005), it has recently been pointed out that the geometric mean reflects

evenness, too. This is due to the fact that it places equal weights onto rare

and common species when the mean is taken (Buckland et al., 2011b). Because

of these advantages, the geometric mean is an appropriate headline index and

has been adopted by policy makers as a diagnostic for the assessement of the

CBD’s biodiversity targets, on an international level (Living Planet Index) as

well as the national level (for example the UK Wildbird Indicator). It is also

the measure of choice for many ornithologists (Gregory & van Strien, 2010).

However, the geometric mean index has some disadvantages, too: Because it

takes rare species as much into account as common ones, its precision is usually

lower than that of Shannon’s or Simpson’s index (see chapter 4). While the

latter simply ignore zeros in a sample, the geometric mean cannot be evaluated

in this case. Species with missing observations at any point during a survey

period usually have to be excluded from the set list of species.

The conceptual difference between the geometric mean index and traditional

measures like Shannon’s or Simpson’s is that of a relative assessment versus an

absolute one. While Simpson’s or Shannon’s index can be evaluated for one

single time, the geometric mean is applicable only to a time series, as it requires

a baseline for the individual abundance indices.

Yet another group of indices is based on the idea of comparing curves or

areas — an approach mainly used to assess evenness. The best known is the

Lorenz curve (Lorenz, 1905). A popular method to assess evenness of distri-

butions in economics, it has been successfully applied to ecological problems

and gained popularity (Tóthmérész, 1995; Rousseau et al., 1999). In principal

a cumulative distribution function, it plots the cumulated species proportions

against the rank of a species (in percentage, by increasing order). In case of a

completely even species abundance distribution, the abundances of x% of the

species equal x% of the total abundance and hence the Lorenz curve is the

bisecting (straight) line through the origin of the unit square. Any derivation

from evenness results in a concave line with the same start and end point.

This curve can be used to compare different distributions (independent from
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any difference in numbers of species). If their respective Lorenz curves do not

intersect, one is necessarily closer to the straight line and hence more even

than the other. However, this only defines a partial order since two distribu-

tions with intersecting Lorenz curves cannot be compared. The Gini -coefficient

which is calculated based on the Lorenz curve, tries to overcome this (Morgan,

1962). It is based on the idea that the larger the area between the straight line

representing complete evenness and the Lorenz curve, the more uneven is the

corresponding distribution. Hence the fraction of this area to the triangular

straight line defines a measure of unevenness (the Gini-coefficient). A similar

approach is used by Camargo (1995) and Bulla (1994). Instead of considering

the cumulative distribution function, they look directly at the area under the

species abundance distribution and compare it to the one expected under per-

fect evenness (for the same number of species) to calculate an index of evenness.

So far, we have seen indices as summary statistics of the (true) species abun-

dance distribution. In reality, N and p are typically not known and hence we

are looking at estimators of diversity rather than the indices themselves (Lande,

1996). It is common to get an estimate by replacing the species abundances Ni

by the observed individual counts ni in formula (1.3), (1.5) and (1.6) above.

However, as we will see in chapter 3 this leads to biased results in most cases.

More generally, indices based on N can be estimated by replacing Ni with an

estimate N̂i (‘plug-in estimator’). (This can be the individual count if a less

biased estimate is not available.) Apart from reducing bias, estimation of Ni

(based on observed ni) sometimes also permits us to overcome problems caused

by species with missing observations at some time points during the survey pe-

riod: if we are able to fit a temporal or spatio-temporal model to the observed

data, we can estimated diversity based on the model predictions instead of the

counts (Gotelli et al., 2010; Buckland et al., 2011b). In chapters 4 and 5 we

apply this to improve estimates of diversity of British breeding birds.

1.3.2 Parametric index families

As discussed in the last section, diversity indices typically combine information

on different aspects of biodiversity (richness, evenness, abundance) in one single

number (scalar measure). This was seen by many as insufficient to capture the

multidimensionality of the concept (Hurlbert, 1971; Hill, 1973; Patil & Taillie,

1982). In addition, the absolute value of a scalar diversity number carries little

meaning; comparability is limited and is usually only comparability with respect



26 Biodiversity and its measurement

to the same measure and under similar conditions (Tóthmérész, 1995; Liu et al.,

2007).

The problem with diversity quantification is that there is no unique way to

determine which of two species abundance distributions is the more ‘diverse’

— mathematically, there is no natural order for elements in Rn when n ≥ 2.

Diversity indices seemingly solve this issue by assigning a single number (scalar)

to each species abundance distribution and hence the natural order in R becomes

available. But this orders the SAD only according to the aspect that the index

primarily captures, and a change in the choice of the index may well reverse the

order.

To achieve greater generality, diversity indices have been combined into para-

metric families which describe the diversity measure as a function of a free pa-

rameter (Hill, 1973; Patil & Taillie, 1982; Ricotta, 2003; Leinster & Cobbold,

2012). This approach is again strongly linked with information theory (Ricotta

& Avena, 2002). Hill (1973) introduced a transformation of Rényi’s generalised

entropy to ecology, which is commonly used. Other parametric index families

exist, for example Patil & Taillie (1982), but many of them are transformations

of Hill’s numbers and are typically outperformed by them (Tóthmérész, 1995).

Hill’s (1973) one-parameter family of ‘diversity numbers’ J is given by

Jt(λ) =

(
S∑
i=1

(pti)
λ

) 1
1−λ

, (1.7)

with the restriction λ ≥ 0. (This is equivalent to the expontential of Rényi’s

generalised entropy.)

The fundamental idea of a parametric index family is that the free parameter,

here λ, enables the user to consider not only one measure at a time but to

evaluate and compare several simultaneously. And indeed, for specific values of

λ, Hill’s family (1.7) corresponds to several classical diversity measures, namely

species richness Jt(0) = S, the exponential of Shannon’s entropy Jt(1) = eHt ,

and the ‘inverse’ Simpson index Jt(2) = 1/Dt (Hill, 1973). However, all existing

families still combine information on both richness and evenness, where richness

is typically equated to the number of observed species (observed species richness)

if Jt is evaluated for a sample. Typically, the choice of the parameter value

decides about the weight put on rare and common species. Values close to 0

give equal weight to all species and usually λ = 0 correponds to the number of

species observed (or a transformation thereof). Values greater than one shift

more and more focus towards dominant species; in the limit λ→∞ Hill’s family
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equals the Berger-Parker-Index (Berger & Parker, 1970) which is the reciprocal

of the most abundant species’ proportion (in a sample).

Hill (1973) gives an interpretation of J(λ) as the ‘effective number of species’.

For λ = 0, the index is the actual number of species, so that every species

contributes equally to the count. As λ → ∞, fewer and fewer species are

counted ‘effectively’ as the free parameter shifts more weight from the least

abundant species to the dominant species. If species are very similar in their

abundances (close to evenness), there is less change in weight and effectively

all species are counted independently of the value of λ. (This independence of

λ with increasing evenness will be exploited in the following section where we

discuss diversity profiles). This also provides means of assessing evenness of a

community of interest by looking at quotients J(a)/J(b) for some a, b > 0, a 6= b.

Jost (2006) recently gave the concept of effective number of species a more

precise meaning: If we calculate a diversity index for an arbitrary community,

then in theory we can find a completely even community for which the diversity

index would give the same value. (Mathematically, we can say that the diversity

index defines an equivalence relation on the ‘set’ of all possible finite commu-

nities). The number of species in this completely even community (which is

unique) is then defined as the effective number of species.

While the geometric mean of relative abundances (1.6) is different from mea-

sures based on species proportions, it could also be generalised in a parametric

form and put into context to other means, such as, for example, the arithmetic

mean or the harmonic mean. The generalised mean of relative abundances is

defined by

Mt(λ) =

(
1

S

S∑
i=1

(
N t
i

N t0
i

)λ) 1
λ

, (1.8)

where now λ can be any non-zero real number. In the limit limλ→0Mt(λ) =

Gt. For λ = −1 and λ = 1 we get the harmonic and the arithmetic mean,

respectively. Furthermore, limλ→∞Mt(λ) = max
(
N t

1/N
t0
1 , . . . , N

t
S/N

t0
S

)
and

limλ→−∞Mt(λ) = min
(
N t

1/N
t0
1 , . . . , N

t
S/N

t0
S

)
, similar to the Berger-Parker-

index being the limit of Hill’s numbers. Even more general formulations exist;

the weighted general mean Mt(λ) =

(
1
w

∑S
i=1

(
wi

Nt
i

N
t0
i

)λ) 1
λ

, where w =
∑S

i=1wi

are weights given to the each species, gives in particular a weighted geometric

mean Gt = exp
(

1
w

∑S
i=1 log

(
Nt
i

N
t0
i

)wi)
. A related generalisation is that of the
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Figure 1.4 – Example of diversity profiles for 3 different species abundance dis-
tributions – sad 1 = (1,1,1,2,5,7,13,30), sad 2 = (1,1,1,1,2,4,5,7,12,58) and sad 3 =
(1,1,1,7,15,30). The left-hand side shows Hill’s untransformed diversity numbers, the
right-hand side the scaled version J(a)/J(0) (i.e. scaled by number of species). Even
in the scaled version, comparability is limited due to the differences in species richness.

quasi-arithmetic or generalised f -mean

Mt(f) = f−1
[(
f

(
N t

1

N t0
1

)
+ . . .+ f

(
N t
S

N t0
S

))
/S

]
, (1.9)

with f being an arbitrary continuous and injective function into the real num-

bers R. Again, we can find the three standard means, the harmonic (for

f(x) = 1
x
, the arithmetic (for f(x) = ax + b, a 6= 0) and finally the geo-

metric mean (for f(x) = log x).

1.3.3 Diversity profiling

At first sight, it is not evident what we gain from the description of diversity

indices as a function of a free parameter. However, this becomes clearer when

we look at the graph of this function, known as diversity profile, i.e. the plot of

the values of the diversity measures in the family against parameter values λ

(Hill, 1973; Patil & Taillie, 1982; Tóthmérész, 1995).

Diversity profiles plot indices against parameter values and provide a graphic

display of the whole family. Thus we can access more information than that

contained in a single index value. This provides us with a ‘partial order’: if the

diversity profiles for two species abundance distributions do not intersect, one

of them can be identified as the more diverse without any ambiguity. However,

as λ = 0 typically corresponds to species richness, diversity profiles for two

communities with different numbers of species cannot be easily compared. This
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is usually met by dividing the whole family by Jt(0) = S to scale the initial point

to one (Heip, 1974; Pielou, 1975). (In fact, often the number of species is equated

with those that are observed in a sample, i.e. Jt(0) = Sobs.) Comparability is

still compromised, though, as the underlying reference point (S) differs for the

two communities.

As a community gets more even, the values of a parametric family become

increasingly independent of the value of λ (Hill, 1973). This is represented in

the corresponding profile being almost flat. Hence, the curvature of the profile

is informative in terms of a community’s evenness (see chapter 2). An example

of a diversity profile is shown in Fig. 1.4.

1.4 Biodiversity monitoring & survey design

With the CBD’s 2010 target, a new objective for biodiversity assessment was

set. The international agreement as well as its extension in the 2011-2020 Aichi

targets focusses on biodiversity across large spatial scales, namely entire regions

and countries. This has implications on the design of monitoring programmes, in

particular the way data are collected, i.e. survey design (Dobson, 2005; Buckland

et al., In prep).

Traditionally, biodiversity studies have often been limited in their spatial

extent, concentrating on few single monitoring sites, and diversity indices were

calculated directly from the observed species records (Boulinier et al., 1998;

Yoccoz et al., 2001). This implicitly assumes that a sample is representative

of the community of interest and that all individuals have an equal probability

of being detected. Already debatable for single site monitoring in general, this

approach is clearly bound to fail when we want to consider the biodiversity of

a whole region or country. On a small spatial scale and by looking only at the

local community, it is possible to get an exhaustive sample if survey plots are

sufficiently small (such that we can assume a more or less complete census within

the plot) and if there are sufficiently many plots (to ensure most of the species

within the local community are recorded). However, even on a local scale this

is limited to mostly larger, well known vertebrate species (Landres et al., 1988).

For more cryptic and smaller organisms and very heterogeneous environments,

as for example microbes (Hughes et al., 2001) or tropical arthropod commu-

nities (Longino et al., 2002), it will be neither clear which species belong to

the local community nor possible to get a full census; nevertheless, rarefaction

techniques have been applied with some success in both cases. If extended to

a regional, national or even global scale it is obvious that exhaustive sampling



30 Biodiversity and its measurement

is not feasible and that we have to rely on a selection of sites to draw inference

for the whole region. Likewise biodiversity assessment should be aimed at the

entire biota of the region or country. This raises the question of representative-

ness for both sites and species sampled (Buckland et al., 2011a, In prep). A

representative sample of sites can be ensured by a carefully designed random

sampling scheme (Magurran et al., 2010). For example, the UK Breeding Bird

Survey (Riseley et al., 2011) follows a stratified random sampling design (see

chapter 4). Random allocation of survey sites makes estimation of precision in

the chosen summary statistics possible, while stratification can eliminate or at

least reduce bias stemming from differences in sampling effort or heterogeneity

from structural changes in the environment across the region.

To determine a representative list of species is less straightforward. A cat-

alogue of a country’s entire biota will in most cases remain incomplete; espe-

cially in biodiversity hotspots which are extremely species-rich, while at the

same time the majority of diversity hotspots are located in developing countries

where resources for monitoring are low. The species catalogue will be affected

by seasonal changes as well as longterm turnover caused by natural or anthro-

pogenic changes to the environment (Magurran et al., 2010). In addition, a

survey method that might be adequate for sampling some species, can be insuf-

ficient for others. Due to its specific design, the UK Breeding Bird Survey, for

example, leaves nocturnal and coastal species undersampled. Regional biodi-

versity monitoring therefore relies on a chosen set of taxa from the entire biota

that will necessarily be reduced. (For further discussion see chapter 3.) The

concept of indicator species provides one possiblity to direct this choice (Lawler

et al., 2003; Pereira & Cooper, 2006). The task of monitoring can then be

further facilitated by considering only a random subset of the set list; this is

particularly indicated where resources for monitoring programmes are limited.

However, there is the risk that species which might be less easily sampled, will

be underrepresented in such lists (Landres et al., 1988; Lawton et al., 1998).

Nevertheless, even after the decision on a set of species to monitor, in general

these species still differ in their probability of detection (see 1.2.3 above and

chapters 3 and 4). If not accounted for, this leads to bias in the estimation of

diversity (Yoccoz et al., 2001; Buckland et al., 2011a). When planning a survey

to monitor regional biodiversity, attention should therefore be paid to basing

it on methods that allow for explicit estimation of detection probabilities and

hence a correction of the diversity indices. Distance sampling (Buckland et al.,

2001, 2004a), as for example applied in the UK Breeding Bird Survey, is one

option, and is useful for species that are easily detected and identified at least
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in the proximity of the observer. It will be discussed in more detail in chapter

4. Other alternatives are mark-recapture methods which can be used where

individuals can be trapped, and in rare cases removal and other catch methods

(Borchers et al., 2002).

Rare species pose a problem to any kind of sampling scheme that is not

exhaustive. They will be missing from samples most of the time and seldom

provide sufficient data when they are observed, for drawing solid statistical infer-

ence (Cunningham & Lindenmayer, 2005). Estimation of detection probabilities

is often out of reach and precision of diversity measures that are very sensitive

to rare species is substantially reduced (Buckland et al., 2011b). Focal surveys

which collect additional information on species that tend to be underrecorded

in a nationwide monitoring programme can supplement biodiversity assessment

and help to reduce this problem, at least partially. However, the question of

survey compatibility arises. This is a wider issue for large scale biodiversity

monitoring in general, as we require surveys with a broad temporal and spatial

extent in order to assess the 2010 target and its follow-up targets (Magurran

et al., 2010). Long time series of data on a national level from an adequate

sampling design, however, are sparse. Sampling schemes like the UK Breeding

Bird Survey are still the exception and were only recently established. As long

as such monitoring programmes are not set in place more widely and cover a

range of taxa, the only option is a sensible combination of available data from

different surveys and probably different survey methods. But not all diversity

measures readily allow for such an integration; the geometric mean has a strong

advantage here in that it can easily combine different surveys (Buckland et al.,

2011b). This puts it in favour as a headline index on a global scale, such as the

Planet of Life index (Loh et al., 2005).

1.5 Chapter summary

The intent of this chapter was to review particular issues that arise when we

want to assess biodiversity. With the international biodiversity targets in mind,

we consider mainly monitoring and assessment over large spatial regions and

trends in their diversity in time. Assessment includes in particular measure-

ment. We have discussed biodiversity as a multidimensional concept and its

various measurable aspects. Concentrating on species diversity, different meth-

ods of quantifications have been reviewed. Diversity indices usually have to

be estimated based on survey data. While good survey design is important
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to reduce bias in these estimates, sampling ecological communities comes with

specific problems that should not be overlooked. Notably, rarity of species will

lead to sampling zeros which complicate diversity assessment. We have focussed

on problems that play a role on large spatial scales and over longer periods of

time and will return to an example how to address some of them in chapter

4. This chapter has set the ground for the following in that it has summarised

general problems that any method of biodiversity quantification faces (multidi-

mensionality, sampling aspects, detectability) and those that are particular to

the international biodiversity targets (temporal trends, spatial aspects, survey

design). We will return to some of them in the chapters to come, be it to eval-

uate methods that are developed in the course of this work or to suggest ways

to overcome them partly.



Chapter 2

Goodness-of-fit measures of

evenness: a new tool for

exploring changes in community

structure

Biodiversity on the species level summarises the structure within an ecological

assemblage, taking into account its size (species richness) as well as dominance

and rarity of species (see section 1.2.1 in chapter 1). As a multivariate concept,

biodiversity cannot be well-represented by a single measure (as discussed in

sections 1.3.1 and 1.3.2 in the previous chapter). Any scalar index typically

combines information on different characteristics of the assemblage. However, as

discussed in section 1.3.3, diversity profiles summarise the multivariate nature of

multi-species datasets, and allow a more nuanced interpretation of biodiversity

trends than unitary metrics.

Although several families of diversity indices have been suggested (see sec-

tion 1.3 and Tóthmérész (1995) for an overview), families of evenness measures

have rarely been considered and none has found wide application in ecological

studies (Ricotta, 2003). However, quantification of equality and inequality has a

long tradition in information theory as well as economics (Kullback, 1968; Hoff-

mann, 2008). Although derived from a statistical perspective here, the methods

considered in this chapter are closely related to inequality measures used by

economists (Cowell, 1980).

In this chapter, we investigate goodness-of-fit statistics as measures of diver-

sity. Based on the knowledge that an ecological community is never completely

even, this approach uses this departure from perfect evenness as a novel and

33



34 Goodness-of-fit measures of evenness

insightful way of measuring diversity (Studeny et al., 2011).

After motivating this idea in terms of the two most commonly used goodness-

of-fit statistics, we give a generalisation in the form of a one-parameter family

of statistics and discuss its theoretical properties.

We study how this approach relates to existing ecological indices: it provides

a generalisation in that it contains transformations of the classical measures,

Simpson’s and Shannon’s index. Consequently, we want to examine how it

is connected to other generalisations of these indices. In this context, Hill’s

diversity numbers (Hill, 1973) have recently regained interest in ecology (Jost,

2006, 2010; Jost et al., 2011; Leinster & Cobbold, 2012) and are used here as

the main reference. However, connections are not restricted to the ecological

context — we discuss a similar approach that is well established in economics.

As with diversity profiling (see 1.3.3), we plot this measure of departure as a

function of a free parameter, to generate ‘evenness profiles’. These profiles allow

us to separate changes due to dominant species from those due to rare species,

and to relate these patterns to shifts in overall diversity. This separation of

the influence of dominance and rarity on overall diversity enables the user to

uncover changes in diversity that would be masked in other methods. In this

context, we also explore their behaviour with regard to ecological criteria for

evenness indices (Smith & Wilson, 1996).

In a first application, we evaluate this goodness-of-fit based method in terms

of predicted community structure (following Tokeshi’s niche models) and present

an example assessing temporal trends in diversity of British farmland birds. We

conclude that it is an informative and tractable parametric approach for quan-

tifying evenness. It provides novel insights into community structure, revealing

the contributions of both rare and common species to biodiversity trends. This

will be used in chapter 4 for an extensive study of biodiversity trends in British

breeding birds.

Major parts of the work presented in this chapter have been published in

Studeny et al. (2011).

2.1 General idea: Perfect evenness as the yard-

stick

No real ecological community is perfectly even; the contrary is actually true

(Rabinowitz et al., 1986). Species abundance distributions are so remarkably

similar in their shape showing few very abundant species and many rare ones
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that this ‘hollow curve’ shape is assumed to follow a universal pattern (McGill

et al., 2007).

This has been exploited to measure evenness contained in the species abun-

dance distribution: we can take the uniform distribution that represents perfect

evenness as a ‘null model’ (Gotelli & Graves, 1996) and quantify its divergence

from the species abundance distribution of the assemblage of interest. Diver-

gence measures have been widely used in information theory (Kullback, 1968;

Rao, 1982; Ricotta & Avena, 2002), where they have been developed into a very

general framework (Karagrigoriou & Mattheou, 2010). While the focus is on

the discrepancy from the null model there, the similarity of two distributions

could be assessed equivalently. As discussed briefly in chapter 1.3, the latter

approach is used by Camargo (1995) and Bulla (1994) to derive a scalar measure

by comparing the area under the species abundance distribution to that under

a uniform distribution.

In the following, we adopt an approach to quantifying divergence based on

goodness-of-fit statistics which is inherently sample-based, but provides an es-

timate of the true divergence. Given a sample, we can ask ourselves how likely

it is that this sample came from a completely even species abundance distribu-

tion. Goodness-of-fit statistics offer a natural way of doing so. Considering the

two most commonly used goodness-of-fit statistics, the likelihood ratio G and

Pearson’s X2, we look at

G = 2
S∑
i=1

ni log

(
niS

n

)
, (2.1)

X2 =
S∑
i=1

(ni − n/S)2

n/S
. (2.2)

Instead of the standard comparison to a χ2-distribution, we use the val-

ues of these statistics as an estimate of the degree of divergence of the true

species abundance distribution from perfect evenness. More precisely, take∑S
i=1 pi log (pi/p

∗
i ) and

∑S
i=1 pi [(pi/p

∗
i )− 1] as divergence measures between p

and p∗ (the former is the well-known Kullback-Leibler divergence, Kullback

(1968)). Then G/2n and X2/n provide asymptotically unbiased maximum like-

lihood estimators of these divergences, respectively (as will be shown in a more

general context in section 2.3 below). In fact, these two statistics are trans-

formations of the most prominent classical diversity measures, Shannon’s index

and Simpson’s index (see section 2.3).
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This idea can be generalised; Cressie & Read (1984) introduce and study a

one-parameter family of goodness-of-fit statistics which incorporates both G and

X2. This family enables us to extend these (scalar) goodness-of-fit ‘measures’

of evenness to a parametric approach in the next section.

2.2 A family of goodness-of-fit statistics

Introducing a free parameter λ, T. Read and N. Cressie derived the following

parametric form for a generalised goodness-of-fit statistic (Cressie & Read, 1984;

Read & Cressie, 1988)

In(λ) =
2

λ(λ+ 1)

S∑
i=1

ni

[(
ni
n/S

)λ
− 1

]
. (2.3)

By changing values for λ in this expression, we switch between different

goodness-of-fit statistics. Although equation (2.3) does not define In(λ) for

λ = −1 and λ = 0, limits λ → −1 and λ → 0 can be taken. Parameter values

λ = 0 and λ = 1 give, as special cases, the statistics G and X2, respectively.

(For details and proofs see section 2.3 below).

Analogously to G and Pearson’s X2, when divided by 2n this family of

goodness-of-fit statistics provides an estimator of a measure of divergence bet-

ween the true species abundance distribution p and the perfectly even dis-

tribution p∗ (Read & Cressie, 1988). This divergence measure quantifies the

departure of p from evenness using a parametric form

Ip(λ) =
1

λ(λ+ 1)

S∑
i=1

pi

[(
pi
p∗i

)λ
− 1

]
; (2.4)

and we have

Îp(λ) =
1

2n
In(λ). (2.5)

Read & Cressie (1988) focus on the statistical aspects of the family of

goodness-of-fit statistics in equation (2.3) (distributional properties, asymp-

totics, their statistcal power amongst others). In particular, they discuss its

connection to information theoretic divergence measures, e.g. the Kullback-

Leibler-divergence. They refer to the family of divergence measures given by

(2.4) as the ‘power-divergence family’.

By varying the parameter λ, we change the weights given to the terms in
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the sum and hence their contributions to the index; in ecological applications,

this corresponds to the influence of different species on overall diversity. By

recording the changes in index values with λ, we can infer information about

evenness. If the data exhibit perfect evenness, the estimator is independent of

λ. The greater the departure from evenness, the more pronounced the changes

in index values with λ are. This is an important feature which enables us to

build evenness profiles in section 2.6.1 below.

2.3 Mathematical and statistical properties of

the family of goodness-of-fit statistics

In section 1.2.1, desirable properties of a diversity index have been discussed

in the light of the multidimensional nature of the concept. This included sta-

tistical properties as well as how an index reacts to changes in the different

components of diversity, i.e. species richness, overall abundance and evenness.

As diversity assessment is generally based on samples from the community of

interest, statistical properties of a diversity estimator are crucial (Lande, 1996;

Buckland et al., 2005).

In this section, we will focus on the family of goodness-of-fit measures given

by equation (2.3) as an estimator of the family of divergences (2.4), and establish

its mathematical and statistical properties. Its behaviour as a sensible measure

of diversity is discussed further in section 2.6.2, where we exploit it in terms of

diversity profiling. (This section is mostly based on Read & Cressie (1988).)

2.3.1 Continuity at λ = −1 and λ = 0

The first point to note when looking at expressions (2.3) and (2.4) is that neither

of them is defined at λ = −1 and λ = 0. This limitation is overcome by taking

limits

lim
λ→0

Ip(λ) = lim
λ→0

1

λ(λ+ 1)

S∑
i=1

pi

[(
pi
p∗i

)λ
− 1

]

=
S∑
i=1

pi lim
λ→0

1

λ

[(
pi
p∗i

)λ
− 1

]

=
S∑
i=1

pi log

(
pi
p∗i

)



38 Goodness-of-fit measures of evenness

and

lim
λ→−1

Ip(λ) = lim
λ→−1

1

λ(λ+ 1)

S∑
i=1

pi

[(
pi
p∗i

)λ
− 1

]

= lim
λ→0

1

(λ− 1)λ

S∑
i=1

pi

[(
pi
p∗i

)λ−1
− 1

]

= lim
λ→0

1

(λ− 1)λ

S∑
i=1

p∗i

[(
pi
p∗i

)λ
− 1

]

= −
S∑
i=1

p∗i log

(
pi
p∗i

)
,

where in each case we used

lim
h→0

1

h

(
xh − 1

)
=

d

dh
xh
∣∣∣∣
h=0

=
d

dh
exp(h log x)

∣∣∣∣
h=0

= log x.

Analogous results can be derived for the family of estimators In(λ) given by

equation (2.3) by replacing pi with its standard estimator ni/n in the equations

above.

However, one has to be careful if samples with zeros are involved. While

we can still derive finite results for λ = 0 because lim
x→0

x log x = 0, the limit

for λ = −1 no longer exists. There are two possible solutions to this problem,

namely either by considering only parameter values strictly above −1 or by

adding a small quantity to the sample proportions for all species in order to

regain non-zero values. Both approaches will be discussed explicitly in section

2.6.1 and studied in applications in section 2.7.

2.3.2 G and X2 as part of the family In(λ) of goodness-

of-fit statistics

As mentioned, the classic goodness-of-fit statistics — Pearson’s X2 and the like-

lihood ratio G — are part of the family In(λ) for λ = 0 and λ = 1, respectively:

lim
λ→0

In(λ) = 2
S∑
i=1

ni log

(
ni
n/S

)
= 2G,

In(1) =
S∑
i=1

ni

(
ni
n/S

− 1

)
=

S∑
i=1

(ni − n/S)2

n/S
= X2.

We will see below that these two prominent goodness-of-fit statistics are
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indeed connected to the two most common diversity indices — Shannon’s index

(Shannon, 1948) and Simpson’s index (Simpson, 1949).

2.3.3 Maximum likelihood estimation and asymptotics

of the family of goodness-of-fit measures

Under the assumption of multinomial sampling, the statistical theory of the

family of goodness-of-fit statistics (2.3) is well studied (Cressie & Read, 1984;

Read & Cressie, 1988). In particular, their asymptotic behaviour is known.

Based on aymptotic normality of the components of the sampling vector, the

following results were proved by Read & Cressie (1988).

If (n1, . . . , nS) is the realisation of a multinomialM(n,p∗) from the perfectly

even species abundance distribution p∗ and assuming large enough sample size

n, all members of the family are equivalent with regard to their asymptotic

distribution, which is χ2
S−1. In particular we have

Ep=p∗ [In(λ)] ≈ S − 1, (2.6)

Vp=p∗ [In(λ)] ≈ 2 (S − 1) . (2.7)

Typically, the focus of any goodness-of-fit statistic is on the equality of the

distributions compared. However, here we know that in reality the species abun-

dance distribution will never be perfectly even, therefore we are more interested

in the distributional properties when p 6= p∗. In this case, the distribution of

the statistics in the goodness-of-fit family is not independent of λ, but can be

approximated by a normal distribution, where the mean and variance are given

by

Ep6=p∗ [In(λ)] ≈ 2n

λ(λ+ 1)

S∑
i=1

pi

[
(piS)λ − 1

]
,

Vp6=p∗ [In(λ)] ≈ 4n

λ2

 S∑
i=1

(piS)2λ pi −

[
S∑
i=1

(piS)λ pi

]2 .
Hence, for large n we have

Ep6=p∗

[
1

2n
In(λ)

]
−→ Ip(λ).

As p̂i = ni/n is the usual maximum likelihood estimator, the estimator
1
2n
In(λ) is a maximum likelihood estimator (invariance property of the maxi-
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mum likelihood estimator). Because of its asymptotic behaviour, it is consistent

and asymptotically unbiased (in the setting of multinomial sampling). Later,

we explore the consequences of dropping the assumption of a multinomial sam-

pling distribution for a setting which is more realistic in terms of ecological

applications (see chapter 3).

2.3.4 The goodness-of-fit measures in a simplex setting

Discrete probability distributions in S dimensions can be interpreted as points

in the (S − 1)-simplex ∆ = {p ∈ RS|
∑

i pi = 1} (see Box 2.1 for details).

In this mathematical framework the search for an evenness measure translates

to the definition of an appropriate metric d : ∆ × ∆ → R on the simplex to

quantify the distance of an arbitrary point in the simplex to the barycentre

which corresponds to the point p∗. To be a metric in a strict mathematical

sense, d has to have certain properties (see Box 2.1), one of which is symmetry,

i.e. d(p,p∗) = d(p∗,p). For the symmetry property to hold for arbitrary p ∈ ∆

we need

S∑
i=1

pi

[(
pi
p∗i

)
− 1

]
=

S∑
i=1

p∗i

[(
p∗i
pi

)
− 1

]

⇔
S∑
i=1

[
pλ+1
i

p∗ λi
− pi −

p∗ λ+1
i

pλi
+ p∗i

]
= 0⇔

S∑
i=1

[
p2λ+1
i − p∗ 2λ+1

i

]
= 0.

As p∗ is fixed, this holds if and only if p2λ+1
i = p∗ 2λ+1

i = 1⇔ λ = −1/2.

Consequently, in general the members of the family of goodness-of-fit mea-

sures do not define a metric between p and the barycentre p∗ in a strict math-

ematical sense. Only for λ = −1/2 is the symmetry property fulfilled. In-

deed, by applying the square root transformation x := (
√
p1, . . . ,

√
pS) and

y := (
√
p∗1, . . . ,

√
p∗S), we see that

0 ≤ ‖x− y‖2 = 2− 2
S∑
i=1

√
pip∗i = 2

(
1−

S∑
i=1

√
pip∗i

)
=

1

2
Ip (−1/2) .

Hence, Ip(−1/2) inherits its properties as a metric from the Euclidean dis-

tance in RS and we conclude: Ip(λ) defines a metric on the (S − 1)-simplex if

and only if λ = −1/2. Its square root is called Matusita distance.
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Box 2.1: Excursion into metric spaces — simplices and norms

Indices for species diversity are commonly based on the species propor-

tions p. While diversity indices can be derived as variance or as infor-

mation contained in p, we can also use a geometric setting to describe p

and its diversity. This is of particular interest for determining evenness

within a community or differences between communities.

∆S−1 =

{
(pi)1≤i≤S ∈ RS

∣∣ S∑
i=1

pi = 1

}

is the collection of all possible vectors p (species abundance distribu-

tions) corresponding to communities of S species. Together, the vectors

form a subspace of RS which is called the (S−1)-simplex. Hence, we can

find any community with S species represented by a point in the sim-

plex. In particular, the centre of gravity (‘barycentre’ ) of the simplex

corresponds to the completely even community p∗.

Some evenness measures are based on the idea of ‘divergence’ between

the communities represented by p and p∗. This divergence is reflected in

the distance between the two points in the simplex. Hence, an evenness

measure can be defined by an appropriate metric (or distance function)

on the simplex. Mathematically, a metric is defined as a function d :

∆S−1 ×∆S−1 → R+
0 that fulfils the following axioms:

• d(p1, p2) = 0↔ x = y (identity of indiscernibles)

• d(p1, p2) = d(p2, p1) (symmetry)

• d(p1, p3) ≤ d(p1, p2) + d(p2, p3) (triangle inequality).

These correspond to our intuitive way to think about distance between

two points. For example, a common metric can be derived from the

Euclidean norm on RS: d(p1, p2) = ‖p1 − p2‖ =
√∑S

i=1 (pi1 − pi2)
2.

In this setting, Simpson’s indexD =
∑S

i=1 p
2
i gives the squared Euclidean

length of the vector p. It is not a divergence measure since it is does

not establish the distance between p and a reference point within the

simplex. However, it does account for evenness indirectly, in that the

closer p is to p∗, the smaller its length is. In reality, we estimate diversity

based on sample(s). The vector of species proportions in the sample can

again be located in the simplex; however, it might lie in a subsimplex

if not all species are observed. It is immediately clear that determining

diversity of the sample and equating the result with the evenness of the

underlying community generally leads to bias.
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(1,0,0,0)

(0,1,0,0)

(0,0,1,0)

(0,0,0,1)

p1

p2

Figure showing the 3-simplex.

We can locate any community with

4 species on this simplex through its

species abundance distribution. The

endpoints correspond to the most un-

even communities; the barycentre (red)

marks the completely even community.

