

# Traditional botanical flora of medicinal plants in the treatment of kidney stones in Iran

Asaad Mordi,<sup>1</sup> Mohammad Teimorian,<sup>2</sup> Behnam Shakiba,<sup>1</sup> Emadoddin Moudi<sup>3</sup>

<sup>1</sup>Department of Uro-oncology, Firoozgar Hospital Iran University of Medical Sciences, Tehran; <sup>2</sup>Department of Urology, Shahid Beheshti Hospital, Babol University of Medical Sciences, Babol; <sup>3</sup>Department of Urology, Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran

# Abstract

Medicinal plants have long been considered for the treatment of many diseases among Iranians and in recent years the use of medicinal plants has increased. In traditional Iranian medicine, many plants have been described to eliminate kidney stones, dissolve kidney stones or prevent stone formation. Based on the results Medicinal plants Cichorium intybus L. Biarum straussii Engl., Tribulus terrestris L., Nasturtium officinale R. Br., Alhagi camelorum Fisch., Adiantum Capillus-Veneris L., Anchusa italic, Alhagi maurorum, Achila mellifolium, Capsella bursa-pastoris (L.) Medicus., Adiantum capillus- Veneris L., Pistacia khinjuk, Acanthophyllum khuzistanicum Rech. F., Malva parviflora L., Allium iranicum (Wendelbo Wendelbo), Centaurea solstitialis L., Cerasus vulgaris Miller, and etc. are medicinal plants that are used in different parts of Iran used to treat kidney stones. It was found that plant families including Fabaceae (10 plants), Asteraceae (10 plants), Brassicaceae (6 plants) and Zygophyllaceae (6 plants) have the most medicinal plants in the discussion of medicinal plants affecting kidney stones and parts such as leaf (27%), fruit (15%), aerial parts (15%) and flower (14%) are the most plant organs that are used in this area for the treatment of kidney stones. The great tendency of people in the knowledge of ethno-botany and plant

Correspondence: Emadoddin Moudi, Department of Urology, Cancer Research Center, Health Research Institute, Babol University of Medical Sciences, Pardis Babol, Babol, Iran. E-mail: emadmoudi@gmail.com

Key words: Folk remedy; kidney stones; ethno-botany; Iran.

Conflicts of interest: The authors have no conflict of interest to declare.

Received for publication: 24 May 2021. Revision received: 11 October 2021. Accepted for publication: 27 October 2021.

<sup>©</sup>Copyright: the Author(s), 2021 Licensee PAGEPress, Italy Journal of Biological Research 2021; 94:9869 doi:10.4081/jbr.2021.9869

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. flora in traditional medicine is evident in the use of medicinal plants and the historical history of the use of medicinal plants. Iranian ethno-botanical knowledge can play a good role in presenting pure ideas of traditional medicine for modern medicine.

# Introduction

The kidneys are one of the most important organs in the body, located in the back of the abdomen, in the lumbar region. The main parts of each kidney include the cortex and the medulla. Kidney function includes the reabsorption of glucose, amino acids, and other small molecules, the regulation of sodium, potassium, and other electrolytes, the regulation of fluid balance, the maintenance of acid-base balance, and the production of hormones and vitamin D activation.<sup>1,2</sup> Nephrons are the basic functional part of any kidney, which removes waste products from the blood by receiving and purifying it. Each nephron consists of a Bowman capsule, a Henle tube, a round tube, and a collecting duct.<sup>3-5</sup>

Kidney disorders and diseases are divided into congenital diseases and adult diseases. Congenital diseases include congenital hydronephrosis, congenital obstruction of the urinary tract, duplicated ureter, horseshoe kidney, olycystic kidney disease (renal dysplasia, and unilateral small kidney). Adult diseases include: diabetic nephropathy, glomerulonephritis, hydronephrosis, interstitial nephritis, kidney stones, kidney tumors, lupus nephritis, minimal change disease, nephrotic syndrome, and pyelonephritis.<sup>6-8</sup> It has been made clear that sedimentation of compounds (in high concentrations) in the urine causes the formation of kidney stones. Most kidney stones are caused by genetic factors, diet and some underlying diseases.9 Most kidney stones are composed of compounds such as calcium oxalate, uric acid, steroid and cysteine.<sup>10</sup> Usually, in order to eliminate these stones are used various treatment methods such as consumption of fluids, acidic and alkaline solvents and surgical methods, including: removal of obstruction, extracorporeal stone crushing, stone crushing, and crushing.<sup>10,11</sup> If not treated properly, the side effects of stones are significant and sometimes lead to kidney loss. Therefore, early diagnosis and treatment of kidney stones reduces side effects and treatment costs. Nowadays, due to the side effects and severe harmful effects of chemical drugs, the use of various herbal and natural medicines in the treatment of kidney stones has been considered by researchers.<sup>12-14</sup> Kidney stone disease is a wellknown disease in both traditional and modern medicine. In the authoritative books of traditional medicine, the etiology, symptoms and traditional herbal treatments for this disease are stated. Therefore, the aim of current systematic study was ethno-botany in the treatment of kidney stones in Iranian ethno-botanical documents.



