The importance of ecological versus phylogenetic effects in determining *Rhododendron* flowering phenology

Mia Momberg

2018

Supervisors: Dr. A. Ahrends & Dr. A. Phillimore

Thesis submitted in partial fulfillment for the MSc in the Biodiversity and Taxonomy of Plants

Royal Botanic Garden Edinburgh

Abstract

Species across the globe are responding to changes in climate, with one of the most evident responses that of changes in species phenology. Phenology is important in determining the abiotic environment and biotic interactions that organisms are exposed to. This study investigates 1) the responses of first, peak, and last flowering dates of 41 species of Rhododendron to increases in temperature; and 2) the relative contributions of ecology and phylogeny to these responses. All three flowering phases of Rhododendrons were most influenced by temperatures in a window of 69 days prior to the flowering phase. With a one degree Celsius increase in temperature, these species flower approximately one week earlier. Latitude was the only significant ecological predictor of plasticity, and only for last flowering dates. Species varied in their plasticity for first and peak flowering dates, while there was within-species variation of plasticity for peak and last flowering dates. Phylogenetic relatedness did not explain plasticity at any of the flowering phases. Responses in flowering dates suggest that *Rhododendron* species will be able to track changing temperatures, but the limits to their plasticity and the consequences to their fitness is uncertain. The factors driving phenological plasticity in these species remain unknown, and further investigation should consider biotic factors and finer-scale phylogenetic data.

Acknowledgements

Thank you to my supervisors, Antje Ahrends and Ally Phillimore, who provided me with advice and support whenever I needed it. A special thank you to my parents, Irma Lingenfelder, Nic Maritz and Johan Momberg for making it possible for me to pursue my studies at any cost and for their constant support throughout this past year. I would also like to thank Arnold Frisby, for always motivating me when I needed it most.

List of tables

Table 1	List of Rhododendron species included in this study	11
Table 2	Results from the null models for each flowering phase, including only random	
effects		18
Table 3	Mixed effect model results for plasticity of first flowering date	21
Table 4	Mixed effect model results for plasticity of peak flowering date	21
Table 5	Mixed effect model results for plasticity of last flowering date	21

List of figures

Figure 1 Rhododendron flowers a) in bud; and b) fully open with the stamens and stigma
visible15
Figure 2 The mean daily maximum temperature per year from 2008 to 2017, with a linear
regression line fitted17
Figure 3 Results from sliding window analyses indicating the temperature window best
predicting a) first flowering date, b) peak flowering date, and c) last flowering date; and
funnel plots showing convergence of individual slopes around the mean for d) first flowering
date, e) peak flowering date, and f) last flowering date20

Table of Contents

Abstract
Acknowledgements2
List of tables
List of figures
Introduction
Methods10
Study area10
Data cleaning13
Phylogeny13
Sliding window analyses14
Niche breadth16
Mixed effect models17
Results17
Discussion
References
Appendix

Introduction

Across the globe, there is a coherent footprint of climate change, which is a persistent driver affecting the long-term existence of species across the world (Parmesan and Yohe, 2003). These changes are predicted to continue in coming years, even becoming more pronounced and severe (IPCC, 2013). Predictions made decades ago on certain elements of climate have recently proved to be true (Fischer and Knutti, 2016). Research into the impacts that climate change has on biotic communities has increased and indicates that consequences of these changes could include extinctions (Thomas et al., 2004), changes in species' distributions (Parmesan and Yohe, 2003) and changes to ecosystem functioning (e.g. Stige and Kvile, 2017).

A sound understanding of how climate change will influence biodiversity and ecosystem services is crucial to conserving biota and intact systems (Jones et al., 2016), as well as for human wellbeing which is delicately linked to the wellbeing of living organisms. As temperatures warm, species are shifting their ranges poleward and upwards in elevation (Pecl et al., 2017). These range shifts lead to a loss of certain species interactions, and the creation of new interactions which ultimately affect ecosystem functioning (Pecl et al., 2017). The equilibrium and functioning of ecosystems is important not only for the organisms surviving in them, but also for society and human wellbeing (Chiabai et al., 2018).

Ecosystems provide us with many services which would otherwise be very costly to obtain. They range from the provision of raw materials that are used for manufacturing many items and food to protection against natural disasters. Changes in ecosystems can therefore have profound impacts on people's daily lives. Species range shifts that are occurring are not random in direction and will consequently leave some areas at a much bigger disadvantage in terms of food provision and disease occurrence than others (Pecl et al., 2017). These patterns of inequality can cause conflict among people. To date, climate change has already affected the timing of floods, the frequency of fires, and economic losses due to agriculture, crime, and natural disasters (Abatzoglou and Williams, 2016; Blöschl et al., 2017; Hsiang et al., 2017).

Changes have been observed across taxa and geographic regions, with changes in species' distributions and abundances, and shifts in species phenology becoming common occurrences. One of the most evident responses to climate change is that of changes to phenology (Thackeray et al., 2016; Keogan et al., 2018). Phenology describes the science of

seasonally recurring life-history events (Badeck et al., 2004), for example timing of leafing, flowering and fruit development in plants, and egg-laying, and birth of young in animals. Phenology is important in determining the abiotic (e.g. frost, drought) and biotic (e.g. competition for resources, interactions with pollinators) conditions that an organism is exposed to.

Phenological events have been important cultural milestones in the year to many people, and therefore some rare long-term datasets exist. One of these long-term datasets is from the Marsham family, that have collected phenology data on more than 20 animal and plant species for a period of 211 years close to Norfolk. Analysis of these data show that some species have a greater response to warming temperatures than others, however, all four species for which first flowering dates are collected show a reaction to the temperature in the months preceding flowering (Sparks and Carey, 1995).

Other datasets have corroborated these trends and phenological shifts have been demonstrated across a wide range of species, for example a meta-analysis of 677 species of plants, birds, insects, amphibians, and fish over a time period ranging between 16 and 132 years (median 45 years) found that 87% of the shifts were in the direction predicted by climate change (Parmesan and Yohe, 2003), while another meta-analysis of 694 species found that more than 80% of the species were showing changes in the direction expected (Root et al., 2003). Advances in phenologies tend to be more pronounced at lower trophic levels, leading to possible disruptions of species interactions and consequences for ecosystem functioning (Thackeray et al., 2016). Life history traits, such as plant growth form (herbaceous or woody) and life form (annual or perennial) also influence when plants are able to flower, relating to amount of resources that they are able to store over the growing season (Bolmgren and Cowan, 2008). In terms of plants, trees have been shown to respond slower than other plants (Rich et al., 2008). In Britain, there has been a major shift in the flowering time of plants, with an average advancement of the first flowering date by 4.5 days in 1991-2000 compared to 1954-1990 over 385 species (Fitter and Fitter, 2002). Spring-flowering species are the most sensitive to changes in temperature (Fitter and Fitter, 2002), and appear to respond to temperatures one to two months before flowering (Fitter et al., 1995). Changes to the phenology of species may increase chances of hybridization in nature, as temporal barriers for gene flow are broken down. Hybridization will be particularly important for rare species, which may become extinct because of it but could also be the salvation of inbred populations (Todesco et al., 2016).

Given that long-term records are sparse and there is an urgent need to understand phenology, other approaches have been used to infer phenology. These include the use of so termed "legacy datasets" which include information from herbaria, museums and photographs. Recently a creative approach has used historic television footage from cycling races to determine changes to the phenology of plants growing along the route (De Frenne et al., 2018).

For plants, the timing of flowering is an important event which affects their prospects for pollination and the time at which seeds ripen and are dispersed, defining their fitness and having community-level consequences (Fitter et al., 1995; Fitter and Fitter, 2002). Plants are very responsive to changes in climate due to temperature's dominant role in determining vegetative growth (Polgar and Primack, 2011). Climate is known to be an important driver of plant phenology (Schwartz et al., 2006), with plants advancing their flowering in accordance with warming temperatures (e.g. Wolfe et al., 2005). Changes in plant phenology have impacts on the rest of the ecosystem. The reproductive phenology of a species is closely linked to the phenology of other organisms essential to the success of reproduction (Both et al., 2009). The timing of flowering is very important for plant species, in particular when they rely on an insect pollinator as changes to flowering time could lead to mismatches with the presence of their pollinator (Rafferty and Ives, 2012). In an alpine community it has been illustrated that early in the season there is a low pollinator availability compared to a high pollinator availability later in the season (Kameyama and Kudo, 2015). Therefore, plants that flower very early are at risk of not being pollinated due to a shortage of pollinators, while plants flowering late have to compete with other flowering species for pollinators. The composition of the pollinator community also changes as the season progresses, with different groups of pollinators showing a preference for different taxa (Kameyama and Kudo, 2015). Additionally, pollinators may become more experienced as time progresses and therefore more successful at pollinating plants later in the season (Rafferty and Ives, 2012).

Any changes to the flowering time of an individual which is not also matched by a change in the appearance of its pollinator could have massive impacts on its reproductive success, as well as having implications on competition for pollinators. Changes to plant phenology may have cascading effects across the food chain. At four different levels in the food chain in a temperate forest, shifts in phenologies of different magnitudes over 20 years have created a decrease in synchrony at all of the levels (Both et al., 2009). Changes are also occurring to the structure of pollination networks, with one documented loss showing an

overall loss of 46% of pollinators and only 24% of original interactions remaining (Burkle et al., 2013).

Changes to plant phenology due to changes in temperature can affect the productivity of food crops, and also whether particular crops can be grown in certain regions. Many tree crops, for example, require winter chills in order to produce flower buds. Predicted declines in the number of chilling hours in California will make the area unsuitable for most of the tree crops currently grown there by the end of the century (Luedeling et al., 2009). When phenological changes cause mismatches with pollinators, this can also have massive implications on food production. In the European Union alone, four out of five of all crops and wildflowers rely on insect pollinators, resulting in \in 15 billion of agricultural output every year (European Commission, 2018).

One of the big and still largely open questions in phenology regards the extent to which species are able to adjust to a changing climate, and whether there are evolutionary constraints. Flowering time is a highly variable trait (Chuine, 2010), and may therefore be expected to be primarily driven by the environment, with little phylogenetic signal (Davies et al., 2013). However, species that occupy similar environments show a large variation in their flowering time, suggesting that phenological traits are at least to some extent governed by intrinsic factors like phylogeny (Davies et al., 2013). If species are constrained by their evolutionary history we would expect to see similar relationships between temperature and phenology (e.g. in first flowering dates) in closely related species. If species are not phylogenetically conserved we would expect that the responses of individual species and/or plants to warming temperatures will be better explained by their ecology or the characteristics of the habitats in which they originate, rather than by phylogenetic relatedness. This has been tested across broad groups of organisms, for example across major plant families (Kochmer and Handel, 1986; Davis et al., 2010), but to my knowledge this has rarely been tested within narrower taxonomic groups such as within a single genus.

Not all species respond to climatic changes equally (Willis et al., 2008). Closely related species often flower at similar times which points to phylogenetic conservatism, either due to physiology which determines sensitivity to climate cues, or due to phylogenetic niche conservatism where related species grow in and are adapted to a similar environment (Davies et al., 2013). Even in geographically isolated temperate floras, plant species from major clades show phylogenetic conservatism in flowering time tracking (Davis et al., 2010).

Similarly, animal-pollinated angiosperms from Japan and the USA (over 2000 species) show consistent flowering times among families, with life forms also clustering to a lesser degree (Kochmer and Handel, 1986). It has been shown that species loss in is phylogenetically clustered due to conservatism of flowering-time responses to climate change (Willis et al., 2008).

The relative contributions of phylogeny and ecology may give insight into how species will respond to changing climates in the future. Phenological studies that are restricted to one or a few taxonomic groups are a powerful tool to explore plant cycles in more detail (Carvalho et al., 2015). Few studies have examined the relative contribution of environmental and phylogenetic factors within a specific taxonomic group, and with differing results. The flowering phenology of the Myrteae (Myrtaceae) for example is influenced by both ecology and phylogeny, with ecology playing a more important role (Staggemeier et al., 2010). Conversely, a study focusing on one taxonomic group in a particular environment, the Bromeliaceae, found that abiotic and phylogenetic factors way play an important role (Suizani et al., 2012).