Although goodness-of-fit statistics do not define a metric on the simplex

in general (see main text), they can give an idea of the ‘distance’ to

the reference point (here, the perfectly even p∗): if a sample is not

from the completely even distribution, but a different p, the value of

the goodness-of-fit statistics is likely to be larger, the further away p

is of p∗. However, the simplex representation has another feature — it

keeps track of species identities while these are neglected by diversity

indices as summaries of p in general. For example, p1 = (0.2, 0.6, 0, 0.2)

and p2 = (0.2, 0.2, 0.6, 0) are not distinguished by any of the common

diversity indices despite being clearly different points in the simplex (see

figure).

In fact, this is not an issue as long as we are only interested in quantify-

ing evenness as the divergence from the (fixed) point p∗; the situation where

we want to swap p and p∗ does not arise. However, since the identification of

ecological communities with points in the simplex allows us to keep track of

species identities (see Box 2.1), we might use the divergence between two arbi-

trary points as a measure of their similarity in terms of species composition. In

this case, we are interested in this measure being, for example, symmetric.

If we are more interested in following changes in a community through time

(temporal turnover), this could be represented by a point moving through the

simplex as a state process. When we survey the community, we get an observa-

tion based on the underlying state at the time and some sampling distribution.

2.4 Connection to Shannon’s and Simpson’s in-

dex and other possible transformations

As indicated in section 2.1 above, the two most prominent members of the

family of goodness-of-fit statistics given by equation (2.3) in 2.2, the likelihood

ratio G and Pearson’s X2 are related to traditional diversity indices, namely

Shannon’s entropy H = −
∑
pi log pi and D =

∑
p2i , which is the basis for any
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version of Simpson’s index. More precisely, we can express G and X2 as linear

transformations

G = 2n

[
S∑
i=1

ni
n

log
(ni
n

)
+ logS

]
= 2n

(
logS − Ĥ

)
= 2n

(
H∗ − Ĥ

)
,

X2 = n

[
S∑
i=1

(ni
n

)2
S − 1

]
= n

(
D̂S − 1

)
= n

(
D̂

D∗
− 1

)

of the sample-based estimates Ĥ and D̂ of Shannon’s and Simpson’s indices.

H∗ = logS, D∗ = 1/S are the index values if the species abundance distribution

is completely even (p = p∗). (Note that the estimator D̂ is not corrected for

sampling bias here (Lande, 1996).)

From the equations above, we see that the goodness-of-fit statistics measure

the difference between the value of the respective diversity index and the value

expected under complete evenness. While G does this in additive terms, X2 is

based on a ratio. In terms of interpretability and familiarity with these indices,

it would be desirable to find a linear transformation of Ip(λ) which directly gives

Shannon’s index H for λ = 0 and a version of Simpson’s index for λ = 1. How-

ever, this is infeasible because of the different nature (additive/multiplicative)

of the relationship of Ip(λ) to H and D, respectively. If Simpson’s index is con-

sidered to be preferable to Shannon’s index, we can choose the transformation

Ĩp(λ) = log
S

(λ+ 1)Ip(λ) + λ
, (2.8)

which gives

Ĩp(1) = log S − log(2Ip(1) + 1) = logS − logSD = − logD

and

Ĩp(0) = log S − log(lim
λ→0

Ip(λ)) = log S − log(logS −H).

This yields a commonly used version of Simpson’s index for λ = 1, but obscures

the relationship to H. By taking the exponential of Ĩp(λ), we still get 1/D as a

commonly used version of Simpson’s index, while the expression for H is closer

to the original.

On a different matter, low values of Ip(λ) correspond to high evenness;

this might be perceived as counter-intuitive in an evenness measure. A simple

transformation that orients the measures in the family in the same direction as

standard diversity indices, is by taking the reciprocal 1/Ip(λ). However, this is
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still not restricted in its range. For reasons of standardization and comparison

it might be desirable to have an evenness measure that ranges from 0 (if all

except one pi equal to 0) to 1 (for perfect evenness). A transformation that

can be used, should an application require a measure of diversity with more

traditional range of support, is given by

ρp(λ) = 1− Ip(λ)

max Ip(λ)
, λ > −1, (2.9)

where max Ip(λ) = 1/[λ(λ+1)](Sλ−1), i.e. the value of Ip(λ) for the least even

abundance vector p = (1, 0, . . . , 0). However, applications show that changes in

both 1/Ip(λ) and ρp(λ) with varying λ are not as easily interpreted as in the

untransformed index family (see section 2.7 below). In addition, ρp(λ) is only

defined for λ > −1 and differentiates well between abundance distributions only

for −1 < λ < 1.

A different approach would be to use the expectation under the null model

of perfect evenness, Ep=p∗ [In(λ)] ≈ S − 1, as a benchmark for comparison and

look at the ratio

γn(λ) ≡ S − 1

In(λ)
(2.10)

for a sample n = (n1, . . . , nS) as a measure of divergence from the expectation

under perfect evenness. However, γn(λ) is entirely sample-based as the stan-

dardisation uses the mean of the sample distribution of In(λ) under evenness;

in this, it is not meaningful for the divergence family. Moreover, even under

perfect evenness, the expression (2.10) does usually not evaluate to 1. Only if

we had (many) repeated samples and considered their average, the latter would

approach 1, but note that in general

Ep=p∗

[
S − 1

In(λ)

]
≥ S − 1

E[In(λ)]
= 1

by Jensen’s inequality and the strict convexity of φ(x) = 1
x
; indeed the sample

mean can be bigger than 1, even for large sample sizes (for more detail see

Appendix E).

In addition, we need to estimate S in order to calculate γn(λ). While this

is true for the untransformed family of goodness-of-fit measures, too, (and will

be discussed in more detail in chapter 3), γn(λ) is particularly sensitive to

underestimation of S, while overestimation needs to be severe in order to affect

the measure substantially (see Fig. E.1(d) in Appendix E). In view of this, an

index based on γn(λ) does not seem to have a strong foundation. For this
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reason, we only consider the transformations 1/Ip(λ) or ρp(λ) from now on.

2.5 Connection to other index families

There are numerous measures for diversity, some of which give rise to evenness

indices (Smith & Wilson, 1996). If we want to compare our approach with exist-

ing (parametric) methods, we are faced with a number of options to choose from

(see chapter 1.3.2 and Tóthmérész (1995)). For parametric diversity indices it

has been shown that Hill’s numbers not only perform best in terms of distin-

guishing species abundance distributions, but also that most other parametric

approaches can be derived from them (Tóthmérész, 1995). More recently, a

new transformation of them, termed ‘inequality factors’ was introduced (Jost,

2010). This set of numbers claims to respect the interdependence and correctly

separate the effect of richness from evenness. We show that our approach is

closely connected to both these families of diversity measures, before we then

compare their performance when they are applied to distinguish between abun-

dance models with different degrees of evenness.

2.5.1 Hill’s diversity numbers

Hill’s (1973) one-parameter family of ‘diversity numbers ’ J(α) = (
∑
pαi )1/(1−α),

α > 0 was introduced in chapter 1.3.2 and was shown to contain several classical

(scalar) diversity measures. We can rewrite the index family Ip(λ) in terms of

Hill’s diversity numbers as

Ip(λ) =
1

λ(λ+ 1)

[(
J(0)

J(λ+ 1)

)λ
− 1

]
. (2.11)

Hence the parametric family considered here is a transformation of quotients

of Hill’s numbers. Hill himself suggested the use of quotients J(a)/J(b) of

two diversity numbers to quantify evenness - giving a value of 1 when the un-

derlying distribution is completely even (Hill, 1973). In theory, any two real

numbers a, b can be chosen. Commonly, quotients involving J(0) = S are used

to render the measure independent of species richness (Heip, 1974; Pielou, 1969;

Camargo, 1995; Smith & Wilson, 1996). Nonetheless, Hill argues against the

use of J(0) = S because of the difficulty of determining S. Since our measure

involves quotients based on J(0), we need to justify why it is sensible to base an

evenness measure on the number of species, which is usually unknown. Before

we do so in section 2.6.3, we first discuss certain quotients of Hill’s numbers
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that have recently been emphasised in ecology (Jost, 2010) as well as a family

of inequality indices in economics that is similar to the divergence measures.

2.5.2 Inequality factors

Traditional evenness measures have typically used division by S with the aim of

achieving independence from species richness. Recently, Jost (2010) argued that

richness and evenness cannot be independent and instead proposes factorising

richness into a diversity component and an evenness component where diversity

is quantified via Hill’s diversity number J(a). These evenness components are

called ‘inequality factors’ and are defined by the quotients J(0)/J(a) — which,

given equation (2.11) above, moves them close to the index family considered

here. Jost’s approach is closely connected to the interpretation of Hill’s diversity

numbers as the ‘effective number of species’ (see chapter 1). A weighted count,

this number is always smaller than or equal to the true species richness, as rare

species contribute less and less to it with increasing parameter value. The more

uneven a community is, the faster the effective number of species decreases

as the free parameter increases. Jost proposes quantifying this discrepancy

between the true and the effective numbers of species in multiplicative terms,

introducing an inequality factor

S = J(α)×Qineq(α), α ≥ 0. (2.12)

Since S = J(0), these inequality factors are given by Qineq(α) = J(0)/J(α)

(and can be transformed to equality factors by taking the reciprocal Qeq =

J(α)/J(0)).

Jost discusses different transformations of these evenness components. If

equality factors are used to compare communities, they suffer from the drawback

that their range depends on the underlying species richness (as the effective

number of species J(α) is bound by S). Hence they can give a misleading

picture if communities are compared that differ greatly in numbers of species. To

overcome this problem, Jost applies the linear transformation (x−xmin)/(xmax−
xmin) to derive relative versions of Qineq and Qeq which measure evenness relative

to the minimum and maximum possible for a given number of species. To

preserve the complementarity of equality and inequality at the same time, he

favours applying this transformation to the logarithm of the equality factors.
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This gives relative logarithmic evenness

lnQeq + lnS

lnS
=

ln J(α)

lnS
, (2.13)

which for α = 1 is the known evenness measure proposed by Pielou (1969).

2.5.3 Generalised entropy inequality

The issue of measuring ‘evenness’ is not only relevant in ecology. One of the

transformations discussed by Jost (2010) in connection with the inequality fac-

tors described in the previous paragraph is closely related to the goodness-of-fit

based approach: Cowell (1980) introduces a family of measures, known as gen-

eralized entropy inequality, which is a well established measure in economics to

quantify the degree of evenness in the distribution of wealth across households

(Jenkins, 2009). Mathematically, it is close to the power-divergence family in

(2.4) under reparametrisation λ = ν − 1 (Cowell, 1980). More precisely, it is

essentially equation (2.4) without the factor pi outside the square brackets.

An important and well discussed problem in economics, the numerical sum-

mary of the distribution of wealth or shares across participants of a market

(firms, households) has received much attention (Bruckmann, 1969; Studeny,

1973; Cowell, 1980; Hoffmann, 2008). Indeed, there are parallels between the

quantification of evenness as an aspect of biodiversity and the quantification

of the distribution of assets or market shares across shareholders in economics.

The species forming the community of interest and their species abundance dis-

tribution which describes their proportion within the whole assemblage can be

seen as analogous to the relative share of total wealth by a number of firms

or households. However, there is an important difference. In economics, the

total number of shareholders as well as their proportional shares are in general

known exactly. In contrast, ecological data is almost always a sample from some

underlying unknown population. Uncertainty persists with regard to the true

number of species (species richness) as well as detectability of individuals from

different species during the sampling process. This will be discussed in more

detail in chapter 3.
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2.6 Analysing ecological communities based on

a graphical representation

2.6.1 Evenness profiles and their properties

As functions of the free parameter λ, families such as Ip(λ) allow us to plot index

values over the range of that parameter. Thus they provide a graphical display

of information contained in the species abundance distribution in addition to

a quantification of diversity. We show in this section that this is highly useful

and more intuitive for conveying multidimensional information than deriving

either a single scalar metric or a range of of them. The graphical equivalent of

a parametric index family has been termed a ‘profile’ (Patil & Taillie (1982);

see also section 1.3.3 in chapter 1).

Profile plots of existing index families are usually restricted to the positive

parameter range. For most, the parameter value of zero corresponds to the

number of species (or a transformation thereof). In this case, by simply counting

the number of species, we assign equal weight to all species. Plots are usually a

monotonically decreasing function of the parameter, and the metrics tend to be

increasingly driven by the dominance of the most abundant species. Negative

parameter values would put increasingly greater weight on the rarest species,

but would at the same time reverse the order when comparing distributions

with the same number of species but different levels of evenness. This violates

what Ricotta (2003) refers to as ‘consistency with the intrinsic order’ (as given

by the Lorenz curve, see chapter 1.3.1). Because this consistency is necessary

for defining at least a partial order between species abundance distributions, it

is a desirable property when profile plots are used for comparison in ecological

applications. Hence, negative parameter values have so far been excluded in

any of the existing parametric index families. Nevertheless, they do provide

valid index values and contain information on community structure. We will

see that profile plots that are based on our parametric approach, and which we

call ‘evenness profiles’ in the following, do not suffer from this change in order

and we can indeed explore the whole parameter range.

As with diversity ordering, we derive these evenness profiles by plotting the

family of divergence measures Ip(λ) for a given species abundance distribution

p as a function of λ. This profile can be used to analyse community structure

and compare species abundance distributions. The resulting graph is always

continuous and U-shaped. In this it differs from existing approaches, which

would be sigmoid were negative parameter values included; it is this sigmoid
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Figure 2.1 – Example of evenness profiles for three species abundance distributions –
sad 1 = (1,1,1,2,5,7,13,30), sad 2 = (1,1,1,1,2,4,5,7,12,58) and sad 3 = c(1,1,1,7,15,30)
(the same have been used as a toy example in the corresponding figure in chapter
1.3.3). A greater degree of curvature corresponds to increased unevenness. The
profiles provide more nuanced information than standard diversity profiles: sad 1 and
sad 3 are similar for positive parameter values, hence with respect to dominance of
species; for negative parameter values, i.e. when rare species are considered, sad 1 is
closer to sad 2.

shape which causes the ordering to reverse. Typically, we are interested in

diversity metrics as relative rather than absolute measures, to compare species

abundance distributions through either space or time. The curvature of our

evenness profiles provides further information to aid such comparisons. The

closer a species abundance distribution is to perfect evenness, the less the index

values depend on λ until in the limiting case of perfect evenness, all members

of the family are equal (corresponding to a horizontal line). Hence, the degree

of curvature of the profile plot reflects the degree of unevenness in the species

abundance distribution.

In traditional diversity profiling, the focus shifts between the two compo-

nents, evenness and species richness, as the parameter varies. By contrast, for

these evenness profiles, the focus switches between the two opposite ends, rar-

ity and dominance, of one component (evenness) (see Fig. 2.1). Although not

completely independent of the number of species S (which must be fixed in

advance), an evenness profile is equally dependent on S everywhere, allowing

comparison of profile plots.

In terms of a sample, the members of the family In(λ) vary in their sensitivity

to more extreme ratios of observed to expected frequencies per class (species)

for different values of λ. Large positive λ put more weight on large ratios of
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observed frequencies to those expected under perfect evenness, thus detecting

unevenness due to pronounced dominance of a species. At the other end, large

negative λ highlight observations that lie below their expected levels under

perfect evenness, i.e. on rare species. Thus, these profiles are able to distinguish

between a community with high dominance of a species and one where the

unevenness lies mainly within the rare species, while the common species have

similar abundance (for an example see sections 2.7 and 2.8 below). This is

not detected by existing approaches. For a graphical assessment of community

structure, the range of −3 ≤ λ ≤ 3 usually provides sufficient information.

2.6.2 (Ecological) criteria for an evenness index

We have discussed properties of the family of evenness measures based on a

goodness-of-fit approach from a purely mathematical and statistical point of

view in section 2.3. However, our interest is in applying this approach in the

form of evenness profiles to ecological data. Thus we also need to ask about

their meaningfulness in an ecological context.

In addition to statistical properties, Buckland et al. (2005) stated criteria for

the general behaviour of a diversity index. With a headline index for diversity

in mind, their criteria refer to changes in all three components, species richness,

evenness and overall abundance, which should be adequately reflected by the

index: a change in any one component while the other two remain constant

should lead to an analogous change in the diversity measure. By concept, the

measures in the index family Ip(λ) are evenness measures, and, as such, less

adequate as a headline index (however they can be applied as a useful supple-

ment to a headline index, see chapter 4). Relevant properties with regard to the

criteria by Buckland et al. (2005) are as follows. Since it is based on relative

abundances the family of indices Ip(λ) is not affected by changes in individual

abundances or the overall abundance, as long as number of species and the

degree of evenness remains the same. (In this, they show the same drawback

as the related Shannon’s and Simpson’s indices.) For the untransformed index,

a decrease in evenness leads to an increase in the measure (for any parameter

value λ). The interdependence with species richness has already been mentioned

briefly and its problematic nature will be discussed separately in more detail

below.

An earlier study by Smith & Wilson (1996) concentrated explicitly on even-

ness indices. In a detailed analysis of existing measures and their own suggested

evenness index, they established a comprehensive list of ‘requirements’ and ‘fea-
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Requirements Ip 1/Ip ρp

Invariant under replication of the SAD
X X �

(independence of species richness)
Decreasing when abundance of rare species is reduced — X X
Decreasing after addition of a rare species — X X
Invariant when SAD multiplied by a constant

X X X
(unaffected by units used)

Features Ip 1/Ip ρp

Maximal at perfect evenness — X X
Maximum value equals 1 — — X
Minimal for any number of species when SAD most unequal — X X
Value close to min (< 0.5) when community as maximally uneven — — �
Minimum value equals 0 — X X
Minimum value attainable with any no of species — — X
Value in the middle of scale for intermediate levels of evenness — — —
Reasonable response to changes in an SAD

X — X
that systematically increase evenness

Symmetry with regard to minor and abundant species — — —
Lower value for skewed distributions — — —

Table 2.1 – Behaviour of the evenness index Ip(λ) and its transformations 1/Ip(λ)
and ρp(λ) with respect to the criteria postulated by Smith & Wilson (1996). ‘�’
indicates that the respective feature is only just not met, whereas ‘—’ means that
the index fails to fulfil this criterion completely. Except for the first requirement, all
other criteria were evaluated for λ = −0.5.

tures’. Requirements are properties that these authors consider as essential for

any evenness measure in ecology, while features are desirable, but not necessary.

Using the same toy examples as in the original article, we checked our even-

ness profiles for these criteria. Table 2.1 provides a summary of the results (R

code and more detailed results are given in Appendix B). The untransformed

goodness-of-fit measures Ip(λ) fail the majority of these criteria, mostly because

of their lack of standardisation (see 2.4 above). Taking the reciprocal of Ip(λ)

assures that all requirements are met. However, only three of the features are

fulfilled. Due to its standardisation the transformed family of measures ρp(λ)

does much better, but fails what Smith & Wilson (1996) refer to as indepen-

dence from species richness. In the context of their study, this means that

multiples of the same SAD should result in the same value. Hence the index
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should not distinguish between

v11 = (1497, 1, 1, 1)

v21 = (1497, 1, 1, 1, 1497, 1, 1, 1)

v31 = (1497, 1, 1, 1, 1497, 1, 1, 1, 1497, 1, 1, 1)

etc.

(example taken from Smith & Wilson (1996)). ρp(λ) shows a stronger ‘depen-

dence’ on S in this sense if the SAD is very uneven. However, for a large number

of species (roughly S > 50) this becomes negligible. Although other authors

also point out the importance of the invariance under this kind of replication

(Hill, 1973; Routledge, 1983; Jost, 2010), it is debatable whether independence

in this sense is a reasonable requirement. Evenness reflects the distribution of

the total number of individuals over the number of species. Replicates of a

species abundance vector do not only increase the number of species but change

the overall abundance as well. In general, this changes the SAD expected under

perfect evenness (and hence the null model). The choice of an evenness mea-

sure then also involves the decision whether or not we want this change to be

reflected in the quantification. (This is similar to the differences between Jost’s

concepts of absolute and relative evenness.)

Given the multidimensionality of biodiversity in general and the interde-

pendence of species richness and evenness in particular, condensing it into an

index (or even a family of indices) cannot avoid a loss of information. Thus

the choice of the index needs to address the specific goal of the biodiversity

assessment. As our focus is on regional trends in biodiversity, i.e. a fairly large

spatial scale, where numbers of species are generally big, we can assume that

the goodness-of-fit indices are largely unaffected by variation in species richness.

2.6.3 Interdependence of evenness and species richness

Traditionally, evenness metrics were sought that are largely independent of

species richness, since evenness and richness were viewed as two separate char-

acteristics of the species abundance distribution. More recently, it has been

recognized that their relationship is more complex and that they cannot be

regarded as independent components of diversity (Gosselin, 2006; Jost, 2010);

adding or reducing the number of species, without making any adjustments

to the abundances of the remaining ones, will in general change the degree

of evenness. For example, if species i disappears from the species pool, i.e.
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ni = 0, traditional scalar and existing parametric diversity and evenness met-

rics will register the reduction both in numbers of species and in evenness at

the same time. This makes it difficult to distinguish between the two effects.

Our approach gives the option of either retaining the same species richness S or

resetting it to S − 1. In the first case, evenness is then evaluated with respect

to S species (species i making a negative contribution) or in the latter case,

species i is not taken into account. This allows us to choose which we consider

to be the most appropriate, at the cost of having to specify the assumed species

pool rather than let it be chosen by the measure.

A potential problem in this context lies in the fact that it is generally dif-

ficult to estimate the number of species S without bias or high uncertainty

(Lande, 1996; Gotelli & Colwell, 2001, 2011) . This issue is further discussed

below when we look at the problem of unobserved species in samples. How-

ever, any approach that is - like ours - based on J(0) = S should either justify

why this is sensible given the difficulty of determining the number of species,

or look for ways of avoiding this problem. Hill’s solution was to consider quo-

tients with J(2) in the nominator instead of J(0). This could be done for the

method suggested here, too, but would result in breaking the connection to

goodness-of-fit statistics which provides a natural interpretation of the measure

and a direct sample based estimate. Furthermore, quotients J(a)/J(2) are dif-

ficult to interpret in most cases and show ambiguous behaviour (Peet, 1974;

Jost, 2010). They do not increase monotonically with evenness anymore and

hence can show similar values for highly even and for uneven species abundance

distributions (see scenario 1 in section 2.7). In applied studies, the problem

is usually avoided by assessing evenness of a sample (i.e. taking into account

only observed species) rather than drawing inference on the species abundance

distribution. In this case, the measures do not reflect a characteristic of the

population but of the sample itself (Smith & Wilson, 1996; Hill, 1997). Para-

metric indices on the other hand have been defined and studied theoretically for

given (and fully known) species abundance distributions. Both approaches are

on their own unsatisfactory, the first because we are interested in characteristics

of the population, not the sample, and the latter because we have to rely on

samples to draw inferences on these characteristics.

Instead, we assume here that the number of species S in a study area is fixed

(and known) at least over the period of time we are interested in. We think it

is plausible to base an evenness measure on S for two reasons. First, theoretical

studies (e.g. Bulla (1994)) are often implicitly built on the assumption of a

fixed number of species. These studies provide valuable insight in the general
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behaviour and properties of diversity indices. By stating this assumption on

S explicitly, we set a defined framework in which our analyses and conclusions

hold. Second, in the context of monitoring temporal change in biodiversity

within a site or region, it is self-consistent to define a list of potential species, and

to estimate species proportions as zero for those species not recorded at a given

time. Disappearance of species will then be reflected by a change in evenness. If

unanticipated species are recorded in later surveys, the list of potential species

may be revised, and the entire sequence of biodiversity measures updated.

The comparison of two completely independent communities on the other

hand is more complex. Because of the multidimensionality of diversity as a

concept, the question of which of two or more such communities is the more

diverse will rarely have a single answer. Yet, if we can assume either that

their species richness is comparable or that more or less the same catalogue

of species holds across communities (this can always be achieved artificially

by pooling species), our family of evenness measures offers an instrument of

comparison. As it is sensitive to unobserved or missing species, it is to some

extent able to pick up differences between these communities. However, it

remains a diversity measure and does not account for species identities, i.e.

turnover between communities (as has been pointed out in more detail in section

2.3.4 above).

2.7 Applications I: Tokeshi’s niche models (sim-

ulation study)

After discussing its various properties as a measure of biodiversity as well as

its connection to other approaches, we next want to evaluate the use of the

goodness-of-fit based index family to analyse ecological assemblages in practice.

This will first be done by looking at predictions from well-known models of

community composition and followed by an example of actual data that gives

an outlook on later chapters.
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Box 2.2: Dominance decay, power-fraction and dominance pre-

emption — Tokeshi’s models explained

Niche models in ecology try to explain the coexistence of species despite

the fact that resources and suitable habitat are limited. Tokeshi (1990,

1996) introduced several stochastic models to describe how species se-

quentially join a community and by doing so, they take over a certain

share of the available niche space. By assumption, this share is propor-

tional to a species’ abundance. Hence, the total niche space is always

shared between all species present; an arriving species changes the distri-

bution of niche space and therefore the species abundance distribution.

In all Tokeshi models invaded niches are divided at random. How-

ever, the models differ in the way the next niche to be occupied

is chosen. If we represent the available niche space by a line of

length 1 and assume three species present, where p = (1/2, 1/3, 1/6).

Then the following gives a schematic description of the three model

classes (dominance decay, power-fraction and dominance preemption):
1/2 1/3 1/6 

1/3 1/6 3/8 1/8 1/3 1/2 
1/9 

1/18 

At every new arrival, 
the currently largest 
niche is divided. 

At every new arrival, 
more than 50% of the 
currently smallest niche 
is taken. 

Choice of niche to be divided is random: 
the probability P[pi is chosen]= a pi

k. 

 

k determines the dependence of this 
choice on the size of the current niches 
(a is a normalising constant). 

Dominance decay Power-fraction Dominance preemption 

0.42 0.34 0.24 k=0.5 

The different stochastic mechanisms lead to different degrees of evenness;

the table below gives a summary.

Model Specifications Degree of evenness

Dominance

decay

Newly colonising species take ran-

dom part of largest current niche

high

Power-

fraction

Niche is chosen randomly, depend-

ing on its size (degree of dependence

regulated via a model parameter k);

random break point;

k = 0 (random fraction) completely

random niche choice,

k = 1 (MacArthur fraction) largest

niche has the highest possible prob-

ability of being chosen

variable between

k = 0 (low evenness) and

k = 1 (high evenness)

Dominance

preemption

Arriving species take more than 50%

of the remaining niche space

low
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2.7.1 Tokeshi’s niche models

Niche partitioning tries to describe how available space and resources in an

ecosystem are partitioned between the species in an assemblage (Marquet et al.,

2003). Tokeshi (1990, 1996) introduced a group of stochastic models (dominance

preemption, power fraction, dominance decay) to predict species abundance

distributions based on niche apportionment (for details see Box 2.2). These

models have been shown to provide a good fit to a range of real data (e.g. Fesl

(2002)). Meanwhile, the discussion of niche models in ecology has evolved, and

is concerned with the complex processes governing community structure (Kelly

et al., 2006). Nevertheless, Tokeshi’s models allow to simulate realistic species

abundance distribution with varying degrees of evenness. As such, they provide

means of testing the behaviour of the evenness profiles and compare them to

the other approaches discussed in section 2.5.

Tokeshi’s models can be distinguished as three different model classes (see

also Box 2.2). In the dominance preemption model niche space is partitioned by

species consecutively taking more than half of the remaining niche space, thus

being dominant over all the following species. This leads to a highly uneven

species abundance distribution. The power-fraction model on the other hand

allows systematic variation of the degree of evenness of the species abundance

distribution derived from it by changing the values of the model parameter k

within the range from 0 to 1. An increase in k corresponds to a more even

allocation of niche space. While for k = 0 niche space is divided completely

randomly (random fraction), the model for k = 1 (MacArthur fraction) chooses

niche space that is to be partitioned with a probability proportional to the size

of the niche. Since larger niches are divided with higher probability, this leads

to a more even species abundance distribution. In the model with the highest

degree of evenness – the dominance decay model – the largest current niche is

always chosen to be partitioned further.

Originally introduced as a way to describe niche apportionment and the

dynamics that structures ecological communities, Tokeshi’s models can also be

taken as a static description of the expected species abundance distribution

as the outcome of niche partitioning with a fixed number of species (Magur-

ran (2004), p.47). By looking at species abundance distributions simulated

from these models, we can illustrate the properties and the performance of

the goodness-of-fit index family when assessing evenness. In addition to the

evenness profiles, we consider the quotients of Hill’s numbers as a measure of

evenness and Jost’s logarithmic relative evenness for comparison.
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Figure 2.2 – Rank-abundance-plots for six species abundance distributions with
varying degrees of evenness, generated through simulations of Tokehi’s models of
niche apportionment. The dots mark the 12 most abundant species.

2.7.2 Specifications of the simulations

The following simulations of Tokeshi’s models were implemented in the statis-

tical language R (R core development team (2011); code details can be found

in Appendix C). For each model, 500 random realisations were generated by

a discrete algorithm where available niche space was fixed by setting the total

abundance N = 50000. The expected species abundance distributions were

then derived by averaging over these and are shown as rank abundance plots in

Fig. 2.2. We consider the following scenarios:

1. In scenario 1, we construct evenness profiles based on the true species

abundance distributions for all the Tokeshi models and compare them to

other parametric evenness measures. The number of species S = 100 is

fixed and for the power fraction model values k ∈ {0, 0.4, 0.7, 1} are chosen

for the model parameter.

2. Scenario 2 explores the effects of changes in species richness on the dif-

ferent profile plots. We do so by looking at the two extremes in terms of

evenness, the dominance decay and the dominance preemption model. In

the setting of the Tokeshi models, changes in species richness can be envis-

aged as invading species while total abundance represents total available

niche space (and is kept constant here).
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Figure 2.3 – Goodness-of-fit based evenness profiles and transformations for a range
of Tokeshi’s models. (a) shows untransformed evenness profiles Ip(λ) as a function
of λ, (b) profiles based on the reciprocal 1/Ip(λ) and (c) a transformation that not
only conforms the ordering of the profiles from low to high values of evenness, but
also standardises their range to the interval [0, 1].

Both scenarios evaluate evenness profiles based on the community structure

predicted by the Tokeshi models for known N , S and k to study their general

behaviour. In chapter 3 we will discuss problems that arise specifically because

diversity assessment has to be based on information contained in samples. In

this context we return to the Tokeshi models to study the effects of sampling,

in particular how we can deal with unobserved species (scenario 3).
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2.7.3 Scenario 1: Ordering of the Tokeshi models

Evenness profiles put Tokeshi’s models in the correct order (see Fig. 2.3). Curva-

ture decreases corresponding to higher degrees of evenness. For the dominance

decay model, only the negative parameter range enables us to detect departure

from evenness, as evenness is reduced by the rare species while common species

are highly homogeneous in numbers of individuals. Overall, the similar curva-

ture in the negative parameter range reveals that it is the degree of dominance

of the abundant species that distinguishes between Tokeshi’s models, rather

than differences in occurrence of rare species. (This confirms them as realistic

ecological models, as they follow the universal hollow curve (Magurran, 2004;

McGill et al., 2007).)

By default, high values in the evenness profiles are associated with departure

from evenness. This might be seen as counter-intuitive in ecological applications,

where traditional diversity indices and index families usually give high values

at high evenness. Possible transformations were discussed in section 2.4 and

are shown in Fig. 2.3 as an alternative. However, neither of them preserves

the distances between the curves and the possibility of directly interpreting the

curvature of the original evenness profile is lost. This has to be kept in mind

when drawing conclusions based on the transformed indices. In particular, the

transformation 1/Ip(λ) no longer displays evenness as a nearly horizontal line;

the lower the index values in the original index, reflecting high evenness, the

higher they are under this transformation, with no upper limit, while distances

between profiles representing uneven distributions decrease as the index values

approach zero. Especially, if we are looking at changes in a community over

time, the same change can be reflected in quite different amounts of increase or

decrease depending on whether we look at positive or negative parameter val-

ues. For example, consider a community that changes from following Tokeshi’s

dominance decay model to Tokeshi’s power fraction model with k = 1 over time.

If we assess this change in evenness by looking at, say, λ = −2 and λ = 2, we

will see a much larger decrease in 1/Ip(λ) for the latter. While we should be

careful about comparing the amount of decrease for the two parameter values

in this case, we can certainly state that there is an overall decrease in even-

ness. Likewise, if there were no visible change for a positive parameter value

while there is a decrease for the negative parameter range, we would be able

to conclude a negative trend for rare species while evenness remains unchanged

for the dominant species. This has to be kept in mind when these profiles are

applied to real data in chapter 4.
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Figure 2.4 – Profile plots for Tokeshi’s models based on quotients of Hill’s di-
versity numbers, showing (a) Hill’s untransformed diversity numbers, (b) quotients
(J(α)/J(2))2 and (c) Jost’s evenness quotients (J(α)/J(0)) (on a logarithmic scale).
Hill’s evenness quotients fail to distinguish correctly between Tokeshi’s models. All
approaches are restricted to positive parameter values 0 ≤ α ≤ ∞.

The third transformation suggested in section 2.4 (equation (2.8)), leads to

a profile plot that is no longer continuous, but that resembles a hyperbola, with

an asymptote between 0 and 1 (see plot in Appendix). The position of the

asymptote gives a rough idea of the evenness of the underlying community; the

closer it is to 0 the higher the evenness. However, the latter is again a scalar

(one-dimensional) description.

For comparison, profiles based on Hill’s diversity numbers are shown in Fig.

2.4, with the usual restriction to positive parameters. All transformations sug-

gested to account for evenness are scaled to the range of [0, 1] with 1 corre-

sponding to perfect evenness. Because only positive parameter values are usu-
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ally considered, a quotient close to 1 can either be the result of the underlying

species abundance distribution being truly close to evenness or simply due to

homogeneity in abundance within the more dominant species, while the tail of

rare species is neglected. Plots based on J(a)/J(2) (suggested by Hill) show

the aforementioned lack of consistency; for higher parameter values, the highly

even dominance decay model is placed closest to the most uneven dominance

preemption model.

On the other hand, logarithmic versions of J(a)/J(0), as suggested by Jost

(2010), do well in differentiating between the different Tokeshi models. With

respect to the dominance structure, they are as effective as the evenness profiles.

However, since they are restricted to the positive parameter range, they do not

reveal that the models are similar with respect to the tail of rare species. In

particular, high evenness of the dominance decay model is picked up, but the

remaining unevenness due to rare species is undetected.

