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Abstract. Gloydius is a widespread pitviper group occurring from Eastern Europe to Korea and Siberia, 
with only one known species, G. himalayanus (Günther, 1864), found south of the Himalayas. We provide 
combined genetic and morphological data for G. himalayanus from specimens collected from Himachal 
Pradesh, India. Bayesian Inference and Maximum Likelihood phylogenetic analysis were performed on 
four concatenated mitochondrial genes, along with a multi-locus coalescent analysis of these and five 
additional nuclear genes. Our results indicate that G. himalayanus from the Chamba Valley, in western 
Himachal Pradesh, are highly distinct from the remaining studied populations. Haplotype networks of 
each nuclear locus showed that G. himalayanus contains high haplotype diversity with low haplotype 
sharing between the Chamba Valley population and populations from further west. Principal component 
analysis and canonical variate analysis conducted on morphological data of live and museum specimens 
also highlight the morphological distinctiveness of the Chamba population and we herein describe this 
population as a new species, Gloydius chambensis sp. nov. Recent descriptions of other new species of 
snakes from this valley underscores its isolation and suggests that further herpetological investigation 
of the highly dissected landscapes of the western Himalayas is needed to assess the true diversity of the 
region.

Keywords. Western Himalayas, pitviper, multi-locus coalescent, Bayesian phylogenetics, multivariate 
morphometrics.

Kuttalam S., Santra V., Owens  J.B., Selvan M., Mukherjee N., Graham S., Togridou A., Bharti O.K., Shi J., 
Shanker K. & Malhotra A. 2022. Phylogenetic and morphological analysis of Gloydius himalayanus (Serpentes, 
Viperidae, Crotalinae), with the description of a new species. European Journal of Taxonomy 852: 1–30.
https://doi.org/10.5852/ejt.2022.852.2003

Introduction
The Asian pitviper, Gloydius Hoge & Romano-Hoge, 1981, is a genus of small-bodied venomous 
snakes that is distributed from far-eastern Russia, through central and northern Asia, and as far west as 
Azerbaijan. Formerly considered part of the Agkistrodon Palisot de Beauvois, 1799 complex, it is now 
recognised to be phylogenetically part of the Asian pitviper radiation (Malhotra et al. 2010; Alencar 
et al. 2016). Although the systematics of this group have been unclear in the past, and are yet to be fully 
resolved, 22 species are currently recognised in the genus and are categorised into three subgroups: 
the G. blomhoffii complex, the G. intermedius–halys complex, and the G. strauchi complex (Orlov & 
Barabanov 2000; Xu et al. 2012; Wagner et al. 2016; Shi et al. 2017, 2018).

Gloydius himalayanus (Günther, 1864) is the only species in the genus that is found on the southern 
slopes of the Himalayan range. Recently, the first mitochondrial phylogeny of Gloydius to include 
G. himalayanus showed that it is sister to, and highly divergent from, all other species of Gloydius 
(Shi et al. 2021). Holding the record for the highest-occurring snake species, at 4877 m (Wall 1910), 
Gloydius himalayanus is recorded across the Himalayas of northern Pakistan, northern India (Kashmir, 
Himachal Pradesh, Uttarakhand, Sikkim, and West Bengal), Nepal and Bhutan (Whitaker & Captain 
2004; Chettri et al. 2011; Koirala et al. 2016; Chaudhuri et al. 2018). Records from the Khasi Hills 
appear to be erroneous (Gloyd & Conant 1990). They are found mainly in and around coniferous forests, 
where they take refuge under fallen leaves, fallen logs, crevices of rocks and under boulders (Khan & 
Tasnim 1986). They are also found in agricultural fields in parts of the distribution that overlap with 
human settlements (Whitaker & Captain 2004; Manhas 2020). There has been no recent work on intra-

https://zoobank.org/urn:lsid:zoobank.org:author:0754C82D-5976-4617-A0D7-8E9B23B4C079
https://zoobank.org/urn:lsid:zoobank.org:author:82B98F77-2E95-43B5-9B34-92BE8759EF2B
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specific variation in G. himalayanus since Gloyd and Conant reviewed the Agkistrodon complex in 
1990. In their review, they noted considerable variation in coloration and patterning across individuals 
(Gloyd & Conant 1990). Variation was also noted by Khan & Tasnim (1986), where they stated that “A 
study of Agkistrodon himalayanus, throughout its range, may reveal a polymorphic nature”. 

In this study, we utilised four mitochondrial and five nuclear genes in a multi-locus coalescent 
analysis to investigate intra-specific variation in G. himalayanus. A deep genetic split, comparable to 
or exceeding that between established species, was found between populations sampled in different 
regions of Himachal Pradesh, India. This was further investigated using a multivariate morphometric 
approach. Despite a limited sample size, morphological analysis supported the distinct population as a 
novel species, and a description of this new species is provided.

Material and methods
Sample collection
Sample collection was undertaken in Himachal Pradesh, India, between 2017 and 2019 during July to 
September (monsoon season). Specimens were collected in Chamba, Kangra, Kullu, and Shimla districts 
(Fig. 1). Tissue samples were collected in the form of blood (max. 0.02 ml) from the caudal vein, as well 
as 3–5 scale clippings (ventral scales). Blood samples were added to 1 ml 5% EDTA and preserved in 
1 to 5 ml SDS-Tris buffer (100 mM Tris, 3% SDS) and scale clippings were preserved in 95% ethanol. In 
the case of fresh roadkill specimens, liver tissue was collected and stored in 95% ethanol. All collected 
samples were transferred to the Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 
India, for long-term storage, DNA extraction and further sequencing work. 

DNA extraction and PCR amplification
DNA extractions were performed using the Qiagen DNeasy® Blood and Tissue Kit following the 
manufacturer’s protocol (Qiagen 2020). Gel electrophoresis and a Nanodrop Spectrophotometer 
ND1000 were used for checking the concentration and quality of extracts. 

Four mitochondrial genes, cytochrome b (Cytb), NADH dehydrogenase subunit four (ND4), 12S small 
subunit ribosomal RNA (12S), and 16S large subunit ribosomal RNA (16S) and five nuclear genes, 
oocyte maturation factor (cmos), prolactin receptor gene (PRLR), ubinuclein 1 (UBN1), recombination 
activating gene 1 (RAG1), and neurotrophin 3 (NT3) were PCR-amplified using Thermo Fisher 
Scientific DreamTaq Mastermix. The primers and reaction conditions used for each gene can be found 
in the Supp. file 1: Tables S1–S2. Successful amplification was confirmed using gel electrophoresis and 
PCR products were cleaned for sequencing using Thermofisher ExoSAP-IT and Sanger-sequenced at 
Bioscience Barcode (Bangalore, India).