## **Materials and Methods**

The aim of this study was to review articles in Iranian ethnobotanical medicine sources. For this purpose, keywords such as "kidney stones", "medicinal plants", "herbs", "ethno-botany", "identification of medicinal plants", "region" and "Iran" were used. Databases such as ISI Web of Science, PubMed, Scopus, ISC, Magiran, and Google Scholar were used to find articles and resources (articles of 2001 to 2020). Forty-nine (49) articles were found. Three articles lacked full text, and there were 3 duplicate articles that were deleted. Finally, 46 articles were identified for this review. Out of 46 articles, only 20 articles contained ethnobotanical information on the treatment of kidney stones. The flowchart of the search strategy and the inclusion and exclusion criteria of the articles are specified in Figure 1. The data collected in this study were analyzed using Excel program.

## Results

Medicinal plants Cichorium intybus L. Biarum straussii Engl., Tribulus terrestris L., Nasturtium officinale R. Br., Alhagi camelorum Fisch., Adiantum Capillus-Veneris L., Anchusa italic, Alhagi maurorum, Achila mellifolium, Capsella bursa-pastoris (L.) Medicus., Adiantum capillus- Veneris L., Pistacia khinjuk, Acanthophyllum khuzistanicum Rech. F., Malva parviflora L., Allium iranicum (Wendelbo Wendelbo), Centaurea solstitialis L., Cerasus vulgaris Miller, Ceratocephalus falcata (L.) Pers, Cicer anatolicum Alef., Citrullus lanatus (Thumb.) Matsum & Nakai, Urtica dioica L., Adonis aestivalis L., Allium akaka Gmelin., Amygdalus arabica Olivier., Raphanus niger Mill., etc. are medicinal plants that are used in different parts of Iran used to treat kidney stones. Additional information in this regard, medicinal plants, scientific name, plant family name, area used, organ used and its main active ingredients are specified in Table 1.<sup>15-33</sup>

Based on the results obtained from the analysis of the items in Table 1, it was found that plant families including Fabaceae, Asteraceae, Brassicaceae and Zygophyllaceae have the most medicinal plants in the discussion of medicinal plants affecting kidney stones in this study (Figure 2).

As it is known, fruit, asteraceae, leaf, aerial parts and flower are the most plant organs that are used in this area for the treatment of kidney stones (Figure 3).

#### Discussion

Today, with the advancement of technology and the availability of various types of stone crushers that have undergone a great change in the treatment of urinary tract stones, effective and safe drug treatment that without surgical intervention leads to complete or incurable treatment of the stone. In the knowledge of ethnobotany and traditional medicine of different societies, medicinal plants have been used to treat diseases. Today, in addition to the use of chemical drugs, medicinal plants are used to treat kidney stones due to the proof of the effect of various herbal medicines.12,34,35 In traditional medicine of Iran and many parts of the world, medicinal plants are used to treat kidney stones. In traditional medicine, these herbs are effective treatments for this disease. Comparison of medicinal plants that are traditionally known as anti-kidney stones is more effective if these plants are proven in animal and human models in scientific and pharmacological experiments. The results of some studies confirm the effect of medicinal plants that have been mentioned in traditional medicine and have been effective in modern medicine studies.



