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Abstract

CHARLES WILLIAM ARNOLD: A New Absolute Total Cross-Section for
Photodisintegration of Beryllium-9.

(Under the direction of T. B. Clegg and C. R. Howell.)

Models of the r-process are extremely sensitive to the rate of production of 9Be, because

the α(αn, γ)9Be reaction is the primary mechanism for bridging the unstable mass gaps at

A=5 and A=8 in explosive environments that are rich in neutrons. A sequential two body

process of α+α → 8Be + n→ 9Be is the primary channel for synthesis of 9Be. It is impossible

to measure this reaction sequence in a laboratory, because no appreciable amount of 8Be

(τlifetime = 10−16 s) could ever be produced, and then subsequently bombarded with neu-

trons. However, the 8Be(n, γ)9Be cross-section may be deduced from the 9Be(γ,n)8Be cross-

section using the reciprocity theorem. This thesis reports on a new measurement of the
9Be(γ,n)8Be reaction cross section with an unprecedented accuracy, and a precision of ±4.6%.

From these new measurements, the astrophysical α(αn, γ)9Be reaction rate has been deter-

mined with similar accuracy and precision. This new rate will give insights into the conditions

necessary for the r-process to occur in explosive environments like Type II supernovae.
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1 Introduction and Motivation

1.1 Introduction

Nucleosynthesis is a general term for creation of new nuclei, by processes which add or

remove mass and/or charge from an existing nucleus. It is useful to distinguish three general

types of nucleosynthesis, though various classification schemes exist. Big-bang nucleosynthe-

sis [Fie06], the first type, leads to the synthesis of light elements within the first few minutes of

the universe. Stellar nucleosynthesis [Sie02], the second type, refers to nuclear reactions that

occur within stars. This includes the proton-proton chain [Sal52], the CNO cycle [Cau62], the

3-α process [Nom85, Lan86], and a slow neutron capture process called “s-process” [Gal98].

The third type is explosive nucleosynthesis, which generally includes the synthesis of nuclei

formed in explosive environments characterized by high-temperatures and short time-scales.

These process include a rapid neutron capture process (r-process) [Woo92], a rapid proton

capture process (rp-process) [van94] and a rapid alpha reaction processes (α-process) [Woo92].

Big-bang nucleosynthesis was a single event which happened at the beginning of the universe.

The present discussion will focus on the second and third types of nucleosynthesis which are

currently taking place throughout the universe.

1.2 Nucleosynthesis Models

In stars, the accumulation of nuclei heavier than iron produced by stellar nucleosynthesis

reactions is relatively slow. Of particular interest to this discussion are the reaction products

specific to the s-process. The s-process is responsible for almost half of the abundance of

nuclei heavier than iron. However, when s-process abundances are subtracted from solar-

system abundances, the residual abundance pattern has structure. Two broad peaks are

observed at A ≅ 130 and A ≅ 190. Furthermore, some of these elements cannot be produced

by slow neutron-capture at all (see Fig. 1.1). The origin of this structure in the plot of mass



Figure 1.1: Plot of relative nuclear abundance, normalized to Si = 106, vs. mass number,
A. Structure is observed in the region of heavy elements after having accounted for s-process
elements. Dark circles are abundances which are only produced by the r-process. Image from
Ref. [Ili07]; used with permission.
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Figure 1.2: Stable nuclei and r-process path nuclei are highlighted in red and yellow respec-
tively. The heavy nuclei uranium and thorium (highlighted green) can only be produced by
the r-process. The neutron magic shell closures at N=82 and N=126 become waiting points
during the r-process. The full shells resist the addition of more neutrons, which allows for
eventual β-decay. Image from Ref. [Ili07]; used with permission.

abundance is the r-process.

Explosive nucleosynthesis, like the r-process, likely happens in supernovae [Woo94], in

neutron star mergers [Fre99], and presumably in any high-temperature (T ≈ 1.0 T9 = 109 K)

and high neutron flux (φ ≈ 1022 n/(cm3⋅s)) environment. At present, the case for an

indisputable r-process site has not been been made. A recent analysis argues for the necessity

of multiple sites [Qia07]. Supernovae have long been cited as potential r-process factories

because they produce the explosive conditions necessary for the r-process, and they occur

with enough frequency to make substantial abundances. In what follows, it will be shown that

the abundance of heavy nuclei coming from explosive nucleosynthesis at a type II supernova

site is intrinsically linked to the rate of production of 9Be.

1.2.1 Supernovae

As mentioned previously, supernovae provide the explosive environment that r-process

requires. However, not every supernova supports the r-process. Type-I supernovae lack the

presence of hydrogen, which distinguishes them from Type-II supernovae, which do contain

hydrogen. Type-II supernovae, therefore, represent younger and more massive stars than type

I’s. Furthermore, type-Ia supernovae represent an accreting white-dwarf plus companion as

the explosion mechanism, while types Ib, Ic, and type II all represent core-collapse supernovae

3



[Arn96]. Type-II supernovae are believed to produce suitable conditions for the r-process.

The behavior of a core-collapse supernovae has been explained by Woosley [Woo05], and so

only important details will be repeated here. A star of 8 to 25 solar masses passes through the

stages of hydrogen, helium, carbon, neon, oxygen, and silicon fusion at its core, continuously

growing hotter and more dense. The core eventually becomes an iron-group core of about 1.4

solar masses. The energy to resist gravity’s pressure is lost through neutrino emission, electron

capture and photodisintegration. An Earth-sized iron-core, collapses with a velocity of ∼ 1/4

c into a single neutron-rich nucleus about 30 km in diameter, supported by nuclear repulsion.

The sudden cessation of collapse generates a rebounding shock wave which ultimately stalls

as it attempts to push through the matter outside of the core that is still in-falling. The

proto-neutron star (PNS) briefly continues accreting matter while radiating ∼ 1053 erg (1046

J) in the form of neutrinos - nearly 10% of its rest mass. Convection is required at this

point to spur on the supernova explosion. For those who model supernovae, this last point

has made the effort to simulate explosions from core-collapse very difficult. Recent work has

made advances in the ability to model the core-collapse in three-dimensions [Nor10]. Rotation

and magnetism likely have roles in the explosion mechanism as well. The stage is now set for

the r-process.

1.2.2 The r-process

The r-process produces about half of the abundance of nuclei heavier than iron [Woo05].

It requires an environment where neutron captures occur so rapidly that the newly formed

nucleus does not have enough time to β-decay before capturing another neutron. Eventually,

the neutron rich nuclei approach the neutron dripline, or a nuclear shell is filled (at the

“magic” numbers), at which point further neutron captures are so unstable to neutron-decay

that β-decays will occur. In the latter case, the nucleus begins to wiggle up the chart of

nuclides, increasing in proton number, until the nucleus is stable enough to capture neutrons

again. The r-process turns off after a matter of seconds, leaving an abundance of heavy

neutron-rich nuclei far from stability. These nuclei, in turn, begin their journey to stability,

converting neutrons to protons via β-decay.

Constraining the location and frequency of the r-process has the benefit of providing a

means for dating the universe. Because the r-process is the only mechanism which can pro-

duce uranium and thorium isotopes, and because the ratio of these abundances appears to

be almost insensitive to the parameters of the explosive environment [Ots03], understand-

ing the sites and the frequency with which the r-process occurs would provide a nuclear

cosmochronometer. Improvements to understanding the r-process will necessarily involve

astrophysical observations and improvements to nuclear reaction data.
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Figure 1.3: (left) The various processes that can change the nucleon number of nucleus “X”
include neutron capture, neutron decay, proton capture, proton decay, alpha capture and
alpha decay. β− decay, β+ decay, and electron capture convert neutrons to protons, or vice
versa without changing the nucleon number. (right) During the r-process, neutron capture
happens so rapidly that very neutron rich nuclei are quickly synthesized. At some point, β−

decay wins out and nuclei wiggle up magic shell closures until neutron capture can take over
again.

1.2.3 α-process

The α-process [Woo92] is a brief period of charged-particle reactions (CPR) and neutron

capture which starts after the supernova explosion has cooled to 5 billion kelvin from an initial

10 billion kelvin over the course of a few seconds. In this stage of nucleosynthesis, a reaction

path is needed which bridges the unstable mass gaps at A = 5 and A = 8. In the given

scenario, the most efficient path to A > 8 is α + α → 8Be+n → 9Be+α → 12C + n [Ter01].

As cooling continues it is this reaction which largely establishes the neutron-to-seed-nucleus

ratio for the coming r-process. The r-process is extremely sensitive [Sas06] to the ratio of

seed-nuclei to free neutrons. Too few seed-nuclei will produce a lacking abundance, while

too many seed nuclei produced in the α-process will starve the r-process of neutrons. Thus,

establishing a precise rate for the formation of 9Be via the α(αn, γ)9Be reaction is required

for modeling nucleosynthesis in supernovae accurately. Figure 1.4 from Ref. [Woo05] gives a

detailed description of this stage of nucleosynthesis.

1.3 The 9Be Nucleus

The 9Be nucleus is the only stable configuration for nine nucleons. Much work has gone

into studying the possible arrangements of this system. Many works [Sho99, Ita01, Des01,

Des02, Ita03, Fre04] have taken nuclear clustering and molecular orbit model approaches
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Figure 1.4: Neutrinos (νe,νµ,ντ and their antiparticles) drive a wind from the surface of the
cooling PNS creating the r-process isotopes. The wind begins as a flux of neutrons and protons
lifted from the surface of the PNS (here 1.4 solar masses and 10 km in radius) by neutrinos
originating at the neutrinosphere (Rν). As these nucleons flow out, an excess of neutrons is
created by the capture of antineutrinos on protons. As the nucleons cool, all the available
protons combine with neutrons to make α-particles until one is left, in the orange region, with
a mixture of only α-particles and unbound neutrons. Further cooling leads to the assembly
of a few α-particles into nuclei in the iron group (seed) by reactions involving neutrons and
α-particles (green region). As the temperature declines still further, from 3 billion kelvin to
1 billion kelvin, all neutrons are captured on this seed making the heavy r-process nuclei.
Because the efficiency of the reactions that assemble α-particles into seed increases with the
density, lower density in the wind keeps the seed number small and increases the number of
neutrons that can be captured on each. Figure and caption from Ref. [Woo05]; used with
permission.
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Figure 1.5: Energy levels of 9Be. Image adapted from [Til04].

to describe 9Be. This section will summarize recent experimental information about the

structure of the 9Be nucleus in addition to some relevant model descriptions.

1.3.1 Structure of 9Be

The 9Be nucleus is an ensemble of 4 protons and 5 neutrons. Measurements of inelastic

scattering of electrons, protons, 3He, and 4He have sought to resolve the excited states of
9Be. This discussion of excited states in 9Be will be limited to a few of the lowest excited

states because only these states are relevant for the present astrophysical discussions. The

five lowest excited states in 9Be are shown in Fig. 1.5.

The 9Be nucleus is often referred to as a Borromean nucleus. A Borromean structure

consists of three components which are linked together in such a way that removing one of

the links leaves the remaining components unlinked (see Fig 1.6). Given the instability of the
8Be (τ = 10−16 s) and 5He (τ = 10−21 s) systems, 9Be is clearly a Borromean construction of

two α-particles and a neutron. In the next section I will mention some useful approaches for

describing a nuclear system like 9Be.

1.3.2 Clusters and Nuclear Molecules

The idea of clustering in nuclei originated in the late 1920’s. The proton, α, and β

particles had been identified by this time, and it was thought by some that the alpha particle
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Figure 1.6: A three-dimensional representation of Borromean Rings. Removing one link
leave the remaining rings unlinked.

was a collection of 4 protons and two nuclear electrons [Pag30]. Early attempts to describe

nuclei as composed of groups of alpha particles were soon abandoned with the discovery

of the neutron in 1932 [Cha32] (Incidentally, the neutrons were produced by bombarding
9Be with α-particles from polonium). This discovery ushered in single-particle descriptions

of nuclei, and clustering models were not significantly investigated again until the mid 1950’s

[Per56]. Within the last 30 years, complex cluster structures have been identified in nuclei,

and cluster models have predicted states in N=Z (called α-conjugate or self-conjugate) light

nuclei that are not reproduced by the shell model [vO06]. Clustering in nuclei conceptually

leads to a molecular description of nuclei. The addition of so called “valence neutrons” to

otherwise α-conjugate nuclei are observed to enhance nuclear stability in multi-cluster states

where neutrons become the analog of covalently bonded electrons in atoms [vO06]. Using

this formalism, it may be understood 9Be to behave like two α-particles and with an orbiting

neutron. While this description is simplistic, it still offers useful insights into the structure of
9Be.

Why Clusters?

Nuclear properties can be derived using the A-body Schrödinger equation,

[− h̵

2M

A

∑
i=1

∇2
i + V (r1, ..., rA)]ψ(r1, ..., rA) = ih̵

∂

∂t
ψ(r1, ..., rA, t). (1.1)

Here V is a potential and ri represents space, spin and isospin for the ith nucleon.
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Figure 1.7: A neutron orbiting two alpha clusters.

Assuming only a two-body, non-relativistic potential of the form:

V (r1, ..., rA) =
A

∑
i=1

A

∑
j>i

Vij , (1.2)

and combining 1.1 and 1.2 yields

⎡⎢⎢⎢⎢⎣
− h̵

2M

A

∑
i=1

∇2
i +

A

∑
i=1

A

∑
j>i

Vij

⎤⎥⎥⎥⎥⎦
ψ(r1, ..., rA) = ih̵

∂

∂t
ψ(r1, ..., rA, t) (1.3)

for the A-body Schrödinger equation.

Now it becomes clear why a cluster model is attractive. The number of degrees of freedom

can be reduced by a factor of four by considering interacting alpha particles rather than

interacting protons and neutrons [Per56]. The 8-body problem of 8Be reduces to a two body

problem. A 12-body problem like 12C reduces to a three-body problem, and so on.

Though some of the computational advantages of cluster models are diminished by cheaper

and faster computing, models that have attempted to handle all nuclear interactions observe

clustering effects within nuclei [Fre04]. Certainly, a new and accurate absolute cross section

measurement of 9Be(γ,n)8Be will provide a new basis for comparison with all relevant nuclear

models for 9Be.
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Figure 1.8: 9Be is the least abundant of light nuclei. As Z increases, abundance does not
return to the level of 9Be until Niobium (93Nb; Z=41). The abundance of 9Be is comparable
to Hg and Pt. Image generated with numerical data from [Lod03].

1.3.3 Nuclear Properties

The 9Be nucleus has unique properties which make it interesting to astrophysics. First,
9Be has the lowest neutron separation energy (Sn) of stable nuclei. Second, it is the least

abundant among light nuclei [Lod03](see Fig. 1.8). Finally, the 9Be production reaction is

often one of only two three-body reactions considered important for nucleosynthesis. The

other three-body reaction is the triple-α reaction.

1.4 Why a new measurement?

Measuring the 8Be(n, γ)9Be reaction is impossible because of the short lifetime of the
8Be nucleus (τlifetime = 10−16 s). The 9Be(γ,n)8Be reaction, however, is measurable, and

may be used to deduce the 8Be(n, γ)9Be cross-section by using the reciprocity theorem. In

fact, this reaction has been measured several times previously. Photodisintegration data of
9Be, and analyses are apparently abundant [Rus48, Ham49, Sne50, Mob50, Ham53, Noy54,

Edg57, Gib59b, Jak61, Joh62, Ber67, Cle68, Sal70, Hug75, Fuj82, Bar83, Kue87, Gor92, Efr98,

Bar00, Uts00, Muk05, Esh05, Bur10], which invites the question, “why should it be measured

again?”. The answer is twofold. First, abundance predictions are incredibly sensitive to the

choice of ⟨ααn⟩ rates that currently exist. Figure 1.9 shows abundance yields that are different

by orders of magnitude for different rates [Ang99, Sum02, Cau88]. Notice that a 25% change

in the NACRE rate can translate to a difference of nearly two orders of magnitude or more

using the parameters shown. Surely a reaction rate which exhibits this kind of sensetivity

must be measured as accurately as possible, and it can only be measured by accurately

10



Figure 1.9: Plots of expected abundance patterns using identical simulations with the only
variant being different ⟨ααn⟩ rates ([Ang99], [Cau88], [Sum02]). Points are observed abun-
dance. Abundance can vary by orders of magnitude for even modest differences in the
⟨ααn⟩ rate which is used. Image from [Sur10].
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determining the 9Be(γ,n)8Be cross section.

Second, very accurate (γ,n) cross-section measurements have been made possible by the

combination of new intense sources of γ-rays, and neutron detectors with large solid angle

coverage and high efficiencies. The Triangle Universities Nuclear Laboratory’s (TUNL) high

intensity γ source (HIγS) [Lit97] is able to produce monoenergetic γ-ray beams. These beams

are produced by inverse Compton scattering of free electron laser (FEL) photons, and have

nearly Gaussian energy distributions ∆E/E = 1% (FWHM), and flux = 5 × 106 γ⋅cm−2 s−1.

Our laboratory also has a Model IV inventory sample counter (INVS), on loan from Los

Alomos National Laboratory (LANL), which provides a maximum neutron detection efficiency

of nearly 60%.

Measurements of the photodisintegration of 9Be have taken many forms. The γ-ray sources

used have come from radioactive isotopes, bremsstrahlung sources and virtual photons from

inelastic electron scattering. Only recently has production of γ-rays from inverse Compton

scattering of FEL photons become a new standard in γ-ray production. Furthermore, accurate

cross section measurements involving neutral particles have long been plagued by small and/or

uncertain detection efficiencies.

A recent cross section measurement of photodisintegration of 9Be by Utsunomiya et

al. [Uts00] used γ-rays from inverse Compton scattering and a ∼6% efficient neutron de-

tector with nearly 4π solid angle coverage. The resonance widths, locations, and transition

strengths derived from their data were used to calculate a new astrophysical rate which, in

the temperature region most important for the r-process, exhibited comparable behavior to

a standard NACRE rate calculation [Ang99]. However, the γ-ray beams produced for the

Utsunomiya measurement exhibited a saw-tooth energy distribution, with an energy spread

of “a few percent” [Uts00]. The much narrower 1% energy spread of our γ-ray beam at

HIγS makes possible much more detailed mapping of the cross section in the astrophysically

important energy range of 1.5 MeV ≤ Eγ ≤ 5.2 MeV.

An even more recent measurement from Burda et al. [Bur10] used virtual photons from

inelastic electron scattering to excite a 9Be target, and interpreted the resonance parame-

ters of the first excited state. They found a transition strength for the first excited state

with a magnitude of about 1/2 of that of Ref. [Uts00], but in agreement with other (e, e′)

measurements [Kue87].

A direct measurement of the cross section for photodisintegration of 9Be using the high

resolution γ-ray beam at HIγS that spans from below the two-body threshold (1.6654 MeV)

to 5.2 MeV should add clarity to the situation and permit a new and accurate determination

the astrophysical rate for the α(αn, γ)9Be reaction. The following chapters will discuss the

experimental details (Chap. 2), the methods used and precision attained in characterizing

the neutron detector (Chap. 3), the data collection (Chap. 4), our new 9Be(γ,n)8Be cross

section results (Chap. 5), and a discussion of the α(αn, γ)9Be rate interpreted from the
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data (Chap. 6). Chapter 7 contains appendices that include a description of target preparation

methods (Sect. 7.1), tables of 9Be(γ,n)8Be cross-section data (Sect. 7.2), parameters from

fits (Sect. 7.3) and the computer code used to determine the ⟨ααn⟩ rates which derive from

the present fits (Sect. 7.4).
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2 The Experiment

2.1 Introduction

Data for the 9Be(γ,n)8Be reaction were taken at the HIγS facility at TUNL. Our exper-

imental method was as follows. Collimated monoenergetic γ-ray beams of 1.5 MeV≤ Eγ ≤
5.2 MeV were incident on a thick 9Be target. An absolute measure of the number of neu-

trons from the reaction was made using a well-characterized thermalization counter that has a

high-efficiency for detecting low-energy neutrons. The absolute flux of the incident γ-rays was

measured using a large NaI detector called “Molly”, which has a total efficiency of 100% for

γ-rays in the experimental energy range (1.5 MeV ≤ Eγ ≤ 5.2 MeV). In addition, a heavy

water target was bombarded under the same experimental conditions as the 9Be sample for

cross-calibrating the 9Be(γ,n)8Be measurements with the 2H(γ,n)1H cross-section [Sch05]

and for neutron detector efficiency benchmarking. A graphite target was also used at each

beam energy to determine beam-induced backgrounds in the neutron detector.

The following sections give details about the experimental methods and their justifications.

Section 2.2 provides a detailed experimental overview. Section 2.3 describes the detectors

used for this measurement, the manner in which they were characterized, and the precision

achieved.

2.2 Experimental Setup

Intense γ-ray beams (φ ≈ 108γ/s) are routinely produced at HIγS by inverse-Compton

scattering FEL photons from electron bunches circulating in a storage ring [Wel09]. For the

present experiment, a high degree of energy-resolution was deemed more important than the

highest possible flux. The most important reasons were to map the detailed behavior of the

cross section at the three-body (1.573 MeV) and two body (1.6654 MeV) thresholds and across

a resonance at 2.431 MeV. Achieving 1% energy resolution meant sacrificing γ-ray flux. The



Figure 2.1: Images of the experimental setup for measurement of the 9Be(γ,n)8Be cross-
section at HIγS. Important elements are highlighted and are discussed in the present section.

Target Nominal ` Density Molar Mass Nuclei per # nuclei
Material (cm) (g/cm3) (g/mol) molecule per cm2

9Be 2.54 1.848 9.012 1 3.136×1023

Graphite 2.54 1.700 12.01 1 2.892×1023

D2O 7.59 1.106 20.04 2 5.045×1023

Table 2.1: Targets used in the present experiment and their physical properties. Avogadro’s
number (NA=6.022× 1023) converts moles to number of atoms. The number of nuclei per cm2

shown does not include a thick target correction (discussed in Sect. 4.6).

present data were taken using beams with 105 γ/s ≤ φ ≤ 106 γ/s.

A photograph and a schematic diagram of the experimental setup are shown in Figs. 2.1

and 2.2 respectively. The γ-rays were collimated to a diameter of 12 mm by lead collimators

that were 30.5 cm thick in a room designated as the “collimator hut”. The collimated beam

then passed through three thin scintillating paddles which were attached to five photomulti-

plier tubes (PMT). These acted as a relative γ-ray flux monitor. The γ-rays then entered the

experimental room known as the “Gamma-Vault”, and passed through a 2.54 cm diameter

“clean-up” collimator (CC) which was ∼20.3 cm in thickness of lead. The γ-rays travel ∼
1.5 m in air before reaching a second CC (2.54 cm diameter, 20.3 cm thick) that was placed

directly in front of the neutron detector, shielding it from γ-rays which may have scattered.

Next, the γ-rays were incident on either one of the three targets (9Be, D2O, graphite) or

nothing as they passed through the neutron detector. To increase the efficiency of data collec-

tion, the samples were remotely rotated into position using a four-position Geneva mechanism

which assured reproducible alignment on the γ-ray beam axis. Alignment of the target to the

beam was confirmed using an alignment pellet and a γ-ray beam imaging system [Sun09] (see
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Figure 2.2: Schematic diagram of the experimental setup for the 9Be(γ,n)8Be reaction mea-
surements at HIγS. After collimation, the γ-ray beam passes through scintillation paddles
(not shown) and into the target room. The 1.2 cm diameter γ-ray beam passes through the
following elements: (a) “clean-up” collimator wall; (b) the D2O sample located near the lon-
gitudinal center of the neutron counter; (c) machined lead attenuators located between lead
collimator walls; (d) a NaI detector;(e) a HPGe detector.

Fig. 2.3).

After passing through the neutron-detector, the γ-rays passed through a flux-attenuation

device (φAD), located between a third and fourth CC (each 2.54 cm diameter and 20.3 cm

thick). The φAD contained five different lead attenuators of thicknesses ranging between 1.72

and 10.18 cm. Each attenuator could be placed on the beam axis via a remotely-controlled,

six-position Geneva mechanism. Unattenuated beam was available under these conditions as

well. The φAD allowed the user to attenuate the γ-rays by various factors ranging from ∼2

to 100.

After passing through the φAD and CCs, the remaining γ-rays were incident on either

the large NaI detector (Molly), or the high purity germanium (HPGe) detector, depending

on whether flux or γ-ray energy was being measured. The purpose for attenuating the beam

using the φAD was to keep flux on target at ∼100 times the amount of flux on the face of

Molly . Using this arrangement, online measurements of absolute γ-ray flux could be made

with negligible pile-up effects. Also, data acquisition (DAQ) dead-times were assured to be

small.