Alignment and phasing
Resulting chromatograms were edited in MEGA7 (Kumar et al. 2016) to correct any errors, trim the 
ends, and detect heterozygous positions present in the nuclear gene sequences. Sites were assigned 
as heterozygotes if they were found in both forward and reverse sequences and were assigned the 
appropriate IUPAC ambiguity code. Each gene alignment was initially produced using MUSCLE (Edgar 
2004) via MEGA7, with further manual adjustments to ensure that identical sequences had been aligned 
identically. Protein-coding genes were checked for unexpected stop codons, and chromatograms were 
reviewed, if these were found. Haplotypes were reconstructed using PHASE in DnaSP ver. 6 (Rozas 
et al. 2017). Since the sections of the genes used are relatively short, PHASE was set to assume no 
recombination. 

https://doi.org/10.5852/ejt.2022.852.2003.8181
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Phylogenetic analysis of mitochondrial genes
MrBayes ver. 3.2.7 (Ronquist et al. 2012) was used to conduct Bayesian Inference (BI) analysis on the 
mitochondrial dataset. Additional species of Gloydius from all three species complexes (see above) 
and species of other Asian pitviper genera, Protobothrops Hoge & Romano-Hoge, 1983, Ovophis 
Hoge & Romano-Hoge, 1981, Trimeresurus Lacépède, 1804, Viridovipera Malhotra & Thorpe, 2004, 
and Tropidolaemus Wagler, 1830, as well as New World pitvipers, were also included, and the viperine 
Bitis gabonica (Duméril, Bibron & Duméril, 1854) was set as the outgroup. PartitionFinder ver. 2.1.1 
(Lanfear et al. 2017) was used to determine the best-fit partition scheme for the alignment and the best-
fit models of evolution for the partitioned subsets based on the Bayesian Information Criterion (BIC) 
scores. Four independent chains were run simultaneously for 10 000 000 generations with a sampling 
frequency of 5000. Convergence of likelihood and the appropriate cut-off to account for burn-in was 
ascertained using Tracer ver. 1.7.1, and the R-Studio (R Core Team 2020) package R We There Yet 
(RWTY) (Warren et al. 2017) was used to diagnose issues with topological convergence and mixing of 
MCMC chains.

Fig. 1. Locations of all specimens used in the study for morphological and phylogenetic analysis. The 
position of two significant mountain ranges of the Lesser Himalayas, Pir Panjal and Dhauladhar, are 
indicated by dashed lines. An inset showing the current known distribution of Gloydius himalayanus 
(Günther, 1864) is also shown, with limits determined by the known altitudinal range (900–5000 m). 
The maps were constructed using Digital Elevation Models on QGIS ver. 3.22.1. The boundaries used 
on this map do not imply the expression of any opinion whatsoever on the part of the authors concerning 
the legal status of any country, territory, or area or of its authorities, or concerning the delimitation of its 
frontiers or boundaries. Dotted and dashed lines on maps represent approximate border lines for which 
there may not be full agreement.
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A Maximum Likelihood tree was constructed using IQ-Tree (Nguyen et al. 2015) on the same dataset, 
using the partitioning scheme selected by PartitionFinder but with models selected under the Bayesian 
Information Criterion (BIC) by ModelFinder (Kalyaanamoorthy et al. 2017), which is implemented by 
IQ-Tree, with 10 000 UltraFast Bootstraps (UFB) (Minh et al. 2013). 

Multi-locus coalescent phylogenetic analysis
The freeware program, *BEAST, implemented in the phylogenetic analysis package BEAST2 (Heled & 
Drummond 2010), was used to produce a multispecies coalescent phylogeny using all nine genes. 
Individual specimens were grouped into species in the taxa selection option. The mitochondrial gene 
trees were linked, and all other trees, evolutionary models and clock models were left unlinked. 

To identify each evolutionary model, JModelTest ver. 2.1.1 was used (Guindon & Gascuel 2003; Darriba 
et al. 2012). The Standard Nucleotide Substitution Models ver. 1.0.1 package was also installed to allow 
the selection of the most appropriate models by JModelTest ver. 2.1.1 (Bouckaert & Xie 2017). Other 
settings were arrived at by comparing runs with different settings (e.g., “Relaxed Clock Log Normal” 
vs “Strict Clock”) in a Bayes Factor test to compare marginal likelihoods of each run. Marginal likelihoods 
were estimated via path-sampling (Lartillot & Philippe 2004), with a chain length of 10 000 000 and 100 
steps. The “Linear with constant root function” was selected, since there is a lack of information about 
population change at the root (Barido-Sottani et al. 2018). The ploidy for all nuclear gene trees was set 
to autosomal nuclear and the mitochondrial gene tree was set to Y or mitochondrial (Barido-Sottani 
et al. 2018). The population mean prior was changed from the default value of 1/X to log normal, and the 
clock rate for each gene was set to exponential (Heath 2015). The chain length was set to 1 000 000 000 
with a sampling frequency of 100 000. The resulting .xml file was run three times with three different 
seeds and the trace log files were analysed using Tracer ver. 1.7.1 as above. The three species tree files 
were combined on LogCombiner with the appropriate burnin value, and the resulting species tree file 
was summarised using TreeAnnotator with default values (Barido-Sottani et al. 2018). 

Nuclear haplotype networks
Haplotype networks were created for all nuclear loci, as the lower level of variation in these datasets 
suggests that ancestral haplotypes may still be present in the population, thus violating some of the 
assumptions of a phylogenetic approach (Bandelt et al. 1999) and allowing mutational steps between 
haplotypes to be reconstructed. Only sequences of species of Gloydius were included when creating 
the median-joining networks for each gene. The networks were created and visualised using Network 
ver. 10.2.0.0 (Fluxus Technology Ltd. – www.fluxus-engineering.com).

Population genetic metrics
Haplotype branch network diversity (HBd) was calculated in order to compare different clades for the 
nuclear gene networks. HBd estimates the complexity of haplotype networks by combining Hd and Bd 
to provide a probabilistic value that encompasses both the genetic diversity in a population as well as 
accounting for the topology diversity of networks (Garcia et al. 2021). The metrics were calculated in 
R-Studio following the guidelines provided by Garcia et al. (2021).

Morphological analysis
Live specimens obtained in the field were restrained using clear restraining tubes and the following data 
was measured wherever possible. In addition to data collected from specimens found in the field, museum 
specimens were also examined. Unfortunately, planned visits to museums with significant holdings such 
as the Natural History Museum (London, UK) and the Bombay Natural History Society (Mumbai, 
India) could not take place or had to be curtailed due to the restrictions in place as a result of the SARS-
Cov-2 pandemic. For all specimens, with the exception of some very small juvenile specimens, sex was 

http://www.fluxus-engineering.com
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recorded. Thirty-two specimens were examined in total, ranging from Eastern Pakistan to Uttarakhand 
(details are given in Appendix 1). The following characters were measured. Characters in bold type were 
found to be invariable in all specimens examined and not analysed further.