# Figure 1. The criteria and the number of entry and exit articles.



| Scientific name                                                  | Herbal family   | Common name            | Used part(s)              | Region                                | Compound                                          | Molecular<br>formula                               |
|------------------------------------------------------------------|-----------------|------------------------|---------------------------|---------------------------------------|---------------------------------------------------|----------------------------------------------------|
| <i>Biarum straussii</i> Engl.                                    | Araceae         | Kardeh                 | Aerial parts              | Arzhan of fars <sup>15</sup>          | Phenol                                            | C <sub>6</sub> H <sub>6</sub> O                    |
| Tribulus terrestris L.                                           | Zygophylaceae   | Khar Pelangi           | Aerial parts              | Arzhan of fars <sup>15</sup>          | furostanol                                        | C <sub>27</sub> H <sub>46</sub> O <sub>2</sub>     |
| Nasturtium officinale R. Br.                                     | Brassicaceae    | Bakaloo                | Aerial parts              | Arzhan of fars <sup>15</sup>          | myristicin                                        | $C_{11}H_{12}O_3$                                  |
| Alhagi camelorum Fisch.                                          | Fabaceae        | Kharshotore            | Aerial parts              | Arzhan of fars <sup>15</sup>          | Drimenol                                          | C <sub>15</sub> H <sub>26</sub> O                  |
| Alhagi camelorum Fisch.                                          | Papilionaceae   | Khar Shotor            | Aerial parts              | Arzhan of fars <sup>15</sup>          | Drimenol                                          | $C_{15}H_{26}O$                                    |
| Adiantum Capillus-Veneris L.                                     | Pteridaceae     | Parsiavashoon          | Aerial parts              | Arzhan of fars <sup>15</sup>          | adiantoxide                                       | C <sub>30</sub> H <sub>50</sub> O                  |
| Anchusa italica                                                  | Boraginaceae    | Boragon                | Aerial parts              | Alamout <sup>16</sup>                 | Diisobutyl phthalate                              | C <sub>6</sub> H <sub>4</sub>                      |
| Alhagi maurorum                                                  | Fabaceae        | Dava gharni            | Leaf                      | Ahar va arasbaran <sup>17</sup>       | Drimenol                                          | C <sub>15</sub> H <sub>26</sub> O                  |
| Achila mellifolium                                               | Asteraceae      | Boumadaran             | Leaf, Flowering<br>branch | Abadeh of fars <sup>18</sup>          | 1,8-Cineole                                       | C <sub>10</sub> H <sub>18</sub> O                  |
| <i>Capsella bursa-pastoris</i> (L.)<br>Medicus.                  | Brassicaceae    | Kise keshish           | Leaf                      | Bushehr <sup>19</sup>                 | kaempferol-3-O-rutinosi                           | de C <sub>27</sub> H <sub>30</sub> O <sub>15</sub> |
| Adiantum capillus- Veneris L                                     | Adiantaceae     | Pare siavashan         | Aerial parts              | Behbahan <sup>20</sup>                | adiantoxide                                       | C <sub>30</sub> H <sub>50</sub> O                  |
| Anthriscus cerefolium L.<br>(Hoffm.)                             | Apiaceae        | Jafari                 | Aerial parts              | Behbahan <sup>20</sup>                | estragole                                         | C 10 H 12 O                                        |
| <i>Alhagi mannifera</i> Deaf.                                    | Fabaceae        | Khar shotor            | Aerial parts              | Behbahan <sup>20</sup>                | kaempferol                                        | $C_{15}H_{10}O_{6}$                                |
| Pistacia khinjuk                                                 | Anacardiaceae   | Kolkhonak              | Fruit, Leaf               | Tange balangestan <sup>21</sup>       | myrcene                                           | $C_{10}H_{16}$                                     |
| <i>Acanthophyllum<br/>khuzistanicum</i> Rech. F.                 | Caryophyllaceae | Khobak khuzistani      | Aerial parts              | Tange balangestan <sup>21</sup>       | quillaic acid                                     | $C_{30}H_{46}O_5$                                  |
| Malva parviflora L                                               | Malvaceae       | Panirak                | Flower, Leaf              | Tange balangestan <sup>21</sup>       | <sup>I</sup> β- amyrin                            | $C_{30}H_{50}O$                                    |
| <i>Allium iranicum</i><br>(Wendelbo Wendelbo)                    | Alliaceae       | Sire vahshi            | Bulb, Leaf                | Toisekan <sup>22</sup>                | dibutylphthalate-1'2-<br>benzenedicarboxylic acid | d C <sub>16</sub> H <sub>22</sub> O <sub>4</sub>   |
| Centaurea solstitialis L.                                        | Asteraceae      | yellow star            | Whole plant               | Toisekan <sup>22</sup>                | hexadecanoic acid                                 | $C_{16}H_{32}O_2$                                  |
| Cerasus vulgaris Miller                                          | Rosaceae        | Manase                 | Vegetative part           | Toisekan <sup>22</sup>                | alpha-Pinene                                      | $C_{10}H_{16}$                                     |
| <i>Ceratocephalus falcata</i> (L.)<br>Pers                       | Ranunculaceae   | -                      | Spine, Aerial Part        | Toisekan <sup>22</sup>                | alpha-Pinene                                      | $C_{10}H_{16}$                                     |
| Cicer anatolicum Alef.                                           | Fabaceae        | -                      | Whole plant, Fruit        | Toisekan <sup>22</sup>                | isoflavonoid                                      | C15H10O2                                           |
| Cichorium intybus L.                                             | Asteraceae      | Cichout                | Aerial Part, Root         | Toisekan <sup>22</sup>                | esculetin                                         | $C_9H_6O_4$                                        |
| <i>Citrullus lanatus</i> (Thumb.)<br>Matsum & Nakai              | Cucurbitaceae   | -                      | Fruit                     | Toisekan <sup>22</sup>                | Phenol                                            | C <sub>6</sub> H <sub>5</sub> OH                   |
| <i>Tripleurospermum disciforme</i> (C. A. Mey.) Schultz          | Asteraceae      | tripaloe               | Flower                    | Toisekan <sup>22</sup>                | β-farnesene                                       | C 1 5 H 2 4                                        |
| Urtica dioica L.                                                 | Urticaceae      | -                      | Leaf                      | Toisekan <sup>22</sup>                | Hexa hydrofarnesyl acet                           | one C <sub>18</sub> H <sub>36</sub> O              |
| Adonis aestivalis L.                                             | Ranunculaceae   | Cheshm khrus tabestani | Aerial parts              | Dastena <sup>23</sup>                 | hexaglycoside                                     | $C_{30}H_{32}O_{20}$                               |
| Centaurea depressa M.B.                                          | Astraceae       | Gole gandom            | Flower                    | Dastena <sup>23</sup>                 | Piperitone                                        | $C_{10}H_{16}O$                                    |
| Centaurea persica Boiss.                                         | Astraceae       | Gole gandome farsi     | Flower                    | Dastena <sup>23</sup>                 | Quercetin                                         | $C_{15}H_{10}O_7$                                  |
| Cnicus benedictus L.                                             | Astraceae       | Kharmoghadas           | Leaf                      | Dastena <sup>23</sup>                 | cnicin                                            | $C_{20}H_{26}O_7$                                  |
| Equisetum arvensis L.                                            | Equisetaceae    | Horsetil               | Leaf                      | Dastena <sup>23</sup>                 | Hexahydrofarnesyl aceto                           | one C <sub>18</sub> H <sub>36</sub> O              |
| <i>Alhagi persarum</i> Boiss.<br>& Buhse.                        | Fabaceae        | Toranjabin             | Stems, Leaf               | Dehloran and<br>Abdanan <sup>24</sup> | kaempferol                                        | $C_{15}H_{10}O_{6}$                                |
| Adianthum capillus-veneris L.                                    | Polypodiaceae   | Kamar Avizeh           | Flower, Leaf              | Dehloran and<br>Abdanan <sup>24</sup> | $\alpha$ -D-Glucopyranoside                       | $C_7H_{14}O_6$                                     |
| <i>Allium akaka</i> Gmelin.                                      | Aliaceae        | Aneshk                 | Leaf, Bulb                | Dehloran and<br>Abdanan <sup>24</sup> | 1-Butene,1-<br>(methylthio)-(Z)                   | C <sub>5</sub> H <sub>10</sub> S                   |
| <i>Allium ampeloprasum</i> L.<br>subsp. <i>iranicum</i> Wendelbo | Aliaceae        | Tareh Koohi            | Leaf, Bulb                | Dehloran and<br>Abdanan <sup>24</sup> | linoleic acid                                     | $C_{18}H_{32}O_{2}$                                |
| <i>Amygdalus arabica</i> Olivier.                                | Rosaceae        | Badam-e-<br>Koohi      | Fruits                    | Dehloran and<br>Abdanan <sup>24</sup> | Amigdalin                                         | C <sub>20</sub> H <sub>27</sub> NO <sub>11</sub>   |
| Cerasus mahaleb (L.) Miller.                                     | Rosaceae        | Beralik                | Fruits                    | Dehloran and<br>Abdanan <sup>24</sup> | Coumarin                                          | $C_9H_6O_2$                                        |
| Gundelia tournefortii L.                                         | Asteraceae      | Kenyer                 | Leaf, Stem                | Dehloran and<br>Abdanan <sup>24</sup> | Amyrin                                            | C <sub>30</sub> H <sub>50</sub> O                  |