2.7.4 Scenario 2: Effect of changing species richness

While some argue that quantification of evenness should not be affected by

changes in species richness (Smith & Wilson, 1996), it is quite obvious in the

conceptual setting of Tokeshi’s niche models that a change in the number of

species (envisaged as additional species invading the available niche space) is

in general expected to change community structure and hence potentially even-

ness. Additional species reduce the niche sizes expected under a completely

even apportionment. In the dominance preemption model this means that the

deviation of the size of the larger niches (abundant species) from complete even-

ness becomes bigger as species invade niche space. On the other hand, niches

taken by the incoming species get smaller and smaller, but so do the differ-

ences in niche sizes for (those) rare species. Hence we expect to see a more

even distribution of niches for the least abundant species. Quite the opposite

is to be expected for the dominance decay model. As additional species always

invade the largest niche, no single species becomes dominant at any time; we

expect to see a fairly flat profile and dominance structure should largely remain

unchanged. In particular, from the profile plot it is clear that at S = 50 we

can expect a nearly even distribution of niche space and no dominant species.

However, this means that invasion adds rare species to the assemblage, because

further species either take a smaller portion of a niche or leave one existing

species with only a small part of their original niche. This generates at least

one rare species and, because it is almost certain that the random split of the
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Figure 2.5 – Profile plots for varying number of species in the dominance preemp-
tion model. Additional species invading the niche space lead to changes in community
structure in Tokeshi’s models (see main text for details). Different profile plots reg-
ister these changes differently — (a) untransformed evenness profiles and (b) their
standardised version, (c) Hill’s untransformed numbers and two of Jost’s (2010) trans-
formations, (d) equality factors (on a logarithmic scale) and (e) logarithmic relative
evenness.
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Figure 2.6 – Profile plots for varying number of species in the dominance decay
model. Additional species invading the niche space lead to changes in community
structure in Tokeshi’s models (see main text for details). Different profile plots reg-
ister these changes differently — (a) untransformed evenness profiles and (b) their
standardised version, (c) Hill’s untransformed numbers and two of Jost’s (2010) trans-
formations, (d) equality factors (on a logarithmic scale) and (e) logarithmic relative
evenness.
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niche is uneven, it increases unevenness amongst the rare species. This is visible

in the untransformed evenness profiles. However, the standardised version does

not display these effects well. Hill’s diversity numbers J(α) separate the two

models when species richness is gradually increased. Nevertheless, it is not evi-

dent whether the difference that is visible in the plots is genuinely caused by a

difference in evenness or whether it is due only to the varying number of species

(i.e. the difference in the intercept for each curve). This holds in particular for

the dominance preemption model, where differences are only visible very close

to the origin. When plotted on a logarithmic axis, Jost’s equality factors sep-

arate the dominance preemption models well, similarly to the evenness profiles

for the positive parameter range. As they only take into account the dominance

structure, no effect is visible for the equality factors for the dominance decay

model. Relative logarithmic evenness measures proposed by Jost (2010) for

comparing communities independent of their differences in numbers of species

do not pick up a change in evenness with changes in species richness (as we

would expect of them).

2.8 Applications II: Assessing trends in even-

ness over time in British farmland birds

(Common Bird Census data)

As discussed in the previous section, focusing solely on the more dominant

species and neglecting unevenness caused by the rare species may give a false

impression of homogeneity. The following example shows that this is particu-

larly true for assessing trends in diversity over time if the proportions of dom-

inant species remain fairly stable, while there is a change in some of the rare

species. The data come from the UK Common Bird Census (CBC) (Marchant

et al., 1990). This long-term survey of breeding birds organized by the British

Trust for Ornithology was run over 38 years (1962 to 2000). Over this time pe-

riod, changes in agricultural practice had major effects on farmland birds in the

UK (Siriwardena et al., 1998). The survey protocol follows a territory mapping

approach. Fewster et al. (2000) used generalized additive modelling to smooth

the time series of territory counts for a set of 13 farmland species during years

1962 to 1995, which yields predicted counts for every species for each site in

each year, whether or not a site was surveyed in a given year.
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To look at time trends in evenness of these farmland birds, we plot a profile

over the parameter range [−5, 5] for every year of the survey based on these

smoothed estimates of individual counts. The results are compared with diver-

sity trends estimated by taking the geometric mean of the 13 species-specific

relative abundance estimates obtained by Buckland et al. (2005).

We see that the intermediate parameter range, which covers the transfor-

mations of Shannon’s and Simpson’s indices, does not display any substantial

change in evenness over time, aside from an increase (reduced biodiversity) from

the late 1970s to the late 1980s (see Fig. 2.7). This is in accordance with Buck-

land et al. (2005), who remarked that these classical measures register a decline

in diversity after 1975, but show no trend in the first half of the survey. Our 3D

surface plot not only confirms this, but makes it apparent that this is true for

all measures in the power divergence family which concentrate on dominance

of a species. The extended parameter range, however, reveals further changes

in evenness. For more clarity, profiles for selected parameter values are plotted

in addition to the surface plot in Fig. 2.7. For non-negative k = 0, 1, 2, 3, 4,

they look fairly similar over time, displaying the same qualitative information

as Shannon’s or Simpson’s index. Profiles based on negative parameter values

on the other hand show a decrease in the corresponding indices (i.e. increased

evenness) within the group of rare species during the early years, followed by

an increase (i.e. decreased biodiversity) from the late 1970s, which continued

to the end of the survey period. Buckland et al. (2005) also detected the in-

creasing trend in biodiversity in the early years, using the geometric mean of

relative abundances and attributed this to a recovery after the severe winter of

1962/63. While a geometric mean considered the community as a whole, our

analysis reveals that this affected primarily the rarer species.

Overall, this leads to the conclusion that biodiversity in British farmland

birds increased during the 1960s and early 1970s, followed by a decline from

1975 to the late 1980s. Further decline occurred amongst the rare species, but

not amongst the abundant species, until the end (1995) of the survey period.

Traditional indices do not reflect the changes amongst the rarer species. A more

detailed statistical analysis would also include precision of the evenness profiles

and establish points in time which show a significant change in trend. This can

be achieved by considering bootstrap resamples of survey sites as in Buckland

et al. (2005).
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2.9 Conclusions: performance of evenness pro-

files

Following the idea of diversity profiling of plotting parametric index families

as functions of their parameter, we constructed evenness profiles. The param-

eter range of traditional diversity profiles is restricted to the positive values,

and hence concentrates mostly on the abundant species. In contrast, evenness

profiles can sensibly be evaluated for both positive and negative parameter val-

ues. These profile plots do not only give index values, but display information

on evenness via their curvature. A horizontal line would correspond to perfect

evenness. This feature is especially valuable for comparison.

Simulated species abundance distributions from Tokeshi’s (1990, 1996) mod-

els allowed us to examine the performance of evenness profiles based on our

approach using simulated data. The main advantage of this method was il-

lustrated by the example of time trends in British farmland bird diversity, to

reveal that changes beyond a general decline during the late 1970s and mid-

1980s are due mainly to fluctuations in the abundance of rare species. With

the full parameter range at hand, these evenness profiles allow exploration in

both directions, focusing on dominant species for positive and on rare species

for negative parameter values. Thus they detect that Tokeshi’s dominance de-

cay model, despite its highly even allocation of niche space, still contains some

unevenness — as every natural community would do. In the example of British

farmland birds, classical indices, which are represented by the positive parame-

ter range of the evenness profiles, exhibit changes only in the second half of the

survey period following changes in agricultural practices. The effects of recov-

ery from a harsh winter in 1962/63 are, however, visible only along the negative

parameter range of the profile plots.

2.10 Discussion

The Convention on Biological Diversity’s 2010 and 2020 targets are a response

to large-scale loss of biodiversity (Butchart et al., 2010). They reinforced the

need for reliable methods to assess change in ecological communities. Loss

in biodiversity often affects rare species first, while the dominance structure

of a community might change only gradually (Gotelli et al., 2010). However,

most methods are limited in their ability to detect change amongst rare species

(Colwell & Coddington, 1994).



68 Goodness-of-fit measures of evenness

We have proposed a parametric approach to quantify evenness which in-

cludes explicit information on rare species. In particular, it allowed us to sepa-

rate changes in rare species from those in common species for British farmland

birds. The method suggested is based on a correspondence between divergence

measures and a family of goodness-of-fit statistics (Read & Cressie, 1988). In

general, a high degree of evenness or uniformity of the species abundance dis-

tribution is equated with high biodiversity. The idea of this method is that,

while ecological communities will never be perfectly even, evenness can serve

as a ‘null model’ (Gotelli & Graves, 1996) and we can measure the departure

of the species abundance distribution from perfect evenness to gain insight into

the structure of a community. Goodness-of-fit statistics provide us with genuine

insight into the properties of the community while quantifying this departure

on a sample level. By combining these statistics in a single family, we capture

more information on the species abundance distribution (as a multivariate ob-

ject) than can a single scalar index. We have shown that these measures are

closely connected to Hill’s numbers, which have been the subject of recent in-

terest as diversity metrics (Jost, 2006; Jost et al., 2011; Jost, 2010; Leinster &

Cobbold, 2012).

Ultimately, there is no unique answer to the question of how diversity is best

assessed. The method developed here allows us to concentrate on the evenness

aspect of the species abundance distribution. The evenness profiles extend the

range of visible information and display contents of the abundance distribution

differently from existing index families. Thus they offer a new perspective which

can lead to further insights. Their explicit focus on rare species may be of

special interest when examining the impact of anthropogenic disturbance on

diversity (Dornelas et al., 2009; Dornelas, 2010). As with any other method,

the results may be biased if evenness profiles are drawn without regard to the

sampling scheme (Colwell & Coddington, 1994; Gotelli & Colwell, 2001, 2011).

Being sensitive to the number of species that are assumed to be observable,

evenness profiles depend on additional information and a deliberate decision on

the species that are included in the analysis. While for some taxa, like birds,

a complete list of species and therefore exact knowledge of the population of

interest is more easily achieved, there are many taxonomic groups for which we

will never be able to compile a (nearly) complete list, such as tropical insects

(Longino et al., 2002). Evenness profiles allow us to draw inference even if we

are not certain about the actual number of species. Provided we have a rough

estimate of the number of species, we can include rare, unobserved species by

extending the sample vector. This should reduce bias in inference. Qualitatively,
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information on evenness is contained in the curvature of the profiles. Curvature

seems to be less sensitive to the assumed number of species than the evenness

profiles themselves are. Hence, even if we disregard the additional information

contained in the plots because of potential bias, curvature should still give us

an accurate qualitative result.

2.11 Chapter summmary

In this chapter we have introduced the idea of quantifying evenness based on

a goodness-of-fit approach. An existing one-parameter family of goodness-of-fit

statistics can be used to derive an entire set of evenness measures. A closely

related ‘power-divergence’ index family that has been defined in information

theory and is used in a similar form by economists to quantify inequality in

distributions. We have discussed mathematical and statistical properties and

explained how this approach provides a graphical representation of an ecological

community. The latter is termed an ‘evenness profile’, analogous to general

diversity profiling techniques (see chapter 1). We have explored connections

to other index families used in ecology and economy and discussed properties

which are particularly relevant in an ecological setting. Finally, we have studied

the behaviour of these profiles in practice, by applying them to simulated data

as well as to actual data from British farmland birds.





Chapter 3

Detectability: reducing bias in

diversity assessment

Any form of diversity assessment is faced with the problem that individuals

of some species will be underrepresented or even missing from samples (May

(1988); Magurran (2004); Gotelli & Colwell (2011); see also chapters 1.2.3 and

2.6.3). In the previous chapter, we have already briefly discussed issues in

connection with the number of species S, which is in general unknown. This

chapter sets out to explore imperfect detection of both species and individuals

and the consequences for diversity assessment in more detail. In particular, our

discussion brings up subtle differences if evenness is quantified by a member of

the family of goodness-of-fit statistics and if a divergence measure is used.

In chapter 1 we have distinguished between the problem of missing species

(species detectability) and that of variation in detection probability of individ-

uals across different species (individual detectability). The first part of this

chapter is concerned with the uncertainty about the true number of species

when the diversity of an ecological community is assessed, and options to deal

with this problem. By looking at another simulation from Tokeshi’s models we

investigate these options in practice as well as the effects of misspecification on

the inference from profile plots. Given that the focus of this thesis is on large-

scale assessment of biodiversity trends, we discuss the issue of species being

missed when data is collected from this perspective.

A further issue arises because detection probabilities for individuals are likely

to differ across species , even for observed species (Yoccoz et al., 2001; MacKen-

zie & Kendall, 2002). The second part of this chapter highlights how diversity

estimation can be biased when these differences in individual detectability are

not taken into account (Buckland et al., 2011a). In particular, we can expect

71
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evenness measures to suffer from this bias. Hence, we explicitly investigate

consequences for the goodness-of-fit based measures if these are adjusted for

detectability. Again, a distinction is made between divergence measures and

measures based on goodness-of-fit statistics.

Sections 3.2.3 and 3.2.4 are published in Studeny et al. (2011); in particular,

the simulation study using Tokeshi’s models can be found there, including the

results for the empirical ε-correction. The discussion on model-based approaches

has been added to this thesis. Parts of section 3.3 are published in Buckland

et al. (2011a) and Buckland et al. (2011b); in both cases, I contributed the data

analysis including the description of methods and a summary of the results. In

particular, the example shown in Box 3.2 has been presented in Buckland et al.

(2011a).

3.1 Two forms of detectability

As discussed briefly in chapter 1.2.3, when sampling ecological communities we

usually encounter two different, but related issues of detectability — that of

individuals and that of species.

The former stems from the fact that surveys are unlikely to ‘detect’ indi-

viduals from different species with the same probability (Yoccoz et al., 2001;

MacKenzie & Kendall, 2002; Buckland et al., 2011a). A specific survey method

will be more adapted to one species’ behaviour than to that of another (South-

wood & Henderson, 2000); it will work better in a certain environment or be

unable to sample sites entirely randomly (e.g. due to limited access). Hence,

it detects individuals from some species more easily than others (Magurran &

Henderson, 2003; Hutchens & DePerno, 2009). This is in the following referred

to as ‘individual detectability’ (Buckland et al., 2011a). Strictly speaking, it

does not only concern differences between species, but detection by a certain

survey method can also differ between individuals from the same species, for

example from different age classes or sexes (due to differences in size or be-

haviour); examples are fishing gear that might miss juveniles (Koeller et al.,

1986) or different vocalising behaviour in male and female birds when detection

is by audio cues (Poesel et al., 2004).

A different issue arises when no individual of a species is detected. Referred

to as the ‘detectability of a species’ by Buckland et al. (2011a), this results in

unobserved species in a data set. These pose a problem to diversity assess-

ment because we can rarely determine why a species is missing from a sample

(Magurran & Henderson, 2003; Mao & Colwell, 2005) and hence whether or not
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it should be included in the assessment and at what point (if temporal trends

in diversity are considered). Absences can have various causes: the species may

have disappeared from the species pool; it may be temporarily absent from the

region at the time of the survey (e.g. migrants); it may be present but absent

from the sampled plots (more likely for rare species); it may be present on

at least one sample plot, but evade detection (more likely for rare and elusive

species). While in the latter two cases we surely would want to include the un-

observed species in any form of diversity assessment (Gotelli et al., 2010), this

is debatable for the first two cases. Are we interested in a momentary state of

biodiversity or long-term monitoring? We probably do not want to take truly

absent species into account for a ‘snapshot’ of biodiversity, but might be inter-

ested in including such species when analysing changes over time and/or space.

Climate change effects can be expected to add to this problem since species

are likely to shift their ranges, and possibly natural habitats (Parmesan, 2006;

Buisson et al., 2008).

In the following, we discuss the effects of both forms of detectability on di-

versity assessment and, where possible, potential ways to deal with problems

stemming from these issues. Our focus is on the goodness-of-fit measures intro-

duced in the previous chapter.

3.2 Incomplete species detectability and its con-

sequences

3.2.1 Unobserved species and sampling effects

We rely on observations at sampling locations within the study area to estimate

evenness profiles based on Ip(λ), which then allow us to draw inference on

the community. However, as pointed out above, species may be missing from

samples (Colwell & Coddington, 1994; Yoccoz et al., 2001; Gotelli & Colwell,

2001; Shen et al., 2003; MacKenzie et al., 2005).

Commonly used diversity measures are in general insensitive to unobserved

species, i.e. they only quantify the diversity of the sample itself (Hill, 1973,

1997). This holds, for example, for measures contained in Hill’s family of di-

versity numbers J(α). Only J(0) = S would in theory be an exception if we

explicitly decided to count missing species; the latter is rarely done in practice.

However, see Chao & Shen (2003) for adjusting estimation of Shannon’s index

for unobserved species.
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In contrast, the approach to evenness considered in chapter 2 is sensitive

to unobserved species in a sample. Goodness-of-fit statistics treat zeros in the

sample vector n as observations that are smaller than what would be expected

for an even community; hence they increase departure from evenness. However,

the contribution of zeros to the measure is evaluated differently whether we take

a goodness-of-fit based view (i.e. use In(λ) to quantify evenness) or estimate the

divergence Îp(λ) = 1/2nIn(λ). Rewriting expressions (2.4) and (2.3) in chapter

2 slightly, we have

Ip(λ) =
1

λ(λ+ 1)

S∑
i=1

(
pi −

1

S

)
Zλ(·)

In(λ) =
2

λ(λ+ 1)

S∑
i=1

(
ni −

n

S

)
Zλ(·),

where Zλ(x) = xλ+xλ−1+. . .+x+1 is a polynomial of order λ, evaluated at x =
pi
1/S

and x = ni
n/S

, respectively. We see that in the case of the power divergence

Ip(λ) a zero pi = 0 reduces the sum by a constant term −1/S, whereas this

negative contribution depends on the total abundance of the remaining species if

we look at the goodness-of-fit based In(λ). Hence, while making a contribution

to divergence, missing species only lead to a translation from a measure based

on a sum over species proportions (such as the measures in Hill’s family). This

puts divergence measures closer to classical diversity measures (Read & Cressie,

1988). While this makes no difference in relative terms, if we evaluate evenness

by a goodness-of-fit statistic as an absolute measure (i.e. not divided by 2n), the

negative contribution by zeros is bigger, the larger the total abundance of the

sample is (or as we will see later, the total estimated abundance). Quantifying

evenness by either a divergence based measure or by a goodness-of-fit statistic

thus involves an explicit decision about how we want to treat zeros.

Often, there will be a valid reason to consider missing species as part of the

community (MacKenzie et al., 2003). The goodness-of-fit method then allows us

to include these and thus goes beyond a simple assessment of characteristics of a

sample. In particular, this enables us to register cycles in diversity patterns due

to migration or the change in evenness, if a species genuinely disappears from

the population. (For an example see Box 3.1.) However, given the sensitivity

of the goodness-of-fit approach to zeros, a careful and educated decision about

the assumed species catalogue is needed in order to avoid biased results.

Even if we know the exact number of species, zeros in the vector of sample

proportions (n1/n, . . . , nS/n) cause problems: In(λ) is no longer continuous at
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λ = −1 if ni = 0 for some i. Consequently, the evenness profiles estimated by

In(λ) have an asymptote at λ = −1 which cannot be interpreted. There are

several ways to overcome this problem and derive informative evenness profiles,

at least partially. The standard approach for traditional diversity measures is to

discard zeros and calculate diversity indices or construct diversity profiles solely

based on the species observed in the sample (Hill, 1973, 1997). As discussed

above, this accounts for the properties of the sample, but not those of the

community.

If we want to retain full diversity profiles, a common solution is to add

small quantities ε to achieve non-zero values for all ni. Alternatively, we can

restrict the analysis to positive parameter values, taking into account zeros, but

without the explicit focus on rare species provided by the negative parameter

values. The latter will be a good solution if sampling intensity is low, since it

discounts the part of the sampled distribution that carries higher uncertainty.

Finally, it might be possible to fit a model to the sample data predicting the

underlying community structure. Instead of estimating the evenness profile

directly from the sample, we can then do so based on the predictions from the

model. We return to simulations from Tokeshi’s models in 3.2.3 below, to study

and discuss these approaches in application.
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Box 3.1: Sensitivity of diversity measures to unobserved species

Consider the following toy example of a community where the most

abundant species shows a seasonal migration pattern (see Fig.), while all

other species’ abundances stay constant. The initial abundance vector

is N0 = (376, 145, 43, 9,8,7,3,3,3,3).
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the the migration pattern of the dominant species; they drop when the

migrating species is most abundant, reflecting the low evenness at these

points.
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[The plots for Ip(λ) and IN(1) are based on the inverse (for direct comparability with

traditional indices) where the y-axis has been scaled appropriately.]
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3.2.2 Determining S

Species detectability obviously is a prime issue when species richness is con-

sidered the main measure of choice for biodiversity (Magurran, 2004; Gotelli

& Colwell, 2001, 2011). Because the number of species also indirectly influ-

ences what is taken to be the reference point for evenness, evenness measures

are not unaffected by determining the ‘true’ number of species S (Brose et al.

(2003); Magurran (2004); and see section 2.6.3 above). In both cases, we require

an answer to the question “What is ‘S’?”. However, different approaches will

be appropriate depending on the aim of diversity assessment. In general, the

‘true’ species richness of an ecological community will be ‘elusive’ (May, 1988;

Gotelli & Colwell, 2001): first, rare species are likely to be missing from sam-

ples (Longino et al., 2002; Mao & Colwell, 2005) and second, species richness is

neither scale-invariant nor insensitive to sampling effort (Brose et al., 2003) —

we expect to find more species in larger survey areas (species-area relationship,

Rosenzweig (1995)) and when we increase sampling effort (species accumulation

curves, Colwell & Coddington (1994)). Hence, the observed number of species

provides only a lower bound on the true number of species.

By now, a range of methods have been developed to adjust the observed

S for missing species (Bunge & Fitzpatrick, 1993; Gotelli & Colwell, 2011).

They can broadly be distinguished into three groups: parametric approaches

fit a model to either the rank-abundance plot (i.e. the ordered SAD) or to the

species accumulation curve. In the first case, the number of missing species from

the sample can, for example, be ‘unveiled’ by the tail of the fitted distribution

(Preston, 1948), whereas in the second approach S is determined by extrapola-

tion of the curve until an asymptote is reached (Colwell & Coddington, 1994).

Alternatively, various non-parametric estimators have been introduced (Chao,

1984; Chao & Lee, 1992); the latter have advantages over parametric methods

(Gotelli & Colwell, 2011) and statistical methodology has been thoroughly stud-

ied and improved to reduce bias (Chao et al., 1993; Lee & Chao, 1994; Chao

et al., 2009; Lopez et al., 2012). The majority of these estimators are based on

the idea that the ratio of ‘singletons’ (species observed exactly once in a sam-

ple) to ‘doubletons’ can be used to estimate the number of unobserved species

(Good, 1953; Chao, 1984).

Species richness estimators share the assumption of other types of diversity

assessment that individuals are sampled randomly (Magurran, 2004). As we will

see below in 3.3, this assumption is almost always violated because of variability

in individual detection probabilities across species. Variation in detectability
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across species is likely to affect estimates of S (Boulinier et al., 1998; Nichols

et al., 1998). One way to avoid this issue of individual detectability, would be to

make sample plots small enough that a complete census of each plot is possible.

However, at the same time this generally means that on a single plot many

species will in fact be missing and consequently, we need a big number of small

plots throughout the survey area to assure that most of the species present are

actually observed (Buckland et al., 2011a, In prep). This might not always be

feasible (Lawton et al., 1998)

Although species richness is probably the most intuitive measure of diversity,

the difficulties of its estimation and the fact that it accounts only for one aspect

of species diversity do not make it a preferred headline index for monitoring

diversity on a large scale (Buckland et al., 2005, In prep). If our aim is long-

term monitoring on a large spatial scale (as with regards to the international

biodiversity targets), then on one hand we are interested in the entire biota of a

region, on the other hand species richness in a large region (such as a country or

larger) will probably not change much on the typical time scale on which data

is collected, except for short-term fluctuations. Extinction rates could in some

way serve as a proxy to assess whether the ‘rate of loss of biodiversity’ has been

‘halted’, but determining extinction caused by anthropogenic factors besides

naturally occurring extinction as well as immigration events, and estimating

extinction rates reliably, suffers from even greater uncertainty (Balmford et al.,

2003).

However, a complete species inventory is often not necessary for establishing

trends in a headline index (such as the Living Planet Index, for example). It

is sufficient to determine a set of ‘indicator species’, an appropriate catalogue

of species that are representative of the entire community and can reflect the

status of the whole ecosystem (Landres et al., 1988; Pearson, 1994). Hence

it might be more important to determine functional groups (Tilman et al.,

1997) or distinguish between different habitat types (Boulinier et al., 1998;

Newson et al., 2009). Although the contribution to ecosystem functioning of

rare species is often disputed (Lawton, 1994; Lyons & Schwartz, 2001), in terms

of representativeness as well as conservation concern, at least some of the rare

species should be included in such an inventory (Lawler et al., 2003). On the

downside, rare species increase uncertainty in those indices that are sensitive

to them (such as the geometric mean of relative abundances or the goodness-

of-fit measures for negative λ). If an index permits integration of data from

different surveys, additional species-specific surveys can be conducted to target

rare species and reduce the uncertainty (MacKenzie et al., 2005). This is done,
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for example, for the Living Planet index (Loh et al., 2005).

Another issue of interest in long-term monitoring is change in species com-

position (turnover) (Magurran & Henderson, 2003; Magurran, 2011; Magurran

et al., 2010). Because of the relative stability of species richness on large spatial

scales, presence-only based assessment of turnover is unlikely to provide enough

information to reveal changes. Again, monitoring the estimated abundances of

a set of indicator species might be a better solution.

Species composition can change across space as well as over time. In the first

case, we are comparing communities at different locations (or more precisely,

different expressed communities stemming from the same assumed species pool),

while in the latter, changes in a single community are followed through time.

A combination of both is possible and of particular interest (spatio-temporal

trends); however it is more complicated to analyse and untangle effects on both

scales (Levin, 2000). Again, an appropriate inventory of species is needed as a

basis for comparison. Because of the sensitivity of (observed) species richness

to scale (area of sample plots) and sampling effort, changes in the observed

number of species between communities (across time or space) are likely to

occur (Rosenzweig, 1995; He & Condit, 2007). As with any form of diversity

assessment, but maybe more obviously here, assessment should hence not be

based on the observed number of species without any adjustment. Rarefac-

tion (Sanders, 1968; Simberloff, 1972; Gotelli & Colwell, 2001; Colwell et al.,

2004; Gotelli & Colwell, 2011) is a well established technique that ‘standardises’

species diversity by interpolation to a common (and hence comparable) num-

ber of individuals or samples. However, this ‘down-sized’ comparison reflects

mostly the more common species as rare species affect mainly the upper end of

the rarefaction curve. Rarefaction curves also average across species (observed)

in order to determine the expected number of species. As long as we are purely

interested in differences in numbers of species or even the ‘effective number of

species’, this will not matter. Detecting changes in species composition on the

other hand relies on keeping track of species identities in some way. Like other

forms of diversity assessment, long-term and large-scale monitoring of compo-

sitional changes can be based on a set of indicator species as the basis for any

evaluation of differences in species composition in the sense of identifying princi-

pal changes. Even if we make sure that plot sizes are standardised and sampling

effort constant throughout the survey area (or use a stratified design where this

is not possible), any measure of spatial turnover depends on the scale at which

we choose to evaluate these measures (Gering & Crist, 2002; Mac Nally et al.,

2004; Gaston et al., 2007).
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Figure 3.1 – Goodness-of-fit based evenness profiles for 4 samples with increasing
sample size (n = 100, 500, 1000, 5000) from Tokeshi’s power fraction model with k =
0.4. (a) only taking into account observed species (b) correcting for all unobserved
species by adding the same ε = 0.1, independent of sample size and (c) adjusting
the ε correction according to sample size. The solid line shows the profile for the
underlying Tokeshi model.

3.2.3 Tokeshi’s models revisited (scenario 3)

To study the effects of sampling and the problem of unobserved species when

diversity is estimated, we once more use simulated data derived from Tokeshi’s

models of niche apportionment (see chapter 2.7 and Studeny et al. (2011)).

After the two scenarios studied in the previous chapter, a third scenario is now

looked at. To investigate sampling effects, diversity profiles for one sample are

studied for each of three power fraction models. Values 0, 0.4 and 1 are chosen

for the model parameter k to cover a range of uneven, intermediate and even

distributions. Different ways of dealing with unobserved species in a sample are

applied.

After acquiring a sample from the community of interest, the data analyst

first needs to decide whether or not he or she wants to take unobserved species

into account. If counts equal to zero are included in the evaluation of evenness

profiles, a small ε has to be added in order to plot the profile for λ ≤ −1 and

hence a second question is the appropriate size of this small quantity added.
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Figure 3.2 – Sampling variation in goodness-of-fit based evenness profiles for 4
samples with increasing sample size (n = 100, 500, 1000, 5000) from Tokeshi’s power
fraction model with k = 0.4 (a) only taking into account observed species and (b)
with variable ε correction.

Figs. 3.1 and 3.2 show profiles based on samples of increasing size taken from

a Tokeshi power fraction model with k = 0.4 and their sampling variation, if

zeros are omitted or corrected for. Apart from the convergence for larger sample

size (as discussed in the section on asymptotics of the goodness-of-fit measures

towards the ‘true’ divergence), we can see that the correction by ε can reduce

bias drastically, especially for smaller samples. However, the performance of

the correction is affected by the choice of the size of ε. What is a ‘good’ value

depends on the size of the fraction of the population sampled, as well as the

degree of unevenness of the community.

Once we decide to correct a sample for missing species, the question about

the (in general) unknown number of species S arises. The number of absences,

added to the sample vector n as zeros, is determined by making an assump-

tion about S. We could, for example, use one of the existing species richness

estimators or rarefaction methods for an ‘educated guess’. Naturally, it is of in-

terest to what extent deliberate underestimation (by taking only the number of

species observed in the sample) versus overestimation of S affects our inference

on the true community structure. To investigate this, we plot sample profiles

for a range of assumed values of S along with the true profile (Fig. 3.3) for

a series of Tokeshi models with variable evenness. This is again compared to

other diversity profiling methods, namely Hill’s quotients J(a)/J(2) and rela-

tive logarithmic evenness suggested by Jost (2010). Where a higher number of
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Figure 3.3 – Estimation of evenness and other diversity profiles based on one sample
of a series of Tokeshi’s power-fraction models (k = 0, 0.4, 1). Estimation is based on
a range of assumed values for the number of species S. If only observed species
are taken into account, evenness profiles as well as relative logarithmic evenness are
markedly biased.

species was assumed than was observed, a small ε is added to species counts in

order to achieve a full profile plot including negative values for λ.

For all profile plots in Fig. 3.3, we see that in general we do better by taking

unobserved species into account. This is relevant if we are interested in the

contribution of rare species (or changes to them), which can be detected by

looking at the part of the evenness profile corresponding to negative parameter

values. Provided we do not grossly underestimate the number of missing species,

the picture we get for rare species is quite robust to mis-specification of our
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sample. There is a slight drawback: while the curves are largely similar, the

bias from the true profile depends on the value of ε. Here, the same ε correction

was applied to all profiles. However, we see that it does not work equally well

for all Tokeshi models. For the positive parameter range, the sample evenness

profiles are not much affected by the choice of ε as the dominance structure is not

changed by adding ε. If we assess evenness by looking at the curvature rather

than the absolute values of the evenness profiles in Fig. 3.3, the dependence

on ε is in general less of an issue. By contrast, if we omit unobserved species,

profiles are almost flat, giving a false indication of evenness of the community.

This holds no matter which evenness measure we choose. Even if we are only

interested in the (true) dominance structure of a community, hence focussing on

positive parameter values, disregarding unobserved species leaves a bias. Bias in

the estimated profiles increases slowly as our estimate of S moves further from

the true number of species, in either direction. The exception is Hill’s evenness

quotient based on J(2) which appears invariant to the assumed S. However, bias

and precision of the latter are highly sensitive to the choice of ε (see Appendix

F). We also need to keep in mind that Hill’s evenness quotients generally fail to

display the difference in the models correctly and can place species abundance

distributions with high evenness close to those with low evenness. This is also

evident in Fig. 3.3 with little difference in the quotients for the power-fraction

models with k = 0 and k = 0.4.

The difficulty of choosing an appropriate ε is certainly inconvenient. An

approach that provides an alternative in some cases is model-based estimation

of the evenness profiles. Instead of a direct estimation from samples, the latter

can be used to fit a model provided we have repeated samples and a species is not

missing from all of them. Evenness profiles can then be derived from the species

abundances predicted by the fitted model. Nevertheless, in general this does

not free us from the need to make an assumption about S. To study whether

or not a model-based approach might have an advantage over the ε correction,

we look at the sample from the Tokeshi power-fraction model with k = 0. This

was the example that showed the most remaining bias for negative λ values

when the evenness profiles were plotted after correction by ε (Fig. 3.3). Again

we deliberately under- and overestimate S, while fitting a Tokeshi model to the

sample by importance sampling of k (Doucet et al., 2001). Importance sampling

belongs to the set of Monte Carlo simulation methods as they are frequently used

in Bayesian analysis; we consider here a basic importance sampling procedure

where a random sample of 500 values from a uniform (prior) distribution on the

unit interval [0, 1] is generated for k and a Tokeshi model is simulated for each of
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Figure 3.4 – Model-based estimation
of the evenness profile for Tokeshi’s
power fraction model for k = 0. While
under- and overestimating the num-
ber of species S, the model param-
eter k was estimated from one sam-
ple (n = 500) and the evenness profile
plotted for the estimated model. Bias
along the negative parameter range es-
sentially vanishes.
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these values; the importance sampling weights are determined by the probability

that the observed sample is a realisation of the corresponding Tokeshi model and

the posterior distribution is simulated by a weighted resampling of the original

sample for k; we derive the estimated k as the mean of this resample. After

simulating the Tokeshi model with this estimated k, we compare the evenness

profiles for the fitted model to the original Tokeshi model the sample has been

taken from.

Indeed, bias is visibly reduced for both under- and overestimates of S, in par-

ticular for the negative parameter range of the profiles (see Fig. 3.4). This could

be extended to a joint estimation of k and S by the same importance sampling

procedure (assuming independence of k and S the joint density would be the

product density). However, there is little or no gain in bias reduction compared

to setting S in advance (results not shown). A model-based estimation was

essentially used in the example for British farmland birds in chapter 2.8 above

where a generalized additive model was used to get predicted counts in every

survey location (Fewster et al., 2000). We will further exploit a model-based

approach when analysing temporal and spatial trends in diversity of British

breeding birds in the next chapters.

3.2.4 Assessing large-scale temporal and spatial trends

in diversity

A particular question of interest is the decline or increase in diversity over time

(Magurran & Dornelas, 2010). Monitoring and conservation programs often

focus on rare species (Lyons & Schwartz, 2001). Our example of the data

from the Common Bird Census in chapter 2 showed that the proposed evenness

profiles are able to separate changes that are mostly within the rare species from
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those that affect common species. We will see a more detailed example later,

in chapter 4.