In this study we use flowering phenology data of 46 species in the genus *Rhododendron* growing in the same location, spanning ten years. Using data from a common garden experiment is beneficial since all of the individuals are experiencing the same environmental conditions and photoperiod, and the dates for phenology correspond to the exact same environmental conditions (e.g. onset of spring occurs on the same day). Focussing on one genus allows us to test for subtle lineage effects which might not be detectable at larger taxonomic scales.

The genus *Rhododendron*, in the family Ericaceae, is found across a large latitudinal gradient from 20 °S to 80 °N. The greatest diversity of the genus is found in the Asian tropics, but on mountains, indicating their preference for cooler climates (Shrestha et al., 2018). The genus has been known for a long time, with the type specimen of the genus (*R. ferrugineum* (L.)) being described by Linnaeus in 1753 (Cullen, 1980). Rhododendrons are small to large shrubs, and rarely large trees which may be evergreen or deciduous. The leaves are arranged in a spiral, and the undersides of leaves are often covered in scales or hairs that are used to identify taxa. Flowers are grouped in inflorescences and have superior ovaries, and stamens bearing agglutinate pollen. There is a very large variation of morphology across

the genus which has made it taxonomically complex. They are used extensively in horticulture and are popular garden plants, evident from the existence of thousands of cultivars. The group is culturally significant and the national flower of Nepal is that of *Rhododendron arboreum*, and several other species are state flowers or state trees in different provinces in India and two US states. An herbal brew is made from the flowers of three species which is called Labrador tea. In Nepal, the flowers *R. arboruem* are pickled, used in fish stews, and used to make a juice. Traditional medicine has used Rhododendrons for a long time to treat inflammation, pain, gastro-intestinal disorders, skin problems, and colds, and modern studies have found support for its effectiveness to treat these symptoms (Popescu and Kopp, 2013). Honey from some species causes intoxication due to the presence of grayanotoxins in the genus that are extracted by bees (Ullah et al., 2018). *Rhododendron ponticum* has become invasive in several countries, including the British Isles (Cross, 1975), taking over woodlands and producing a thick canopy under which native plants cannot survive and is difficult to eradicate.

The aims of this study were to determine (1) species-level phenological responses to temperature; and (2) the relative contribution of phylogenetic versus ecological traits to phenological plasticity.

Methods

Study area

The Royal Botanic Garden Edinburgh (RBGE) is located in Edinburgh, United Kingdom (55°57' N, 3°12' W). The garden, which covers an area of over 28 hectares and lies at an elevation of approximately 30 m a.s.l., has a temperate, maritime climate. The mean daily minimum and maximum temperatures are 5.91 °C (range -15.5 to 18.9 °C; 1976 - 2017) and 12.71 °C (range -4.5 to 29.9 °C; 1976 - 2017), with annual rainfall averaging 719 mm (1981 - 2010).

RBGE has been focussed on *Rhododendron* collection and taxonomy since the 19th century, and together with its three satellite gardens (Benmore, Dawyck, and Logan) contains the largest collection of *Rhododendron* species in the world. This includes approximately half of all known species (Royal Botanic Garden Edinburgh, 2018).

Study species

Forty-one species of Rhododendron are included in these analyses (Table 1). This includes species from Asia (the centre of distribution for the genus), America, and Europe. All of the individual plants considered in this study had been at the RBGE for at least seven years before the start of phenology monitoring, and would thus have adapted to the prevailing climatic conditions.

Species	Series	Number of accessions (with 5+ years data)	Niche breadth
Rhododendron adenogynum Diels	Taliense	3	-1.013
Rhododendron anthosphaerum Diels	Irroratum	3	-1.351
Rhododendron arboruem Sm.	Arboreum	5	-4.686
Rhododendron augustinii Hemsl.	Triflorum	4	-1.689
Rhododendron auriculatum Hemsl.	Auriculatum	1	-2.499
Rhododendron barbatum G.Don	Barbatum	3	-1.418
Rhododendron calendulaceum (Michx.) Torr.	Azalea	3	-1.688
Rhododendron calophytum Franch.	Fortunei	2	-2.094
Rhododendron calostrotum Balf.f. & Kingdon-Ward	Saluenense	3	-0.338
Rhododendron campanulatum D.Don	Campanulatum	3	-0.608
Rhododendron canadense (L.) Torr.	Azalea	3	-0.203
Rhododendron cinnabarinum Hook.f.	Cinnabarinum	4	-0.270
Rhododendron dauricum L.	Dauricum	4	1.553
Rhododendron decorum Franch.	Fortunei	4	-2.026
Rhododendron degronianum Carrière	Ponticum	4	-1.688
Rhododendron ferrugineum L.	Ferrugineum	5	-0.608
Rhododendron groenlandicum (Oeder) Kron & Judd	Ledum	2	1.148
Rhododendron hippophaeoides Balf.f. & W.W.Sm.	Lapponicum	5	-0.473
Rhododendron irroratum Franch.	Irroratum	2	-2.229
Rhododendron lapponicum Wahlenb.	Lapponicum	2	1.958
Rhododendron lepidotum Wall.	Lepidotum	3	-0.878
Rhododendron leptothrium Balf.f. & Forrest	Ovatum	1	-2.363

Table 1 List of Rhododendron species included in this study

Rhododendron liliiflorum H.Lév.	Maddenii	1	-3.309
Rhododendron lutescens Franch.	Triflorum	3	-1.959
Rhododendron luteum Sweet	Azalea	3	-0.203
Rhododendron meddianum Forrest	Thomsonii	2	-2.499
Rhododendron mucronulatum Turcz.	Dauricum	4	-1.318
Rhododendron neriiflorum Franch.	Neriiflorum	4	-2.229
Rhododendron ponticum L.	Ponticum	4	-1.891
Rhododendron praevernum Hutch.	Fortunei	4	-2.769
Rhododendron racemosum Franch.	Scabrifolium	3	-1.418
Rhododendron reticulatum D. Don ex G.Don	Azalea	5	-3.039
Rhododendron russatum Balf.f. & Forrest	Lapponicum	3	-0.878
Rhododendron schlippenbachii Maxim.	Azalea	3	-1.553
Rhododendron semibarbatum Maxim.	Semibarbatum	3	-2.229
Rhododendron siderophyllum Franch.	Triflorum	3	-2.094
Rhododendron strigillosum Franch.	Barbatum	3	-2.026
Rhododendron trichostomum Franch.	Anthopogon	3	-0.608
Rhododendron wadanum Makino	Brachycalyx	3	-2.094
Rhododendron wallichii Hook.f.	Campanulatum	3	-0.473
Rhododendron yunnanense Franch.	Triflorum	3	-1.418

Data collection

The collection of phenological data for Rhododendrons at RBGE was started in the summer of 2007 based on dedicated volunteer efforts and is ongoing to date. Every Wednesday, each *Rhododendron* individual was visually assessed and the first flowering date (FFD), peak flowering date (PFD), and last flowering date (LFD) recorded as the week of the year. The FFD was recorded when the first fully open flower, with the stigma and stamens visible, was seen (Figure 1). The PFD was recorded when the majority of the plant was in bloom, when few flowers had fallen off and few buds remained unopened. The LFD was defined as the date at which there were no fresh flowers remaining on the plant. The permanent weather station at RBGE includes readings of air temperature and precipitation. For these analyses, the weekly average temperatures have been used, calculated with data from 2008 to 2017.

Ecological traits for each species, including plant height, leaf length, and habitat were collected from books (Davidian, 1982; Davidian, 1989; Davidian, 1992; Davidian, 1995).

Data cleaning

The weather station data was imported into R (R Core Team, 2018) and cleaned to provide a uniform dataset. Dates were entered differently before 2003 (e.g. 18-Sep-2001) compared to after the year 2003 (e.g. 18/01/2017). This was standardized to the format used post-2003 across the entire dataset. The dates were then converted to julian days, which range between one and 365 (366 in a leap year). Missing values in the temperature dataset were filled in by using a linear interpolation function in the "zoo" package (Zeileis and Grothendieck, 2005). All data from 2018 were removed, since the full year is not represented yet and would influence yearly averages. All data formatting and cleaning was carried out in R, using the package "tidyr" (Wickham and Henry, 2018).

Phylogeny

Aligned RPB2 sequence data from Goetsch et al. (2005) was downloaded from TreeBASE (Study 1370; Piel et al., 2009). The phylogeny produced by these authors was reconstructed using RAxML BlackBox (Stamatakis et al., 2008) with a maximum likelihood search, to produce a maximum likelihood phylogenetic tree rooted with *Empetrum nigrum*. However, this most recent phylogeny available for the genus *Rhododendron* (Goetsch et al., 2005) only contains 15 of the species included in this study (36.59%). In order to investigate all of our species, the series into which each species is placed (obtained from Davidian, 1982; Davidian, 1989; Davidian, 1992; Davidian, 1995) was used as a proxy, and since series in the genus match previously produced phylogenies (Hart et al., 2016), were assumed to be a good proxy for phylogenetic information. A current project in China, which is working on producing a full molecular phylogeny of the genus, is expected to be published in the near future and when this becomes available we aim to rerun our analyses to incorporate this new and more complete information.

Sliding window analyses

All statistical analyses were conducted in R statistical software (R Core Team, 2018). The mean air temperature for each day was calculated as the average of the minimum and maximum daily temperature values. The mean daily maximum temperature for each year was calculated and plotted with a linear regression line fitted.

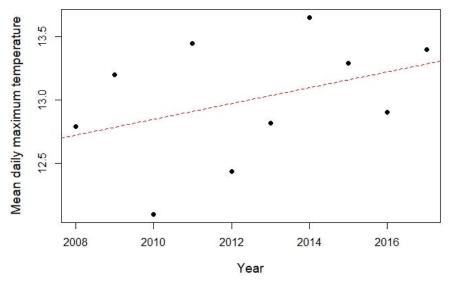
To determine the time window before the phenology phase (FFD, PFD or LFD) during which temperature most influences the date of the phenology phase, a sliding window analysis was run across all accessions for each of the three phases. The end of each time window was kept the same as the mean date of the phenological observation for that accession. The start date of the window was changed by subtracting 7 days from the start of the window at each increase, resulting in 13 time windows (ranging from 6 to 69 days prior to the phenology phase). A linear model was run for the flowering phenology against the predictors mean temperature and year to produce a slope, standard error, and model log likelihood for each individual accession. Using the sum of the log likelihood scores across all of the accessions, the window with the overall best performance for FFD, PFD and LFD was identified as window ten, which is the window up to 69 days before the flowering stage. Only individuals with data for at least five years were included in the analyses.

Figure 1 *Rhododendron* flowers a) in bud; and b) fully open with the stamens and stigma visible

Niche breadth

Geographic occurrences for each species were downloaded from the Global Biodiversity Information Facility (GBIF) through the "rgbif" library in R (Chamberlain, 2017). The records were limited to preserved specimens with coordinates, to exclude individuals growing in botanic gardens. For each species, the occurrences were mapped, and any errors in the dataset (e.g. coordinates in the ocean or outside of the species range) were manually removed.

Climatic predictor variables that were thought to be biologically important (mean temperature, minimum temperature of the coldest month, maximum temperature of the warmest month, annual precipitation, precipitation of the driest month, precipitation of the wettest month, temperature annual range, temperature diurnal range, and altitude) were chosen and downloaded from WorldClim version 2.0 at a resolution of 30 arc seconds (Fick and Hijmans, 2017). Some of these variables represent extremes (e.g. precipitation of the driest month), while others represent total resource availability (e.g. annual precipitation).


Following the methods presented by Broennimann et al. (2012), the niche breadth for each species was calculated through the "adehabitat" library (Calenge, 2006), using R code written by Broennimann et al. (2012). A principal component analysis (PCA) was performed on the chosen environmental variables and altitude. The environmental space formed by the first two components was gridded (explaining 66.53% of the variance), and the species were then mapped into the gridded space using a kernel density function. The niche position of each species was then identified as the median position of the species within the environmental grid, and the variation from this median position measured as the niche breadth on both axes of the PCA. Six species had insufficient records to produce a value for niche breadth (*R. anwheiense, R. collettianum, R. lanigerum, R. macabeanum, R. maculiferum, R. tolmachevii*). Additionally, for those with no geographic occurrence records, no altitude and latitude values could be extracted. These species were excluded from further analyses. The niche breath along the first axis of the PCA captured most of the variation (45.53%), and therefore this was the value used in further analyses. Species with a higher value for niche breadth occupy a broader range of environmental conditions (Table 1).