# Table 1. Scientific name, plant family name, local name, organ used and area of use of medicinal plants affecting kidney stones.

To be continued on next page



# Table 1. Continued from previous page.

| Scientific name                                             | Herbal family  | Common name            | Used part(s)         | Region                                | Compound                                                    | Molecular<br>formula                              |
|-------------------------------------------------------------|----------------|------------------------|----------------------|---------------------------------------|-------------------------------------------------------------|---------------------------------------------------|
| Noaea mucronata (Forssk.)<br>Asch &Schweinf.                | Chenopodiaceae | Khargo                 | Leaf, Flower         | Dehloran and<br>Abdanan <sup>24</sup> | rhamnose                                                    | $C_6H_{12}O_5$                                    |
| <i>Onobrychis elymaitica</i> Boiss.<br>& Hausskn. Ex Boiss. | Fabaceae       | Pieh kol               | Leaf, Flower         | Dehloran and<br>Abdanan <sup>24</sup> | methyl 6-O-p-trans-<br>coumaroyl-beta-D-<br>glucopyranoside | $C_{42}H_{46}O_{23}$                              |
| <i>Consolida orientalis</i> (Gay)<br>Schrod.                | Ranunculaceae  | Zaban-pas-ghafa        | Whole plant          | Dehlolo of kerman <sup>25</sup>       | delcosine                                                   | C <sub>24</sub> H <sub>39</sub> NO <sub>7</sub>   |
| Tribullus terresteris L.                                    | Zygophylaceae  | Khar-khesak            | Leaf, Root, Fruit    | Dehlolo of kerman <sup>25</sup>       | kaempferol                                                  | $C_{15}H_{10}O_{6}$                               |
| Raphanus niger Mill.                                        | Brassicaceae   | Torbe siah             | Leaf, Bulb           | Zarivar <sup>26</sup>                 | 3-(E)-(methylthio)<br>methylene-2-<br>pyrrolidinethione     |                                                   |
| <i>Alhagi persarum</i> Boiss.<br>& Buhse.                   | Fabaceae       | Dava yandakhi          | Root, Flower         | Zanjan <sup>27</sup>                  | kaempferol                                                  | $C_{15}H_{10}O_{6}$                               |
| <i>Carthamus oxyacantha</i><br>M.Bieb.                      | Asteraceae     | Sari tikan             | Shoot                | Zanjan <sup>27</sup>                  | phenol                                                      | C <sub>6</sub> H <sub>6</sub> O                   |
| <i>Rosa canina</i> L.                                       | Rosaceae       | Gul burnu              | Fruit, Flower, Shoot | Zanjan <sup>27</sup>                  | hyperoside                                                  | $C_{21}H_{20}O_{12}$                              |
| Tribulus terrestris L.                                      | Zygophyllaceae | Damir tikan            | Whole plant          | Zanjan <sup>27</sup>                  | kaempferol                                                  | C15H10O6                                          |
| Amaranthus caudatus L.                                      | Amarantaceae   | Sorkh Maghz            | Fruit, Seed, Flower  | Sirjan <sup>28</sup>                  | phenol                                                      | C <sub>6</sub> H <sub>6</sub> O                   |
| Alhagi pseudalhagi (M. Bieb.)<br>Desv.exB.                  | Fabaceae       | Adoor                  | Aerial parts         | Sirjan <sup>28</sup>                  | 3-O-Methyl-d-glucose                                        | C <sub>7</sub> H <sub>14</sub> O <sub>6</sub>     |
| Tribulus terrestris L.                                      | Zygophyllaceae | Khar- Khorsak          | Fruit                | Sirjan <sup>28</sup>                  | saponin                                                     | C <sub>58</sub> H <sub>94</sub> O <sub>27</sub>   |
| Alhagi persarum Boiss.<br>& Buhse.                          | Fabaceae       | Kharshotor             | Stem, Leaf, Flower   | Sirjan <sup>28</sup>                  | kaempferol                                                  | $C_{15}H_{10}O_{6}$                               |
| Rubia tinctorum L.                                          | Rubiaceae      | Ronas                  | Seed                 | Sirjan <sup>28</sup>                  | 3-O-Methyl-d-glucose                                        | $C_7H_{14}O_6$                                    |
| Cichorium intybus L.                                        | Asteraceae     | Kasni                  | Leaf, Stem           | East Persian Gulf <sup>29</sup>       | esculetin                                                   | C <sub>9</sub> H <sub>6</sub> O <sub>4</sub>      |
| Alhagi persaru Boiss. & Buhse                               | Papilonaceae   | Kharshotor             | Aerial parts         | East Persian Gulf <sup>29</sup>       | kaempferol                                                  | $C_{15}H_{10}O_{6}$                               |
| Peganum harmala L.                                          | Zygophyllaceae | Esfand                 | Aerial parts         | East Persian Gulf <sup>29</sup>       | harmine                                                     | C <sub>13</sub> H <sub>12</sub> N <sub>2</sub> O  |
| Allium cepa L.                                              | Amaryllidaceae | Piaz                   | Bulb                 | East of khuzistan <sup>30</sup>       | Quercetin                                                   | $C_{15}H_{10}O_7$                                 |