Abbreviations
Scale counts

3lab, 4lab, 5lab = number of scales between 3/4/5 upper labial and the lower postocular scale
Btwf = number of scales between the frontal scales
Btwpf = number of scales between the prefrontal scales
Chin = number of chin shields and median gulars (scales next to Lat gular)
Eye = number of scales between the preocular scale and the thermal pit
Fusedup = number of supralabial scales fused with the lower temporal scales
Intnas = shape of the border of the internasal scale and the prefrontal scale (0: flat or 

concave; 0.5: intermediate condition; 1: curved or convex)
LatGular = Number of gular scales in contact with the infralabial scales, excluding the enlarged 

chin shield
Midbody = number of scale rows at midbody
Nas = number of scales between pit and nasal scale
Postoc = number of postocular scales
SCS = Sub-Caudal Scale Count
Sublab = number of infralabial scales (average of both sides) 
Suplab = number of supralabial scales (average of both sides) 
Supoc = shape of the supraocular scale (0: completely smooth outer edge; 1: possessing a 

very defined notch in the outer edge)
Vent = number of scale rows immediately before the vent
VSC = Ventral Scale Count

Linear measurements (all in mm, measured at the widest point, unless otherwise stated)
Deye = diameter of the eye
FrontL = length of the frontal scale
FrontW = width of the frontal scale
Lhead = length of the head measured from the tip of the snout to the rear angle of the lower jaw
Lsupoc = length of supraocular
Rostl = length of rostral scale measured from top to bottom
Rostw = width of rostral scale measured from left to right
SVL = length from the tip of snout to vent (in cm) along the spine
Tail = length from the rear edge of the vent to the tip of the tail (in cm)
Whead1 = width of head measured from the edges of the jaws
Wintnas = width of internasal
Wsupoc = width of the supraocular

Coloration (where bilateral, the longest feature was recorded)
Crossb = total number of cross bands after the neck stripe (crossband defined 

as a pair of bands with a dark inner edge and light-coloured outer 
edge)

Ocstripe = number of upper labial scales covered by the ocular stripe
Scoc = ventral scale position at which the ocular stripe ends
Spot25, spot50, spot 75, spot100 = number of blotches/spots of darker coloration at 25%, 50%, 

75% and 100% of the snout-vent length (a crossband can also be 
counted as a blotch/spot)
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Stripe = ventral scale position of the end of the dark line on the neck
Strtemp = proportion of first temporal scale covered by the ocular stripe (0: 

no stripe on the scale; 1: stripe completely covers the scale)

Scale reduction formulae: for each scale reduction (from 25 to 17 scales on the body and from 14 to 
5 scales on the tail) VS or SC position, where VS/SC was the average of the two ventral or subcaudal 
scales at which the scale reductions occur on either side, and DV, the average dorso-ventral position of 
the lowest of the two-scale rows involved in the scale reduction, were recorded.

All characters which depended on ventral or subcaudal scale counts (i.e., scale reductions and some 
colour pattern characters) were first converted to a percentage to account for variation in ventral or 
subcaudal scale counts. There were substantial amounts of missing data, with very few specimens having 
the full set of characters recorded. This was due to a combination of factors, including the difficulties 
of measuring some characters in live animals, time constraints during fieldwork, damage to road-killed 
specimens, and poor state of preservation and/or small size of museum specimens. 

Because some grouping of specimens is necessary for preliminary processing (e.g., filling in missing 
values, eliminating uninformative characters), initial grouping was done conservatively and available 
specimens were grouped into the following locations (listed from west to east): Murree, East Pakistan 
(n = 2), Vale of Kashmir (n = 3), Kargil, Kashmir (n = 1), Chilas, Kashmir (n = 1), Churah, Chamba 
District, Himachal Pradesh (n = 7), Dalhousie, Chamba District, Himachal Pradesh (n = 5), Kullu Valley, 
Himachal Pradesh (n = 5), Eastern Himachal Pradesh (Great Himalayan National Park, Kullu District, 
and locations in Shimla districts) (n = 4), Garhwal, Uttarakhand (n = 2). Two museum specimens 
with vague locations (Kashmir, Himalayas) were left ungrouped at this stage and were not used for 
preliminary data analysis.

ANOVA was conducted on all non-mensural data using groups which had sufficient sample size (n ≥ 2), 
along with a Levene’s test (Levene 1961) to test the assumption of homoscedascity. If the latter was 
found to be violated, an alternative test which relaxes this assumption, the Brown-Forsythe (BF) test 
(Brown & Forsythe 1974), was used instead. For mensural data, an ANCOVA was carried out, using an 
appropriately correlated measure of size as the covariate. For most head measurements, this was Lhead, 
but for Lhead and Tail, SVL was used as covariate. 

In all tests of variance, we first used sex as the factor to determine whether characters were sexually 
dimorphic, and subsequently used locality as the factor (with sexually dimorphic characters tested 
separately in males and females) to determine whether characters showed geographic variation. Only 
characters showing significant among-location variation were used in further analyses.

The next step was an unsupervised clustering method, principal component analysis (PCA). This does 
not require pre-grouping of specimens and is therefore the most suitable for exploratory analyses 
of morphological variation where the presence of more than one species is suspected and where the 
appropriate groups for specimens are not initially obvious. For mensural characters, the unstandardised 
residuals from the regression against the appropriate covariate were used, while meristic characters 
were first standardized (i.e., with zero mean, unit standard deviation). Qualitative characters were 
left untransformed. A Scree plot was examined to determine the number of axes to retain. Several 
different analyses were carried out to compensate for missing data, either maximising the number of 
characters (and reducing the number of specimens included) or maximising the inclusion of specimens 
(with a reduced number of characters). Once appropriate groups had been determined based on this 
analysis, missing data for non-mensural characters for a given group was replaced with the mean of 
the remaining specimens in that group if less than 30% of the data were missing for that group. If 
affinities were unclear, specimens were left ungrouped. A canonical variate analysis was then performed 
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on untransformed characters, using the pooled within-group covariance matrix for extraction and with 
ungrouped specimens included (thus they are not included in the canonical analysis but are plotted on 
the resulting canonical variates). Finally, a discriminant analysis was conducted between groups defined 
by the CVA in order to find reliable diagnostic characters.

All analyses were conducted in SPSS ver. 27 (SPSS Inc Chicago, US).

Results
Mitochondrial DNA analysis
The final dataset constituted 94 sequences with four mitochondrial genes totalling 2488 base pairs (12S: 
423 bp, 16S: 491 bp, Cytb: 942, ND4: 632). All novel sequences were submitted to GenBank and are 
available under the accession numbers (OP407963-76; OP422579-629; OP450854-942; OP480160-7; 
OP508264-75; OP518267-80; OP776641); details are available in Supp. file 1: Table 3. PartitionFinder 
identified the best scheme to contain three subsets: subset1 consisted of 12S, 16S, the first codon position 
of Cytb and ND4 with the best model corresponding to GTR+I+G (Tavaré 1986); subset2 consisted 
of the second codon position of Cytb and ND4 with the best model corresponding to K81UF+I+G 
(Kimura 1981); and subset3 consisted of the third codon position of Cytb and ND4 with the best model 
corresponding to TIM+G (Posada 2003). 

The output of the MrBayes analysis was analysed using the RWTY package on R-Studio and the graphs. 
The graphs produced indicated satisfactory mixing (Supp. file 1: Figs S1–S7). A Bayesian Inference (BI) 
tree was created using FigTree ver. 1.4.4 (Fig. 2). The mitochondrial tree was used to identify various 
clades of the Gloydius genus used as a reference in subsequent analyses.

Both the BI tree and ML tree also reiterate the finding reported in Shi et al. (2021) that G. himalayanus 
forms a basal lineage that is highly distinct from all other Gloydius species found north of the Greater 
Himalayan range. The trees also showed clear support for specimens from the Churah Valley in the east 
of Himachal Pradesh as a distinct group, with the rest of the samples forming a second clade (PP = 1.0, 
UFB = 100%).