Mixed effect models

To determine the relative effects of the different traits on the flowering phenology of Rhododendrons, a random effects meta-analytic approach using a mixed effect model, fitted via restricted maximum likelihood estimation, in the "metafor" library was used (Viechtbauer, 2010). Each phenological phase (FFD, PFD, and LFD) was analysed separately. The slope of the phenological shift of each species (i.e. plasticity) was modelled against predictor variables. Niche breadth, maximum altitude, median altitude, maximum latitude, and median latitude were included as fixed effects. Series (proxy for phylogeny), species, and accession number were added to the model as random effects. Adding these variables to the model as random effects allows estimating the variation in plasticity across the different levels of the variable (e.g. species). This is used when you are interested in the overall effect, and not in the effects of the subgroups within the variable. Using random effects also mitigates the issue of imbalance in the data (e.g. some series may be better represented than others) and provide an estimate for the overall effect. To determine the significance of random effects, each random effect was dropped from the model in turn and the log likelihoods of the two models compared using a likelihood ratio test.

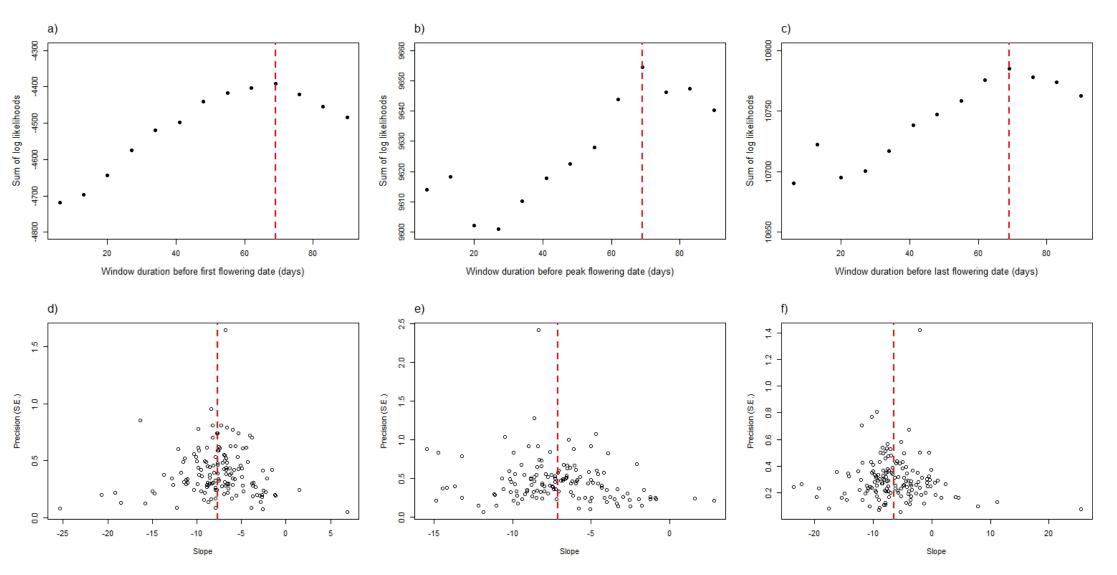
Results

The mean daily maximum temperature showed no significant increase from 2008 to 2017 ($R^2 = 0.152$, p=0.265; (Figure 2). The mean daily mean temperature also showed no significant increase in the study period (R^2 =0.125, p=0.316).

Figure 2 The mean daily maximum temperature per year from 2008 to 2017, with a linear regression line fitted

Sliding window analyses indicated that temperatures between 69 days prior to the first flowering date and the actual date had the biggest influence on the date at which the first flowers emerged (Figure 3A). The best window and the window nearest to it were significantly different from one another (log likelihood 11.59 units higher). The slope of the first flowering date of all of the individuals studied converged around the mean of -7.643 days (see Appendix Table A1 for responses of individual plants), indicating that on average the studied species first flowered 7.643 days earlier per one degree warming (Figure 3D). The same trend was seen for the peak and last flowering dates, which also responded most strongly to temperatures in the 69 days before the date of first flowering (Figure 3B and 3C), with a significant difference between the best window and the next-best window for both peak (log likelihood difference of 7.01) and last flowering dates (log likelihood difference of 7.49). The mean slope for peak flowering date was -7.116 (Figure 3E; responses for individual plants in Appendix Table A2), and -6.419 for the last flowering date (Figure 3F; responses for individual plants in Appendix Table A3).

Table 2 Results from the null models for each flowering phase, including only random effects


Phenology stage	Intercept		Accession Species		cies	Ser	ies	
	Slope	p-value	Estimate	p-value	Estimate	p-value	Estimate	p-value
FFD	-7.6623	< 0.0001	0.0000	1.0000	4.0312	0.0034	0.0000	1.000
PFD	-7.4779	< 0.0001	1.8872	0.0005	2.5107	0.0274	0.0000	1.000
LFD	-6.7405	<0.0001	7.8378	< 0.0001	0.3931	0.7970	0.0000	1.000

As a null model, including only random effects in the model, the mean plasticity for first flowering date was -7.6623 (p<0.0001). There was significant variation among different species, but not within-species or among series (Table 2). When including fixed effects in the model, the plasticity of first flowering date was not significantly affected by any of the fixed effects and the fixed effects did not explain the variation in plasticity (test for residual heterogeneity, QM=107121, p=0.057). There was true random variation in random effect sizes (QE=164.4822, p=0.0074). None of the random effects were significant (Table 3).

Peak flowering date was the only one of the three phenological phases with a significant intercept of -12.9899 (\pm 4.7336 S.E., p=0.0061) when all effects were included in

the model (Table 4). With only random effects, the mean plasticity was -7.4779 (Table 2). The random effects accession number and species were significant in driving plasticity (indicating variation both within-species and between species) in both models, with all other variables being non-significant (Table 4). Fixed effects overall did not explain the variation in plasticity (QM=2.8608, p=0.7214), and random effects contained variation (QE=236.0247, p<0.0001).

The mean plasticity of last flowering date highly significant in the null model which only included random effects (intercept=-6.7405; Table 2). In the model accounting for all effects (Table 5), maximum latitude (estimate=0.3178, lower confidence interval=0.0798, upper confidence interval=0.5557), median latitude (estimate=-0.4214, lower confidence interval=-0.7257, upper confidence interval=-0.1170) and accession (estimate=8.2545, lower confidence interval=2.6233, upper confidence interval=13.8857) were significant effects is driving the plasticity of species' last flowering dates (Table 5). Therefore, species at a lower maximum latitude will have higher plasticity than those at a higher maximum latitude, but plasticity decreases with a species' increase in median latitude. After accounting for fixed effects, accessions differ in their plasticity. The last flowering date was the only phase for which any of the fixed effects has a significant impact on plasticity. Species growing at a higher maximum latitude had higher plasticity in the response of their last flowering date, while species growing at higher median latitudes showed lower plasticity. Despite the significance of maximum latitude and median latitude, fixed effects overall did not significantly explain the variation in plasticity (QM=9.7029, p=0.0841). The test for residual heterogeneity indicated that there is variation in the plasticity across the random effects (QE=273.8633, p<0.001).

Figure 3 Results from sliding window analyses indicating the temperature window best predicting a) first flowering date, b) peak flowering date, and c) last flowering date; and funnel plots showing convergence of individual slopes around the mean for d) first flowering date, e) peak flowering date, and f) last flowering date

Variable		Fixed effects		
	Estimate	Standard error	Z value	p-value
Intercept	-2.3055	4.5803	-0.5033	0.6147
Maximum altitude	0.0000	0.0007	0.0721	0.9426
Maximum latitude	-0.1244	0.1158	-1.0741	0.2828
Median altitude	0.0000	0.0010	0.0171	0.9863
Median latitude	-0.0101	0.1568	-0.0645	0.9486
Niche breadth	0.3156	0.5840	0.5404	0.5889
	Randon	n effects		
	Estimate	p-value (likelihood		
		ratio test)		
Accession	0.0000	1.0000		
Species	1.9444	0.1352		
Series	2.0839	0.9188		

Table 3	Mixed	effect 1	nodel	results	for	plasticit	y of	first	flowe	ering	date	

Table 4	Mixed effect model res	sults for plasticity of	f peak flowering date
---------	------------------------	-------------------------	-----------------------

Variable		Fixed effects		
	Estimate	Standard error	Z value	p-value
Intercept	-12.9899	4.7336	-2.7442	0.0061
Maximum altitude	-0.0005	0.0006	-0.8771	0.3804
Maximum latitude	0.0404	0.1092	0.3703	0.7111
Median altitude	0.0014	0.0009	1.6238	0.1044
Median latitude	0.0753	0.1601	0.4703	0.6381
Niche breadth	-0.6753	0.5777	-1.1689	0.2424
	Rando	m effects		
	Estimate	p-value (likelihood		
		ratio test)		
Accession	1.7669	0.0008		
Species	3.1462	0.0125		
Series	0.0000	1		

Table 5 Mixed effect model results for plasticity of last flowering date

Variable		Fixed effects		
	Estimate	Standard error	Z value	p-value
Intercept	-4.3502	4.3098	-1.0094	0.3128
Maximum altitude	-0.0005	0.0007	-0.7220	0.4703
Maximum latitude	0.3178	0.1214	2.6172	0.0089
Median altitude	0.0006	0.0009	0.6801	0.4965
Median latitude	-0.4214	0.1553	-2.7138	0.0067
Niche breadth	0.1320	0.5757	0.2294	0.8186
	Random effects			
	Estimate	p-value (likelihood ratio		
		test)		
Accession	8.2545	< 0.001		
Species	0.0000	1.0000		
Series	0.0000	1.0000		

Discussion

Rhododendron species show large responses in their flowering phenologies to increasing temperatures. All three stages of flowering, first flowering date, peak flowering date and last flowering date, occur earlier under temperature increases. Shifts in the first and last flowering dates are similar in magnitude, although the last flowering date is shifting one day less and therefore prolonging their overall flowering period by approximately one day. Taxonomic-level information on phylogenetic relationships, and information on the species' ecologies did not explain these shifts, and other factors may be at play here. This suggests that Rhododendrons are able to adapt to changing climatic conditions, but the limits to their plasticity and biological consequences of these shifts remain unknown.

Previous phenology studies considering Rhododendrons have found advances in flowering time, but have not investigated the factors driving these responses. Flowering data from herbarium records and long-term weather data suggest that *Rhododendron arboreum* in the Indian central Himalaya is flowering 88 to 97 days earlier than 100 years ago, corresponding with a significant increase in the annual mean maximum temperature (Gaira et al., 2014). Thirty-six species of Rhododendron, represented by 1147 herbarium specimens from Yulong mountain over a period of 125 years, showed that flowering responds positively to annual temperature (2.27 days per 1 °C increase), and negatively to fall temperature (2.54 days per 1 °C) and elevation (1.4 days per 100 m) (Hart et al., 2014). These results show a much more pronounced advancement in first flowering date at more than seven days per one degree Celsius increase in spring temperatures. Shifts of this magnitude have rarely been observed in other angiosperms, for example an average advancement of seven days for an increase of 2.4 °C over 473 species (Willis et al., 2008). However, some extremes of first flowering dates up to 55 days earlier have been recorded (Fitter and Fitter, 2002).

The temperatures most strongly driving these shifts in flowering dates are those roughly two months before the flowering phase. Species flowering in May and June in England have been shown to respond most strongly to temperatures in February (Fitter and Fitter, 2002). For English summer-flowering species, temperatures up to four months before flowering affected the flowering date (Fitter et al., 1995). Mean annual temperatures and autumn temperatures have also been found to predict flowering dates of Rhododendrons in the Himalayas (Hart et al., 2014).