Absolute measurements the number of γ-rays on target, and the number of emitted neu-

trons from the reaction were needed to determine the total cross section for the 9Be(γ,n)8Be re-

action. The next sections describe methods for absolute characterization of the neutron de-

tector used in this experiment and the γ-ray detector Molly .
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Figure 2.3: A HPGe spectrum for 2.470 MeV γ-ray beam with dE/E = 1%. Spectra of
calibration γ-rays from 60Co, 40K, and 208Tl are overlaid. Images showing confirmation of
target alignment are inset.
(a) An unattenuated beam profile. Flux was nearly constant across the central portion and
decreased rapidly at the edges.
(b) Contrast from a lead alignment pellet confirmed the placement of the target with respect
to the beam.
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2.3 Detectors

2.3.1 Neutron Counter

The neutron detector was a model IV inventory sample counter (INVS) developed at Los

Alamos National Laboratory [SJ93]. This detector was designed for fast, non-destructive

assay of radioactive materials. Specialized inserts for the axial bore of this counter were

made to adapt it for use as the primary neutron detector for in-beam (γ,n) total cross-section

measurements. Development and testing of this counter took place at TUNL using hadron

beams in the tandem Van de Graaff accelerator laboratory and in the γ-ray beam at HIγS.

Figure 2.4: Two cross-sectional views of the neutron detector. The arrangement of inter-cavity
moderator material corresponds to the experimental geometries used in the 252Cf source and
the 2H(γ,n)1H reaction experiments.

The active detection elements in the INVS counter are 18 tubular proportional counters,
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each containing 6 atm of 3He. The tubes are arranged in two concentric rings at radii 7.24

cm and 10.60 cm, each containing nine equally spaced detectors (see Fig. 2.4). The detectors

are embedded in a cylindrical polyethylene body 46.2 cm long and 30.5 cm in diameter,

which serves as a neutron moderator. The detector body has an 8.9 cm diameter axial cavity

designed to contain the neutron source. For the rest of the thesis the term longitudinal center

refers to the center of the detector with respect to the length of the detector body, and is

distinguished from the term axial center which refers to the axis of the detector. Various

views of the INVS are shown in Fig. 2.4.

Thermalization of the neutrons within the detector body increases the probability for

initiating the 3He(n, p)3H reaction within the embedded tubes. An energy of 763.7 keV,

shared between the outgoing proton and triton, is released in each reaction. Most of the

kinetic energy is lost to ionization of 3He, which is detected as an electrical pulse on the central

electrode of each tube which is biased to +1780 V. A fixed threshold effectively discriminates

against low-pulse-height signals generated by γ-rays and electronic noise. Signals above the

threshold generate ∼50 ns wide TTL pulses using on-board electronics. On-board signal-

processing electronics within the detector produce three TTL logic output signals; the inner

ring (I); the outer ring (O); and the logical OR of the I and O pulses (T ). Whenever one

or more tubes in the inner (outer) ring detect a neutron, a pulse is generated on the I (O)

output. For neutrons with energies less than about 2 MeV, the I/O ratio can provide a coarse

determination of the mean energy of the detected neutrons.

2.3.2 Scintillating Paddles

Figure 2.5: A schematic diagram of the scintillating paddles. (a) Pair-production from γ-
rays on the lead foil are interpreted as a signal by coincidence and anti-coincidence logic.
Pair-production at a location other than the foil as in (b) and (c) were vetoed by the circuit.

The relative incident γ-ray beam flux was continuously monitored using a system of three

plastic scintillating paddles located upstream of the experimental setup. A coincidence / anti-

coincidence circuit processed the signals from the photomultiplier tubes (PMTs) attached to

the scintillators to reduce background. The circuit was designed to be sensitive to electron-

positron pair production from a lead foil as shown in Fig. 2.5. The paddles were located at

the end of the collimator hut, just before the entrance to the gamma vault.
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2.3.3 Large NaI Crystal Detector (Molly)

The absolute γ-ray fluxes were determined by a cylindrical 25.4 cm × 35.6 cm NaI detector

located behind the target on the γ-ray beam axis. The γ-ray beam flux incident on Molly was

reduced by lead attenuators located immediately in front of the detector and downstream of

the experimental setup. First, an attenuator was chosen, and measurements of attenuated

flux were made. Subsequently, flux measurements were performed with the original attenuator

removed, and a different attenuator, or no attenuator in the γ-ray beam. The paddles always

measured unattenuated γ-ray flux, and thus provided a relative flux normalization. The

attenuation from this arrangement was measured at several γ-ray energies.

A threshold setting on the NaI detector at approximately 550 keV reduces the expected

∼100% total detection efficiency; therefore a total γ-ray detection efficiency of 98.3% was

adopted in accordance with modeling using the Monte-Carlo neutral particle code mcnpx [MCN07].

A plot of Molly ’s total efficiency and Molly ’s efficiency for detection above a 550 keV threshold

are displayed in Fig. 2.6.

Figure 2.6: Plot of γ-ray detection efficiency of Molly for the total integration of the absorbed
energy spectrum, and the efficiency integrated above 550 keV vs. γ-ray energy as determined
by mcnpx simulations. Dashed lines mark the range of experimental γ-ray energies. The
constant fit (solid line) over the experimental range gives the best value for the efficiency of
γ-ray detection.

2.3.4 High Purity Germanium Detector

The energy resolution of the γ-ray beam was determined using a high purity Germanium

(HPGe) detector placed on the γ-ray beam axis. For the energy range 1.5 MeV ≤ Eγ ≤ 5.2
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MeV, the HPGe has resolution on the order of a few keV. A radioactive 60Co source, and

naturally present 40K and 208Tl provided energy calibration lines. The FWHM of the γ-

ray beam as determined by the HPGe was typically between 1 and 3%. A typical γ-ray energy

spectrum is shown in Fig 2.3.
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3 Detector Characterizations

3.1 Introduction

For accurate cross section measurements, it was essential to determine the absolute energy-

dependent detection efficiencies of the INVS counter and Molly , since they were the principal

detectors used to determine the 9Be(γ,n)8Be reaction cross-section. In this chapter, I will

describe the experimental and computational approaches used to characterize these two de-

tectors.

3.2 Neutron Counter Tests

Four different sources, able to emit a known number of neutrons, were used to measure

the efficiency of the INVS counter. Efficiency here is generally defined as

ε ≡ Ndetected

Nemitted
. (3.1)

First, a 252Cf source, calibrated by the National Institute of Standards and Technology (NIST)

generated a flux of neutrons known to ± 4.4% [Tho09]. Second, a coincidence experiment us-

ing the 2H(d,n)3He reaction provided a mono-energetic source of 2.26 MeV neutrons with

the flux known to ± 10%, and gave insight into the thermalization time of neutrons in the

INVS. Third, an investigation of the 7Li(p,n)7Be reaction produced <1 MeV neutron sources

with fluxes known to ±6.6% [Gib59a]. Finally, the 2H(γ,n)1H reaction was used to produce

tunable sources of monoenergetic neutrons (0.1≤En≤1.0 MeV) with fluxes known to ±3% accu-

racy [Sch05]. A comparison of all experimental data with Monte Carlo models demonstrates

varying levels of agreement.



3.2.1 252Cf

Californium-252 is a standard calibration source for neutron detectors. The effective half

life of 252Cf is 2.645 years. Alpha particle emission and spontaneous fission produce a neutron

yield of 2.314 × 106 neutrons/s/µg [Mar99]. The energy spectrum of neutrons from 252Cf is

well known [Smi57]. A calibrated 252Cf source provides a single measurement of efficiency

representing the response of the detector to a broad spectrum of neutron energies.

The 252Cf source used consisted of 3.15 ng of active powdered material encapsulated within

a small aluminum pellet. The source was suspended on the axis of the detector approximately

3.4 cm from longitudinal center. A graphite moderator filled most of the volume of the cavity

to increase detection efficiency. A table of neutron activity versus date was provided by NIST

[Tho09]. The experimentally determined efficiency for this configuration (shown in Fig. 2.4)

was 40.5 ± 1.8 %. Using the definitions of I and O from Sect.2.3.1, the experimentally

determined I/O ratio was 1.52 ± 0.01.

The dependence of the detection efficiency on the position of the source within the central

cavity was determined by making measurements with the source placed at different positions

within the central bore. Measurements on the central axis were made along the entire length

of the detector. The detection efficiency has a maximum value at the longitudinal center and

drops off smoothly as the source is moved in either direction away from the center along the

detector axis. The shape of the position dependency is a purely geometric acceptance effect

and can be approximated analytically for point sources with isotropic neutron emission. The

measured detection efficiency as a function of the source position along the central axis of the

counter is shown in Fig. 3.1 and is compared to simulated and calculated efficiencies.

Figure 3.1: Efficiency vs. Z-axis position for a 252Cf source in an open detector geometry.
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The relative efficiency is directly proportional to the angular acceptance of the counter as

a function of z, which is given by the equation below for an isotropic point source of neutrons.

ε∝ dΩ ≈ 4π − 2π

⎡⎢⎢⎢⎢⎣

⎛
⎝

1 − L/2 − z√
(L/2 − z)2 + r2

⎞
⎠
+
⎛
⎝

1 − L/2 + z√
(L/2 + z)2 + r2

⎞
⎠

⎤⎥⎥⎥⎥⎦
(3.2)

Here, r is the radius of the opening at the end of the detector, L is the active length of the
3He gas, and z = 0 at L/2. This function is maximum when z = 0. For an open cavity

geometry, the change in the efficiency over the length of an 8-cm long sample, centered on the

axis at the longitudinal center, is approximately 1%. For a geometry like the one shown in

Fig. 2.4 the changes in efficiency are negilgibly small over a length of nearly 20 cm centered

on the logitudual center (see Fig. 3.1). For sources located off its central axis, the detection

efficiency changes by less than 0.5% . The radial dependence of the efficiency is also mostly

a geometric acceptance effect.

3.2.2 2H(d,n)3He

The 2H(d,n)3He reaction was used to measure the efficiency for monoenergetic 2.26 MeV

neutrons. The associated particle technique was used with the recoil 3He nucleus detected

in a silicon surface barrier detector inside an evacuated chamber. A schematic diagram of

the experiment setup is shown in Fig. 3.2. The neutron counter was positioned so that its

central axis coincided with the symmetry axis of the cone of neutrons associated with the
3He particles detected in the silicon detector on the opposite side of the incident beam axis.

The distance from the longitudinal center of the counter to the deuterium target was set so

that the diameter of this neutron cone was smaller than the diameter of the central cavity

through the detector. The energy of the incident deuteron beam and the detection angle of

the silicon detector were set to produce 2.26-MeV neutrons emitted along the central axis of

the counter. With this method the efficiency is computed as

ε = Nn

N3He

(3.3)

where N3He is the total number of detected 3He-particles and Nn is the total number of

neutrons detected in coincidence with the detected 3He particles. The deuterium targets used

in these measurements were ∼ 100 µg/cm2 thick deuterated polyethylene (C2D4) evaporated

onto a 10 µg/cm2 thick carbon foil. The deuteron beam energy incident on the foil was

2.0 MeV, and the average beam current on the C2D4 foil was ∼20 nA. The cross-sectional

profile of the deuteron beam at the foil was circular with a diameter of approximately 0.5

cm. Each of the two silicon detectors (one in-plane and one out-of-plane) had a solid angle

acceptance dΩ = π/60 sr, and each was located at a scattering angle of θlab = 26.50○. Neutrons

associated with detection of 3He in the in-plane Si detector exited the target at θlab = 117.1○
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Figure 3.2: Schematic diagram of the experimental setup for the efficiency measurements
made using the 2H(d,n)3He reaction at the tandem accelerator facility.

along the central axis of the neutron counter. The rear half of the central cavity was plugged

with polyethylene to scatter neutrons traveling through the central cavity into the body of the

counter. The out-of-plane Si detector was used to measure the rate of accidental coincidences.

Efficiency and thermalization time were deduced simultaneously using a time-to-amplitude

converter (TAC), which recorded the time between a charged particle detection in the silicon

detector and a neutron detection in the INVS. A threshold setting effectively discriminated

against deuteron elastic scattering events. The effective TAC range was 22.5 µs. The TAC

was calibrated using a pulser which was independent of the INVS that started and stopped the

TAC with known delay. Because the INVS is a thermalization counter, detection efficiency is

time-dependent on a microsecond time-scale. A peak in the TAC spectrum at ∼3 µs suggests a

source of delay exists caused by charge collection and signal processing in the INVS counter.

This delay reduces the effective TAC range to 22.5 µs from 25.5 µs, which is where the

experimental TAC spectrum ends. The present result for the neutron detection efficiency at

En = 2.26 MeV, over a 22.5 µs range is 11.0 ± 1.1%. A histogram of an experimental TAC

spectrum is shown in Fig. 3.3.

3.2.3 7Li(p, n)7Be

The 7Li(p,n)7Be reaction was used to measure the energy-dependent detection efficiency

over an energy range that overlaps with that covered by the 2H(γ,n) source reaction below

about 0.7 MeV and to provide data for a neutron source with the intensity distribution peaked

at forward angles relative to the central detector axis [Bur74, Bur72]. The cross section for
7Li(p,n)7Be reaction is large and has been accurately measured [Gib59a] making it a good

neutron source for calibrating the efficiency of detectors at low energies [Sek76].
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Figure 3.3: The histogram is a background subtracted TAC spectrum from the 2H(d,n)3He
experiment. A simulated TAC spectrum (blue points with uncertainty band) is shown in
comparison to the experimental histogram. The solid curve is a fit to the simulated spec-
trum. The fit (solid line) predicts that most neutron detection occurs outside the 22.5 µs
experimental window.

Experimental Setup

The experimental arrangement is shown in Fig. 3.4. The proton beam was tuned through

a double collimator set onto the LiF neutron production target. The cross-sectional profile of

the beam on target was circular with a diameter of 5 mm, and the average beam current on

target was 100 nA. The energies of the proton beams incident on the LiF target were between

1.88 and 2.46 MeV. The neutron production target was comprised of 39.8 µg/cm2 of LiF

evaporated onto a 8.3 µg/cm2 thick carbon backing. (Details of target production are found

in Sect. 7.1.) Targets were located on the axis of the INVS counter inside an evacuated beam

pipe at 14.2 cm from the longitudinal center. The transmitted proton beam was collected

in a voltage-suppressed Faraday cup at the end of the beam pipe. A polyethylene plug was

placed just beyond the end of the beam pipe to increase detection efficiency. Backgrounds

were measured by putting beam through both an empty target ring identical to the one that

supported the LiF target, and a target ring that supported only a carbon backing. In total,

beam-induced and environmental backgrounds amounted to ≤ 0.1% of real counts.
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Figure 3.4: Schematic diagram of the experimental setup for the efficiency measurements
made using the 7Li(p,n)7Be reaction at the tandem accelerator facility.

Results

The detection efficiency as a function of proton energy was calculated using

ε(Ep) =
Nn

NpNtσ(Ep)
(3.4)

where Nn is the total number of neutrons detected, Np is the number of protons collected

in the Faraday cup, Nt is the number of target nuclei per unit area, and σ(Ep) is the total

cross-section of the 7Li(p,n)7Be reaction at proton energy Ep.

The data (see Fig. 3.5) display a relative minimum in efficiency near Ep = 2.13 MeV

followed by a relative maximum near Ep = 2.32 MeV. These shifts in efficiency coincide with

rapid changes in the angular distribution of neutrons [Bur72, Bur74]. Though statistical

uncertainties were very small, systematic uncertainties for target thickness and cross-section

contributed 3.5% and 5%, respectively, resulting in an overall systematic uncertainty of 6.6%.

3.2.4 2H(γ,n)1H

The 2H(γ,n)1H measurement was unique among the experiments described here in that it

produced nearly monoenergetic neutrons with very small flux uncertainties. Several efficiency

measurements were made that highlighted the energy-dependent response of the detector. Be-

cause the 9Be(γ,n)8Be was performed in the exact same manner as 2H(γ,n)1H, the efficiency

determination here is the one used for interpreting the 9Be(γ,n)8Be data.

Experimental Setup

The target consisted of approximately 3.2 g of 99.8% enriched D2O sealed inside a thin-

walled polyethylene tube that was 7.62 cm long. The target was located at longitudinal center,
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Figure 3.5: For the 7Li(p,n)7Be reaction, a comparison of ε(Ep) as determined by experiment
(points) and by simulation (band). mcnpx simulations reproduce the shape of the efficiency
curve well. See discussion in Sect. 3.3.1.

but 2.9 cm above axial center, and occupied one of the four 2.54 cm diameter azimuthal holes

in the rotatable graphite cylinder described previously.

Background

Two sources of neutron backgrounds existed in this experiment. Environmental back-

grounds caused by cosmic-ray neutron production and other neutron sources in the setup

area were typically 0.2 n/s per 3He tube for a total of 3.6 n/s. The second source of back-

ground in the neutron detector arose from γ-ray-beam-induced counts. Gamma-rays that

scatter from the target can deposit enough energy to register a signal above the threshold.

This type of background was measured by bombarding a graphite target with the γ-ray

beam. Beam-induced backgrounds, which were explicitly taken into account, amounted to

approximately 2.5 counts/106 γ-rays on target, which was typically ≤ 1% of real counts.

Results

Detection efficiency for neutrons from γ-rays on a heavy water sample can be explicitly

calculated from

εn(Eγ) =
Nnχ(Eγ)εγ
fNγNtσ(Eγ)

, (3.5)

where Nn is the number of neutrons detected, χ(Eγ) is the measured, energy-dependent

attenuation by lead, εγ is the efficiency of γ-ray detection, Nγ is the number of γ-rays detected,
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Figure 3.6: The well known 2H(γ,n)1H cross-section. Different NN-model calculations are
indistinguishable. Image from Ref. [Sch05].

Nt is the number of target nuclei per cm2 and σ(Eγ) is the total cross section of the 2H(γ,n)1H

reaction at Eγ [Sch05]. The author of Ref. [Sch05] calculated the 2H(γ,n) total cross sections

with several widely-used N-N potential models, all of which were indistinguishable to within

1%, irrespective of the model used. In addition, this cross section agrees with the world data

which report uncertainties between 3 and 6% [Bir85, Mor89, DG92, Har03].

It will be shown in detail in Sect. 4.6 that a thick target correction factor,

f = 1 − e−µwt
µwt

, (3.6)

is required to account for the effects of the loss of γ-rays from all interactions within the target.

Here, I used NIST attenuation coefficients for water µw [Hub89] and the mass thickness t of

the target. The γ-ray energy, Eγ , and neutron energy, En, are related by

En =
Eγ − 2.225

2.001
(3.7)

where -2.225 is the Q-value for the reaction in MeV, and the factor of 2.001 comes from energy

sharing between the outgoing proton and neutron.

A small amount of neutron contamination was observed in the data above 4.143 MeV

corresponding to the 17O(γ,n) reaction. Therefore, only values for the 2H(γ,n)1H cross
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Figure 3.7: Black circles and blue triangles are experimentally determined neutron detection
efficiencies using the cross-section from Ref. [Sch05]. Red squares are simulations. Fits to
simulation are normalized to data between 2.48 MeV ≤ Eγ ≤ 4.143 MeV corresponding to
∼0.1 MeV ≤ En ≤ ∼0.9 MeV. The normalization amounts to 4%.

section corresponding to energies of 2.48 MeV ≤ Eγ ≤ 4.143 MeV were used to determine

detector efficiency.

3.3 Monte Carlo Simulations

The Monte-Carlo code mcnpx [MCN07] was used to simulate all particle interactions.

For all simulations, material densities for the INVS were fixed, and standard cross section

libraries [Cha06] were used. Variable parameters in each simulation were:

1. the arrangement of materials inside the cavity;

2. the location of the neutron emitting source;

3. the energy and spatial distribution of neutrons.

Absolute detection efficiencies were extracted from simulations for comparison with each

experiment.
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Figure 3.8: (a) 3-dimensional plot of efficiency vs. En and angle for the geometry shown in
(b), which is a likely arrangement of graphite moderator within the INVS for use in (γ,n)
experiments at HIγS. The target was placed at the center of the detector.
(b) A 2-dimensional slice through the center of the simulated geometry. The cavity was filled
with graphite except for a 2.54 cm diameter hole for the γ-ray beam.
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3.3.1 mcnpx

252Cf

Efficiency measurements of 252Cf were made during the course of the 2H(γ,n)1H exper-

iment. Consequently, the arrangement of materials inside the INVS cavity was identical for

both experiments. The energy distribution of neutrons produced by fissioning 252Cf was

modeled as a Watt-fission spectrum which has the form

p(E) = Cexp(−E/a)sinh(bE)1/2, (3.8)

where a and b are parameters given for 252Cf [MCN07]. The mcnpx-simulated efficiency of

40.5% agrees with the experimentaly determined efficiency of 41.4 ± 1.7 %. The simulated

I/O ratio of 1.59 falls short of agreement with the experimentally determined 1.51 ± 0.01

because of a 6% larger efficiency for measurement in the outer ring (see Fig. 3.13). This

reason for this discrepancy is not known.

2H(d,n)3He

For the 2H(d,n)3He reaction, a simulated beam of 2.26 MeV neutrons emitted from inside

an evacuated volume, through an aluminum beam-pipe wall, and was directed toward the axial

center of a set of polyethylene plugs that filled most of the detector cavity (see Fig. 3.2). Since

the efficiency depends on the chosen coincidence timing-window, a time dependent model

for the 2H(d,n)3He reaction was created to compare with experiment. In this model, only

neutrons detected before a user-defined time counted toward efficiency. A plot of efficiency

vs. time was simulated for times between t = 0 and t= 1000 µs (see Fig. 3.9). To produce a

simulated TAC spectrum, a plot of the slope of ε(t) vs. time was generated for comparison

with data (see Fig. 3.3).

The simulated total efficiency for neutrons collected between 0 and 22.5 µs is 11.9%

in agreement with experiment. This is an 8% reduction from the total efficiency expected

(13.0%) for neutrons collected between 0 and 25.5 µs- the full experimental range. This

difference results from a relatively large slope in detection efficiency vs. time for early times.

It is noteworthy that simulations predict a relatively long time (nearly 500 µs) before a

maximum efficiency of 38.8% detection is realized for 2.26 MeV neutrons from the 2H(d,n)3He

reaction.

7Li(p,n)7Be and 2H(γ,n)1H

Simulations for the 7Li(p,n)7Be and 2H(γ,n)1H reactions were carried out in the following

way. First, the location of the source was set to match experimental conditions. For a single

simulation the source emitted monoenergetic neutrons only between angles θ and θ + dθ with
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Figure 3.9: (Top) A three parameter fit (solid line) describes the simulated efficiency of
neutron detection as a function of time in the 2H(d,n)3He experiment very well. (Bottom)
The same plot expanded to show t < 35 µs. The vertical and horizontal lines identify the
experimental window and expected efficiency.
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Figure 3.10: (a) 3-dimensional plot of efficiency vs. En and angle for the 7Li(p,n)7Be ge-
ometry. (b) 3-dimensional plot of efficiency vs. En and angle for the 2H(γ,n)1H geometry.
The white dots in each plot correspond to efficiencies sampled by combining kinematics and
angular distribution data ([Bur72, Bur74]) for 2.2 MeV protons incident on 7Li in (a) and 3.2
MeV γ-rays incident on 2H in (b).
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Figure 3.11: Absolute efficiency for the inner ring (squares) and outer ring (triangles) of the
detector during the 7Li(p,n)7Be experiment. mcnpx models with uncertainty are shown as
colored bands.

constant emission over φ. After stepping through all of θ space, the process was repeated for

a new neutron energy.

Ultimately, a 3-dimensional plot was constructed with neutron energy on the x-axis, emis-

sion angle on the y-axis and detection efficiency on the z-axis. After choosing an incident

particle energy, and inputing expected angular distributions for the neutrons in the center-

of-mass (COM) frame [Bur72, Bur74], a second Monte Carlo process produced an average

efficiency for the given source conditions. This process was repeated for several incident parti-

cle energies, and the result was a plot of simulated efficiency as a function of incident particle

energy.

The efficiency map generated for the 7Li(p,n)7Be geometry (see Fig. 3.10) yields higher ef-

ficiencies for neutrons emitted at forward angles. This resulted from an asymmetric placement

of moderator (see Fig. 3.4). The efficiency map generated for the 2H(γ,n)1H configuration

(see Fig. 3.10) is much more symmetric about 90○. The shortest path for a neutron to escape

the detector is at 90○, resulting in a relative minimum across lines of constant neutron energy.