Multi-locus species analysis
The dataset consisted of 133 sequences, assigned to 50 OTUs. The specimens of G. himalayanus 
sequenced in this study were assigned to a taxon labelled “Gloydius_himalayanus_HP1” for the Chamba 
specimens and the rest of the specimens were given the taxon label “Gloydius_himalayanus_HP2”. The 
dataset contained all nine genes (12S: 423 bp, 16S: 491 bp, Cytb: 942 bp, ND4: 632 bp, cmos: 519 bp, 
NT3: 562 bp, PRLR: 298 bp, RAG1: 912 bp, UBN1: 467 bp). The evolutionary models for the different 
genes were set as follows: 12S: TIM2+G (Posada 2003); 16S: TIMef+I+G (Posada, 2003); Cytb: 
TIM3+I+G (Posada 2003); ND4: TrN+I+G (Tamura and Nei 1993); cmos: TPM3uf+I (Kimura 1981); 
NT3: K80+G (Kimura 1980); PRLR and RAG1: HKY+G (Hasegawa et al. 1985); UBN1: TIM1+G 
(Posada 2003). The path sampling analysis supported the “Strict Clock”(D BF= 179.539) and the “Birth-
Death” (D BF= 179.539) priors. 

The BI tree produced from this analysis is visualised in Figure 3. The two distinct clades present in 
G. himalayanus are also strongly supported (PP = 1.0). The basal and relatively distant position of 
G. himalayanus in relation to other species of Gloydius seen in the mitochondrial phylogenies was 
also strongly supported in the multi-locus analysis (PP = 0.99). All other clades within Gloydius seen 
in the mitochondrial analyses are also recovered in the multilocus analysis; however, these were 
unresolved with respect to each other in the mitochondrial analysis. In the multi-locus analysis, Clades C 
(G. qinlingensis Song & Chen, 1985) and D (G. liupanensis Liu, Song & Luo, 1989) form a single clade 

https://doi.org/10.5852/ejt.2022.852.2003.8181
https://doi.org/10.5852/ejt.2022.852.2003.8181
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Fig. 2. Maximum-likelihood tree: branch labels indicate the ultrafast bootstrap support (%). In this and 
subsequent figures, each clade is labelled and designated in a particular colour. These clades correspond 
to: A. Gloydius himalayanus (Günther, 1864) (black). B. G. blomhoffii (H. Boie, 1826), G. brevicauda 
(H. Boie, 1826), G. ussuriensis (Emelianov, 1929) (yellow). C. G. qinlingensis Song & Chen, 1985 
(red). D. G. liupanensis Liu, Song & Luo, 1989 (purple). E. G. halys (Pallas, 1776), G. intermedius 
(Strauch, 1868), G. changdaoensis Li, 1999, G. cognatus (Gloyd, 1977), G. stejnegeri (Rendahl, 1933), 
G. shedaoensis (Zhao, 1979) (blue). F. G. angusticeps Shi, Yang, Huang, Orlov & Li, 2018, G. strauchi 
(Bedriaga, 1912), G. monticola (F. Werner, 1922), G. rubromaculatus Shi, Wang, Chen, Fang, Ding, 
Huang, Hou, Liu & Li, 2017 (green).
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(PP = 0.93), which is the sister group to Clade E (G. halys (Pallas, 1776), G. intermedius (Strauch, 1868), 
G. cognatus (Gloyd, 1977), G. stejnegeri (Rendahl, 1933), G. shedaoensis (Zhao, 1979)). Gloydius 
changdaoensis Li, 1999 was found to be the sister group to Clades C, D and E (PP = 1.00). These in 
turn are sisters to Clade F (G. angusticeps Shi, Yang, Huang, Orlov & Li, 2018, G. strauchi (Bedriaga, 
1912), G. monticola (F. Werner, 1922), G. rubromaculatus Shi, Wang, Chen, Fang, Ding, Huang, Hou, 
Liu & Li, 2017) and Clade B (G. blomhoffii (Stejneger, 1907), G. tsushimaensis (Isogawa, Moriya & 
Mitsui, 1994), G. ussuriensis (Emelianov, 1929), G. brevicauda (H. Boie, 1826)) forms the sister group 
to all of these (Fig. 3).

Nuclear haplotype networks
All nuclear loci, apart from RAG1, showed G. himalayanus to contain genetically distant haplotypes 
from the rest of the genus (Fig. 4). In RAG1 (Fig. 4a), one haplotype from specimen 17.v13 of 
G. himalayanus was closer to haplotypes of G. brevicauda, and a haplotype of G. blomhoffii was 
closer to the rest of the haplotypes of G. himalayanus. Specimens of Gloydius himalayanus from Kullu 
Valley do not share any haplotypes with the Chamba specimens in the two loci in which both were 
represented, cmos and PRLR (Fig. 4b–c). In all the nuclear loci, the Chamba population shares one 
of their haplotypes with the eastern populations. The exception to this is seen in the UBN1 network 

Fig. 3. Multispecies coalescent tree from *Beast. The tips indicate the assigned taxa, and branch labels 
are posterior probabilities. Clades A–F are as in Fig. 2. The tip labelled “Gloydius_himalayanus_HP1” 
corresponds to the Chamba specimens and HP2 to the samples from eastern Himachal Pradesh.
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Fig. 4 (continued on next page). Median-joining haplotype networks of all nuclear genes, with clades 
identified in mitochondrial and multi-locus phylogenetic trees indicated by boxes labelled as a) RAG1; 
b) cmos; c) PRLR; d) UBN1; e) NT3. The haplotype network branch diversity (HBd) for each clade is 
indicated in a box in each gene network.
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(Fig. 4d), where the Chamba population has a set of haplotypes that are entirely distinct from the rest of 
the specimens of the species. Sharing of haplotypes among species in the rest of the genus is a common 
occurrence in almost all loci. In cmos, a single haplotype is shared among species belonging to Clades 
C, D and F; the single haplotype found in all Clade E species is also shared with G. brevicauda from 
Clade B. In the NT3 network (Fig. 4e), G. strauchi (Clade F) and G. brevicauda (Clade B) share a 
haplotype, while two haplotypes of G. changdaoensis are found in an entirely separate location in 
the network from the rest of Clade E. In the PRLR network (Fig. 4c), one haplotype is shared among 
species belonging to Clades B, D and E. 

Fig. 4 (continued). Median-joining haplotype networks of all nuclear genes, with clades identified in 
mitochondrial and multi-locus phylogenetic trees indicated by boxes labelled as a) RAG1; b) cmos; c) 
PRLR; d) UBN1; e) NT3. The haplotype network branch diversity (HBd) for each clade is indicated in 
a box in each gene network.
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Population genetics metrics
For network metrics, many of the clades had HBd as 0, due to either the presence of only a single 
haplotype or having two haplotypes, where there can only be a single branch (Fig. 4). The G. himalayanus 
clade (clade A) had the highest value of HBd compared to the other clades in all the genes apart from 
UBN1, where clade E had a higher value of 0.414 compared to 0.397 (Fig. 4). The difference between 
the HBd value of clade A and the HBd value of the clade with the closest value is less than 0.05 in all 
genes (RAG1 = 0.019; cmos = 0.049; NT3 = 0.047; UBN1 = 0.018) apart from PRLR, where it is 0.216. 