The plasticity of flowering dates for Rhododendrons was not well explained by the variables investigated. None of the phylogenetic or ecological variables were significant for both first and peak flowering dates. This suggests that other factors are driving these species' responses to increasing temperatures. Suizani et al. (2012) also found that abiotic and phylogenetic predictors did not explain the phenological responses of Brazilian Bromeliaceae, and suggest that biotic factors may play a role shifting flowering dates. Many other studies considering larger taxonomic groups, however, have found significant phylogenetic conservatism in flowering phenology (Willis et al., 2008; Davies et al., 2013). Despite previous evidence that the last flowering date of Rhododendrons is phylogenetically clustered due to later flowering species having less time for fruit development and thus smaller fruits (Hart et al., 2016), no such signal is evident here. It is possible that patterns of phylogenetic clustering are not detectable at the species level, but these results need to be supported by a complete molecular phylogeny as the series information might not adequately capture evolutionary relationships.

Environmental factors were expected to have a large impact on flowering phenology. Elevation did not prove to be important in determining plasticity, despite previous results of *Rhododendron* flowering phenologies responding to elevation (Hart et al., 2014). The last flowering date, however, did respond to latitude parameters. Species growing at higher latitudes are predicted to be most sensitive to climate change and have the most conserved phenologies (Pau et al., 2011). Here we find the opposite of these predictions, with species growing at higher maximum latitudes exhibiting higher plasticity. Growing at higher latitudes may have implications of shorter growing seasons (Schwartz, 2003), making it imperative for species growing far north to flower soon after snowmelt (Bliss, 1971). Having a higher plasticity may help these species survive changing climatic conditions in these areas where adaptation has already been important for their reproductive success in the past.

Rhododendron species show large advancements in early, peak, and last flowering dates in response to warming temperatures in the two months prior to the flowering stage. This means that they are capable of tracking climates as temperatures warm across the globe, and this does not appear to be constrained by their evolutionary history. It may, however, put them at risk for temporal mismatch with their pollinators (Rafferty and Ives, 2012). A better understanding of *Rhododendron* phylogenetic relationships is needed to determine whether the absence of phylogenetic signal seen here is a true reflection of their phenological responses. Biotic factors may be important, where some species for instance only advance

flowering when they are not constrained by pollinators (Rafferty and Ives, 2011). Future studies should focus on disentangling the drivers behind species plasticity, as these remain uncertain.

References

- Abatzoglou, J. T. & Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. *Proceedings of the National Academy of Sciences* 113: 11770-11775.
- Badeck, F.-W., Bondeau, A., Böttcher, K., Doktor, D., Lucht, W., Schaber, J. & Sitch, S. (2004). Responses of spring phenology to climate change. *New Phytologist* 162: 295-309.
- Bliss, L. C. (1971). Arctic and alpine plant life cycles. *Annual review of ecology and systematics* **2**: 405-438.
- Blöschl, G., Hall, J., Parajka, J., Perdigão, R. a. P., Merz, B., Arheimer, B., Aronica, G. T.,
 Bilibashi, A., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B.,
 Claps, P., Fiala, K., Frolova, N., Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S.,
 Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., Ledvinka, O.,
 Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P.,
 Montanari, A., Murphy, C., Osuch, M., Ovcharuk, V., Radevski, I., Rogger, M.,
 Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Viglione, A., Volpi, E., Wilson, D.,
 Zaimi, K. & Živković, N. (2017). Changing climate shifts timing of European floods. *Science* 357: 588-590.
- Bolmgren, K. & Cowan, P. D. (2008). Time-size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. *Oikos* 117: 424-429.
- Both, C., Van Asch, M., Bijlsma, R. G., Van Den Burg, A. B. & Visser, M. E. (2009). Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? *Journal of Animal Ecology* **78**: 73-83.
- Broennimann, O., Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H. & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data. *Global Ecology and Biogeography* 21: 481-497.

- Burkle, L. A., Marlin, J. C. & Knight, T. M. (2013). Plant-Pollinator Interactions over 120 Years: Loss of Species, Co-Occurrence, and Function. *Science* 339: 1611-1615.
- Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. *Ecological Modelling* **197**: 516-519.
- Carvalho, A. L. G. D., Somner, G. V. & Allen, J. (2015). Is the phenology of all restinga species the same? A taxonomically-focused study of Sapindaceae in a highly threatened coastal environment. *Flora - Morphology, Distribution, Functional Ecology of Plants* 215: 92-101.
- Chamberlain, S. 2017. *rgbif: Interface to the Global 'Biodiversity' Information Facility API* [Online]. R package version 0.9.9. Available: <u>https://CRAN.R-project.org/package=rgbif</u>.
- Chiabai, A., Quiroga, S., Martinez-Juarez, P., Higgins, S. & Taylor, T. (2018). The nexus between climate change, ecosystem services and human health: Towards a conceptual framework. *Science of The Total Environment* 635: 1191-1204.
- Chuine, I. (2010). Why does phenology drive species distribution? *Philosophical Transactions of the Royal Society B* **365:** 3149-3160.
- Cross, J. R. (1975). Rhododendron Ponticum L. Journal of Ecology 63: 345-364.
- Cullen, J. (1980). Revision of Rhododendron. I. subgenus Rhododendron sections Rhododendron and Pogonanthum. *Notes from the Royal Botanic Garden Edinburgh* 39: 1-207.
- Davidian, H. H. 1982. The Rhododendron Species: Lepidotes, B.T Batsford Ltd., London.
- Davidian, H. H. 1989. *The Rhododendron Species: Elipidote species, series Arboreum Lacteum,* B.T. Batsford Ltd., London.
- Davidian, H. H. 1992. *The Rhododendron Species: Elepidotes, series Neriiflorum -Thomsonii*, B.T Batsford Ltd., London.
- Davidian, H. H. 1995. The Rhododendron Species: Azaleas, Timber Press, Portland, Oregon.
- Davies, T. J., Wolkovich, E. M., Kraft, N. J. B., Salamin, N., Allen, J. M., Ault, T. R., Betancourt, J. L., Bolmgren, K., Cleland, E. E., Cook, B. I., Crimmins, T. M., Mazer, S. J., Mccabe, G. J., Pau, S., Regetz, J., Schwartz, M. D. & Travers, S. E. (2013). Phylogenetic conservatism in plant phenology. *Journal of Ecology* **101**: 1520-1530.
- Davis, C. C., Willis, C. G., Primack, R. B. & Miller-Rushing, A. J. (2010). The importance of phytogeny to the study of phenological response to global climate change. *Philosophical Transactions of the Royal Society B* 365: 3201-3213.

- De Frenne, P., Van Langenhove, L., Van Driessche, A., Bertrand, C., Verheyen, K. & Vangansbeke, P. (2018). Using archived television video footage to quantify phenology responses to climate change. *Methods in Ecology and Evolution* 9: 1874-1882.
- European Commission 2018. Pollinating insects: Commission proposes actions to stop their decline. Brussels.
- Fick, S. E. & Hijmans, R. J. (2017). Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. *International Journal of Climatology* **37**: 4302-4315.
- Fischer, E. M. & Knutti, R. (2016). Observed heavy precipitation increase confirms theory and early models. *Nature Climate Change* **6**: 986.
- Fitter, A. H. & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. *Science* **296**: 1689-1691.
- Fitter, A. H., Fitter, R. S. R., Harris, I. T. B. & Williamson, M. H. (1995). Relationships Between First Flowering Date and Temperature in the Flora of a Locality in Central England. *Functional Ecology* 9: 55-60.
- Gaira, K. S., Rawal, R. S., Rawat, B. & Bhatt, I. D. (2014). Impact of climate change on the flowering of *Rhododendron arboreum* in central Himalaya, India. *Current Science* 106: 1735-1738.
- Goetsch, L., Eckert, A. J. & Hall, B. D. (2005). The Molecular Systematics of Rhododendron (Ericaceae): A Phylogeny Based upon RPB2Gene Sequences. *Systematic Botany* 30: 616-626.
- Hart, R., Georgian, E. M. & Salick, J. (2016). Fast and Cheap in the Fall: Phylogenetic determinants of late flowering phenologies in Himalayan *Rhododendron. American Journal of Botany* 103: 198-206.
- Hart, R., Salick, J., Ranjitkar, S. & Xu, J. (2014). Herbarium specimens show contrasting phenological responses to Himalayan climate. *PNAS* **111**: 10615-10619.
- Hsiang, S., Kopp, R., Jina, A., Rising, J., Delgado, M., Mohan, S., Rasmussen, D. J., Muir-Wood, R., Wilson, P., Oppenheimer, M., Larsen, K. & Houser, T. (2017). Estimating economic damage from climate change in the United States. *Science* 356: 1362-1369.
- Ipcc 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

- Jones, K. R., Watson, J. E. M., Possingham, H. P. & Klein, C. J. (2016). Incorporating climate change into spatial conservation prioritisation: A review. *Biological Conservation* 194: 121-130.
- Kameyama, Y. & Kudo, G. (2015). Intrinsic and extrinsic factors acting on the reproductive process in alpine-snowbed plants: roles of phenology, biological interaction, and breeding system. *Plant Species Biology* **30**: 3-15.
- Keogan, K., Daunt, F., Wanless, S., Phillips, R. A., Walling, C. A., Agnew, P., Ainley, D. G., Anker-Nilssen, T., Ballard, G., Barrett, R. T., Barton, K. J., Bech, C., Becker, P., Berglund, P.-A., Bollache, L., Bond, A. L., Bouwhuis, S., Bradley, R. W., Burr, Z. M., Camphuysen, K., Catry, P., Chiaradia, A., Christensen-Dalsgaard, S., Cuthbert, R., Dehnhard, N., Descamps, S., Diamond, T., Divoky, G., Drummond, H., Dugger, K. M., Dunn, M. J., Emmerson, L., Erikstad, K. E., Fort, J., Fraser, W., Genovart, M., Gilg, O., González-Solís, J., Granadeiro, J. P., Grémillet, D., Hansen, J., Hanssen, S. A., Harris, M., Hedd, A., Hinke, J., Igual, J. M., Jahncke, J., Jones, I., Kappes, P. J., Lang, J., Langset, M., Lescroël, A., Lorentsen, S.-H., Lyver, P. O. B., Mallory, M., Moe, B., Montevecchi, W. A., Monticelli, D., Mostello, C., Newell, M., Nicholson, L., Nisbet, I., Olsson, O., Oro, D., Pattison, V., Poisbleau, M., Pyk, T., Quintana, F., Ramos, J. A., Ramos, R., Reiertsen, T. K., Rodríguez, C., Ryan, P., Sanz-Aguilar, A., Schmidt, N. M., Shannon, P., Sittler, B., Southwell, C., Surman, C., Svagelj, W. S., Trivelpiece, W., Warzybok, P., Watanuki, Y., Weimerskirch, H., Wilson, P. R., Wood, A. G., Phillimore, A. B. & Lewis, S. (2018). Global phenological insensitivity to shifting ocean temperatures among seabirds. Nature Climate Change 8: 313-318.
- Kochmer, J. P. & Handel, S. N. (1986). Constraints and competition in the evolution of flowering phenology. *Ecological Monographs* **56**: 303-325.
- Luedeling, E., Zhang, M. & Girvetz, E. H. (2009). Climatic Changes Lead to Declining Winter Chill for Fruit and Nut Trees in California during 1950–2099. PLoS ONE 4: e6166.
- Parmesan, C. & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. *Nature* **421:** 37-42.
- Pau, S., Wolkovich, E. M., Cook, B. I., Davies, T. J., Kraft, N. J. B., Bolmgren, K., Betancourt, J. L. & Cleland, E. E. (2011). Predicting phenology by integrating ecology, evolution and climate science. *Global Change Biology* 17: 3633-3643.
- Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T.D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S.,

Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir, J., Linnetved, H. I., Martin, V. Y., Mccormack, P. C., Mcdonald, J., Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E., Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell, J. M., Sunday, J. M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E. & Williams, S. E. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. *Science* **355**.