As discussed in the previous sections, the goodness-of-fit based evenness

measures allow us to include species that are temporarily absent or undetected

(Studeny et al., 2011). Valid quantitative and qualitative conclusions on time

trends can be drawn as long as we can establish a representative catalogue of

species which we assume form the community over the period of time we are

interested in. The loss of biodiversity should a species truly disappear from

the community would be registered as long as the species is included in the

assumed catalogue of species in the community. If it is found necessary to

revise this list as more data become available, we can re-evaluate the index

family over the entire time period, to improve our knowledge of the dominance

and rarity characteristics of the community (Magurran & Henderson, 2011).

Headline indices used to monitor national and international biodiversity trends

are often evaluated for a chosen set of indicator species, which is assumed to be

representative of the entire biota under consideration (see discussion in section

3.2.2 above). However, in order to make use of the evenness profiles introduced

in chapter 2 and in order to gain a realistic picture of the state of biodiversity,

this list should not only be based on the most common species. Trends for rare

species are often different from those in common species (Lawler et al., 2003)

and it is one advantage of the goodness-of-fit measures that rare species can be

included in the analysis — as long as missing observations can be appropriately

dealt with. We will return to the specific difficulties of including less common

species in biodiversity assessment when analysing temporal trends in diversity

of British breeding birds in the next chapter.

Changes in counts of individuals, in particular of rare species, are driven

by stochasticity and hence undergo short-term fluctuations. In addition to get-

ting predictions for missing observations, a model of either observed counts or

abundance indices can in this case also be used to smooth out these short-term

fluctuations before analysing long-term trends in a diversity statistic. There

are parametric as well as non-parametric options for scatterplot smoothers, in-

cluding generalized additive models (Hastie & Tibshirani, 1990; Wood, 2006,

2008), kernel regression methods (Bowman & Azzalini, 1997) and latent Gaus-

sian models (Rue et al., 2009).

If we are interested in temporal trends alone, appropriate randomisation

of survey sites across the region of interest, assures representativeness of sites

and eliminates bias stemming from spatial trends in data (Thompson, 1992;

Buckland et al., 2011a). (Sometimes additional sampling techniques, such as
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stratification, have to be applied to account for inhomogeneity of the data across

space.) However, in the context of large-scale biodiversity assessment there is

also an interest in analysing spatial patterns in diversity explicitly (e.g. identify

‘hotspots’ of biodiversity and of change in biodiversity, Rodrigues et al. (2000)).

This is not only relevant to objectives aimed at conservation and protection of

biodiversity, such as the 2010-20 targets. Revealing spatio-temporal trends in

α−diversity as well as changes in species composition across space and time

simultaneously (spatio-temporal turnover) could also help to track effects of

climate change (Hannah et al., 2002). Similarly to smoothing temporal trends,

spatial modelling of observed species’ counts can be applied to predict diversity

in continuous space by a smooth surface. Such a model-based approach is

able to take account of spatial, and even spatio-temporal autocorrelation in the

data and can incorporate known and unknown sources of variation (Cameletti

et al., 2012; Lindgren et al., 2011). While the former can be thought of as

the standard terms in a linear model, the latter can be described by a random

structure in space where only distributional assumptions are made. A detailed

spatial analysis of this kind is beyond the scope of this thesis, but we attempt a

‘peek behind the curtain’ in this direction with a first basic analysis in chapter

5.
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3.3 Individual detectability and diversity as-

sessment

3.3.1 Bias in diversity indices from differences in indi-

vidual detectability

While ecologists are very much aware of the problems arising from species that

are completely missed in the observation process (discussions about the defi-

nition of the ‘community’, species richness estimators, etc.), the issue of dif-

ferences in individual detectabilities has received less attention (Yoccoz et al.,

2001; Buckland et al., 2011a). Indeed, diversity measures are often calculated

under the implicit assumption that the data are in fact a random sample of the

community (Magurran (2004), p.136), that consequently every individual in

the community has the same probability of being detected and that the species’

proportions pi = Ni
N

are correctly reflected in the observed counts. However,

as discussed in section 3.1 above, survey methods can rarely guarantee equal

detection probabilities for all individuals, except if we have census data or sam-

ple plots are so small that every individual is detected. The latter is in general

not feasible and hence ignoring this kind of variability in the detection pro-

cess when estimating diversity indices based on the data, is expected to lead to

biased results (Yoccoz et al., 2001; Buckland et al., 2011a).

Extending the notation introduced in chapter 1, let Pi be the probability of

detecting an individual of species i. (As above, a further superscript t will indi-

cate points in time where temporal trends in diversity indices are considered.).

Then E(ni) = NiPi is the expected number of detected individuals from species

i. Expected species proportions in the sample are then given by qi = E(ni)∑
i E(ni)

and commonly estimated by the sample proportions q̂i = ni
n

.

To derive the diversity of the ecological community the sample is taken

from, a diversity index would have to be calculated based on the true species

proportions pi = Ni
N

. Since these are in general not directly observable, diversity

indices have to be estimated, ideally based on an estimator p̂i = N̂i
N̂

.

However, in practice indices are often estimated using the sample proportions

q̂i, i.e. we estimate the diversity of the expected sample abundance distribution

q rather than the true underlying species abundance distribution p. Any diver-

sity index that accounts at least partly for evenness, usually measures variation

in species proportions in some sense.
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Box 3.2: Adjusting diversity indices for detectability

Variability in individual detection probabilities across species can bias

diversity assessment.

Standard diversity indices (Shannon’s Ĥ = −
∑S

i=1 p̂i log p̂i, Simpson’s

1−D̂ = 1−
(∑S

i=1 p̂i
2
)

and a geometric mean of relative abundances G)

were evaluated for a set of 20 Scottish farmland birds. To account for

detectability, the estimator p̂i = N̂i/N̂ was used where N̂i = ni/P̂i is the

estimated abundance and P̂i the estimated probability of detection for an

individual of species i. The thus adjusted diversity indices are labelled

with an ‘a’. Where the indices are based on the sample proportions p̂i =

ni/n, this is indicated by a subscript ‘c’. [Figure taken from Buckland

et al. (2011a)]
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Indices that are based on species proportions are biased if their calcu-

lation is directly based on species counts; because the detection prob-

abilities have been estimated by pooling data across all survey years

1994-2007 for a large part of the species and do not change much over

time where they have been estimated for each year, we do not see any

differences in the geometric means (see text for further explanation).

However, when testing for trend in the indices by fitting a linear model,

evidence for an increase in the geometric mean Gc became non-significant

when we adjusted counts for detection (for detail see Buckland et al.

(2011a)).
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To study effects of calculating diversity based on the sampling proportions q,

Buckland et al. (2011a) compared variation in q and p by deriving

var
i

(logE(ni)) = var
i

(logNi) + var
i

(logPi) + 2cov
i

(logNi, logPi).

We can see that in general variation in q is not the same as that of the true

species abundance distribution. If we can assume detection probabilities to be

independent from species’ abundances (i.e. cov(logNi, logPi) = 0), variation

in the E(ni) is the same as that in the Ni if and only if var(logPi) = 0. This

is equivalent to all Pi being constant, and hence all species being equally de-

tectable. In general, variation in E(ni) will be higher than in the Ni, meaning

that we underestimate evenness when estimating diversity based on q̂i. Un-

less we make the (probably unrealistic) assumption that abundance and de-

tectability are independent, evenness can be under- or overestimated (depend-

ing on the direction and size of the correlation between N and P). Only if

var
i

(logPi) + 2cov
i

(logNi, log πi) = 0, is the variation of the two distributions

the same. This corresponds to cov
i

(logNi, logPi) = −0.5var
i

(logPi). If there is

high variability in detection probabilities between species, this can only occur

if the correlation between abundances and detectabilities is strongly negative.

Box 3.2 illustrates this using Scottish farmland breeding birds as an exam-

ple. In the next chapter, this is extended to an analysis of diversity trends in

British breeding birds across the UK and different habitat groups. Here as later,

we account for detectability by estimating diversity indices based on p̂i = N̂i
N̂

.

Appropriate survey design is needed, though, in order to estimate detection

probabilities (see chapter 1.2.3).

In this context, the geometric mean has an advantage over measures based

on species proportions (Buckland et al., 2011a,b). Since it is a relative measure

summarising abundances relative to each species abundance at a baseline point

in time (see chapter 1.3.1), it is unaffected by variability in detection proba-

bilities between species as long as these remain constant in time: if P t0
i is the

detection probability of species i at the reference point and P t
i = P t0

i , it cancels

when the geometric mean is estimated

Ĝt = exp

(
1

S

S∑
i=1

log
N̂ t
i

N̂ t0
i

)
= exp

(
1

S

S∑
i=1

log
Ê(nti)/P

t
i

Ê(nt0i )/P t0
i

)

= exp

(
1

S

S∑
i=1

log
Ê(nti)

Ê(nt0i )

)
= exp

(
1

S

S∑
i=1

log
nti
nt0i

)
.
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However, if there is a trend in detection probability over time, the geometric

mean will be affected more severely than absolute diversity indices.

3.3.2 Effect of differences in detection probabilities on

the goodness-of-fit measures

Based on this discussion, we conclude that diversity measures should be ad-

justed for individual detectability, in particular if they are quantifying evenness.

As the goodness-of-fit measures introduced in the previous chapter are concep-

tually evenness measures and at the same time sample based because of their

connection to goodness-of-fit statistics, we will now study the effect of explicitly

including detection probabilities into their estimation.

As stated above, an essential assumption in the goodness-of-fit framework is

that the sample vector n comes from a multinomialM(n,p) distribution. This

assumption implies that the detection of individuals of different species is equally

likely — analogous to what has been discussed for other diversity measures

above. In reality this is rarely the case. What is the consequence for the

goodness-of-fit approach to diversity quantification if we drop the assumption

of the multinomial model and take into account variable individual detection

probabilities?

Assume that data are collected in a way that provides information on these

detection probabilities and allows us to derive estimates P̂i (see chapter 1.4 on

survey design; for further details on appropriate survey and estimation methods

refer to Buckland et al. (2011a)). Consider observations of different species

to be sampled independently and according to a product binomial model, i.e.

n ∼
⊗S

i=1B(Ni, Pi) (Fewster & Jupp, 2009). (Note that we can retrieve a

multinomial model by conditioning on the sample size n =
∑S

i=1 ni.) Consider

the family of power divergences (2.4) in this setting. Instead of using the sample

proportions q directly to estimate p, we can use adjusted estimates p̂i = N̂i
N̂

=
ni/P̂i∑
nj/P̂j

. Plugging this into the family of power-divergences (equation 2.3 in

chapter 2.2), we derive the following family of estimators

Îp̂(λ) =
1

λ(λ+ 1)

S∑
i=1

N̂i

N̂

( N̂i

N̂/S

)λ

− 1

 . (3.1)

Alternatively, from the point of view of goodness-of-fit of the sample n to a

completely even distribution, we could look at the departure of the observations

from what we expect to see under perfect evenness. With the product binomial
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model we have Ep=p∗ [ni] = PiN/S if the sample came from a perfectly even

community. This changes Cressie and Read’s family of goodness-of-fit statistics

to

In(λ) =
2

λ(λ+ 1)

S∑
i=1

ni

[(
ni

NPi/S

)λ
− 1

]
. (3.2)

SinceN,P are unknown, we need to use the estimated detection probabilities

P̂i and the estimated total abundance N̂ =
∑

ni
P̂i

. Comparing the estimators of

(3.1) and (3.2), we see that

În(λ) =
2

λ(λ+ 1)

S∑
i=1

ni

( ni

N̂P̂i/S

)λ

− 1


=

2

λ(λ+ 1)

S∑
i=1

P̂iN̂i

( N̂i

N̂/S

)λ

− 1

 .
Hence, if variable detection probabilities between species are taken into ac-

count, the estimators based on the family of goodness-of-fit statistics are no

longer equivalent to the plug-in estimators for the family of power divergences,

but give a ‘weighted’ version of 2N̂ Îp̂(λ) where the weights are equal to the

detection probabilities Pi (but note that the vector P = (P1, . . . , PS) does in

general not sum to one here).

In applications where we can derive abundance estimates adjusted for detec-

tion probability, this leaves us with the decision of which approach to take. We

have seen at the beginning of this chapter, the goodness-of-fit measures react

differently from the divergence family to zeros in a sample. As discussed in

3.2.1 above, if we have reason to include unobserved species, evaluating even-

ness profiles based on the goodness-of-fit family can be more informative than

based on the estimated divergences. However, we showed here that there is a

conceptual difference if we incorporate detectability into these measures. The

goodness-of-fit statistics no longer provide a direct estimate for the divergences.

While they still have their sample-based interpretation, this only indirectly pro-

vides information about the underlying species abundance distribution. The

divergences on the other hand are based on the concept of a ‘distance’ between

two distributions (the true underlying species abundance distribution and the

hypothetical even distribution) and can be evaluated from a sample by the plug-

in estimator Îp̂(λ). This follows a standard statistical framework. (With some
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effort, we could potentially develop a similar framework for the goodness-of-fit

setting by employing a metapopulation framework in which we can interpret

the community under consideration as a realisation, and hence a sample, of

the metapopulation.) For the application to diversity trends in the next chap-

ter, we decided to use the estimator Îp̂(λ) rather than the purely sample-based

evaluation of the goodness-of-fit statistics.

3.4 Conclusions

The goodness-of-fit approach is sensitive to zeros in the species proportions.

This allows us to include species in the diversity assessment even if they are

not detected in our samples. As with any other approach, but perhaps more

obviously here, careful consideration of the assumed list of species to include in

an analysis is required. In reality the reasons for missing species are manifold,

and we might want to distinguish between a true absence, a temporary absence,

and rarity or difficulty of detection of a species that is present (Gotelli et al.,

2010). Assessing underlying evenness based on a sample from the Tokeshi mod-

els showed that omitting unobserved species gives a false impression of higher

evenness for both rare and common species, for any of the evenness metrics

considered.

However, as long as we do not greatly underestimate the true number of

species, mis-specification has little effect on inference for rare species. Analysis

based on the curvature of the evenness profile is even less sensitive to the number

of species. Some bias for common species remains; this is shared by alternative

approaches such as Jost’s evenness factors and their logarithmic transforma-

tions. To draw evenness profiles that extend to unobserved species, some small

quantity ε must be added to counts. Some caution is needed when this quantity

is chosen, as the negative parameter range is sensitive to this choice. Thus, if

the information about rare species is not essential for the objectives of a study

or if uncertainty about rare species is too high, it is advisable to plot profiles

for the positive parameter range only. In this case, dominance is still displayed

relative to all species and not only the sampled ones.

Where the data are such that a statistical model can be fitted, diversity

assessment can be based on the predictions from the model instead of the ob-

servations. This is a good alternative to overcome the problem of missing ob-

servations and avoids the decision about an appropriate ε correction. Although

it does not provide a solution to the problem of the unknown S, simulations

from the Tokeshi models showed that misspecification seems to be even less of
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a problem when evenness profiles are evaluated based on predicted values from

the fitted model.

In addition to the problem of missing species, differences in detection prob-

abilities between individuals that are actually observed lead to bias in the di-

versity assessment if they are not accounted for. This affects evenness measures

in particular, as it is estimation of the variation in the species abundance dis-

tribution which is prone to bias when measures are calculated solely from the

species proportions in a sample. Although addressable with appropriate survey

design, correcting for individual detectability has received less attention than

species being missed entirely in the sampling process. We saw that the direct

connection between the divergence of the (true) species abundance distribution

p from evenness given by the power-divergence family Ip(λ) and the family of

goodness-of-fit statistics that is defined for a sample n no longer holds, if both

are corrected for detectability. Instead the estimators În(λ) are now a weighted

version of Ip(λ).

3.5 Chapter summary

This chapter highlighted detectability issues of both species and individuals and

how they affect diversity assessment. Individual detectability can be handled

with appropriate survey design and statistical methods and where this is pos-

sible, diversity estimates should be based on abundance estimates taking into

account detection probability rather than observed counts to avoid bias. The

discussion brought up subtle, but important differences between the sample-

based goodness-of-fit measures and the power divergences which are calculated

based on the species proportions, both in terms of undetected species and vari-

ation in detection of individuals. While both approaches are sensitive to zeros

in species abundances, the divergences only register them in a translation and

are hence closer to traditional diversity index families. Quantifying evenness

through a goodness-of-fit statistic is more complex in the way zeros are treated;

it takes into account the commonness and the rarity of the species that is missing

as well as that of the other species. Thus it can be more appropriate where we

think that the contribution of a species, even unobserved in a sample, should

not be neglected. If this is the case, we would also choose the detectability

adjusted version of the family of goodness-of-fit measures over the divergence

family. By taking into account variation in detection probabilities we lose the

direct connection between the goodness-of-fit statistics and the divergences and

hence cannot take the former to estimate the latter anymore.





Chapter 4

Fine-tuning the assessment of

large-scale temporal trends in

biodiversity using the example

of British breeding birds

This chapter has been prepared for publication in Studeny et al. (In prep) and

is currently under revision for Journal of Applied Ecology.

4.1 Introduction

We are faced with an unprecedented decline in biodiversity at a time when the

pressure on the Earth’s ecosystems is growing (Butchart et al., 2010). Inter-

national responses to the Convention on Biological Diversity (CBD) demand

large-scale assessments of biodiversity trends (de Heer et al., 2005; Pereira &

Cooper, 2006; Jones, 2011) rather than the local-scale evaluations that have

typically been pursued in the past. As such, data must be representative on at

least a national scale. These data in turn require analyses that will minimise

potential bias, extract long-term trends, and determine whether the rate of bio-

diversity loss has been reduced (Magurran et al., 2010; Magurran & Dornelas,

2010; Buckland et al., In prep).

Diversity assessment is not straightforward as ‘biological diversity’ is a con-

cept with a wide meaning in ecology (Harper & Hawksworth, 1995; Gaston

& Spicer, 2004; Magurran, 2004). This is reflected in the CBD’s biodiversity

targets which are primarily directed towards ecosystem and regional diversity.

However since diversity is typically quantified at the level of species (Magur-
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ran, 2004; Maurer & McGill, 2011), groups of species must be chosen that are

representative of the state of a nation’s ecosystem. Common breeding birds are

seen as good indicators of ecosystem health (Gregory et al., 2003, 2005; Gre-

gory & van Strien, 2010): they are widespread across different habitat types

and extensive monitoring programmes exist in many countries.

The UK Breeding Bird Survey (BBS) is an annual survey that has been

running since 1994 (Riseley et al., 2011). Adopting a nationwide randomised

stratified sampling design, it meets the requirements of the CBD’s biodiversity

plan and provides high quality data for statistical analysis which is tailored

towards national monitoring. The UK’s Wild Bird Indicator, which integrates

data from the BBS and other UK bird surveys, has been adopted by the UK

government to form part of a group of headline indicators for sustainability

(Gregory et al., 2005; DEFRA, 2011). It is based on a geometric mean of relative

abundances of species, i.e. it summarises within-species trends in abundance

relative to each species’ abundance in a baseline year (see chapter 1.3.1). It also

reflects the evenness component of species diversity (Buckland et al., 2011b).

The geometric mean has several advantages over more traditional measures of

species diversity like Shannon’s or Simpson’s indices (Buckland et al., 2011b),

and is therefore preferred as a headline index (Buckland et al., 2005; Lamb et al.,

2009; van Strien et al., 2012; Renwick et al., 2012). However, the summary it

provides can conceal finer details in diversity trends (as any scalar measure

does).

Recently, a family of indices based on goodness-of-fit statistics has been in-

troduced in an ecological context as a diversity measure (Studeny et al. (2011),

and see chapter 2). Similar methodology has been applied in economics to as-

sess inequality of wealth (Cowell, 1980). As derived in chapter 2, this family

is a generalisation of traditional evenness measures based on Shannon’s and

Simpson’s diversity index. A free parameter controls the sensitivity of the mea-

sures in this family towards either rare or more common species. Thus they

allow us to tailor diversity assessment with respect to different degrees of rarity

within the chosen group of species. This provides a tool for analysing diversity

trends in detail and offers additional information on the structure of ecological

communities and their changes, which would not be revealed by the geometric

mean measure alone.

One source of potential bias in estimating diversity is due to the neglect of

variation in detectability for individuals from different species and over time

(Yoccoz et al. (2001), and see chapter 3). However, diversity measures are

easily corrected if they are based on estimated abundances which take account
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of detection probabilities (Buckland et al., 2011a). This assumes that survey

methods can provide information on detectability. Distance sampling along line

transects, as used by the BBS, is one way of ensuring this. Other options include

point transect sampling and versions of mark-recapture techniques (Borchers

et al., 2002).

As pressures on species are often habitat specific, the ability to quantify

trends in diversity at the habitat level is essential for effective conservation

management (Newson et al., 2009). Farmland birds, for instance, experienced

a marked decline in the UK in the 1980s (Siriwardena et al., 1998). However,

an overall decline does not mean that all categories of species have been equally

affected. Recent studies of woodland birds, for example, have shown that spe-

cialist and generalist birds respond differently to change, the latter showing

some strong increases in abundance (Vickery et al., 2004; Davey et al., 2012),

while bird species associated with human habitats such as Passer domesticus

(House Sparrow), Sturnus vulgaris (Common Starling) and Apus apus (Com-

mon Swift) are the focus of growing concern (Baillie et al., 2010). Conservation

managers therefore need to be able to pinpoint trends for both rare and com-

mon species, and to place these in the context of the overall trends seen across

the different habitat groups.

In this chapter, we evaluate large-scale trends in biodiversity across five ma-

jor habitat types (farmland, grassland, urban species, wetland and woodland)

using UK breeding birds. Application of the goodness-of-fit based evenness

measures in conjunction with a geometric mean allows us to separate trends in

less common species from those in abundant species. This provides an example

of how these methods can be used to obtain a robust and more informative as-

sessment of temporal trends in diversity. Given the role birds play as indicator

species, this analysis has wide relevance for ecosystem management.

4.2 Material and Methods

4.2.1 The data

We analyse data from the British Breeding Bird Survey (BBS), which has been

conducted yearly since 1994. It is organised by the British Trust for Ornithology

(BTO) and carried out by volunteer observers (Greenwood et al., 1995; Newson

et al., 2005, 2008). We use data for years 1994 to 2008, except for 2001, access to

many survey sites was restricted due to an outbreak of foot and mouth disease.

The BBS is based on a stratified random design where sampling units are
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1 km squares. These are allocated randomly within strata which are based

on regions corresponding closely to UK counties. The sampling rate in each

stratum is proportional to the number of available volunteers. Observers visit

their survey square twice a year, once in April or early May, and once in late

May or June. Visits are a minimum of four weeks apart. In this analysis we

have focussed on data from the first visit to minimise the possibility of including

juvenile birds around later in the season, except for late breeding birds, such as

summer migrants (see list of species in Appendix G). In their allocated square,

the volunteers walk two parallel transect lines of 1 km each while recording every

bird seen or heard and assigning the observed bird to one of four categories

(0− 25 m from the line, 25− 100 m, > 100 m, and flying over). In accordance

with Newson et al. (2008), we consider data from the first two categories only.

We began by considering the entire suite of bird species recorded through

this scheme with the exception of nocturnal species as they are not well covered

by the survey design. However, since the geometric mean cannot be calculated

if a species’ index of abundance equals zero, and precision of estimates is of-

ten poor if rarely-recorded taxa are included, very rare species were excluded

from the analysis. This constraint applies to all studies that use the geometric

mean to assess diversity, including those that adopt the Living Planet Index

(Loh et al., 2005; Buckland et al., 2005, 2011b). Thus only data for species

which were sufficiently widespread (observed at more than 10 sites overall) and

abundant (a minimum of 15 records on average per year) were used, to allow

estimation of a year effect in detection probabilities. In addition, two wetland

species, Recurvirostra avosetta (Pied Avocet) and Limosa limosa (Black-tailed

Godwit) had to be excluded despite being classified as sufficiently common, be-

cause of zero abundance indices in several years. Occurrence of some grassland

and wetland species correlates negatively with sampling effort. Both habitat

groups also comprise waders for which large counts of non-breeding individuals

have been reported at a small number of sites (Field & Gregory, 1999). These

would not be representative in terms of average bird density. Suspecting records

of flocks behind unusual high numbers of observed birds, we decided to omit

these from the analysis as outliers. A total of nine records across all years were

identified as such outliers and excluded, along with a square falling in the Ab-

botsbury Swannery which we considered as not representative for Cygnus olor

(Mute Swan) records.

In addition to extreme records in these two habitat groups, a few of the

bootstrap resamples did not contain records for some species on the original

list. This leads to asymmetric and wide confidence intervals for some diversity
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estimates. As we felt that those few species unduly compromised precision,

potentially caused by a misfit between the survey design and their heterogeneous

distribution, these were excluded from the results presented here. This only

affected grassland and wetland species. These removals left a total of 98 species

across all habitats (a list can be found in Appendix G, where excluded species

are also listed).

4.2.2 Habitat classification

These 98 species were considered as belonging to one of six ‘communities’, where

the community is defined by a species’ main habitat here. Using habitat infor-

mation recorded along with species counts, a classification method based on

Jacobs’ preference index (Jacobs, 1974; Newson et al., 2008) was applied to as-

sign each species to one community (coastal, farmland, grassland, near human

habitation, wetland, woodland) according to their primary habitat use. How-

ever, we excluded coastal species from the analysis as they are not adequately

surveyed by BBS methods.

4.2.3 The analysis

Diversity measures

The data analysis seeks to identify long-term trends in biodiversity of British

breeding birds and to determine points in time at which the rate of change in

trend changes. Diversity indices differ in the degree to which they are sensitive to

more dominant or rarer species. The existing UK Wild Bird Indicator is based

on a geometric mean of relative abundances (i.e. abundance of each species

relative to the abundance of that species in a baseline year, see chapter 1.3.1).

Based on a list of S species, we calculate the geometric mean from the estimated

abundances N̂ij for each species i in each year j as

Ĝj = exp

(
1

S

S∑
i=1

log
N̂ij

N̂i1

)
.

The geometric mean meets many of the requirements of a headline index

(Loh et al., 2005; Buckland et al., 2005, 2011b). It summarises species-specific

trends in abundance as well as evenness and gives equal weight to rare and

more common species. It has been adopted by policy makers as a headline

index, for example in the Living Planet Index and the aforementioned UK Wild

Bird Indicator.
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More traditional diversity measures are often based on species proportions

Nij/Nj, where Nj =
∑

iNij, and focus on dominance. The most prominent

are Shannon’s and Simpson’s indices (Shannon, 1948; Simpson, 1949). While

there are arguments in favour of Simpson’s index for its sampling behaviour,

both indices reflect largely the same properties, i.e. a combination of species

richness and evenness. Based on species proportions, they remain unchanged if

all species decline at the same rate (Buckland et al., 2005). Shannon’s index is

slightly less focussed on the dominant species than Simpson’s (Hill, 1973). A

parametric family of goodness-of-fit based measures was proposed by Studeny

et al. (2011) for quantifying evenness (see chapter 2). A free parameter λ in

this family allows us to weight our biodiversity measure towards either rare or

dominant species. It is given by

Îj(λ) =
1

λ(λ+ 1)

S∑
i=1

N̂ij

N̂j

( N̂ij

N̂j/S

)λ

− 1

 . (4.1)

As discussed in detail in chapter 2, it corresponds to a family of goodness-of-fit

statistics (Read & Cressie, 1988) as well as a family of inequality measures used

in economics (Cowell, 1980), and includes as special cases linear transformations

of both Shannon’s index and the log-version of Simpson’s index for parameter

values λ = 0 and λ = 1, respectively. Low values of the measures in this family

correspond to high evenness and vice versa. We consider here its reciprocal

1/Îj(λ) for easier comparison with other measures.

Like the geometric mean index, the goodness-of-fit measures for negative λ

cannot be computed if an annual abundance estimate for any species is zero.

Either such species must be removed from the species list or the missing abun-

dance estimate must be replaced by a predicted (non-zero) value from a model,

for example using generalized additive models (see below).

Correcting for differences in detectability

Measures based on species proportions, like the goodness-of-fit based indices, are

biased when they are calculated from count data assuming equal detection prob-

abilities independent of species identity (Yoccoz et al., 2001; Buckland et al.,

2011a). By contrast, the geometric mean of counts is unchanged by species

differences in detectability of individuals, but is biased if there is a trend in

detectability with time (see details in chapter 3). Hence, where possible, de-

tectability should be taken into account explicitly when estimating diversity.

The BBS follows a basic distance sampling protocol and therefore we can apply
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standard methods to estimate detection probabilities for each species (Buck-

land et al., 2001). In standard line transect sampling, all animals on the line

are assumed to be detected, and probability of detection is assumed to drop

with distance from the line. This decrease can be described by a model for the

detection function. For each species, we fit a half-normal model to the binomial

count data corresponding to numbers of birds counted within 25 m of the line

and between 25 m and 100 m of the line. To allow for trends in detection prob-

abilities, year can be incorporated as either a continuous covariate or as a factor

in the scale parameter (Marques & Buckland, 2003). For each species, we fit

a detection function that is assumed independent of year, together with one in

which year was a continuous covariate. For those species recorded at more than

10 sites in every year, we also fit a model with year as a factor. We then select

the model with the smallest AIC. The following total UK abundance estimate

for each species takes the original survey stratification into account:

N̂ij =
∑
r

Ar
mjra

[∑
s

∑
k

1

P̂ijksr

]

where P̂ijksr is the estimated detection probability of the kth detected bird of

species i in year j at site s in region (stratum) r. Within a plot, we have two

strips each of length 1 km and half-width 100 m, giving a = 0.4 km2 as the

survey area covered per plot, mjr is the number of plots visited in year j in

region r, and Ar is the size (i.e. total number of available squares) of region r.

Estimating long-term trends

The point estimates of abundance typically show variation over time as they

are largely driven by short-term fluctuations. To establish underlying long-

term trends, we smooth the yearly fluctuations applying a scatterplot smoother

(Hastie & Tibshirani, 1990). We follow Fewster et al. (2000) and use generalized

additive models (GAM). The GAM was fitted to mean counts for each species

in each year. The mean was calculated as an average of the region (stratum)

means, weighted by the size of the region (to take account of stratification). An

offset term was included for the detectability conversion to UK density estimates

E[n̄ij] = exp
(

log(aP̂ij) + f(year)
)
, (4.2)
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where again a = 0.4 km2 is the survey area covered per plot and f(·) is a smooth

function. From the fitted values, the predicted abundance is calculated as

E[n̄ij] ·
∑

r Ar

aP̂ij
. (4.3)

One choice of error distribution for a mean of counts would be a Gamma

distribution, but it does not allow us to smooth over years where no birds were

observed and the mean count is zero. Tweedie distributions provide a flexible

way to model the mean-variance-relationship of over- or underdispersed data

through a parameter ν (Jørgensen, 1997). The Poisson (ν = 1) and Gamma

(ν = 2) distributions are special cases. By choosing a Tweedie error distribution

with ν = 1.9, we are reasonably close to a Gamma distribution, but can include

years with missing observations in the smoothing procedure. The generalized

additive model was fitted by thin-plate spline regression using the mgcv library

in R (R core development team, 2011) and was given an upper limit of three

degrees of freedom (df) where the actual df is determined by in-built cross-

validation (Wood, 2006, 2008).

Quantifying precision

For a randomized survey design, precision of biodiversity measures can be quan-

tified by a nonparametric bootstrap, using sites as the resampling unit (Fewster

et al., 2000). To take the original survey stratification into account, we sam-

pled visited sites within each region with replacement to get the same number

of sampled squares in each region as for the original sample. This is repeated

(here 999 times), and 95% confidence limits for the annual diversity index are

derived by the percentile method (Buckland, 1984). As it is based on a relative

measure, precision of the geometric mean can be low (Buckland et al., 2011b).

By definition, the index is unity with zero variance in the baseline year, while

confidence intervals become wider and less useful over time. Precision for a

subsequent year is driven by the variance in the baseline year (here 1994, the

first year of the BBS survey) as well as the subsequent year. Low effort in the

early years of the survey increases uncertainty for the entire time series.

Changes in temporal trends

Fewster et al. (2000) and Buckland et al. (2005) successfully used numerical

evaluation of the second derivative in combination with the non-parametric

bootstrap described above to determine years in which there is a change in



4.3 Results 103

(a) Negative changes (b) Positive changes

Figure 4.1 – Schematic plots of changes in trends. Changes can be (a) negative:
increasing rate of decline or decreasing upwards trend or (b) positive: slowing rate
of decline or increasing upwards trend. These changes (in slope) can be identified by
looking at the 2nd derivative of the trend curves; in (a) curves are concave downwards
(negative 2nd derivative), in (b) they are concave upwards (positive 2nd derivative)

the rate of change of diversity. We apply the same method to identify likely

points of an accelerated or slowed loss of biodiversity for each habitat group

in the BBS data set. A change for the better (either a slowed decrease or an

accelerated increase in diversity) is indicated by the confidence interval for the

second derivative lying entirely above zero, while a negative change (accelerated

decrease or slowed increase in diversity) is reflected in an interval spanning only

negative values (see Fig. 4.1). As Buckland et al. (2011b) note, these results

are independent of the choice of baseline year for the geometric mean, and

confidence interval length does not increase with increasing length of the time

series.

4.3 Results

4.3.1 Overall results

Figs. 4.2 and 4.3 show trend curves for the geometric mean index and a series

of members of the goodness-of-fit measures for the five habitat groups. Trends

vary between habitat groups as does precision of the diversity estimates. Rare

species increase uncertainty in the estimates. Hence, indices which are more

sensitive towards rare species, like the geometric mean index and the goodness-

of-fit measures for negative λ, show lower precision and have less power to detect

trend change points in general. If species with no records in one or more survey

years are not excluded when the geometric mean or the goodness-of-fit measure

for negative λ is calculated, both indices show higher variation. (The smoothing

ensures that zero abundance estimates do not prevent calculation of the indices,

provided the smoothed estimates are all non-zero.) However, only the grassland

and wetland habitat groups were adversely affected by this.
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Figure 4.2 – Geometric mean indices of diversity for the UK breeding bird survey
data 1994 - 2008. The panels show trends in diversity for five different communities
of breeding birds. Birds have been assigned to one community, according to their
primary habitat (farmland, grassland, near human habitation, wetland, woodland).
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4.3.2 Habitat-specific trends

Farmland birds

Neither the geometric mean nor the goodness-of-fit equivalents for Shannon’s

or Simpson’s indices give any indication of an increase or a decline in trend

over the survey period. This suggests that the strong decline in the 70s and 80s

has been halted, but not reversed. However, the goodness-of-fit based measures

for negative parameter values show a more nuanced and less reassuring picture.

The index for λ = −1 results in a continuing decline in evenness, i.e. abundances

for rare species lie increasingly far below the mean abundance across species.

Looking at second derivatives, there is no indication for a significant change in

trend for this habitat group.