Morphology
The only character that was found to be significantly different between males and females was 8to6DV 
(F = 1.742, df 1, 22, P = 0.008). This was excluded from further analysis so that all specimens could 
be pooled to maximise sample size. The small sample sizes in the initial groups based on location 
made it impossible to carry out Levene’s test for homogeneity of variances and, for most characters, 
robust tests of equality of means. For the initial investigation, therefore, characters showing significant 
differences between localities in the ANOVA were accepted. These were: Latgular (P = 0.043), Suplab 
(P = 0.031), Sublab (P = 0.02), Supoc (P = 0.001), Fusedup (P = 0.001), Eye (P = 0.014), Intnas (P = 
0.011), Stripe (P = 0.001), Strtemp (P < 0.001), Spot100 (P = 0.002), 23to21VS (P = 0.024), 19to17VS 
(P = 0.004), 14to12SC (P = 0.001), 14to12DV (P = 0.028), 12to10SC (P < 0.001), 8to6SC (P = 0.015). 
The only mensural character which showed a marginally significant difference among localities in 
ANCOVA was Whead2 (Lhead as covariate, P = 0.057). However, when adjusted against Lhead using 
the equation Whead2+(20.6-Lhead)*0.778 where 20.6 is the grand mean for Lhead, and 0.778 is the 
regression coefficient of Whead2 against Lhead, the among-locality ANOVA was not significant. Thus, 
no mensural characters were included in subsequent analyses.

Principal component analysis was carried out using a) all the selected characters (n = 18), b) without 
scale reduction characters, Stripe or Spot100 (n = 22), and c) also without Supoc, Fusedup and Strtemp 
in order to include the maximum available specimens (n = 29). The analysis including the most 
characters showed Chamba specimens from Churah forming a discrete group, while specimens from 
the west of this (Eastern Pakistan, USNM 51491 with a vague location “Kashmir”) were very similar 
to other specimens from Srinagar in the Valley of Kashmir (Fig. 5a). Specimens from eastern localities 
in Himachal Pradesh (Kullu Valley, GHNP, Shimla, with the latter two being identified as East HP in 
Figure 5) formed a discrete group. A specimen with no location information other than “the Himalayas” 
was somewhat intermediate between eastern and western specimens. However, specimens from Kargil, 
Chilas (both in Kashmir), Dalhousie (southern Chamba district) and Garhwal (Uttarakhand) were not 
represented.

In the analysis in which characters that are missing in a large number of specimens (mostly scale 
reduction characters) were removed, the specimens from Kargil are now included and are similar to 
those from other western locations (Fig. 5b). While the separation between eastern and western groups 
on PC2 is reduced, the specimen from “the Himalayas” now groups clearly with the eastern locations, 
while the specimen from “Kashmir” groups with other western locations. The distinction between the 
Churah specimens and all others is maintained. In the final PCA, including the most specimens but the 
fewest characters (Fig. 5c), the distinction between groups is unsurprisingly much less pronounced but 
still present. This is the only analysis that includes Dalhousie specimens, and interestingly they appear 
very diverse, with at least one specimen (from Kalatop Wildlife Sanctuary, somewhat to the north of 
Dalhousie) grouping with Churah specimens, while others appear to be more similar to both eastern 
and western groups. Given this apparent diversity, Dalhousie specimens were left ungrouped in the 
subsequent analyses.
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Screening of among-locality differences using ANOVA (and robust alternatives) and ANCOVA was 
then repeated using the new groups (eastern, western, Churah) for all characters. By and large the same 
set of characters were selected, but a few changed from significant to insignificant, or vice versa. A few 
marginally insignificant characters (at the 5% level) were retained for multivariate analysis. The final 
set of characters used were: Latgular, Supoc, Sublab, Stripe, Strtemp, Spot75, Spot100, 25to23VS, 
23to21VS, 19to17VS, 19to17DV, 14to12SC, 14to12DV, 12to10SC, 10to8DV, 8to6SC, and 6to4SC. 
However, Spot75 and Spot100 are highly correlated (r = 0.814), so Spot75 was removed, as Spot100 is 
easier to score. 

Fig. 5. Principal components analysis of Gloydius himalayanus (Günther, 1864) morphological data. 
Different analyses represent different combinations of characters and specimens as described in the 
text, a trade-off required by the presence of missing data. a. More characters, fewer specimens (n = 18). 
b. Intermediate number of characters and specimens (n = 22). c. More specimens, fewer characters (n = 
31). This analysis does not require a priori grouping; hence the symbols are added for interpretation 
only.
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Fig. 6. Canonical Variate analysis of Gloydius himalayanus (Günther, 1864) morphological data. 
Different analyses represent different combinations of characters and specimens as described in the 
text, a trade-off required by the presence of missing data. a. More characters, fewer specimens (n = 
24): the main discriminating characters on CV1 are Supoc (with lower counts at more positive values), 
14to12SC, 12to10SC and 8to6SC (occurring more posteriorly at more positive values) and on CV2 
are Latgular, Strtemp, Supoc (with higher counts at more positive values). b. Intermediate number of 
characters and specimens (n = 27): the main discriminating characters on CV1 is Supoc (with higher 
counts at more positive values), and on CV2 are Latgular, Stripe, Supoc (with higher counts at more 
positive values) and Stripe and Sublab (with higher counts at more negative values). c. More specimens, 
fewer characters (n = 31): the main discriminating characters on CV1 is Supoc (with higher counts 
at more positive values), and on CV2 are Latgular and Strtemp (with higher counts at more positive 
values). This analysis requires a priori groups to be defined; however, Dalhousie/Kalatop specimens 
were plotted onto axes extracted using all other groups. In these analyses, CV1 and CV2 summarise 82, 
85, and 95% of the variation present, respectively, with CV1 representing ca 60% in all cases.
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Canonical variate analysis (CVA) was performed with variables transformed, as described above for PCA, 
using a stepwise procedure (where at each step the variable that maximises the Mahalanobis distance 
between the two closest groups is added) with six groups: Churah, Kullu Valley, Eastern HP, Garhwal, 
Kashmir, and Pakistan. Dalhousie specimens were plotted on the resulting axes but were not included 
in the extraction. In the first analysis, with all the characters named above included, 24 specimens were 
included (Fig. 6a). The general grouping seen in PCA of three clusters (Churah, eastern and western) 
was maintained, with the five Dalhousie specimens grouping closely and falling within the eastern 
cluster. However, unexpectedly, one of the Pakistan specimens (BNHS 2515 from Ghora Galli) was 
positioned very close to the Churah cluster. Characters were then iteratively eliminated to include more 
specimens, as described above. When n = 26, the Ghora Galli specimen was in the expected position 
compared to the rest of the western specimens. It therefore seems likely that some of the scale reduction 
characters were incorrectly scored. The most specimens (n = 31) were included when all scale reduction 
characters, Spot100 and Stripe were excluded (Fig. 6c) and resulted in less distinction between clusters, 
with Dalhousie specimens in particular becoming more spread out, with one grouping with the western 
cluster (along with a specimen from Garhwal) and one with the Churah specimens. The discriminant 
analysis between Churah and all other specimens maintained the significance of Latgular, Sublab, 
Strtemp and Stripe in distinguishing between these groups, with Churah having a higher Latgular count 
and Strtemp proportion, and a lower Sublab count and Stripe length.