| Petroselinum crispum                                        | Apiaceae       | Jafari                 | Fruit, Leaf          | East of khuzistan <sup>30</sup>       | apigenin                                                    | C <sub>15</sub> H <sub>10</sub> O <sub>5</sub>    |
| Helianthus annus L.                                         | Asteraceae     | Aftabgardan            | Seed                 | East of khuzistan <sup>30</sup>       | alpha-Pinene                                                | C <sub>10</sub> H <sub>16</sub>                   |
| Descurainia sophia                                          | Brassicaceae   | Khakeshir              | Seed                 | East of khuzistan <sup>30</sup>       | palmitic acid                                               | C <sub>16</sub> H <sub>32</sub> O <sub>2</sub>    |
| Raphanus sativus L.                                         | Brassicaceae   | Torb                   | Bulb                 | East of khuzistan <sup>30</sup>       | 3-(E)-(methylthio)<br>methylene-2-<br>pyrrolidinethione     | -                                                 |
| <i>Linum usitatissimum</i> L.                               | Linaceae       | Katan                  | Seed                 | East of khuzistan $^{30}$             | phenol                                                      | $C_6H_6O$                                         |
| Alhagi pseudalhagi                                          | Papilionacea   | Toranjabin             | Flower, Leaf         | East of khuzistan <sup>30</sup>       | 3-O-Methyl-d-glucose                                        | $C_7H_{14}O_6$                                    |
| Astragalus hamosus L.                                       | Papilionacea   | Nakhonak               | Fruit                | East of khuzistan $^{30}$             | 9,12-Octadecadienoic ac                                     | id C <sub>18</sub> H <sub>32</sub> O <sub>2</sub> |
| Faba vulgaris Moenchris.                                    | Papilionacea   | Baghela                | Seed, Leaf           | East of khuzistan <sup>30</sup>       | Palmitic acid                                               | $C_{16}H_{32}O_2$                                 |
| Amygdalus communis L.                                       | Rosaceae       | Badamtalkh             | Seed                 | East of khuzistan <sup>30</sup>       | alpha-Pinene                                                | $C_{10}H_{16}$                                    |
| Rubia tinctorum L.                                          | Rubiaceae      | Ronas                  | Root                 | East of khuzistan <sup>30</sup>       | lucidin                                                     | $C_{15}H_{10}O_5$                                 |
| Tribulus terrestris L.                                      | Zygophyllaceae | Kharkhasak             | Fruit                | East of khuzistan <sup>30</sup>       | dioscin                                                     | $C_{45}H_{72}O_{16}$                              |
| <i>Nasturtium officinale</i> (L.)<br>R. Br.                 | Brassicaceae   | Alafeh cheshmeh        | Flower, Leaf         | Kazeroun <sup>31</sup>                | myristicin                                                  | $C_{11}H_{12}O_3$                                 |
| <i>Alhagi persarum</i> Boiss.<br>& Buhse                    | Papilonaceae   | Kharshotor             | Aerial parts         | Kazeroun <sup>31</sup>                | kaempferol                                                  | $C_{15}H_{10}O_{6}$                               |
| Tribulus terrestris L.                                      | Zygophyllaceae | Kharkhasak             | Fruit                | Kazeroun <sup>31</sup>                | dioscin                                                     | $C_{45}H_{72}O_{16}$                              |
| Achillea millefolium                                        | Asteraceae     | Boomadaran             | Leaf                 | Mashhad <sup>32</sup>                 | 1,8-Cineole                                                 | C <sub>10</sub> H <sub>18</sub> O                 |
| Alhagi camelorum                                            | Fabaceae       | Kharshotor             | Bark, Stem,Fruit     | Mashhad <sup>32</sup>                 | Drimenol                                                    | $C_{15}H_{26}O$                                   |
| Tribulus terrestris L.                                      | Zygophyllaceae | Tribulus<br>terrestris | Leaf, Fruit          | Mashhad <sup>32</sup>                 | dioscin                                                     | $C_{45}H_{72}O_{16}$                              |
| Cyndon dactylon                                             | Poaceae        | Biid giyah             | Leaf, Fruit          | Mashhad <sup>32</sup>                 | glycerin                                                    | $C_3H_8O_3$                                       |
| Borago officinalis                                          | Boraginaceae   | Gav zaban              | Leaf, Fruit          | Mashhad <sup>32</sup>                 | linoleic acid                                               | C <sub>18</sub> H <sub>32</sub> O <sub>2</sub>    |
| <i>Cousinia alexeenkoana</i><br>Bornm.                      | Asteraceae     | Boumadaran             | Flower, Leaf         | Natanz of kashan <sup>33</sup>        | alpha-Pinene                                                | $C_{10}H_{16}$                                    |