Urban species

For urban species, all indices show roughly the same pattern but to different

extents. The geometric mean shows a significant increase in diversity between

1994 and the early 2000s. The second derivative suggests a change for the

worse in 2001/02. The goodness-of-fit indices confirm this, but show a stronger

upwards trend from the beginning of the survey. This suggests that the pattern

of trend for urban species is primarily driven by trends in evenness rather than

in abundance. As for the geometric mean, for positive parameter values of λ,

the second derivative indicates that this increase slowed down between 2000 and

2003 with little change thereafter. For the more common species in this habitat

group, diversity in 2008 (the last year considered here) is well above the value

for 1994. The picture is again less positive if we look at negative parameter

values for the goodness-of-fit measures and hence less common species. The

initial upward trend is less pronounced, while this trend is slowed significantly

around 2002 reversing the trend and leaving diversity just below the level of

1994 in 2008. This provides further clarification of why the geometric mean,

which gives equal weight to rare and common species, shows less of an upward

trend in the first half of the period.

Woodland birds

The geometric mean indicates an increase in diversity over the time period, with

the value in 2008 being about 25% ([14%-40%]) higher than at the beginning of

the survey period. No significant change in the second derivative is evident in

any year. However, the goodness-of-fit based measures give little indication for
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a positive trend. Positive changes in trend are picked up for the more dominant

species (positive parameter values) in 2002 and for the following four years in

the case of the transformed Shannon’s and Simpson’s indices. However, taking

the confidence intervals into consideration, there is little change. While there

is no significant change in the second derivative for negative λ, the trend curve

suggests a decline in diversity for the less common species.

Grassland birds

Neither the geometric mean index nor the goodness-of-fit based measures in-

dicate a substantial change in diversity for this group over the time period.

Potentially due to low sampling effort at the beginning of the survey, precision

for the geometric mean is low and trend estimates hence of little use. There

is an indication for a change for the worse in the second derivative in 1999.

The goodness-of-fit based measures draw a similar picture. For positive λ, the

second derivative indicates a negative change around 1998. For the more com-

mon species, further positive changes are picked up: the first in 2002 reversing

the previous negative direction, and a second in 2005 (λ = 2), indicating an

improvement in the rate of change of diversity. Nevertheless, the confidence

intervals for the diversity estimates do not suggest a significant change in diver-

sity between 1994 and 2008. For less common species only, there is a hint of a

positive trend in the goodness-of-fit measure, although we cannot be confident

of this conclusion given the wide confidence interval.

Wetland birds

Estimated precision for all diversity indices is low for this group, in particular

for those that are sensitive to rare species (geometric mean index, goodness-of-

fit measure for negative λ). The proportion of rare species is high in this group,

as well as species which are inhomogeneously distributed across the UK. In

addition, as for the grassland group, precision for the geometric mean is likely to

be affected by the lower sampling effort at the beginning of the survey. Neither

the geometric mean nor the goodness-of-fit measures indicate a significant trend.

There are no significant changes registered by the second derivative for any of

the indices.
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4.4 Discussion

National and international biodiversity conservation plans rely on monitoring

programmes as well as methods to determine large-scale biodiversity trends and

assess whether the rate of loss of biodiversity is successfully slowed down, halted

or even reversed (Dobson, 2005; Walpole et al., 2009).

Here, we present a comprehensive study of diversity trends in British breed-

ing birds classified by their primary habitat use. As indicator species of ecosys-

tem and environmental health, birds are currently contributing to the national

headline index to evaluate progress with regards to the international biodiver-

sity targets. This headline index is based on a geometric mean of relative species

abundances. We complemented the geometric mean index by measures that are

based on goodness-of-fit statistics and that generalise classic evenness indices.

The danger of a single headline index is that it concentrates on either selective

aspects of the biodiversity concept or on the most abundant species. Impor-

tantly, the choice of index can have a strong influence on whether and even what

kind of trend (positive or negative) is identified. The ability of the goodness-

of-fit based index family to separate effects for rare and common species sheds

light on why different indices pick up contrasting trends.

In addition, a positive change in the geometric mean might not be represen-

tative of all species. When a parametric measure is chosen which allows us to

shift focus between rare and dominant species, trends for rare species can be

looked at explicitly as long as the species are still common enough to be included

in an analysis. This latter group appears to be the ‘losers’ in terms of diver-

sity trends. Positive trends in our results are mostly associated with the more

abundant species. The UK Wild Bird Indicator, confirmed by the geometric

mean we calculated, suggests that the negative trends could have stabilised for

farmland birds and even have reversed for woodland species. However, looking

at the goodness-of-fit index for λ = −1, we see that the negative trend in fact

continued for the less common species in both groups. This can be confirmed by

single species trends in abundance for some of these birds (see individual trend

curves in Appendix G). This indicates a weakness in monitoring programmes;

general surveys cover the most abundant species well and are supplemented by

single species surveys for the rare, endangered species (not included here) that

are the focus of conservation plans. Those species that fall between the two cat-

egories (e.g. willow tit, wood warbler) are not monitored well by any scheme.

This is worrying and emphasizes the necessity for a more nuanced assessment.

However, less common species pose a problem from a statistical point of view.
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Their low numbers result in fewer data, and greater short-term fluctuations in

abundance estimates. Uncertainty in the estimated detection probabilities for

such species is also high. As diversity indices are summary statistics across a

set of species, rarer species introduce uncertainty to the diversity estimates if

they are included. The geometric mean, which gives equal weight to rare and

common species, is especially affected, while traditional indices concentrate on

the most dominant species and hence show higher precision. The goodness-of-

fit measures of diversity clearly show this — confidence intervals tend to be

wider for the negative parameter range. Hence there is a trade-off between the

inclusion of as many species as possible and precision of the diversity estimates.

Results could potentially be improved by conducting targeted surveys for some

of the rare species and combining them with the general results from surveys

such as the BBS, as is already done for a number of species, especially raptors

and very rare species. However, the design for such surveys has to be carefully

considered for the results to be included in a statistical analysis. Particularly

rare species might at the same time not be homogeneously distributed. On the

other hand, data collected in pristine locations might assure sampling success

but will not be representative on a larger scale.

In most ecosystems the majority of species are rare while there are only few

highly abundant species (Rabinowitz et al., 1986; McGill et al., 2007). But in

terms of ecosystem function, the contribution of rare species is debated (Law-

ton, 1994; Lyons & Schwartz, 2001; Smith & Knapp, 2003). Yet there are exam-

ples of rare species being crucial in maintaining ecosystem functions (Lyons &

Schwartz, 2001). In light of this, monitoring schemes and differentiated diversity

assessment should pay attention to rare and less common species.

In this study, we consider long-term diversity trends based on abundance

estimates for the whole of the UK (γ-diversity). However the time period that

is covered by the BBS is not yet very long. Substantial changes in trends are not

expected to occur over the course of 14 years. Nevertheless, our results already

reveal important issues for large-scale monitoring. As biodiversity schemes are

to be extended over the coming years according to the CBD’s action plan and

coordinated on an international level, this study provides relevant information

at an early stage. The modelling approach presented here could be extended

to identify ‘hotspots’ of biodiversity change, both spatially and temporally. For

example, similar to the GAMs considered here, a modelling approach could be

used to smooth across both space and time and thus provide predicted abun-

dance for all grid squares across the UK. Based on this, the total predicted

abundance and hence (γ-)diversity can be calculated at different spatial scales.
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If, however, biodiversity indices are determined at the 1 km square level and

then averaged at the chosen spatial resolution, we get a measure of α-diversity.

Comparing these γ- and α-diversity estimates, we can potentially identify areas

where the amount of spatial turnover (β-diversity) is changing through time.

Habitat and climate information could also be usefully incorporated into such a

model to identify how these covariates affect the spatial and temporal turnover

in biodiversity. For instance, using a related approach, Davey et al. (2012) found

increasing homogenization in breeding birds linked to the warming climate in

Britain.

4.5 Chapter summary

This chapter investigated temporal trends in species diversity on a large spatial

scale (across the UK). At the same time, this analysis illustrated in application

what has been discussed in previous chapters, in particular the goodness-of-fit

based measures.

In order to reliably assess diversity trends at this scale, appropriate and suf-

ficient data is needed. Here, we analysed data from the British Breeding Bird

Survey; birds are one of the few taxa for which national monitoring schemes are

established according to a randomised survey design. This guarantees represen-

tative data at the national level. We examined trends separately for five major

bird communities, which were defined by their primary habitat use (farmland,

grassland, near human habitation, wetland, woodland).

The geometric mean of relative abundances of breeding birds underpins a

headline index currently used to monitor biodiversity, ecosystem health and

sustainable practices (UK Wild Bird Indicator). Diversity measures based on

goodness-of-fit statistics, which have been introduced in chapter 2 offer a novel

way of separating trends in dominant species from those in rarer ones. This

makes them an ecologically informative complement to a headline index. In

this chapter, we estimated diversity trends using both a geometric mean and

goodness-of-fit based measures.

Bias from variation in detectability between individuals from different species

was reduced by using abundance estimates instead of recorded counts of birds.

We applied a scatterplot smoother to point estimates of abundances to separate

long-term trends from short-term fluctuations and determine significant changes

in diversity trends.

The results show that diversity trends vary amongst habitat types. However,

the nuances in trends within the different habitats, particularly with regard to
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changes in evenness, are masked when the geometric mean is adopted as the sole

measure of diversity. Analysing diversity using goodness-of-fit based measures,

highlights differences in trends between common and rare species. In particular,

it shows that species that are scarce, but not yet rare enough to be the focus of

conservation action, may be the ‘losers’ in diversity action plans.



Chapter 5

Spatial variation in diversity and

species turnover across a region

- British breeding birds (part II)

Up to now, this thesis has looked at diversity assessment in a largely aspatial

way. While the previous chapter showed an approach to diversity across an

entire region instead of single, selected sites, this was done by considering what is

traditionally referred to as γ-diversity, i.e. diversity is assessed across all sample

locations. It does not take into account spatial variability in diversity. Here, we

are concerned with the concepts of α- and β-diversity (Whittaker, 1972; Cody,

1975) and we investigate how they can be interpreted in continuous space. The

character of this chapter is different from the other parts of this thesis in that

it does not aim for a comprehensive analysis; instead we set out to demonstrate

and discuss first steps towards diversity assessment in space which will hopefully

prepare the ground for future development of more advanced methods.

As discussed in chapter 1, the traditional view of partitioning diversity into

α-, β- and γ-components (Whittaker, 1972; Cody, 1975; Lande, 1996; Jost,

2007) is not readily transferred to a regional setting where we are interested

in making inference on diversity across the entire space instead of establishing

site-specific diversity and variability among a finite (typically small) number of

observed sites only.

α-diversity, i.e. the average site-specific diversity, may in theory be easily

calculated for every observed location and could then be smoothed across space

to extrapolate onto the whole region. However, in a large scale survey single

sites will generally not provide enough data on every species for reliable diversity

estimation, even for species that are easily monitored. In section 5.3, we use

113
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a model-based approach to estimate α-diversity which overcomes this issue by

replacing observations with expected counts from a model.

Based on the standard partitioning, spatial variation in diversity is typically

thought of as β-diversity, the between-sites diversity or difference in species

composition (Tuomisto, 2010; Jost et al., 2011). However, extending the concept

of β-diversity across a whole region is even less evident than for α-diversity

(see discussion in chapter 1). Along with looking at the usual definition of β-

diversity by either an additive or multiplicative decomposition of γ-diversity,

we will discuss potential ways of accounting for β-diversity more adequately in

continuous space in section 5.5. Similarity measures can identify locations with

similar species composition (Jost et al., 2011); however, calculating similarity

between many pairs of sites quickly becomes computationally challenging for

large regions.

5.1 Motivation

In the previous chapter, we saw an example of large-scale biodiversity moni-

toring; in particular, how changes in temporal trends can be assessed. Based

on total UK abundance estimates for breeding birds, we were able to estimate

γ-diversity. Our approach took into account potential variation in detection

probabilities across species and, by grouping birds according to their habitat

preferences, we could analyse habitat-specific trends in diversity.

While this (or a similar) kind of assessment is essential when we seek to

monitor changes in diversity and assess progress made towards its conserva-

tion, large-scale monitoring should ideally go further (Buckland et al., In prep).

Besides the global picture of γ-diversity, it is also informative to estimate di-

versity ‘locally’ and how it changes across space (Ter Steege et al., 2003); and

ultimately, how this spatially explicit diversity changes over time (Magurran

et al., 2010; Magurran & Dornelas, 2010). Traditionally, this is captured by

α-diversity: in a site-specific survey of several plots, α-diversity represents the

average diversity of a plot. Generalising this to regional monitoring, the aim

is to determine diversity at each survey site and to use this information to de-

rive expected α-diversity throughout the whole region. On a large-scale, only

a small part of all possible locations is visited during a survey. In addition,

stochastic fluctuations at single sites are likely to be substantial. Hence, similar

to temporal trends, estimating diversity trends locally and across space should

not be based directly on the observed counts (Gotelli et al., 2010; Buckland

et al., 2011a). Instead, we adopt a model-based approach here to derive pre-
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dicted density of each species and calculate diversity indices based on the model

predictions. As with γ-diversity, efforts should be made to adjust the local α-

diversity estimate for detectability. However, even for well monitored and easily

observed species like birds, counts are likely to be zero for a number of sites un-

less a species is very common and heterogeneously distributed across the whole

region. As a consequence, a single site usually does not provide enough data to

fit a ‘local’ detection function for the majority of species. Ideally, this could be

integrated in a modelling approach, but appropriate methodology has yet to be

developed; we do not pursue this here, but use the detection probabilities based

on the data pooled across the UK derived in the previous chapter (see table in

Appendix G).

5.2 The data

Once more, we look at the data from the British breeding bird survey (Rise-

ley et al. (2011); for more details on the survey design see also chapter 4.2).

The spatial distribution of bird species is likely to depend in large parts on the

availability of suitable habitat (Gregory & Baillie, 1998; Benton et al., 2003;

Renwick et al., 2012). Hence any spatial analysis should ideally include infor-

mation on habitat through suitable covariates. However, data sources covering

information on the local environment across the entire UK are sparse. In theory,

the BBS data themselves contain habitat information collected by the observers

(Riseley et al., 2011; Renwick et al., 2012). We found this habitat information

unsuitable to provide covariates for two reasons; first, they evidently cover only

visited squares and hence cannot be used for predictions for unobserved sites and

second, their very detailed description makes it difficult to find an appropriate

(qualitative or quantitative) summary for the whole square. Using satellite im-

age and digital cartography, UK-wide land cover data have been collected by the

Centre for Ecology and Hydrology (CEH) in connection with the Countryside

Survey (Morton et al., 2011); on a resolution of 1 km2 on the ordnance survey

grid, each grid square is assigned one of ten aggregated land cover categories

(see Table 5.1). As this data set provides local habitat information collected

on the same grid and with the same spatial resolution as the BBS, it seems a

suitable choice as a covariate describing local habitat suitability.

Since the BBS has been launched, two such land cover maps have been

compiled by CEH, in 2000 and 2007, respectively. Technical improvements

for the 2007 land cover map assure a continuous spatial coverage, while the

2000 map is based on 100 km × 100 km tiles which are not straightforward to
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Table 5.1 – Land cover classes and their frequencies across the UK
aggregated at the 1 km square level.

Land cover %area Land cover %area

arable 30.5 coniferous woodland 6.1
improved grassland 26.0 coastal 2.9
mountain/heath/bog 16.2 broadleaf woodland 2.5
semi-natural grassland 10.2 saltwater 0.03
built-up areas/gardens 6.1 freshwater 0.004

●

●

●

●

●

●

●

●

●

●

broadleaf woodland
coniferous woodland
arable
improved grassland
semi−natural grassland
mountain, heath, bog
saltwater
freshwater
coastal
built−up areas, gardens

Figure 5.1 – Land cover map of the UK in 2007 based on data collected by the Centre
for Ecology & Hydrology in connection with the Countryside Survey partnership.

combine; this can lead to inconsistencies at the boundaries of the tiles. Direct

comparability between the 2000 and the 2007 map is thus limited (Morton et al.

(2011), p.84). For this reason, we decided to only use the BBS data for 2007

in combination with the land cover map for the analysis. We further excluded

all the squares falling into the land cover categories ‘freshwater’ and ‘saltwater’

because these landclasses are underrepresented in comparison to the rest (see

Table 5.1). Therefore they do not provide sufficient data for reliable estimation

of model parameters.

Given that the aim of this chapter is more of an outlook at what could be

done than a comprehensive analysis, we further focussed on the species whose

habitat has been classified as ‘within or near human habitation’. Considering
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computational effort, the decision to use this specific community was led partly

by the fact that it consists of a comparatively small number of species while all

except one of its species are sufficiently common to guarantee enough available

data and avoid further deletion of species within the group (16 species classified

as common, consistent with the analysis in chapter 4). Furthermore, conserva-

tional concerns for this particular community are growing (Baillie et al., 2010).

5.3 The modelling approach: a hierarchical model

in a Bayesian setting

We now propose a basic spatial model for the density of a species (as num-

ber of individuals per km2) across the UK. This model is fitted to each of the

16 bird species in the ‘near human habitation’ category. The choice of mod-

elling approach is directed by a recently developed fitting algorithm based on

integrated nested Laplace approximation (INLA) (Rue & Martino, 2007; Rue

et al., 2009). It has been shown to be powerful, in terms of both fast and ac-

curate computation and applicability to a wide range of spatial and non-spatial

models. It is implemented in the R-library R-Inla (www.r-inla.org, Martino &

Rue (2010)). Although we keep the model deliberately simple here, this restric-

tion is solely due to the limited scope of this thesis. The methods used to fit

the model come with great flexibility and can handle highly complex spatio-

temporal models (Lindgren et al., 2011; Simpson et al., 2011a; Cameletti et al.,

2012). We discuss possible extensions in section 5.6 below.

Observed counts y = (y1, . . . , yL) at locations v1, . . . , vL
1 are modelled de-

pending on the prevalent type of habitat given by the land cover category for the

corresponding square. In addition, we expect counts to be spatially autocorre-

lated. This autocorrelation as well as unexplained variation in the observations

are taken into account by a random spatial process ξ (a ‘spatial field’).

The fitting algorithm is based on a discretisation of space. More precisely,

the random field is fitted to the data explicitly only in a finite number of points

across space and interpolated otherwise (Lindgren et al., 2011). These points

are given by a triangulation (see Fig.5.2). The discrete representation of space

renders computation very fast (for several reasons) while it turns out to be

accurate if certain assumptions hold (Simpson et al., 2011a). (Technical details

are explained in more detail below.) The triangulation does not have to be

1Locations here refer to the coordinates as (easting, northing) of the lower left corner of
the survey square `, ` = 1, . . . , L.
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Figure 5.2 – Triangulation of the
UK, based on BBS survey squares
observed in 2007. This discreti-
sation of space is the basis of
the model fitting algorithm INLA.
The mesh is extended beyond the
coastline to take edge effects into
account.

Constrained refined Delaunay triangulation

mesh

regular and thus can take into account that sampling effort differs by regions,

i.e. we can place more evaluation points where we have more observations. The

spatial field describes a latent, large-scale spatial trend while covariates explain

local variation in the observations explicitly (Martino & Rue, 2010; Cameletti

et al., 2012).

We will now describe the model more formally and provide theoretical de-

tails about the fitting algorithm. In particular, the modelling is done within

a Bayesian framework (Martino & Rue, 2010). The reader who is not familiar

with Bayesian statistics can find some general background information in Box

5.1.

5.3.1 The model

In the following, let V ⊂ R2 denote the set containing all points on a map of the

UK and let v1, . . . , vL ∈ V be all grid squares observed in 2007. We expect the

abundance of a species within a square to depend on suitable habitat and hence

use the land cover class (‘lc’) of a square as an explanatory variable. However,

on top of habitat-specific variation, species densities are likely to vary in space,

either due to further (unobserved) covariates or due to random fluctuations.

We assume that this can be described by a stochastic process ξ in space which

is also called a (latent) random field and which is specified by its probability

distribution. In the approach taken here, the computation relies on ξ being

Gaussian, i.e. a multivariate normal stochastic process in space. As a Gaussian

process, ξ is fully determined by its mean and covariance matrix where the latter

is given by a covariance function describing the autocorrelation structure of the
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Box 5.1: Bayesian statistics in a nutshell
In specifying a statistical model, we make assumptions about the struc-
ture underlying the data. Usually the definition of the model includes
one or more model parameters. Contrary to classical frequentist statis-
tics, these parameter(s) are not considered fixed in a Bayesian setting,
but are seen as random quantities themselves. As such they are charac-
terised by their probability distribution.
In order to fit the model a prior assumption on this distribution is made;
based on this and the data, the aim is to determine the posterior distri-
bution

π(θ|y),

i.e. the probability density of θ given the data. This is achieved by
exploiting a basic result on conditional probabilities — Bayes’ theorem
— stating

π(θ|y) ∝ π(y|θ)π(θ),

where π(θ) is said to be the prior distribution and π(y|θ) is the proba-
bility of observing y given θ (this is the classical likelihood). The two
sides of the equation are equal up to a normalising constant that ensures
that π(θ|y) is a valid probability density function.
If several parameters are involved (as is likely in spatio-temporal set-
tings), the joint posterior π(θ|y) is usually too complex to interpret and
one is more interested in the marginal posteriors

π(θj|y) =

∫
π(θ|y)dθ−j.

The notation
∫

dθ−j is short-hand for integration over (‘integrating out’)
all components of θ except the j-th. Due to the complexity of the joint
posterior this integral can be derived analytically only in exceptional
cases. The strength of Bayesian methods here is their powerful com-
putational framework, commonly in the form of Markov chain Monte
Carlo simulations, which allow us to derive estimates for the marginal
distributions.

field. In general, it is not possible to define this covariance function ad hoc, but

a parametric covariance model is chosen from a class of functions suggested in

the literature (Zimmerman & Stein, 2010; Cressie & Wikle, 2011). The most

commonly used covariance functions in spatial modelling belong to the Matérn

family which, in R2, is given by

Cν(v, w) =
1

2ν−1Γ(ν)
(κ‖v − w‖)ν Kν (κ‖v − w‖) (5.1)
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for v 6= w ∈ V , where ν, κ > 0, Γ is the gamma function and Kν a modified

Bessel function (see for example Stein (1999), p.31). Bessel functions play a ma-

jor role in physics where they are used to describe equilibrium states of fields

such as electromagnetic potentials or wave propagation in cylindric or spheri-

cal coordinates (Gbur (2011), chapter 16). Kν is exponentially decreasing (in

this case with distance); it can be represented for example by an integral, but

cannot be evaluated analytically. From the definition of the Matérn covariance

family in (5.1), we notice that the value of Cν(·, ·) depends only on the (Eu-

clidian) distance ‖ · ‖ between points and not their individual locations. As a

consequence, ξ equipped with Cν(·, ·) is what is called a second-order stationary

and isotropic field. Its degree of smoothness is determined by the parameter ν

which is considered fixed (broadly, we can view it as analogous to the degrees of

freedom of a scatterplot smoother). The scale parameter κ has to be estimated;

broadly speaking, it corresponds to the range of non-zero autocorrelation.

With these preliminaries, we can now define an additive regression model

for a species’ density. The observed counts y1, . . . , yL are considered realisations

from a Poisson distribution where the logarithm of its mean is given by the linear

predictor

λ(v) = logE[Y (v)] = log(offset) + β0 +
7∑

k=1

βk(v)1{lc(v)=k} + ξ(v), (5.2)

for v ∈ V . The offset term is the same as in model (4.2) in the previous chapter,

the detection probability for an individual of species i on the square, and it

converts counts into density (at location v). (We use the estimated detection

probabilities derived in chapter 4 for the whole of the UK, hence the offset is

constant here; this does not need to be the case in general.)

Collecting all random quantities in η = (λ,β, ξ), we see that η is a Gaussian

random field, namely

η ∼ N
(
λ, σ2Σ

)
(5.3)

where the covariance is

Σ(v, w) =

1 if ‖v − w‖ = 0,

Cν(v, w) otherwise.
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Note the hierachical structure of the model: We observe y = (y1, . . . , yL) where

y` = exp

(
log(offset) + β0 +

7∑
k=1

βk(v`)1{lc(v`)=k} + ξ(v`)

)

as realisations of the underlying field η, which itself is governed by the variance

and scale parameter θ = (σ2, κ) that determine the spatial structure2. Hier-

archical models with this kind of structure have become popular, especially in

a Bayesian framework (Cressie & Wikle, 2011). Commonly, MCMC (Markov

chain Monte Carlo) algorithms are used to ‘update’ the marginal distributions

of all model parameters by repeated stochastic simulation until an equilibrium

is reached (‘the chain has converged’) (Robert & Casella, 1999). However, in

the context of spatial modelling MCMC algorithms often do poorly in terms

of mixing and convergence, due to dependence between the model parameters

(Rue et al., 2009). While techniques have been developed to (partly) overcome

these problems (Rue & Held, 2005), MCMC methods are hampered by high

computational costs (Rue et al., 2009; Simpson et al., 2010). Recently, INLA

has been proposed as a deterministic alternative to MCMC and was shown to

be highly accurate while computation takes only a fraction of the time required

by MCMC algorithms (Rue et al., 2009; Simpson et al., 2011b).

5.3.2 Model fitting with INLA

Before we discuss the restrictions of this ‘magic wand’, we explain the basic

ideas behind the INLA algorithm. Given priors on the hyperparameters θ and

assuming a multivariate Gaussian distribution for the random field η given θ,

our aim is to derive the posterior marginal distributions for the hyperparameters

and, more importantly, all components of the random field. In mathematical

terms, we look for

π(ηj1|y) =

∫
π(ηj1|θ,y)π(θ|y)dθ, (5.4)

π(θj2|y) =

∫
π(θ|y)dθ−j2 , (5.5)

where π(·|y) is the conditional density given the observations and the subscripts

j1, j2 refer to the components of η and θ, respectively.

Hence, computational steps involved are

2These are usually referred to as ‘hyperparameters’, since they are not explicit parameters
of the model itself, but of the spatial field.
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� to derive an approximation π̃(θ|y),

� to derive an approximation π̃(ηj1 |θ,y),

� to evaluate the integrals in (5.4) and (5.5) by replacing the conditional

densities with their approximate versions and by numeric integration.

To get the first approximation, the definition of conditional probabilities gives

us

π(θ|y) =
π(θ,η|y)

π(η|θ,y)
. (5.6)

As with any Bayesian analysis, it is first and foremost based on the application

of Bayes’ Theorem (see Box 5.1) which lets us calculate the joint posterior in

the numerator as a product of the priors for θ, η and the likelihood of y

π(θ,η|y) ∝ π(θ)π(η|θ)
L∏
`=1

π(y`|η,θ).

Replacing the denominator in (5.6) by its Laplace approximation πG (Tierney

& Kadane (1986); see Box 5.2 for details) and evaluating at the mode η0 of the

Gaussian we get

π̃(θ|y) ∝ π(θ,η|y)

πG(η|θ,y)

∣∣∣∣
η=η0(θ)

. (5.7)

The approximation πG(η|θ,y) of the conditional density by a Gaussian is in

general very accurate because η is Gaussian by assumption and the data y

are usually ‘well-behaved’, i.e. conditioning on them does not lead to a radical

change in distribution of η (Rue & Martino, 2007; Rue et al., 2009). (We

point out that the posterior for θ resulting from (5.7) is generally anything but

Gaussian.)

Based on this, one is tempted to derive the approximation of the marginal

distribution π̃(ηj1 |θ,y) by the corresponding marginal Gaussian of πG(η|θ,y).

Unfortunately, the posterior marginals are often non-symmetric and as a con-

sequence the latter approximation is often poor; it suffers from an error in

correctly locating the mode and a lack of skewness (Rue & Martino, 2007). In-

stead, another (simplified) Laplace approximation can be applied directly to the

marginal density πG(ηj1|θ,y) and extracting information to correct the marginal

Gaussian for location and skewness. Rue et al. (2009) state that this assures the

correct posterior marginals for many observation models, including the Poisson

which we are considering here. Finally, we can calculate the integrals in (5.4)

and (5.5) by replacing them by finite (weighted) sums. (Note that if the ob-
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servation model is indeed Gaussian this last step is the only approximation

involved.)

In order to apply the INLA algorithm, certain assumptions have to be met

that we have not explicitly mentioned so far, although two of them have been

stated implicitly (Rue et al., 2009). When calculating π(θ|y) we relied on the

conditional independence of the observations y1, . . . , yL given ξ and θ. Crucially,

for the Laplace approximation to work, ξ is assumed to be Gaussian random

field, i.e. Gaussian (multivariate normal) priors have to be chosen for all com-

ponents of ξ in the above. (The hyperparameters θ, which govern the spatial

structure of the field here, do not underlie any distributional restrictions.)

However for the INLA algorithm to be superior in terms of computation

time, the covariance matrix Σ is desired to be sparse3 (rendering computational

cost for the linear algebra operations cheap). More precisely, we would like the

spatial field ξ to be a Gaussian Markov random field (GMRF) (Rue et al., 2009;

Simpson et al., 2010, 2011a). GMRFs are characterised by certain conditional

independence properties (Markov properties4) which can be represented in a

neighbourhood structure and let the entries of the precision matrix Q = Σ−1

be mostly zero5. The requirement on sparseness of the precision/covariance

matrix is in general not given if Σ is defined by a complex covariance function

like (5.1). This hurdle has been overcome recently by Lindgren et al. (2011) who

exploited a direct correspondence between the Matérn covariance family and

a certain stochastic partial differential equation (SPDE). Namely, a Gaussian

field ξ governed by a Matérn covariance function is a solution to said SPDE.

Moreover, under a discretisation of space and choosing certain (simple) basis

functions, we can represent ξ by a discrete version

ξ(v) =
M∑
m=1

φm(v)ωm, (5.8)

where M is the number of points in the discretisation, (φm)1≤m≤M the set of ba-

sis functions and (ωm)1≤m≤M Gaussian distributed weights. The basis functions

are chosen such that φm is equal to 1 at point m and is zero otherwise. Hence

the weights ωm actually represent the values of the field at these points (see

Fig. 5.3 for illustration). The covariance matrix of the weights ω = (ωm)1≤m≤M

3This means that the precision matrix contains only a limited number of non-zero values
4values of the field at locations v`1 and v`2 are independent given the values at all other

locations v−`1`2
5Qv`1 ,v`2

6= 0 ↔ v`1 is neighbour of v`2 (where the definition of ‘neighbourhood’ can be
more complex than just two locations being close in space).
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Box 5.2: Laplace approximation in a nutshell
This technique, first introduced by Laplace in 1774, allows us to nu-
merically approximate functions under certain conditions by a Gaussian
integral. In particular, in statistics and probability theory it is applied
to derive expected values and posterior marginal distributions.
In the basic case assume a probability density function (pdf) π(x) which
is unimodal and twice differentiable and has a global maximum at the
mode x0. These properties are then inherited by the log-likelihood
L(x) = ln π(x). We can approximate the latter by a quadratic polyno-
mial where we match the value of the function and the first two derivates
in x0

L(x) ≈ L(x0) + L′(x0)(x− x0) + L′′(x0)(x− x0)2,

(by Taylor’s theorem). As π has a global maximum at x0, the first
derivative of L(x) in x0 equals zero and hence the second term in the
equation vanishes. Setting L′′(x0) = −1/σ2, we can rewrite π(x) based
on this as

π(x) = exp(L(x)) ≈ const. exp

(
−(x− x0)

2σ2

)
where we recognise the density of a normal distribution N (x0, σ

2) on
the right-hand side. Thus any unimodal, twice differentiable pdf can be
approximated by a Gaussian. This is useful, for example, for computa-
tional reasons. Laplace’s method has been generalised to multivariate
and multimodal pdfs. In particular, Tierney & Kadane (1986) devel-
oped it further for use in Bayesian analysis, reducing the error term.
The figure shows the Laplace approximation (dotted line) to a beta dis-
tribution. (Obviously, if the original pdf is itself Gaussian, Laplace’s
method is exact.)
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turns out to be sparse and hence they define a GMRF (Lindgren et al., 2011;

Simpson et al., 2011a). Replacing ξ by its discrete equivalent ω then enables

us to combine this with INLA (Cameletti et al., 2012; Simpson et al., 2011b).

To not lose too much information, we need to assure that the resolution of the
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Figure 5.3 – Illustration of the spatial field ξ (left) and its representation by (piece-
wise linear) basis functions (right), as given in equation (5.8). Each basis function
(example shown in grey) assumes the value of the field in a node of the triangulation
and is zero otherwise. [Plot taken from Cameletti et al. (2012), with kind permission
of Finn Lindgren.]

triangulation is fine enough to represent the underlying spatial structure. As

INLA is fast, this can be done by gradually refining the resolution.

The triangulation as well as calculations combining the SPDE approach with

INLA have been implemented in R and can be used within the R-Inla library.

5.4 First results: α-diversity maps for the British

human habitation bird community

The model (5.2) was fitted independently to each species whose primary habitat

has been classified as ‘near human habitation’ (16 species in total, see table in

Appendix G). Based on the fitted model, density was estimated for each 1 km

square on the ordnance survey grid. Densities are smoothed across space by the

spatial field, which is continuous. As an example, the predicted density is shown

for house sparrow (Passer domesticus) and mistle thrush (Turdus viscivorus) in

Fig. 5.4 together with the posterior mean and posterior standard deviation for

the spatial field. As expected, standard deviation is higher for the rare species,

i.e. mistle thrush here. The spatial field accounts for trend not explained by

the fixed covariate (here, land cover class of the square).