For the 7Li(p,n)7Be reaction, simulations reproduce very well the shapes of ε(Ep) for both

the inner and outer detector rings (see Fig. 3.11). Absolute detection efficiency for the outer

ring of detectors is in good agreement with experiment. A 13% systematic offset in absolute

efficiency is observed for the inner ring of detectors. The systematic effects discussed in
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Figure 3.12: Simulations and data with statistical error bars are shown. The efficiency (a)
and I/O ratio (b) for neutrons detected by the INVS depend strongly on the neutron energy.
Colored bands indicate the expected uncertainty for simulations [MCN07].
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Sect. 3.2.3 can account for a maximum difference of 6.6%. The difficulty with this discrepancy

is that it appears to be of a systematic nature, while only affecting the inner ring of the INVS

counter. A missing thermal neutron sink in the model may explain part of the difference.

An underestimated amount of aluminum in the modeled beam pipe could have inadequately

converted neutrons to γ-rays, leaving an excess of thermal neutrons in the region of the inner

ring of the INVS counter.

For the 2H(γ,n)1H experiment plots of ε(En) for the inner ring, the outer ring, and

the total show the data trends in good agreement with trends predicted by the simulation.

The data for total detection efficiency are systematically lower than simulation by 4% (see

Fig. 3.12). Data for the inner and outer rings were systematically lower by 6.7% and 3.7%

respectively. These data provide a benchmark calibration for this INVS counter with regards

to its use in future (γ,n) experiments.

In the INVS counter a single detected neutron provides no information about the energy

of the neutron. However, the average neutron energy from an ensemble of detected neutrons

may be gleaned from the observed proportionality

I/O ∝ E
− 1

5
n , (3.9)

which is easily inverted. The ability to distinguish the signature I/O ratio for En from the

I/O ratio for En+ ∆En becomes more difficult as En increases (see Fig. 3.12).

This method for evaluating detector efficiency is valid irrespective of the target used.

A deuteron target was chosen because of the precision with which its (γ,n) cross section

is known. Evaluating the efficiency this way establishes the energy-dependent response of

the detector for future users under certain conditions. As long as (a) the target location is

fixed; (b) the average neutron energy is known; and (c) the COM angular distributions are

known, then the efficiencies determined here are valid for any (γ,n) reaction that satisfies the

conditions above. If backgrounds are low, and the neutron energies are < 2.0 MeV, condition

(b) may be relaxed, because the neutron energy information may be obtained from the I/O

ratio. For neutron energies < 500 keV, condition (c) may also be relaxed because the response

of the detector is nearly constant with respect to angle of emission.

3.3.2 Characterization Results

Figure 3.13 shows the ratio of experimentally determined efficiency to simulated efficiency

vs. average neutron energy for each experiment. Ratios have been determined for the inner

(I) and outer (O) rings separately, as well as for the total (T ).

Neutrons from the 2H(γ,n)1H reaction were emitted from within ± 4 cm from the longi-

tudinal center of the detector with a sin2(θ) distribution in the CoM frame which is hardly

changed when converted to the lab frame because of the relatively small momentum of the
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Figure 3.13: Plot of the ratio of data to simulation for all experiments. Results for Total εn,
Inner Ring εn, and Outer Ring εn are shown. Filled circles are 2H(γ,n)1H data; Squares are
7Li(p,n)7Be data; Triangles are 252Cf data; Open circles are 2H(d,n)3He data.
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incident γ-ray. The arrangement of moderating materials was approximately symmetric. Un-

der these conditions, simulations reproduce measurements to within a normalization of -6.7%

(I), -3.7% (O), and -5.9% (T ). These differences are likely the result of effective threshold

settings on the signals from the detector tubes. This feature of the effective threshold settings

was not included in the simulations.

Neutrons from the 7Li(p,n)7Be reaction were emitted far from the longitudinal center of

the detector with a Legendre polynomial series distribution in the CoM frame which is signif-

icantly changed when converted to the lab frame because of the relatively large momentum

of the incident proton. The arrangement of moderating materials was asymmetric - biased to

achieve higher detection efficiency for neutrons emitted near θlab close to zero. Under these

conditions, absolute detection in O is reproduced very well by simulations; however, absolute

detection in I is systematically 13% smaller than predicted by simulations, resulting in a

nearly 10% systematic difference in T .

The difference in the level of agreement between simulations and experiment for I and O

for the 7Li(p,n)7Be reaction is intriguing. The most likely explanation is that the amount of

aluminum in the intervening beam pipe was underestimated in the simulations which caused

an excess of thermal neutrons in the vicinity of I.

The systematic differences between experiment and simulation for I, O and T for the
2H(γ,n)1H measurement confirmed the need for a well known, tunable, monoenergetic neutron

source. Reliance on simulations alone would have introduced systematic errors in future

(γ,n) measurements on the order of 6%. Using the cross-section of Ref. [Sch05] as a 1%

standard provided tunable monoenergetic neutron sources with fluxes known to ± 3%. The

method for simulating absolute detection efficiencies for the 2H(γ,n)1H reaction was not

significantly influenced by the choice of target material. The same technique was used for the
9Be(γ,n)8Be cross sections ensuring a high degree of accuracy.

3.4 Large NaI Crystal Detector (Molly)

For collimated γ-rays of energy 1.5 MeV ≤ Eγ ≤ 5.2 MeV incident on the face of Molly ,

calculations predict that almost 100% of the γ-rays will deposit energy inside the crystal.

Simulations predict the same result. An associated particle experiment using the 19F(p,αγ)

reaction was performed to verify this prediction.

3.4.1 19F(p,αγ)

The 340 keV resonance of the 19F(p,αγ) reaction was accessed using the Mini-Tandem

accelerator at TUNL. Gamma-rays emitted from this reaction are known to have an isotropic

distribution [Hel72, Cro91]. Lead shielding was employed to collimate the emitted γ-rays into

a 2.54 cm diameter distribution centered on the face of TUNL’s large NaI detector known as
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Figure 3.14: Photograph of the experimental setup. Molly (bottom) sits behind a collimating
wall of lead. Additional lead shielding was placed inside the scattering chamber (center).

Molly . The total efficiency of Molly is consistent with ∼100% for a beam of 6.130 MeV γ-rays.

Any loss of efficiency from threshold settings may be accurately discerned from modeling in

geant 4.

For many experiments performed at TUNL’s HIγS facility, an absolute measure of the

efficiency of the large NaI crystal detector known as Molly is needed to understand the limits of

precision for experiments requiring knowledge of the incident γ-ray flux. Models predict that

Molly has a total-efficiency of ∼100% for γ-ray beams incident on its face with energies between

1.5 MeV to 7 MeV. This total efficiency may be affected by electronic threshold settings, light

collection efficiency, and variables for which ascribing uncertainties may be difficult. The
19F(p,αγ) reaction was chosen to measure Molly ’s absolute γ-ray efficiency experimentally

because it provides a monoenergetic γ-ray source with an associated α-particle. The 19F(p,α)

reaction creates an excited state of 20Ne, which then decays to one of four available excited

states or the ground state of 16O. Of the four excited states, three may decay to the ground

state of 16O via γ-ray emission. The three γ-ray-associated α-particles will have different

energies corresponding to the different excited states in 16O∗ to which the 20Ne∗ decayed.

Fig. 3.16 shows a typical silicon detector spectrum with clear definition of three α-particle

peaks corresponding to the three lowest lying excited states in 16O∗. The resonance for 340
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Figure 3.15: Level scheme for the decay of 20Ne to 16O. Image from Ref. [Cro91].

keV incident protons favors the 3− state of 16O∗ which decays by emission of a 6.13 MeV γ-ray.

These γ-rays are emitted isotropically [Hel72, Cro91]. To produce beam-like conditions, over

20 cm of lead shielding was arranged to collimate γ-rays down to a 2.54 cm diameter circle

centered on the front face of Molly . The solid angle opening defined by this lead shielding

determines the fraction of α-particle-associated γ-rays incident on the face of Molly .

Fig. 3.14 shows the experimental setup. A small scattering chamber designed with very

thin windows was set on the beam line following TUNL’s Mini-Tandem accelerator. Six silicon

detectors were placed at backward angles to detect outgoing α-particles. Incident protons of

≥ 340 keV were collimated by a double slit located 6.35 cm away from the target. Targets

were thin films of LiF, approximately 50 µg/cm2 in thickness evaporated onto ∼10 µg/cm2

carbon backings.
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The presence of a peak in a TAC spectrum confirmed α-γ coincidences. Software gates

isolated events that were both in the resonant α-peak of each silicon detector and in the peak

of the TAC spectrum, and generated a spectrum of coincident events in the NaI detector

(Fig. 3.16). Coincident counts that fell within the full energy peak were ideal for the present

analysis for two reasons. First, natural backgrounds at 6.13 MeV were low. Second, confusion

between γ-rays that scattered before entering the detector, and those that Compton scatter

within the detector is eliminated by choosing only γ-rays in the full energy peak.

The measured peak efficiency of Molly is

εpeak =
Npeak
γ

dσ
dΩ ×Nα

(3.10)

where Npeak
γ is the number of detected γ-rays in the full energy peak, dΩ/4π is the fractional

solid angle defined by the lead shielding, and Nα is the number of α-particles detected for the

resonant reaction.

Over 6000 total α-γ coincidences resulted from 1.3×107 total α-particles counted over

the course of 50 hours of data collection. The fractional solid angle defined by the lead

shielding was calculated from the geometry to be (4.87±0.12)×10−4. Precision was limited by

uncertainties in measurements of the distance between the target and the end of the collimator,

and of the diameter of the collimator. Simulations of the solid angle were performed using the

Monte Carlo code mcnpx to account for the effects of finite beam size and known geometrical

constraints in the experiment. A corrected fractional solid angle of (4.91±0.12)×10−4 was

adopted yielding a peak efficiency of 69.5 ± 1.9%. This peak efficiency is consistent with

geant 4 models of Molly which predict a peak efficiency of 69.7% and a coresponding total

efficiency of 98.9% for an incident beam of 6.13 MeV γ-rays. From these results I infer

that experiment-dependent losses of efficiency caused by electronic threshold settings can be

modeled very accurately.
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Figure 3.16: (Top) Three α-particle peaks from a typical silicon detector spectrum. Gates
have been drawn around the resonant peak. (Bottom) The summed spectrum of all coincident
γ-rays from all runs. A Gaussian fit to the full energy peak at 6.13 MeV (inset) determines
Npeak
γ .
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4 Data Collection and Reduction

4.1 Introduction

The data used in the present analysis combine the result from experiments that took

place in January and July 2009. The 9Be(γ,n)8Be experiment was essentially a counting

experiment. Both the INVS and Molly were setup to generate proportional scalar counts.

Each count above background was recognized as a neutron or gamma-ray respectively, and

each were weighted by a detector efficiency (see Chap. 3). Additionally, Molly and the HPGe

were setup to generate γ-ray spectra. Descriptions of the methods of data collection, and the

methods of data reduction follow.

4.2 Electronics

The electronic setup for the 9Be(γ,n)8Be experiment was very simple. All data were

acquired and stored using TUNL’s proprietary data acquisition (DAQ) software, CODA.

The data stream consisted of several digital signals sent to scalars, and two analog signals

which were stored using an Amplitude-to-Digital Converter (ADC). The scalars were read

and recorded at regular intervals (usually every 10 seconds) during the course of a run, and

also once at the end of the run. The analog signals came from the HPGe and Molly , and

generated γ-ray spectra.

Each signal from the HPGe or Molly was split into two signals. One signal was processed

by a discriminator to generate a scalar count, and also to trigger a DAQ gate in the ADC

for the other signal. The second signal was delayed in order to arrive inside the generated

gate for the ADC. Logic circuits called “pile-up rejection” circuits (PUR), were designed to

veto multiple triggers within a single gate. The INVS counter has on-board electronics which

generate +5 V TTL pulses when a tube discriminates a signal above a pre-set threshold.

The January run used γ-ray energies between 2.5 and 5.2 MeV, and the July run used



Figure 4.1: (a) Sketch of a normal signal from the NaI detector. (b) Sketch of a NaI signal
with ringing. A discriminator may generate more than one scalar count for the ringing signal.
NaI signals are on the order of 1 µs.

γ-ray energies between 1.5 and 3.2 MeV. At the end of the January run, it was observed that

a mismatched impedance caused ringing, as depicted in Fig. 4.1, which sometimes generated

multiple pulses for single events in Molly ’s discriminator. The result of this wiring error was

that the number of γ-ray counts generated by the discriminator was artificially high by an

unknown amount. The problem of ringing and multiple-pulses was resolved in the July run,

and consequently, the Molly scalar data from the January run are normalized to Molly scalar

data from the July run using the overlapping region from the two runs. Figure 4.2 shows the

yields for both data sets.

4.3 The Data

The data were analyzed in spreadsheets and with root software. The manner in which

the scalar data were stored allowed the user to display graphically the evolution of data

collection. Figure 4.3 attempts to display some of the relevant data from a single run at

Eγ = 2.5 MeV. The triangles (highlighted in green) represent the relative rate of neutron

signals from the INVS over the course of the experiment. Notice the discontinuity in the rate

of observed neutrons when the target changes from D2O to graphite, graphite to 9Be, and
9Be to target out (T.O.). This happens because the γ-ray energy is above neutron threshold

for deuterium and 9Be, and nothing else.

Next, observe the monotonically decreasing filled white circles (highlighted in blue). These

represent the rate of counts from the scintillating paddles throughout the experiment. In this

case, flux was not constant, but decayed slowly during this run. However, now observe the

black stars (highlighted in red). These represent the ratio of counts/time in the scintillating

paddle to the counts/time observed in the NaI crystal. Notice that despite the decaying

absolute flux, the paddle normalized flux is constant for each target. The discontinuities here

are the result of different γ-ray attenuations through each target. However, notice that the

attenuation through graphite and 9Be are nearly identical. The ratio of this target-dependent
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Figure 4.2: The measured yields for all targets on a log scale. The 9Be and D2O targets
have yields which are 1-3 orders of magnitude larger than the yield from graphite. The yield
from T.O. is mostly consistent with zero.

Figure 4.3: The evolution of a single run at 2.5 MeV. The meaning of each group of points is
explained in the text.
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Figure 4.4: Measured attenuation through each target is in good agreement with calculations.

value to the value for T.O. is a direct measurement of the γ-ray attenuation through each

target (see Fig. 4.4). Calculations for the attenuation of γ-rays through each material were

performed using attenuation coefficients provided by the National Institute of Standards and

Technology (NIST) [Hub89], and matched the observed attenuation very well (see Fig. 4.4).

4.4 Absolute γ-Ray Measurements

The total number of γ-rays bombarding a target is,

Nγ =
NMolly

χPb(Eγ)χtarg(Eγ)εγ
, (4.1)

where NMolly is the number of counts above background detected by Molly , χPb and χtarg

are measurements of attenuation which are energy dependent and εγ is the efficiency of

Molly which is γ-ray energy independent over the range of γ-ray energies considered here.

The methods used to ascertain Molly ’s detection efficiency were described in Chap. 3. In this

section, I will describe the methods used for determining the attenuation resulting from the

Pb attenuators and the targets.

Attenuation Measurements

The attenuation may be visualized in the following way. A plot of the ratio of NMolly to

Npaddle is shown in Fig. 4.5. On a log scale, regularly spaced bands emerge corresponding to

the proportionality

logR ∝ (T) (4.2)
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Figure 4.5: Plot of the ratio of raw counts in NaI detector to scintillating paddle counts.

where R is the aforementioned ratio, and T are the thicknesses of the Pb attenuators.

Measurements of the attenuation of γ-rays through each target and through Pb-attenuators

were obtained so that, as much as possible, a statistical rather than systematic approach could

be taken for deriving the absolute gamma flux. Attenuation of the gamma-ray beam down-

stream from the targets, but upstream from the gamma-ray beam monitor, was determined

to be necessary to make this experiment viable. Keeping the absolute flux below 5 × 103

γ/s on the NaI or HPGe yields spectra that have negligible signal pile-up and well under-

stood computer dead-time. However, maintaining 105 to 106 γ/s on target was essential for

keeping signal counts well above the background in our neutron detector. Therefore, an in-

strument was designed to insert different thicknesses of Pb downstream from the target but

upstream from the NaI and HPGe detectors. A thickness of Pb of 10.16 cm (7.62 cm) gave

approximately a factor of 100 (30) reduction in intensity for most of the γ-ray energies in

the experimental range (1.5 MeV ≤ Eγ ≤ 5.2 MeV). These attenuators were the primary

attenuators used for measurements. Thicknesses of 5.08 cm, 2.54 cm, and 1.27 cm were also

available for use during the experiment, in addition to unattenuated γ-ray beam.

To measure the actual loss of flux through our Pb-attenuators, the following approach

was used. A γ-ray sensitive detector upstream of the Pb-attenuator behaves as a relative

flux monitor (RFM). Downstream from the Pb-attenuator an absolute measurement of the

γ-ray flux is made with the NaI detector. To make a measurement of the attenuation of

a given thickness of Pb, two measurements are made in succession using the same incident

γ-ray energy. A measurement is performed with the Pb attenuator in place, and a subsequent

measurement is performed with the original Pb attenuator removed. For run i the intensity

on the face of lead attenuator (Nγ0) is related to the intensity on the face of the detector
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(NMolly) by

Nγ0 =
NMolly

exp (−µPbT ) ε(Eγ)
, (4.3)

where µ is a Pb-attenuation coefficient, and T is the proportional to the thickness of the

Pb attenuator. Now, consider the scintillating paddles which are upstream from the lead

attenuator. The paddles generate scaler counts proportional to the γ-ray flux. The total

number of γ-rays which are available to interact with the paddles is Nγ0, so

Nγ0 = Npaddle/εpad. (4.4)

Equation 4.4 is equivalent to Eq. 4.3. Consider that run i uses no attenuator and run j uses

an attenuator of thickness T . Taking a ratio of run i to run j for the same Eγ removes all

energy dependence, and yields

N i
Molly N

j
paddle

N j
Molly N

i
paddle

= exp(−µT ) ≡ χPb, (4.5)

which is the definition of attenuation.

A consequence of defining attenuation this way is that the INVS detector may be used in

the same manner as the paddles so that

N i
Molly N

j
invs

N j
Molly N

i
invs

= exp(−µT ) ≡ χPb. (4.6)

The values for T are tabulated in Tables 4.3 and 4.4. Both RFMs yield values for T which

are approximately 6% less than the measured value of T .

Differences observed between the measurements of attenuation and the attenuation pre-

dicted using NIST attenuation coefficients were initially believed to be the result of small-angle

Compton scattering as illustrated in Fig. 4.6. This explanation, however, turns out to be in-

adequate. A first order approximation determines small angle Compton scattering to have a

1% effect on the observed attenuation coefficients. Simulations using mcnpx confirmed that

the effect of small angle scattering was expected to be on the order of 1%.

The cause of the remaining discrepancy was not determined. The discrepancy is observed

when using either the paddles or the INVS detector (in concert with the 9Be or D2O targets).

It follows that if two independent RFMs (the paddles and the INVS), which use two indepen-

dent physical processes (scintillation, and thermal neutron capture) to establish the relative

flux, yield similar measures of attenuation, then it is unlikely that the discrepancy was the

result of a systematic effect from either RFM. Furthermore, the intensity of the γ-ray beam

was controlled so that Molly only experienced fluxes <104 γ/s. This rules out any possibility

that the observed systematic effect is detector-induced. Because the measurement satisfies
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Figure 4.6: : (a) A γ-ray inside the Pb attenuator may scatter, pair-produce, photoabsorb, or
exit without interaction. (b) Photons that do not interact with the Pb can be observed in the
NaI detector. (c) γ-rays scattered at small angles will also be observed in the NaI detector,
although these γ-rays are treated as removed when the NIST coefficients are used.

the conditions necessary to establish an accurate absolute measure of γ-ray flux, explaining

the remaining discrepancy, while gratifying, is not necessary.

Measuring the attenuation that comes from the targets uses a similar approach. Flux

is measured with a target in-beam (targ) and with that target out-of-beam (T.O.), and is

normalized to the paddles. This has the form

N targ
Molly

N targ
paddle

× N
T.O.
paddle

NT.O.
Molly

≡ χtarg. (4.7)

The attenuation data for Pb and the targets are fit with an order-six polynomial (pol6 ).

January and July data sets are treated separately due to the observation of small differences

which are likely the result of slight geometrical differences between the two runs. Further

discussion of data fitting and uncertainty are reserved for Sect. 4.8.

4.5 Absolute Neutron Measurement

The methods for obtaining an absolute measure of the number of neutrons was mostly

described in Chap. 3. The measurement is bound to the absolute measure of γ-ray flux, the
2H(γ,n)1H cross-section of Ref. [Sch05], and the number of target nuclei. The result is

Nn =
Ninvs −Nbifc

εn(En)
, (4.8)

where Ninvs is the number of counts above room-background detected by the INVS counter,

Nbifc are the number of beam-induced false counts (BIFC) and εn(En) is the efficiency of the

INVS which depends on the energy of the neutrons being detected.
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Figure 4.7: Photograph of the targets used in this experiment. Shown with the targets is
the small graphite frame used to position the targets inside the revolving target chamber.

4.6 Absolute Target Thickness Measurement

The number of target nuclei available for interaction is an essential component of the

cross section equation. In these experiments, the γ-ray beam was of smaller diameter than

the target. Targets were cylindrical, with the cylinder faces normal to the γ-ray beam. Under

these conditions, the total number of target nuclei per unit area,

Nt/A = (ρ) ( 1

mmol
) (NA)(βtarg) × ` × f, (4.9)

where ρ is the density of the target material with units g/cm3, mmol is the molar mass

of the target with units of g/mol, NA is Avogadro’s number with units of atoms/mol (or

molecules/mol), βtarget is the number of target nuclei per molecule, ` is the length of the

target in cm, and f is a thick target correction factor to be described.

As γ-rays penetrate a thick target, a significant fraction will interact in ways other than

photodisintegration (Compton scattering, photoabsorbtion etc.). These interactions remove

γ-rays from the beam, continuously changing the number of γ-ray-target-nucleus pairs avail-

able for photodisintegration. The number of γ-rays removed from the beam is a function of

the target thickness and the attenuation coefficient for the target.

The thick target correction mentioned in Sect. 3.2.4 (Eq. 3.6) will be derived here. Con-
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` (cm) from ` (cm) from
Nominal ` Nominal ` Attenuation Attenuation

Target Material (cm) (cm) Measurement Measurement
Jan. July Jan. July

9Be 2.54 2.54 2.55 ± 0.02 2.60 ± 0.02
graphite 2.54 2.54 2.56 ± 0.02 2.49 ± 0.02

D2O 7.59 7.59 7.28 ± 0.03 7.50 ± 0.03

Table 4.1: A comparison of nominal target length and target length determined from atten-
uation data. Uncertainties shown are the uncertainties from fits of a constant value to plots
of target length, (`), vs. Eγ for each data set. Reduced χ2 for each fit was 0.3 (Jan) and 1.4
(July).

sider the luminosity, L, of photons within a material with number density ρ and thickness

dx. The change in luminosity as the beam passes through a distance dx in a target may be

defined as

dL = I(x)ρdx . (4.10)

For a thick target, the intensity of photons decreases exponentially in x so that the intensity

of photons at any point within the target obeys

I(x) = I0 exp (−µx) , (4.11)

where µ is an attenuation coefficient with units of inverse length. The change dL through the

target will obey

dL = I0 exp(−µx)ρdx . (4.12)

Integrating dL from zero to the total thickness, T , gives the luminosity after the target,

L′ = −I0ρ
exp (−µx)

µ
∣
x=T

x=0

= I0ρ
1 − exp (−µT )

µ
. (4.13)

Now writing

L′ = f I0ρT , (4.14)

one can see that

f = 1 − exp (−µT )
µT

(4.15)

The initial number of photons, Nγ0, is proportional to initial intensity, I0, so Nγ0 may be

substituted for I0 in Eq. 4.14 which yields the thick target correction factor f mentioned in

Sect. 3.2.4.

Because data were taken with and without the target attenuating the γ-ray beam, ratios
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of γ-ray scalers for target-in to target-out provide a measure of target length, and thus a

measure of the total number of target nuclei. Precision is limited to 5% (systematic) in

accordance with the uncertainty reported for the attenuation coefficients for γ-ray energies >
1 MeV [Hub89]. Table 4.1 shows target thickness derived from the measure of attenuation

in comparison to target thickness measured directly. Both measurements agree with nominal

target thickness within 5%.