In a clinical trial study, the effect of *Smyrnium cordifolium* Boiss on the prevention of kidney stones from ethylene glycolinduced calcium oxalate in rats was evaluated and it was found that ethylene glycol significantly increased serum urea, uric acid and creatinine compared to the normal control group (p<0.01). While serum urea, uric acid and creatinine levels decreased in groups III and IV compared to ethylene glycol group, but this decrease was not significant (p>0.05). Urine parameters showed that the extract significantly increased urine volume compared to ethylene glycol group and urinary oxalate level decreased significantly (p<0.05).<sup>36</sup> In a clinical trial study, the effect of hydroalcoholic extract of *Nigella Sativa* seeds on ethylene glycol-induced kidney stones in rats was investigated. The results showed that the amount of calcium oxalate deposition in the treatment group was significantly reduced compared to the ethylene glycol group and the level of urinary oxalate was similar to the study in the treat-





ment group.<sup>37</sup> In a clinical trial study, the effects of alcoholic extract of nigella sativa seeds on kidney stones induced by ethylene glycol in rats were investigated. In this study, 32 male Wistar rats were divided into 4 groups: group (A) healthy control, group (B) negative control, group (C) prevention and group (D) treatment for 30 days of 1% ethylene glycol added.

The results showed that in group B, the number of accumulation of kidney stones (55.05 9. 9.88) increased significantly compared to group A (p<0.001). In groups C (19.75. 7.75) and D (97.8±24.14), the number of rock accumulations significantly decreased (p<0.05) compared to group B, but did not differ significantly compared to group A. Biochemical evaluation of urine showed a significant increase in urinary calcium oxalate in group B (15.57, 15, 1.26 mg/dL) in comparison with groups A (8.43, 1, 1) and C (8.1, 0, 0.7) (p<0.001) and in comparison with group D (10.64 $\pm$ 1.2; p>0.05). The findings of this study showed that the alcoholic extract of nigella sativa seeds is effective in preventing the accumulation of calcium oxalate crystals and in crushing kidney stones.<sup>38</sup> In a clinical trial study, the effect of aqueous extract of Zolang plant in preventing pathological changes caused by ethylene glycol-induced calcium oxalate crystals in rat cortex and renal medullary tissues was shown and the results showed that the number of calcium oxalate crystals in healthy There was a significant difference in negative control (p<0.05). However, despite a decrease in the number of crystals compared to the negative control group, no significant difference was found in the 100 mg/kg dose group (p<0.05). Also, there was a significant difference between the prevention group with a dose of 200 mg/kg compared to the negative control group in terms of reducing the number of crystals (p<0.05). But there was no significant difference between the prevention group with 400 mg/kg and the negative control group (p<0.05).39 In a clinical trial study examining the effect of hydrophilic extract of alhagi maurorum on ethylene glycol-induced renal stone in male Wistar rats, the results showed there was no significant difference between the accumulations of calcium oxalate crystals in the studied groups (p>0.2). Urine was lower and this difference was significant in this regard (p<0.3). As a result, we can conclude that hydrophilic extract of alhagi maurorum is effective in preventing calcium oxalate stones in rats by reducing the amount of oxalate and increasing urinary citrate.<sup>40</sup> The results of study in Shiraz city (Iran) shown 19 botanical families are used to treat kidney stone in Shiraz. Alhagi maurorum, Tribulus terrestris, Nigella Sativa, Mangifera indica, Prunus cerasus, Prangos acaulis (DC.) Bornm.<sup>41,42</sup> Studies have shown that medicinal plants due to their active ingredients and medicinal and antioxidant compounds have beneficial effects on human health and have a therapeutic effect on various organs of the body and various diseases.<sup>43-52</sup> Herbs can be used to treat kidney stones. The results of a study in Muzaffarnagar district show that 15 medicinal plants from 13 plant families are traditionally used in this region for kidney stones in humans. Currently in Iran, SANKOL<sup>®</sup> herbal drops are prescribed to remove kidney stones and facilitate the removal of pebbles after using a crusher. SANKOL drug is a mixture of medicinal plants such as fennel, cumin, fragrant leaves, cherries (tail), corn cob, prickly pear and melon seeds. The components of this herbal medicine include plants such as Cucurbita pepo, Populus nigra and Solidago canadensis. Commercial teas including green tea, dandelion plant, a mixture of milk and mangosteen and borage are also produced and available in the market for human consumption. Numerous studies have reported the side effects of chemical drugs. Also, the high tendency of people to use medicinal plants and the historical history of using medicinal plants is obvious. The kidneys can play a good role in the treatment of kidney stones.