Finally, a discriminant function analysis between the Chamba Valley and remaining specimens found 
that three characters alone, Latgular, Sublab and Strtemp, which are relatively easy to measure, can 
discriminate these groups with 100% success (including in cross-validation tests where each case is 
classified by the functions derived from all other cases other than that case). However, it should be 
borne in mind that the small sample size and the lack of specimens from the eastern part of the range in 
this study means that these discriminating characteristics will require re-examination once more data is 
obtained.

In view of the distinctiveness of the Chamba specimens in both genetic and morphological analyses, we 
hereby describe this population as a new species. 

Taxonomy
Class Reptilia Laurenti, 1768
Order Squamata Oppel, 1811
Family Viperidae Gray, 1825

 Genus Gloydius Hoge & Romano-Hoge, 1981

Gloydius chambensis sp. nov.
urn:lsid:zoobank.org:act:3FC261AB-C7DD-4E7F-92F6-0FBC5607B46C

Figs 7–9

Halys himalayanus Günther, 1864: 393, pl. 24 fig. a (only specimens from Chamba District).

Ancistrodon himalayanus – Boulenger 1896: 424, fig. 125. — Smith 1943: 495–496, fig. 157.
Agkistrodon himalayanus – Gloyd & Conant 1990: 255–264, pl. 14, 31, 38, 52 figs 20–23.
Agkistrodon himalayana – Underwood 1999: 3–8.
Gloydius himalayanus – McDiarmid et al. 1999: 305. — Gumprecht et al. 2004: 20–21, figs i–iii (p. 64), 

i–iii (p. 65). — Wallach et al. 2014: 310.

https://zoobank.org/urn:lsid:zoobank.org:act:3FC261AB-C7DD-4E7F-92F6-0FBC5607B46C
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Diagnosis
Gloydius chambensis sp. nov. can be identified by the number of gular scales in contact with the 
infralabial scales (4–5, mean 4.17), number of sublabial scales (9–10, mean 9.57) and the proportion 
of the first temporal scale covered by the postocular stripe (covering less than a quarter of the temporal 
scale). 

Differential diagnosis 
Gloydius chambensis sp. nov. can be distinguished from its sister species, G. himalayanus, by the lower 
number of gular scales in contact with the infralabial scales (4–5, mean 4.17, compared to 5–6, mean 5.67, 
in G. himalayanus), a higher number of sublabial scales, r (9–10, mean 9.57, compared to 6–9, mean 7.97, 
in G. himalayanus) and a lower proportion of the first temporal scale covered by the postocular stripe 
(covering less than a quarter of the temporal scale, compared to more than a quarter in G. himalayanus). 

Both Gloydius chambensis sp. nov. and Gloydius himalayanus can be distinguished from all other 
congeneric species by a very distinct or sharp canthus rostralis (Gloyd & Conant 1990), from the 
Gloydius halys complex by having 21 mid-body dorsal rows (vs 22 or 23 rows) (Shi et al. 2018), from 
G. rubromaculatus, G. strauchi and G. huangi Wang, Ren, Dong, Jiang, Shi, Siler, & Che, 2019 by 
having a pointed snout and triangular head (vs a blunt snout and rounded head) (Shi et al. 2017, 2018; 
Wang et al. 2019) and from G. angusticeps and G. monticola by having a matte dorsal texture (vs a 
glassy texture with a metallic lustre) (Shi et al. 2018; Wang et al. 2019). 

Etymology 
The specific epithet ‘chambensis’ means ‘from Chamba’ in reference to the species being distributed in 
Chamba District. The suggested common name is the ‘Chamba Pitviper’.

Type material
Holotype 

INDIA  ♂ adult; Himachal Pradesh, Chamba District, Bhanjraru; 10 Jul. 2018; 32.83909° N, 76.14932° E; 
alt. 1738 m; Sourish Kuttalam, Vishal Santra, John Benjamin Owens, Vipin Dhiman, Anita Malhotra, 
Nilanjan Mukherjee, Stuart Graham and Anatoli Togridou leg; found dead on the road; GenBank: 
OP422588, OP450868, OP407966, OP518269; Voucher Specimen R259 (DNA reference number 18.13); 
HARC R259 (collection of the High Altitude Research Centre, Solan, Himachal Pradesh).

Holotype description 
The holotype HARC R259 is an adult male with a snout-vent length of 34 cm and a tail length of 8.6 cm 
(total length = 42.6 cm). The width of the head is 13.84 mm and the length of the head is 19.21 mm. The 
diameter of the eye is 2.78 mm. The head is distinctly triangular and the canthus rostralis is sharp and 
conspicuous. 

Scalation
The holotype has one scale between the nasal scale and the loreal heat-sensing pit, one scale between 
the loreal pit and the preocular scale, and two postocular scales. The supraocular scale has a completely 
smooth outer edge. The border of the internasal scales and prefrontal scales is distinctly convex or curved 
(vs a concave or flat border in eastern populations in Himachal Pradesh). There are seven supralabial 
scales with the third supralabial scale in contact with the lower postocular scale. The penultimate 
supralabial scale is fused with the last temporal scale. The specimen has 10 infralabial scales. It has four 
gular scales in contact with the infralabial scales (not including from the enlarged chin shields). The 
dorsal scales are in 25:21:17 rows, with heavy keeling on all the dorsal scales. The number of ventral 
scales is 164 and the number of subcaudal scales is 42. 
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Coloration in life (Fig. 7)
Paired distinct dark-coloured stripes start from the posterior head scales and extend down the neck and 
dorsolateral surface as far as the 20th ventral scale. The postocular stripe is a thin, dark brown stripe that 
begins from the rear edge of the eye and continues onto the two temporal scales, impinging slightly on 

Fig. 7. a–d. Gloydius chambensis sp. nov., holotype, ♂ (Specimen Number 18.13; Churah Valley, HARC 
R359). a. Whole body b–d. Close-up of the head in dorsal (b), lateral (c) and ventral (d) views. d. The 
first and 10th ventrals have been marked with black marker to assist with counting scales. e. A whole 
body view of specimen 17.v20 from Bhanjraru, Chamba. Photos provided by J.B. Owens and V. Santra.
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the last supralabial scale. The lower edge of the ocular stripe is bordered by a white line. The longer of 
the two ocular stripes ends in line with the 4th ventral scale. A total of 24 crossbands on the dorsal surface 
of the body. These are a dull mud-brown colour, with some having a darker inner border. There are also 
blotches all along the lateral sides of the body that are broken extensions of the crossbands. The ventral 
scales are glossy, with many scales having blotches with white edges on the ends of the scale, similar to 
those on the lateral surface. The background dorsal coloration is a dull mud-brown colour with a matte 
texture. The posterior half of the tail is lighter in colour. 