4.7 Total Cross Section

When assuming that the INVS detector covers a solid angle of 4π the general equation

for calculating a photoneutron cross section is

σ = Nn

NγNt/A
. (4.16)

The result, related by the measured quantities, is

σγ,n =
(Ninvs −Nbifc)χPbχtargεγ

NMolly(ρ) ( 1
mmol

) (NA)(βtarg)`f εn(En)
. (4.17)

For energies above 2.225 MeV, an alternate reckoning of the 9Be(γ,n)8Be cross section may

be found by directly normalizing with the 2H(γ,n)1H cross section. This formula is generated

by taking a ratio of Eq. 4.17 for 9Be and 2H. Many terms cancel out from the equation which

means that absolute detection efficiencies and terms for attenuation through Pb need not be

known. This formula is written as

σ9Be(γ,n) = σ2H(γ,n) (
(Ninvs −Nbifc)9Be

(Ninvs −Nbifc)2H
)
⎛
⎝
N

2H
Molly

N
9Be
Molly

⎞
⎠
(χ9Be

χ2H

)
⎛
⎝
N

2H
T /A

N
9Be
T /A

⎞
⎠
⎛
⎝
ε
2H
n

ε9Ben

⎞
⎠
. (4.18)

A Table with both absolute and normalized cross section measurements may be found in

Sect. 7.2.

4.8 Error Analysis

A key feature of this work was to make measurements with reference to known standards

in order to reduce or remove, where possible, systematic uncertainties. The uncertainties of

the components of the cross-section, and the methods used to determine the uncertainty in

the measurement of σγ,n will be discussed next.
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average background average background typical relative
Scaler (c/s) JANUARY (c/s) JULY unc. (approx)

Molly 932.57 1023.6 0.1%

INVS Inner 1.92 1.78 0.5-5%

INVS Outer 1.86 1.80 0.5-5%

INVS Total 3.76 3.58 0.5-5%

Paddles 0.204 0.194 1%

Table 4.2: Table of the time-averaged background rates.

4.8.1 Uncertainty

I will begin by addressing the uncertainty of each scaler data set collected during exper-

iments. The scalers to which this will apply will be the following: Molly , the INVS (Inner,

Outer, Total) and the scintillating paddles. What is shown below is generally valid for all

scaler data.

Let Nscaler represent Ninvs, NMolly or Npaddle and be calculated as

Nscaler = Nraw −Nbackground, (4.19)

with

Nbackground =
Novernight

tovernight
× trun, (4.20)

where Nraw is the total number of scalar counts obtained in scaler for a given target during

a given run and Nbackground is primarily a time averaged background rate scaled by the time

of the run being analyzed. The rate of the background is established by averaging runs which

collected data overnight.

Thus, the absolute uncertainty of Nscaler is

UNscaler =
√
Nscaler +Nbackground =

√
Nraw, (4.21)

making the relative uncertainty
UNscaler

Nscaler
=

√
Nraw

Nscaler
. (4.22)

In a typical run I find that for Molly , Nraw = 1.45×106 counts over the course of 600.0 seconds.

The rate of background in Molly is 1023.6 Hz, meaning Nbackground = 614160 counts and thus

NMolly = 835840 counts. In this case, UNMolly
is ≈ 1204 counts and so the relative uncertainty

in NMolly is ≈ 0.15%. Table 4.2 gives the values for time-averaged backgrounds used in the
9Be(γ,n)8Be experiment.

Having established the methods for determining uncertainties associated with scalers, I
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Figure 4.8: Attenuation data and fits for 10.16 cm and 7.62 cm Pb attenuators.

will focus now on the other components of Eq. 4.1.

The measurement for the attenuation caused by Pb of thickness T has the form of Eqs. 4.5

and 4.6. The paddles and the INVS are upstream of the Pb attenuators and independently

provide flux normalization to Molly . The uncertainty of χPb at a point is just the uncertainty

of a product:

UχPb
= χPb

¿
ÁÁÁÀ⎛

⎝

UNT
Molly

NT
Molly

⎞
⎠

2

+
⎛
⎝
UN0

Molly

N0
Molly

⎞
⎠

2

+ (
UNT

RFM

NT
RFM

)
2

+ (
UN0

RFM

N0
RFM

)
2

, (4.23)

For runs where where Pb attenuation was being determined, the limiting factor was counts

in the RFM. Relative uncertainties of 1% were attained for most runs. This ensured that the

relative uncertainty in χPb was 1.5%. For the 10.16 cm (7.62 cm) attenuator, the attenuation

was measured at 5 (4) different γ-ray energies in January and 12 (8) different γ-ray energies

in July. The precision of the measurements taken in January (July) were about 3.5% (1.5%)

for each measurement. It is observed that the measure of attenuation is sensitive to the close

geometry of the attenuators with Molly ; therefore, the January and July data are treated

separately. Slight differences in the distance between the Pb-attenuator and Molly rendered

systematically different measures of attenuation (see Fig. 4.9). The following model was
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Figure 4.9: A zoomed in look at different regions of attenuation data and fits for the 10.16
cm Pb attenuator. Notice that the “kink” in the second plot affects both RFMs in nearly the
same way.
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chosen to attempt to fit the data. A table of attenuation coeficients for Pb is generated from

a NIST tool. These attenuation coefficients (µ) are assigned a systematic uncertainty of ± 5%

by NIST. For the purpose of fitting, an uncertainty of 0.1% was assigned to these coefficients

and they were fit using an order-6 polynomial (pol6 ) with an overall χ2 per number of degrees

of freedom (NDF) (or reduced χ2) of 0.75. This means that the model of µ(Eγ) as a pol6 and

the 0.1% uncertainty assignment were well matched over the range of 1.5 MeV ≤ Eγ ≤ 5.2

MeV. Now armed with a function for µ(Eγ) over the desired energy range, the new model

was used to fit the attenuation data. The attenuation data collected with the 10.16 (7.62)

cm attenuator were fit with
I

I0
= exp−µ(E)T (4.24)

where T is the single free parameter which is expected to have a value close to 10.16 (7.62) cm.

It it worth noting here that the present attenuation measurements exist without reference to

the attenuation coefficients being used. By referencing the attenuation coefficients provided

by NIST, the attenuation was modeled with something better than a linear interpolation

between the data points. Plots of the fitted attenuation data are shown in Fig. 4.8. Notice

that T for January and July are systematically different.

Tables 4.3 and 4.4 contain the values of T obtained in the fit along with reduced χ2 val-

ues. A surprising result was that the the different RFMs give slightly different measures of

attenuation (about 5%), which generally do not agree with each other given their error bars.

This implies that an unknown systematic uncertainty is affecting at least one of the RFMs.

Since the systematic effect is unknown and neither RFM may be prefered,the models were

assigned equal weights and averaged. A systematic uncertainty assigmnet of ± 2.5% was

deemed appropriate.

One final nuance was observed within the July data set. It appears that if the energy

range is split at Eγ= 2.26 MeV, and the attenuation data < 2.26 MeV are fit separately from

data > 2.26 MeV, the reduced χ2 value over that range is significantly improved (See Fig. 4.9

and Table 4.3). It is likely that the Pb-attenuators were moved and relocated during the

July runs which caused a small systematic change in what Molly observed. With all of the

reduced χ2 values being close to 1, I infer that the model is good and that the attenuation of

the γ-ray beam through Pb has been measured with a statistical precision of 3.5% (1.5)% in

January (July).

For the present model, the fit values of T have an uncertainty associated with the fit, UT .

Using the method of partial derivatives to assess the uncertainty of the model, one finds that

the relative uncertainty is

UχPb
= UT ×

∂χPb
∂T

= −µUT exp(−µT ), (4.25)
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T = χ2 per ratio to T = χ2 per ratio to
10.16 NDF 10.16 7.62 NDF 7.62

Global 9.504 ± 0.005 3.94 93.5 7.171 ± 0.006 3.817 94.1

Jan 9.433 ± 0.020 1.25 92.8 7.049 ± 0.025 0.547 92.5

July 9.515 ± 0.007 2.04 93.6 7.173 ± 0.006 4.36 94.1

July < 2.26 9.460 ± 0.015 .726 93.1 7.136± 0.009 1.85 93.6

July > 2.26 9.529 ± 0.008 .452 93.7 7.201± 0.008 2.08 94.5

Table 4.3: Table of fit parameters and χ2 per number of degrees of freedom (NDF) for
measurements of attenuation through Pb using the scintillating paddles as a RFM.

T = χ2 per ratio to T = χ2 per ratio to
10.16 NDF 10.16 7.62 NDF 7.62

July < 2.26 9.595 ± 0.017 0.311 94.4 7.235± 0.014 1.85 95.0

July > 2.26 9.653 ± 0.011 1.54 95.0 7.286± 0.012 2.08 95.6

Table 4.4: Table of fit parameters and χ2 per number of degrees of freedom (NDF) for
measurements of attenuation through Pb using the INVS detector as a RFM.

making the relative uncertainty
UχPb

χPb
= −µUT . (4.26)

Though the uncertainty in attenuation at a point is 1.5%, this evaluation uses each measure-

ment to establish a value for T . The uncertainty in the model values of T is about 0.6% for

the 10.16 cm and 7.62 cm attenuators, and yields the same relative uncertainty for χPb. The

measurements of attenuation through the targets (χtarg) are generally performed in the same

way. However, these measurements were performed at nearly every energy and with better

statistical precision.

The final component of Eq. 4.1 is εγ which is the γ-ray detection efficiency of Molly . This

was determined experimentally using the 19F(p,αγ) experiment. Recall that the measured

peak efficiency of Molly is

εpeak =
Npeak
γ

dΩ
4π ×Nα

(4.27)

where Npeak
γ is the number of detected γ-rays in the full energy peak,dΩ

4π is the fractional solid

angle defined by the lead shielding, and Nα is the number of α-particles detected for the

resonant reaction. The uncertainties of Nα and Nγ are determined in a manner similar to the

methods described above.

The uncertainty of dΩ
4π cannot be rid of systematic uncertainties because a model for γ-

ray-attenuation must be used to obtain the correct solid angle, and observed attenuation is
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T = Range of Approx. Rel. Systematic
10.16 χPb Unc. UχPb

/χPb Unc.

January 9.433 ± 0.020 0.5 - 1.2% 1% 2.5%

July < 2.26 9.528 ± 0.011 0.5 - 1.2% 0.6% 2.5%

July > 2.26 9.591 ± 0.011 0.5 - 1.2% 0.6% 2.5%

T = Range of Approx. Rel. Systematic
7.62 χPb Unc. UχPb

/χPb Unc.

January 7.185± 0.008 1.8 - 3.6% 1% 2.5%

July < 2.26 7.185± 0.008 1.8 - 3.6% 0.6% 2.5%

July > 2.26 7.244± 0.007 1.8 - 3.6% 0.6% 2.5%

Table 4.5: Table of averaged parameters and uncertainties T and χPb.

Parameter value relative unc.

(N) (1/
√
N)

Nα 1.3×107 0.02%
Nγ 4487 1.5%

Table 4.6: Statistical parameters for determining the solid angle in the 19F(p,αγ) experiment.

Figure 4.10: Geometry of 19F(p,αγ). Gamma-rays along the flight path shown experience
attenuation corresponding to a distance d of Pb.
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Parameter value relative unc.

rlong 31.05 ± 0.03 cm ∼0.1%
rcol 1.27 ± 0.01 cm ∼0.8%

θ1 2.342 ± 0.019 deg ∼0.8%
dΩ
4π (uncorrected) (4.18 ± 0.07)×10−4 ∼1.6%

Table 4.7: Parameters for determining the solid angle in the 19F(p,αγ) experiment.

geometry dependent as was shown in the calculations for χPb. However, an analytic form es-

tablishes the solid angle which includes effects of attenuation though lead. Recall that several

cm of Pb collimated the γ-rays to a 2.54 cm diameter spot on the center of the face of Molly .

This configuration replicated beam-like conditions. At the end of the lead collimator, which

has radius rcol, and is a distance rlong from the target, some γ-rays must penetrate a small

amount of lead before reaching Molly . Thus, these γ-rays experience attenuation commen-

surate with the hypotenuse of a right triangle which may be calculated. For an incremental

displacement in the radial direction, ∆, a γ-ray emitted at θ∆ = tan−1 [(rcol +∆)/rlong] must

travel a distance, d, through Pb where

d = ∆

sin [tan−1 ( rcol+∆
rlong

)]
, (4.28)

meaning the effect of attenuation may be calculated at a given radius beyond the collimator

edge as
I

I0
= exp−µd. (4.29)

The unobstructed angular opening lies between 0 and θ1 = tan−1(rcol/rlong), the calcu-

lation for unattenuated fractional solid angle is

dΩ

4π
= 1

4π
∫

2π

0
dφ∫

θ1

0
sin(θ)dθ = 1

2
(1 − cos(θ1)) . (4.30)

Figure 4.11 compares the calculated fractional solid angle with the fractional solid angle

found through simulations in mcnpx. The photo-atomic cross sections used in the simulation

ultimately come from the Evaluated Photon Data Library (EPDL97) [Cha06] which claims

uncertainties of 1-2% for 1.5 MeV ≤ Eγ ≤ 5.2 MeV. The uncertainties of each component

of Nγ are listed in table 4.9.

I now move to address the uncertainty of Nt/A. The only real contributions to its uncer-

tainty in Eq. 4.9 come from the ` and f . The length of the target ` is measured directly with

calipers to high precision. The D2O target is a liquid contained within a thin walled cylinder.

The walls of the cylinder were designed to be 10 mil. (0.254 mm) thick. The parameter f
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Figure 4.11: A calculation of dΩ
4π /cm which includes the effects of attenuation from the Pb

collimator is very close to mcnpx simulations of the flux of 6.13 MeV γ-rays vs. radius given
the experimental geometry. The value for dΩ

4π /cm is constant until the edge of the collimator
is reached at r = 1.27 cm. The corrections to the solid angle (shaded area) for attenuation in
the collimator, scattering in the thin window of the chamber and finite geometry amounts to
an effect of approximately 16.8%.

Region dΩ
4π contribution relative

to dΩ
4π systm. unc.

r < 1.27 cm 4.09×10−4 ∼83.2% 1.6%
r > 1.27 cm 0.82×10−4 ∼16.8% 2%

all r 4.92×10−4 100% 1.7%

Table 4.8: mcnpx-simulated parameters for solid angle in the 19F(p,αγ) experiment. The
0.2% difference between the value for solid angle for r < 1.27 and the value in line 4 of Table 4.7
comes from scattering on the thin window of the chamber which was not calculated.

Parameter relative relative
stat. unc. syst. unc.

NMolly 0.1% 0.0%
χPb 0.6 - 1.0% 2.5%
χtarg 0.2% 0.0%
εγ 1.5% 1.7%

Nγ 2.1% 3.0%

Table 4.9: Table of statistical and systematic uncertainties for measurements of Nγ .
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Target thickness relative
and unc. syst. unc.

9Be 2.54 ± 0.01 0.4%
graphite 2.54 ± 0.01 0.4%

D2O 7.59 ± 0.05 0.7%

Table 4.10: Table of parameters for Nt/A.

parameter Relative Relative
stat. unc. syst. unc.

` 0% < 1%
f 0.2% 0%

Nt/A 0.2% < 1%

Table 4.11: Table of parameters for Nt/A.

may be interpreted directly from measurements. Recall Eq. 4.15,

f = 1 − exp (−µT )
µT

, (4.31)

which may be rewritten in terms of measured parameters as

f = 1 − χtarg
− ln [χtarg]

. (4.32)

Typical values for f range from 0.84 to 0.95. The uncertainty of f, given a 1% uncertainty in

χtarg, is found by

Uf = Uχtarg ×
∂f

∂χtarg
= Uχtarg × [ 1 − χtarg

χtarg (ln [χtarg])2
+ 1

ln [χtarg]
] , (4.33)

which amounts to approximately the same relative uncertainty as for χtarg.

Next, I will address the uncertainty of Nn. The uncertainty for εn comes from the mea-

surement of 2H(γ,n)1H,

εn =
Ninvs −Nbifc

(Nγ) (Nt/A) (σ[2H(γ,n)1H])
. (4.34)

The parameter Nbifc comes from γ-rays which have scattered from the target and ionized

the gas in the tubes of the INVS enough to trigger a signal. The graphite target was used

to measure this effect. When the graphite target was in place, the INVS displayed a higher

background than when no γ-ray beam was in the room. The fraction of γ-rays which are

not transmitted through the target is (1-χtarg). The number of these non-transmitted γ-
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rays which scatter into the detector volume is related to the fractional contribution of inco-

herent scattering, κscat, to total attenuation χtarg. In words, the number of beam-induced

false counts expected for a given target A is

Nbifc = Ngraphite
invs × Number of γ-rays scattered inside the detector body for target A

Number of γ-rays scattered inside the detector body for graphite
.

(4.35)

If I define N′
γ as the number of γ-rays scattered inside the detector volume, then N′

γ is

N targ
γ

′ = N targ
γ × (1 − χtarg) × κscattarg. (4.36)

Thus, the final expression for calculating Nbifc is

Nbifc = Ngraphite
invs × N targ

γ

Ngraphite
γ

× (1 − χtarg)
(1 − χgraphite)

×
κscattarg

κscatgraphite

. (4.37)

Figure 4.2 shows that Ninvs/Nγ for graphite is generally constant over the range 1.5 MeV ≤ Eγ ≤ 5.2

MeV. It will be shown that Nbifc may be approximated

Nbifc ≈ 2.1 × 10−6 ×N targ
γ × (1 − χtarg)

(1 − χgraphite)
, (4.38)

where the value 2.1×10−6 is the value of Ninvs/Nγ for graphite, and the other terms in Eq. 4.37

are small corrections to Eq. 4.38.

The parameter Nbifc is most often ≤ 1% of Ninvs for a given run, and so even relatively

large uncertainties in Nbifc contribute little to the total uncertainty. The κtargscat/κ
graphite
scat term

is at most a 1% (4%) correction to Nbifc for 9Be (D2O) for 1.5 MeV ≤ Eγ ≤ 5.2 MeV [Hub89],

and so it is disregarded.

Consider the situation where Ninvs is 10,000 counts, Nbifc is 500 counts (5%), and the

relative uncertainty of Nbifc is 20% or 100 counts. If N’n is defined as Ninvs - Nbifc, then

N ′
n = 9500, (4.39)

and

UN ′
n
=
√
U2
Ninvs

+U2
Nbifc

≈ 141, (4.40)

making the relative uncertainty in N′
n of 1.5% compared to the relative uncertainty of Ninvs

of 1%. This scenario represents the largest contribution to Nbifc expected given the present

data. The assignment of uncertainty for σ[2H(γ,n)1H] is 1% in accordance with the findings of

Ref. [Sch05], and the uncertainties of Ninvs, Nγ , and Nt/A have already been discussed. The

uncertainties for εn, and Nn are summed up in Table 4.12.

Finally, all uncertainties mentioned here are put into one final table and combined to give
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parameter Relative Relative
stat. unc. syst. unc.

Ninvs 1.0% 0%
Nbifc ∼20% 0%

N′
n = Ninvs - Nbifc ≤1.5% 0%

Nγ 2.1% 3.0%
Nt/A 0.2% < 1.0%

σ[2H(γ,n)1H] 0.0% 1.0%

εn 2.4% 3.3%
Nn 2.4% 3.3%

Table 4.12: Table of parameters for Nn.

parameter Relative Relative
stat. unc. syst. unc.

Nn 2.4% 3.3%
Nγ 2.1% 3.0%

Nt/A 0.2% < 1.0%

σ 3.2% 4.6%

Table 4.13: Table uncertainties associated with σ.

the uncertainty for total cross section measurements, σγ,n.
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5 Data Analysis

5.1 Introduction

To interpret an accurate ⟨ααn⟩ rate, one must understand both the forward

(9Be + γ → 8Be + n) and reverse (8Be + n → 9Be + γ) directions for the reaction studied,

as well as the influence of nearby channels. Our laboratory measurement is primarily the
9Be + γ → 8Be + n reaction. Two observations point to this as the primary channel.

Measurements of the 9Be(γ,nα)α three-body reaction in the energy range 1.573 MeV < Eγ <
1.6654 MeV have yielded an upper limit to the total cross-section of 93 nb [Alb04]. Just

above the two-body threshold at 1.6654 MeV, the cross section rapidly rises to over 1 mb.

This rapid rise corresponds to the broad 1/2+ resonance whose peak is < 100 keV above the

two-body threshold. A 9Be nucleus excited to the 1/2+ level at threshold decays essentially

entirely to 8Be in the ground state plus a neutron. Thus, the 1/2+ threshold resonance is the

largest contributor to the ⟨ααn⟩ rate.

5.2 History of ⟨ααn⟩ Rate Calculations

For several years prior to 1999, the ⟨ααn⟩ rate used in reaction network codes was the

product of Ref. [Cau88], which considered resonant-only decays of 9Be + γ → 8Be + n.

In other words, when considering the 8Be + n → 9Be + γ direction for the reaction,

consideration of the width of the ground state of 8Be was neglected as a first approximation.

The rate published by Ref. [Ang99] (known as NACRE), was the first publication to include

an off-resonant contribution to the ⟨ααn⟩ rate. Other works [Sum02, Bur10] have since been

carried out and have all followed the formalism used by NACRE. The authors of Ref. [Sum02]

and [Bur10] point out that the off-resonant contribution, observed at the lowest temperatures,

comes largely from the tails of broad, higher-lying resonances in 9Be (5/2+ and 1/2−). It will

be shown here that contributions from higher resonances are inflated because of an improper



Figure 5.1: Energy levels of 9Be. Image adapted from [Til04].

treatment near threshold.

5.3 Behavior near Threshold

Measurements of the 9Be(γ,n)8Be cross-section demonstrate the energy-dependence of

the neutron partial width for the resonance at threshold. Any resonance close to threshold

experiences a distortion of the normal Breit-Wigner (BW) shape. The neutron partial width,

Γn, is generally written [Bla52]

Γn = 2γ2P` (5.1)

where γ2 is a reduced width, and P` is the penetration factor or penetrability. The reduced

width incorporates all of the unknown parts of the nuclear interior, while the penetrability

is completely determined by the conditions outside of the nucleus [Ili07]. The penetrability

may be generally written

P` = R( k

F2
` +G2

`

) (5.2)

where R is the channel radius, k is the wave number and ` is the angular momentum of the

incoming neutron. For neutrons, the factors F` and G` are spherical Bessel (j`) and Neumann

(n`) functions which are

F` = (kr)j`(kr) (5.3)
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and

G` = (kr)n`(kr), (5.4)

which depend on angular momentum. These expressions can be written analytically for zero

and non-zero values of ` in the following way:

P0 = kR =
√
ξEn, (5.5)

P1 =
(ξEn)3/2

1 + ξEn
, (5.6)

P2 =
(ξEn)5/2

9 + 3ξEn + (ξEn)2
, (5.7)

P3 =
(ξEn)7/2

225 + 45ξEn + 6(ξEn)2 + (ξEn)3
, (5.8)

where ξ is defined as

ξ ≡ 2µR2

h̵2
= (kR)2

En
. (5.9)

Channel radius is often defined [Ili07] as

R = r0(A1/3
t +A1/3

p ), (5.10)

with At,p being the nucleon numbers of the target and projectile, and r0 being on the order

of 1.0 to 1.5 fm. References [Ang99, Sum02], whose works I am following closely here, chose

r0 = 1.4 fm and 1.44 fm respectively.

Looking back at Eqs. 5.5 to 5.8, observe that the neutron partial width for a (γ,n) reaction

generally obeys

Γn ∝ E`+1/2
n . (5.11)

For the reverse, or (n, γ) reaction, the neutron partial width obeys

Γn ∝ E`−1/2
n , (5.12)

as a result of the application of the reciprocity theorem (see Sect. 5.6). For s-wave neutrons,

`=0 and the observed neutron partial widths for (γ,n) and (n, γ) reactions are proportional

to E
1/2
n , and E

−1/2
n respectively, which is the so-called 1/v law for neutron capture.

It is obvious that one must attribute this energy-dependence to the 1/2+ threshold reso-

nance to obtain a good fit to 9Be(γ,n)8Be cross-section data. However, previous works have

not applied this energy-dependence to the tails from the broad, higher-lying states in 9Be.
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Possible Values 9Beg.s
8Beg.s+n

Lphoton j⃗g.s Jπ Possible χλ j⃗g.s+s⃗n Allowed `neutron
1,2 3/2− 1/2+ E1, M2 1/2+ 0, �A1

1,2,3,4 3/2− 5/2− M1, E2, M3, E4 1/2+ �A2, 3

1,2 3/2− 1/2− M1, E2 1/2+ �A0, 1

1,2,3,4 3/2− 5/2+ E1, M2, E3, M4 1/2+ 2, �A3

1,2,3 3/2− 3/2+ E1, M2, E3 1/2+ �A1, 2

Table 5.1: The possible couplings of excited states in 9Be with 8Be in the ground state plus a
neutron are shown. When measuring the 9Be + γ → 8Be + n reaction in the laboratory, the
photon angular momentum, Lphoton, ≡ 1. However, when considering the 8Be + n → 9Be +
γ reaction, Lphoton is not restricted. Parity considerations prohibit certain values of `neutron
which have been crossed out.