#### References

- von Websky K, Reichetzeder C, Hocher B. Physiology and pathophysiology of incretins in the kidney. Curr Opinion Nephrol Hypertens 2014;23:54-60.
- Stowasser M, Gordon RD. Primary aldosteronism: changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol Rev 2016;96:1327-84.
- Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis 1993;22:493-510.
- Lindeman RD. Overview: renal physiology and pathophysiology of aging. Am J Kidney Dis 1990;16:275-82.
- 5. Hoenig MP, Zeidel ML. Homeostasis, the milieu interieur, and the wisdom of the nephron. Clin J Am Soc Nephrol 2014;9:1272-81.
- Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet 2017;389:1238-52.
- Vize PD, Woolf AS, Bard JB. The kidney: from normal development to congenital disease. Elsevier; 2003.
- 8. Hildebrandt F. Genetic kidney diseases. Lancet 2010;375:1287-95.
- Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Investig 2005;115:2598-608.
- Khan S, Thamilselvan S. Nephrolithiasis: a consequence of renal epithelial cell exposure to oxalate and calcium oxalate crystals. Molecular Urol 2000;4:305-11.
- 11. Grases F, Prieto RM, Gomila I, et al. Phytotherapy and renal stones: the role of antioxidants. A pilot study in Wistar rats. Urol Res 2009;37:35.
- 12. Bahmani M, Baharvand-Ahmadi B, et al. Identification of medicinal plants for the treatment of kidney and urinary stones. J Renal Injury Prev 2016;5:129.
- Kasote DM, Jagtap SD, Thapa D, et al. Herbal remedies for urinary stones used in India and China: A review. J Ethnopharmacol 2017;203:55-68.
- Dinesh V, Bembrekar SK, Sharma P. Herbal formulations used in treatment of kidney stone by native folklore of Nizamabad District, Andhra Pradesh, India. Biosci Discov 2013;4:250-3.
- Dolatkhahi M, Dolatkhahi A, Bagher Nejad J. Ethnobotanical study of medicinal plants used in Arjan –Parishan protected area in Fars Province of Iran. Avicenna J Phytomed 2014;4:402-412.
- Ahvazi M , Khalighi-Sigaroodi F, Charkhchiyan MM, et al. Introduction of medicinal plants species with the most traditional usage in Alamut Region. Iranian J Pharmaceut Res 2012;11:185-94.
- 17. Ebadi M, Eftekharian R. Ethnobotanical study of medicinal plants used in Ahar-Arasbaran (protected area in East Azerbaijan Province of Iran). Mediterranean Botany 2019;40:209-14
- Razmjoui D, Zarei Z, Akbari M. Ethnobotanical study of some medicinal plants of Abadeh city located in Fars province. J Crop Ecol 2014;7:222-34.
- 19. Dolatkhahi M, Nabipour I. Systematic study of medicinal plants in Bushehr. J Herbal Drugs 2013;3:209-21.
- Razmjoue D, Zarei Z, Armand R. Ethnobotanical study (identification, medical properties and how to use) of some medicinal plants of Behbahan city of Khuzestan Province, Iran. J Medicinal Plants 2017;16:33-50.
- 21. Ghavam M, Dehdari S, Hosseinpour Sh. Introduced flora, life forms and geographical distribution of plants tight



Balangestan. J Plant Res 2019;31:1-7.