- Piel, W. H., Chan, L., Dominus, M. J., Ruan, J., Vos, R. A. & Tannen, V. (2009). TreeBASEv. 2: A Database of Phylogenetic Knowledge. *e-BioSphere 2009*.
- Polgar, C. A. & Primack, R. B. (2011). Leaf-out phenology of temperate woody plants: from trees to ecosystems. *New Phytologist* 191: 926-941.
- Popescu, R. & Kopp, B. (2013). The genus Rhododendron: An ethnopharmacological and toxicological review. *Journal of Ethnopharmacology* **147**: 42-62.
- R Core Team 2018. *R: A language and environment for statistical computing*, R Foundation for Statistical Computing, Vienna, Austria.
- Rafferty, N. E. & Ives, A. R. (2011). Effects of experimental shifts in flowering phenology on plant–pollinator interactions. *Ecology Letters* **14:** 69-74.
- Rafferty, N. E. & Ives, A. R. (2012). Pollinator effectiveness varies with experimental shifts in flowering time. *Ecology* **93**: 803-814.
- Rich, P. M., Breshears, D. D. & White, A. B. (2008). Phenology of mixed woody–herbaceous ecosystems following extreme events: Net and differential responses. *Ecology* 89: 342-352.
- Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C. & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. *Nature* 421: 57-60.
- Royal Botanic Garden Edinburgh. 2018. *Rhododendrons at the four gardens* [Online]. Royal Botanic Garden Edinburgh. Available: <u>http://www.rbge.org.uk/the-gardens/rhododendrons</u> [Accessed 12 June 2018].
- Schwartz, M. D., Ahas, R. & Aasa, A. (2006). Onset of spring starting earlier across the Northern Hemisphere. *Global Change Biology* 12: 343-351.
- Schwartz, M. D. E. 2003. *Phenology: An integrative environmental science*, Kluwer Academic Publishers, Dordrecht.
- Shrestha, N., Su, X., Xu, X. & Wang, Z. (2018). The drivers of high *Rhododendron* diversity in south-west China: Does seasonality matter? *Journal of Biogeography* **45:** 438-447.

- Sparks, T. H. & Carey, P. D. (1995). The Responses of Species to Climate Over Two Centuries: An Analysis of the Marsham Phenological Record, 1736-1947. *Journal of Ecology* 83: 321-329.
- Staggemeier, V. G., Diniz-Filho, J. a. F. & Morellato, L. P. C. (2010). The shared influence of phylogeny and ecology on the reproductive patterns of Myrteae (Myrtaceae). *Journal of Ecology* 98: 1409-1421.
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008). A Rapid Bootstrap Algorithm for the RAxML Web-Servers. *Systematic Botany* **75**: 758-771.
- Stige, L. C. & Kvile, K. Ø. (2017). Climate warming drives large-scale changes in ecosystem function. *Proceedings of the National Academy of Sciences* **114**: 12100-12102.
- Suizani, C. V., De Lima, H. A., Rodarte, A. T. A. & Benevides, C. (2012). Flowering phenology of a Bromeliaceae community of an environment protection area (EPA) in the restinga of Maricá (RJ, Brazil) as compared to other habitats of the southeastern Brazilian Atlantic Rain Forest. *Brazilian Journal of Ecology* 1: 88-95.
- Thackeray, S. J., Henrys, P. A., Hemming, D., Bell, J. R., Botham, M. S., Burthe, S., Helaouet, P., Johns, D. G., Jones, I. D., Leech, D. I., Mackay, E. B., Massimino, D., Atkinson, S., Bacon, P. J., Brereton, T. M., Carvalho, L., Clutton-Brock, T. H., Duck, C., Edwards, M., Elliott, J. M., Hall, S. J. G., Harrington, R., Pearce-Higgins, J. W., Høye, T. T., Kruuk, L. E. B., Pemberton, J. M., Sparks, T. H., Thompson, P. M., White, I., Winfield, I. J. & Wanless, S. (2016). Phenological sensitivity to climate across taxa and trophic levels. *Nature* 535: 241.
- Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., De Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., Van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L. & Williams, S. E. (2004). Extinction risk from climate change. *Nature* 427: 145.
- Todesco, M., Pascual, M. A., Owens, G. L., Ostevik, K. L., Moyers, B. T., Hübner, S., Heredia, S. M., Hahn, M. A., Caseys, C., Bock, D. G. & Rieseberg, L. H. (2016).
 Hybridization and extinction. *Evolutionary Applications* 9: 892-908.
- Ullah, S., Khan, S. U., Saleh, T. A. & Fahad, S. (2018). Mad honey: uses, intoxicating/poisoning effects, diagnosis, and treatment. *Royal Society of Chemistry Advances* 8: 18635–18646.
- Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. *Journal of Statistical Software* **36:** 1-48.

- Wickham, H. & Henry, L. 2018. tidyr: Easily Tidy Data with 'spread()' and 'gather()' Functions [Online]. R package version 0.8.1. Available: <u>https://CRAN.R-project.org/package=tidyr</u>.
- Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J. & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau's woods are driven by climate change. *PNAS* 105: 17029-17033.
- Wolfe, D. W., Schwartz, M. D., Lakso, A. N., Otsuki, Y., Pool, R. M. & Shaulis, N. J. (2005). Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. *International Journal of Biometeorology* **49**: 303-309.
- Zeileis, A. & Grothendieck, G. (2005). zoo: S3 Infrastructure for Regular and Irregular Time Series. *Journal of Statistical Software* **14:** 1-27.

Appendix

Table A1 Responses of first flowering dates of individual plants to a mean daily temperature
increase of 1 °C

Species	Accession	Slope	Standard	р-	Log	R ²
	number		errror	value	likelihood	
Rhododendron adenogynum	1933.1020A	-3.626	3.252	0.308	-31.834	0.529
Rhododendron adenogynum	1948.0012A	-4.304	2.045	0.073	-32.812	0.542
Rhododendron adenogynum	1987.1535A	-3.371	3.772	0.406	-34.82	0.206
Rhododendron anthosphaerum	1923.0098 D	-20.695	5.019	0.026	-21.057	0.892
Rhododendron anthosphaerum	1949.1012A	-2.277	4.456	0.628	-35.277	0.172
Rhododendron anthosphaerum	1979.0989A	-3.689	5.452	0.536	-25.074	0.444
Rhododendron anwheiense	1971.0038A	-5.821	2.396	0.045	-33.894	0.534
Rhododendron anwheiense	1980.2048A	-6.972	4.826	0.285	-17.397	0.52
Rhododendron anwheiense	1980.2048D	-8.145	3.283	0.068	-20.84	0.609
Rhododendron arboreum	1974.0834B	-8.407	1.049	0.001	-15.492	0.951
Rhododendron arboreum	1976.0141C	-1.544	2.385	0.546	-26.336	0.572
Rhododendron arboreum	1981.1230G	-8.529	2.854	0.02	-35.154	0.562
Rhododendron arboreum	1990.2647A	-8.787	3.305	0.038	-32.137	0.542
Rhododendron arboreum	1996.0562A	-7.694	2.176	0.012	-28.884	0.758
Rhododendron augustinii	1975.4173A	-7.473	3.067	0.051	-30.368	0.514
Rhododendron augustinii	1977.2695 G	-6.635	2.066	0.085	-12.989	0.914
Rhododendron augustinii	1980.5048A	-7.706	1.349	0.001	-28.777	0.823
Rhododendron augustinii	1999.1844A	-8.687	7.404	0.362	-18.336	0.435
Rhododendron auriculatum	1916.0027A	-11.747	2.528	0.002	-33.097	0.743
Rhododendron barbatum	1972.0856*R	-6.902	3.201	0.068	-35.94	0.4
Rhododendron barbatum	1972.0856A	-7.894	6.053	0.24	-35.159	0.229
Rhododendron barbatum	1976.0083 C	-2.628	13.875	0.862	-23.858	0.071
Rhododendron calendulaceum	1977.1140A	-6.619	1.264	0.001	-28.067	0.778
Rhododendron calendulaceum	1979.1536AN	-7.495	1.605	0.002	-30.193	0.748
Rhododendron calendulaceum	1979.1536AS	-6.736	2.293	0.026	-27.552	0.606
Rhododendron calophytum	1969.8430A	-5.614	5.259	0.335	-31.073	0.413
Rhododendron calophytum	1972.4038A	-4.855	3.535	0.212	-35.749	0.264
Rhododendron calostrotum	1971.2351A	-11.513	2.055	0.001	-30.22	0.85
Rhododendron calostrotum	1971.2523A	-6.983	2.337	0.02	-32.807	0.616
Rhododendron calostrotum	1971.2524B	-9.426	2.753	0.014	-29.723	0.664
Rhododendron campanulatum	1955.1016A	-6.675	1.917	0.01	-31.901	0.641
Rhododendron campanulatum	1962.0908A	-6.286	2.31	0.03	-31.628	0.516

Rhododendron campanulatum	1969.8445A	-6.046	5.905	0.414	-17.243	0.365
Rhododendron canadense	1976.0690A	-7.625	2.95	0.032	-40.393	0.486
Rhododendron canadense	1976.0690B	-8.567	2.265	0.007	-33.83	0.709
Rhododendron canadense	1990.0430B	-8.767	2.225	0.008	-29.467	0.723
Rhododendron cinnabarinum	1938.1155G	-7.669	1.693	0.004	-27.246	0.807
Rhododendron cinnabarinum	1957.7184P	-3.776	1.427	0.033	-29.221	0.675
Rhododendron cinnabarinum	1969.8930K	-2.908	5.275	0.596	-44.092	0.206
Rhododendron cinnabarinum	1978.4120A	-6.479	3.349	0.089	-39.094	0.32
Rhododendron collettianum	1970.2019A	-8.765	2.224	0.006	-32.661	0.713
Rhododendron dauricum	1976.1068C	-12.839	2.898	0.003	-34.03	0.852
Rhododendron dauricum	1978.0139 A	-2.661	5.605	0.655	-31.073	0.754
Rhododendron dauricum	1991.1220A	-7.914	11.486	0.517	-44.042	0.137
Rhododendron dauricum	1976.1068 A	-12.247	11.648	0.37	-24.784	0.411
Rhododendron decorum	1969.8512B	-7.098	2.082	0.011	-30.645	0.726
Rhododendron decorum	1969.8512D	-8.253	1.24	0	-27.931	0.864
Rhododendron decorum	1973.4073B	-8.869	3.513	0.065	-23.54	0.62
Rhododendron decorum	1976.1403F	-6.227	1.605	0.006	-30.149	0.683
Rhododendron degronianum	1960.3367A	-6.718	2.402	0.023	-35.762	0.536
Rhododendron degronianum	1961.4659A	-5.122	2.19	0.047	-35.364	0.485
Rhododendron degronianum	1977.3254A	-6.865	1.836	0.006	-33.376	0.642
Rhododendron degronianum	1983.2540A	-6.68	2.629	0.035	-36.846	0.488
Rhododendron ferrugineum	1976.0519 H	-5.432	1.881	0.02	-33.248	0.555
Rhododendron ferrugineum	1976.0519B	-5.348	2.355	0.053	-35.722	0.556
Rhododendron ferrugineum	1976.0519 F	-5.664	1.598	0.012	-25.224	0.839
Rhododendron ferrugineum	1976.0519 G	-4.86	1.649	0.026	-25.033	0.816
Rhododendron ferrugineum	1976.1857 D	-1.143	5.183	0.846	-16.065	0.523
Rhododendron hippophaeoides	1971.2400A	-9.119	4.649	0.091	-38.742	0.582
Rhododendron hippophaeoides	1971.2576A	-9.752	1.698	0.001	-30.992	0.825
Rhododendron hippophaeoides	1971.2594G	-6.828	2.001	0.011	-32.58	0.628
Rhododendron hippophaeoides	1973.4078B	-9.512	4.305	0.063	-37.712	0.43
Rhododendron hippophaeoides	1991.0304C	-9.09	2.017	0.003	-31.681	0.745
Rhododendron irroratum	1991.1093A	-14.998	4.392	0.019	-29.973	0.7
Rhododendron irroratum	1996.0617 G	-6.819	0.608	0.008	-6.875	0.984
Rhododendron lanigerum	1929.1008B	-6.492	3.953	0.145	-37.924	0.296
Rhododendron lanigerum	1929.1008E	-7.883	4.11	0.104	-32.181	0.539
Rhododendron lanigerum	1929.1008H	-10.346	4.08	0.044	-33.255	0.552
Rhododendron lapponicum	1903.0018 A	-15.77	7.934	0.118	-30.371	0.699
Rhododendron lapponicum	1979.3270 A	-18.484	7.835	0.065	-31.492	0.777
Rhododendron lepidotum	1983.0962A	-6.437	3.427	0.097	-39.252	0.347