The result of this incomplete treatment has been to inflate the off-resonance contribution by

as much as a factor of four. Table 5.1 shows all of the possible Lphoton and `neutron combina-

tions for coupling an excited state of 9Be with 8Be in the ground state plus a neutron. When

the parity of each excited state in 9Be is considered, certain values of `neutron are excluded.

The value of ` determines the form of the penetrability, P` (Eqs. 5.5 to 5.8) which determines

the form for the neutron partial width (Eq. 5.1) of the excited state in 9Be, and ultimately

the behavior of the tail of the partial width near the threshold. Table 5.2 is a similar table

which considers couplings between excited states of 9Be and the first excited state in 8Be plus

a neutron.

When a level of spin J is isolated from other levels with the same spin and parity, a

one-level R-matrix approximation may be used to describe the contribution of the level to the

(γ,n) cross-section. This takes the form of the Breit-Wigner equation (BWE) for an isolated

resonance [Ili07]:

σBW (E) = π

k2

(2J + 1)(1 + δ01)
(2j0 + 1)(2j1 + 1)

ΓaΓb

(E −ER)2 + 1
4Γ2

, (5.13)

where k is the wave number of the projectile, j0, j1 and J are the spins of the target, projectile

and resonance respectively, ER is the resonance energy, Γa,b is the partial width for entrance

or exit channel a, b, and Γ is the total width. The (1+δ01) term accounts for identical particle

interactions such as α + α scattering. For a (γ,n) reaction the BWE takes the form

σγ,n(Eγ) =
π

k2
γ

2J + 1

2(2I + 1)
ΓγΓn

(Eγ −ER)2 + 1
4Γ2

. (5.14)

In the present analysis, energy dependence is introduced for all but the 5/2− resonance.

Justifications for excluding energy dependence for the 5/2− state are discussed in the next

section.
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Possible Values 9Beg.s
8Be∗2++n

Lphoton j⃗g.s Jπ Possible χλ j⃗2++s⃗n Allowed `neutron
1,2 3/2− 1/2+ E1, M2 3/2+, 5/2+ �A1, 2, �A3

1,2,3,4 3/2− 5/2− M1, E2, M3, E4 3/2+, 5/2+ �A0, 1, �A2, 3, �A4, 5

1,2 3/2− 1/2− M1, E2 3/2+, 5/2+ 1, �A2, 3

1,2,3,4 3/2− 5/2+ E1, M2, E3, M4 3/2+, 5/2+ 0, �A1, 2, �A3, 4, �A5

1,2,3 3/2− 3/2+ E1, M2, E3 3/2+, 5/2+ 0, �A1, 2, �A3, 4

Table 5.2: Same as the Table (5.1) above, but now I consider decay to the first excited state
in 8Be. All states in 8Be, including the ground state, have an associated width, and therefore,
decays to excited states should be considered. Lowest values of `neutron are assumed to be
the most probable.

For the case of the 1/2+ state where ` = 0, Eq. 5.1 and Eq. 5.5 may be combined so that

the neutron partial width may be written

Γn = 2
√
ε(Eγ − Sn) = 2

√
εEn, (5.15)

where Sn is the neutron separation energy of 1.6654 MeV deduced from the mass difference

between 9Be and 8Be plus a neutron, and ε contains the reduced partial width for the 1/2+

state. Epsilon is defined as

ε = 2µR2γ4

h̵2
, (5.16)

where µ is the reduced mass of 8Be plus a neutron, R is the channel radius, and γ2 is the

reduced width. Defining ε, which has units of energy, in this way provides a convenient fitting

parameter.

The energy-dependent γ-ray partial widths may be cast in terms of reduced transition

probabilities [Bla52] for E1 and M1 transitions as

Γγ(E1) = 16π

9
α(h̵c)−2E3

γB(E1) ↓, (5.17)

and

Γγ(M1) = 16π

9
α(2Mpc

2)−2E3
γB(M1) ↓, (5.18)

where α is the fine structure constant. Note that the strength of transitions from the ground

state to an excited state (B↑) is related to the strength of transitions from that excited state

to the ground state (B↓) by,

B ↑= 2Jx + 1

2J0 + 1
B ↓ . (5.19)

Transitions from the ground state of 9Be (3/2−), to an excited 1/2 or 5/2 state yields factors
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of 0.5 and 1.5 in Eq. 5.19 respectively. Since B ↓ are the transitions used in the calculation

of ⟨ααn⟩, they will be used exclusively for the rest of this thesis. For each resonance, the

reduced width, γ2, (or ε where applicable), the B(E1)↓ or B(M1)↓ transition strength, and the

resonance energy (ER) are determined by fitting the data. Table 5.3 displays the parameters

determined for each resonance.

The available resolution of the γ-ray beams at HIγS made a determination of Γn for

the narrow 5/2- state impossible. I adopt the width of Ref. [Til04] for the rate calculation.

Because Γn is orders of magnitude larger than Γγ , the approximation that the total width, Γ,

is equal to the neutron partial width may be made. The 1/2+ resonance then has the form

σ(γ,n)1/2+ =
8π2

9
α
EγB(E1)1/2+

√
ε1/2+En

(Eγ −E1/2+

R )2 + ε1/2+En
. (5.20)

In general, each resonance has the form,

σ(γ,n)j = (2j + 1)2π2

9
α
EγB(E1,M1)jΓjn
(Eγ −EjR)2 + 1

4Γjn
2
. (5.21)

5.4 Fitting Techniques

The data are divided into four groups:

1. January Absolute Data (2.5 MeV ≤ Eγ ≤ 5.2 MeV),

2. January Normalized Data (2.5 MeV ≤ Eγ ≤ 5.2 MeV),

3. July Absolute Data (1.5 MeV ≤ Eγ ≤ 3.2 MeV),

4. July Normalized Data (2.4 MeV ≤ Eγ ≤ 3.2 MeV).

The absolute data are determined using Eq. 4.17 and the normalized data are determined

using Eq. 4.18. The normalized data are only valid for Eγ >2.225 MeV. Equation 4.18 was

only used for data with Eγ >2.4 MeV where the calculations of the 2H(γ,n)1H cross-section

are nearly model independent. The general approach for fitting the data is as follows:

� Exclude cross-section data within 2.387 MeV ≤ Eγ ≤ 2.559 MeV,

� Fit the data with an equation which is a sum of five B.W.E.s, each having correct energy

dependence.

The data over the 5/2− narrow resonance at 2.431 MeV are excluded in this discussion of

fitting because the resonance is known to have narrower structure than the experiment could

resolve. (The treatment of the narrow 5/2− resonance is described in the next section.) Of
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the five resonances being fit (1/2+, 1/2−, 5/2+, 3/2+, 3/2−) the lowest three (1/2+, 1/2−, 5/2+)

may contribute to the ⟨ααn⟩ rate while the two highest (3/2+, 3/2−) will not likely contribute.

However, the low energy tails of these resonances should be included in the fit to account for

any strength that they contribute to the cross-section at low energies.

I used two approaches to interpret the data. The first approach was to attempt a fit to all

of the absolute data from January and July together. My second approach was to attempt

to fit each of the four data groups listed above separately. It was expected that the resulting

fits would be very similar.

Notice that the January data sets (1 and 2) cover the range 2.5 MeV ≤ Eγ ≤ 5.2 MeV and

thus the include the 1/2−, 5/2+, 3/2+ and 3/2− resonances. Data set 3 (July Absolute) covers

1.5 MeV ≤ Eγ ≤ 3.2 MeV and thus includes the 1/2+, 1/2− and 5/2+ states, while set 4

(July Normalized) covers only 2.4 MeV ≤ Eγ ≤ 3.2 MeV and so only includes the 1/2− and

5/2+ states. Since data set 3 was the only set to cover the range Eγ < 2.4 MeV, it was the

only data set to which parameters of the 1/2+ state could be fit. The values obtained from

data set 3 became fixed parameters when fitting data sets 1, 2 and 4. Likewise, data sets 1

and 2 are the only sets to cover Eγ > 3.2 MeV, and thus are the only sets able to determine

parameters for the 3/2+ and 3/2− resonances. In this case, the parameters obtained for the

3/2+ and 3/2− resonances from data sets 1 and 2 were averaged, and these average values

became fixed parameters in data sets 3 and 4. Averaged parameters very closely resemble

global parameters. However, by fitting each set separately, I may more accurately establish

uncertainty in the fit.

Linear and log-scale plots of the fits to data are shown in Figs. 5.2, 5.3, 5.4, 5.5, 5.6

and 5.7. It was observed that in the region of overlap (2.5 MeV ≤ Eγ ≤ 3.2 MeV) between

the January and July data sets that the data begin to diverge at Eγ = 2.9 MeV. Investigations

into the cause of this divergence were thorough. Recall the following facts:

1. Molly detector efficiency was verified with simulations;

2. The INVS detector efficiency was verified with simulations to within a normalization of

a few percent;

3. Gamma-ray beam attenuation was measured through the targets giving agreement with

actual target thickness to within 5%;

4. Attenuation though Pb was measured with two independent instruments giving similar

results;

5. Both absolute and normalized cross-section data are nearly identical where they exist;

6. Agreement between January and July data is strong for Eγ< 2.9 MeV
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Table 5.3: Resonance parameters from the present work. Branching ratios (BR) taken from
Ref. [Til04].

B(χλ)
Jπ χλ ER E1→[e2fm2], Γγ Γn BR

[MeV] M1 → [( eh̵
2Mc

)2
] [eV] [keV] (%)

1/2+ E1 1.7387 ± 0.0008 0.1355 ± 0.0014 0.745 ± 0.008 226 ± 3 100

5/2− M1 2.431 ± 0.004 0.587 ± 0.027 0.098 ± 0.004 – � 7
1/2− M1 2.84 ± 0.03 4.6 ± 0.8 1.23 ± 0.16 386 ± 35 100
5/2+ E1 3.00 ± 0.01 0.020 ± 0.003 0.58 ± 0.05 212 ± 15 87
3/2+ E1 4.704a 0.0605 ± 0.0035 6.6 ± 0.4 1680 ± 50 0
3/2− M1 5.59a 6.8 ± 0.5 13.7 ± 1.3 360 ± 40 0

� This value could not be obtained using the present data.
a

This value was fixed in accordance with Ref. [Til04].

It is known that the distribution of γ-ray energies was significantly different between January

and July. However, estimates of the effect of this difference to the cross-section were not

found to be a sufficient explanation. The location of this divergence in the data has the

largest effect on the 5/2+ state. The uncertainty of the parameters for this state and the 1/2−

state are adjusted to reflect these findings. It will be shown that the effect of these resonances

on the ⟨ααn⟩ rate is nearly negligible. The equation used to fit the data, and a table of the

parameters derived are recorded in Sect. 7.3.

5.5 Narrow Resonance Treatment

The 5/2− resonance is a special case, because the resonance is too narrow to deduce the

BW parameters with a fit to the data. In the case of narrow resonances, however, a “trick”

may be employed to deduce Γγ by integrating the cross section. For this to work, (1) the

resonance must be sufficiently isolated from other resonances, (2) the neutron and gamma

partial widths must be small enough to be considered energy independent, and (3) the neutron

partial width must be larger than the gamma partial width, such Γn ≈ Γ. With these three

conditions satisfied, Eq. 5.14 may be integrated for the resonance in question over all energies

as follows:

∫
∞

0
σγ,n(Eγ)dEγ =

π

k2
γ

2J + 1

2(2I + 1)
ΓγΓn

Γ
2∫

∞

0

Γ/2 dEγ
(Eγ −ER)2 + 1

4Γ2
, (5.22)
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Figure 5.2: The present data with BW fits shown. A different line style is used for each
data set (see legend) while different states in 9Be are color-coded and labeled. The vertical
log scale displays the proper energy dependence of each resonance at the threshold (1.6654
MeV). A neutron width from Ref. [Til04] was used for the 5/2− state. The approximation of
energy-independence for the 5/2− state is observed to be justified.

Figure 5.3: The present data on a linear scale. The explanation of the various curves is the
same as in Fig. 5.2.
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Figure 5.4: The fitted data near the threshold. Only the July Absolute data can be used for
this fit. The explanation of the various curves is the same as in Fig. 5.2.

Figure 5.5: Data over the narrow 5/2− resonance. A neutron width from Ref. [Til04] was
used here. The explanation of the various curves is the same as in Fig. 5.2.
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Figure 5.6: The fitted data over the 3 MeV hump. All data sets can be used for these fits.
Notice that the averaged fit is very close to the global fit. The explanation of the various
curves is the same as in Fig. 5.2.

Figure 5.7: The fitted data beyond the 3 MeV hump. Only January data can be used for
these fits. The explanation of the various curves is the same as in Fig. 5.2.
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where I have taken advantage of condition (2) to pull out and rearrange widths from the

integral. The integral on the right hand side may be shown to be equivalent to

∫
∞

0

a dx

a2 + (x −ER)2
= tan−1 [x −ER

a
]∣
∞

0
≈ π. (5.23)

Based on assumption (2), -2ER/Γ will be a number large enough to be approximately −∞
when E = zero, but negligible when E = ∞. Thus Eq. 5.22 simplifies to

∫
∞

0
σγ,n(Eγ)dEγ =

π

k2
γ

2J + 1

2(2I + 1)
ΓγΓn

Γ
2π. (5.24)

Now taking advantage of condition (3), inserting the resonance spin J = 5/2 and target spin

I = 3/2, and the γ-ray wave number at ER, one arrives at

∫
∞

0
σγ,n(Eγ)dEγ =

3

2
( h̵cπ
ER

)
2

Γγ . (5.25)

5.6 Reciprocity Theorem

I now turn to the reciprocity theorem to transform the 9Be(γ,n)8Be cross-section into

the 8Be(n, γ)9Be cross-section. The reciprocity theorem [Ili07] relates the cross section of a

reaction to its inverse reaction based on the notion of invariance under time-reversal. The

reciprocity theorem for deriving 8Be + n → 9Be + γ from 9Be + γ → 8Be + n is

σ8Be+n → 9Be+γ =
2(2j9Be + 1)

(2j8Be + 1)(2jn + 1)
k2
γ

k2
n

σ9Be+γ → 8Be+n, (5.26)

where

k2
γ = (Eγ

h̵c
)

2

(5.27)

and

k2
n =

2µEn
h̵2

. (5.28)

The ground state spins for 9Be, 8Be and a neutron are 3/2, 0, and 1/2, respectively. I will

designate the spin weighting factor for the forward reaction as g and note that g = 4. The

γ-ray energy is related to the neutron energy by Sn via

En = Eγ − Sn. (5.29)

And finally, the ratio of wave numbers is

k2
γ

k2
n

=
E2
γ

2µc2En
. (5.30)
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For the special case of the 1/2+ resonance, where ` = 0, this makes

σ8Be+n =
16π2

9µc2
α
E3
γBj(E1,M1) (εj/En)1/2

(Eγ −EjR)2 + εjEn
(5.31)

or, put in a form which uses Γn and Γγ ,

σ8Be+n =
π(h̵c)2

2µEn

¿
ÁÁÀ En

E
1/2+

R − Sn

⎛
⎝
Eγ

E
1/2+

R

⎞
⎠

3
Γ

1/2+

γ Γ
1/2+

n

(Eγ −E1/2+

R )
2
+ Γ

1/2+
n

2
(5.32)

where the terms ¿
ÁÁÀ En

E
1/2+

R − Sn
, (5.33)

and

⎛
⎝
Eγ

E
1/2+

R

⎞
⎠

3

(5.34)

give explicit energy dependence to Γn and Γγ , respectively. The calculations for higher lying

resonances are more complicated, and have different energy dependence at the threshold.

However, the methods for calculating the partial widths are mostly similar.

5.7 General Rate Calculation

Having derived the cross-section for the reverse reaction, I proceed to calculate the astro-

physical reaction rate. The derivation of astrophysical reaction rates has been described in

detail in Ref. [Ili07], so I will provide a brief summary here. A reaction rate is generally the

frequency with which a reaction will occur given a known number of constituent nuclei to re-

act, and a known velocity distribution of the nuclei. The probability of reaction is, of course,

the cross-section, and the velocity distribution for stellar environments may be modeled as a

Maxwell-Boltzmann distribution at some temperature. The probability that a two particles

with reduced mass, µ, have relative velocity between v and v + dv for a given temperature,

T , is

P (v)dv = ( µ

2πkbT
)

3
2

exp [−µv
2

2kbT
]4πv2dv, (5.35)

where kb is Boltzmann’s constant. Assuming non-relativistic particle behavior, E = µv2/2,

and dE/dv = µv. Making this substitution yields

P (E)dE = 2(E
π
)

1
2

( 1

kbT
)

3
2

exp [ −E
kbT

]dE, (5.36)
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which has a maximum at E = kbT/2. The rate, ⟨σv⟩, is then the sum over all particle velocities

weighted by the energy dependent cross-section and velocity distribution, or

⟨σv⟩ = ( 8

πµ
)

1
2

( 1

kbT
)

3
2

∫
∞

0
σ(E) exp [ −E

kbT
]EdE. (5.37)

Equation 5.37 is the correct form for a two-body reaction. However, in the present work I

need to compute the rate for two sequential reactions, and thus need to expand our ideas.

A more correct form for calculating the rate of formation of 9Be comes from constructing a

double integral which first calculates the rate of formation of 8Be from the α + α scattering

cross-sections. The formalism of Ref. [Nom85] was developed for calculating the on and off-

resonant formation of 12C via the triple-α reaction, and was first modified to calculate the

rate of formation of 9Be for the NACRE compilation. A brief summary for the calculation

of the formation of 8Be follows.

Consider the case of astrophysical reactions at relatively low temperatures (e.g., < 0.025

GK). As discussed previously, the most probable energy for a system of particles at a given

temperature, T , is Emost likely= kbT/2. In the case of α + α scattering, the resonance

energy, ER, for formation of 8Be is 92.12 keV. Equating ER with Emost likely suggests that

the optimal temperature for forming 8Be is approximately 2.1 GK, which is ∼100 times larger

than the temperatures under consideration. At 0.025 GK and below, the low-energy tail of the
8Be ground state resonance will be the primary mechanism for forming 8Be and, ultimately,
9Be.

The cross-section for α + α may be constructed using the astrophysical S-factor, defined

as [Ili07]

σαα(E) = Sαα(E) 1

E
exp [− (2πη)] , (5.38)

where η is the Sommerfeld parameter, defined as

2πη = (EG
E

)
1/2

=
√

(παZAZB)22µABc2

E
, (5.39)

where EG is the Gamow energy which depends on the fine structure constant, α, the proton

number, Z, of nuclei A and B, and the reduced mass of the A + B system, µAB. For α + α I

find,

EG = (4πα)2mαc
2 ≈ 31.4 MeV. (5.40)

Recalling Eq. 5.13, Sαα(E) takes the form

Sαα(E) = E π

k2
α

(2J + 1)(1 + δ01)
(2j0 + 1)(2j1 + 1)

Γα1(E)Γα2(E)
(E −ER) + 1

4Γ2
exp [(EG

E
)

1/2

] , (5.41)
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with wave number

k2
α =

2µααE

h̵2
, (5.42)

All spins (J, j0 and j1) are zero and δ01 is 1 rendering

Sαα(E) = πh̵
2

µαα

Γα1(E)Γα2(E)
(E −ER) + 1

4Γ2
exp [(EG

E
)

1/2

] . (5.43)

Furthermore,

Γα1(E) = Γα1(ER)
P`(E)
P`(ER)

, (5.44)

and

Γα2(E) = Γα2(ER)
P`(Q +E)
P`(Q +ER)

. (5.45)

The authors of Ref. [Nom85] indicate that the effect of the Q value in Eq. 5.45 often acts

to lessen the energy dependence from the penetrabilities for the exit channel, rendering

Γα2(E)=Γα2(ER). I have adopted the methods of Ref. [Nom85], in which Eq. 5.45 cancels

out of the formula for the ⟨ααn⟩ calculation.

5.8 ⟨ααn⟩ Rate Calculation

I assumed a two-step process following the work of Ref. [Ang99]. First, two α-particles

interact with center-of-mass (CoM) energy, E, to form 8Be. Subsequently, the 8Be nucleus

interacts with a neutron with new CoM energy E′ which is relative to E. The differential

rate of formation of 8Be is computed to be [Nom85]

d ⟨αα⟩
dE

= ⟨αα⟩
Γα(8Be,E) . (5.46)

As previously indicated, the denominator of ∂⟨αα⟩ will cancel with Γα2(E).

In essence, ⟨ααn⟩ is computed for on-resonance and off-resonance contributions by eval-

uating ⟨n8Be⟩ at every step of a sum over ∂⟨αα⟩×⟨n8Be⟩. The full equation has the form

N2
A ⟨σv⟩ααn = NA (8πh̵

µ2
αα

)( µαα
2πkbT

)
3/2

×∫
∞

0

σαα(E)
Γα(8Be,E) exp(−E/kbT )NA ⟨σv⟩n

8BeEdE (5.47)

with

NA ⟨σv⟩n
8Be = NA ( 8πh̵

µ2
n8Be

)( µn8Be

2πkbT
)

3/2
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Figure 5.8: A level scheme relating 9Be, 8Be +n, and α + α + n. The neutron separation
energy (Sn) for 9Be is shown as a dashed line. In the rate calculation, E is the energy of
the two α-particles. The parameter E′ is the energy of the 8Be nucleus and the neutron
with respect to E. In this scheme, formation of 9Be at E = E′ = 0 is very unlikely, but not
prohibited because of the fact that the ground state of 8Be has finite width.
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Table 5.4: A table comparing the present parameters from the first 4 resonances in 9Be with
the parameters of other works. Energy-dependent (✓) and energy-independent (⊗) parame-
ters are distinguished.

Param. State Present NACRE Sumiyoshi et al. Burda et al.

(Units) [Ang99] [Sum02] [Bur10]

(1/2)+ 1.7387(8) 1.731 1.735(3) 1.748(6)

ER (5/2)− 2.431(4) – 2.43 2.4294(13)

(MeV) (1/2)− 2.84(3) 2.784(12) – 2.78(12)

(5/2)+ 3.00(1) 3.049(9) 3.077(9) 3.049(9)

(1/2)+ 226(3) ✓ 227(15) ✓ 225(12) ✓ 274(8) ✓
Γn (5/2)− 0.77a ⊗ – 0.77a ⊗ 0.77a ⊗

(keV) (1/2)− 386(35) ✓ 1080(110) ⊗ – 1080(110) ⊗
(5/2)+ 212(15) ✓ 282(11) ⊗ 549(12) ⊗ 282(11) ⊗
(1/2)+ 0.745(8) ✓ 0.51(10) ✓ 0.568(11) ✓ 0.302(45) ✓

Γγ (5/2)− 0.098(4) ✓ – 0.049(12) ⊗ 0.089(10) ⊗
(eV) (1/2)− 1.23(16) ✓ 0.45(36) ⊗ – 0.45(36) ⊗

(5/2)+ 0.58(5) ✓ 0.90(45) ⊗ 1.24(2) ⊗ 0.90(45) ⊗
B(E1)↓/ (1/2)+ 0.135(1) ✓ 0.094(20) ✓ 0.104(2) ✓ 0.054(4) ✓
B(M1)↓ ( 5/2)− 0.59(3) ✓ – 0.295(72) ⊗ –
(e2fm2)/ (1/2)− 4.6(8) ✓ – – –

(µ2
N

) (5/2)+ 0.020(3) ✓ – 0.0406(7) ⊗ –
a

This value was taken from Ref. [Til04].

×∫
∞

0
σn8Be(E′;E) exp(−E′/kbT )E′dE′ (5.48)

following the normal rate formulation given by Eq. 5.37.

Interactions between α-particles do not need to be on-resonance to be followed by a

neutron capture event. Off-resonant contributions are difficult to distinguish from 3-body

interactions. However, they are treated as sequential two-body reactions and thus access the

two-body cross-sections.

Eq. 5.47 is evaluated using the parameters from Table 5.3 and temperatures in the range

0.001 ≤ T9 ≤ 10. Present results are compared with previous works. Other calculations

were made to try to reproduce the rates published by three previous works [Ang99, Sum02,

Bur10] which revealed differences in how each rate was interpreted. Table 5.4 compares

the parameters from each evaluation. Table 5.5 is a table of rates vs. temperature. The

computer code used to determine these rates is recorded in Sect. 7.4. The present work is

the only one that generated energy-dependent resonance parameters (where possible) for all

of the evaluated resonances.

Fig. 5.9 and 5.10 display log and linear-scale representations of the four rates being com-
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Table 5.5: A Table of rates vs. T9 (≡ 109 K) from the present parameters.