Variation
Whilst the holotype shares most characters with the rest of the specimens of Chamba, there are some 
differences. In the scale counts, the holotype has a higher number of ventral scales (164 vs 158–161). In 
coloration, it differs in the number of crossbands found on the body (24 vs 29–39). The first two scale 
reductions (25 to 23 and 23 to 21) occur closer to the head (the reduction from 25 to 23 scales occurs at 
14.94% vs 5%–8%; 23 to 21 scales at 21.34% vs 8%–11%). 

Taxonomic remarks
All specimens that were examined and diagnosed to be Gloydius chambensis sp. nov. were specimens 
from the field study site. Apart from the deposited holotype, none of the other field specimens were 

Fig. 8. Gloydius himalayanus (Günther, 1864). a–c. Male specimen (Great Himalayan National Park, 
Himachal Pradesh, India; Specimen Number: 18.30). a. Whole body. b–c. Close-up views of the dorsal 
(b) and lateral (c) head. d. Specimen 17.v03 (Palampur, Kangra), whole body in-situ. Photos provided 
by J.B. Owens and V. Santra. 
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found dead. Our collecting permits did not allow us to ethically euthanise live individuals for this study. 
Hence, no paratype has been designated.

Distribution and habitat
Gloydius chambensis sp. nov. is distributed across the Chamba and associated valleys, which has an 
elevational range from 400 m to 5500 m. The major river system of the valley is the Ravi River (Ghosh & 
Chhibber 1984). The valley is isolated by two ranges, the Pir Panjal Range to the north and northwest 
and the Dhauladhar Range to the south and southeast (Fig. 1). The specimens were found in habitat 
primarily consisting of alpine scrub and pine forests, with a ground layer of thick pine needle litter 
(Fig. 9). The habitat was interspersed with occasional boulders and rock faces. Almost all the specimens 
were found close to rural households, and anecdotal interactions with the local villagers indicate that 
this is the venomous snake that is most commonly seen in the region and that causes the most bites to 
people in the valley (Fig. 10). Some studies have noted that bites can result in pain, swelling, bruising, 
and bleeding (Khan & Tasnim 1986; Raina et al. 2014).

Discussion
In our multi-locus study, phylogenetic analysis of a concatenated mitochondrial dataset strongly 
supported the Chamba population, heretofore considered Gloydius himalayanus, as a distinct species. 
The median-joining networks of nuclear genes (apart from RAG1) agreed with mitochondrial phylogeny 
in showing a large genetic distance between the G. himalayanus clade and the remaining species of 
Gloydius, but did not distinctly separate the Chamba population from the rest of the eastern Himachal 

Fig. 9. The habitat of Gloydius chambensis sp. nov. in Chamba District, Himachal Pradesh, India 
(elevation = 1700 m). Photo by V. Santra.
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Fig. 10. Examples of bites from Gloydius chambensis sp. nov. a. Female victim bitten on the little 
toe of her left foot, while walking through long grass to collect drinking water, with visible swelling. 
b–c. Elderly woman, bitten on the ring finger of her right hand while cutting long grass for cattle fodder, 
with swelling, localized pain, and tenderness immediately after the bite. After 24 hours, there were signs 
of infection at the bite site with reduced swelling. The substances on the leg of the first victim and the 
white substance on the hand of the second victim were applied by a local faith healer.
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Pradesh specimens, as seen in the analysis of the mitochondrial dataset, with the exception of UBN1. In 
most cases, although there were several private haplotypes, at least one haplotype was shared between 
the putative new species and other populations. However, this could represent ancestral haplotypes that 
have been retained within the populations. Most nuclear loci showed such haplotype sharing between 
other well-established species of Gloydius, some of which belong to relatively distant mitochondrial 
clades (e.g., G. brevicauda and G. strauchi for NT3; Clades B, D and E for PRLR). This could indicate a 
low level of genetic variation at those loci, which suggests that there may be incomplete lineage sorting 
of ancestral polymorphisms or low levels of sequence evolution (Wan et al. 2004). Higher values of 
HBd in general indicate that the population has a higher genetic diversity as well as haplotypes that 
are well connected with the potential presence of rare variants (Garcia et al. 2021). The HBd value 
for clade A, the clade that contains the new species as well as its sister species G. himalayanus, is the 
highest in all genes, apart from UBN1, where it has the second highest value. The difference between 
clade A and the other clades that contain multiple recognised species is very small, in all apart from 
PRLR, indicating that the diversity and connectivity shown between G. himalayanus and G. chambensis 
sp. nov. is similar to that seen in other multi-species clades. Such findings further support the species-
level separation between the new species and G. himalayanus. In addition, the multi-species coalescent 
analysis conducted in this study was congruent with the findings of the mitochondrial data when it 
comes to the distinction of the Chamba population from remaining Gloydius himalayanus specimens 
sampled in Himachal Pradesh, thus indicating that the mitochondrial gene trees are not confounded by 
effects such as genetic linkage, maternal inheritance, and incomplete lineage sorting (Nesi et al. 2011; 
Fonseca & Lohmann 2020; Li et al. 2020), which is why it is problematic to rely solely on mtDNA when 
making polygenetic inferences (Ballard & Whitlock 2004; Edwards 2009; Galtier et al. 2009; Toews & 
Brelsford 2012; Grechko 2013; Folt et al. 2019; Marshall et al. 2021). Here, we have followed the 
recommended practice in phylogenetic analysis of combining both mitochondrial and nuclear DNA loci 
in a coalescent model (Edwards et al. 2016) in order to reliably infer evolutionary histories and resolve 
species limits. Increased sampling to evaluate current or past gene flow in the contact zones between 
two closely related species (Mebert 2008; Hillis 2019) is desirable but not always achievable in the case 
of cryptic snake species. Here, we analysed morphological data (which is represented by polygenic 
characters) from a larger sample than represented in the genetic analysis and found additional support 
for the elevation of the Chamba population.

The Dhauladhar Range, varying in elevation from 300 m to 5000 m a.s.l., borders the Chamba Valley, 
Churah Valley and other deep valleys of the region (Fig. 1), while the Pir Panjal Range running along 
the north-western border of the valley (Thiede et al. 2017) provides a further physical barrier that could 
account for the geographic isolation of G. chambensis sp. nov.

The exact distribution of the new species in the Chamba district requires further survey effort, as it 
may extend as far south as the Kalatop Wildlife Sanctuary. The specimens labelled “Dalhousie”, which 
appear to have disparate affinities, may originate from other locations; such labelling practices were not 
unusual during the British Raj when these specimens were collected. A more extensive study, including 
specimens from further east in Uttarakhand, Nepal, and Bhutan, may also reveal additional diagnostic 
characters for G. chambensis sp. nov. For example, in our data, G. chambensis shares some characters 
with specimens from Kashmir and Pakistan. Among the specimens examined here, all specimens from 
Chamba, Kashmir and Pakistan had a smooth-edged supraocular while those from eastern locations 
possessed a supraocular with a distinct notch on the rear edge. However, Gloyd & Conant (1990) include 
a diagram of a specimen from Nathia Gali, Pakistan, very close to the specimen examined here from 
Murree, which possesses a notched supraocular, so this may be an artefact of sample size.