Posterior means and standard deviations for the field parameters for each

species are given in Table 5.2; κ reflects the strength of spatial autocorrelation

and tends to be higher for less abundant species. Plotting the posterior mean

field, a more or less pronounced gradient between North and South is recognis-

able, except for jackdaw, spotted flycatcher and feral pigeon. (For the latter

two, the prior had to be adjusted in order to achieve convergence of the model
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Figure 5.4 – Estimated densities (in colour) of house sparrow (upper row) and mistle thrush (lower row), as well as the posterior mean field
(middle) and posterior standard deviation (left).
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Table 5.2 – Posterior summary statistics of the parameters
κ, σ2 of the spatial field. Mean and standard deviation (sd)
are given along with the 2.5%, 50% (median) and 97.5% quan-
tiles of the posterior distribution. (By default, INLA returns
logarithms of field parameters.)

species mean sd 2.5% 50% 97.5%

log κ
blackbird -3.57 0.12 -3.82 -3.57 -3.33
collared dove -3.35 0.14 -3.63 -3.34 -3.06
dunnock -3.83 0.17 -4.18 -3.83 -3.50
feral pigeon -3.10 0.16 -3.42 -3.10 -2.80
goldfinch -3.36 0.17 -3.70 -3.36 -3.02
greenfinch -3.52 0.14 -3.81 -3.52 -3.24
house martin -1.87 0.04 -1.94 -1.87 -1.79
house sparrow -3.45 0.13 -3.71 -3.45 -3.20
jackdaw -3.49 0.16 -3.81 -3.48 -3.18
magpie -3.98 0.20 -4.40 -3.97 -3.61
mistle thrush -2.27 0.28 -2.78 -2.28 -1.68
pied wagtail -2.78 0.22 -3.19 -2.78 -2.34
spotted flycatcher -2.57 0.28 -3.08 -2.59 -1.99
starling -3.74 0.16 -4.06 -3.73 -3.45
swallow -2.83 0.15 -3.11 -2.83 -2.53
swift -1.63 0.28 -2.12 -1.66 -1.01

log σ2

blackbird 0.70 0.18 0.35 0.70 1.06
collared dove 1.39 0.18 1.02 1.39 1.75
dunnock 0.65 0.26 0.14 0.64 1.17
feral pigeon 4.12 0.18 3.77 4.12 4.47
goldfinch 0.66 0.21 0.24 0.66 1.08
greenfinch 0.98 0.20 0.59 0.98 1.39
house martin 2.62 0.10 2.41 2.62 2.81
house sparrow 1.73 0.18 1.37 1.72 2.09
jackdaw 1.81 0.22 1.38 1.81 2.26
magpie 1.64 0.33 1.03 1.63 2.32
mistle thrush -0.25 0.27 -0.76 -0.26 0.29
pied wagtail -0.42 0.16 -0.74 -0.42 -0.11
spotted flycatcher 0.59 0.25 0.10 0.59 1.09
starling 2.86 0.23 2.41 2.85 3.34
swallow 0.66 0.12 0.42 0.66 0.90
swift 3.24 0.39 2.57 3.21 4.10
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Figure 5.5 – α-diversity maps of UK breeding birds whose natural habitat is near
human habitation. The maps show the inverse of Simpson’s index 1/D and Shannon’s
index H on a resolution of 1 km squares. There is no apparent spatial trend. (1−D
was calculated too, with similar results which are not shown.)

fitting algorithm, hence results have to be treated with caution.) The spatial

field reflects variation left after taking into account the land cover (with more

mountainous, less populated areas in the North). Posterior summary statistics

for coefficients of the land cover categories are presented in Table 5.3. The

North–South gradient suggests that there is some remaining structure which is

not explained by the covariates.

Based on the estimated single species densities we calculate α-diversity on

the resolution of the grid (diversity of each 1 km square). As one would expect,

Simpson’s and Shannon’s indices give similar results (see Fig. 5.5). No distinct

spatial trend can be identified. Topographic effects are only faintly recognisable.

We also calculated a geometric mean across space where here relative abun-

dance of a species is its abundance at a grid location relative to that in a

reference square. The latter was chosen (arbitrarily) in the Southwest corner

of mainland Britain (easting ‘134’ and northing ‘24’ on the map used here, see

Fig. 5.6). Contrary to Simpson’s and Shannon’s index, the spatial geometric

mean clearly displays a trend with numbers decreasing in areas of higher alti-

tude (mountainous areas). This demonstrates once more the weakness of the

classical indices to pick up trends (Buckland et al., 2011b). While abundance

within each species varies across space (leading to a North-South gradient in

the geometric mean), species proportions can stay roughly the same if change

in abundance is the same across species. As a consequence, neither Shannon’s



5.4
F

irst
resu

lts:
α

-d
iversity

m
ap

s
1
2
9

Table 5.3 – Posterior means for the different land cover coefficients β for each species with posterior standard deviation given in brackets.

Species Intercept β0
Coniferous
woodland

Arable
Improved
grassland

Semi-
natural
grassland

Mountain,
heath, bog

Coastal
Built-up ar-
eas, gardens

blackbird 2.93(0.27) -0.01(0.06) 0.08(0.03) 0.07(0.03) 0.02(0.05) 0.00(0.06) -0.19(0.07) 0.14(0.04)
collared dove 0.89(0.35) 0.3(0.15) 0.12(0.08) 0.00(0.08) -0.56(0.15) -0.45(0.15) 0.01(0.13) 0.15(0.08)
dunnock 2.36(0.34) -0.32(0.11) -0.12(0.06) -0.19(0.06) -0.44(0.10) -0.32(0.10) -0.13(0.10) 0(0.06)
feral pigeon -3.91(1.25) -0.71(0.20) -0.76(0.08) -0.77(0.08) -1.43(0.20) -0.49(0.15) -0.28(0.14) -0.94(0.08)
goldfinch 1.51(0.26) -0.09(0.16) 0.18(0.10) 0.17(0.10) 0.17(0.13) -0.05(0.14) 0.17(0.16) 0.39(0.10)
greenfinch 1.74(0.32) -0.18(0.12) 0.07(0.06) -0.03(0.06) -0.13(0.10) 0.14(0.10) -0.07(0.11) 0.2(0.07)
house martin -0.9(0.28) 0.58(0.27) 0.38(0.21) 0.6(0.21) 0.04(0.29) 1.01(0.26) -0.1(0.35) 0.15(0.23)
house sparrow 2.57(0.40) 0.27(0.08) 0.26(0.05) 0.22(0.05) -0.04(0.08) 0.26(0.07) 0.04(0.08) 0.39(0.05)
jackdaw 0.75(0.47) 0.61(0.09) 0.05(0.07) 0.24(0.07) 0.41(0.09) -0.04(0.09) -0.49(0.14) 0.1(0.07)
magpie 0.11(0.64) 0.17(0.15) 0.08(0.08) -0.02(0.07) 0.02(0.13) 0.06(0.12) 0.02(0.15) -0.03(0.08)
mistle thrush 0.35(0.17) 0.03(0.23) 0.10(0.16) -0.07(0.16) -0.19(0.22) -0.41(0.21) -0.06(0.26) 0.16(0.17)
pied wagtail 1.34(0.17) -0.03(0.2) -0.10(0.15) -0.08(0.15) -0.01(0.19) -0.12(0.18) -0.94( 0.3) -0.02(0.16)
spotted flycatcher -0.84(0.43) -0.14(0.56) -0.27(0.42) 0.13(0.41) 0.63(0.46) -0.40(0.50) -0.13(0.62) -0.31(0.50)
starling 2.46(0.86) 0.38(0.09) 0.02(0.05) -0.11(0.05) -0.11(0.08) 0.25(0.07) -0.19(0.09) 0.20(0.05)
swallow 1.43(0.19) -0.03(0.17) -0.02(0.12) 0.04(0.12) -0.17(0.15) 0.15(0.14) -0.17(0.18) 0.08(0.12)
swift -4.10(0.56) -0.95(1.18) 1.00(0.47) 1.20(0.47) -6.84(11.56) 0.31(0.60) 1.99(0.60) 1.75(0.46)
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Figure 5.6 – Map of a spatial geometric mean index of UK breeding birds near
human habitation [on a log scale]. The geometric mean has been calculated from the
species abundances relative to its abundance in a base square. The location of the
base square is indicated · on the outline of the UK on the left-hand side.

nor Simpson’s index reveal a distinct spatial trend in diversity.

5.5 First steps towards regional β-diversity

In the previous section, we calculated local diversity (α-diversity) for the BBS

data set. α-diversity is not based on individual species’ identities, and hence

does not account for spatial turnover in species composition. β-diversity, i.e.

changes in species composition between separate sites, or along spatial and tem-

poral gradients, has traditionally played an important part in diversity assess-

ment (Whittaker, 1972; Vellend, 2001; Jost, 2007; Tuomisto, 2010). Especially

large-scale diversity monitoring cannot neglect β-diversity as species composi-

tion is very likely to change across a country (or even larger region).

Classically there are different approaches for quantifying β-diversity (Jost

et al. (2011); and see chapter 1): partitioning of the total (pooled) diversity (γ)

into α- and β-components follows either an additive decomposition (in analogy

to an analysis of variance within and between sites; Lande (1996)) or a fac-

torisation (stressing independence between the α- and β-component; Whittaker

(1972)).

These two different approaches for partitioning γ-diversity correspond to the

choice of diversity index. In particular, additive partitioning relies on certain
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Figure 5.7 – β-diversity map of the UK breeding birds near human habitation,
derived by an additive partitioning of γ-diversity as given by Simpson’s 1−D (on the
left) and Shannon’s H (on the right).

properties of the index used to quantify diversity (concavity, Lande (1996)).

The Gini-Simpson index 1−D as well as Shannon’s index H fulfil these criteria.

Hence, we can derive β-diversity maps (as shown in Fig. 5.7) from the estimated

α-diversity by calculating γ−α, where γ is the (constant) value of the respective

index (1 − D or H) from the pooled analysis of the previous chapter. The

exponential of Shannon’s index eH and the inverse Simpson 1/D naturally go

with a multiplicative decomposition (Jost, 2007, 2010) and are shown in Fig.

5.8. Neither an additive nor a multiplicative partitioning is independent of

scale. Lowering spatial resolution is likely to reduce β-diversity (Mac Nally

et al., 2004).

The concept of partitioning diversity in α-, β- and γ-components is not

applicable to the geometric mean as a relative measure; as such, it depends

on a reference point. In space, the latter needs to be at the same resolution

as the data. Hence it becomes meaningless as resolution increases. On the

other hand, as the latter accounts for within-species trend across space, the

map of the spatial geometric mean (Fig. 5.6) could be interpreted as a measure

of β-diversity (where turnover is with respect to the base square) rather than

α-diversity. It is less sensitive to spatial resolution, but not independent from

the choice of the base square (in the same way as the temporal geometric mean

is not independent of the baseline year, Buckland et al. (2005, 2011b)).

It is questionable whether extending the concept of diversity partitioning
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Figure 5.8 – β-diversity map of the UK breeding birds near human habitation,
derived by a multiplicative partitioning of γ-diversity as given by the inverse Simpson
1/D (on the left) and the exponential of Shannon’s eH (on the right).

to continuous space in this way provides relevant information. In particular,

additive decomposition is very much based on a set of discrete sites and it is

not immediately clear how ‘between’ locations components can be interpreted

in continuous space.

Independently from diversity partitioning, although often referred to as mea-

sures of β-diversity, similarity measures are used to quantity turnover between

sites (Jost et al., 2011). Such measures can be based purely on species’ oc-

currences (Koleff et al., 2003), but some of them can take into account species

abundances and hence are not only registering change in composition, but also

in the species abundance distribution (Chao et al., 2006). As an attempt at an

alternative way to quantify regional β-diversity, the following steps might be

envisaged.

� Determine an appropriate set of n locations across the region

This can be the original set of sampling locations or a subset. A uni-

form spatial coverage proportional to areas with low, medium and high

α-diversity could potentially be useful. A coarser but similar triangula-

tion to that for the model-based estimation of α-diversity could also be

used here. The total number of locations will be limited by computational

power.

� Quantify similarity between the chosen locations

We derive an n× n similarity matrix by calculating a similarity measure
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of choice, for example the Morisita-Horn index (Horn, 1966), for all pairs

of locations based on the predicted species counts in each location (Jost

et al., 2011).

� Identify locations with high similarity

Based on a distance matrix, clustering algorithms have been developed

to group elements which are ‘close’ to each other, including visualisation

techniques, such as multidimensional scaling (Everitt et al., 2001; Borcard

et al., 2011). Using the similarity matrix as a measure of proximity, this

allows us to identify locations with high similarity in species composition.

In general, this results in a categorical label attached to each location. If

we use multidimensional scaling (mds) and reduce the dimension down

to one, we end up with an arrangement of the locations along an ordinal

scale.

� Extrapolate onto the whole region

Given the categorical label or the value resulting from mds into one-

dimensional space, we need to smooth this across space. In the latter

case, this could potentially be achieved assuming an underlying spatial

random field as a model and using the INLA algorithm as described to

fit it based on the values at the chosen set of locations. This model can

only consist of the unstructured random spatial effect (i.e. the field) or

contain covariates, e.g. if we think that local habitat explains local species

composition. If we have categorical labels, we might be able to achieve an

ordering within each category and could then follow the same procedure

to get smoothed maps for each category. Alternatively, based on the clus-

tering algorithm used, once the categories are established based on the

set of chosen locations, every other location on the map could be assigned

into either exactly one or several categories. Colour-coding then allows

us to draw a map that shows similarities and dissimilarities in species

composition across space; for more clarity this could be done separately

for regions with low, medium and high α-diversity and shown in a lattice

plot.

It remains to be tested whether this approach is applicable in practice. The

biggest limitation is the computation of the similarity matrix, due to its dimen-

sion. If calculated between too many locations, a memory allocation problem

is likely to occur (as it happened when the author of this thesis made a first

attempt). However, if we choose too few locations, the extrapolation onto a
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map will not be reliable.

There is a representation of ecological communities that naturally keeps

track of species’ identities: we can consider the vector of predicted species pro-

portion in each spatial location as a point in the (S − 1)-simplex (see section

2.3.4 in chapter 2). In this setting, communities with similar composition are

close (in Euclidean distance). The trade-off is not only the complexity as S

can be large, but also the loss of the two dimensional spatial information con-

tained in the original location in space. From a purely mathematical point of

view, the latter could be reattached to the points on the simplex, resulting in

a (quantitatively) marked point pattern in RS (Illian et al., 2009a; Baddeley,

2010b). Unfortunately, fitting point process models is already challenging in the

low dimensions of two-dimensional space, and hence applications in practice are

likely to be limited; however, they might merit further investigation.

We conclude that the main problem to quantify and visualise changes in

species composition across large spatial scales is the high dimensionality that

comes with continuity in space. Traditional approaches tend to lose their mean-

ing in this context, while practical alternatives are not readily available.

5.6 Discussion and future directions

Covariate data and spatio-temporal modelling

As the results shown are only a first step towards mapping diversity in space,

conclusions drawn from them can be considered preliminary. Even further, we

are ultimately interested in analysing spatio-temporal patterns to detect change

in the different components of diversity (Magurran & Dornelas, 2010; Buckland

et al., In prep). The latter requires covariate data with a temporal coverage that

matches the full BBS time series or at least a sufficient subset of it, which the

land cover maps considered here do not provide. While we could have taken into

account the map of 2000 in addition to that of 2007 and compared results for

both, we decided against this. The two maps are based on different techniques of

data collection and data processing and hence not directly comparable (Morton

et al., 2011). Based on the preliminary results presented here, it seems that land

cover might not have sufficient explanatory power as a covariate on its own; the

latent spatial field which accounts for variation not explained by the covariate

shows a more or less pronounced North-South trend for the majority of species.

This could reflect the differences in sampling efforts across the different survey

regions (with substantially less coverage in the Western Scottish Highlands).
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However, we would then expect this trend in the spatial field to appear in all

species (unless they are so rare that even in areas with high coverage, numbers

will be low). The land cover class which should account for expected counts

in mountain areas to be less, does not seem to do so reliably (see estimated

coefficents in Table 5.3). This needs further investigation, in particular other

covariates should be included in the model to test them for their predictive

power (e.g. elevation). The search for suitable covariate information becomes

even more challenging if we considered spatio-temporal models. While INLA

can handle this without problems (Lindgren et al., 2011; Cameletti et al., 2012),

time series of data with adequate sample design as well as temporal and spatial

coverage are sparse, if they exist at all (Magurran et al., 2010; Buckland et al., In

prep). In the light of discussions about climate change and its effects (Thuiller

et al., 2005; Buisson et al., 2008; Davey et al., 2012), it would be of particular

interest to include climate variables into a model . However, climate data are

usually based on an average over at least 30 years (for example, of mean monthly

temperature), and consequently require exceptionally long time series.

Model structure

Overall, a more complex model structure could be considered and compared

to the results from the basic Poisson model shown here. The latent random

field is also referred to as a ‘structured random effect’, based on terminology

commonly used for mixed effect models, as it describes the spatial autocorre-

lation in the data. The model (5.2) could be extended by including further

‘unstructured’ effects (Rue et al., 2009; Martino & Rue, 2010); this can be ran-

dom effects, for example accounting for observer effects, or a white noise term.

Given the high number of zeros in the data, a model accounting for zero-inflation

is probably more adequate than a Poisson model (Zuur et al. (2009), chapter

11). Several options are implemented in INLA; either a zero-inflated Poisson

or zero-inflated negative binomial could be chosen to model counts, where the

latter can account for overdispersion along with zero-inflation. Both are further

able to differentiate between two different ‘types’ depending on whether zeros

can occur naturally at a sampling location (‘true zeros’) and are inflated by the

‘false zeros’ (type 1), or whether the latter are the only way a zero count can

occur (type 0). A zero-inflated Poisson and a zero-inflated negative binomial

model have been run (as type 1). With increasing complexity, run time for the

INLA algorithm goes up, but still remains under 30 sec for a single species fit.

Comparing the autocorrelation based on the estimated model parameters with
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the theoretical one predicted by the Matérn covariance function, suggests that

a negative binomial is not a good fit, but this needs verification. If several mod-

els are fitted, the INLA-library provides DIC (deviance information criterion,

Spiegelhalter et al. (2002)) for model comparison in a Bayesian context.

Estimation of detectability

Estimating diversity throughout a region, whether locally or globally, should

include information about the detectability of a species (see chapter 3). We

have adjusted the estimated density for each species by an offset term in the

model before calculating α-diversity; however, the offset term here was con-

stant because we only had detection probabilities readily available which had

been estimated by pooling the data across the UK and for which the detection

function did not include covariate information on local habitat. Realistically,

detection probability is likely to vary depending on the local environment and

even conditions on the day when an observer went out (Boulinier et al., 1998;

Yoccoz et al., 2001; Buckland et al., 2011a). This should ideally be taken into

account; it would be interesting to explore possibilities of modelling spatial vari-

ation in counts as well as detectability in an integrated approach. This would

necessitate an extension of the hierarchical approach: a model for the detection

probability of a species including a latent field accounting for spatial autocor-

relation which then enters the count model. The latter can include a further

latent random field along with other fixed and random effects. State-space

modelling could provide a methodological framework (Buckland et al., 2004b),

with the true density being the underlying state and the detection probabil-

ities governing the observations. INLA can already handle some state-space

models (Ruiz-Cárdenas et al., 2012), but the methods required for the outlined

integrated spatial modelling approach still need to be developed.

Partitioning diversity in space

A further direction for development has already been discussed in the previous

section, along with the limitations of partitioning diversity into α-, β- and γ-

components in continuous space. α-diversity could have been derived in a more

traditional way given the stratified design of the BBS as the average diversity of

all sites visited within a stratum. β-diversity could then have been interpreted

as the ‘between-stratum’ diversity. While differences in sampling effort between

strata could probably have been adjusted by a rarefaction approach (Gotelli

& Colwell, 2001), this division of space into sampling regions is an artificial
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one; a different stratification is likely to change the outcome and hence these

‘between-stratum’ differences do not provide reliable means to make inference on

compositional changes across (continuous) space. Although possible alternatives

have only been sketched and remain to be studied further with respect to their

applicability and usefulness, the hope is to encourage future research ‘outside

the trodden paths’.

New paths certainly need to be taken when we are looking at modelling and

analysing biodiversity, of species and beyond, in a large-scale spatio-temporal

context. This requires an integration of methods discussed in the current and

the previous chapter. We saw how temporal trends in γ-diversity and their

changes can be assessed on a large-spatial scale, taking into account variation

in detection probability between species. In this chapter, we demonstrated the

mapping of local diversity and its changes across space based on a simple model

of species counts and discussed how changes in species composition, not vis-

ible in traditional α-diversity measures, could be addressed. This encounters

an additional challenge in a spatio-temporal context; changes have to be fol-

lowed simultaneously and points have to be identified where rates of changes in

diversity as well as species turnover are accelerating or slowing, in space and

time.

5.7 Chapter summary

In this chapter we have attempted first steps to diversity assessment in space.

First, we mapped local species diversity (α-diversity) across space using a simple

model for species density. At the same time, this also demonstrated the use of a

recently developed model fitting algorithm based on integrated nested Laplace

approximation. This provides means to consider more complex, spatio-temporal

models; it could also be adapted to other forms of diversity. Second, we derived

β-diversity estimates and discussed limitations of classical diversity partitioning

when it comes to continuous space. Some suggestions towards alternative rep-

resentations have been made. However, they are restricted by computational

limitations due to high dimensionality of the problem: diversity is seen as a

phenomenon that can be measured at any location and at any spatial scale.





Chapter 6

Spatial diversity in a

‘zoom-lens’: Analysing ecological

communities through weighted

spatial scales

Diversity in space is also the topic of this final chapter, but it will be discussed

from a very different perspective. After investigating large-scale assessment

of diversity across space, we are here concerned with the identification of in-

terspecific processes that allow species to coexist and thus maintain diversity

locally. Based on the assumption that interactions between species determine

their spatial locations with respect to each other, the point pattern formed by

the locations of individuals in space is the object of study. This is, as such, not

new; Pielou (1969) already emphasised the information contained in the spatial

structure of ecological communities. However, exploratory tools to analyse these

spatial patterns have developed greatly and are now available in point process

statistics. We introduce a generalisation of one spatial summary statistic, the

cross-pair overlap distribution (Brown et al., 2011), that renders it more flexible

with respect to the spatial scale at which it is evaluated.

6.1 An extra dimension to diversity assessment

It has always been central to community ecology to link ecological processes

to observed patterns (Watt, 1947; Bolker & Pacala, 1997; Gotelli & McCabe,

2002). With respect to biodiversity, a particular interest is in processes that

shape the diversity of a community and maintain it (Pielou, 1969; Chesson,

139
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2000). Several models have been suggested to describe underlying community

dynamics; prominent are the discussions about neutral models which assume

equivalence amongst species at the same trophic level whose coexistence is then

driven by random processes (Hubbell, 2001), and niche models stressing species’

adaptive responses to their local environment (Gilbert & Lechowicz, 2004). In

addition, specific hypotheses, like the Janzen-Connell (Schupp, 1992) and het-

eromyopia effects (Murrell & Law, 2003), suggest that disadvantageous effects

between conspecifics foster coexistence.

So far, we have focussed on the species abundance distribution (SAD) as

the ‘carrier of information’ when discussing ways to quantify diversity. SADs

have also been exploited as a diagnostic tool, for example to detect disturbances

(Dornelas, 2010). However, they are limited in the extent of information they

carry. Indeed it has been shown that they do not distinguish well between

different process-based or stochastic models that describe community structure

since different models may result in the same SAD (McGill et al., 2007). Any

of the summary statistics considered in this thesis up to this point looked at

characteristics of a community which are contained in the SAD (species rich-

ness, evenness, abundance), and which are non-spatial as such. (This does not

mean that we cannot look at spatial distribution or changes across space in

these characteristics.) These will in the following be referred to as first-order

characteristics.

Although every natural ecological community always is an assemblage of

individuals in space, explicit spatial information has only recently started to

be utilised to analyse community structure (McGill et al., 2007; McGill, 2011).

The spatial composition of a community can itself be interpreted as an aspect

of its diversity: similar to the dichotomy of the non-spatial aspects ‘evenness’

– ‘richness’, spatial diversity can be characterised along the gradients ‘scatter-

ing’ (clustering/regularity) and ‘exposure’ (segregation/mingling) where high

regularity and high mingling are identified with high (spatial) diversity (Pielou,

1969; Shimatani & Kubota, 2004; Rajala & Illian, 2012). These aspects are

captured by what is called second-order characteristics in spatial point process

analysis.

Ecological processes that are indistinguishable on the first-order level, might

lead to different second-order characteristics. More precisely, second-order char-

acteristics allow us to investigate the spatial positions of individuals of differ-

ent species and analysing them with respect to each other. However, this can

indirectly provide insight in the underlying processes, such as interindividual

interactions within and between species, that determine these spatial locations
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(Brown et al., 2011; Rajala & Illian, 2012). In particular, hypotheses about

different types of potential interactions can be tested against the null model of

complete spatial randomness (CSR) (Gotelli & McGill, 2006).

Spatial point processes and spatial point pattern analysis provide powerful

statistical tools to model and analyse such spatial diversity structures (Diggle,

1983; Illian et al., 2009a; Baddeley, 2010a). Several second-order summary

statistics exist (Diggle, 1983; Baddeley, 2010b); they are usually functions of

scale and many are based on a cumulative description of the spatial pattern up

to a certain scale R (usually referred to as the ‘interaction radius’). A short-

coming of the latter measures is their rigidity with respect to spatial scale.

Though not restricted to a specific value, the interaction radius R is typically

set before the statistic is evaluated. After a rigorous mathematical description

and a short review of second-order summary statistics in the next section, the

rest of this chapter proposes a generalisation that increases the flexibility of

existing measures over spatial resolution.

6.2 Spatial diversity and its assessment

Based on this discussion, our aim is to explicitly describe and analyse the spatial

positions of the individuals within the community of interest (e.g. the locations

of trees or animals). Given an assemblage of several species, we want to inves-

tigate the point pattern formed by the individuals’ locations, while taking into

account their species identities at the same time (see Fig. 6.1 for illustration).

(Again, if we are considering diversity patterns across large regions, an adequate

sampling design should assure representativeness of sampling sites. Note that

here we want randomness of sites across space, while considering all individuals

and their locations as fixed at the time of the survey.)

6.2.1 Describing multi-species assemblages in space

Following standard point process theory, this can formally be described as a

multi-type (marked) point process

M = {[(xn, yn);m(xn, yn)] : n ∈ N}. (6.1)

Each point (xn, yn) refers to an individual’s (random) location and has its

species’ affiliation attached to it. I.e. if N = {(xn, yn) : n ∈ N} is the random
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(a) (b)

Figure 6.1 – The spatial pattern formed by the locations of the individuals can pro-
vide information on (a) intra- and (b) interspecific interactions. Spatial point process
analysis provides summary statistics describing the degree of clumping or regularity
in patterns like the ones shown based on the distances between points (compared
to a random pattern); e.g. the pair correlation function g measures the probability
of finding other points in a small neighbourhood around locations (indicated by the
circle). It has been extended to investigate relations between patterns of different
types (b) by looking at the intersection of neighbourhoods.

set of (unmarked) points on a window of unit area (x·, y· ∈ [0, 1])1, we have a

mapping

m : N −→ {1, . . . , S}, (6.2)

which can be completely random or driven by a probability distribution

taking into account associations between certain types. (For more detail on

marked point processes see Illian et al. (2009a).)

Note that here — as above — we assume that the species catalogue and hence

the number of types m(·) ∈ {1, ..., S} is discrete and finite. In general, the set

of types can be finite or infinite and need not be discrete. (But note that the

marks, although described by integers, are qualitative rather than quantitative

here. Point process statistics can in general deal with both qualitative and

quantitative marks, however different statistics are used.) We may consider

only points of a certain type; this is denoted by Mi = {(xn, yn) : m(xn, yn) =

i, n ∈ N}. The observations in the survey area(s) can be regarded as one or

several realisations of the process (6.1). The statistical analysis of such point

1Without loss of generality, we can always assume locations to be represented as points in
a unit square; if necessary after appropriate rescaling
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pattern is based on different summary statistics.

Here, we are interested in second-order summary statistics, which allow us

to investigate relationships between points of different types (i.e. individuals

of different species). Although these statistics may be defined for the gen-

eral case, the point pattern is usually assumed to be stationary and isotropic.

This allows us to simplify the common summary statistics to functions of

only the distance between points, independent of location and is especially

convenient for comparison with complete independence of types. Stationar-

ity refers to the property that the random process giving rise to (6.1) is in-

variant under spatial translation (M has the same probability distribution as

M z = {[(xn + z1, yn + z2);m(xn, yn)] : n ∈ N}, the point pattern that results

from a translation of M by z = (z1, z2) while the marks remain unchanged).

Isotropy is defined analogously for invariance under rotations around the origin.

Stationarity and isotropy might not be given, in particular under environmental

heterogeneity; we will discuss limitations in section 6.6 below.

6.2.2 Analysing spatial relations within and between species

Traditional second-order summary statistics look at pairs of types and their

independence from each other. One of the most commonly used and the most

intuitive to interpret is the cross-pair correlation function gij(r), which is a

multi-type generalisation of the univariate pair correlation function for un-

marked point processes (Illian et al., 2009a; Baddeley, 2010b). Given the point

pattern (6.1), the joint probability of finding a point of type i in a small circle

U of area du and a point of type j in a circle V of area dv, where the distance

between the centres of U and V is r, can be expressed as ρij(r)dudv (ρij is the

‘product (probability) density’ of the subprocesses Mi and Mj). The cross-pair

correlation function is then given as

gij(r) ∝
ρij(r)

λiλj
for r ≥ 0, (6.3)

where λi is the intensity2 of the point pattern Mi (and analogously for λj).

Hence, gij is a standardised version of the probability given through ρij. gij

allows us to investigate if locations of species i are independent of those of

species j and hence, if there is an indication of interaction between the two

species; if the two subpatterns Mi and Mj are independent of each other, then

2Biologists and other applied scientists commonly call this the density of the points. How-
ever, as ‘density’ is the standard term in probability theory referring to the distribution,
spatial statisticians use ‘intensity’ to avoid confusion.
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their joint density ρij = ρiρj ∝ λiλj and we get

gij(r) ≡ 1 for i 6= j3, (6.4)

indicating no interaction between the two species. Moreover, we can derive a

direction if there is an indication for interaction (attraction vs. repulsion). More

specifically, gij > 1 if points of type i and j are interspersed, thus suggesting

positive interaction between the two species. On the other hand, gij < 1 in-

dicates segregation between points and hence potential repulsion. Note that,

while equation (6.4) indicates independence between Mi and Mj, it does not

provide any information on the degree of randomness within either Mi or Mj

(these would have to be studied through gi and gj, respectively).

While we concentrate on the cross-pair correlation function here, two other

commonly used second-order statistics are closely related to it. The Kij-function

(the bivariate equivalent to Ripley’s K for unmarked point processes, Ripley

(1977); Baddeley (2010b)) is the expected number of points of type j in a circle

of radius r where the centre is a typical point of type i scaled by the intensity λj.

Its relationship to gij is similar to that of a cumulative probability distribution

function to its density function

gij(r) =
1

2πr

d

dr
Kij(r) . (6.5)

For several reasons, point process statisticians prefer to use a square root

transformation of Kij,

Lij(R) =

√
Kij(R)

π
, (6.6)

(Illian et al. (2009a), p. 217). In particular, this stabilises fluctuations in Kij

(of both mean and variance) with increasing R. (While gij(r) considers local

behaviour around points that are distance r apart, Kij and Lij accumulate

information up to scale R.)

6.2.3 A community level summary of spatial structure

An alternative bivariate cumulative second-order summary statistic, which has

recently been introduced, is based on the logarithm of gij,

Aij =

∫ R

0

log gij(r)dr (6.7)

3gij(r) = gi(r) for i = j (where gi(r) is the univariate pair correlation function for Mi)
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(Brown et al., 2011). Although at first sight similar in its idea to Kij because

of the integral, Aij has the advantage that it is equal to zero (independent

of scale R) if Mi and Mj are independent (while Kij increases in R). The

logarithmic transformation also has a balancing effect on the values of gij, which

are originally bounded from below (by zero) but not from above.

Any of these summary statistics allow us to investigate bivariate relation-

ships between types of points. However, this is a clear limitation in any realistic

ecological situation of interest. Communities are typically multivariate, and

while gij (as well as Kij, Lij) could be applied to all possible pairs of species,

this becomes quickly unmanageable to compare, in particular if we think of

speciose assemblages like tropical rain forests (Condit et al., 2002). Based on

equation (6.7), the cross-pair overlap distribution (xPOD) has recently been

suggested to provide a second order summary across all species in the com-

munity (Brown et al., 2011). For fixed R, it considers the distribution of Aij

across all pairs of types in the form of a histogram. Conclusions on the presence

of interactions between species can be drawn by comparing the mean and the

standard deviation of the histogram to that of a process without such interac-

tions. (The latter is determined by the chosen null model, this can be complete

spatial randomness, in which case the expected mean would be zero, but other

choices are possible.) Brown et al. (2011) show that these cross-pair overlap

distributions distinguish well between simulations from a neutral model and a

range of niche models.

6.3 A radius-weighted approach to spatial di-

versity

As mentioned in the previous section, cumulative second-order summary statis-

tics depend on the scale R at which they are evaluated. This is evident for Aij

(but holds equally for Kij or Lij). For fixed R, Aij can well equal zero, simply

because opposed effects on finer scales cancel each other in the integral. As

long as we restrict ourselves to only pairwise comparison between types i and

j, this is not a problem. We can simply plot the value Aij(R) against R and

hence look at all possible scales. However, this form of multi-scale evaluation is

not readily transferred to the multiple species setting; we would be left with a

multitude of pairwise comparisons along all scales. For speciose communities,

these pairwise comparisons are neither feasible in terms of computation time,

nor easily interpreted across all species.
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A different interpretation of equation (6.7) enables us to derive a generali-

sation of the cross-pair overlap distribution that is more flexible with respect

to scale. More precisely, we can identify expression (6.7) as the (rescaled) ex-

pectation of log g over the spatial scale r where equal weights are placed on

[0, R],
1

R
Aij =

∫ 1

0

log gij(r)f(r)dr, (6.8)

and f(r) = 1
R

1[0, R] is the uniform distribution. By choosing a different prob-

ability density function (pdf) f we can introduce non-uniform (and hence less

rigid) weights on the scale r. Because of its natural interpretation as weights,

an obvious choice if the observation window is set to [0, 1]× [0, 1] is

Ãij = E[log gij] =

∫ 1

0

log gij(r)B(r;α, β)dr, (6.9)

where B(r;α, β) = Bα,β(r) denotes a beta distribution. The parameters of

the beta distribution determine the focus on certain spatial scales (local neigh-

bourhood, intermediate distance, far distance, or combinations of these) while

considering the whole point pattern (instead of the sharp cut-off at R by the

uniform distribution). Actually, the latter is included in the beta distribution

as a special case — parameters α = 1 and β = 1 correspond to a uniform

distribution on [0, 1].

However, any other pdf for which the expectation in (6.9) exists can be used

instead. Alternative choices are the uniform distribution, which works for any

scale, or any discrete probability (for which the integral becomes a sum); a

truncated Normal, Gamma or more general Tweedie distributions (Jørgensen,

1997) can be used where the observation window can not be scaled to [0, 1].

The crucial point is that the generalisation to an expectation along weighted

spatial scales (where the weights are determined by the chosen pdf) offers greater

flexibility and no longer requires the evaluation radius R to be set in advance. In

addition, it allows us to consider information contained in the entire observation

window while the focus on a specific scale can be regulated via the parameters

of the chosen distribution.
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6.4 Example: comparison of simulated point

patterns

To demonstrate the performance of the radius-weighted xPOD given in equation

(6.9) we compare two very different, simulated point patterns on a unit square

(see Fig. 6.2). In both cases, 15 different types of points were generated. For

the first pattern, these were the outcome of 15 independent Poisson processes.

This realisation from a random Poisson point process provides the xPOD for

the usual reference point of complete spatial randomness and hence absence

of any interactions on any scale. The highly structured point pattern consists

of regular seed points which define the rings and random multi-type clusters

around each seed point.