Rhododendron lepidotum	1983.0963C	-1.209	5.044	0.817	-39.725	0.018
Rhododendron lepidotum	1975.1302 A	-7.657	2.603	0.026	-28.723	0.626
Rhododendron leptothrium	1989.2109A	-19.15	4.585	0.009	-26.34	0.778
Rhododendron liliiflorum	1991.1969B	-7.677	2.102	0.022	-18.929	0.792
Rhododendron lutescens	1996.0608D	-8.532	3.338	0.038	-35.388	0.542
Rhododendron lutescens	1996.0608E	-6.802	3.602	0.101	-37.152	0.391
Rhododendron lutescens	1996.0608F	-8.702	3.548	0.044	-37.031	0.527
Rhododendron luteum	1977.3072E	-11.174	3.017	0.006	-38.358	0.638
Rhododendron luteum	1983.0848A1	-7.719	1.348	0.001	-27.778	0.824
Rhododendron luteum	1983.0848B1	-7.272	1.239	0.001	-26.768	0.831
Rhododendron macabeanum	1969.8707A	-7.91	3.833	0.078	-36.556	0.379
Rhododendron macabeanum	1928.1023B	-7.734	4.094	0.132	-25.077	0.485
Rhododendron meddianum	1975.4074A	-6.618	3.443	0.096	-35.657	0.536
Rhododendron meddianum	1998.0009 A	1.531	4.101	0.728	-23.447	0.511
Rhododendron mucronulatum	1977.0993A	-13.714	2.691	0.001	-33.008	0.789
Rhododendron mucronulatum	1977.0993C	-10.037	2.019	0.002	-31.595	0.804
Rhododendron mucronulatum	1995.1171B	-9.829	2.293	0.008	-22.388	0.793
Rhododendron mucronulatum	1995.1171G	-12.056	1.667	0	-22.267	0.897
Rhododendron neriiflorum	1975.4064B	-9.183	6.463	0.198	-41.771	0.225
Rhododendron neriiflorum	1994.3905 C	-4.482	1.63	0.071	-16.611	0.717
Rhododendron neriiflorum	1994.3905A	-3.241	5.026	0.537	-46.253	0.147
Rhododendron neriiflorum	1919.0100A	-2.816	7.409	0.74	-17.645	0.37
Rhododendron ponticum	1971.5872A	-9.8	1.285	0	-24.3	0.908
Rhododendron ponticum	1971.5872B	-8.921	2.06	0.003	-32.995	0.73
Rhododendron ponticum	1972.4007A	-5.348	1.347	0.004	-28.992	0.758
Rhododendron ponticum	1974.4139A	-5.993	2.895	0.084	-32.156	0.429
Rhododendron praecox	1969.8794Beast	-7.87	3.081	0.038	-35.433	0.593
Rhododendron praecox	1969.8794Bmid	-12.635	3.518	0.009	-35.879	0.694
Rhododendron praecox	1969.8794Bwest	-11.082	3.286	0.012	-35.428	0.689
Rhododendron praevernum	1924.0357A	-6.325	2.652	0.054	-29.909	0.488
Rhododendron praevernum	1924.0357D	-6.1	2.572	0.049	-33.625	0.446
Rhododendron praevernum	1924.0357E	-4.903	2.328	0.073	-32.939	0.393
Rhododendron praevernum	1969.8798A	-5.964	3.498	0.139	-32.394	0.332
Rhododendron racemosum	1973.4084B	-11.181	3.39	0.013	-35.98	0.648
Rhododendron racemosum	1932.1028	-7.547	1.699	0.003	-30.809	0.739
Rhododendron racemosum	1991.0867A	-8.839	3.741	0.05	-36.313	0.462
Rhododendron reticulatum	1975.2245BNE	-7.875	1.874	0.006	-27.091	0.772
Rhododendron reticulatum	1975.2245BSE	-25.396	12.868	0.089	-48.846	0.379
Rhododendron reticulatum	1975.2245BW	-11.072	2.98	0.007	-33.937	0.673

Rhododendron reticulatum	1975.2245 (SW)	-9.738	2.681	0.011	-30.193	0.745
Rhododendron reticulatum	1975.2245 N	-9.869	1.635	0.001	-25.715	0.875
	(N)					
Rhododendron russatum	1971.2586B	-2.68	4.958	0.606	-39.029	0.048
Rhododendron russatum	1971.2586D	-2.554	4.276	0.569	-37.651	0.118
Rhododendron russatum	1971.2586G	-6.537	4.657	0.203	-38.877	0.306
Rhododendron schlippenbachii	1975.0765 B (E)	-8.189	2.198	0.007	-32.807	0.67
Rhododendron schlippenbachii	1975.0765B	-11.388	1.932	0.001	-30.794	0.833
	(W)					
Rhododendron schlippenbachii	1977.1391B	-7.445	1.654	0.003	-30.681	0.757
Rhododendron semibarbatum	1976.1907ASW	-2.577	2.434	0.331	-27.94	0.163
Rhododendron semibarbatum	1976.1907ASE	-2.122	2.902	0.492	-28.129	0.082
Rhododendron semibarbatum	1976.1907B	-3.809	3.338	0.287	-38.766	0.141
Rhododendron siderophyllum	1980.0345C	-11.473	3.2	0.009	-37.297	0.658
Rhododendron siderophyllum	1996.0554B	-14.713	4.777	0.022	-34.242	0.659
Rhododendron siderophyllum	1980.0345B	-10.085	1.87	0.012	-16.959	0.911
Rhododendron strigillosum	1975.4050I	-4.759	4.394	0.328	-30.664	0.324
Rhododendron strigillosum	1996.0603A	-3.852	11.313	0.751	-33.827	0.233
Rhododendron strigillosum	1996.0599D	6.874	20.247	0.767	-19.807	0.07
Rhododendron strigillosum x	1969.8865A	-3.735	3.534	0.326	-37.193	0.181
praevernum						
Rhododendron tolmachevii	1940.0183A	-5.953	1.296	0.003	-28.259	0.764
Rhododendron tomentosum	1969.5002A	-9.897	3.437	0.028	-30.62	0.599
Rhododendron tomentosum	1978.0135A	-16.365	1.175	0.001	-11.888	0.987
Rhododendron trichostomum	1969.9607C	-9.493	2.389	0.005	-31.36	0.721
Rhododendron trichostomum	1963.3848 A	-10.307	1.804	0.002	-22.952	0.87
Rhododendron trichostomum	1969.9607 B	-8.549	2.66	0.024	-25.594	0.694
Rhododendron wadanum	1976.1072B	-8.85	1.622	0.001	-30.258	0.811
Rhododendron wadanum	1976.1909B+A	-8.081	2.528	0.015	-33.04	0.61
Rhododendron wadanum	1976.1072D	-8.196	1.424	0.001	-25.948	0.853
Rhododendron wallichii	1962.0915B	-5.718	2.942	0.093	-36.599	0.361
Rhododendron wallichii	1981.3602D	-6.941	1.818	0.007	-31.543	0.737
Rhododendron wallichii	1983.0965B	-8.343	3.353	0.042	-36.317	0.641
Rhododendron yunnanense	1996.0662 A	-4.061	1.39	0.1	-10.007	0.811
Rhododendron yunnanense	1996.0662D	-7.224	3.667	0.089	-32.679	0.419
Rhododendron yunnanense	1981.2672C	-8.401	6.243	0.271	-20.346	0.396

Species	Accession	Slope	Standard	p-value	Log	R ²
			error		likelihood	
Rhododendron adenogynum	1933.1020A	-6.565	1.879	0.013	-28.234	0.8
Rhododendron adenogynum	1948.0012A	-6.621	2.021	0.022	-23.636	0.762
Rhododendron adenogynum	1987.1535A	1.567	4.196	0.728	-23.85	0.638
Rhododendron anthosphaerum	1923.0098 D	-8.362	0.413	0	-8.309	0.993
Rhododendron anthosphaerum	1949.1012A	-8.736	3.733	0.066	-29.136	0.527
Rhododendron anthosphaerum	1979.0989A	-5.006	1.095	0.02	-12.147	0.934
Rhododendron anwheiense	1971.0038A	-4.348	2.446	0.113	-36.659	0.355
Rhododendron anwheiense	1980.2048A	-12.15	6.892	0.22	-17.292	0.61
Rhododendron anwheiense	1980.2048D	-6.283	3.092	0.112	-20.56	0.517
Rhododendron arboreum	1974.0834B	-7.977	2.517	0.034	-21.921	0.768
Rhododendron arboreum	1976.0141C	-4.014	5.191	0.483	-26.119	0.296
Rhododendron arboreum	1981.1230G	-7.492	2.536	0.021	-33.623	0.611
Rhododendron arboreum	1990.2647A	-7.375	2.804	0.039	-29.931	0.634
Rhododendron arboreum	1996.0562A	-5.696	1.949	0.027	-28.079	0.733
Rhododendron augustinii	1975.4173A	-9.931	4.77	0.082	-31.676	0.439
Rhododendron augustinii	1980.5048A	-8.818	2.398	0.008	-31.539	0.704
Rhododendron augustinii	1999.1844A	-9.829	1.811	0.032	-10.215	0.954
Rhododendron auriculatum	1916.0027A	-14.458	2.724	0.001	-33.262	0.792
Rhododendron barbatum	1972.0856*R	-3.781	3.937	0.369	-37.294	0.175
Rhododendron barbatum	1972.0856A	-4.966	4.03	0.264	-32.625	0.305
Rhododendron barbatum	1976.0083 C	-1.951	4.426	0.689	-20.55	0.424
Rhododendron calendulaceum	1977.1140A	-6.203	2.191	0.025	-29.906	0.568
Rhododendron calendulaceum	1979.1536AN	-7.994	3.07	0.04	-28.004	0.557
Rhododendron calendulaceum	1979.1536AS	-0.943	4.069	0.838	-14.235	0.27
Rhododendron calophytum	1969.8430A	-13.216	3.985	0.08	-11.763	0.98
Rhododendron calophytum	1972.4038A	-4.343	2.645	0.145	-34.992	0.397
Rhododendron calostrotum	1971.2351A	-8.625	1.948	0.003	-32.177	0.761
Rhododendron calostrotum	1971.2523A	-6.786	2.117	0.018	-27.903	0.711
Rhododendron calostrotum	1971.2524B	-9.707	3.704	0.12	-15.865	0.804
Rhododendron campanulatum	1955.1016A	-5.888	2.095	0.023	-35.515	0.498
Rhododendron campanulatum	1962.0908A	-8.486	1.823	0.002	-31.653	0.757
Rhododendron campanulatum	1969.8445A	-10.645	1.992	0.033	-11.629	0.942
Rhododendron canadense	1976.0690A	-8.442	2.912	0.02	-39.137	0.534

Table A2 Responses of peak flowering dates of individual plants to a mean daily
temperature increase of 1 °C