T9 NA⟨ααn⟩ T9 NA⟨ααn⟩ T9 NA⟨ααn⟩
0.001 1.08E-59 0.04 1.55E-15 0.5 9.61E-07
0.002 9.11E-48 0.05 2.26E-13 0.6 9.52E-07
0.003 5.67E-42 0.06 5.95E-12 0.7 8.96E-07
0.004 2.60E-38 0.07 5.91E-11 0.8 8.21E-07
0.005 1.06E-35 0.08 3.22E-10 0.9 7.42E-07
0.006 1.05E-33 0.09 1.17E-09 1 6.67E-07
0.007 4.13E-32 0.1 3.24E-09 1.25 5.07E-07
0.008 8.64E-31 0.11 7.32E-09 1.5 3.89E-07
0.009 1.14E-29 0.12 1.43E-08 1.75 3.04E-07
0.01 1.05E-28 0.13 2.48E-08 2 2.43E-07
0.011 7.39E-28 0.14 3.94E-08 2.5 1.64E-07
0.012 4.18E-27 0.15 5.84E-08 3 1.18E-07
0.013 1.98E-26 0.16 8.17E-08 3.5 9.02E-08
0.014 8.06E-26 0.18 1.40E-07 4 7.16E-08
0.015 2.90E-25 0.2 2.12E-07 5 4.96E-08
0.016 9.42E-25 0.25 4.17E-07 6 3.69E-08
0.018 7.65E-24 0.3 6.11E-07 7 2.87E-08
0.02 4.72E-23 0.35 7.64E-07 8 2.31E-08
0.025 2.28E-21 0.4 8.69E-07 9 1.92E-08
0.03 3.69E-19 0.45 9.31E-07 10 1.58E-08
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Figure 5.9: A log-log plot of ⟨ααn⟩ vs. T9 does not reveal any obvious differences between the
four rates being compared because of the large range covered. Temperatures most important
for the r-process are 1 < T9 < 5.
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Figure 5.10: A semi-log plot shows the present rate to be larger than the rates of [Ang99]
and [Sum02] at the peak near T9 = 0.5 by 30%. Temperatures most important for the
r-process are 1 < T9 < 5.
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Figure 5.11: The differences between rates are much more easily seen when a ratio of the
rates to the NACRE rate is generated. The astrophysically important region of 1 < T9 < 5 is
shaded. Uncertainty bands are displayed for the NACRE rate and the present rate.

pared. The present rate is 35% larger than the NACRE rate when T9 = 2, which is in the

region most important for the nucleosynthesis models in question. The largest difference be-

tween rates exits in the off-resonant region. There, the present rate is smaller than NACRE

by a factor of four. This happens primarily because the present rate calculation has used

energy-dependent partial widths and the other rates did not.

In the present analysis, I attempted to reproduce the rates of each publication, using the

published parameters and my code in order to establish confidence in the present comparison.

Inconsistencies between the methods of the published works were evident. While NACRE

and Burda et al. appear to follow the definition for En established by NACRE, Sumiyoshi et

al. apparently used the resonant-capture-only definition of En for the resonance at threshold,

that is,

En = E +E′ −E8Be (5.49)

which is consistent with the γ-ray energy definition of

Eγ = E +E′ −E8Be + Sn (5.50)
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and Eq. 5.29; However, the authors of Ref. [Sum02] used the on-and-off resonant definition

of En, or,

En = E′ (5.51)

for the 5/2+ resonance near 3 MeV. This was deduced after having reproduced the published

rates of Ref. [Sum02] at all temperatures but one to within 1%. This difference in definition

explains the order of magnitude difference and seeming discontinuity when taking the ratio of

the Ref. [Sum02] to NACRE. The present rate was compiled following the energy definition

used by Ref. [Ang99] as shown in Eq. 5.51.

The rate code presently used was also able to reproduce the NACRE rate reasonably well

at nearly every temperature to within ∼10% except for temperatures at the transition from

the rate being predominantly off-resonance to predominantly on-resonance. This is achieved

by assuming an energy-dependent neutron partial width for the 1/2− state. This was not

explicity stated in Ref. [Ang99]. The reproduction deviates by a maximum of 30% before

quickly returning to agreement within a few percent (see Fig. 5.12). The rate of Ref. [Bur10]

was reproduced to within 10% at all temperatures. Figure 5.12 shows the ratio of each rate

computed using the published parameters and the present code, to the rate published by each

respective work. If the present code were identical to the code of each published work, the

expectation for all points should equal 1 for each plot of Fig. 5.12.
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Figure 5.12: The ideal result for each plot is for all points = 1. The rate of Ref. [Sum02]
was reproduced the best except at one point (inset) which was a factor of 2.2 larger than the
reported value.
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6 Discussion and Conclusions

Figure 6.1: Collection of World data for the 9Be(γ,n)8Be reaction cross section. Fits derived
from the present work are shown as solid black lines and display individual states in 9Be as
well as the their sum.

6.1 Discussion

6.1.1 The 9Be(γ,n)8Be Cross Section

The 9Be(γ,n)8Be reaction cross-section has been measured absolutely to ± 4.6%. The

capabilities of HIγS and the high detection efficiencies of Molly and the INVS made possible



the unprecedented accuracy for this measurement.

Figure 6.2: World data for the 9Be(γ,n)8Be reaction cross section near threshold. The solid
line is a fit to the 1/2+ state.

Near the threshold, agreement between the present total cross-section data and existing

data is mixed. The resonance location determined in the present analysis is in good agreement

with that of Refs. [Sum02, Uts00, Fuj82] and in fair agreement with [Bur10]. The magnitude

of the cross-section is is fair agreement with the cross-sections of [Gor92, Fuj82, Gib59b]. The

resonance near threshold has, by far, the largest influence on the ⟨ααn⟩ rate.

The narrow 5/2− state at 2.431 MeV has been more nearly resolved than ever before using

γ-rays. The yield from the present data exhibit a peak which is more than a factor of 3 larger

than the peak measured by Ref. [Uts00] and nearly a factor of 2 larger than the peak yield

of Ref. [Gor92]. The current estimate of the width of this state would require a factor of 30

better resolution to begin to resolve the width experimentally.

The data over the broad 1/2− and 5/2+ resonances, which lie near about 3 MeV, are in fair

agreement with the data of Refs. [Hug75] and [Gor92] but not in good agreement with [Uts00].

It is presumed that the saw-tooth energy distribution of the γ-ray beam used by Utsunomiya

et al. played a part in the ∼ 75 keV difference in resonance location.

The present data beyond the broad hump at 3 MeV agree with [Uts00, Hug75], but not

very well with [Gor92]. A 3/2+ at state at 4.7 MeV and a 3/2− at state at 5.6 MeV are the

next listed states on the energy level diagram for 9Be [Til04]. These are known to be broad

states [Dix91], but are largely neglected for consideration in rate calculations, since they are
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Figure 6.3: World data for the 9Be(γ,n)8Be reaction cross section over the narrow state at
2.431 MeV. This state could not be fit with the present data. The solid lines shown are the
tails of other resonances.

located so far from threshold. Additionally, these states likely have stronger channels for

decay to the 2+ excited state in 8Be.

Resonance parameters for the 6 lowest excited states of 9Be, were deduced (with the

exception of Γn for 5/2−, and ER for 3/2+ and 3/2−). For the first time, explicit energy

dependence for the neutron and γ-ray partial widths for each state was taken into account in

the calculation of the 8Be(n, γ)9Be cross-section, and the astrophysical ⟨ααn⟩ rate.

The detectors used, in combination with the HIγS facility, provided an excellent means for

making accurate absolute cross-section measurements quickly. The 9Be nucleus may turn out

to be a special case, however. First, since 9Be has the lowest neutron separation energy (Sn)

among light nuclei (1.6654 MeV), with the deuteron having the second lowest (2.225 MeV), the
9Be(γ,n)8Be reaction cross section may be measured up to about 5 MeV before the effects of

(γ,n) reactions from other nuclei introduce significant contamination. Second, a γ-ray beam

with 1% energy resolution near 2 MeV has a FWHM of 20 keV, while a 1% γ-ray beam of

20 MeV has 200 keV resolution. This means that narrow structures in nuclei may be harder

to resolve with increasing Sn. Third, as Eγ increases, a detector like Molly will no longer

be ∼100% efficient, and may no longer be suitable for making absolute flux measurements.

Additionally, techniques like the use of Pb attenuators (Sn = 7.367 MeV) will likely produce

unwanted reaction products which would affect both the INVS and a γ-ray detector (Molly or
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Figure 6.4: World data for the 9Be(γ,n)8Be reaction cross section over the broad peak at 3
MeV. The lower solid lines are the 1/2− and 5/2+ states (left to right) in 9Be. The upper
solid line is the sum of all fitted states.

any other).

It should be noted, that 17O (Sn = 4.143 MeV), and 13C (Sn = 4.946 MeV) could be

good candidates for (γ,n) cross-section measurements using the techniques described in this

thesis.

6.1.2 Resonance Parameters

Table 6.1 contains resonance parameters for the 1/2+ state from several works. Notice

that all but one of the evaluated (e, e′) data produced reduced transition strengths, and

γ-ray partial widths that are about 1/2 of the value of their (γ,n) counterparts. Perhaps

interestingly, the anomalous parameters from the (e, e′) subset of data, come from the authors

of Ref. [Bar00] who merely analyzed the cross-section data of Ref. [Kue87]. Indeed, an

inspection of the data from all the works of Table 6.1 reveal that the reported cross-sections

of each work are mostly similar. None appear to be different by a factor of two. The authors

of Ref. [Cle68] report a maximum cross section “of 1.55 mb at about 6 keV above threshold”.

Refs. [Kue87] and [Bur10] display plots of their data with maxima of about 1.25 mb each.

It would appear as though there is an inconsistency in the method for the deduction of

resonance parameters between groups who use (e, e′) vs. (γ,n). The main difference between

the analysis of üs. [Kue87, Bur10] and the analysis of (γ,n) data here and elsewhere, involves
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Figure 6.5: World data for the 9Be(γ,n)8Be reaction cross section beyond the broad peak at
3 MeV. The lower solid lines are the 3/2+ and 3/2− states (left to right) in 9Be. The upper
line is the sum of all fitted states.

the use of Siegert’s theorem for extracting the B(E1)↓. Ref. [Bur10] elaborates: “In first order

perturbation theory, inclusive electron scattering cross-sections factorize in a longitudinal

(C) and a transverse (E) part, reflecting the respective polarization of the exchanged virtual

photon. The kinematics...favor longitudinal excitation, and thus, B(C1,q) rather than B(E1,q)

is determined. Both quantities can be related by Siegert’s theorem B(E1,q) = (k/q)2B(C1,q);

that is, they should be equal at the photon point q=k.” The authors go on to discuss the

models used to extract the parameters including plane-wave Born approximation, and no-core

shell model calculations.

Since the data are all similar, and the reanalysis of the data of Ref. [Kue87] by Ref. [Bar00]

gave closer results to the parameters extracted from (γ,n) data, all indications point to a

violation of Siegert’s theorem on the order of a factor of 2. In a present independent analysis

of the data of Ref. [Bur10], I deduce γ-ray partial widths, and B(E1)↓ reduced transition

strengths that are larger than what is published by a factor of two. It is my expectation,

therefore, that if a B(E1)↓ for the 1/2+ state in 9Be is extracted by fitting the absolute cross-

section data from any of the works in Table 6.1 using the methods described in Chap. 4, that

the result will be of the order of 0.1 e2fm2, rather than of the order of 0.05 e2fm2.
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Figure 6.6: A graphical display of the differences between energy-independent (top), and
energy-dependent (bottom) treatments of the cross-sections at threshold. The vertical solid
line represents the two-body threshold, while the vertical dashed line represents the three-
body threshold. The behavior of captured neutrons near threshold should exhibit energy
dependence irrespective of the level into which they are captured.
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Table 6.1: This table is a reproduction of Table 1 from Ref. [Bur10] with additions and slight
modifications. It contains a “summary of the resonance parameters and reduced transition
probabilities of the 1/2+ state of 9Be deduced from different experiments. Ref. [Bar00] con-
tains a reanalysis of the data of Ref. [Kue87].” Ref. [Bar83] contains analysis of the data
of [Fuj82].

Reaction Ref. ER(MeV) Γn(keV) Γγ(eV) B(E1)↓(e2fm2)

(e, e′) [Cle68] 1.78 150±50 0.3 0.050±.020
(e, e′) [Kue87] 1.684 217±10 0.27 0.054
(e, e′) [Gli91] 1.68 200±20 0.34 0.068
(e, e′) [Bar00] 1.732 270 0.75 0.137
(e, e′) [Bur10] 1.748 274±8 0.302±0.045 0.054

(γ,n) [Bar83] 1.733 227±50 0.577 0.106±.018
(γ,n) [Ang99] 1.731 227±15 0.51±0.10 0.094±.020
(γ,n) [Uts00] 1.748 283±42 0.598 0.107±.007
(γ,n) [Sum02] 1.735 225±12 0.568 0.104±.002
(γ,n) Present 1.7387±0.0008 226±3 0.745±0.008 0.135±.001

6.1.3 α(αn, γ)9Be Rate Calculation

In principle, the precision of the 9Be(γ,n)8Be reaction cross-section should extend to the

deduced astrophysical ⟨ααn⟩ rate. The quantities used for calculating the ⟨αα⟩ rate come

from well known α + α scattering data [Wüs92], and the calculation of penetrabilities come

from Coulomb wave function libraries, which are well established.

Recalling Fig. 5.11, the present rate, when compared to the NACRE rate, is a factor of 4

lower at the lowest calculated temperatures, while 30 - 35% larger at the astrophysical tem-

peratures of interest for the r-process (1 ≤ T9 ≤ 5) . The relative smallness of the rate at low

temperatures is a direct result of treating all neutron partial widths with energy dependence.

With the assumption of the correct analytic form for s,p,and d-wave neutrons coupling to
8Be for all of the resonances described, all broad neutron partial widths have a an energy de-

pendence which determines their shape close to the threshold. Fig. 6.6 demonstrates the effect

on the cross-section for energy dependent vs. energy independent treatment of resonances.

When treated without energy dependence, the tails of the higher-lying resonances terminate

abruptly at the threshold. This directly leads to an inflated rate at low temperatures, along

with the unintuitive result of a dominant contribution to the rate by the 1/2− and 5/2+ states

at these temperatures. Incidentally, the low rate of Ref. [Sum02], at low temperatures, ap-

pears to be a serendipitous result of using different definitions of En for the 1/2+ and 5/2+

resonances (Ref. [Sum02] did not observe a 1/2− state). This description accounts for the

seeming discontinuity at T9 = 0.025 in Fig. 5.11.

The present results for the ⟨ααn⟩ rate at the important r-process temperatures are 25-
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Figure 6.7: Two plots highlighting the relative contribution of each resonance to the rate as
a function of temperature. The recent evaluation of Burda et al. [Bur10] is shown left, and
the present evaluation is shown right. The important r-process temperatures are shaded.

35% larger than the rates of Refs. [Ang99, Sum02]. The present rate is consitantly about 30%

than the NACRE rate for 1 ≤ T9 ≤ 5. Agreement with the NACRE rate marginally improves

as T9→10. Figure 6.7 shows that for the present evaluation, the 1/2+ state is the primary

contributor to the rate at all temperatures, contrary to the results of Burda et al. [Bur10].

However, contributions from other states may be signifigant for T9 ≥ 2. This implys that

the choice of branching ratios is important for an accurate ⟨ααn⟩ rate determination. In the

present evaluation, branching ratios determined from Ref. [Chr66] were used.

Abundance Predictions

Computer models of nucleosynthesis at the site of Type II supernovae often have at least

three input parameters which determine the conditions of the explosion. These parameters

are the dynamical time for the explosion, τ , the entropy/baryon (or rather the number of

photons/baryon), s/k, and the electron fraction, Ye [Sas06]. One approach to discerning

“good” parameters, is a phenomenological one. That is, a range of reasonable parameters is

estimated, and the parameter space is tested to find the combination of parameters which lead

to the r-process [Sur10]. Now, recall the claims from Chap. 1, that the astrophysical rate of

the α(αn, γ)9Be reaction lays the ground work for the r-process. It is observed, that different

⟨ααn⟩ rates can have substantially different abundance yields for the same set of parameters.

The present rate has not been used to produce an abundance plot, however some inferences

can be made. The present rate is ∼ 30% larger than the NACRE rate [Ang99] and so, will

yield an abundance plot which most closely resembles the inflated NACRE rate prediction

shown in Fig. 1.9.
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Figure 6.8: Zoomed in plot of the ratio of the present rate to the NACRE rate. This window
represents the most important temperature range for r-process.

6.2 Conclusions

Accurate measurements of the 9Be(γ,n)8Be reaction cross section have been used to inter-

pret the 8Be(n, γ)9Be reaction cross section, for calculating the astrophysical α(αn, γ)9Be re-

action rate. Applying energy dependent corrections for all neutron and γ-ray partial widths

which approach the threshold gives rise to smaller rates when T9 ≤ 0.025. For T9 ≥ 2, con-

tributions to the rate from higher lying resonances are substantial, and so accurate handling

of branching ratios is important. With proper branching ratios, the present rate should be

accurate at the level of ±5%. This new precise rate should shrink the parameter space which

abundance codes use for investigating the conditions necessary for the r-process at Type II

supernovae sites.
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7 Appendices

7.1 Appendix 1: Method for Determining Evaporated Target

Thickness

Figure 7.1: Photograph of Si wafer with deposited LiF. The removal of the contact-mask
created regions with no deposited LiF (light blue). Differences in height were established by
profilometry.

For the 7Li(p,n)7Be experiment, targets were prepared by evaporating LiF powder onto

thin carbon foils. The LiF sample was concurrently evaporated onto substrates of atomically



Figure 7.2: Screenshot of the relative height scan determined by profilometry. Software
determines the difference between the average heights located within the broad vertical bands.

smooth silicon wafers. Wafers and foils were partnered and arranged symmetrically with

respect to the evaporating sample. Assuming that the same average thickness of LiF was

deposited onto the wafers and the carbon foils, profilometry was used to determine the LiF

target thickness. Various contact-masks were applied to the wafers prior to evaporation and

removed after evaporation and prior to measurements. A probe similar to an AFM tip scanned

across 800 µm of the sample in one direction and recorded the differences in the height of the

sample relative to the silicon wafer. Five scans over different sections of the wafer-partner to

the target foil used in this experiment yielded a thickness of 39.8 ± 1.4 µg/cm2 of LiF. This

converts to an atomic density of 9.24e+17 Li atoms/cm2. The isotopic abundance of 7Li in

natural Li is 92.5% [dL03] yielding a density of 8.54e+17 7Li nuclei/cm2 for the sample with

an uncertainty of ± 3.5%.
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7.2 Appendix 2: The Data

Table 7.1 contains the 9Be(γ,n)8Be cross section data from January and July. Run num-

bers 79-367 are July runs, and run numbers 2109 and above are January run numbers. The

column “Type of Run” uses shorthand like “NR” which stands for “Normal Run” and “Pb

Test #”, where the # is the thickness of lead in inches. The absolute cross section measure-

ment, and a measurement which was normalized to the 2H(γ,n)1H cross section is included

along with uncertainties.

Table 7.1: This Table contains the analyzed 9Be(γ,n)8Be cross section data obtained and used in

the present work.

Absolute σ
Total

for

Measurement 9Be(γ,n)8Be

of σ
Total

for Normalized to

Run Type of γ-ray 9Be(γ,n)8Be Unc. 2H(γ,n)1H Unc.

No. Run Energy (mb) (mb) (mb) (mb)

79 Pb Test 0 2.937 1.457 0.494 1.556 0.617

80 Pb Test .5 2.937 1.141 0.452 1.271 0.556

81 Pb Test .5 2.937 1.321 0.113 1.170 0.110

82 Pb Test 1 2.937 1.339 0.152 1.344 0.175

83 Pb Test 2 2.937 1.322 0.074 1.234 0.072

84 Pb Test 2 2.937 1.372 0.078 1.294 0.076

85 Pb Test 2 2.937 1.459 0.059 1.388 0.046

90 Pb Test 4 2.937 1.389 0.048 1.351 0.015

91 Pb Test 3 2.937 1.334 0.046 1.285 0.018

92 Pb Test 3 2.937 1.319 0.061 1.288 0.056

96 NR 2.402 0.557 0.019 0.553 0.006

99 NR 2.414 1.056 0.036 1.046 0.008

102 NR 2.423 2.200 0.074 2.188 0.018

106 NR 2.433 2.867 0.097 2.877 0.034

109 NR 2.441 1.981 0.067 1.966 0.021

114 NR 2.453 1.189 0.041 1.183 0.012

118 NR 2.461 0.736 0.026 0.733 0.010

121 NR 2.469 0.450 0.017 0.444 0.008

126 Pb Test 4 2.389 0.197 0.008 0.195 0.004

128 Pb Test 3 2.389 0.220 0.011 0.216 0.008

154 NR 1.498 -0.001 -0.001 N/A N/A

157 NR 1.550 0.002 0.000 N/A N/A
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Table 7.1: (Continued)

Run Type of γ-ray Abs.σ
Total

Unc. Norm.σ
Total

Unc.

No. Run Energy (mb) (mb) (mb) (mb)

162 NR 1.575 -0.002 -0.001 N/A N/A

165 NR 1.625 0.001 0.000 N/A N/A

168 NR 1.659 0.083 0.003 N/A N/A

171 extra Be Run 1.659 0.120 0.010 N/A N/A

173 NR 1.679 1.169 0.040 N/A N/A

176 NR 1.673 0.872 0.031 N/A N/A

179 NR 1.668 0.629 0.024 N/A N/A

180 NR* 1.668 0.630 0.023 N/A N/A

183 NR 1.694 1.508 0.052 N/A N/A

184 Pb Test 2 1.694 1.447 0.049 N/A N/A

185 targ atten 1.694 1.498 0.053 N/A N/A

187 Pb Test 2 1.694 1.460 0.054 N/A N/A

189 Pb Test 0 1.694 1.422 0.091 N/A N/A

197 NR 1.710 1.484 0.051 N/A N/A

206 NR 1.729 1.367 0.047 N/A N/A

214 NR 1.753 1.191 0.041 N/A N/A

216 targ atten 1.754 1.194 0.042 N/A N/A

220 NR 1.802 0.911 0.032 N/A N/A

221 Pb Test 3 1.802 0.907 0.032 N/A N/A

222 Pb Test 0 1.802 0.861 0.033 N/A N/A

225 NR 1.854 0.675 0.023 N/A N/A

228 NR 1.902 0.523 0.019 N/A N/A

231 NR 1.953 0.416 0.015 N/A N/A

234 NR 2.002 0.334 0.012 N/A N/A

236 Pb Test 0 2.002 0.019 N/A N/A

239 NR 2.101 0.238 0.008 N/A N/A

242 NR 2.204 0.193 0.007 N/A N/A

246 NR 2.253 0.186 0.007 N/A N/A

258 NR 2.309 0.182 0.007 N/A N/A

263 NR 2.385 0.212 0.008 N/A N/A

267 NR 2.408 0.236 0.009 N/A N/A

271 NR 2.511 0.290 0.010 0.283 0.003

274 NR 2.609 0.340 0.012 0.342 0.004
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Table 7.1: (Continued)

Run Type of γ-ray Abs.σ
Total

Unc. Norm.σ
Total

Unc.

No. Run Energy (mb) (mb) (mb) (mb)

281 NR 2.706 0.495 0.018 0.485 0.008

286 NR 2.809 0.772 0.027 0.764 0.012

290 NR 2.914 1.233 0.042 1.232 0.014

293 NR 2.864 1.003 0.034 0.988 0.011

296 NR 3.012 1.567 0.053 1.554 0.013

302 NR 3.116 1.023 0.035 0.990 0.012

307 NR 2.361 0.196 0.008 N/A N/A

313 NR 2.962 1.479 0.050 1.463 0.013

316 NR 3.051 1.451 0.050 1.431 0.019

319 NR 3.150 0.821 0.029 0.803 0.011

322 Pb Test 4 3.197 0.556 0.020 0.536 0.009

322 NR 3.197 0.554 0.020 0.534 0.009

338 NR 2.304 0.176 0.008 N/A N/A

343 NR 3.004 1.509 0.051 1.492 0.014

345 Pb Test 3 3.006 1.489 0.055 1.493 0.029

351 Pb Test 4 1.692 1.473 0.050 N/A N/A

353 Pb Test 0 1.692 1.421 0.050 N/A N/A

355 Pb Test 3 1.692 1.444 0.050 N/A N/A

362 Pb Test 4 2.811 0.781 0.026 0.796 0.005

363 Pb Test 0 2.811 0.721 0.034 0.757 0.043

367 Pb Test 4 3.200 0.589 0.021 0.596 0.010

2109 NR 3.258 0.368 0.014 0.365 0.007

2113 NR 3.304 0.354 0.014 0.350 0.008

2117 NR 3.405 0.307 0.012 0.305 0.006

2121 NR 3.518 0.280 0.010 0.279 0.004

2129 NR 3.591 0.287 0.010 0.289 0.004

2132 NR 3.794 0.355 0.012 0.357 0.005

2135 NR 4.001 0.415 0.014 0.402 0.005

2149 NR 4.205 0.510 0.018 0.478 0.006

2151 NR 4.376 0.517 0.018 0.500 0.008

2159 NR 4.579 0.596 0.048 0.589 0.009

2162 NR 4.782 0.694 0.025 0.671 0.011

2166 NR 5.001 0.821 0.029 0.748 0.014
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Table 7.1: (Continued)

Run Type of γ-ray Abs.σ
Total

Unc. Norm.σ
Total

Unc.