For the application of the weighted xPOD a beta distribution is chosen

as in (6.9) where the parameters are set to (1) α1 = 1, β1 = 3, (2) α2 =

3, β2 = 3 and (3) α3 = 3, β3 = 1. This corresponds to zooming in on local,

intermediate, and large-scale behaviour. We expect the differences between the

patterns to produce divergent xPODs at different spatial scales. In their original

(unweighted) version, the xPODs of the two point patterns are indistinguishable

(Fig.6.2) despite the fact that they describe very different spatial patterns, as

the xPOD cannot express scale-specific behaviour. The xPOD of the structured

pattern is highly sensitive to the distance between the concentric rings of point

processes. For illustration, it has been chosen here to generate an xPOD similar

to that under complete spatial randomness.

When the radius-weighted version is applied, the xPOD for the Poisson

pattern remains virtually the same, independent of the chosen weighting – as

we expect given the self-similarity of the point process across all scales. For the

structured point process, on the other hand, the change in structure with scale is

now clearly visible (Fig.6.3): At small radii, marks (or ‘species’) occur together

and consistently overlap more than they would if the entire pattern was random.

Hence, when weighted towards very local behaviour, the xPOD is centered

around positive values. At medium radii this behaviour changes. Marks can

now be wholly separated from one another by the empty areas between rings.

This leads to a change in sign when the xPOD is focussed on this scale. At

large radii, neighbouring rings in the pattern are encountered, and so the values

in the distribution become positive again. Their range is greater than at small

radii, however, as the scale is now so large that the spatial overlap of marks is

partly determined by the position of points relative to the edge of the window.
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(a) Random point pattern

(b) Structured point pattern

Figure 6.2 – Two multi-type point patterns and their unweighted xPODs. The
panels on the left show two simulated marked point pattern with 15 different types;
(a) is a superposition of 15 individual Poisson processes, while for (b) rings were
generated by seed points and multi-type clusters around them. Despite the different
structure, the unweighted xPODs for the two point patterns on the left look very
similar.
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(a) Beta(1, 3) (b) Beta(3, 3) (c) Beta(3, 1)

Figure 6.3 – Weighted xPODs for the structured point pattern. Focussing the xPOD
on different scales from local (a) over intermediate (b) to large distances (c) reveals
scale-specific behaviour of species’ co-occurrence. (Note the different values on the
x-axis.)

Our calculations are corrected for the absence of points beyond the window,

and so this truly reflects the random nature of the point processes within it.

6.5 Application: a ‘hotspot’ of plant biodiver-

sity

Interactions between species are likely to play on important role in maintain-

ing a community’s biodiversity (Tilman, 1994). In the following, we apply

weighted xPODs to investigate a highly diverse, ancient plant community in

south-western Australia. We look at a biodiversity hotspot characterised by an

immense richness in species (Myers et al., 2000). The coexistence of so many

species is all the more astonishing because the resources in the study area are

naturally poor (Armstrong, 1991; Orians & Milewski, 2007).

This community was previously studied by Illian et al. (2009b) who modelled

the spatial point pattern taking into account 24 of its species. Crucially, their

modelling approach incorporated information on the typical ‘zone of influence’

for the species under consideration. The range of these interaction radii varies

significantly (for some examples see Illian et al. (2009b), Table 1). A Bayesian

approach allowed Illian et al. (2009b) to incorporate this in the species-by-

species analysis. However, it is not clear on what scale a community level

summary should best be evaluated. The weighted xPOD provides means to

consider all species at the same time despite their different interaction radii

and ‘zoom in’ on certain ranges. Thus we expect to gain insight into scale

dependent behaviour on the community level. In contrast to the large scale

diversity patterns studied in the previous chapters, the following example is
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Figure 6.4 – Spatial locations of 18
Banksia woodland species on a plot of 22m
by 22m in Western Australia.
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concerned with processes acting on very small spatial scales.

6.5.1 The data

The data come from a survey site in Cataby in the South-West Australia, a

region that is considered a hotspot of biodiversity (Myers et al., 2000). They

have been described in detail in Armstrong (1991). A full census of a 22 m

by 22 m plot was carried out which, despite the relatively small survey area,

revealed a total of 67 species at 6,378 individual plant locations. The majority

of these species are endemic to south-western Australia. The community has

formed over a substantial amount of time, with some species growing in the

same location for hundreds to thousands of years. It consists of various small

evergreen, shrub-like plants in low Banksia woodland that undergoes regular

bushfire outbreaks (approximately every 10 years). All species have adapted to

the occurrence of fires through one of two strategies: ‘seeders’ are destroyed by

the fire which at the same time initiates the release of seeds stored since the last

bush fire (serotiny) and helps the germination, so that these plants regenerate

quickly; ‘sprouters’ burn down except for the plant stem which is protected by

‘lignotubers’, buds in the root crown preserving nutrients which enable the plant

to sprout in the absence of photosynthesis. The high species richness on such a

small plot is astonishing given the low levels of nutrients and water of the sandy

soil characteristic for the area (Armstrong, 1991). One is inclined to assume that

this leads to increased competition for the limited resources and hence inhibition

between species, which is indeed the case (Richardson et al., 1995). However,

positive interactions can occur where soil fungi allow certain seeder species to
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Table 6.1 – List of the 18 species considered in the analysis of the Aus-
tralian plant community along with their regeneration strategy after bush
fire incidence. (*) indicates a resprouter that produces some seed for
regeneration, where the main form of regeneration is from the root stem.

ID species abundance
regeneration
strategy

1 Alexgeorgea nitens 977 resprouter
2 Andersonia heterophylla 686 seeder
3 Bossieae eriocarpa 103 resprouter
4 Conospermum crassinervium 266 seeder
5 Conostylis candicans 149 resprouter
6 Dasypopgon bromeliifolius 167 resprouter
7 Eremaea asterocarpa 207 resprouter
8 Hibbertia hypericoides 148 resprouter
9 Hibbertia sp. 134 resprouter
10 Jacksonia floribunda 124 resprouter
11 Chordifex sinuosus 154 resprouter
12 Leucopogon conostephioides 657 seeder
13 Leucopogon striatus 261 seeder
14 Lomandra sp. 304 resprouter
15 Lyginia barbata 299 resprouter
16 Melaleuca scabra 377 resprouter(*)
17 Phlebocarya philifolia 207 resprouter
18 Scholtzia involucrata 170 resprouter

extract nutrients if they are in close proximity to certain sprouter species (Illian

et al., 2009b). Thus in particular the interactions between seeders and sprouters

are of interest. Given the consistently poor soil conditions throughout and

the comparatively small size of the plot, we follow Illian et al. (2009b) and

assume homogeneity of the local environment. In consequence, any pattern

detected is the result of conspecific or interspecific interactions rather than

driven by heterogeneous environmental conditions. To guarantee sufficient data

we consider only species that have been observed in at least 100 locations across

the plot (18 species in total of which 4 are seeders). Table 6.1 gives an overview.

This is a subset of the species considered previously in Illian et al. (2009b).

6.5.2 Identifying scale-dependent mechanisms of spatial

diversity

To investigate interspecific patterns in the plant community, we evaluate weighted

xPODs where a beta distribution is chosen for the weights. We inform our choice

of parameters for the beta distribution by the radii given in Illian et al. (2009b)
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Figure 6.5 – Beta distributions B(r;α, β) as used for the weighted xPODs for the
Banksia woodland community. The values were chosen so that they provide a nuanced
evaluation on a local scale (up to 2 m, around 2 m, around 4 m) and a coarser
resolution at higher spatial scales. The empirical interaction radii for all resprouting
species considered here were less than 4m.

as the zone of influence for the different resprouter species. In contrast to the

simulated pattern in the previous section, interspecific interactions operate on

a very local scale here (with values of empirically derived interaction radii be-

tween 0.1 m and 4 m depending on species type). Based on this information,

we chose the parameter values α, β for the beta distribution that allow for a

spatial resolution fine enough to zoom in and differentiate spatial patterns on

this local scale (see Fig. 6.5). (A coarser spatial resolution had been considered

at the beginning, but was immediately recognised as not sensitive enough to

the local effects.)

Contrary to Illian et al. (2009b) who built their model on one-directional

interactions of resprouting plants to seeders, we do not make this assumption

here. In fact, the xPOD as a community level summary statistic does not

provide us with information on the direction of the interaction between the

pairs of species. The weighted xPODs for all 18 species are shown in Fig.

6.6. There is a striking difference for the xPOD weighted for very local patterns

(< 2 m), with much wider spread, very little concentration of values and a mean

clearly below 0. A further effect seems to appear in the middle range while the



6.5 Application: a ‘hotspot’ of plant biodiversity 153

xPODs focussing on distances just under and around 4 m (the upper boundary

of the empirical interaction radii) and those for the far distances look similar.

However, the latter is less left-skewed and shows a slightly wider spread.

Comparing this with the xPODs evaluated for the resprouter (Fig. 6.8) and

the seeder species (Fig. 6.9) separately, we can see that these effects are mainly

due to the resprouter species. This is partly because of the low numbers of seed-

ers in the set of species, which consequently do not contribute as much. However,

it might also reflect that the resprouters, regrowing from their rootstock after a

fire, have been in the same spatial location since the plant assemblage started

to form.

Brown et al. (2011) carried out an extensive simulation study; they simulated

both neutral and several niche models, including effects such as Janzen-Connell

and heteromyopia. Looking at point patterns generated as the outcome of these

simulations and evaluating (unweighted) xPODs for them, they investigated

the ability of the xPOD to distinguish between these models. Comparing our

results from the weighted xPODs with their results, the local pattern visible in

the xPOD might be explained by niche or temporary niche effects. Due to the

low nutrient levels, the system has evolved very slowly and over a long time in

which the resprouters established stable niches. Some temporal variability might

be introduced by the seeders, which regenerate from seed periodically after

each bush fire incidence. Niche effects have been discussed more generally as a

potential mechanism behind species coexistence in species rich areas (Tokeshi,

1996).

When the focus is on radii below 2.2 m, the mean of the xPOD is negative

(µ = −0.15). This indicates less overlap at very local scales than we would

expect from spatial independence between the subpatterns. Hence on average,

species tend to be more spatially segregated at the very local scale, which corre-

sponds to the empirical zone of interaction for more than half the species. This

suggests that competition and niche effects are the main driver at this scale.

However, some species also overlap more than expected if they were spatially

independent, indicating some positive interactions (Vilà & Sardans, 1999; Illian

et al., 2009b).

At small radii, seeder-resprouter cross-pair overlap can assume positive or

negative values depending on the pairing (frequencies increase over the whole

range of the xPOD when seeders are added to the resprouters). This confirms

the assumption by Illian et al. (2009b) of a negligible impact of the seeders on

the spatial overlap of the resprouters. It also is in accordance with their model-

based result: interactions between species can be positive as well as negative.
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(f) α = 8, β = 2

Figure 6.6 – Radius-weighted xPODs for 18 species of the Banksia genus on a high
diversity plot in Western Australia

There are several theoretical concepts in ecology explaining coexistence of

species through negative density dependence in conspecifics (Wright, 2002), such

as the Janzen-Connell effect (Schupp, 1992; Wright, 2002) and heteromyopia ef-

fects (Murrell & Law, 2003). Fig. 6.7 strongly suggests that such effects occur

within this plant community. Investigating average nearest neighbour distances

between conspecifics as well as for pairs of species reveals that nearest neigh-

bours tend to be of a different species rather than the same (see Fig. 6.7). This

indicates conspecific competition to be greater than interspecific competition.

This might also be reflected in the mid-range effect. Based again on a com-

parison with simulations by Brown et al. (2011) for the unweighted xPODs,

the reduced variance of the overlap distribution could be read as an indication

of a Janzen-Connell effect, i.e. a stronger negative density effect between con-

specifics than interspecific competition. It is not immediately clear why this

effect should occur at this scale (around 10 m). There has been an argument

that negative density dependence among more abundant species occurs at larger

spatial scales (Wright, 2002), such that this pattern could be an indication of a

second, ‘large-scale’ spatial trend. However, we have to keep in mind that the

larger the scale gets the less informative the data will be because of the small

area covered by the plot.
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6.6 Discussion

Processes that allow species to coexist and the identification of such ‘drivers’

of species diversity have long been of central interest to ecologists (Watt, 1947;

Chesson, 2000; Wright, 2002). Theoretical concepts such as the spatial segre-

gation hypothesis or competition–colonisation trade-off have been conjured to

explain coexistence of species despite the fact that they naturally have to com-

pete for resources (Bolker & Pacala, 1997). Crucially, these processes can be

assumed to shape the spatial structure of a community (Tilman, 1994). As-

tonishingly, statistics that are commonly in theoretical point pattern analysis

as exploratory tools have not been exploited in ecology until recently to infer

process from pattern (Wiegand & Moloney, 2004; Perry et al., 2006; Law et al.,

2009).

However, processes can operate on very different spatial scales and hence

summary statistics should be able to react flexibly to scale. Here, we introduce

an extension to a community level spatial diversity metric, the cross-pair overlap

distribution, along weighted spatial scales. The use of this generalisation is

demonstrated in two different examples. Introducing weights enables us to see

a clear difference in the spatial overlap for simulated point patterns that were

indistinguishable for the unweighted xPOD despite their very different spatial

structure. For the highly diverse Australian plant community on the other hand,

application of weighted xPODs allows us to ‘zoom in’ on different spatial scales

from local to distant neighbourhoods. As a consequence, processes operating

on different spatial scales became visible. Maybe not surprisingly, niche effects

appear dominant at very local scales (which is at the same time the empirically

derived zones of influence for most of the species in the community). More

interestingly, an additional effect is picked up at mid-distances. Here, we could

only offer a preliminary interpretation. Given the coexistence of so many species

in such a small area, it is not unreasonable to assume that effects fostering

negative density dependence between conspecifics could offer an explanation

(Wright, 2002). However, further investigation would be necessary to confirm

this. Whether the mid-scale pattern is caused by an ecologically relevant process

or is a purely stochastic effect, it is unlikely that it would have been uncovered

by a traditional fixed scale approach and can thus be seen at least as a proof of

concept.

Although other choices are possible, the beta distribution can in general be

expected to work well for the weighted xPOD. It has a natural interpretation as

weights, truncation or rescaling are not necessary and its expectation, and hence
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the integral in equation 6.9, exist. Moreover, a very flexible shape governed

by its two parameters allows the user to adapt the evaluation scale, like a

‘zoom-lens’, to match the scale of their data. In the example of the Australian

plant community, we saw the focus of the lens, i.e. the weights, needed to be

set in such a way that we could zoom in on the ‘natural’ (small) scale of the

underlying processes, to make them visible. In particular, niche processes here

act on a very local scale and only when weights are concentrated there, do they

become apparent. Because of a much clearer segregation between the rings

in the simulated pattern, shifting weights along a coarser scale was sufficient,

and a higher resolution would not have revealed more. Hence, we recommend

using some prior biological knowledge, where possible, as a base for biologically

reasonable setting of the ‘lens’ in order to derive meaningful results. Although

we did not show any kind of sensitivity analysis here, we can conclude from

our experiences so far that the exact choice of parameter values for the beta

distribution is not essential as long as they allow a focus on the appropriate scale.

If there is no prior knowledge at all about the system under consideration, we

recommend systematic variation of the parameters to inspect coarser and finer

spatial resolutions.

Along with other basic spatial summary statistics, the pair correlation func-

tion and with it the xPOD are based on the assumption that the point process

generating the pattern is stationary and isotropic. Because of the homogeneous

environmental conditions, we could be confident of this assumption holding in

the example of the Australian plant community. However, it is not likely to

be the case in general. Baddeley et al. (2000) introduced an inhomogeneous

K-function as an exploratory tool allowing spatial variation in intensity. Inter-

estingly, their approach is also based on a weighting, in this case by the local

density of points. Nevertheless, distinguishing inherent environmental condi-

tions affecting the system from intra- and interspecific processes is difficult, if

not impossible. Ecological communities are in reality shaped by the interplay

of both and hence they are in general not separable. This is similar to the

non-separability of trend and autocorrelation in time series analysis (Baddeley,

2010a). Similar patterns, such as clustering, can be the outcome of positive

interactions, but can look identical to patches of favourable soil conditions, at

least if we have only a single observation (Bartlett, 1964).

Weighted spatial scales such as have been considered here for the xPODs

can in theory be applied to other cumulative spatial summary statistics. Future

work could determine whether this is as useful as in the case of spatial overlap

and in particular if a combination with the inhomogeneous K-function (or a
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transformation of it) could provide informative results.

6.7 Chapter summary

The focus of this final chapter has been different in that it dealt with local pro-

cesses maintaining community diversity rather than overall trends across large

spatial scales. While observable and quantifiable in space, (species) diversity in

the traditional sense does not contain spatial information itself. In contrast, this

chapter built on a recently introduced concept of ‘spatial diversity’. By explic-

itly analysing the positions of individuals of different species and their spatial

structure, we learn how spatially diverse (interspersed in space) a community is.

As such, this might not justify an interpretation as an additional aspect of the

diversity concept; however, it is on this level that interactions between species

and processes maintaining coexistence of species and hence biodiversity man-

ifest. We introduced a generalisation of second-order point process summary

statistics that allowed us to extract information on the spatial structure of a

community more flexibly than with existing methods.
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Figure 6.7 – Average interspecific and conspecific nearest neighbour distances for
the resprouter species in the Australian plant community. For each resprouter species,
the plot shows the average distance to the nearest individual of the same species (red)
and a histogram for the average nearest neighbour distance of the resprouter to each
of the other resprouter species.
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Figure 6.8 – Radius-weighted xPODs for 14 resprouter species of the Banksia genus
on a high diversity plot in Western Australia
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Figure 6.9 – Radius-weighted xPODs for 4 seeder species of the Banksia genus on
a high diversity plot in Western Australia





Synthesis and future work

The debate about biodiversity and its assessment is as lively and urgent as never

before, within the academic community and beyond (Magurran & McGill, 2011).

The (sobering) realisation that humanity has (mostly over the last 100 years,

Chapin III et al. (2000)) contributed to an unprecedented loss of biodiversity

set the course at the turn of the century: the Millenium Goals (United Nations,

2000) contain, amongst others, the aim set by the Convention on Biological

Diversity (CBD, 1992) to reverse this negative trend on a global level. The

achievement of these goals cannot be successful unless we have a solid mon-

itoring framework in place including objective, comprehensive and integrative

quantitative methods that can capture progress and failure of efforts undertaken

(Dobson, 2005).

Against this background, this thesis investigated methods to assess biodi-

versity, with a focus on large-scale, continuous monitoring (in both time and

space). Herein, we concentrated on quantitative aspects of biodiversity moni-

toring, where the aim was to contribute to further development of appropriate

methodology.

In the following review, we summarise our results with respect to six ‘key-

stone’ themes. These were identified in chapter 1 as issues of particular rele-

vance and provided the frame for the research carried out and documented in

this thesis.

1. Biodiversity as a concept is foremost characterised by its multidimen-

sionality. Diversity quantification not only involves a decision on which

of the components of biodiversity are of particular interest to a study, but

is also faced with the dilemma of choosing between condensing information

into a summary statistic and the loss of information caused by reducing

its dimension by doing so. Chapter 1 positioned the research of this the-

sis within the plurality of aspects ranging from genetic diversity to the

complexity of entire ecosystems. This emphasised that species diversity,

which has been considered here, while certainly important, can only be

161
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one of the many pieces in the puzzle (Magurran & McGill, 2011). In the

context of species diversity, we reviewed parametric approaches that com-

bine several indices and hence capture more of the multidimensionality.

In particular, the information they contain can be represented by profile

plots. We fully support and embrace recent developments to ‘revive’ ear-

lier works on diversity profiling (Hill, 1973; Patil & Taillie, 1982; Ricotta,

2003; Jost, 2010; Leinster & Cobbold, 2012): in chapter 2 we suggested a

one-parameter family of evenness measures based on goodness-of-fit statis-

tics. We investigated this family with regard to its theoretical properties

(chapters 2 and 3) as well as in applications to data (chapters 2 and 4).

Analogous to other diversity profiling techniques, we derived evenness pro-

files. We established connections between this approach and existing ones

and compared their performance. The goodness-of-fit measures overcome

restrictions of other methods with regard to the range of parameter values

for which they are evaluated. This provided tools to investigate diversity

more flexibly in terms of commonness and rarity of species in a commu-

nity, and makes them an ecologically informative complement to headline

indices of diversity, such as the geometric mean index (chapter 4).

2. Diversity assessment is likely to be biased if variation in detection proba-

bility across species is not taken into account (Yoccoz et al., 2001; Buck-

land et al., 2011a). We discussed two issues of detectability, that of

individuals and that of species (see section 1.2.3 and chapter 3). While

the latter refers to a species being completely undetected by a survey, the

former concerns the variability in detection probabilities between individ-

uals of different species in the observation process.

We focussed on individual detectability; in chapter 3 we demonstrated the

bias in diversity summary statistics that results from ignoring variation in

detectability. Given appropriate survey design, we have statistical meth-

ods in place to adjust diversity estimates for detectability (as discussed

in chapter 3.3 and demonstrated in chapter 4). Based on this, we argued

that diversity monitoring (survey and analysis) should aim to incorporate

information on detection probabilities.

Furthermore, chapter 3 investigated effects of both species and individ-

ual detectability on the goodness-of-fit measures introduced in chapter 2.

This revealed important differences between the family of goodness-of-fit

statistics and the family of divergence metrics related to it, and indicates

that some care needs to be taken when these measures are chosen for
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diversity assessment. As with other aspects of diversity quantification,

one approach is not superior as such; divergence measures are closer to

traditional indices in conception as well as linked with indices used in eco-

nomics, which makes them more easily interpretable and perhaps more

universal. Conceptually, goodness-of-fit measures are interpreted purely

from a sample-based perspective. To give them a meaning on the level

of the community, about which we are drawing inference, a metapopula-

tion framework has to be adopted. On one hand, this might be perceived

as less intuitive, on the other, this might be more realistic since, with

the exception of a complete census of a closed population, any diversity

assessment will always be sample-based.

3. Closely related to the detectability issue, difficulties arise because of rare

species, which are more likely to be missed in the sampling process. This

is notably an issue for large-scale monitoring programmes, where only a

fraction of all possible locations is usually surveyed. Rare species can thus

be expected to contribute substantially to zeros in the data (see discussion

in chapter 3). Although zeros do not necessarily have to be caused by rare

species alone, the consequences of missing rare species is of special interest

in connection with the goodness-of-fit approach suggested in this thesis,

since this method allows us to focus on rare species in particular.

Missing observations in general and possible ways to deal with them have

been discussed in chapter 3. If we have indication of a species being unob-

served, although present, this zero should be included in the evaluation.

Our results in chapter 3 showed that the goodness-of-fit based measures

take this into account differently from both traditional indices and the

divergence measures that they are linked to. Hence, they might be more

appropriate where missing observations are caused by a certain behaviour

of a species, such as seasonal migration (see example in chapter 3).

Zeros can be included without problems if the goodness-of-fit family is

evaluated for positive parameters. For a full profile, however, a small

quantity has to be added to achieve positive (but close to zero) values

to enable evaluation. On the downside, the bias in the measures for rare

species (corresponding to the part of the profile corresponding to negative

parameter values) depends on the choice of this small quantity. In the

wider picture, this reflects the increase in uncertainty connected to rare

species overall: when we first included them in the analysis presented

in chapter 4, confidence intervals became basically meaningless for those
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indices that are sensitive to rare species (the geometric mean and the

goodness-of-fit measures for negative parameter values). This might be

seen as a disadvantage of these measures in comparison to traditional

indices, such as Shannon’s and Simpson’s. However, precision of the latter

is only higher because they do not give much weight to rare species in the

first place.

Sometimes a model-based approach can be used to overcome this problem

(Gotelli et al., 2010); by replacing observed (zero) counts by predictions

from a fitted model we can get more reliable results, as shown for simu-

lated data in chapter 3. We also adopted this approach in the analysis

of data from the British Breeding Bird Survey in chapter 4 to reduce the

effect of short-term fluctuations and to overcome missing observations for

some rare species in single years. However, fitting a model relies on having

sufficient data. In some cases this can be achieved by pooling (see analysis

in 4) or additional surveys that target problematic species to gain more

information. Where model-fitting is no longer possible, analysis might

sometimes be carried out based on the assumption that rare species be-

have similarly to more common ones (for example, in terms of detection

probability). In general, rare species and the corresponding lack of data

will compromise precision if they are included in an analysis of data from

a multispecies survey. Hence, the rarest species might have to be excluded

(as can be seen in the analysis presented in chapters 4 and 6). This is

not unambiguous: while there are arguments that rare species do not con-

tribute much in terms of ecosystem functions and that they will not have

much influence on trends in diversity (Smith & Knapp, 2003), in particular

on a large scale, we know that the majority of species within an assem-

blage is likely to be rare (Rabinowitz et al., 1986; Magurran & Henderson,

2003); this holds in particular for highly diverse tropical rainforests which

are not easily monitored (Longino et al. (2002); see also section on Lim-

itations below). In addition, studies show that at least some rare species

play a crucial role within ecosystems (Lyons & Schwartz, 2001) and that

trends in common species might not automatically reflect the same trend

in rare species (see results in chapter 4 as well as Buckland et al. (2011b)).

4. Monitoring biodiversity, locally or globally, needs to be able to identify

(long-term) temporal trends (Magurran et al., 2010; Magurran, 2011).

This has implications for the design of monitoring programmes (as dis-

cussed in chapter 1.4) as well as data analysis (see chapter 4). Sufficiently
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long time series of data are a prerequisite for the analysis of trends in bio-

diversity over time, but will often be diffcult to obtain (Magurran et al.,

2010). To set an example in a ‘best case scenario’, we thus relied on data

for birds, a taxonomic group that is easily and hence well-monitored, at

least in some parts of the world, for the analysis presented in chapter 4.

Although considered as indicator species, by no means do we claim that

their trends are universal (see section on Limitations below). However,

the geometric mean, which has been emphasised as a good headline index

by Buckland et al. (2011b) and was used in our analysis to quantify trends

in diversity for British breeding birds, has an advantage in that it allows

the user to combine information across different surveys (see for example

the Living Planet Index, Loh et al. (2005)). Furthermore, the goodness-

of-fit approach introduced in chapter 2 allows us to separate trends in

rare species, as long as we have sufficient data for a reliable analysis, from

trends in common species. Applying this to the BBS data in chapter 4,

we could reveal that monitoring might be at the expense of those species

that are rare, but not (yet) of conservation concern. Although derived

for a specific taxonomic group here, we believe that this result might be

relevant to other taxa and monitoring schemes.

The Living Planet Index, for example, averages over a large number of

species by pooling data from different sources (Loh et al., 2005, 2010).

Where such large sample sizes cannot be obtained, diversity assessment

needs to establish long-term trends by separating it from short-term (sto-

chastic) fluctuations. The analysis in chapter 4 achieved this by applying

generalized additive models as smoothers. It is only from these long-term

trends that we can reliably locate trend change points. This enables

us to tell whether or not the rate of change (i.e. the loss in biodiversity)

has changed. Chapter 4 demonstrated how statistical inference on this

can be based on the investigation of the second derivative (Fewster et al.,

2000; Buckland et al., 2005). This provides an intuitive and easily imple-

mented approach; in addition it is independent from the choice of baseline,

where a relative diversity measure is considered. Change point analysis

is an alternative statistical tool, although it might be more appropriate

for considering rapid or sudden changes on smaller spatial scales (Baker

& King, 2010; Thomson et al., 2010).

5. Similar to trends over time, assessment of diversity in space should cap-

ture continuous spatial trends if it is aimed at the global biodiversity
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targets (Yoccoz et al., 2001). Analysis across regions can be based on

pooled data, as in chapter 4, or look at local variation in diversity in

continuous space (chapter 5). The former provides an overall picture on

diversity and will be the main interest when headline indices are consid-

ered. However, the latter is relevant as there will be local variation in

diversity (McGill, 2011) which is concealed by a pooled analysis. Chap-

ter 5 discussed the limitations of the classical partitioning of diversity

in γ- (pooled), α- (local) and β-diversity (between spatial locations), if

we are interested in inference across continuous space. We demonstrated

how local diversity in bird species that live close to human habitation can

be mapped and spatial trends identified. Crucially, in continuous space

autocorrelation has to be taken into account. This is only possible in a

model-based approach; we used a recently developed model fitting algo-

rithm which can deal with complex autocorrelation structures. Moreover,

it can be extended to spatio-temporal observations.

Space is different from time in that it is not linear. As a consequence, scale

becomes an issue; this has notably been discussed for β-diversity (Gaston

et al., 2007). Ultimately, methods should be such that they allow for a

flexible up- and downscaling. As far as our analysis in chapter 5 could

reach, we expect this to fast become computationally intensive. Flexibil-

ity of scaling is the main topic in chapter 6, which looked at information

contained in the spatial structure of ecological communities. However,

the focus was on processes operating at a local (small) scale here, in con-

trast to the large-scale assessment considered in the previous chapters. In

the latter, scale is determined by the level at which we aggregate data

prior to analysis, while the former applies summary statistics that are, by

definition, a function of scale.

6. Although both look at diversity in space, chapters 5 and 6 are different,

conceptually and with regard to spatial scale. In the first case, the data

locations were outcomes of a sampling process; it is important that this

sampling process is random in order to be representative of the surveyed

area, in this case the UK (see discussion on survey design in chapter 1).

The observations at these random locations were then used to estimate

and map diversity across a whole region (chapters 4 and 5). In contrast,

the methodological framework introduced in chapter 6 is based on the

assumption that the observed locations are outcomes of an underlying

process and hence inference is based on the locations themselves. Pielou,
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as early as 1969, considered this spatial pattern formed by the locations

of individuals from different species to be informative for the processes

underlying the structure of ecological communities. Indeed, Pielou (1969)

discusses this before diversity assessment based on the species abundance

distribution (SAD) in her book. Nevertheless, SADs and the questions of

modelling them as well as of summarising information contained in them

have become dominant for quantification of biodiversity (Magurran, 2004;

McGill et al., 2007), but are not unquestioned (McGill et al., 2007; Brown

et al., 2011). The comparison of the two different perspectives given to

diversity in space by this thesis demonstrated that both are important.

If our aim is a summary of the state of a country’s biodiversity and the

analysis of overall trends in time and space as well as points where change

in species diversity is happening, we are likely to refer to one or several

summary statistics based on the SAD. Although ‘monitoring biodiversity’

tends to imply following only the reaction to conservation efforts, un-

derstanding the processes driving biodiversity is equally important. The

latter operate on local scales (Kerr et al., 2002), and chapter 6 was con-

cerned with how they can be analysed without having to decide on the

scale of evaluation prior to the analysis.

Limitations

More than anything else, monitoring biodiversity is a discipline of choices. Any

form of diversity assessment, in particular on large spatial scales, will be re-

stricted deliberately by the choices that we make, but also by what is attainable.

The multidimensionality of biodiversity (see 1) always requires a choice of

which aspect is to be investigated in detail. In this thesis, we focussed on species

diversity and its quantifaction, while other aspects could only be mentioned.

While there are more recent, equally important advances with respect to other

aspects of biodiversity (genetic, phylogenetic, taxonomic, functional diversity

measures as well as network approaches to food webs and other structures of

ecosystems), species diversity is (still) the aspect of biodiversity that researchers

and policy makers alike will turn to, at least in the first instance. Reasons are

manifold; species diversity has a long tradition (Fisher et al., 1943), appears

as intuitive (May, 1988) and comes with a well equipped toolbox of summary

statistics (Magurran, 2004), which promises to provide accessible headline in-

dices for large-scale monitoring (Buckland et al., 2005). This makes it even

more important to understand how these indices behave if they are evaluated

across large regions, such as entire countries, and what their limitations are.
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The work presented here set out to contribute to a better understanding in this

sense.

Buckland et al. (2005) already highlighted short-comings of the classical eco-

logical indices, Simpson’s and Shannon’s, and argued for the use of a geometric

mean as a headline index. However, the work presented here showed that none

of these summary statistics is able to differentiate between trends in rare and

those in common species. While the goodness-of-fit approach can in princi-

ple overcome this, we saw that missing observations and uncertainty about the

number of species that are considered can pose a problem. While zeros can

be included to some extent, they increase uncertainty. Too little data or only

geographically restricted data will not provide sufficient amount of information

to draw inference on a global scale.

This connects to the part of diversity assessment which is not down to choice,

but to the availability of data. If we want to get a reliable picture of diversity

across large spatial scales, it should be based on the best data that are available

at this scale and that do not surpass the limits of our resources. Nevertheless,

this is likely to leave many taxonomic groups underrepresented. Here, we looked

at birds, and in general vertebrate species tend to be covered better by surveys

and in terms of data quality, while they only make up approximately five percent

of all known species (Landres et al., 1988). While we need these good quality

data to get reliable results, we should be aware that they might not simply

transfer to other groups for which we have less or no data. To some extent, this

is unavoidable, but care should be taken that it is not how ‘cute’ a taxonomic

group is, or how familiar it is, or how strong the lobby for it is, that decides

over objective reasons why diversity assessment should be based on this group

and not another. However, to overcome this tendency, it does not suffice to

convince the public, policy makers or conservationists of the importance of

those species groups which have been considered less, but first and foremost we

need to develop an appropriate methodological framework for them, in terms

of survey design as well as statistical analysis, on a global scale. This might for

some prove infeasible, at least for the time being (Lawton et al., 1998; Longino

et al., 2002).

In many cases, on a large scale, data will be most easily collected on the

species level, but clearly not in all. Where individuals are not readily sampled

or are, for example, different in size, other methods and different ‘currencies’

to those that were considered in this thesis might be more appropriate. The

methods suggested here are limited in terms of transferring them onto other

settings; by concept, goodness-of-fit statistics rely on counts and hence should
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be applied to individual observations. However, the divergence approach that is

connected to them is based on proportions and can hence be applied to biomass

data, for example.

Similarly, the adjustment for individual detectability that we used here,

might not be applicable to some species. It relies on a specific survey design

(distance sampling) as well as sufficient data. While issues with the latter

have been discussed, the required survey design might not be appropriate or

not feasible for some species. Given the results presented here, detectability

or catchability should always be considered as potential sources of bias. Re-

sampling techniques, mark-recapture, or potentially genetic methods such as

bar coding, offer alternatives where distances to either individuals or groups of

individuals cannot reasonably be determined.

In conclusion, while we should not defer large scale assessment of biodiversity

until we have the ‘best method’ (which does not exist), we should at the same

time continue working towards well designed surveys, a variety of data from

different taxa as well as the integration of methods.

To be continued ...

Apart from the aim to work towards a better integration of methods used for

quantification of biological diversity in general, the research presented here stim-

ulates further investigation and provides room for extensions.