	1			1	1	
Rhododendron canadense	1976.0690B	-9.257	1.84	0.002	-30.416	0.786
Rhododendron canadense	1990.0430B	-10.215	1.705	0.002	-20.679	0.878
Rhododendron cinnabarinum	1938.1155G	-11.13	3.515	0.034	-21.047	0.791
Rhododendron cinnabarinum	1957.7184P	-4.863	2.272	0.07	-31.088	0.652
Rhododendron cinnabarinum	1969.8930K	-10.577	2.808	0.007	-31.326	0.722
Rhododendron cinnabarinum	1978.4120A	-6.101	1.137	0.001	-26.9	0.802
Rhododendron collettianum	1970.2019A	-8.997	1.093	0	-23.43	0.919
Rhododendron dauricum	1976.1068C	-10.134	3.143	0.023	-27.052	0.709
Rhododendron dauricum	1978.0139 A	-5.372	4.094	0.247	-28.226	0.733
Rhododendron dauricum	1991.1220A	-11.045	6.919	0.154	-43.856	0.336
Rhododendron dauricum	1976.1068 A	-3.287	7.604	0.695	-23.689	0.28
Rhododendron decorum	1969.8512B	-8.846	2.024	0.005	-26.033	0.79
Rhododendron decorum	1969.8512D	-7.29	1.999	0.007	-33.667	0.661
Rhododendron decorum	1973.4073B	-7.085	3.015	0.1	-17.718	0.743
Rhododendron decorum	1976.1403F	-7.047	1.659	0.003	-32.393	0.703
Rhododendron degronianum	1960.3367A	-8.216	3.157	0.035	-33.41	0.562
Rhododendron degronianum	1961.4659A	-3.922	1.216	0.012	-27.662	0.661
Rhododendron degronianum	1977.3254A	-6.057	1.505	0.004	-29.865	0.716
Rhododendron degronianum	1983.2540A	-6.427	1	0.001	-19.943	0.934
Rhododendron ferrugineum	1976.0519 H	-4.038	2.884	0.199	-36.68	0.261
Rhododendron ferrugineum	1976.0519B	-5.974	1.651	0.007	-30.47	0.716
Rhododendron ferrugineum	1976.0519 F	-7.295	1.909	0.009	-25.233	0.842
Rhododendron ferrugineum	1976.0519 G	-5.021	2.095	0.062	-21.072	0.871
Rhododendron hippophaeoides	1971.2400A	-9.442	1.488	0	-29.54	0.86
Rhododendron hippophaeoides	1971.2576A	-6.929	2.127	0.014	-30.596	0.648
Rhododendron hippophaeoides	1971.2594G	-7.623	2.494	0.018	-31.932	0.609
Rhododendron hippophaeoides	1973.4078B	-9.068	2.902	0.017	-36.463	0.583
Rhododendron hippophaeoides	1991.0304C	-8.604	2.159	0.005	-32.324	0.694
Rhododendron irroratum	1991.1093A	-15.467	1.142	0	-16.994	0.979
Rhododendron lanigerum	1929.1008B	-1.798	7.036	0.808	-29.944	0.168
Rhododendron lanigerum	1929.1008E	-2.545	4.649	0.604	-34.175	0.239
Rhododendron lanigerum	1929.1008H	-2.505	7.651	0.76	-25.988	0.329
Rhododendron lapponicum	1979.3270 A	-5.081	9.801	0.631	-28.672	0.613
Rhododendron lepidotum	1983.0962A	-3.341	2.815	0.274	-32.411	0.187
Rhododendron lepidotum	1983.0963C	-7.289	2.2	0.013	-30.079	0.668
Rhododendron lepidotum	1975.1302 A	-6.294	2.323	0.035	-27.677	0.658
Rhododendron leptothrium	1989.2109A	-9.385	4.43	0.088	-27.79	0.498
Rhododendron liliiflorum	1991.1969B	-8.475	4.012	0.125	-18.461	0.697
Rhododendron lutescens	1996.0608D	-10.059	2.214	0.004	-28.78	0.782

Rhododendron lutescens	1996.0608E	-9.834	2.367	0.006	-25.929	0.772
Rhododendron lutescens	1996.0608F	-13.671	2.521	0.001	-32.504	0.808
Rhododendron luteum	1977.3072E	-9.077	3.021	0.001	-37.776	0.552
Rhododendron luteum	1983.0848A1	-6.791	2.057	0.017	-34.676	0.594
Rhododendron luteum	1983.0848B1	-5.98	2.295	0.035	-31.52	0.511
Rhododendron macabeanum	1969.8707A	-8.139	4.139	0.106	-30.996	0.452
Rhododendron macabeanum	1909.8707A 1928.1023B	-9.227	3.414	0.100	-21.348	0.432
Rhododendron meddianum	1928.1023B 1975.4074A	-4.574	1.818	0.074	-21.348	0.710
Rhododendron meddianum	1998.0009 A	-5.785	9.232	0.575	-21.45	0.313
Rhododendron mucronulatum	1977.0993A	-7.535	1.854	0.005	-31.609	0.723
Rhododendron mucronulatum	1977.0993C	-13.206	1.273	0	-26.63	0.939
Rhododendron mucronulatum	1995.1171B	-6.145	3.583	0.137	-30.112	0.359
Rhododendron mucronulatum	1995.1171G	-9.749	3.017	0.018	-27.869	0.646
Rhododendron neriiflorum	1975.4064B	-4.545	2.326	0.108	-26.378	0.684
Rhododendron neriiflorum	1994.3905 C	-2.699	3.315	0.501	-14.248	0.288
Rhododendron neriiflorum	1994.3905A	-5.068	4.898	0.335	-40.207	0.136
Rhododendron neriiflorum	1919.0100A	-3.404	5.678	0.61	-17.431	0.444
Rhododendron ponticum	1971.5872A	-7.424	2.563	0.023	-30.188	0.589
Rhododendron ponticum	1971.5872B	-6.762	1.492	0.002	-30.812	0.797
Rhododendron ponticum	1972.4007A	-4.677	1.673	0.023	-31.053	0.7
Rhododendron ponticum	1974.4139A	-8.32	1.346	0	-24.083	0.888
Rhododendron praecox	1969.8794Beast	-5.801	4.136	0.203	-37.311	0.264
Rhododendron praecox	1969.8794Bmid	-8.658	3.123	0.028	-34.98	0.524
Rhododendron praecox	1969.8794Bwest	-7.735	3.269	0.05	-35.337	0.489
Rhododendron praevernum	1924.0357A	-1.234	4.438	0.789	-38.143	0.092
Rhododendron praevernum	1924.0357D	-1.234	3.876	0.759	-36.734	0.051
Rhododendron praevernum	1924.0357E	-3.499	4.387	0.455	-33.445	0.1
Rhododendron praevernum	1969.8798A	-0.859	4.395	0.851	-38.041	0.102
Rhododendron racemosum	1973.4084B	-14.721	1.201	0	-26.046	0.956
Rhododendron racemosum	1932.1028	-6.506	1.588	0.006	-25.76	0.747
Rhododendron racemosum	1991.0867A	-8.125	2.29	0.009	-33.678	0.646
Rhododendron reticulatum	1975.2245BNE	-10.464	0.963	0	-25.393	0.944
Rhododendron reticulatum	1975.2245BSE	-8.406	1.093	0	-26.28	0.902
Rhododendron reticulatum	1975.2245BW	-8.457	1.55	0.001	-29.815	0.81
Rhododendron reticulatum	1975.2245 (SW)	-10.184	2.055	0.004	-22.95	0.832
Rhododendron reticulatum	1975.2245 N	-9.926	1.201	0	-24.44	0.92
	(N)					
Rhododendron russatum	1971.2586B	-8.178	1.532	0.001	-30.049	0.804
Rhododendron russatum	1971.2586D	-6.545	1.497	0.003	-29.5	0.745

Rhododendron russatum	1971.2586G	-7.121	1.743	0.005	-30.953	0.711
Rhododendron schlippenbachii	1975.0765 B (E)	-8.183	1.378	0.001	-28.832	0.842
Rhododendron schlippenbachii	1975.0765B	-7.609	1.183	0	-27.448	0.858
	(W)					
Rhododendron schlippenbachii	1977.1391B	-4.194	1.739	0.047	-30.164	0.499
Rhododendron semibarbatum	1976.1907ASW	-5.183	2.324	0.076	-23.86	0.562
Rhododendron semibarbatum	1976.1907ASE	-1.643	2.877	0.589	-28.031	0.091
Rhododendron semibarbatum	1976.1907B	-2.975	3.97	0.482	-28.879	0.151
Rhododendron siderophyllum	1980.0345C	-6.588	1.975	0.01	-33.897	0.594
Rhododendron siderophyllum	1996.0554B	-14.168	2.674	0.001	-34.048	0.805
Rhododendron siderophyllum	1980.0345B	-9.668	5.832	0.239	-15.521	0.579
Rhododendron strigillosum	1975.4050I	-11.858	15.792	0.494	-32.881	0.256
Rhododendron strigillosum	1996.0603A	-5.923	2.173	0.112	-13.369	0.846
Rhododendron strigillosum x	1969.8865A	2.8	4.753	0.577	-33.167	0.267
praevernum						
Rhododendron tolmachevii	1940.0183A	-8.099	2.407	0.015	-28.533	0.655
Rhododendron tomentosum	1969.5002A	-5.15	1.734	0.018	-32.428	0.616
Rhododendron tomentosum	1978.0135A	-14.848	4.717	0.035	-22.778	0.713
Rhododendron trichostomum	1969.9607C	-7.9	1.801	0.002	-32.015	0.779
Rhododendron trichostomum	1963.3848 A	-7.742	1.943	0.01	-22.524	0.772
Rhododendron trichostomum	1969.9607 B	-8.827	2.047	0.013	-19.624	0.847
Rhododendron wadanum	1976.1072B	-6.358	1.576	0.004	-31.748	0.708
Rhododendron wadanum	1976.1909B+A	-8.605	0.781	0	-22.948	0.946
Rhododendron wadanum	1976.1072D	-6.724	2.049	0.017	-27.136	0.705
Rhododendron wallichii	1962.0915B	-7.206	4.431	0.148	-37.537	0.283
Rhododendron wallichii	1981.3602D	-7.23	2.794	0.036	-33.817	0.554
Rhododendron wallichii	1983.0965B	-4.723	0.935	0.004	-19.142	0.858
Rhododendron yunnanense	1996.0662 A	-2.126	1.459	0.241	-11.806	0.491
Rhododendron yunnanense	1996.0662D	-6.582	1.864	0.008	-32.971	0.682
Rhododendron yunnanense	1981.2672C	-11.153	3.371	0.045	-17.733	0.789

Table A3 Responses of peak flowering dates of individual plants to a mean daily
temperature increase of 1 °C

Species	Accession	Slope	Standard	p-value	Log	R ²
			error		likelihood	
Rhododendron adenogynum	1933.1020A	-2.026	1.995	0.349	-28.763	0.615

Rhododendron adenogynum	1948.0012A	-6.791	2.828	0.047	-33.469	0.502
Rhododendron adenogynum	1987.1535A	-5.147	5.64	0.397	-36.078	0.127
Rhododendron anthosphaerum	1923.0098 D	-9.443	4.862	0.147	-20.776	0.634
Rhododendron anthosphaerum	1949.1012A	4.035	5.825	0.514	-36.36	0.514
Rhododendron anthosphaerum	1979.0989A	-10.02	2.42	0.009	-21.232	0.782
Rhododendron anwheiense	1971.0038A	-6.204	4.292	0.186	-41.566	0.388
Rhododendron anwheiense	1980.2048A	-8.179	8.871	0.454	-19.187	0.346
Rhododendron anwheiense	1980.2048D	-9.383	5.729	0.177	-23.946	0.42
Rhododendron arboreum	1974.0834B	-3.449	5.633	0.567	-30.958	0.072
Rhododendron arboreum	1976.0141C	-19.648	5.868	0.015	-36.103	0.653
Rhododendron arboreum	1981.1230G	-8.698	1.986	0.002	-33.13	0.763
Rhododendron arboreum	1990.2647A	25.419	12.55	0.089	-43.41	0.423
Rhododendron arboreum	1996.0562A	-4.658	3.183	0.187	-34.948	0.348
Rhododendron augustinii	1975.4173A	-4.819	3.907	0.264	-30.364	0.204
Rhododendron augustinii	1977.2695 G	-8.86	11.23	0.513	-19.468	0.279
Rhododendron augustinii	1980.5048A	-7.445	4.698	0.152	-42.592	0.335
Rhododendron augustinii	1999.1844A	-7.234	2.705	0.116	-12.771	0.957
Rhododendron auriculatum	1916.0027A	-17.524	11.924	0.185	-42.922	0.259
Rhododendron barbatum	1972.0856*R	0.515	3.621	0.89	-40.268	0.171
Rhododendron barbatum	1972.0856A	-1.236	8.243	0.886	-41.058	0.375
Rhododendron barbatum	1976.0083 C	-2.375	2.854	0.466	-19.498	0.336
Rhododendron calendulaceum	1977.1140A	-2.264	3.558	0.542	-39.365	0.105
Rhododendron calendulaceum	1979.1536AN	-12.022	3.321	0.007	-35.468	0.676
Rhododendron calendulaceum	1979.1536AS	-7.804	4.692	0.147	-33.133	0.546
Rhododendron calophytum	1969.8430A	-3.333	4.489	0.491	-31.214	0.334
Rhododendron calophytum	1972.4038A	-2.084	4.142	0.628	-44.109	0.184
Rhododendron calostrotum	1971.2351A	-9.999	2.766	0.009	-35.945	0.665
Rhododendron calostrotum	1971.2523A	-8.864	2.3	0.006	-31.518	0.714
Rhododendron calostrotum	1971.2524B	-7.498	2.815	0.037	-31.237	0.595
Rhododendron campanulatum	1955.1016A	-0.707	3.965	0.863	-41.895	0.057
Rhododendron campanulatum	1962.0908A	-10.424	4.041	0.036	-36.562	0.497
Rhododendron campanulatum	1969.8445A	-0.403	3.08	0.904	-16.202	0.073
Rhododendron canadense	1976.0690A	-9.75	3.561	0.026	-39.76	0.532
Rhododendron canadense	1976.0690B	-9.666	2.963	0.011	-38.354	0.581
Rhododendron canadense	1990.0430B	-6.699	2.555	0.034	-31.974	0.497
Rhododendron cinnabarinum	1938.1155G	-2.593	3.791	0.516	-36.323	0.19
Rhododendron cinnabarinum	1957.7184P	-4.985	2.307	0.063	-35.057	0.372
Rhododendron cinnabarinum	1969.8930K	-0.843	3.295	0.805	-38.478	0.055
Rhododendron cinnabarinum	1978.4120A	-2.587	5.072	0.624	-42.024	0.043