No. Run Energy (mb) (mb) (mb) (mb)

2169 NR 5.177 0.843 0.033 0.830 0.013

2182 NR 2.488 0.370 0.013 0.368 0.002

2195 NR 2.567 0.277 0.010 0.276 0.005

2197 NR 2.675 0.423 0.015 0.427 0.007

2200 NR 2.770 0.629 0.022 0.632 0.026

2202 NR 2.866 0.979 0.033 1.000 0.011

2206 NR 2.970 1.330 0.046 1.355 0.016

2208 NR 3.050 1.162 0.040 1.160 0.015

2245 NR 2.607 0.320 0.012 0.327 0.007

2250 NR 2.717 0.481 0.017 0.486 0.007

2252 NR 2.812 0.743 0.026 0.747 0.009

2256 NR 2.914 1.207 0.041 1.228 0.013

2260 NR 3.013 1.320 0.045 1.335 0.014

2262 NR 3.120 0.789 0.027 0.759 0.006

2265 NR 3.217 0.445 0.016 0.438 0.007
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7.3 Appendix 3: Fit Parameters

Each data set from January and July were fit using the function

0.0320097703 ∗ 10 ∗ x ∗ [0] ∗ 2.0 ∗ ([1] ∗ (x − 1665.4))(0.5)/((x − [2])2 + ([1] ∗ (x − 1665.4)))
+
0.0320097703∗x∗0.0110574568∗10∗ [3]∗(2.0∗ [4]∗(0.00075322)(3/2) ∗(x−1665.4)(3/2)/(1+
(0.00075322)∗(x−1665.4)))/((x−[5])2+(1/4)∗(2.0∗[4]∗(0.00075322)(3/2)∗(x−1665.4)(3/2)/(1+
(0.00075322) ∗ (x − 1665.4)))2)
+
0.0960293108∗x∗10∗[6]∗(2.0∗[7]∗(0.00075322)(5/2)∗(x−1665.4)(5/2)/(9.+3.∗(0.00075322)∗
(x−1665.4)+(0.00075322)2∗(x−1665.4)2))/((x−[8])2+(1/4)∗(2.0∗[7]∗(0.00075322)(5/2)∗
(x − 1665.4)(5/2)/(9. + 3. ∗ (0.00075322) ∗ (x − 1665.4) + (0.00075322)2 ∗ (x − 1665.4)2))2)
+
0.0640195405∗x∗10∗[9]∗(2.0∗[10]∗(0.00075322)(5/2)∗(x−1665.4)(5/2)/(9.+3.∗(0.00075322)∗
(x−1665.4)+(0.00075322)2∗(x−1665.4)2))/((x−[11])2+(1/4)∗(2.0∗[10]∗(0.00075322)(5/2)∗
(x − 1665.4)(5/2)/(9. + 3. ∗ (0.00075322) ∗ (x − 1665.4) + (0.00075322)2 ∗ (x − 1665.4)2))2)
+
0.0640195405∗x∗0.0110574568∗10∗[12]∗(2.0∗[13]∗(0.00075322)(3/2)∗(x−1665.4)(3/2)/(1+
(0.00075322)∗(x−1665.4)))/((x−[14])2+(1/4)∗(2.0∗[13]∗(0.00075322)(3/2)∗(x−1665.4)(3/2)/(1+
(0.00075322) ∗ (x − 1665.4)))2)

where x is γ-ray energy with units keV and the bracketed numbers [0] - [14] are the fitting
parameters. The following table catalogs the parameters obtained. The formula includes
factors of 10 and such, so that the resulting scale of the parameters conformed to the desired
units. The B(E1) strengths have units of e2fm2 while the B(M1) strengths are in units of
nuclear magnaton squared (µ2

N ≈ 0.01 e2fm2). The factor ε and the reduced partial widths
γ2 have units of keV. The resonance energy also has units of keV.

Table 7.2: This Table contains the the parameters obtained from fitting the data. ER was fixed for two highest

resonances and so the uncertainty in those parameters ([11] and [14]) is accordingly zero.

January January July July

Abs. Unc. Norm. Unc. Abs. Unc. Norm. Unc.

B(E1) [0] 0.0000 0.0000 0.0000 0.0000 0.1355 0.0014 0.0000 0.0000

ε [1] 0.0000 0.0000 0.0000 0.0000 174.7060 5.4400 0.0000 0.0000

ER [2] 0.0000 0.0000 0.0000 0.0000 1738.6500 0.7797 0.0000 0.0000

B(M1) [3] 4.6886 0.9111 4.3755 0.3662 4.0823 0.5546 5.4097 0.2935

γ2 [4] 434.2270 22.1385 428.8390 9.9009 417.6480 28.9178 465.2870 9.0484

ER [5] 2844.1100 26.8067 2840.7100 11.7215 2821.6900 19.4020 2855.0400 8.6810

B(E1) [6] 0.0173 0.0032 0.0193 0.0013 0.0247 0.0017 0.0205 0.0009

γ2 [7] 1273.7300 127.6990 1375.3200 46.1369 1456.1700 62.6965 1356.3300 30.4210

ER [8] 2994.2000 7.7409 2991.0500 2.6305 3005.7200 2.8760 3008.9700 1.0708

B(E1) [9] 0.0599 0.0055 0.0610 0.0022 0.0000 0.0000 0.0000 0.0000
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Table 7.2: (Continued)

January January July July

Abs. Unc. Norm. Unc. Abs. Unc. Norm. Unc.

γ2 [10] 2952.8300 163.6020 3013.3200 69.9394 0.0000 0.0000 0.0000 0.0000

ER [11] 4704.0000 0.0000 4704.0000 0.0000 0.0000 0.0000 0.0000 0.0000

B(M1) [12] 7.2038 0.8885 6.4670 0.3149 0.0000 0.0000 0.0000 0.0000

γ2 [13] 599.2820 103.8050 520.1840 49.3461 0.0000 0.0000 0.0000 0.0000

ER [14] 5590.0000 0.0000 5590.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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7.4 Appendix 4: Rate Code

The rate code was adapted from an ⟨ααα⟩ rate code written in Fortran. The code was
graciously given to me by A. Coc via C. Iliadis. The physical constants from the file “phy-
const.incl” are included at the end.

c234567

program aanP

i m p l i c i t none

inc lude ’ phyconst . i n c l ’

i n t e g e r nb steps , nw gamow , nw reson

parameter ( nb s teps =1000 ,nw gamow=4, nw reson =100)

i n t e g e r nb steps aa , nb steps bn

parameter ( nb steps bn = 600)

r e a l *8 amass a , amass b , amass c , amass b9 , amass n

r e a l *8 e bn , e aa , h aa , h bn

r e a l *8 j12 , j52 , e neutron , s i gma coe f

r e a l *8 GG12p , GG52p , GG12m, GN12p , GN12m, GN52p , GG52m

r e a l *8 dbdbd , d lambda

r e a l *8 E hoyle , e r hoy l e , e r h o y l e 0 , e gamma , e gamma0 ,

& e b gs , e b gs0 , e be ns

r e a l *8 Gamma tot , Gamma gamma, Gamma gamma0, Gamma alpha b ,

& Gamma alpha c , Gamma alpha b0 , Gamma alpha c0 ,

& Gamma gamma1, Gamma alpha b1 , Gamma alpha c1 ,

& omega gamma , tau b ,

& Gamma g be9 1 , Gamma g be9 2 , Gamma g be9 3 , Gamma g be9 4 ,

& Gamma n be9 1 , Gamma n be9 2 , Gamma n be9 3 , Gamma n be9 4

r e a l *8 red gamma alpha b , red gamma alpha c , red Gamma gamma

r e a l *8 red gamma n be9 1 , red gamma n be9 2 , red gamma n be9 3 ,

& red gamma n be9 4 , omega gamma1 , omega gamma2 , omega gamma3 ,

& omega gamma4

r e a l *8 red gamma g be9 1 , red gamma g be9 2 , red gamma g be9 3 ,

& red gamma g be9 4

r e a l *8 f a c to r aa , f a c t o r b n

r e a l *8 rho aa , rho bn , ak aa , ak bn , rk2 aa , rk2 bn

r e a l *8 eta bn , eta0 bn , radius bn , red mass bn

r e a l *8 eta aa , eta0 aa , rad ius aa , red mass aa

r e a l *8 gamow max , t9 , t923 , bkt , e min0

r e a l *8 sv aan , sv aan1 , sv aan2 , raan , s ig bn , s i g aa , sum bn

r e a l *8 sigma gn 1 , sigma gn 2 , sigma gn 3 , sigma gn 4 , sigma gn

r e a l *8 pas , pen , penj

r e a l *8 Red GamN12p , Ggfactor1 , Ggfactor2
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r e a l *8 l i l gam 52p , l i l gam 12m , l i l e p s 1 2 p , x i

r e a l *8 e min ( 2 , 3 ) , e max ( 2 , 3 ) , GPeak0 (2 )

r e a l *8 e min nbe ( 2 , 3 ) , e max nbe ( 2 , 3 ) , dE step (2 , 3 )

i n t e g e r i aa , i bn

parameter ( i a a = 2 , i bn = 1)

i n t e g e r k aa , k bn , l aa , l bn , kl bn , i i , j j , kk

i n t e g e r i bd , i temp

i n t e g e r n int aa , n int bn

l o g i c a l l newt

r e a l *8 ERez12p , ERez12m , ERez52p , ERez52m

r e a l *8 GamN12p, GamN12m, GamN52p, GamN52m, Gn

r e a l *8 GamG12p, GamG12m, GamG52p, GamG52m

r e a l *8 B Strength12p , B Strength12m , B Strength52p , B Strength52m

r e a l *8 B R 12p , B R 12m , B R 52p , B R 52m

i n t e g e r nb temp , nb bd

parameter ( nb temp=60,nb bd=21)

r e a l *8 f c (10 ) , gc (10 ) , d fc (10 ) , dgc (10)

r e a l *8 pen bn (3* nb steps )

!***********************************************************************

complex *16 f ( 0 : 1 0 ) , g ( 0 : 1 0 ) , fp ( 0 : 1 0 ) , gp ( 0 : 1 0 ) , s i g ( 0 : 1 0 )

complex *16 z , eta , zlmin

i n t e g e r nl , kfn , mode , jpr , j f a i l

parameter ( n l =8, kfn=−1, mode=1)

!*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*

i n t e g e r mx svtab

parameter ( mx svtab=60)

r e a l *8 t9 tab ( mx svtab )

data t9 tab /

& 0 .001 , 0 . 002 , 0 . 003 , 0 . 004 , 0 . 005 , 0 . 006 , 0 . 007 , 0 . 008 ,

& 0 .009 , 0 . 010 , 0 . 011 , 0 . 012 , 0 . 013 , 0 . 014 , 0 . 015 , 0 . 016 ,

& 0 .018 , 0 . 020 , 0 . 025 , 0 . 030 , 0 . 040 , 0 . 050 , 0 . 060 , 0 . 070 ,

& 0 .080 , 0 . 090 , 0 . 100 , 0 . 110 , 0 . 120 , 0 . 130 , 0 . 140 , 0 . 150 ,

& 0 .160 , 0 . 180 , 0 . 200 , 0 . 250 , 0 . 300 , 0 . 350 , 0 . 400 , 0 . 450 ,

& 0 .500 , 0 . 600 , 0 . 700 , 0 . 800 , 0 . 900 , 1 . 000 , 1 . 250 , 1 . 500 ,

& 1 .750 , 2 . 000 , 2 . 500 , 3 . 000 , 3 . 500 , 4 . 000 , 5 . 000 , 6 . 000 ,

& 7 .000 , 8 . 000 , 9 . 000 ,10 . 000/

!*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*
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r e a l *8 aabe , beac , aang , raab

jp r = 0

zlmin = cmplx ( 0 . d0 , 0 . d0 )

do kk = 0 , 10

f ( kk ) = 0 . d0

g ( kk ) = 0 . d0

fp ( kk ) = 0 . d0

gp ( kk ) = 0 . d0

s i g ( kk ) = 0 . d0

enddo

e min0 = 1 . d−3

!***********************************************************************

!23456789012345678901234567890123456789012345678901234567890123456789012

! 1 2 3 4 5 6 7

!***********************************************************************

amass a = 4.00260325415 d0 * cs uma ! Audi 2003

amass b = 8.00530510 d0 * cs uma ! Audi 2003

amass b9 = 9 .0 d0*cs uma + 11.347648 d0 ! Audi 2003

amass n = cs mneut ! Audi 2003

e b g s0 = amass b − 2 . d0 * amass a

e be ns = amass b9 − amass b −amass n ! Q value

e be ns = −1.0d0* e be ns ! Make i t p o s i t i v e ! !

Gamma alpha b0 = 5.57 d−6 ! (MeV) WUS92

! Resonance parameters f o r 9Be( g , n) ( changed 10/07/2010)

ERez12p = 1.73865 d0 ! PRESENT

ERez52m = 2.4314 d0 ! PRESENT

ERez12m = 2.840 d0 ! PRESENT

ERez52p = 3.000 d0 ! PRESENT

c

GamN12p = 2.26 d−1 ! PRESENT

GamN52m = 7.7 d−4 ! PRESENT changed from d−5 to d−4

GamN12m = 3.856d−1 ! PRESENT

GamN52p = 2.118d−1 ! PRESENT

c

c Red GamN12p = 0.813152 ! PRESENT

li l gam 12m = 0.4365 d0 ! Present 01/2011

l i l g am 52p = 1.365 d0 ! Present 01/2011

l i l e p s 1 2 p = 0.1747 d0 ! Present 01/2011
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x i = 0.75322 d0 ! Present 01/2011

c

GamG12p = 7.452d−7 ! PRESENT

GamG52m = 9.7 d−8 ! PRESENT

GamG12m = 1.23 d−6 ! PRESENT

GamG52p = 0.578d−6 ! PRESENT

c

B Strength12p = 0.13547 d0 ! PRESENT

B Strength52m = 0.59 d0 ! PRESENT

B Strength12m = 4.639 d0 ! PRESENT

B Strength52p = 0.0204 d0 ! PRESENT

c

B R 12p = 1 .0 d0 ! PRESENT

B R 52m = 1.0 d0 ! 6 . d−2 ! PRESENT

B R 12m = 1.0 d0 ! 3 . 2 d−1 ! PRESENT

B R 52p = 1 .0 d0 ! 4 . 6 d−1 ! PRESENT

! Factors from NACRE

Ggfactor1 = ( 1 6 . 0 d0* c s p i /9 .0 d0 )* c s f i n e s c *(1/ cs hbarc nu )**2

Ggfactor2 = ( 1 6 . 0 d0* c s p i /9 .0 d0 )* c s f i n e s c * ( 1/ (2 . 0 d0* cs mprot ))**2

j12 = 0.25

j52 = 0.75

!***********************************************************************

!***********************************************************************

red mass aa = amass a /2 . d0 ! alpha + alpha reduced mass in MeV

eta0 aa = 2 . d0**2 * c s f i n e s c * s q r t ( red mass aa / 2 . d0 )

e ta aa = eta0 aa / s q r t ( e b g s0 )

rad iu s aa = 2 . d0 * 1 .45 d0 * 4 . d0 ** ( 1 . d0 /3 . d0 )

! r ad iu s aa = 6 . d0

rk2 aa = 2 . d0 * red mass aa / cs hbarc nu **2

ak aa = s q r t ( 2 . d0 * red mass aa * e b g s0 ) / cs hbarc nu

rho aa = ak aa * r ad iu s aa

eta = cmplx ( eta aa , 0 . d0 )

z = cmplx ( rho aa , 0 . d0 )

c a l l wclbes ( z , eta , zlmin , nl , f , g , fp , gp , s i g , kfn , mode , j f a i l , j p r )

i f ( j f a i l . ne . 0 ) then

wr i t e (* ,* ) ’ j f a i l = ’ , j f a i l

s top ’ Fa i l ed ’

end i f

pen = rho aa /( f (0)**2+g (0)**2)

red gamma alpha b = Gamma alpha b0 / pen

!***********************************************************************

red mass bn = amass b*amass n /( amass b+amass n ) ! reduced mass n + 8Be

!***********************************************************************
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GPeak0( i a a ) = ( c s p i * c s f i n e s c * 2 . d0 *2 . d0 / c s c 9 b o l t z ) **

& ( 2 . d0 /3 . d0 ) * ( red mass aa / 2 . d0 ) ** ( 1 . d0 /3 . d0 )

pas = 1 . d−3

!***********************************************************************

!***********************************************************************

! do 101 i bd = −9 , 6 ! BEGIN LOOP ON BD

do 101 i bd = 0 , 0 ! BEGIN LOOP ON BD

!***********************************************************************

!***********************************************************************

d lambda = i bd * pas

dbdbd = 5.77 d0 * d lambda

e b g s = e b gs0 − 12 .208 * d lambda

i f ( e b g s . l t . 0 . d0 ) go to 101

!***********************************************************************

ak aa = s q r t ( 2 . d0 * red mass aa * e b g s ) / cs hbarc nu

eta aa = eta0 aa / s q r t ( e b g s )

rho aa = ak aa * r ad iu s aa

eta = cmplx ( eta aa , 0 . d0 )

z = cmplx ( rho aa , 0 . d0 )

c a l l wclbes ( z , eta , zlmin , nl , f , g , fp , gp , s i g , kfn , mode , j f a i l , j p r )

i f ( j f a i l . ne . 0 ) then

wr i t e (* ,* ) ’ j f a i l = ’ , j f a i l

s top ’ Fa i l ed ’

end i f

pen = rho aa /( f (0)**2+g (0)**2)

Gamma alpha b1 = red Gamma alpha b * pen

!***********************************************************************

wr i t e (6 ,2011) Gamma alpha b1 ,

& GamN12p, GamN12m, GamN52p, GamN52m,

& GamG12p, GamG12m, GamG52p, GamG52m

! wr i t e (16 ,2011) Gamma alpha b1 , Gamma alpha c1 , Gamma gamma1

2011 format (//1p , ’ Ga(Be) = ’ , e10 . 4 ,

& //1p , ’Gn(12p) = ’ , e10 . 4 , ’ Gn(12m) = ’ , e10 . 4 ,

& //1p , ’Gn(52p) = ’ , e10 . 4 , ’ Gn(52m) = ’ , e10 . 4

& //1p , ’Gg(12p) = ’ , e10 . 4 , ’ Gg(12m) = ’ , e10 . 4 ,

& //1p , ’Gg(52p) = ’ , e10 . 4 , ’ Gg(52m) = ’ , e10 .4//1 p)
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tau b = cs hbarc nu / c s c l i g h t * 1 . d−13 / Gamma alpha b1

wr i t e (6 ,2013) tau b

! wr i t e (16 ,2013) tau b

2013 format ( ’ tau (Be) = ’ ,1 p , e10 . 4 , ’ ( s ) ’ // )

wr i t e (6 ,2012)

! wr i t e (16 ,2012)

2012 format (5x , ’ T9 ’ , 7 x , ’ Numerical ’ , 6 x , ’ Formula ’ , 8 x , ’ Ratio ’ )

!***********************************************************************

!***********************************************************************

! do 100 i temp = 22 , mx svtab ! BEGIN LOOP ON T

do 100 i temp = 1 , nb temp ! BEGIN LOOP ON T

!***********************************************************************

!***********************************************************************

! t9 = 0 .04 + i temp * 0 .01

t9 = t9 tab ( i temp )

bkt = t9 / c s c 9 b o l t z

t923 = t9 ** ( 2 . d0 /3 . d0 )

l newt = . t rue .

do i i = 1 , 3

do j j = 1 ,2

e min ( j j , i i ) = 1 . d9

e max ( j j , i i ) = 0 . d0

end do

end do

nb s t eps aa = nb steps

!***********************************************************************

n in t aa = 2

gamow max = GPeak0( i a a ) * T923

gamow max = gamow max + nw gamow * 4 . d0* s q r t (gamow max*bkt /3 . d0 )

! F i r s t i n t e r v a l

e min ( i aa , 1 ) = e min0

e max ( i aa , 1 ) = gamow max

i f ( gamma alpha b1 . gt . 1 . d−8) then

! Second i n t e r v a l

e min ( i aa , 2 ) = e b g s − nw reson * Gamma alpha b1

e max ( i aa , 2 ) = e b g s + nw reson * Gamma alpha b1

i f ( e min ( i aa , 2 ) . l t . e max ( i aa , 1 ) ) then

! Avoid over lap

e max ( i aa , 1 ) = e min ( i aa , 2 )
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end i f

! Third i n t e r v a l ?

i f ( e max ( i aa , 2 ) . l e . gamow max ) then

e min ( i aa , 3 ) = e max ( i aa , 2 )

e max ( i aa , 3 ) = gamow max

n in t aa = 3

end i f

i f ( e min ( i aa , 2 ) . l t . e min ( i aa , 1 ) ) stop ’ERROR on e min 2 aa ’

i f ( e min ( i aa , 3 ) . l t . e min ( i aa , 1 ) ) stop ’ERROR on e min 3 aa ’

e l s e

! Very narrow resonance

n in t aa = 1

nb s t eps aa = 1

e n d i f

!***********************************************************************

nint bn = 2

gamow max = 40*bkt !