Within the scope of this thesis, the application of goodness-of-fit statistics

and of the divergence measures related to them to data could not be exhaus-

tive. The method promises new insights, in particular for separating trends in

rare and common species. As we have discussed, this could be crucial for a

reliable assessment of biodiversity, at least in some communities. Although it

covered different habitat types, our analysis only looked at one taxonomic group.

Further study is needed in terms of its applicability and usefulness for other eco-

logical assemblages in general. While our work revealed important differences

between the goodness-of-fit statistics as measures and the divergence measures

and gave a first indication as to when either might be appropriate, this clearly

merits additional investigation. In particular, we need a better understanding

and ways to differentiate between what causes zeros in the data; modelling ap-

proaches could potentially reduce bias and increase precision here, as discussed

in chapter 3. We therefore expect that a closer linkage between model-based ap-

proaches and diversity quantification might help capture the complex structure

of ecological communities and improve inference, in particular for less detectable
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species (Gotelli et al., 2010). Powerful model fitting algorithms, such as INLA,

are now available and continue to be improved; we hope that the application we

presented in chapter 5 demonstrates convincingly their usefulness for ecological

questions and encourages non-statisticians to exploit theses methods.

The work in this thesis strongly advocates multidimensional approaches to

diversity assessment as provided by parametric index families. Recently, a gener-

alisation of Hill’s numbers has been proposed (Leinster & Cobbold, 2012), which

can include information on species similarities in addition to their dominance

or scarcity. Similarity can be flexibly defined here, for example by phylogeny

or through certain traits. This acknowledges that the loss of a species which

is unique in its functional or phylogenetic position within an ecosystem might

potentially outweigh that of a member of a highly redundant group of species.

It also opens the possibility of combining information on different aspects of

biodiversity, such as species diversity and phylogenetic or functional diversity,

within the same measuring approach. Since the goodness-of-fit approach is in

essence a transformation of Hill’s numbers, it might be possible to extend it in a

similar way. Although this promises a step towards integration of methods, we

should not forget that by increasing the information that is incorporated in a

measure, results will potentially become less easily interpretable. In particular,

disentangling the effects of scarcity and similarity, either in terms of phylogeny

or ecosystem function, could prove to be challenging. As weighting for similari-

ties is within an assemblage in Leinster and Cobbold’s approach, the comparison

of different assemblages could also be hindered, if they are not nested (similar

to problems for the goodness-of-fit approach as discussed in chapter 2).

While this provides means to account for species’ similarities and hence re-

dundancies in the SAD, none of the SAD-based approaches, including Hill’s

numbers and its transformations as well as the geometric mean or generalised

means, allow us to keep track of species’ identities. The latter are crucial if we

want to consider turnover or changes in composition, either within the same

assemblage or by comparison of two or more assemblages (in time or space).

Equally important to the assessment of change points in γ- or α-diversity, de-

termining rates of change in turnover might reveal ‘hotspots’ of rapid change

in (local) community composition. If correlated with climate data, this could

point at shifts of species ranges as they are happening, and provide valuable

insight and tests for predictions from climate change models. However, as dis-

cussed in chapter 5, it is not evident how to extend the concept of β-diversity

or measures accounting for compositional similarity to continuous space. Here,

we only made a suggestion whose applicability needs to be put to the test; in
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particular, we anticipated computational problems. The approach outlined in

chapter 5 is also quite ‘ad hoc’ and does not leave much flexibility with respect

to spatial scale, for example, other than repeating it for a different resolution of

the data. A more rigorous, model-based framework would certainly be superior.

We demonstrated how trends in diversity across large spatial scales can be

assessed, separately in time and space (chapters 4 and 5), by smoothing local

fluctuations. The next step would be to combine this into a spatio-temporal

modelling approach which takes into account temporal and spatial autocorrela-

tion in their full interdependence. The INLA algorithm in combination with the

SPDE theory has already proved capable of handling complex spatio-temporal

environmental systems (Cameletti et al., 2012; Lindgren et al., 2011). We can

envisage a similar application to the BBS data and ultimately for other taxo-

nomic groups, provided data with a sufficient spatial coverage are available.

While large scale assessment is indispensable for following effects of global

actions to reduce the loss of biodiversity, we need to continue to invest equal

efforts in understanding the mechanics that maintain diversity and coexistence

of species. Here, analysing information contained in the spatial structure has

been shown to provide promising results. We have extended one spatial sum-

mary statistic, the cross-pair overlap distribution, in a way that renders it more

flexible to spatial scale and enables the user to adjust its resolution, similar

to a ‘zoom-lens’, to the ecological community of interest. This approach pro-

vides tools for explanatory analysis and might also be used to inform modelling

approaches; it could be equally applied to other second-order summary charac-

teristics which are a function of scale. Future work could involve a comparison of

this approach in combination with a range of summary statistics. The flexibility

was achieved by introducing variable weights on spatial scale. While this allows

us to focus on certain distances, we could also see the possibility of weighting

with respect to other aspects of spatial structure, including inherent charac-

teristics such as mingling. Finally, summary statistics have been suggested in

spatial point process theory that can incorporate heterogeneity in environmen-

tal conditions (Baddeley et al., 2000). It would be of interest to investigate if

and how the latter might be combined with weighted spatial scales.
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Appendix A

The Convention on Biological

Diversity’s (CBD) biodiversity

targets

The following are relevant excerpts from the Convention on Biological Diversity

(CBD, 1992), in particular the original formulation of the 2010 target as well

as the AICHI targets that have now replaced it.

From the preamble of the Convention on Biological Diversity

The Contracting Parties,

[. . .] Conscious also of the importance of biological diversity for evo-

lution and for maintaining life sustaining systems of the biosphere,

[. . .] Concerned that biological diversity is being significantly reduced by

certain human activities,

Aware of the general lack of information and knowledge re-

garding biological diversity and of the urgent need to develop sci-

entific, technical and institutional capacities to provide the basic

understanding upon which to plan and implement appropriate mea-

sures,

Noting that it is vital to anticipate, prevent and attack the causes

of significant reduction or loss of biological diversity at source,

Noting also that where there is a threat of significant reduction or loss of

biological diversity, lack of full scientific certainty should not be used as

a reason for postponing measures to avoid or minimize such a threat,

[. . .] Stressing the importance of [. . .] international, regional and

global cooperation among States and intergovernmental organizations

and the non-governmental sector for the conservation of biological diver-
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sity and the sustainable use of its components,

[. . .] Determined to conserve and sustainably use biological diversity for

the benefit of present and future generations,

Have agreed as follows [. . .]

The CBD’s definition of biological diversity

Article 2. Use of Terms

[. . .] ‘Biological diversity’ means the variability among living organisms

from all sources including, inter alia, terrestrial, marine and other aquatic

ecosystems and the ecological complexes of which they are part; this in-

cludes diversity within species, between species and of ecosystems. [. . .]

‘Ecosystem’ means a dynamic complex of plant, animal and micro-organism

communities and their non-living environment interacting as a functional

unit. [. . .]

The 2010 target

Parties commit themselves to a more effective and coherent implemen-

tation of the [. . .] objectives of the Convention, to achieve by 2010 a

significant reduction of the current rate of biodiversity loss at

the global, regional and national level as a contribution to poverty

alleviation and to the benefit of all life on earth.

In particular,

Goal 3. National biodiversity strategies and action plans and

the integration of biodiversity concerns into relevant sectors serve as an

effective framework for the implementation of the objectives of the Con-

vention. [. . .]

3.1 Every Party has effective national strategies, plans and pro-

grammes in place to provide a national framework for imple-

menting the three objectives of the Convention and to set clear national

priorities [. . .]

The strategic plan for biodiversity 2011-2020, including the Aichi

biodiversity targets

Strategic Goal A: Address the underlying causes of biodiversity loss

by mainstreaming biodiversity across government and society
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Target 1

By 2020, at the latest, people are aware of the values of biodiversity and

the steps they can take to conserve and use it sustainably.

Target 2

By 2020, at the latest, biodiversity values have been integrated into na-

tional and local development and poverty reduction strategies and plan-

ning processes and are being incorporated into national accounting, as

appropriate, and reporting systems.

Target 3

By 2020, at the latest, incentives, including subsidies, harmful to bio-

diversity are eliminated, phased out or reformed in order to minimize

or avoid negative impacts, and positive incentives for the conservation

and sustainable use of biodiversity are developed and applied, consistent

and in harmony with the Convention and other relevant international

obligations, taking into account national socio economic conditions.

Target 4

By 2020, at the latest, Governments, business and stakeholders at all lev-

els have taken steps to achieve or have implemented plans for sustainable

production and consumption and have kept the impacts of use of natural

resources well within safe ecological limits.

Strategic Goal B: Reduce the direct pressures on biodiversity and

promote sustainable use

Target 5

By 2020, the rate of loss of all natural habitats, including forests, is at

least halved and where feasible brought close to zero, and degradation

and fragmentation is significantly reduced.

Target 6

By 2020 all fish and invertebrate stocks and aquatic plants are man-

aged and harvested sustainably, legally and applying ecosystem based

approaches, so that overfishing is avoided, recovery plans and measures

are in place for all depleted species, fisheries have no significant adverse

impacts on threatened species and vulnerable ecosystems and the impacts

of fisheries on stocks, species and ecosystems are within safe ecological

limits.

Target 7

By 2020 areas under agriculture, aquaculture and forestry are managed

sustainably, ensuring conservation of biodiversity.

Target 8

By 2020, pollution, including from excess nutrients, has been brought to
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levels that are not detrimental to ecosystem function and biodiversity.

Target 9

By 2020, invasive alien species and pathways are identified and priori-

tized, priority species are controlled or eradicated, and measures are in

place to manage pathways to prevent their introduction and establish-

ment.

Target 10

By 2015, the multiple anthropogenic pressures on coral reefs, and other

vulnerable ecosystems impacted by climate change or ocean acidification

are minimized, so as to maintain their integrity and functioning.

Strategic Goal C: To improve the status of biodiversity by safeguard-

ing ecosystems, species and genetic diversity

Target 11

By 2020, at least 17 per cent of terrestrial and inland water, and 10 per

cent of coastal and marine areas, especially areas of particular importance

for biodiversity and ecosystem services, are conserved through effectively

and equitably managed, ecologically representative and well connected

systems of protected areas and other effective area-based conservation

measures, and integrated into the wider landscapes and seascapes.

Target 12

By 2020 the extinction of known threatened species has been prevented

and their conservation status, particularly of those most in decline, has

been improved and sustained.

Target 13

By 2020, the genetic diversity of cultivated plants and farmed and domes-

ticated animals and of wild relatives, including other socio-economically

as well as culturally valuable species, is maintained, and strategies have

been developed and implemented for minimizing genetic erosion and safe-

guarding their genetic diversity.

Strategic Goal D: Enhance the benefits to all from biodiversity and

ecosystem services

Target 14

By 2020, ecosystems that provide essential services, including services

related to water, and contribute to health, livelihoods and well-being,

are restored and safeguarded, taking into account the needs of women,

indigenous and local communities, and the poor and vulnerable.

Target 15
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By 2020, ecosystem resilience and the contribution of biodiversity to car-

bon stocks has been enhanced, through conservation and restoration, in-

cluding restoration of at least 15 per cent of degraded ecosystems, thereby

contributing to climate change mitigation and adaptation and to com-

bating desertification.

Target 16

By 2015, the Nagoya Protocol on Access to Genetic Resources and the

Fair and Equitable Sharing of Benefits Arising from their Utilization is

in force and operational, consistent with national legislation.

Strategic Goal E: Enhance implementation through participatory plan-

ning, knowledge management and capacity building

Target 17

By 2015 each Party has developed, adopted as a policy instrument, and

has commenced implementing an effective, participatory and updated

national biodiversity strategy and action plan.

Target 18

By 2020, the traditional knowledge, innovations and practices of indige-

nous and local communities relevant for the conservation and sustainable

use of biodiversity, and their customary use of biological resources, are

respected, subject to national legislation and relevant international obli-

gations, and fully integrated and reflected in the implementation of the

Convention with the full and effective participation of indigenous and

local communities, at all relevant levels.

Target 19

By 2020, knowledge, the science base and technologies relating to biodi-

versity, its values, functioning, status and trends, and the consequences

of its loss, are improved, widely shared and transferred, and applied.

Target 20

By 2020, at the latest, the mobilization of financial resources for effec-

tively implementing the Strategic Plan for Biodiversity 2011-2020 from

all sources, and in accordance with the consolidated and agreed process

in the Strategy for Resource Mobilization, should increase substantially

from the current levels. This target will be subject to changes contingent

to resource needs assessments to be developed and reported by Parties.
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Evaluating the goodness-of-fit

based measures with respect to

the criteria by Smith & Wilson

(1996)

Requirement 1: Independence of species richness

The evenness index should be invariant if multiples of a species abundance

vector are considered. We use the same examples as in Smith & Wilson (1996),

namely

> sad_1 <- c(1497, 1, 1, 1)

> sad_2 <- c(800, 400, 200, 100)

> sad_3 <- c(378, 376, 374, 372)

> models <- as.matrix(rbind(sad_1, sad_2, sad_3), nrow = 3)

> S <- ncol(models)

> abd <- models

> rel.abd <- models/rowSums(models).

The family of goodness-of-fit based measures is calculatd for −3 < λ < 3 for

the SADs and for triples of the original SADs (see Fig B.1).

> lambda <- seq(-3, 3, by = 0.05)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> triples <- t(apply(models, 1, rep, times = 3))

> S <- ncol(triples)

> abd <- triples
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> rel.abd <- triples/rowSums(triples)

> GoF_triples <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))
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Figure B.1 – Smith and Wilson’s first requirement for evenness measures — inde-
pendence of species richness. The measure should not change if the species abundance
vector is merely repeated. The upper row shows evenness profiles for the untrans-
formed goodness-of-fit measures Ip(λ) for the three examples of species abundance
vectors in Smith & Wilson (1996), the reciprocal 1/Ip(λ) and the standardised trans-
formation ρp(λ) (from left to right). The lower row shows the evenness profiles,
evaluated for triples of the original abundance vectors.

Further repetitions of the original SADs are considered (up to a 40-fold

increase in the original number of species S = 4) and for each repetition the

goodness-of-fit measure for λ = −0.5 is calculated (the λ value was chosen

because it results in a metric on the simplex). Fig. B.2 shows the untransformed

goodness-of-fit index as well as the two transformations plotted against number

of species. Complete independence of S results in a horizontal line.

> lambda <- -0.5

> models <- as.matrix(rbind(sad_1, sad_2, sad_3), nrow = 4)

> times <- c(1, 2, 3, 5, 10, 20, 40)

> species <- c(4, 8, 12, 20, 40, 80, 160)
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> GoF <- matrix(0, nrow = nrow(models), ncol = length(species))

> rho <- matrix(0, nrow = nrow(models), ncol = length(species))

> maxi <- 1/(lambda * (1 + lambda)) * (species^lambda - 1)

> for (i in 1:length(species)) {

+ models <- t(apply(models, 1, rep, times = times[i]))

+ abd <- models

+ rel.abd <- abd/rowSums(models)

+ GoF[, i] <- t(apply(rel.abd, 1, gof, lambda = lambda, S = species[i]))

+ rho[, i] <- 1 - GoF[, i]/maxi[i]

+ models <- as.matrix(rbind(sad_1, sad_2, sad_3), nrow = 4)

+ }
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Figure B.2 – Smith and Wilson’s first requirement for evenness measures, for sys-
tematic increases in species richness. Evaluated for λ = −0.5, the untransformed
goodness-of-fit measures Ip(λ), its reciprocal and the standardised ρp(λ) (from left
to right) are plotted for the three example SADs against an increase in species rich-
ness. S is increased twofold, threefold, fivefold, tenfold, twentyfold and fortyfold by
the corresponding repetitions of the three examples of species abundance vectors.

Requirement 2: Loss of abundance of a rare species

If the rarest species decreases in abundance, the evenness index should drop.

> sad_1 <- c(80, 40, 20, 10, 1)

> sad_2 <- c(80, 40, 20, 10, 0.5)

> models <- as.matrix(rbind(sad_1, sad_2), nrow = 2)

> abd <- models

> rel.abd <- models/rowSums(models)

> S <- 5

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> rho <- 1 - GoF/maxi

> GoF
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sad_1 sad_2

[1,] 0.520288 0.5572212

> 1/GoF

sad_1 sad_2

[1,] 1.922012 1.794619

> rho

sad_1 sad_2

[1,] 0.7646975 0.7479943

Requirement 3: Addition of a rare species

If a rare species is added to the assemblage, the evenness index should decrease.

> sad_1 <- c(80, 40, 20, 10)

> sad_2 <- c(80, 40, 20, 10, 0.5)

> rel.abd_1 <- sad_1/sum(sad_1)

> rel.abd_2 <- sad_2/sum(sad_2)

> maxi_1 <- 1/(lambda * (1 + lambda)) * (4^lambda - 1)

> GoF_1 <- gof(rel.abd_1, lambda = lambda, S = 4)

> rho_1 <- 1 - GoF_1/maxi_1

> maxi_2 <- 1/(lambda * (1 + lambda)) * (5^lambda - 1)

> GoF_2 <- gof(rel.abd_2, lambda = lambda, S = 5)

> rho_2 <- 1 - GoF_2/maxi_2

> GoF_1

[1] 0.2599164

> GoF_2

[1] 0.5572212

> 1/GoF_1

[1] 3.84739

> 1/GoF_2

[1] 1.794619

> rho_1

[1] 0.8700418

> rho_2

[1] 0.7479943
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Requirement 4: Invariance under multiplication of the SAD by a

constant

The evenness index should not change when abundances of all species are in-

creased or decreased by the same (constant) factor. This is interpreted as the

measure being unaffected by a change in units used.

> sad_1 <- c(1, 2, 3)

> sad_2 <- c(100, 200, 300)

> models <- as.matrix(rbind(sad_1, sad_2), nrow = 2)

> abd <- models

> rel.abd <- models/rowSums(models)

> maxi <- 1/(lambda * (1 + lambda)) * (3^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = 3))

> rho <- 1 - GoF/maxi

> GoF

sad_1 sad_2

[1,] 0.09086446 0.09086446

> 1/GoF

sad_1 sad_2

[1,] 11.0054 11.0054

> rho

sad_1 sad_2

[1,] 0.9462531 0.9462531

Features 5 and 6: Maximality at perfect evenness

The evenness should attain its maximum at perfect evenness. The maximum

value should preferably be 1.

> sad <- c(375, 375, 375, 375)

> rel.abd <- sad/sum(sad)

> maxi <- 1/(lambda * (1 + lambda)) * (4^lambda - 1)

> GoF <- gof(rel.abd, lambda = lambda, S = 4)

> rho <- 1 - GoF/maxi

> GoF
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[1] 0

> 1/GoF

[1] -Inf

> rho

[1] 1

Features 7 and 9: Minimality if SAD is as unequal as possible

The evenness index should attain its minimum for any number of species if an

SAD is as unequal as possible. This minimum should preferably be 0.

> sad_1 <- c(999, 1)

> sad_2 <- c(900, 100)

> sad_3 <- c(800, 200)

> sad_4 <- c(700, 300)

> sad_5 <- c(600, 400)

> sad_6 <- c(500, 500)

> models <- as.matrix(rbind(sad_1, sad_2, sad_3, sad_4, sad_5,

+ sad_6), nrow = 6)

> S <- 2

> rel.abd <- models/rowSums(models)

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> rho <- 1 - GoF/maxi

> GoF

sad_1 sad_2 sad_3 sad_4 sad_5 sad_6

[1,] 1.083545 0.4222912 0.2052668 0.08437475 0.02025539 0

> 1/GoF

sad_1 sad_2 sad_3 sad_4 sad_5 sad_6

[1,] 0.9228968 2.368034 4.871708 11.85189 49.36958 -Inf

> rho

sad_1 sad_2 sad_3 sad_4 sad_5 sad_6

[1,] 0.07513673 0.6395519 0.8247938 0.9279816 0.9827109 1
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Feature 8: Minimality if SAD is as unequal as possible

The evenness index should be close to its minimum for an SAD that is as unequal

as we are likely to observe. (‘close to its minimum’ being less than 0.05)

> sad_1 <- c(1497, 1, 1, 1)

> S <- 4

> rel.abd <- sad_1/sum(sad_1)

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- gof(rel.abd, lambda = lambda, S = S)

> rho <- 1 - GoF/maxi

> GoF

[1] 1.847082

> 1/GoF

[1] 0.5413946

> rho

[1] 0.07645917

Feature 10: Minimum attainable for any number of species

As one species’ abundance goes to infinity, the species abundance vector in

the limit, (∞, 1), should result in the evenness index being 0. (For numerical

calculation, the abundance of the first species is set to a very high value in the

following example.)

> sad <- c(1e+09, 1)

> S <- 2

> rel.abd <- sad/sum(sad)

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- gof(rel.abd, lambda = lambda, S = S)

> rho <- 1 - GoF/maxi

> GoF

[1] 1.171483

> 1/GoF

[1] 0.8536186

> rho

[1] 7.634293e-05
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Feature 11: Intermediate value for neither even nor uneven commu-

nities

SADs that are intuitively thought of as being neither particularly even nor

uneven should lead to intermediate index values.

> sad_1 <- c(600, 450, 300, 150)

> sad_2 <- c(800, 400, 200, 100)

> models <- as.matrix(rbind(sad_1, sad_2), nrow = 2)

> abd <- models

> rel.abd <- models/rowSums(models)

> S <- 4

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> rho <- 1 - GoF/maxi

> GoF

sad_1 sad_2

[1,] 0.1127611 0.2599164

> 1/GoF

sad_1 sad_2

[1,] 8.868307 3.84739

> rho

sad_1 sad_2

[1,] 0.9436195 0.8700418

Feature 12: Reasonable response to systematic changes

For a series of SADs that intuitively change in their degree of evenness, an

evenness index should reasonably reflect this change. (Smith & Wilson (1996)

consider a continuous response of an index as reasonable if it results in a convex

curve when evaluated for the following sequence of abundance vectors (see Fig.

B.3); other opinions exist.)

> sad_1 <- c(999, 1)

> sad_2 <- c(900, 100)

> sad_3 <- c(800, 200)
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> sad_4 <- c(700, 300)

> sad_5 <- c(600, 400)

> sad_6 <- c(500, 500)

> sad_7 <- c(400, 600)

> sad_8 <- c(300, 700)

> sad_9 <- c(200, 800)

> sad_10 <- c(100, 900)

> sad_11 <- c(1, 999)

> models <- as.matrix(rbind(sad_1, sad_2, sad_3, sad_4, sad_5,

+ sad_6, sad_7, sad_8, sad_9, sad_10, sad_11), nrow = 11)

> rel.abd <- models/rowSums(models)

> S <- 2

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> rho <- 1 - GoF/maxi
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Figure B.3 – Smith and Wilson’s feature for evenness measures. An evenness in-
dex should change continuously for a symmetric increase and decrease in evenness,
resulting in a horseshoe-shaped curve

Feature 13: Symmetry with regards to dominant and rare species

An evenness index should not favour an assemblage with a certain number of

dominant species and one rare species to an assemblage with the same number

of species, but only one dominant species.

> sad_1 <- c(1000, 1000, 1000, 1)

> sad_2 <- c(1000, 1, 1, 1)

> rel.abd_1 <- sad_1/sum(sad_1)

> rel.abd_2 <- sad_2/sum(sad_2)

> maxi_1 <- 1/(lambda * (1 + lambda)) * (4^lambda - 1)

> GoF_1 <- gof(rel.abd_1, lambda = lambda, S = 4)

> rho_1 <- 1 - GoF_1/maxi_1
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> maxi_2 <- 1/(lambda * (1 + lambda)) * (4^lambda - 1)

> GoF_2 <- gof(rel.abd_2, lambda = lambda, S = 4)

> rho_2 <- 1 - GoF_2/maxi_2

> GoF_1

[1] 0.4999668

> GoF_2

[1] 1.813541

> 1/GoF_1

[1] 2.000133

> 1/GoF_2

[1] 0.5514076

> rho_1

[1] 0.7500166

> rho_2

[1] 0.09322971

Feature 14: Skewness of SADs

An evenness index should give a lower value for assemblages with an excess in

either dominant or rare species than it does for an assemblage that is completely

balanced with regards to dominant and rare species.

> sad_1 <- c(1000, 1, 1, 1, 1, 1)

> sad_2 <- c(1000, 1000, 1000, 1, 1, 1)

> sad_3 <- c(1000, 1000, 1000, 1000, 1000, 1)

> S <- 6

> models <- as.matrix(rbind(sad_1, sad_2, sad_3), nrow = 3)

> abd <- models

> rel.abd <- models/rowSums(models)

> maxi <- 1/(lambda * (1 + lambda)) * (S^lambda - 1)

> GoF <- t(apply(rel.abd, 1, gof, lambda = lambda, S = S))

> rho <- 1 - GoF/maxi

> GoF
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sad_1 sad_2 sad_3

[1,] 2.113518 1.083588 0.3257897

> 1/GoF

sad_1 sad_2 sad_3

[1,] 0.4731447 0.92286 3.069465

> rho

sad_1 sad_2 sad_3

[1,] 0.1070925 0.5422117 0.8623622



Appendix C

R functions

C.1 Simulations of Tokeshi’s models

The following R functions provide discrete algorithms for generating realisations

of Tokeshi’s niche models with a fixed number of species S and total abundance

N . The latter determines the total available niche space. The functions have to

be given the model specifications (S, N and k for the power fraction model) as

well as one initial value b (the first niche division point); b can also be generated

randomly.

Sampling function for the power fraction model

> powerfrac <- function(b, S, N, k) {

+ while (length(b) < S - 1) {

+ p <- c(1, b, N)

+ L <- length(p)

+ dis <- p[2:L] - p[1:(L - 1)]

+ if (k == 0) {

+ ind <- which(dis == 1)

+ if (length(ind) > 0) {

+ dis[ind] <- 0

+ dis[-ind] <- 1

+ }

+ else {

+ dis <- rep(1, times = length(dis))

+ }

+ v <- sample(c(b, N), 1, prob = dis)

+ }
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+ else {

+ dis <- (dis - 1)^k

+ v <- sample(c(b, N), 1, prob = dis)

+ }

+ index <- which(p == v)

+ a1 <- p[index - 1] + 1

+ a2 <- p[index] - 1

+ if (a1 == a2) {

+ b.new <- a1

+ }

+ else {

+ b.new <- sample(c(a1:a2), 1)

+ }

+ b <- sort(c(b, b.new))

+ }

+ res <- sort(c(b, N) - c(0, b), decreasing = T)

+ return(res)

+ }

Sampling function for the dominance preemption model

The function which gives a discrete equivalent for the dominance preemption

model. Because of this discretisation, the resulting species abundance vector

is slightly less uneven than expected in the case of the original model (which

describes total available niche space as the continuous interval [0, 1]).

> dompreem <- function(b, S, N) {

+ if (b > N - S) {

+ return("initial b too big")

+ }

+ else {

+ while (length(b) < S - 1) {

+ if (N - max(b) > S - length(b) + 1) {

+ k <- runif(1, 0.5, 1)

+ b.new <- floor(k * (N - S + length(b) - max(b))) +

+ max(b)

+ b <- c(b, b.new)

+ res <- sort(c(b, N) - c(0, b), decreasing = T)

+ }
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+ else {

+ b.rem <- rep(1, times = S - length(b))

+ b <- c(b, b.rem)

+ res <- b

+ }

+ }

+ return(res)

+ }

+ }

Sampling function for the dominance decay model

> domdecay <- function(b, S, N) {

+ res <- c(b, N) - c(0, b)

+ while (length(b) < S - 1) {

+ d <- c(0, b, N)

+ ind <- which(res == max(res))

+ if (length(ind) == 1) {

+ b.new <- sample((d[ind] + 1):(d[ind + 1] - 1), 1)

+ b <- sort(c(b, b.new), decreasing = F)

+ res <- c(b, N) - c(0, b)

+ }

+ else {

+ ind <- sample(ind, 1)

+ b.new <- sample((d[ind] + 1):(d[ind + 1] - 1), 1)

+ b <- sort(c(b, b.new), decreasing = F)

+ res <- c(b, N) - c(0, b)

+ }

+ }

+ res <- sort(res, decreasing = T)

+ return(res)

+ }
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C.2 R functions for the various diversity index

families

Goodness-of-fit based measures

> gof <- function(lambda, S, rel.abd) {

+ res <- rep(0, times = length(lambda))

+ for (i in 1:length(lambda)) {

+ if (lambda[i] == -1) {

+ res[i] <- -1/S * sum(log(rel.abd)) - log(S)

+ }

+ else {

+ if (lambda[i] == 0) {

+ res[i] <- log(S) + sum(rel.abd[rel.abd != 0] *

+ log(rel.abd[rel.abd != 0]))

+ }

+ else {

+ res[i] <- 1/(lambda[i] * (lambda[i] + 1)) * sum(rel.abd *

+ ((rel.abd * S)^lambda[i] - 1))

+ }

+ }

+ }

+ return(res)

+ }

Hill’s diversity numbers

> hill <- function(beta, rel.abd) {

+ res <- rep(0, times = length(beta))

+ for (i in 1:length(beta)) {

+ if (beta[i] == 1) {

+ res[i] <- exp(-sum(rel.abd * log(rel.abd)))

+ }

+ else {

+ res[i] <- (sum(rel.abd^beta[i]))^(1/(1 - beta[i]))

+ }

+ }

+ return(res)

+ }
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The generalised mean

> gen.mean <- function(alpha, x) {

+ res <- rep(0, times = length(alpha))

+ for (i in 1:length(alpha)) {

+ if (alpha[i] == 0) {

+ res[i] <- exp(mean(log(x)))

+ }

+ else {

+ res[i] <- (mean(x^alpha[i]))^(1/alpha[i])

+ }

+ }

+ return(res)

+ }

Generalised entropy

> gen.entropy <- function(beta, rel.abd) {

+ res <- rep(0, times = length(beta))

+ ind <- which(beta == 0)

+ for (i in 1:length(beta)) {

+ if (beta[i] == 1) {

+ res[i] <- exp(-sum(rel.abd * log(rel.abd)))

+ }

+ else {

+ res[i] <- (sum(rel.abd^beta[i]))^(1/(1 - beta[i]))

+ }

+ }

+ return(((res/res[ind])^(1 - beta) - 1)/(-beta * (1 - beta)))

+ }
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Another transformation of Ip(λ)

The following figure shows the transformation of the goodness-of-fit based even-

ness measures Ip(λ) which gives Simpson’s index − logD for λ = 1. Here, this

transformation is applied to order Tokeshi’s models (scenario 1). The profile

plots are no longer continuous, however, the position of the asymptote gives

some indication of evenness of the underlying species proportions.
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Appendix E

Sampling properties of γn(λ)

In order to investigate the properties of the transformation

γn(λ) = (S − 1)/In(λ) (E.1)

(see equation 2.10), we evaluate the statistic for samples from a completely even

distribution and a vector of species proportions of increasing uneveness (where

S=100 in all cases). We compare their sample means on the background of the

sampling distribution under perfect evenness (a rescaled χ2
99).

Each of the following panels shows a histogram of the sampling distribution

of γn(λ) under perfect evenness in the background. To derive this distribution,

1000 random draws were generated from a χ2
99 and standardised by S−1 for each

of the four plots. For the two panels in the upper row, 100 random samples were

simulated from the uniform distribution (1/100, . . . , 1/100), and the sample

mean over the corresponding 100 values of γn(λ) was calculated, where in (a)

the size of each sample was n = 50 and in (b) n = 200. Panel (c) shows

sample means over samples from uneven species abundance distribution (again

100 samples were randomly generated, where sample size n = 50). The species

abundance distributions are

p1 = (2/150, . . . , 2/150, 1/150, . . . , 1/150)

p2 = (0.6, 0.3, 0.2, 0.1, . . . , 0.1, 0.006, . . . , 0.006)

p3 = (0.15, 0.07, 0.07, 0.06, 0.5, 0.4, 0.4, 0.3, 0.2, 0.1, 0.007, . . . , 0.007,

0.006, . . . , 0.006, 0.005, . . . , 0.005, 0.004, . . . , 0.004,

0.003, . . . , 0.003, 0.002, . . . , 0.002, 0.001, . . . , 0.001)
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where in p1 half the species are exactly twice as abundant, 50 species’ propor-

tions are equal to 0.006 in p2, and the frequencies of the species proportions in

the tail of p3 are 30 times 0.007, 10 times 0.006, 10 times 0.005, 20 times 0.004,

5 times 0.003, 5 times 0.002, 10 times 0.001.

Finally, (d) illustrates the effects of under- and overestimation of S, where

again a sample mean over 100 samples (of the completely even SAD) of size

n = 50 is calculated, roughly 40 species are observed in each sample.
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Figure E.1 – Sampling properties of the transformation γn(λ) of the goodness-of-fit
measure family. γn(λ) is entirely sample-based and does not have a corresponding
divergence measure any more. The figure shows the sample mean of this summary
statistic (over 100 samples) of different size ((a) and (b)), where samples are taken
from uneven species abundance distributions (c) and evaluated for under- and over-
estimates of species richness (d).
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Sensitivity to the choice of ε

ε = 0.05 ε = 0.1 ε = 0.5
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The figure shows the bias in estimated evenness profiles depending on the choice

of ε correction for zeros in the observations. Different ε-corrections are applied

to the sample profiles for scenario 3 for the power fraction model with k = 1.

Analogous to Fig. 3.3 in chapter 3, the number of species is deliberately under-
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and overestimated when the sample is corrected for missing species. The true

profile which is shown as a black dotted line is based on the species abundances

that are expected from the Tokeshi power fraction model (k = 1).



Appendix G

Supplementary information for

the BBS analysis

The following provides additional information about the bird species included

in the analysis in chapter 4.

The following table lists all species by primary habitat groups and specifies

whether or not they are included in the analysis. Only common species were

included in the final analysis; ‘L’ indicates that records from the second (‘late’)

visit were used. Superscript ◦ for a common species indicates its exclusion

because of its abundance index being zero in at least one year; the asterix ∗
indicates wetland and grassland species which were additionally excluded as

they frequently appeared without any records for some years in the bootstrap

(but not the original analysis). For the common species, we also list average

estimated detection probability πest(across years) and which model was chosen

for the scale parameter of the half-normal detection function (by AIC). The two

most common and the two rarest (included) species are highlighted (with respect

to the smoothed abundance index Nest in 1994 and 2008, where abundance

estimates are given in 106).

In addition, trends in individual species’ relative abundances (relative to

1994, the first year of the survey) are shown.
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Figure G.1 – Single species trends for the farmland bird community. Relative abun-
dance indices are shown.
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Figure G.2 – Single species trends for the grassland bird community. Relative
abundance indices are shown.
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Figure G.3 – Single species trends for the near human habitation bird community.
Relative abundance indices are shown.
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Figure G.4 – Single species trends for the wetland bird community. Relative abun-
dance indices are shown.
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Figure G.5 – Single species trends for the woodland bird community. Relative
abundance indices are shown.