Our findings also further support the basal position of G. himalayanus within the rest of Gloydius (Shi 
et al. 2021). Xu et al. (2012) conducted divergence estimate studies on Gloydius and suggested that the 
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group originated during the mid-Miocene (~15 Ma) with speciation within the group beginning in the 
late Miocene (~9.8 Ma). At this time, the Qinghai-Xizang plateau had begun to uplift, and the rate of 
uplift increased in the late Miocene (Copeland et al. 1987). The Himalayan orogen also changed from 
a North–South extension to a North–South contraction during the mid-Miocene (Wang et al. 2013). 
A study of the oxygen isotopic composition of the modern water of southern Tibet and the Himalayas 
indicated that the present-day hypsometry of this region was achieved by the late-Miocene, about 10 
Ma (Rowley et al. 2001). Studies have also indicated that it was sometime between the mid- and late-
Miocene that the Dhauladhar Range was formed due to the uplifting activity of the Main Boundary 
Thrust (Adlakha et al. 2013; Thiede et al. 2017).With such geological changes occurring, it is possible 
the populations of Gloydius on the southern slopes of the Himalayan peaks were isolated by physical 
barriers from the majority of the current species of Gloydius, accounting for the large genetic separation 
and basal position of G. himalayanus. 

In conclusion, the phylogenetic analysis of Gloydius himalayanus using various inference methods on 
both mitochondrial and nuclear data indicate that there is a cryptic species present within G. himalayanus, 
as currently recognised. Combined with the morphological analysis, this investigation confirms the 
discovery of Gloydius chambensis sp. nov. as the second species of Gloydius distributed on the Indian 
subcontinent. 
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Fig. S1. Parameter Trace Plots- RWTY will produce trace and density plots of each column statistic 
in the trace file. For example, in this study, a parameter trace and density plot were created for the log 
likelihood of each cold chain (LnL). Such plots are useful to help tune further analysis (e.g., burn-in). 
The title of each plot shows the Effective Sample Size (ESS). In general, all the parameters should 
have an ESS>200, which was achieved in this study.

Fig. S2. Tree topology plots are like the parameter plots. They reveal where the MCMC was sampling 
from a stationary distribution of chains or whether moving between different modes. They also show 
how well-mixed the chains are with respect to tree topologies. Well-mixed chains will show the trace 
jumping rapidly between values.

Fig. S3. The plots show the split frequencies of clades in the chain either as the frequency calculated 
from cumulative samples in the chain at various points in the analysis or as the frequency within 
the sliding window. By default, they show the 20 clades with the highest standard deviation od split 
frequencies within each sample. In analysis that is mixing well, the frequencies in the cumulative plot 
should level off and the frequencies in the sliding window to move around a lot. If the frequencies in 
the cumulative window are not levelled off, it may mean the chain had to run longer.

Fig. S4. The plots demonstrate the movement of the chains in two dimensional representations of 
treespace. The space is created using all the chains together, hence, the treespaces of different chains 
are comparable. The treespace plots for all the chains will looks similar if the chains are sampling 
similar tree topologies.

Fig. S5. The Average Standard Deviation of Split Frequencies (ASDSF) of clades that appear in any 
of the chains, are calculated from cumulative samples in the chain at various points in the analysis. 
The solid line shows the ASDSF and the ribbons the 75%, 95% and 100% quantiles of the Standard 
Deviation of the Split Frequencies (SDSF) across the clades. A lower ASDSF indicates that the 
chains are more in agreement on split frequencies. The y-axis is plotted on a log10 scale. In general, 
the SDSF is expected to get lower as the chains progress.

Fig. S6. Split Frequency scatterplot matrix shows the how much agreement is there between regions 
of treespace the chains have sampled. For each comparison, the cumulative final frequency of each 
clade in a chain is plotted against the same on another chain. The correlation (Pearson’s R) and 
ASDSF for each pair of chains is also shown. A satisfactory agreement will have the R-value between 
0.9 and 1.0, and the ASDSF value will be lesser than 0.01.

Fig. S7. The ASDSF dendogram shows the similarity of split frequencies between chains. The more 
similar ones are grouped together. This plot helps indicate which chains are sampling similar region 
of the treespace.

Fig. S8. Bayesian Tree: Branch labels indicate the posterior probabilties (%). In this and 
subsequent figures, each clade is labelled and designated in a particular colour. These clades are, 
A. Gloydius himalayanus (Black); B. G. blomhoffi, G. brevicaudus, G. ussuriensis (Yellow); 
C. G. qinlingensis (Red); D. G. liupanensis (Purple); E. G. halys, G. intermedius, G. changdaoensis, 
G. cognatus, G. stejnegeri, G. shedaoensis (Blue); F. G. angusticeps, G. strauchi, G. monticola, 
G. rubromaculatus (Green).



European Journal of Taxonomy 852: 1–30 (2022)

30

Appendix
Appendix 1. A list of all other, apart from the holotype of Gloydius chambensis sp. nov., specimens used 
in the morphological analysis along with their depositories. Abbreviations: BNHS = Bombay Natural 
History Society; BNHM = British Natural History Museum; MCZ = Museum of Comparative Zoology, 
Harvard; NMW = Natural History Museum, Vienna (Naturhistorisches Museum Wien); USNM = 
Smithsonian National Museum of Natural History; ZSI Solan = High Altitude Research Centre, 
Zoological Survey of India, Solan, Himachal Pradesh.

Gloydius himalayanus (Günther, 1864)
INDIA  2 ♂♂, 2 ♀♀; Dalhousie; BNHS 2507, BNHS 2508, BNHS 2513, BNHS 2514  3 ♂♂, 2 ♀♀, 1 
spec. sex unknown; Kullu; BNHS 2505, MCZ Herp-R3138, MCZ Herp-R3139(A), MCZ Herp-R3139(B), 
MCZ Herp-R3140  1 ♀; Garwhal, UP; alt. 1700 ft; BNHS 2520  1 ♂; Guptkashi, Garwhaal Himalayas; 
BNHS 2885  1 ♀; Chilas, Kashmir; BNHS 2519  3 ♀♀; Srinagar, Kashmir; NWM 17079.20, NWM 
17079.10, USNM 20884  1 ♀; Palawar, Kashmir; USNM 48471  1 ♂; Kashmir; USNM 51491  1 ♀; 
Kotgarh, Himachal Pradesh; NMW15134.1  1 ♂; Himalayas; BNHM 1872.4.17.363  1 ♀; Kalatop 
Work Station, Khajjiar, Himachal Pradesh; ZSI Solan  1 ♀; Dumas, Bairagarh, Himachal Pradesh; 
examined in field (18.54)  2 ♀♀; Khushnagri, Himchal Pradesh; examined in field (18.55, 19.38)  1 ♀; 
Tharvai, Himachal Pradesh; examined in field (19.40)  1 ♂; Bairagarh, Himachal Pradesh; examined in 
field (19.44)  1 spec. sex unknown; Manju, Himachal Pradesh; examined in field (19.50)  2 ♀♀; Sainj, 
Himachal Pradesh; examined in field (18.30, 18.31)  1 ♀; Dhevu, near Sarahan, Himachal Pradesh; 
examined in field (19.30).

PAKISTAN • 1 ♂; Murree, Rawalpindi District; NMW 17078 • 1 ♂; Ghora Galli, Punjab; BNHS 2515..