- 22. Mosaddegh M, Esmaeili S, Hassanpour A, et al. Ethnobotanical study in the highland of Alvand and Tuyserkan, Iran. Res J Pharmacognosy 2016;3:7-17.
- Areftabad M, Jalilian N. Ethnobotanical study of medicinal plants in Zarivar region of Marivan city. J Med Plants 2015;14:55-76.
- 24. Ghasemi Pirbalouti A, Momeni M, Bahmani M. Ethnobotanical study of medicinal plants used by Kurd tribe in Dehloran and Abdanan Districts, Ilam Province, Iran. Afr J Tradit Complement Altern Med 2013;10:368.
- Vakili Shahrbabaki SMA. The Ethnobotanical Study of Medicinal Plants in (Dehe-lolo-vameghabadbidoieh) Village. Kerman, Iran. J Med Plants By-products 2016;1:105-111.
- Conversion, Jalilian N. Ethnobotanical study of medicinal plants in Zarivar region of Marivan city. J Medicinal Plants 2012;14:55-75.
- Moghanloo L, Ghahremaninejad F, Vafadar M. Ethnobotanical study of medicinal plants in the central district of the Zanjan county, Zanjan province, Iran. J Herbal Drugs 2019;9:121-31.
- Khajoei Nasab F, Khosravi AR. Ethnobotanical study of medicinal plants of Sirjan in Kerman Province, Iran. J Ethnopharmacol 2014;154:190–7.
- 29. Dolatkhahi M, Nabipour I. Ethnobotanical study of medicinal plants in the northeastern watershed of the Persian Gulf. Med Plants Quart 2019;13:129-143.
- Khodayari H, Amani SH, Amiri H. Ethnobotany of medicinal plants in the northeast of Khuzestan province. J Ecophytochem Med Plants 2014;8:12-16.
- Dolatkhahi M, Ghorbani Nohooji M, Mehrafarin A, Amini Nejad GHR. Ethnobotanical study of medicinal plants in Kazerun city: Identification, distribution and traditional uses. J Med Plants 2011;11:163-78.
- Amiri MS, Joharchi MR. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna J Phytomed 2013;3:254-71.
- Abbasi SH, Afsharzadeh S, Mohajeri AR. Introduction of plant species with medicinal properties in Nazanz region (Kashan). J Herbal Drugs 2014;3:147-56.
- 34. Ernst E. The efficacy of herbal medicine–an overview. Fundamental Clin Pharmacol 2005;19:405-9.
- 35. Alelign T, Petros B. Kidney stone disease: an update on current concepts. Adv Urol 2018;2018: 3068365.
- Adhamian esfehani M, Rouhi L, Azizi S. The effect of alcoholic extract of smyrnium cordifolium boiss root on prevention of ethylene glycol-induced kidney calculi in rats. Sjimu 2016;24:130-8.
- 37. Khajavi Rad A, Hadjzadeh M, Monavvar N, Ayathollahi H. The preventive effects of ethyl acetate fractions from aqueous and ethanolic extract of Nigella sativa L. seeds on calcium oxalate stones in Wistar rat. Koomesh 2008;9:123-30.
- Hadjzadeh M, Khoei A, Parizadeh M, Hajzadeh Z. The effects of ethanolic extract of Nigella Sativa seeds on ethylene glycol induced kidney stones in rat. Urol J 2007;4:86-90.
- 39. Esmaeili S, Falahpour Amiry M, Taene A, et al. Effect of aque-

ous extract of "eryngium campestre" on the prevention of pathologic alterations caused by calcium oxalate crystals induced by ethylene glycol in the cortex and medulla of rats' kidneys. J Birjand Univ Med Sci 2017;24:84-92.

- 40. Shafaeifar A, Mehrabi S, Malekzadeh J, Jannesar R, Sadeghi H, Vahdani R et al . Effect of hydrophilic extract of alhagi maurorum on ethylene glycol-induced renal stone in male Wistar rats. Armaghane danesh 2012;17:129-138.
- 41. Bahmani M, Baharvand-Ahmadi B, Tajeddini P, et al. Identification of medicinal plants for the treatment of kidney and urinary stones. J Renal Inj Prev 2016;5:129–33.
- Prachi, Chauhan N, Kumar D, Kasana MS. Medicinal plants of Muzaffarnagar district used in treatment of urinary tract and kidney stones. Indian J Trad Knowledge 2009;8:191-5.
- 43. Ghaneialvar H, Abbasi N, Saneei S, Zangeneh A, Zangeneh M M, Pooyanmehr M, et al . An ethno medicinal plant: Antibacterial activities of Stachys lavandulifolia Vahl aqueous extract against common pathogens. Plant Biotechnol Persa 2021;3:2.
- 44. Manouchehri A, Shakib P, Biglaryan F, et al. The most important medicinal plants affecting bee stings: A systematic review study. Uludag Aricilik Dergisi 20121;21:91-103.
- 45. Zhang Y, Mahdavi B, Mohammadhosseini M, et al. Green synthesis of NiO nanoparticles using Calendula officinalis extract: Chemical charactrization, antioxidant, cytotoxicity, and antiesophageal carcinoma properties. Arabian J Chem 2021;14:103105.
- 46. Ma D, Han T, Karimian M, et al. Immobilized Ag NPs on chitosan-biguanidine coated magnetic nanoparticles for synthesis of propargylamines and treatment of human lung cancer. Int J Biol Macromolec 2020;165:767-75.
- 47. Solati K, Karimi M, Rafieian-Kopaei M, et al. Phytotherapy for wound healing: The most important herbal plants in wound healing based on iranian ethnobotanical documents. Mini-Rev Med Chem 2021:21:500-19.
- 48. Abbasi N, Khalighi Z, Eftekhari Z, Bahmani M. Extraction and phytoanalysis of chemical compounds of Eucalyptus globulus leaf native to Dehloran, Ilam province, Iran by HS-SPME and GC-MS. Adv Animal Veterinary Sci 2020;8:647-652.
- 49. Aidy A, Karimi E, Ghaneialvar H, et al. Protective effect of Nectaroscordum tripedale extract and its bioactive component tetramethylpyrazine against acetaminophen-induced hepatotoxicity in rats. Adv Trad Med 2020;20:471-7.
- 50. Abbaszadeh S, Rashidipour M, Khosravi P, et al. Biocompatibility, cytotoxicity, antimicrobial and epigenetic effects of novel chitosan-based quercetin nanohydrogel in human cancer cells. Int J Nanomed 2020;15:5963-75.
- 51. Karimi E, Abbasi S, Abbasi N. Thymol polymeric nanoparticle synthesis and its effects on the toxicity of high glucose on OEC cells: Involvement of growth factors and integrin-linked kinase. Drug Design Devel Ther 2019;13:2513-32.
- 52. Abbaszadeh S, Andevari AN, Koohpayeh A, et al. Folklore medicinal plants used in liver disease: A review. Int J Green Pharmacy 2018;12:463-72.