! F i r s t i n t e r v a l

e min ( i bn , 1 ) = 1 . d−6

e max ( i bn , 1 ) = gamow max

! Second i n t e r v a l

e min ( i bn , 2 ) = 2 .4 ! make sure to get narrow resonance

e max ( i bn , 2 ) = 2 .5 ! us ing smal l s t ep s

i f ( e min ( i bn , 2 ) . l t . e max ( i bn , 1 ) ) then

! Avoid over lap

e max ( i bn , 1 ) = e min ( i bn , 2 )

end i f

! Third i n t e r v a l ?

i f ( e max ( i bn , 2 ) . l e . gamow max ) then

e min ( i bn , 3 ) = e max ( i bn , 2 )

e max ( i bn , 3 ) = gamow max

nint bn = 3

end i f

i f ( e min ( i bn , 2 ) . l t . e min ( i bn , 1 ) ) stop ’ERROR on e min 2 ab ’

i f ( e min ( i bn , 3 ) . l t . e min ( i bn , 1 ) ) stop ’ERROR on e min 3 ab ’

!***********************************************************************

! Factors as in NACRE page 41
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f a c t o r a a = cs avogadro * ( 8 . d0* c s p i * cs hbarc nu /

& red mass aa **2 ) * ( red mass aa / ( 2 . d0* c s p i * bkt ) ) ** 1 .5 d0

f a c t o r b n = cs avogadro * ( 8 . d0* c s p i / red mass bn **2 ) *

& ( red mass bn / ( 2 . d0 * c s p i * bkt ) ) ** 1 .5 d0

!***********************************************************************

sv aan = 0 . d0

do k aa = 1 , n in t aa

h aa = ( e max ( i aa , k aa )− e min ( i aa , k aa ) ) / ( nb steps −1)

do l a a = 1 , nb s t eps aa

e aa = e min ( i aa , k aa ) + h aa * ( l a a − 1)

e ta aa = eta0 aa / s q r t ( e aa )

ak aa = s q r t ( 2 . d0 * red mass aa * e aa ) / cs hbarc nu

rho aa = ak aa * r ad iu s aa

eta = cmplx ( eta aa , 0 . d0 )

z = cmplx ( rho aa , 0 . d0 )

c a l l wclbes ( z , eta , zlmin , nl , f , g , fp , gp , s i g , kfn , mode , j f a i l , j p r )

i f ( j f a i l . ne . 0 ) then

wr i t e (* ,* ) ’ j f a i l = ’ , j f a i l

s top ’ Fa i l ed ’

end i f

pen = rho aa /( f (0)**2+g (0)**2)

Gamma alpha b = red Gamma alpha b * pen

! sigma ( alpha+alpha )/Gamma alpha*E*Delta E with (1+ d e l t a a a ) f a c t o r

s i g a a= 2 . d0 * c s p i / rk2 aa * Gamma alpha b /

& ( ( e aa − e b g s )**2 + Gamma alpha b **2/4 . d0 ) * h aa

sum bn = 0 . d0

k l bn = 0

do k bn = 1 , n int bn

h bn = ( e max ( i bn , k bn)− e min ( i bn , k bn ) ) / ( nb steps bn −1) ! deprime
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do l bn = 1 , nb steps bn

kl bn = kl bn + 1

e bn = e min ( i bn , k bn ) + h bn * ( l bn − 1) ! eprime

e neutron = e bn

e gamma = e bn + e be ns + e aa − e b g s

s i gma coe f =c s p i * cs hbarc nu **2/(2 . d0* red mass bn )

! Energy Dependent Widths

! Neutron Widths

! GN12p = Red GamN12p * s q r t ( ( ERez12p − e be ns ) )

! i f ( e neutron . ge . 0 . 0 ) then

GN12p = GamN12p * s q r t ( e neutron /( ERez12p − e be ns ) )

!GN12m = GamN12m * s q r t ( e neutron /(ERez12m − e be ns ) )

! GN52p = GamN52p * s q r t ( e neutron /( ERez52p − e be ns ) )

GN12m = 2.0* l i l gam 12m *( x i * e neutron )** ( 1 . 5 ) /

& (1.0+( x i * e neutron ) )

GN52p = 2.0* l i l g am 52p *( x i * e neutron )** ( 2 . 5 ) /

& (9 .0+3 .0* ( x i * e neutron )+( x i * e neutron )**2)

! e l s e

! GN12p = GamN12p * s q r t ( e bn /( ERez12p − e be ns ) )

! GN12m = GamN12m * s q r t ( e bn /(ERez12m − e be ns ) )

! GN52p = GamN52p * s q r t ( e bn /( ERez52p − e be ns ) )

! e n d i f

! Gamma Widths

GG12p = Ggfactor1 *e gamma**3*B Strength12p

GG12m = Ggfactor2 *e gamma**3*B Strength12m

GG52p = Ggfactor1 *e gamma**3*B Strength52p

GG52m = Ggfactor2 *e gamma**3*B Strength52m

! GG12p = GamG12p * ( e gamma/ERez12p )**3

!GG12m = GamG12m * ( e gamma/ERez12m)**3

! GG52p = GamG52p * ( e gamma/ERez52p )**3

!GG52m = GamG52m * ( e gamma/ERez52m)**3

s igma gn 1 = 4 . d0* j 12 * GG12p * GN12p /

& ( ( e gamma − ERez12p )**2 + (GN12p+GG12p)**2/4 . d0 )

s igma gn 2 = 4 . d0* j 12 * GG12m * GN12m /

& ( ( e gamma − ERez12m)**2 + (GN12m+GG12m)**2/4 . d0 )

s igma gn 3 = 4 . d0* j 52 * GG52p *GN52p /

& ( ( e gamma − ERez52p )**2 + (GN52p+GG52p)**2/4 . d0 )
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s igma gn 4 = 4 . d0* j 52 * GG52m * GamN52m /

& ( ( e gamma − ERez52m)**2 + (GG52m+GamN52m)**2/4 . d0 )

sigma gn = sigma gn 1 +

& B R 12m* s igma gn 2 +

& B R 52p* s igma gn 3 +

& B R 52m* s igma gn 4

s i g bn = s igma coe f * sigma gn

sum bn = sum bn + s ig bn * exp(− e bn /bkt )* h bn

end do ! l bn loop

end do ! k bn loop

! l newt = . f a l s e .

sum bn = sum bn * f a c t o r b n

sv aan = sv aan + s i g a a * sum bn * exp(− e aa /bkt )

end do ! l a a loop

end do ! k aa loop

! N Aˆ2 <sigma v> i s in cmˆ6 moleˆ−1 s ˆ−1 but here un i t s are fm

! sv aan = sv aan * f a c t o r a a * c s c l i g h t * 1 . d13 * 1 . d−78

sv aan = sv aan * f a c t o r a a * c s c l i g h t * 1 . d13 * 1 . d−78

! sv aan = sv aan + 5.26 d−6 / t9 **3 *exp ( −21.361/ t9 )

sv aan1 = 8.759d−10 / 1 6 . / 3 . * exp (−( e b g s+e be ns )/ bkt )/ bkt **3

! From eq . 4 in Nomoto et a l . AA 1985 ( c o r r e c t e d fo ext ra \ rho ’ s )

sv aan2 = cs avogadro **2 * 3 . d0 **1 .5 d0 * 6 * c s 2 p i ** 3 * 1d−65

sv aan2 = sv aan2 * ( c s hbarc nu **2/ amass a /bkt )**3

sv aan2 = sv aan2 * omega gamma / cs hbarc nu * c s c l i g h t

sv aan2 = sv aan2 * exp (−( e b g s+e be ns )* c s c 9 b o l t z / t9 )

sv aan2 = sv aan2 + 5.26 d−6 / t9 **3 *exp ( −21.361/ t9 )

! From eq . 5 in Nomoto et a l . AA 1985

aabe = 2 . d0 * 5 .4389 d4 * Gamma alpha b1 * 1 . d6 *

& exp(− c s c 9 b o l t z * e b g s / t9 ) / t9 **1 .5 d0

beac = 3.5327 d4 * Gamma alpha c1 * Gamma gamma1 /

& ( Gamma alpha c1 + Gamma gamma1) * 1 . d6 *
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& exp(− c s c 9 b o l t z * e be ns / t9 ) / t9 **1 .5 d0

aang = 3 . d0 * aabe * beac * tau b

aang = aang + 5.26 d−6 / t9 **3 *exp ( −21.361/ t9 )

sv aan = max( sv aan , 1 . d−100)

sv aan2 = max( sv aan2 , 1 . d−100)

aang = max( aang , 1 . d−100)

raan = sv aan / sv aan2

raab = sv aan2 / aang

! i f ( gamma alpha c1 . gt . 1 . d−7) then

! wr i t e (6 ,2002) t9 , sv aan

! e l s e

! wr i t e (6 ,2002) t9 , sv aan2

! end i f

wr i t e (6 ,2002) t9 , sv aan , sv aan2 , raan , nint bn , n in t aa

! wr i t e (16 ,2002) t9 , log10 ( sv aan ) , log10 ( sv aan2 ) , raan

2002 format ( f10 . 4 , 1 p , 5 e14 . 4 )

! stop ’TEMPO’

100 cont inue ! END LOOP ON T

101 cont inue ! END LOOP ON BD

c l o s e (16)

1002 format ( ’ T9 ’ ,50 f12 . 4 )

2005 format ( a8 , 1 p , 5 e14 . 4 )

end
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This is the contents of the file “phyconst.incl” which supplied the physical constants used in the rate code.

c234567

C ’PDG04’ = The Review o f P a r t i c l e Physics , Eidelman et a l . , PL B592 , 1 (2004)

C and 2005 p a r t i a l update f o r e d i t i o n 2006 converted to cgs

cha rac t e r *42 ch cons t

parameter ( ch cons t =’ Phys i ca l cons tant s 03/06/09 phyconst . i n c l ’ )

C 123456789012345678901234567890123456789012

C−−−−− Math

r e a l *8 c s p i , c s 2 p i

parameter ( c s p i =0.31415926535897932384626433832795028d+01)

parameter ( c s 2 p i =2.d0* c s p i )

r e a l *8 c s l o g 2

parameter ( c s l o g 2 =0.69314718055994530941723212145817658d+00)

r e a l *8 c s l o g 1 0

parameter ( c s l o g 1 0 =2.30258509299405d+00)

C−−−−− Nucl

r e a l *8 cs mev2g ! MeV to g conver s i on

parameter ( cs mev2g =1.78266181d−27) ! PDG04

r e a l *8 cs uma , cs uma g

parameter ( cs uma = 931.494043 , cs uma g =1.66053886d−24) ! MeV04

r e a l *8 cs mprot , cs mneut , c s me l ec

parameter ( cs mprot =938.272029 , cs mneut =939.565360)

parameter ( c s me l ec =0.510998918)

r e a l *8 cs 1h uma , cs 4he uma

parameter ( cs 1h uma= 1.007825032 , cs 4he uma =4.002603254)

r e a l *8 cs tau n , c s e r r t a u n

parameter ( c s t au n = 885 .7 d0 , c s e r r t a u n= 0 .8 d0 ) ! PDG08

r e a l *8 cs bdeut

parameter ( cs bdeut =2.224566) ! Deuton ind ing energy Audi03

C−−−−− Phys

r e a l *8 c s f i n e s c

parameter ( c s f i n e s c =1.d0 /137.03599911 d0 )

r e a l *8 c s g r a v i t y , cs avogadro

parameter ( c s g r a v i t y =6.6742d−8 , cs avogadro =6.0221415 d23 ) ! PDG04

r e a l *8 c s g a s c o n s t a n t

parameter ( c s g a s c o n s t a n t =8.31434d7 )

r e a l *8 c s c l i g h t

parameter ( c s c l i g h t =299792458.d2 ) ! PDG04

r e a l *8 c s s t e f a n

parameter ( c s s t e f a n =5.670400d−5) ! PDG04

r e a l *8 c s a r a d c s t

parameter ( c s a r a d c s t =4.d0* c s s t e f a n / c s c l i g h t )

c parameter ( c s a r a d c s t =7.565767d−15) ! PDG04

r e a l *8 c s kbo l t z , c s kbo l t z nu , c s c 9 b o l t z

parameter ( c s k b o l t z =1.3806505d−16) ! PDG04

parameter ( c s k b o l t z n u =8.617343d−11) ! PDG04

parameter ( c s c 9 b o l t z = 1 . e−9/ c s k b o l t z n u ) ! 11 .605
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r e a l *8 cs p lanck , c s hbar

parameter ( c s p l anck =6.6260693d−27 , c s hbar=cs p lanck / c s 2 p i ) ! PDG04

r e a l *8 cs hbarc , c s hbarc nu ! MeV fm

parameter ( c s hbarc=cs hbar * c s c l i g h t , c s hbarc nu =197.326968) ! PDG04

C−−−−− Astro /Cosmo

r e a l *8 c s y e a r 2 s e c

parameter ( c s y e a r 2 s e c =31558149.8) ! S i d e r a l (2005)

r e a l *8 cs mparsec

parameter ( cs mparsec = 3.0856775807 d24 ) ! PDG04

r e a l *8 cs t cmb , cs t nu cmb , cs tnuga ! ( 1 1 . d0 /4 . d0 )ˆ1/3

parameter ( cs t cmb = 2.725 d0 )

parameter ( cs tnuga =1.401019665d0 , cs t nu cmb=cs t cmb / cs tnuga )

r e a l *8 cs hubble100

parameter ( cs hubble100 =1.d7/ cs mparsec )

r e a l *8 c s c r i t i c a l d e n s i t y

parameter ( c s c r i t i c a l d e n s i t y = 3 . d0* cs hubble100 **2/

& 8 . d0/ c s p i / c s g r a v i t y ) ! g/cm3

C−−−−− Sperge l e t a l . ApJS 170 (2007) 377 [ astro −ph /0603449]

C (WMAP only , 1 s t column , Table 5 accord ing to K. )

r e a l *8 cs omega m , cs omega l , cs omega b h2 , cs hubble h ,

& cs omega b

parameter ( cs omega m =0.237d0 , c s omega l =1.d0−cs omega m ,

& cs omega b h2 = 2.230d−2 , c s hubb le h = 0 .735 ,

& cs omega b = cs omega b h2 / cs hubb le h **2 )

C−−−−− P a r t i c l e Phys ics un i t s

r e a l *8 cs pu t ime , c s pu l ength , cs pu mass

parameter ( c s p u l e n g th = cs hbarc nu / 1 . d16 ) ! cm −> GeV−1

parameter ( c s pu t ime = c s p u l e n g th / c s c l i g h t ) ! s −> GeV−1 ???

parameter ( cs pu mass = cs mev2g * 1 . d3 ) ! g −> GeV

C e . g . c s c r i t i c a l d e n s i t y / cs pu mass * c s p u l e n g th **3 ! in GeV−4 JPU756

r e a l *8 cs mplanck , c s l p l an ck , c s t p l a n c k

parameter ( cs mplanck = 2.17645051E−05 ) ! s q r t ( c s hbarc / c s g r a v i t y )

parameter ( c s l p l a n c k = 1.61624281E−33 ) ! s q r t ( hbar*G/c ˆ3)

parameter ( c s t p l a n c k = c s l p l a n c k / c s c l i g h t )
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Rosman, and P. D. P. Taylor, Pure Appl. Chem. 75, 683 (2003).

[Edg57] R. D. Edge, “The (γ, n) reaction in 9Be at intermediate energies”, Nuclear Physics

2, 485 (1956-1957).

[Efr98] V. Efros, H. Oberhummer, A. Pushkin, and I. Thompson, “Low-energy photodisin-

tegration of 9Be and α +α +n↔9Be at astrophysical conditions”, Eur. Phys. J A ,

447 (1998).

[Esh05] K. Eshwarappa, Ganesh, K. Siddappa, Y. Kashyap, A. Sinha, P. Sarkar, and B. God-

wal, “Estimation of photoneutron yield from beryllium target irradiated by vari-

able energy microtron-based bremsstrahlung radiation”, Nuclear Instruments and

119



Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment 540, 412 (2005).

[Fie06] B. D. Fields and K. A. Olive, “Big bang nucleosynthesis”, Nuclear Physics A 777,

208 (2006), Special Isseu on Nuclear Astrophysics.

[Fre99] C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, “r-process in neutron star

mergers”, Astrophysical Journal 525, 121 (1999).

[Fre04] M. Freer and N. Ashwood, “Helium clustering in Be isotopes”, Nuclear Physics

A 738, 10 (2004), Proceedings of the 8th International Conference on Clustering

Aspects of Nuclear Structure and Dynamics.

[Fuj82] M. Fujishiro, T. Tabata, K. Okamoto, and T. Tsujimoto, “Cross section of the

reaction 9Be(γ,n) near threshold”, Can. J. Phys. 60, 1672 (1982).

[Gal98] R. Gallino, C. Arlandini, M. Busso, M. Lugaro, C. Travaglio, O. Straniero, A. Chieffi,

and M. Limongi, “Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant

Branch Stars. II. Neutron Capture and the s-Process”, The Astrophysical Journal

497, 388 (1998).

[Gib59a] J. H. Gibbons and R. L. Macklin, “Total Neutron Yields from Light Elements under

Proton and Alpha Bombardment”, Phys. Rev. 114, 571 (1959).

[Gib59b] J. H. Gibbons, R. L. Macklin, J. B. Marion, and H. W. Schmitt, “Precision Mea-

surement of the Be9(γ, n) Cross Section”, Phys. Rev. 114, 1319 (1959).

[Gli91] J. P. Glickman, W. Bertozzi, T. N. Buti, S. Dixit, F. W. Hersman, C. E. Hyde-

Wright, M. V. Hynes, R. W. Lourie, B. E. Norum, J. J. Kelly, B. L. Berman, and

D. J. Millener, “Electron scattering from 9Be”, Phys. Rev. C 43, 1740 (1991).

[Gor92] A. M. Goryachev, G. N. Zalesny, and I. V. Pozdnev, “Cross Section of (γ,n) Reaction

on 9Be in the Energy Range from Threshold to 20 MeV”, Bulletin of the Russian

Academy of Sciences: Physics 56 (1992).

[Ham49] B. Hamermesh, M. Hamermesh, and A. Wattenberg, “The Angular Distribution of

the Photo-Neutrons from Beryllium”, Phys. Rev. 76, 611 (1949).

[Ham53] B. Hamermesh and C. Kimball, “The Photodisintegration Cross Section of Beryl-

lium at 2.185 MeV”, Phys. Rev. 90, 1063 (1953).

[Har03] K. Y. Hara, H. Utsunomiya, S. Goko, H. Akimune, T. Yamagata, M. Ohta,

H. Toyokawa, K. Kudo, A. Uritani, Y. Shibata, Y.-W. Lui, and H. Ohgaki, “Photo-

disintegration of deuterium and big bang nucleosynthesis”, Phys. Rev. D 68, 072001

(2003).

120



[Hel72] R. Hellborg and L. Ask, “The Relative Intensities and Angular Distributions of

Gamma Rays from the Nuclear Reaction 19F(p,αγ)16O”, Physica Scripta 6, 47

(1972).

[Hub89] J. H. Hubbell and S. M. Seltzer, “Tables of X-Ray Mass Attenuation Coefficients

and Mass Energy-Absorption Coefficients from 1 keV to 20 MeV for Elements Z =

1 to 92”, NIST Standard Reference Database 126 (1989).

[Hug75] R. J. Hughes, R. H. Sambell, E. G. Muirhead, and B. M. Spicer, “The photoneutron

cross section of 9Be”, Nuclear Physics A 238, 189 (1975).

[Ili07] C. Iliadis, Nuclear Physics of Stars, Wiley-VCH, 2007.

[Ita01] N. Itagaki, S. Okabe, and Kiyomi, “Molecular-Orbital Structure in Light Neutron

Rich Nuclei”, Prog. Theo. Phys. Sup. 142, 297 (2001).

[Ita03] N. Itagaki, K. Hagino, T. Otsuka, S. Okabe, and K. Ikeda, “Importance of clustering

in light neutron-rich nuclei”, Nuclear Physics A 719, C205 (2003).

[Jak61] M. J. Jakobson, “Photodisintegration of Be9 from Threshold to 5 MeV”, Phys.

Rev. 123, 229 (1961).

[Joh62] W. John and J. M. Prosser, “Photodisintegration Cross Section of Beryllium near

Threshold”, Phys. Rev. 127, 231 (1962).

[Kue87] G. Kuechler, A. Richter, and W. von Witsch, “Line Shape an Excitation Strength

of the First Excited State in 9Be∗”, Z. Phys. A 326, 447 (1987).

[Lan86] K. Langanke, M. Wiescher, and F. K. Thielemann, “The triple-alpha-reaction at

low temperatures”, Zeitschrift fr Physik A Hadrons and Nuclei 324, 147 (1986),

10.1007/BF01325126.

[Lit97] V. N. Litvinenko et al., “Gamma-Ray Production in a Storage Ring Free-Electron

Laser”, Phys. Rev. Lett. 78, 4569 (1997).

[Lod03] K. Lodders, “Solar System Abundances and Condensation Temperatures of the

Elements”, The Astrophysical Journal 591, 1220 (2003).

[Mar99] R. C. Martin, J. B. Knauer, and P. A. Balo, “Production, Distribution and Ap-

plications of Californium-252 Neutrons Sources”, Oak Ridge National Laboratory

Report (1999).

[MCN07] mcnpx User’s Manual, 2007. https://mcnpx.lanl.gov/

121



[Mob50] R. C. Mobley and R. A. Laubenstein, “Photo-Neutron Thresholds of Beryllium and

Deuterium”, Phys. Rev. 80, 309 (1950).

[Mor89] R. Moreh, T. J. Kennett, and W. V. Prestwich, “2H(γ,n) absolute cross section at

2754 keV”, Phys. Rev. C 39, 1247 (1989).

[Muk05] I. Mukha, M. Kavatsyuk, A. Algora, L. Batist, A. Blazhev, J. Dring, H. Grawe,

M. Hellstrm, O. Kavatsyuk, R. Kirchner, M. L. Commara, C. Mazzocchi, C. Plet-

tner, and E. Roeckl, “The reaction of triple radiative capture [alpha][alpha](n,γ)9Be

studied in a β decay of 9Li”, Nuclear Physics A 758, 647 (2005), Nuclei in the Cos-

mos VIII.

[Nom85] K. Nomoto, F. Thielemann, and S. Miyaji, “The triple alpha reaction at low temper-

atures in accreting white dwarfs and neutron stars”, Astronomy and Astrophysics

149, 239 (1985).

[Nor10] J. Nordhaus, A. Burrows, A. Almgren, and J. Bell, “DIMENSION AS A KEY TO

THE NEUTRINO MECHANISM OF CORE-COLLAPSE SUPERNOVA EXPLO-

SIONS”, Astrophysical Journal 720, 694 (2010).

[Noy54] J. C. Noyes, J. E. Van Hoomissen, W. C. Miller, and B. Waldman, “Photodisinte-

gration Thresholds of Deuterium and Beryllium”, Phys. Rev. 95, 396 (1954).

[Ots03] K. Otsuki, G. J. Mathews, T. Kajino, S. Honda, W. Aoki, A. Aprahamian, and

K. Vaughan, “Nuclear cosmochronometry and universality in the r-process abun-

dances”, Nuclear Physics A 721, C1024 (2003).

[Pag30] L. Page and W. W. Watson, “Nuclear Electrons”, Phys. Rev. 35, 1584 (1930).

[Per56] J. K. Perring and T. H. R. Skyrme, “The Alpha-Particle and Shell Models of the

Nucleus”, Proceedings of the Physical Society. Section A 69, 600 (1956).

[Qia07] Y.-Z. Qian and G. Wasserburg, “Where, oh where has the r-process gone?”, Physics

Reports 442, 237 (2007), The Hans Bethe Centennial Volume 1906-2006.

[Rus48] B. Russell, D. Sachs, A. Wattenberg, and R. Fields, “Yields of Neutrons from

Photo-Neutron Sources”, Phys. Rev. 73, 545 (1948).

[Sal52] E. E. Salpeter, “Nuclear Reactions in the Stars. I. Proton-Proton Chain”, Phys.

Rev. 88, 547 (1952).

[Sal70] A. Salyers, “Photodisintegration of 9Be”, Phys. Rev. C 2, 1653 (1970).

122



[Sas06] T. Sasaqui, K. Otsuki, T. Kajino, and G. Mathews, “Light-Element Reaction Flow

and the Conditions for r-Process Nucleosynthesis”, Astrophysical Journal 645, 1345

(2006).

[Sch05] R. Schiavilla, “Induced polarization in the 2H(γ,n)2H reaction at low energy”, Phys.

Rev. C 72, 034001 (2005).

[Sek76] K. K. Sekharan, H. Laumer, B. D. Kern, and F. Gabbard, “A neutron detector for

measurement of total neutron production cross sections”, Nuclear Instruments and

Methods 133, 253 (1976).

[Sho99] K. Shoda and T. Tanaka, “Clusters in the photodisintegration of 9Be”, Phys. Rev.

C 59, 239 (1999).

[Sie02] L. Siess, M. Livio, and J. Lattanzio, “Structure, Evolution, and Nucleosynthesis of

Primordial Stars”, The Astrophysical Journal 570, 329 (2002).

[SJ93] J. K. Sprinkle Jr., H. O. Menlove, M. C. Miller, and P. A. Russo, Los Alamos

National Lab Report No. LA-12496-MS , 11 (1993).

[Smi57] A. B. Smith, P. R. Fields, and J. H. Roberts, “Spontaneous Fission Neutron Spec-

trum of Cf252”, Phys. Rev. 108, 411 (1957).

[Sne50] A. H. Snell, E. C. Barker, and R. L. Sternberg, “Photo-Disintegration Cross Sections

of Deuterium and Beryllium for the Gamma-Rays of Sodium 24 and Gallium 72”,

Phys. Rev. 80, 637 (1950).

[Sum02] K. Sumiyoshi, H. Utsunomiya, S. Goko, and T. Kajino, “Astrophysical reaction

rate for α(αn,γ)9Be by photodisintegration”, Nuclear Physics A 709, 467 (2002).

[Sun09] C. Sun, Ph.D. thesis, Duke University, 2009.

[Sur10] R. Surman and G. Mclaughlin, “Private Communication”, 2010.

[Ter01] M. Terasawa, K. Sumiyoshi, T. Kajino, G. Mathews, and I. Thanihata, “New

Nuclear Reaction Flow During r-Process Nucleosynthesis in Supernoavae: Critical

Role of Light Neutron-Rich Nuclei”, Astrophysical Journal 562, 470 (2001).

[Tho09] A. K. Thompson, “Source Activity”, private communication, 2009.

[Til04] D. Tilley, J. Kelley, J. Godwin, D. Millener, J. Purcell, C. Sheu, and H. Weller,

“Energy levels of light nuclei A=8,9,10”, Nuclear Physics A 745, 155 (2004).

[Uts00] H. Utsunomiya, Y. Yonezawa, H. Akimune, T. Yamagata, M. Ohta, M. Fujishiro,

H. Toyokawa, and H. Ohgaki, “Photodisintegration of 9Be with laser-induced Comp-

ton backscattered γ rays”, Phys. Rev. C 63, 018801 (2000).

123



[van94] L. van Wormer, J. Goerres, C. Iliadis, M. Wiescher, and F. Thielemann, “Reaction

rates and reaction sequences in the rp-process”, apj 432, 326 (1994).

[vO06] W. von Oertzen, M. Freer, and Y. Kanada-En’yo, “Nuclear clusters and nuclear

molecules”, Physics Reports 432, 43 (2006).
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