Rhododendron collettianum	1970.2019A	-7.401	2.093	0.01	-31.705	0.654
Rhododendron dauricum	1976.1068C	0.649	5.317	0.906	-40.473	0.003
Rhododendron dauricum	1978.0139 A	-9.412	1.24	0.001	-21.143	0.925
Rhododendron dauricum	1991.1220A	-7.927	7.785	0.342	-44.858	0.185
Rhododendron dauricum	1976.1068 A	1.611	5.973	0.805	-23.167	0.316
Rhododendron decorum	1969.8512B	2.318	3.744	0.555	-35.808	0.5
Rhododendron decorum	1969.8512D	-7.877	1.948	0.004	-32.876	0.764
Rhododendron decorum	1973.4073B	-5.249	4.244	0.304	-19.043	0.351
Rhododendron decorum	1976.1403F	-7.649	3.477	0.059	-39.27	0.584
Rhododendron degronianum	1960.3367A	-3.683	8.501	0.676	-47.706	0.026
Rhododendron degronianum	1961.4659A	-4.298	3.495	0.254	-38.752	0.236
Rhododendron degronianum	1977.3254A	-4.268	2.89	0.178	-36.628	0.335
Rhododendron degronianum	1983.2540A	-2.257	3.539	0.541	-39.21	0.203
Rhododendron ferrugineum	1976.0519 H	-10.855	4.221	0.037	-35.063	0.591
Rhododendron ferrugineum	1976.0519B	-7.741	2.846	0.026	-36.49	0.571
Rhododendron ferrugineum	1976.0519 F	-8.373	1.857	0.004	-25.661	0.887
Rhododendron ferrugineum	1976.0519 G	-7.725	3.127	0.048	-29.753	0.721
Rhododendron ferrugineum	1976.1857 D	-23.574	4.056	0.028	-13.025	0.944
Rhododendron hippophaeoides	1971.2400A	-11.944	1.418	0	-30.584	0.929
Rhododendron hippophaeoides	1971.2576A	-0.844	3.616	0.821	-39.69	0.232
Rhododendron hippophaeoides	1971.2594G	-5.842	4.55	0.235	-41.753	0.282
Rhododendron hippophaeoides	1973.4078B	-7.477	2.642	0.022	-36.812	0.686
Rhododendron hippophaeoides	1991.0304C	-3.245	2.718	0.267	-36.541	0.307
Rhododendron irroratum	1991.1093A	-10.929	4.595	0.055	-34.746	0.523
Rhododendron irroratum	1996.0617 G	-11.799	6.82	0.226	-17.165	0.738
Rhododendron lanigerum	1929.1008B	-1.048	4.885	0.835	-45.172	0.014
Rhododendron lanigerum	1929.1008E	-5.672	4.914	0.286	-41.668	0.227
Rhododendron lanigerum	1929.1008H	4.08	5.912	0.512	-41.604	0.076
Rhododendron lapponicum	1903.0018 A	-11.357	5.008	0.086	-26.281	0.715
Rhododendron lapponicum	1979.3270 A	-10.233	4.201	0.059	-30.678	0.589
Rhododendron lapponicum	1903.0018 A	-10.243	1.299	0.016	-8.945	0.974
Rhododendron lepidotum	1983.0962A	-4.368	2.516	0.121	-35.545	0.288
Rhododendron lepidotum	1983.0963C	-8.378	3.305	0.035	-38.236	0.456
Rhododendron lepidotum	1975.1302 A	-8.078	3.339	0.052	-29.074	0.574
Rhododendron leptothrium	1989.2109A	-6.949	2.088	0.021	-19.716	0.813
Rhododendron liliiflorum	1991.1969B	-7.624	4.273	0.134	-28.135	0.545
Rhododendron lutescens	1996.0608D	-8.444	3.694	0.052	-40.55	0.438
Rhododendron lutescens	1996.0608E	-3.48	3.444	0.342	-39.306	0.212
Rhododendron lutescens	1996.0608F	-1.786	5.343	0.747	-44.285	0.025

Rhododendron luteum	1977.3072E	-6.319	3.171	0.081	-37.967	0.361
Rhododendron luteum	1983.0848A1	-0.412	1.98	0.84	-32.466	0.352
Rhododendron luteum	1983.0848B1	-6.033	2.365	0.034	-34.975	0.49
Rhododendron macabeanum	1969.8707A	-8.386	3.257	0.033	-39.167	0.603
Rhododendron macabeanum	1928.1023B	-4.367	7.836	0.601	-33.975	0.132
Rhododendron meddianum	1975.4074A	11.193	7.4	0.174	-45.664	0.393
Rhododendron meddianum	1998.0009 A	7.87	10.12	0.48	-31.693	0.131
Rhododendron mucronulatum	1977.0993A	-6.184	3.913	0.153	-40.625	0.466
Rhododendron mucronulatum	1977.0993C	-11.821	2.343	0.001	-35.58	0.813
Rhododendron mucronulatum	1995.1171B	-8.429	3.68	0.062	-29.639	0.492
Rhododendron mucronulatum	1995.1171G	-0.05	2.693	0.986	-23.018	0.001
Rhododendron neriiflorum	1975.4064B	-3.445	3.907	0.404	-40.351	0.276
Rhododendron neriiflorum	1994.3905 C	-0.278	3.327	0.939	-19.102	0.454
Rhododendron neriiflorum	1994.3905A	4.591	5.987	0.465	-45.236	0.552
Rhododendron neriiflorum	1919.0100A	-22.229	3.776	0.028	-13.125	0.985
Rhododendron ponticum	1971.5872A	-3.67	6.705	0.601	-38.63	0.162
Rhododendron ponticum	1971.5872B	-4.004	3.42	0.275	-39.101	0.203
Rhododendron ponticum	1972.4007A	-3.845	4.658	0.436	-34.749	0.247
Rhododendron ponticum	1974.4139A	-10.535	9.734	0.315	-42.947	0.147
Rhododendron praecox	1969.8794Beast	-7.008	1.895	0.008	-31.903	0.664
Rhododendron praecox	1969.8794Bmid	-8.229	2.719	0.019	-34.669	0.571
Rhododendron praecox	1969.8794Bwest	-6.667	2.917	0.056	-34.918	0.43
Rhododendron praevernum	1924.0357A	-5.699	3.105	0.104	-41.536	0.351
Rhododendron praevernum	1924.0357D	-5.957	2.277	0.031	-38.124	0.555
Rhododendron praevernum	1924.0357E	-7.868	2.186	0.009	-33.332	0.671
Rhododendron praevernum	1969.8798A	-4.737	2.013	0.046	-36.515	0.506
Rhododendron racemosum	1973.4084B	-9.399	3.893	0.042	-41.067	0.471
Rhododendron racemosum	1932.1028	-9.092	2.957	0.018	-34.616	0.598
Rhododendron racemosum	1991.0867A	-7.471	1.768	0.003	-32.678	0.757
Rhododendron reticulatum	1975.2245BNE	-14.793	5.106	0.02	-43.638	0.542
Rhododendron reticulatum	1975.2245BSE	-14.292	2.873	0.001	-38.351	0.792
Rhododendron reticulatum	1975.2245BW	-7.022	4.907	0.196	-38.558	0.289
Rhododendron reticulatum	1975.2245 (SW)	-4.213	4.106	0.344	-33.707	0.151
Rhododendron reticulatum	1975.2245 N (N)	-9.528	3.084	0.021	-31.785	0.622
Rhododendron russatum	1971.2586B	-4.998	2.605	0.091	-36.653	0.38
Rhododendron russatum	1971.2586D	-16.238	2.777	0.001	-33.737	0.833
Rhododendron russatum	1971.2586G	-8.864	3.307	0.028	-38.861	0.504
Rhododendron schlippenbachii	1975.0765 B (E)	-8.223	2.02	0.004	-34.476	0.731

Rhododendron schlippenbachii	1975.0765B	-7.704	1.862	0.003	-32.539	0.685
	(W)					
Rhododendron schlippenbachii	1977.1391B	-1.61	3.194	0.628	-38.986	0.065
Rhododendron semibarbatum	1976.1907ASW	-7.383	3.412	0.062	-37.927	0.498
Rhododendron semibarbatum	1976.1907ASE	-15.383	6.136	0.046	-34.086	0.53
Rhododendron semibarbatum	1976.1907B	-11.094	3.912	0.022	-38.932	0.553
Rhododendron siderophyllum	1980.0345C	-19.288	4.292	0.002	-40.976	0.716
Rhododendron siderophyllum	1996.0554B	-14.525	6.833	0.066	-46.991	0.371
Rhododendron siderophyllum	1980.0345B	-9.571	4.541	0.126	-19.381	0.607
Rhododendron strigillosum	1975.4050I	-9.029	13.684	0.534	-44.102	0.146
Rhododendron strigillosum	1996.0603A	-12.527	2.745	0.01	-23.03	0.861
Rhododendron strigillosum	1975.4050A	-5.297	16.868	0.783	-21.423	0.365
Rhododendron strigillosum	1996.0599D	-10.191	2.832	0.069	-13.653	0.879
Rhododendron strigillosum x	1969.8865A	-8.276	3.017	0.029	-36.535	0.556
praevernum						
Rhododendron tolmachevii	1940.0183A	-7.974	4.541	0.117	-41.631	0.29
Rhododendron tomentosum	1969.5002A	-5.209	1.711	0.016	-31.451	0.722
Rhododendron tomentosum	1978.0135A	-9.062	3.381	0.055	-20.607	0.656
Rhododendron trichostomum	1969.9607C	1.073	3.408	0.761	-37.704	0.434
Rhododendron trichostomum	1963.3848 A	-4.728	3.811	0.27	-27.703	0.428
Rhododendron trichostomum	1969.9607 B	-3.993	5.194	0.485	-25.313	0.23
Rhododendron wadanum	1976.1072B	-7.356	4.03	0.105	-41.278	0.297
Rhododendron wadanum	1976.1909B+A	-9.447	3.179	0.018	-38.52	0.532
Rhododendron wadanum	1976.1072D	-3.878	1.483	0.04	-23.756	0.751
Rhododendron wadanum	1976.1909ASW	-7.925	9.033	0.473	-18.209	0.286
Rhododendron wadanum	1976.1909AW	-8.972	6.7	0.312	-16.715	0.516
Rhododendron wallichii	1962.0915B	-12.315	4.51	0.029	-38.251	0.517
Rhododendron wallichii	1981.3602D	-7.225	5.937	0.258	-45.77	0.161
Rhododendron wallichii	1983.0965B	-5.502	2.364	0.048	-36.034	0.475
Rhododendron yunnanense	1994.3155B	-0.178	4.003	0.968	-13.382	0.731
Rhododendron yunnanense	1996.0662 A	-2.075	0.705	0.06	-8.251	0.789
Rhododendron yunnanense	1996.0662D	-10.315	2.306	0.002	-34.767	0.76
Rhododendron yunnanense	1981.2672C	-14.103	3.081	0.02	-16.841	0.882